263 research outputs found

    A fuzzy semantic information retrieval system for transactional applications

    Get PDF
    In this paper, we present an information retrieval system based on the concept of fuzzy logic to relate vague and uncertain objects with un-sharp boundaries. The simple but comprehensive user interface of the system permits the entering of uncertain specifications in query forms. The system was modelled and simulated in a Matlab environment; its implementation was carried out using Borland C++ Builder. The result of the performance measure of the system using precision and recall rates is encouraging. Similarly, the smaller amount of more precise information retrieved by the system will positively impact the response time perceived by the users

    Experiences with RFID-Based Interactive Learning in Museums

    Get PDF
    Tourism plays an important role in the economies of many countries. Tourism can secure employment, foreign exchange earnings, investment and regional development. To attract more tourists and local visitors, many stakeholders such as natural parks, museums, art galleries, hotels and restaurants provide personalised services to meet individual needs. With the increasing number of tourists comes an increased demand for guides at education-oriented leisure centers. Each provided needs unique way to present their services. In this study, these educational leisure centres are coarsely divided into art and science. This paper introduces the architecture of the proposed guide system including a PDA-based recommendation guide for art museums and an Radiofrequency identification-based interactive learning system using collaborative filtering technology for science and engineering education. Evaluations of the two systems reveal that the system inspires and nurtures visitors’ interest in science and arts

    Capturing Situational Context in an Augmented Memory System

    Get PDF
    Bookmarking a moment is a new approach being introduced to capture past experience and insert information into an augmented memory system. This idea is inspired from the concept of the bookmark in web browsers. Semi-automatic bookmarking different moments when time is limited and revisiting these moments before inserting them into an augmented memory system will help people to remember their past experience. An exploratory study was conducted to discover and shape the design requirements for a system called CatchIt. It aims to understand end-users’ needs to capture their personal experience, which is an important and complex issue in the case of capture and access of personal experiences. CatchIt is a system to bookmark the significant moments during the day before enriching them, and entering them into the augmented memory system called Digital Parrot. The conceptual design of CatchIt will be the main aim of this study. The primary requirements were derived from the scenarios and analysis of the findings of five different study stages were designed to inspect these: unobserved field visit, shadowing, using indictors, Wizard of Oz and using technology. Thirty participants were involved in field visit, survey and follows up interview. Each stage had different tasks to be performed and the findings of each stage contributed to understanding different parts of user needs and system design requirements. The results of this study indicated the system should automatically record the context information, especially the time and location since they were typically neglected by the participants. Different information such as textual and visual information should be manually recorded based on the users’ setting or situations. A single button is a promising input mechanism to bookmark a moment and it should be fast and effort- less. The result showed no clear correlation between learning style and type of the information that had been captured. Also, we found that there might be a correlation between passive capture and false memories. All these findings were used to provide a foundation for further work to implement the bookmark system and evaluate this approach. Some issues raised in this study need further research. The work will contribute to a greater understanding of human memory and selective capture

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity

    Information Technology and Lawyers. Advanced Technology in the Legal Domain, from Challenges to Daily Routine

    Get PDF

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc

    A model for mobile, context-aware in-car communication systems to reduce driver distractions

    Get PDF
    Driver distraction remains a matter of concern throughout the world as the number of car accidents caused by distracted driving is still unacceptably high. Industry and academia are working intensively to design new techniques that will address all types of driver distraction including visual, manual, auditory and cognitive distraction. This research focuses on an existing technology, namely in-car communication systems (ICCS). ICCS allow drivers to interact with their mobile phones without touching or looking at them. Previous research suggests that ICCS have reduced visual and manual distraction. Two problems were identified in this research: existing ICCS are still expensive and only available in limited models of car. As a result of that, only a small number of drivers can obtain a car equipped with an ICCS, especially in developing countries. The second problem is that existing ICCS are not aware of the driving context, which plays a role in distracting drivers. This research project was based on the following thesis statement: A mobile, context-aware model can be designed to reduce driver distraction caused by the use of ICCS. A mobile ICCS is portable and can be used in any car, addressing the first problem. Context-awareness will be used to detect possible situations that contribute to distracting drivers and the interaction with the mobile ICCS will be adapted so as to avert calls and text messages. This will address the second problem. As the driving context is dynamic, drivers may have to deal with critical safety-related tasks while they are using an existing ICCS. The following steps were taken in order to validate the thesis statement. An investigation was conducted into the causes and consequences of driver distraction. A review of literature was conducted on context-aware techniques that could potentially be used. The design of a model was proposed, called the Multimodal Interface for Mobile Info-communication with Context (MIMIC) and a preliminary usability evaluation was conducted in order to assess the feasibility of a speech-based, mobile ICCS. Despite some problems with the speech recognition, the results were satisfying and showed that the proposed model for mobile ICCS was feasible. Experiments were conducted in order to collect data to perform supervised learning to determine the driving context. The aim was to select the most effective machine learning techniques to determine the driving context. Decision tree and instance-based algorithms were found to be the best performing algorithms. Variables such as speed, acceleration and linear acceleration were found to be the most important variables according to an analysis of the decision tree. The initial MIMIC model was updated to include several adaptation effects and the resulting model was implemented as a prototype mobile application, called MIMIC-Prototype
    corecore