
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
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1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
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1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
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1251786095 5578 46.5090476761 6.64683404333
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1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187 
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187 
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
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1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
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1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
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1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
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1251785926 5578 46.509406840 6.64677277164
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1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
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1251785986 5578 46.5090460835 6.64688701694
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1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
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1251785946 5578 46.5089301618 6.64686790621
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1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
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1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786075 5578 46.509087071 6.64685047186
1251786085 5578 46.5090976322 6.6468330375
1251786095 5578 46.5090476761 6.64683404333
1251786045 5578 46.5091254601 6.64685659064
1251786045 5578 46.5091254601 6.64685659064
1251786055 5578 46.5091240352 6.64674192625
1251786055 5578 46.5091240352 6.64674192625
1251786065 5578 46.5090944471 6.6467659823
1251786035 5578 46.509093106 6.64692641187
1251786035 5578 46.509093106 6.64692641187

1251786035 5578 46.509093106 6.64692641187

1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251786035 5578 46.509093106 6.64692641187
1251785926 5578 46.509406840 6.64677277164
1251785946 5578 46.5089301618 6.64686790621
1251785956 5578 46.5090330916 6.64685030422
1251785966 5578 46.5091026613 6.64686966641
1251785976 5578 46.5091066008 6.64684259287
1251785986 5578 46.5090460835 6.64688701694
1251785996 5578 46.5090178365 6.64681342386
1251786006 5578 46.5090416411 6.64678148882
1251786016 5578 46.5090469217 6.6469539045
1251786025 5578 46.5090369472 6.64697033303
1251785926 5578 46.509406840 6.64677277164
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Abstract 

Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless 

communications, have resulted in a surge in data generation. Mobility data is one 

of the various forms of data, which are ubiquitously collected by different location 

sensing devices. Extensive knowledge about the behavior of humans and wildlife is 

buried in raw mobility data. This knowledge can be used for realizing numerous 

viable applications, ranging from wildlife movement analysis, to various location-

based recommendation systems, urban planning, and disaster relief. 

With respect to what mentioned above, in this thesis, we mainly focus on providing 

data analytics for understanding the behavior and interaction of mobile entities 

(humans and animals). To this end, the main research question to be addressed is: 

How can behaviors and interactions of mobile entities be determined from mobility 

data acquired by (mobile) wireless sensor nodes in an accurate and efficient 

manner?  

To answer the above-mentioned question, both application requirements and 

technological constraints need to be considered. On the one hand, applications 

requirements call for accurate data analytics to uncover hidden information about 

individual behavior and social interaction of mobile entities, and to deal with the 

uncertainties in mobility data. Technological constraints, on the other hand, 

require these data analytics to be efficient in terms of their energy consumption 

and to have low memory footprint, and processing complexity.  

The contributions of this thesis are:  

• Mining periodic behavior from mobility data: Periodic behaviors are 

prevalent for both humans and wildlife. We propose a technique for 

identifying periodic behaviors and extracting periodic patterns from 

streaming mobility data.  

• Modeling mobility data: A general movement model can be used to 

identify frequent patterns in the mobility data using the higher-level 

semantic they represent. We model trajectories both deterministically and 

probabilistically to relate them to the paths and stay-points they represent. 

Our deterministic approach uses collective knowledge of trajectories (on 

the move) to relate trajectories to the path taken by mobile entities. Our 

probabilistic approach, models trajectories (on stay-points and on the 

move) using state-space modeling techniques. 
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• Mining social ties only from mobility data: We study the possibility of 

extracting social context from mobility data. For this purpose, we propose 

two information theoretic indicators to measure the correlation between 

visits to different places based on the purpose of visit.  

• Model-based trajectory compression and adaptive sampling: We propose 

two techniques to use the patterns discovered by trajectory modeling to 

reduce data redundancy and uncertainty. Thereby, we increase the lifetime 

of the location acquisition devices. Our first technique is a light online 

model-based trajectory compression algorithm for decreasing the number 

of transmitted samples. Our second approach is a model-based adaptive 

sampling algorithm, which increases the lifetime of the location acquisition 

devices by reducing both the number of samples acquired and transmitted. 

The techniques developed in the thesis were evaluated using five different mobility 

datasets collected from both wildlife and humans. These datasets are: i) small-scale 

dataset collected by a wireless sensor node carried by people, ii) small-scale dataset 

collected from capricorns, iii) large-scale Geolife dataset from Microsoft research, 

iv) large-scale Mobile Data Challenge dataset from Nokia, and v) a synthetic dataset 

produced with a movement test sequence generator.  
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Samenvatting 

Snelle vooruitgang in de ontwikkeling van micro-elektromechanische systemen 

(MEMS) en draadloze communicatie heeft geresulteerd in een enorme toename in 

gegenereerde data. Mobiliteitsdata is een van de vormen van data die overal 

verzameld wordt, gebruikmakend van verschillende locatiebewuste apparaten. 

Uitgebreide kennis over het gedrag van mensen en wilde dieren is verborgen in 

deze ruwe mobiliteitsdata. Deze kennis kan gebruikt worden voor het realiseren 

van talrijke zinvolle applicaties, variërend van het analyseren van de beweging van 

dieren in het wild tot verschillende locatie-gebaseerde recommendation systems, 

stadsplanning en hulpverlening bij rampen. 

In het licht van het bovenstaande, richten we ons in dit proefschrift vooral op data 

analytics om het gedrag en de interactie van mobiele entiteiten (mensen en dieren) 

te begrijpen. De hoofdvraag die in het proefschrift beantwoord wordt, is: 

Hoe kan het gedrag en de interactie van mobiele entiteiten op een accurate en 

efficiënte wijze bepaald worden op basis van mobiliteitsdata verzameld door 

(mobiele) draadloze sensoren?  

Om bovenstaande vraag te beantwoorden moet rekening gehouden worden met 

zowel de eisen aan de applicaties als de technologische beperkingen. Aan de ene 

kant vragen applicaties om accurate data analytics om verborgen informatie over 

individueel gedrag en sociale interactie van mobiele entiteiten zichtbaar te maken 

en moeten de algoritmes om kunnen gaan met onzekerheden in mobiliteitsdata. 

Technologische beperkingen, aan de andere kant, vereisen dat deze algoritmes 

efficiënt zijn in termen van hun energieverbruik, een laag geheugengebruik en lage 

(reken)complexiteit hebben.   

De bijdragen van dit proefschrift zijn:  

• Afleiden van periodiek repeterend gedrag uit mobiliteitsdata: Periodiek 

repeterend gedrag overheerst bij zowel mensen als wilde dieren. We 

presenteren een techniek om periodiek repeterend gedrag te identificeren 

en periodiek repeterende patronen af te leiden uit streaming 

mobiliteitsdata.  

• Modelleren van mobiliteitsdata: Een algemeen model van verplaatsingen 

kan gebruikt worden om veel voorkomende patronen in de mobiliteitsdata 

te identificeren, gebruikmakend van de hogere niveau semantiek die deze 

patronen representeren. We modelleren afgelegde trajecten zowel 

deterministisch als probabilistisch om ze te relateren aan de routes en 
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verblijfplaatsen die ze representeren. Onze deterministische aanpak 

gebruikt collectieve kennis van afgelegde trajecten (tijdens verplaatsingen) 

om deze trajecten te relateren aan de door de mobiele entiteiten afgelegde 

route. Onze probabilistische aanpak modelleert afgelegde trajecten (zowel 

op verblijfplaatsen als daartussen) gebruikmakend van state-space 

modelleertechnieken. 

• Afleiden van sociale relaties op basis van alleen mobiliteitsdata: We 

bestuderen de mogelijkheid om de sociale context af te leiden uit 

mobiliteitsdata. Voor dit doel presenteren we twee informatietheoretische 

indicatoren om de correlatie tussen bezoeken aan verschillende locaties te 

meten, gebaseerd op het doel van het bezoek.  

• Modelgebaseerde traject-compressie en adaptieve dataverzameling: We 

presenteren twee technieken om de patronen die ontdekt zijn op basis van 

het modelleren van de afgelegde trajecten te gebruiken om redundantie in 

de data en onzekerheid te verminderen. Hiermee vergroten we de 

levensduur van de locatiebepalingsapparatuur. Onze eerste techniek is een 

licht, modelgebaseerd traject-compressie algoritme voor het online 

reduceren van de hoeveelheid metingen die verstuurd worden. Onze 

tweede aanpak is een modelgebaseerd adaptief samplingsalgoritme dat de 

levensduur van de locatiebepalingsapparatuur vergroot door zowel het 

aantal metingen dat verricht wordt als het aantal metingen dat verstuurd 

wordt, te reduceren. 

De in dit proefschrift ontwikkelde technieken zijn geëvalueerd, gebruikmakend van 

vijf verschillende mobiliteitsdatasets verzameld bij zowel wilde dieren als mensen. 

Deze datasets zijn: i) kleinschalige dataset verzameld door een draadloze sensor, 

gedragen door mensen, ii) kleinschalige dataset verzameld bij steenbokken, iii) 

grootschalige Geolife dataset van Microsoft research, iv) grootschalige Mobile Data 

Challenge dataset van Nokia, en v) een synthetische dataset geproduceerd met een 

movement test sequence generator. 
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         Chapter 1 

1 Introduction 

1.1 Introduction 

With the emergence of sensor technologies and advances in mobile and wireless 

communications, more and more data are being generated at all times. The surge in 

the rate of data generation is so rapid that, supposedly more than 90% of the data 

in the world was produced only in the past two years [1]. This has led to the birth 

of the new era of “Big Data” which, in simplest terms, refers to loads of data, which 

are far more than what a single computer can handle. Extensive knowledge is 

hidden in such abundance of data waiting to be revealed.  

Spatio-temporal mobility data acquired through location aware technologies are 

only one of the various forms of data, which are continuously increasing in size. 

Investments on the effort and price spent on collecting mobility data (both in terms 

of knowledge acquisition, and technology development) are only returned when the 

data is effectively processed to realize a viable application. Therefore, now that 

data sensing and collection is easily possible, the need for techniques, which make 

sense of such data, is more than ever evident. 

Any application that uses mobility data collected from a mobile entity requires 

answering various questions about it. At the same time, the technology limits the 

capability of current data analysis solutions by introducing its own challenges. 

Thereby, any solution for analyzing mobility data should meet certain 

requirements. In what follows, we further elaborate this problem by naming few 

applications, technological constraints, and the requirements imposed by the two. 

1.2 Applications 

Analysis and mining mobility data provided through sensing has provoked various 

applications. The following are only a handful of the possible environmental and 

civil applications: 

• Wildlife monitoring: Possibility of collecting mobility data from wildlife 

has opened new avenues for ecologists interested in wildlife movement 

analysis. Data collected from animals can explain numerous phenomena in 

the ecological domain such as their resource selection [2], foraging [3], 

predation [4], and intersexual relationships [5].  
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• Location based recommendation systems: Thanks to mobility data 

analysis, various services can be provided for pedestrians and cars. For 

instance, information extracted from such data can realize location based 

recommendations (e.g. routes, venues) which match the users’ preferences 

and their current location [6]. 

• Environmental monitoring: Recently, through the crowd participation in 

data collection (participatory sensing) [7], rich mobility datasets are 

formed. These datasets can be used for solving various environmental 

issues. For instance, researchers have used such data for visualizing city-

wide spatio-temporal noise and pollution maps [8].  

• Urban planning: Mobility datasets collected from people provide extensive 

knowledge about urban resource usage. This knowledge can be used as 

part of planning for future urban growth [9]. 

• Disaster relief: Movement analysis of people during disaster can help in 

disaster relief and management during severe catastrophes which involve 

large population movement [10].  

1.2.1 Technological constraints 

Mobility data needed for realizing the above-mentioned applications can be 

provided through various means. Human related data are ubiquitously collected 

through location aware devices such as mobile phones, PDAs, Wi-Fi networks, and 

location check-ins in social networking websites. During the past decade there has 

also been a growing interest in the use of mobile wireless sensor networks 

especially for wildlife monitoring. These networks are composed of autonomous 

mobile nodes for collecting data of interest [11]. 

The technological restrictions of the above-mentioned technologies impose 

numerous challenges on data analysis systems. Some of these challenges are:  

• Resource constraints: Constraints in mobile sensing technologies are of 

different natures, mainly raised by cost and size restrictions. These restrictions 

have led to scarcity of energy, memory, computational capability, and 

communicational range and bandwidth.  

• Data uncertainty: Uncertainties [12] are inherent in mobility data collected by 

mobile sensing devices. These uncertainties are in form of discrete sampling 

and missing samples. Discrete nature of sampling is the source of uncertainty 

between two consequent samples. The level of uncertainty in mobility data is 

affected by the frequency by which position samples are acquired [12]. In real 

world applications, there are also missing samples. This implies that data is 

unavailable due to hardware failure or transmission error, among other 

reasons.  
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• Inaccuracy: Mobility data should capture the physical location of the mobile 

entity. Oftentimes, inaccuracies are introduced to the estimated physical 

location in form of measurement error and noise. Measurement error is a 

minor deviation from the correct value. Noise, in this context, is a 

measurement, which does not make sense considering the maximum speed of 

the mobile entity. Such inaccuracies are also challenges that need to be tackled 

[12]. 

• Lack of ground truth/context: A great challenge which scientists face when 

analyzing mobility data is lack of available datasets with relevant ground-truth. 

Without available ground truth, it is very difficult to prove performance of any 

algorithm that derives context. At the same time, collecting a sufficiently large 

dataset, which is labeled with relevant ground truth, is energy and time 

consuming. 

1.2.2 Requirements 

Both of the formerly mentioned applications and challenges call for specific 

requirements for any data analysis system that is devised for analysis of mobility 

data: 

• Pattern mining and data analysis techniques: All of these applications pose 

questions about the behavior of individuals and groups such as: “Where are the 

regions of interest?”, “What are the frequent paths?”, and “What are the social 

ties between individuals?”. Identifying the right method, which can correctly 

answer the above-mentioned questions, is one of the basic requirements of the 

mobility data analysis systems. 

• Knowledge discovery: Multiple factors affect the behavior of mobile entities. 

Habits, social interactions, special events, and changes can potentially form 

patterns in the mobility data. Therefore, when it comes to explaining the 

behavior of a mobile entity, there is no single pattern to look for. Discovering 

unknown patterns present in the data without availability of a-priori knowledge 

is a difficult task. While intuition can help in making hypothesis about 

existence of patterns in the data collected from humans, there is less 

assistance from such insights when studying wildlife.  

• Streaming data analysis: Various applications mentioned before require 

instant decision-making based on data. Mobility data collected from (mobile) 

wireless sensor nodes are in form of streams of (𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔,𝐴𝑙𝑡, 𝑡) coordinates 

being generated continuously. Formerly, the collected data were analyzed in an 

offline mode. Nowadays, however, such form of analysis neither satisfies the 

requirements of applications in terms of responsiveness, nor is it possible 

considering the resource constrains of mobile devices.  
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• Efficient means of data collection and processing: The scarcities of mobile 

wireless sensor nodes in terms of memory and computational resources, as 

mentioned before, calls for efficiency. Therefore, usage of memory and 

processing resources during sampling, processing, and transmission should be 

efficient. 

1.3 Research objectives 

The main focus of this thesis is on providing data analysis mechanisms for 

understanding the behavior and interactions of mobile entities. To this end, the 

general research question to be addressed in this thesis is: 

How can behaviors and interactions of mobile entities be determined from mobility 

data acquired by (mobile) wireless sensor nodes in an accurate and efficient 

manner?  

With respect to the requirements mentioned in Section 1.2.2, there are two key 

factors to be considered in order to answer the above-mentioned question. The 

first, and most important aspect is imposed by application requirements, which are 

data analysis solutions that uncover hidden patterns from mobility data acquired 

by location aware technologies. The second aspect imposed by technological 

constraints is efficient data collection. Efficiency here relates to feasibility of 

collecting data in a timely manner, considering the resource scarcity, and in a way 

that important information regarding the patterns and behaviors are still captured. 

1.3.1 Research questions 

Considering the need for (i) application related data analysis solutions for 

understanding the data and (ii) technological infrastructure for data collection, we 

derive the three specific research questions (RQ 1-3) mentioned below: 

Application related data analysis solutions for understanding the data: 

• (RQ. 1): Can the acquired mobility data from a mobile entity be efficiently 

interpreted to provide knowledge about the individual behavior of mobile 

entities? 

•  (RQ. 2): Can the acquired mobility data from mobile entities be interpreted 

to provide knowledge about their interaction?  

Technological infrastructure for data collection: 

• (RQ. 3): Can the mobility data be collected efficiently in terms of resources 

and the required data frequency? 
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1.3.2 Hypotheses 

In order to answer the first research question (RQ. 1), we start with the hypothesis 

that it is possible to model the behavior of individual mobile entities in terms of 

the periodic, and frequent patterns in mobility data. We address (RQ. 2) by making 

the hypothesis that social context and social ties can form similar mobility 

patterns. Concerning the last research question (RQ. 3), we hypothesize that 

context-based long-term redundancies in mobility data (periodic or frequent) can 

be used to reduce the overhead caused by both sending and sampling data.  

1.4 Thesis contribution 

With respect to what we mentioned in the previous section, the contributions of 

this thesis can be summarized as below: 

• A review of technological solutions for collecting spatio-temporal data from 

mobile entities (Chapter 2): The first and foremost question for data analysis 

is associated with the type of data to analyze. Therefore, the choice of proper 

technology, which is inline with the application needs, and the available 

resources, is of high importance. For this purpose, we investigate and review 

various technological solutions, which could be used for collecting spatio-

temporal data from mobile entities. We provide an overview of different 

sensing technologies, classify them, and review their capabilities. 

• Efficient and accurate extraction of periodic patterns from streaming data 

(Chapter 3): Periodic patterns are prevalent in both human’s and animal’s 

behavior. Although the problem of mining periodic patterns has been 

addressed before, there was no previous research on extracting patterns form 

streaming data. To this end, we propose a periodicity detection technique for 

streaming mobility data, which can extract periodic patterns, having low 

memory and processing footprints.  

• Efficient and accurate modeling of trajectory dynamics (Chapter 4): A 

general movement model can be used to identify frequent patterns in mobility 

data. We propose using both deterministic and probabilistic modeling to 

capture the short-term dependencies in the mobility data. Our deterministic 

approach is a hierarchical grid-based clustering algorithm that utilizes the 

semantic and spatial data to find the frequently visited paths by mobile 

entities. This technique can accurately find frequent patterns by using the 

collective knowledge of trajectories.  

Our second approach is a probabilistic generative model, based on hierarchal 

hidden semi-Markov model (HHSMM), which can capture both frequent, and 

rare mobility patterns of mobile entities. As will be shown, this technique can 

generally model trajectories such that new patterns are better discovered 

without any presumptions. 
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• Extracting social context from mobility data (Chapter 5): Social context can 

be discovered from mobility patterns. The previous research in this area, 

normally use other types of data which are rich in social context (such as 

phone calls, and message posts on social networks). In contrast, we study the 

possibility of extracting social context solely from mobility data. For this 

purpose, we propose two information theoretic indicators to measure the 

correlation between visits to places based on the purpose of visit.  

• Energy efficient collection of mobility data (Chapter 6): Data acquired from 

location aware devices are conforming to a large amount of spatio-temporal 

correlations, which make them extremely redundant. We propose two 

techniques to use the previously found patterns in the data to reduce such 

redundancies. Firstly, we use the patterns present in data for compressing 

trajectories. Secondly, we show how it is possible to use these redundancies in 

order to decrease the number samples acquired by mobility data acquisition 

devices. Using these two techniques, we increase the lifetime of the mobile 

sensor node by decreasing the resources required for sensing and transmission 

of data. 

• Experiments with different datasets (Chapters 3-6): One of our contributions 

in this thesis is extensive experiment with different mobility datasets. The 

datasets we used in this thesis are versatile in terms of their scale and the 

amount of uncertainty they contain (sparseness and noise). Relevant to each of 

the contributions mentioned before, we have chosen datasets, which can 

convey information about individual or social behavior of mobile entities. At 

the end of each chapter, we have case studies on two specific datasets. More 

details on these datasets are provided in Section 1.5. 

1.5 Datasets for experimental validations 

We have chosen the following datasets for our experiments in different chapters of 

this thesis:  

• Dataset 1 - PS dataset: This dataset is collected with custom designed sensor 

nodes shown in Figure 1-1. This sensor node houses different sensors such as 

a GPS sensor, light sensor, accelerometer and temperature sensor. Data 

collected by sensors is logged in a flash memory. For the studies performed in 

this thesis we used the GPS data sampled every 60 seconds. Between June-

September 2012, 6 members of the Pervasive Systems research group at the 

University of Twente have carried these nodes. Data collected by these 

members is available for a period between three weeks and 109 days. The 

longer-term analysis performed in Chapters 3-6 was performed using the data 

collected by one of the candidates for 109 days. In Chapter 3, the data 

collected by the whole group, in a period of 21 days, is used.  
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Figure 1-1 The custom designed wireless sensor node used to collect PS dataset 

• Dataset 2 – ITC Capricorn dataset [13]: This dataset is composed of GPS data 

collected by data loggers attached to three capricorns. Data from loggers were 

downloaded using UHF handheld devices in November 2011. The Cretan 

Capricorn (Capra aegagrus-cretica) lives in the White Mountains and is 

endemic for Crete. Due to increasing livestock populations (goats) their 

population is threatened. As the species is difficult to locate very little is 

known about their habitat use in different seasons. Since mid-July of 2011 one 

male and two female capricorns have been equipped with GPS collars. By 

deploying animal collars equipped with GPS, precise spatio-temporal data is 

provided in fixed time intervals [38]. The sampling frequency in this dataset is 

lower than the other datasets and only 16 GPS-samples where acquired per 

day. These samples have been acquired in the morning and in the afternoon 

based on the daily behavior of the Capricorn [14].   

• Dataset 3 - Geolife dataset [15-18]: This dataset is collected during the 

GeoLife project organized by Microsoft Research Asia over a period of three 

years between April 2007 and August 2012. GPS samples collected by 182 

users were recorded using both GPS loggers and GPS-phones. For the majority 

of users (91 percent) the sampling frequency is as high as reporting a sample 

every (1~5) seconds. The users have recorded mobility data during various 

activities and habits of their outdoor daily life in this dataset.  

• Dataset 4 - Nokia Challenge dataset [19, 20]: This dataset was collected 

through an initiative by Nokia Research Center Lausanne and its Swiss 

academic partners Idiap and EPFL between January 2009 and March 2011. The 

aim of this data collection has been, generating innovation in smartphone-

based research. This dataset consists of longitudinal smart-phone based data 

collected by over 200 volunteers in the Lake Geneva region using Nokia N95 

phones and a client-server architecture that made the data collection invisible 
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to the participants. Other than mobility data (GPS, WLAN), this dataset also 

contains various other forms of data such as data types related to motion 

(accelerometer), proximity (Bluetooth), communication (phone call and SMS 

logs), multimedia (camera, media player), and application usage (user-

downloaded applications in addition to system ones) and audio environment 

(optional) were recorded. Thereby, it not only encloses information about 

mobility behavior but also about social interactions. 

• Dataset 5 - Synthetic dataset: This dataset is an artificial dataset produced 

with a movement generator. For certain experiments in Chapter 3 and 4, we 

needed to show robustness of the proposed algorithm in presence of noise 

and missing samples. Since these features were not always consistently 

present in the above datasets, we used this synthetic dataset to show how 

certain level of noise and missing samples affect the performance of the 

proposed techniques.  

The Long-term goal of this research is using the mobile nodes used for collecting 

Dataset 1 for collecting mobility data from wildlife. With this respect, we base our 

data analysis on Dataset 1 and Dataset 2. In different chapters, with respect to the 

specific aims of that chapter we use other datasets as well. 

Tables 1-1 and 1-2 summarize dataset characteristics and dataset usage per 

chapter. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

Chapter 3 ✓	
   ✓	
   	
   	
   ✓	
  

Chapter 4 
4.1 ✓	
   ✓	
   	
   	
   	
  

4.2 ✓	
   ✓	
   ✓	
   	
   ✓	
  

Chapter 5 ✓	
   ✓	
   	
   ✓	
   	
  

Chapter 6 ✓	
   ✓	
   	
   	
   	
  

Table 1-1 Datasets used per chapter 
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Number 

of cases 

Duration Sampling 

interval 

Data Mobility data 

format 

Dataset 1 6 2011.7-

2011.10 

60 seconds GPS, Accelerometer, 

Temperature, light 

Raw GPS data 

Dataset 2 3 2011.7-

2011.11 

16 

samples/day 

GPS Raw GPS data 

Dataset 3 182 2007.4- 

2012.8 

1-5 second GPS Raw GPS data 

Dataset 4 200 2009.1-

2011.3 

10 seconds GPS, Phone/Sms 

logs, app usage, 

audio environment 

Raw GPS 

Stay-points 

Dataset 5 1 - 60 minutes GPS Raw GPS 

 Table 1-2 Summary of datasets 

 

1.6 Thesis organization 

The organization of the thesis and the relationship among different chapters are 

illustrated in Figure 1-2. In Chapter 2, we review the state of the art technologies 

that can be used for collecting mobility data from humans and animals.  In Chapter 

3, the problem of mining periodic patterns from mobility data is discussed. 

Trajectory modeling is the subject of Chapter 4. Extraction of social interaction 

between mobile entities is the topic presented in Chapter 5. In Chapter 6, we tackle 

the problem of trajectory compression and energy efficient sensing of mobility 

data. A number of remarks presented in Chapter 7 conclude this thesis. 
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Figure 1-2 Relationship between chapters and datasets use



	
  

	
  

 

Chapter 2 

2 Technological solutions for collecting spatio-temporal data 
from mobile entities1 

To realize data mining applications, scientists rely on data collection 
technologies, which can provide spatio-temporal data for 
understanding movement paradigms. Recently, wireless sensor 
networks have offered new opportunities for data collection from 
remote places through their multi-hop communication and 
collaborative capability of nodes. Several technologies can be used in 
such networks for collecting spatio-temporal data from mobile 
objects. In this chapter, we investigate and review technological 
solutions, which can be used for collecting data for wildlife 
monitoring and human sensing applications. Our aim is to provide an 
overview of different sensing technologies and their capabilities in 
terms of the data they provide for modeling mobility behavior of 
mobile entities. First, we classify the sensors based on the movement-
modeling approach they are used for, and then review data types that 
can be acquired using each sensor. Finally, we compare these sensing 
technologies in terms of their limitations, advantages, and the data 
they can provide. 

2.1 Classification of technologies for collecting spatio-temporal data  

Modeling movement using spatio-temporal data is generally performed using two 

approaches, i.e., (i) the Lagrangian approach and (ii) the Eulerian approach [22]. The 

Lagrangian approach is individual-based and entails tracking a specific individual, 

while the Eulerian approach is place-based and deals with the probability of 

presence in a place and the change of this occurrence over time. Motivated by these 

two approaches in modeling movement behavior, we classify and give examples of 

the technologies, which can be used to collect data from mobile entities in the rest 

                                                        
1	
  This	
  chapter	
  is	
  partly	
  based	
  on:	
  

[21]	
   M.	
  Baratchi,	
  N.	
  Meratnia,	
  P.	
  J.	
  M.	
  Havinga,	
  A.	
  K.	
  Skidmore,	
  and	
  A.	
  G.	
  Toxopeus,	
  "Sensing	
  
solutions	
  for	
  collecting	
  spatio-­‐temporal	
  data	
  for	
  wildlife	
  monitoring	
  applications:	
  a	
  review,"	
  Sensors,	
  
vol.	
  13,	
  pp.	
  6054-­‐6088,	
  2013.	
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of this chapter. The general classification of these technologies is presented in 

Figure 2-1. 

 

Figure 2-1 Taxonomy of the technologies used for collecting spatio-temporal data 

2.2 Technologies for Eulerian approach   

The essence of the Eulerian approach is modeling the pattern of space usage by an 

individual or a group [22]. A suitable data collection method for such studies 

should be able to record the data from a point in space, and interpret events that 

occur in that specific point. The technologies used for realizing such a modeling 

approach should collect the data inconspicuously and in a manner that it leaves the 

least effect on the mobile object. This implies that these technologies may have 

more impact on the environment than on the mobile object, as their long-term 

placement and difficulty of retrieving them after use may have implications for the 

environment. The sensing devices of this type are deployed in the environment and 

process the disturbances caused by the entity’s presence in the environment. 

Although it is more difficult to extract spatio-temporal data using these solutions, 

when used to study animals, these technologies can provide more reliable results in 

terms of the impacts they leave especially on the animal’s behavior, and their 
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health. They are also more reliable in human sensing as they do not require any 

effort from the subject in terms of carrying around a device and reduce the chance 

of missing data due to forgetting, or intentionally not carrying the device. The 

technologies, which are used to detect the above-mentioned disturbances, can be 

classified as passive and active. Active detection technologies such as radar and 

sonar can measure an entity’s presence, range, velocity, or travel direction by how 

it modifies, reflects, or scatters an artificial sensing modality. Passive detection 

technologies simply record natural sensing modalities (visual, thermal, chemical, 

seismic, and acoustic) already present in the environment. In other words, active 

technologies both generate and receive a sensing modality while passive 

technologies only receive a modality. From the technical point of view, three factors 

are of concern when designing a system for Eulerian modeling. These factors are: (i) 

choice of modality, (ii) technical properties and (iii) data analysis techniques to 

extract the spatio-temporal properties. A challenging task in this case is data 

analysis since the measurements acquired by the sensing devices need to be 

further analyzed to extract information about the individual movement.  

 In the following sections, we review these modalities, type of sensors that can be 

used for each modality, and the type of data that can be acquired using them.  

2.2.1 Radar (Echoes receptor/generator) 

2.2.1.1 Echoes as a modality 

There are a number of animals such as bats and dolphins, which use echoes for 

sensing their environment. Bats design their emitted waveforms according to 

whether they need to classify on the basis of micro Doppler effect (for dynamic 

entities such as insects or fish) or range profile information (for static entities such 

as flowers) [23].  

Motivated by echolocation, active range RADAR (Radio Detection And Ranging), 

SONAR (Sound Navigation and Ranging), and LIDAR (Light Detection And Ranging) 

systems have been used for surveillance, entity recognition, and tracking. More 

recently, radar integrated with sensor networks has been found to be efficient 

when different categories of entities with individual identifiers exist.  

2.2.1.2 Technology 

Radar systems are operable in different frequency bands. The best applicable band 

of operation for low power systems is the ultra wide band (UWB). UWB radar 

systems use micro-power impulses rather than continuous narrowband 

transmissions. This makes them suitable for sensor data collection and tracking 
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applications. This type of radar is available in two broad categories, i.e., (i) pulse 

Doppler, and (ii) pulse echo. Pulse echo radar employs time of flight and is typically 

used as rangefinder [24]. Pulse Doppler radar operates based on the Doppler 

principle 3 , and is primarily used for motion sensing (detecting location and 

velocity). There are currently commercially available radar sensors such as Bumble-

Bee [25] compatible with wireless sensor boards. 

While using radar as a sensor, the direction of motion of the entity can be critical, 

but a higher elevation angle can be used to avoid the difficulties experienced when 

the motion of the entity is perpendicular to the beam of radar [26]. Doppler radar 

has the advantage of being able to directly collect measurements of an entity’s 

moving parameters. It can be used for creation of a fully automatic moving activity 

integral estimation procedure. Based on the frequency/wavelength ranges, or 

“bands”, radar can penetrate barriers which obscure optical systems. For instance, 

UWB radar can be used in “see through the wall” applications. Other advantages of 

radar include operation in poor weather, day or night operation, and operation over 

long distances. 

2.2.1.3 Data analysis 

Most previous research in collecting spatio-temporal data by radar is based on 

micro-Doppler effect. The velocity of a mobile entity relative to an observer can be 

estimated by measuring the frequency shift of waves radiated or scattered by the 

object. This is known as the Doppler effect. In case of an articulated body such as a 

walking person, the torso and limbs each have their own velocity that changes over 

time. The modulation due to these movements are referred to as the micro-Doppler 

phenomenon [27]. The micro-Doppler effect provides signatures directly related to 

the kinematic information of the dynamic structural parts of a mobile entity and it 

offers new opportunities in classification of entities to different scales.  

Various researches have been performed on extracting spatio-temporal properties 

from micro-Doppler effect. Examples include detection and classification of people 

when walking [28-30], finding the number of people present in the environment 

from their heartbeat patterns [31], distinguishing human from four legged animals 

[32], classification of different species by physiological characteristics [33]. Radar 

has been used to retrieve continuous spatio-temporal data on bird migration [34, 

35], and to retrieve birds’ flying characteristics such as height, velocity, direction, 

                                                        
3	
  All mobile entities will exhibit a frequency shift from the transmitted signal to the received signal 
which is proportional to the speed of the entity in the direction of the radar	
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and density regardless of the time of fly. Echoes have also been applied to identify 

different fish species in depth [36]. 

 

(g) 

Figure 2-2 (1-f) Spectrogram of different human activities using micro Doppler signatures, 

(© 2009 IEEE. Reprinted, with permission, from IEEE Transactions onGeoscience and Remote 

Sensing, 47 (5), pp. 1328–1337) (g) Different features useful in activity classification (© 2009 

IEEE. Reprinted, with permission, from IEEE Transactions on Geoscience and Remote Sensing, 

47 (5), pp. 1328–1337) [37] 

Other than identification and classification of animals at the species level, activities 

of the entity can also be classified based on micro Doppler signatures. Activity 
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recognition by radar has been studied in [37, 38] for human and [39] for lab 

animals. Figure 2-2 shows the time varying Doppler signatures of a person while 

performing different activities. Combination of a number of features, such as 

period of micro Doppler, bandwidth, frequency, and torso Doppler frequency 

(shown in figure 2-2) in each activity is different.  For example, the period of the 

micro-Doppler in walking is longer than running. In the crawling motion, the torso 

Doppler is nearly zero and most of the micro-Dopplers are skewed toward the 

positive side with respect to the torso Doppler. Boxing while moving forward has a 

positive torso Doppler component in addition to the micro-Dopplers from the 

arms. Sitting has near zero torso frequency and small sporadic micro-Dopplers 

[37]. Figure 2-3 compares the spectrogram of a person and a dog. As can be seen, 

the period of the micro Doppler is clearly different between a human and a 

quadruped. 

 

 (a)                                                              (b)  

Figure 2-3 (a) micro-Doppler gait signature of a person, (b) micro-Doppler gait signature of 

a dog walking towards an active sensing system (© 2007 IEEE. Reprinted, with permission, 

from IEEE proceedings of 41st Annual Conference on Information Sciences and Systems, pp. 

627–630)  [32] 

2.2.2 Cameras (Visual receptors)  

2.2.2.1 Visual modality 

Visual interpretation of data can provide various types of information such as 

shape, size, and texture about objects. By extracting content information visually 
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from a scene captured by a camera, different parameters, such as quantity, species 

of the animal, and movement characteristic can be detected.  

2.2.2.2 Technology 

Integration of cameras and sensor networks has been studied in the context of 

multimedia and camera sensor networks. This has become possible with the 

availability of CMOS (Complementary metal–oxide–semiconductor) cameras. In 

comparison to traditional charged coupled device (CCD) sensors, CMOS image 

sensors are smaller, lighter, and consume less power. While regular CMOS sensors 

are still less energy efficient than the requirements of resource constraint 

applications, there is ongoing research to produce energy efficient hardware for 

use in camera sensor networks. Some examples of CMOS platforms are Cyclops 

[40], and CMUcam [41]. Hardware optimizations such as wake-up procedure, and 

dynamic voltage along with energy harvesting from the environment have made 

utilization of cameras in such networks possible. Each of the cameras within the 

nework can process data locally and then exchange relevant information with other 

cameras [42]. Furthermore, using a tiered network with different cameras (low/high 

resolution) in each tier, a more energy efficient system can be provided. In such 

cases, each camera can perform a distinct processing task with respect to its 

resources. One of the advantages of using normal cameras over technologies such 

as passive infrared sensors is their capability of identifying cold-blooded animals 

such as snakes. However, several factors such as foliage, lighting variations, and 

shadows can degrade the efficiency of camera-based systems.  

2.2.2.3 Data analysis 

Visual data can provide effective identification mechanisms. Individual entities can 

be differentiated from each other through their visual differences such as 

biometrics. Biometrics such as face for people and iris patterns, skin ridge prints, 

and nose prints for animals provide identity information. Coat patterns present in 

many species (such as cheetah, zebra, giraffe, orca) provide biometrics which are 

normally body sized and visible over distance. For example, automatic systems 

have been designed in [43] to identify zebras based on their coat patterns. It should 

be noticed that in such systems other parameters such as angle of view and the 

change in natural marks (due to aging, injury, pregnancy) can also introduce false 

identification. When necessary, paired cameras can be used to capture coat 

patterns from each side of the animal so that the complete coat pattern can be 

matched. 

Other than natural markers, visual gait patterns can also be used to identify 

entities. Use of natural marks offers the advantage of detecting from long 
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distances. Visual silhouette based gait recognition is extensively studied for human 

identification. The gait recognition can be performed through model-based or 

model-free approaches. In the model-based approach, body and motion of the 

moving entity is modeled using a priori knowledge, while in the model-free 

approach gait appearance is considered without considering a-priori knowledge 

about the underlying structure [44]. To identify species type, model-based 

approaches are more applicable as they consider body shape, while more precise 

identification of animals at the individual level requires model-free approaches. In 

wildlife monitoring, subjects such as classifying species [45] and identification of 

individual cows [46] through gait recognition of visual images have also been 

studied. A common characteristic in all these methods is that they consist of two 

main stages, namely (i) a feature extraction stage and (ii) a recognition stage, in 

which standard pattern recognition techniques such as k-nearest neighborhood 

(KNN), support vector machine (SVM), and hidden Markov model (HMM) are used.  

Vision-based localization methods can also be used to localize and track entities. 

Although entity movements follow a dynamically changing non-linear pattern, 

trajectories can be estimated by tracking low level features without depending on 

the success of the detection algorithm. Some previous studies have visually tracked 

flocks of birds [47], tracked animals using the gait patterns [48], and tracked by 

applying a specific interest model to the detected animal’s face region [49]. 

Generally, entity tracking with a single camera involves the following steps: entity 

detection, classification, localization, and tracking frame by frame. Different 

features of the entities can be used for detection and tracking. Selection of the 

right feature for tracking is an important step. Some common features are color, 

optical flow, edges, and texture [50]. The vision-based localization, which is 

performed by a single camera, is limited to its field of view and the result will be in 

the image plane of the camera. In case more accurate result is needed, data from 

images of different cameras should be combined.  

Images can also provide high amounts of information about entities’ activities, 

behavior, and mutual interaction. Different methods, such as keeping the trajectory 

of the joints, action recognition with space-time volumes, or based on event and 

sub-events, can be used for the automatic single layer activity recognition [51]. 

Depending on the scheme used, the activity recognition can be performed on 

gesture, action, or interaction levels. Various vision-based activity recognition 

systems for wildlife have been designed. For instance, [52] have designed a visual 

system to determine five basic behaviors, i.e., sleeping, drinking, exploring, 

grooming, and eating of mice. In [53] a system has been proposed for detecting 

snake behaviors such as attacking. A complete survey on human activity 

recognition can be found in [51]. 
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2.2.3 Thermal sensors (Thermal receptors) 

2.2.3.1 Thermal modality 

All objects emit infrared radiation at room temperature. Emissivity of a material is 

relative to its ability to emit energy by radiation. This electromagnetic radiation is a 

stream of photons, which are particles with no mass. Small changes in temperature 

may result in substantial amounts of emitted photons. Passive infrared radiation is 

very high in warm-blooded entities especially in mammals. Mammals have hot 

spots or specific thermal signatures, which can distinguish them from vegetation, 

constructions, and enable their detection. As Figure 2-4 suggests, factors such as 

the number of entities, is to some extent detectable visually using thermal sensors 

from the hotspots. 

 

(a)                                                (b) 

Figure 2-4 (a) Infrared image of a Turkey, (b) Detectable hotspots of turkeys  

for analyzing crowd behavior (Both images are provided by The Snell 

Group), http://www.thesnellgroup.com [54]. 

2.2.3.2 Technology 

Three types of sensors can be used to detect infrared radiations from animals. 

These sensors are (i) thermal imagers, (ii) passive infrared motion (PIR) detectors, 

and (iii) passive infrared thermometers.  

Thermal imagers work on the basis of Infrared Thermography (IRT) which is the 

measurement of radiated electromagnetic energy. There are some limitations and 

factors that need to be considered when getting thermal images. Heavy feathers 
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and furs will reduce detectable radiation. The hair which covers the animal should 

be free of dirt and moisture, since the dirt on the animal changes the emissivity 

while moisture increases local heat loss [55]. To benefit from infrared radiation in  

low-powered networks, PIR motion detectors and passive infrared thermometers 

can be used. PIR motion detectors are devices which detect motion in their field of 

view by measuring changes in the infrared radiation from their surrounding 

objects.  Due to their low cost and low operation power, these sensors are 

popularly used in wireless sensor networks for the surveillance purposes. Available 

wireless sensor node for ecological applications, are already equipped with passive 

infrared motion detectors as well as other environmental sensors (such as, the Mica 

weather board)  [56]. Passive infrared motion detectors have been popularly used in 

combination with cameras in form of camera traps [57]. As shown in [58] strength 

of the output signal of the PIR sensor is not only determined by distance but also 

by speed of the mobile entity. Therefore, a PIR sensor network and simple signal 

processing algorithms can be used to obtain parameters needed for wildlife activity 

monitoring (in the covered area) such as direction, speed, distance, and counting 

the entities. A disadvantage of PIR sensors is that they can only detect presence in 

motion and presence of a static subject is not detected by them. 

2.2.3.3 Data analysis 

Since most warm-blooded entities have similar temperature ranges, the thermal 

signatures will not accurately discriminate between species. However they can 

show temperature-related states of the entities. As mentioned before, PIR sensors 

are widely used as presence detectors. Infrared cameras can provide information 

on specific species if the species has a discriminative shape (for instance, humans 

have been detected based on thermal shape [59]). Research has been performed in 

identification of individual human beings based on their thermal information (such 

as, face recognition by capturing facial physiological patterns using the bio-heat 

information contained in thermal images [60]). By considering and counting the 

hotspots in a thermal image the crowd behavior can also be analyzed [61]. Infrared 

thermography combined with infrared cameras has been used for many years to 

detect physiological states in entities. In [62], infrared thermography is used to 

measure the stress level caused by transportation in farm cattle. The basis of this 

research is that when the animal is stressed, changes will happen in heat 

production and heat loss in addition to blood flow response. Processing 

thermography images can provide information about the animal’s stress level, 

health (such as, asymmetric heat distribution [63], abnormal surface temperature 

[64]), pregnancy, and any property related to the normal body temperature change.  
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2.2.4 Chemical sensors (Chemical receptors) 

2.2.4.1 Chemical modality 

All living creatures produce volatile compounds. Different environmental, genetic, 

and dietary circumstances, makes it improbable that any two organisms produce 

the same mixture of volatile organic compounds. On this basis, many animals can 

identify the members of their own group in a large group of other individuals [65]. 

 

Figure 2-5 An electronic sensor node designed for the purpose of monitoring odorant 

gases and accurately estimating odor strength in and around livestock farms (Reproduced 

with permission from Simon X. Yang, Sensors, published by MDPI, 2009) [66] 

2.2.4.2 Technology 

Electronic noses have so far been used in various fields such as agricultural, 

biomedical, environmental, nutrition, medical, and military (A prototype is shown 

in Figure 2-5). Each electronic nose has two functions, i.e., (i) sensing, and (ii) 

pattern recognition [67].  For sensing, chemical and gas sensors are used. By using 

a sensor array composed of different sensors, a wide group of simple and complex 

compounds can be identified. Different sensors have been used in the past to 

detect odors such as piezoelectric, conductivity, metal-oxide-silicon field effect 

transistor (MOSFET), optical fiber, and MEMS based sensors. Various types of 

artificial intelligence methods can be used for the purpose of pattern recognition to 

identify the smell [67].  
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2.2.4.3 Data analysis 

Chemical cues are important phenomena in the biology of entities (especially, 

animals). Sex pheromones are well-known examples of chemical communication in 

different species. Producing electronic noses for detecting pheromones has been 

explored for insects. Biosensors have been produced by real moth antennas to 

extract electrical signals which are produced in existence of other moths [68]. 

Pheromone detection of insects along with their specification such as gender and 

species from their pheromones is studied in [69, 70]. Commercially available 

electronic noses (such as, Cyranose [71]) are used to detect stink bugs and stink 

bug induced damage in cotton product under laboratory and field conditions.  

One of the important issues in designing an electronic nose is that the combination 

of volatile compounds of the odors should be detected beforehand. This procedure 

is normally done through gas chromatography and mass spectrometry [72]. It 

should be noticed that for typical sensors, the detection threshold of odors are 

extremely low. Therefore, detection of a very low amount of gas compound in a 

large environment is challenging. To be used around livestock farms where the 

volatile organic compounds are well known, commercially available gas sensors and 

high intensity of gas make the compounds easily detectable [73]. However, 

although detection, tracking, and identification of specific entities (especially 

mammals) is possible, extensive research should still be performed on pre-analysis 

of the compounds.  

Electronic noses have been used to identify human beings from their body odor 

[74]. Although individuality in body odors has been described in a variety of 

mammals [75],  the electronic noses which have been designed so far for animal 

studies mainly focus on purposes other than identification, such as controlling gas 

level around farms. Moreover, the changes in the individual compounds due to 

effects of physiological and seasonal changes should be considered for designing a 

system for classification [76]. 

Since the composition of the compounds in entities’ odors change with various 

physiological parameters (such as, their health condition, age, and estrous cycle), 

the electronic noses can be used to detect events that cause changes in the 

compounds. In such cases, placement of electronic noses in places with rich 

sources of known volatile organic compounds is more logical. For instance, in [77] 

e-noses show a correlation between evolution of the odor with animal activities 

during the day and with their age around the farm. 
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2.2.5 Microphones (Acoustic receptors) 

2.2.5.1 Acoustic modality 

Humans use sound for communication and animals produce sound for different 

purposes such as defending territories, attracting mates, deterring predators, 

navigation, finding food, and maintaining contact with members of their social 

group. Sound production by entities can be divided into two categories, i.e., (i) non-

incidental sounds which are used for communication purposes, and (ii) the 

incidental ones which are the result of their activities [78]. These sounds can be 

used to detect the presence or to identify a species. An important challenge in 

acoustic sensing is that ambient noise and anthropogenic sounds can make the 

acoustic signal processing difficult. 

2.2.5.2 Technology 

Microphones are acoustic transducers, which produce a voltage proportional to the 

received acoustic pressure. Microphones work at different frequency ranges and 

the right frequency of operation is chosen by considering the type of sound 

produced by animals. Generally, animal voices are categorized as sonic, infrasonic 

(elephants), and ultrasonic (bats and dolphins). This fact determines the type of 

microphone needed to capture the sound of interest. Directional microphones can 

be used for capturing sound from specific directions [78]. Due to extensive amount 

of research done in the field of acoustic sensor networks, microphones are already 

part of commercial wireless sensor network boards (such as, Mica sensor board 

[79]). Furthermore, specifically designed platforms for acoustic sensing networks 

are available. For instance, the Acoustic ENSBox system provides a platform for 

developing deployable prototypes of distributed acoustic source localization and 

sensing applications [80]. 

2.2.5.3 Data analysis 

Different algorithms allow us to distinguish entities in terms of species, gender, 

age groups, and individuals by automated signal detection and classification based 

on features extracted from signal frequency, mel-frequency cepstral coefficients, or 

signal energy distribution [78]. Both voiceprints and behavioral sounds can be used 

for the purpose of classification of entities in different levels. Human voice 

recognitions is a well studied topic [81]. Regarding animal voice recognition, most 

of the researches focus on species identification [82-84] and specifically on 

classification of bird species based on bird song [85, 86]. Individually distinctive 

acoustic features have been demonstrated for a large number of birds, mammals, 
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cetacean, and amphibians. Various studies have been performed to identify 

individuals based on these voiceprints (whooping cranes [87], African wild dogs 

[88], eagle owls [89] and ant-thrushes [90]). 

Other than non-incidental voiceprints, incidental sounds may entail information 

about the identity of entities. To the best of our knowledge, there is no work on 

classification of animals based on their acoustic gait signature. The footstep sound 

analysis which has been used for human identification [91] may also be applicable 

for animals. Studies show that footstep convey information about personality, age, 

and gender [92].  

An entity’s position can be determined using an acoustic localization algorithm. 

Sound signals are omni-directional and have a uniform attenuation model. 

Microphone arrays can be used to provide efficient localization of the animal 

without having a line of sight to the animal. Through localizing entities 

acoustically, information about their interaction, count, and population distribution 

patterns can be extracted [78]. For implementing such systems several sensor array 

nodes need to be located at points surrounding the entities and their territory 

(animals) or stay-point (humans) and when detectable sound is made, the most 

likely location will be estimated by the sensor array nodes. Acoustic source 

localization methods make use of three types of physical measurements, i.e., time 

delay of arrival (TDOA), direction of arrival (DOA), and received signal strength or 

energy [93]. 

2.2.6 Seismic sensors (Seismic receptors) 

2.2.6.1 Seismic modality 

Producing seismic vibrations on a substrate is a means of communication in 

different species (invertebrate and vertebrate). An interesting seismic effect 

produced by humans and legged animals, is footstep. Animals have distinctive gait 

patterns (4-beat gait, 2-beat gait, and canter; 3-beat gait and some unnatural 

walking patterns, collective walk or working walk [94]). Footsteps produce seismic 

effects that pass through the ground. These effects propagate away from the 

source as seismic waves. These waves are classified into two categories, i.e., (i) body 

waves (33%), which travel towards the interior of the earth, and (ii) surface 

(Rayleigh) waves (67%), which travel near the surface [95]. Most of the researches 

focus on surface waves to provide classification systems of entities.  

A number of factors determine the performance of vibration detection. These 

factors include the resonance frequency of a vibration, the frequency of impacts 
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(footsteps), the strength of the wave (enforced by entities weight), the friction of 

the medium, the underlying geology [96] and noise sources such as wind and 

cultural noise (undesirable noise produced by human urban activities). Wind noise 

may be coupled into seismic ground sensors by either direct or indirect (adding 

seismic noise through shaking trees) means [96].  

2.2.6.2 Technology 

Surface waves are measured by two types of transducers; (i) geophones, and (ii) 

accelerometers. Geophone is a device that changes the velocity of ground 

vibrations into a voltage. Geophones are normally buried to be safe from animal’s 

destruction. As stated in [96], these devices show both low-frequency (10 Hz, 14 

Hz, 28 Hz, and 40 Hz) fundamental resonance and high-frequency spurious 

resonance (25 times of the fundamental). For detection of vibration generally only 

frequencies that lie between the fundamental and spurious resonances should be 

used [96]. Most energy of human footsteps is between 10 and 100 Hz repeating 

with a frequency between 0.9-3.5 Hz [97]. As the authors of [98] have 

characterized, the main part of the footstep signal energy for a distance more than 

6 meters, is usually bellow 100 Hz. These researchers have shown that, as the 

distance between a walking person and a seismic sensor increases from 6 to 60 

meters, the signal frequency maximum moves closer to 10–16 Hz [98]. The 

resonant frequency range of the entities footfall and these facts should be 

employed in choosing the right geophones sensor. The second type of seismic 

sensors is accelerometer, i.e., a device that changes the acceleration of the ground 

vibrations into a voltage. Accelerometers only show high-frequency resonant 

frequency (over 1,000 Hz [96]) and this makes them unpopular in footstep 

detection [96]. However, when the acoustic waves are  

transferred through the substrate, these vibrations can be detected with an 

accelerometer. For instance, high-frequency acoustic waves can also be detected 

with accelerometers while passing the substrate [99]. Accelerometers have also 

been part of the Lagrangian modeling systems to collect movement data from 

mobile entities [100]. 

2.2.6.3 Data analysis 

Numerous seismic surveillance studies have been performed to classify entities 

such as, vehicles and soldiers, compute their bearing, and their velocity based on 

seismic features [101, 102]. Humans and animals can also be detected based on 

their footstep-generated seismic waves. The signature of footstep is in form of 

sharp “spikes” and distinguishable from other noises [103]. By measuring the 

seismic signals using a seismic velocity transducer presence of the moving entity 
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can be detected. Different features and statistic characteristics of signal can be 

used for detection and distinguishing the animal. Afterwards, the signals can be 

classified using artificial intelligence methods. For example, spectral analysis for 

discriminating between seismic events caused by entity’s footsteps, cadence [94] 

(the interval between events (footsteps)) and kurtosis [104] (degree of peaks in a 

distribution) are used for footstep detection. In the domain of human sensing, 

seismic waves have been used to detect presence of humans [105], the number of 

people, and direction of travel [106], tracking and bearing estimation [107]. Mainly 

the seismic studies that consider animals have focused on differentiating between 

two categories (bipedal (human) and quadruped (animals) [94, 108]). Few wildlife 

studies have focused on problems such as detection or classification of animals. 

For instance, [109] has investigated a number of problems, such as detection of 

elephants from a distance of 100 meters, counting the number of individuals, and 

differentiating their species from other species. The species (to some extent) might 

also be detected based on the influence field (the number of sensors that sense the 

vibration [110]). Seismic communication, foot-drumming, distinctiveness of 

footsteps in terms of gender of animal have also been studied [111]. Moreover, in 

low-noise environments underground organisms can be detected. For instance, in 

[99] the acoustic waves produced by a colony of ants underground is detected and 

classified by geophone from a distance of few centimeters. 

2.3 Technologies for the Lagrangian approach 

As stated before, Lagrangian based technologies are in form of a device carried by 

the mobile entity. Generally, when choosing a Lagrangian based technology some 

general requirements need to be kept in mind:  

• When used for studying animals, the device should preferably weigh less 

than 3-5% of the animal’s total bodyweight (no more than 10% for 

terrestrial mammals [48]). 

• The device should have a relatively long lifetime so that it is not needed to 

be collected again before the necessary amount of data is collected.  

Compared to the technologies for Eulerian approach, the issues that should be 

greatly concerned in the Lagrangian approach are the choice of the hardware and 

retrieval of data from the entity. When used on wild animals, it is important to have 

a mechanism for automatic retrieval of data from the device through single/multi-

hop networks, as the change of recapturing the entity is small.  

In what follows, we review a number of technological solutions used in the 

Lagrangian approach for collecting spatio-temporal data and their integration with 

wireless sensor networks. 
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2.3.1.1 Radio Frequency Identification 

2.3.1.2 Technology 

Radio Frequency Identification (RFID) is a technology designed for storing and 

retrieving data by using electromagnetic transmission. Nowadays RFID is being 

used as a means of enhancing data handling tasks [112]. The RFID systems consist 

of two main components, i.e., tags and readers. Each tag has a memory that stores 

an Identification number. This memory can also store additional data such as 

environmental parameters (temperature, and humidity). The reader (including an 

antenna) reads and/or writes data to tags through electromagnetic transmissions. 

RFID tags have been used to study various entities (birds [113], reptiles [114, 115], 

amphibians [116], mammals [117, 118] , and humans [115]). 

RFID technology is originally designed for retrieving identity but it can be used to 

retrieve location as well. After detecting and identifying the moving tag, different 

types of algorithms can be used to calculate the current location of the tag, relative 

to the readers’ location. Localizing techniques for RFID tags are known as RF based 

localization which lie on the same principles of the ones for wireless networks 

[119]. To save power in an event-based manner, the procedure of tracking the 

object can be done in a predictive manner to activate the readers, which are in idle 

state.  

Tags: RFID tags themselves may be active, passive, or semi-passive. They may be 

supplied in a variety of forms and work based on ISO standards [144]. 

• Active tags: Active RFID tags are equipped with their own independent power 

source. Thus, they are able to transmit a stronger signal which can be accessed 

by readers placed in far distances. These tags operate at higher frequencies, 

commonly 455 MHz, 2.45 GHz, or 5.8 GHz. Based on the frequency of 

operation, readers can communicate with active RFID tags from a distance of 

20 to 100 meters [120]. The onboard power source makes the active tags larger 

and more expensive. To increase the lifetime of tags, they can be switched to 

sleeping mode until they come in range of a receiver. 

• Passive tags (Passive integrated transponder, PIT tags): For monitoring 

purposes passive tags are made available in different forms (implants, or ear 

tags). ). They consist of three parts, i.e., (i) an antenna, (ii) a chip attached to the 

antenna, and (iii) encapsulation. Passive tags do not have an internal power 

source and the reader is responsible for powering them. When these tags come 

within the reader’s range, they receive an electromagnetic signal from the 

reader, and the energy is stored in an on-board capacitor. Because of their 

small size and weight, they are useful to study small entity movements with 

less disruption. Furthermore, without having a power supply they will last for 
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the life of the entity. This technology is very popular for tagging fish [121] and 

it has even been used for studying ants [122]. Passive tags typically operate at 

128 KHz, 13.6 MHz, 915 MHz, or 2.45 GHz frequencies with the read ranges 

between a few centimeters to 10 meters [123]. Factors such as frequency of 

operation, antenna dimensions, and modulation type determine the read range. 

Since the water in living tissues absorbs high frequency photons, most of the 

passive implants designed for identifying entities operate in low frequency 

(125-kHz and 134.2-kHz), while passive external tags work in higher frequency 

ranges. Passive tags are small and cheap themselves but the readers are 

relatively big and noticeable and for having better detection range, the size of 

the antenna increases extensively. Figure 2-6 shows a number of passive RFID 

tags used for monitoring live organisms. 

 

(a)                                                 (b) 

Figure 2-6 (a) A radio tagged ant (Reproduced with permission from RFID Journal, 1 August 

2009. Image, and copyright held, by, Nigel R. Franks)[122], (b) Passive RFID implants (Image 

provided by Biomark Inc.)[124]  

2.3.1.3 Integrating RFID technology with wireless sensor networks 

RFID technologies work on the basis of single hop communication between a reader 

and a tag. Integration of RFID readers within sensor networks has improved 

functionalities of these systems both by enjoying the capabilities of wireless 

communication and retrieving additional data. In this type of integration, the RFID 
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readers are provided with multi-hop communication capability and other type of 

sensors. They will be able to communicate with each other wirelessly and sense 

environmental parameters and disturbances. This type of integration is an ideal 

solution for collecting various types of data through one network. Readers provide 

identity information. Other types of data, such as environmental and activity 

related data, are collected by the sensors (For instance, a camera) on the RFID 

reader. These data are then transferred in a multi-hop fashion. The SkyeRead Mini 

M1 made by SkyeTek is an example of an RFID reader (for reading 13.56 MHz RFID 

tags) designed to mate directly with the Crossbow Mica2Dot sensor mote [125]. 

This kind of RFID reader can be used with various types of passive ear tags. In 

[117] a hybrid detection node is designed by integrating RFID readers with Tmote 

Sky motes for collecting spatio-temporal data from badgers. Authors of [118] have 

interfaced the tag readers with Fleck wireless sensor network nodes to track the 

movement of farm animals near the readers. 

2.3.2 Global Positioning System (GPS) Technology 

2.3.2.1 Technology 

Global Positioning System (GPS) is a widely used localization and tracking system in 

various domains and especially in wildlife monitoring [126, 127]. Currently, almost 

any type of smart phone is equipped with GPS sensor. This way, context-rich 

datasets from humans are collected. The GPS system components are a space 

segment (24 satellites), a control segment (network of ground based stations) and a 

user segment (receivers that convert satellite signals into location estimates). The 

receiver acquires signals from at least three satellites to obtain 2D positions (4 

satellites for getting 3D positions). There are two approaches to retrieve the data 

collected by the user segment, i.e., offline and online. In the offline approach, the 

“Store on Board” user segment should log the data, which will be later either 

retrieved after the user segment is collected or manually downloaded through 

handheld receivers. To access the data in real-time, different telemetry systems 

such as the ARGOS satellite system, radio telemetry transmitters, and GPRS have 

been used so far. Recently wireless sensor networks have been used to transfer GPS 

data as well. It should be mentioned that due to energy consumption and size 

restrictions, currently, it is inevitable to have the data collected offline in certain 

cases (For instance with GPS collars shown in Figure 2-7) otherwise the system will 

not be able to meet the average life-time requirement. Today several commercial 

GPS equipment such as, Televilt [128], Northstar [129], Lotek [130], E-obs [131], 

Microwave [132] are available, which provide more than just positional data. These 

devices are designed for almost any entity (birds, mammals, reptiles, and rodents) 

and depending on their size and weight, these GPS receivers can be equipped with 
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bidirectional transmitters (work sometimes up to 400 meters), a set of sensors, 

contact loggers (to log the contact between two animals) and a power source. Also, 

having considered wireless sensor networks requirements, Fleck family boards 

[133] have been designed for the wildlife monitoring purposes. When used for 

wildlife monitoring, other than the risks that it may have on the animal’s health 

and normal activities, another limitation of the GPS devices is that in certain 

conditions the GPS receiver will not be able to receive enough satellite 

transmissions. These conditions include (i) atmospheric conditions like cloud 

cover, humidity, (ii) biophysical conditions like under dense foliage, steep terrain or 

buildings, (iii) indoor applications, and (iv) changes in the orientation of the 

antenna due to animal behavior).  

2.3.2.2 Integrating GPS technology and wireless sensor networks 

 When using the GPS as sensors of wireless sensor networks, generally two types of 

communication architecture will be possible: 

• Mobile node to mobile node communication: In this type of 

communication, mobile wireless sensor nodes carried by mobile entities 

are equipped with GPS modules. These mobile nodes are the only 

constructors of the system and the data they collect should be passed from 

a mobile node to another mobile node until it reaches the gateway. In this 

case, the advantage of wireless sensor networks over the previous 

telemetry mechanisms is providing the capability of extending the 

transmission range and reducing the power consumption of the GPS device 

through opportunistic routing protocols. In this form of architecture, if 

none of the entities (GPS receivers) comes to the proximity of the gateway, 

no data is transferred. So far, various studies have transferred GPS data 

with the help of wireless sensor networks using this architecture [134-137].  

• Mobile node to static node: In the second type of communication, other 

than the mobile nodes, equipped with GPS modules, there is a ground 

based wireless sensor network that collects data from mobile nodes. This 

form of communication alleviates the problem of sporadic connectivity of 

the previous one. In [138], authors have designed a system in which GPS 

devices fitted on animals are able to communicate with an array of static 

nodes to return data to a central base station.  
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(a)                                         (b)                                             

Figure 2-7 GPS collars: (a), GPS collar designed for small mammals, (b) GPS collar designed 

from medium-large sized mammals (Images provided by Lotek Wireless Inc. [130] 

In both of these type of communications, the system can be devised to be delay-

tolerant which means that data can be buffered in a node before it comes to the 

proximity of another node. However, they lack of applicability when animals travel 

far distances and do not return to the connected area. 

2.3.3 Inertial sensors 

2.3.3.1 Technology 

By using inertial measurements such as speed and direction, track of the mobile 

entity can be estimated. Inertial measurement unit sensors such as accelerometers, 

gyroscopes, and magnetometers can be used for this purpose. Accelerometers, 

gyroscope, and magnetometer measure acceleration, angular velocity and magnetic 

field respectively. Metal objects, external magnetic field and gravity are sources of 

error in inertial sensors. 

By knowing the mobile entity’s initial location, its next position can be estimated 

having the velocity or acceleration during that time interval. This scheme is 

referred to as Dead reckoning. Dead reckoning is a complementary addition to GPS 

systems for preserving energy and retrieval of localization data when a GPS device 

is not responsive (e.g. due to cloud cover). However, this method is subject to 

accumulative error. Dead reckoning has been used frequently for indoor tracking of 

human and pedestrian navigation [139, 140].  



32 Technological solutions from collecting spatio-temporal data from mobile 

entities	
  
	
  

	
  	
  

2.3.3.2  Integration with wireless sensor networks 

If inertial sensors are embedded on sensor network nodes attached to mobile 

entities’ (especially feet), they can be used for the purpose of localization. For 

instance, authors of [141, 142] have designed a system for localization of rats in 

underground burrows to estimate their steps with inertial sensors. On the exit of 

the burrow the data (the number of steps and their direction) is transferred to a 

static node, through which the path and structure of the underground borrow is 

constructed. This form of tracking, although not very accurate, can be effective 

when a network of static nodes is used to update the position of the mobile sensor 

nodes. Inertial sensors have also been popularly used in activity recognition and 

behavior analysis systems for humans [143] and animals [100, 144, 145]. 

2.3.4 Radio transmitters  

2.3.4.1 Technology 

Using radio transmitters for tracking has long been popular. Radio telemetry 

systems consisted of a device carried by a mobile entity, which transmitted a radio 

signal. The position of the mobile entity could be retrieved by triangulation. Later 

some additional sensors were added to those devices and additional parameters 

could also be sent through radio telemetry. The tracking range in radio telemetry 

methods is limited by radio range of the UHF (ultra high frequency) or VHF (very 

high frequency) and the devices used are relatively power hungry. 

2.3.4.2 Integration with wireless sensor networks 

Recently more efficient systems have been designed using wireless sensor 

networks. The wireless motes consisting of a transceiver, memory, and a micro-

processor (no other sensors) are carried or fitted on mobile entities. By doing so, 

the position of the entity is estimated through radio communication between these 

mobile nodes and a static gateway, without the help of any additional sensors. For 

instance, in [146] entities register their presence when they come into the 

transmission range of a gateway and the received signal strength is used at the 

gateway to estimate the location of the entity. This form of localization and 

identity retrieval is in essence a better alternative than using active RFID tags, 

which register the presence of the tagged entity near the reader. In this case there 

is no need to interface a commercially designed reader with the gateway (i.e., a 

wireless sensor network node). 
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2.4 Discussion 

In this section, we compare the aforementioned technologies in terms of data they 

provide and their applicability for studying mobile entities’ behavior. Tables 2-1, 2-

2, 2-3 provide a comparison of the technological solutions mentioned previously 

from different perspective. We compare the aforementioned sensing technologies 

in terms of their spatio-temporal data collection capability and do not consider 

other data types such as behavioral and physiological data. Adopting the definition 

of spatio-temporal properties in the domain of human sensing [147], we identify 

and define track, identity, species type, location, presence, and time as spatio-

temporal properties needed for studying mobile entities (humans and wildlife).   

• Track: is the most comprehensive spatio-temporal feature, which can be 

simplified as the location of an individual or a group over time. Therefore, 

the three properties of location, time, and individual/group identity are 

needed to maintain track of an individual or a group. 

• Identity: is a global unique identifier assigned to an entity. It may be the 

permanent ID of a tag, or a detectable biometric or sign, which can show 

the individual identity of a moving entity. When assigning a unique ID to 

an entity is not possible, a temporary identifier may be used.  

• Species type: The species type can be considered as a low level identity 

that can be assigned to mobile entities. We can also consider it as a sub-

property of identity. 

• Location: Localization is determining the location of the mobile entity. 

Whenever coarse-grained coordinates are acceptable, localization can be 

reduced to presence detection. Otherwise, a separate mechanism should be 

used to localize to a finer grained scale. For example, a single microphone 

can be used for detecting the presence of an organism through its voice 

but it is not enough to detect its location, the position which can be 

inferred in this way is only an estimate around where the microphone is 

placed which might be a relatively large area. For having more exact 

location coordinates a microphone array is needed and the fine coordinate 

can be calculated through various acoustic source localization schemes.  

• Presence: Detecting presence is the ability to detect the presence of an 

organism in a field. Detection alone without classification of the species, 

detecting the identity, or the number of subjects may only provide limited 

amount of information. However, technologies that can only detect 

presence of a mobile entity can be used as an input to other more powerful 

but yet more resource consuming technologies.   

• Time: is an essential property among spatio-temporal properties. There 

should be the possibility of assigning timestamps to properties, which are 

detected to make them meaningful for later analysis. The frequency of 
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timestamps is relative to how frequent other properties should be sensed 

so that the integrity of data is not lost. 

2.4.1 Comparison of technologies based on information they can provide 

In Table 2-1 we compare the previously reviewed sensors in terms of their ability to 

provide the aforementioned spatio-temporal features as well as their invasiveness 

and active/passive mode of operation.  

 Technology Presence Species 

type 

Identity Location Invasive Type

* 

Eulerian Radar + + + + - A 
Geophones + + + + - P 

Microphones + + + + - P 
Thermal 
cameras 

+ + - + - P 

PIR +** 
 

- - - - P 

Thermometers + + - - - P 
Electronic 

noses 
- - - - - P 

Cameras + + + + - P 
Lagrangian Passive RFID 

tags 
+ + + + + P 

Active RFID 
tags 

+ + + + + A 

GPS + + + + + A 
Inertial sensors + + + + + P 

Radio 
transmitters 

+ + + + + A 

Table 2-1 Comparison of sensing technologies in terms of spatio-temporal properties they 

provide. * In the column Type, P represents (Passive), and A representes (Active). ** (Only in 

motion) 

The field under a property is marked with “+” if the results of previous researches 

show that this technology is applicable for the purpose of obtaining spatio-

temporal properties in mobile entity monitoring applications. Otherwise, it is 

marked with “-”. Most of the identified technologies for the Eulerian approach can 

detect presence. If the purpose is to detect the presence of a warm-blooded entity, 

PIR sensors are particularly useful. Radar, geophones, and microphones are capable 

to extract all above-mentioned spatio-temporal properties. By performing image 

processing techniques on the images collected by thermal cameras some spatio-
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temporal properties can be extracted. Since most of the visual biometrics are not 

shown in thermal images, the applicability of thermal cameras in identification is 

low. As mentioned above, electric noses are theoretically able to identify 

individual/species but the plausibility of current electric noses is not yet proved for 

monitoring mobile entities (due to the low amount of organic compounds).   

The Lagrangian based technologies are more useful in extracting spatio-temporal 

properties from individuals. RFID tags work on the basis of transmitting an ID 

number. The devices equipped with GPS, radio transmitters, and inertial sensors 

can be programmed to send a unique ID number periodically. Being able to extract 

the individual identity, presence and species type of the tagged individual can also 

be inferred. Therefore, all these technologies are marked with + indicating their 

ability to provide presence, species type, identity, and location information. 

Although RFID tags and radio transmitters are not designed to measure location, 

location information can be calculated from specifications of the signal transmitted 

between the device on the entity and readers (or receiver). A single device equipped 

with GPS and inertial sensors estimates location and there is no need to calculate 

the location by taking the measurement of other devices into account. 

The major difference between technologies used by the Lagrangian and Eulerian 

approaches is the applicability of the Eulerian based technologies for extracting 

spatio-temporal properties from any entity in their field of view, while technologies 

used by the Lagrangian approaches are only useful for extracting these properties 

from the tagged entities. 

Tracking is the only spatio-temporal property, which is not mentioned in Table 2-1, 

because it has to be inferred from combination of other properties. For instance, a 

network, which can continuously detect presence of a moving entity, or a sparse 

network with identification capability, can both provide tracks. Choosing which 

spatio-temporal property to use for tracking depends on the data needed for the 

purpose of later analysis. For instance, for monitoring migration of specific species, 

species recognition with coarse-grained localization is enough to provide the 

necessary tracks since individuals stay in the flock. Therefore, sometimes the 

group track might be more important than the individual track. 

2.4.2 Comparison of technologies based on different performance metrics 

It is difficult to compare all of the aforementioned technologies based on metrics 

such as operational range and power consumption. The reason is that some of 

these sensors are not commercially established and data regarding these properties 

are not available for them. However, by reviewing previous research, a number of 

general conclusions can be drawn.  
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Regarding the power consumption, passive and active mode of operation impacts 

the energy efficiency. Active mode of operation requires generation of a sensing 

modality and is, therefore, more energy consuming. Some passive technologies 

such as visual and thermal cameras are also not energy efficient since the visual 

data type is considerably large, and require more memory and processing power.  

Among the sensors used in the Eulerian approach, PIR is known to be the most 

energy efficient with lower cost. It is widely used in low power surveillance systems 

where the area is covered with a large number of nodes with short coverage range. 

However, the information extracted from these sensors is limited. Camera, 

microphones, and radar are more suitable for longer-range operations depending 

on the characteristic of the entity. These sensors also provide more information 

from the studied entity. It is also important to consider the line of sight 

requirement of the sensor. Among these technologies, thermal and ordinary 

cameras, PIR and thermometers need a direct line of sight to the entity. Based on 

the frequency of operation radar can be used when physical barriers exist between 

the entity and the sensor.  

In Lagrangian based approaches, use of GPS is specifically recommended for long-

range localization purposes due to its global coverage and accuracy (relative to the 

covered area). However, GPS is considerably power hungry. In order to meet long 

lifetime requirements, it is sensible to use duty cycling and low power inertial 

sensors to measure the approximate location when the GPS module is off. The 

shortcoming of the technology relates to the fact that its applicability has been 

only proven for heavy moving entities, as a GSP-enabled device with a lifetime of 

few days/weeks is relatively heavy. Active RFID tags and short-range radio 

transmitters are more useful when the weight requirements are critical and for 

animals with limited range of spatial activity. Although passive RFID tags are small 

and light, their extremely low detection range limits usage in an automated system. 

Furthermore, when using RFID tags energy provision for an automated reader 

remains a challenge.  

In Table 2-2, we compare the technologies in terms of the (i) outdoor disruptions 

that degrade the performance of a sensor, (ii) amount of processing which is 

required for extraction of each of the spatio-temporal properties mentioned 

previously in Section 2-4 (P (presence), S (species type), I (Identity), L (location)), (iii) 

commercial establishment of platforms for being used in wildlife monitoring, and 

(iv) invasiveness with respect to their effect on the entity under study.  Under the 

column representing the processing required for each of the previously mentioned 

spatio-temporal properties, we mark a technology with L (Low) when low amount of 

computation is needed on the device and H (High) is used otherwise. It can be seen 

that although the technologies used for the Eulerian approach can provide more 
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information, extraction of these information requires considerable amount of 

offline data analysis. 

Approach Technology Outdoor 

disruptions 

Processing 

required 

Commercially 

Established 

Invasive 

P S I L 
Eulerian Radar Smoke, dust, 

humidity 
L H H H - - 

Geophones Cultural noise H H H H - - 
Microphones Wind, 

background 
acoustic noise 

L H H H ✓ - 

Thermal cameras Smoke, dust, 
humidity 

H H H H ✓ - 

PIR L - - - ✓ - 

Thermometers H H - - ✓ - 

Electronic noses Humidity, air 
quality, wind 

- - - - - - 

Cameras Unsuitable 
lighting 

conditions 

H H H H ✓ - 

Lagrangian Passive RFID tags - L L L L ✓ ✓ 
Active RFID tags - L L L L ✓ ✓ 

GPS Cloud cover, 
heavy foliage, 

indoors 

L L L L ✓ ✓ 

Inertial sensors Metal objects, 
external 

magnetic field 
and gravity 

L L L L ✓ ✓ 

Radio transmitters - L L L L ✓ ✓ 

Table 2-2 Comparison of sensing technologies based on a number of performance metrics. 

P (presence), S (species type), I (Identity), L (location) 

2.4.3 Comparison of technologies based on the subject of study 

Table 2-3 summarizes the aforementioned technologies based on their usage in 

research studies. It should be mentioned that, references given under each entity 

type are only those included in this chapter. It is also worth mentioning that not all 

of these technologies have been used in combination with wireless sensor 

networks. However, they have the potential to be used in such networks. Marking “-

” under species type means that the corresponding technology is not popularly 

used for studying that species. 
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Technology Animals Humans 

Mammals Birds Amphibians Reptile
s 

Fish 

Radar, 
ultrasound 

Dog and 
horse [32] 

Migratory 
birds 

[33-35] 

- - [36] [26, 28, 
30, 32] 

Camera Lion [49], 
Zebra [43] 
Cows [46] 

Quadrupeds 
[45] 
[49] 

Rats [52, 
148] 

Migratory 
birds [47] 

- Snakes 
[53] 

- [50, 149-
152] 

Infrared 
technologies 

Cows [62, 64] 
Quoll[57] 

Zoo 
mammals 

[63] 

Ostrich [63] - Lizzar
d [153] 

- [59, 62] 

e-nose Livestock  
[73] 

- - - - [74] 

Geophone Quadrpeds 
[94] 

Elephents 
and large 
mammals 

[109] 
Mole rat 

[111] 

- - - - [101-
103, 
105, 
106] 

Microphone Lycaon 
pictus [88] 

 

Bald Eagles 
[154] Crane 

[87] 
Ealge owl 
[89]Ant-

thrushes [90] 

Cane-toad 
[84, 155] 

Anurans [82] 

- - [91, 92] 
 

RFID Badgers 
[117] 
Farm 

animals [118] 

Tern [113, 
156] 

salamanders 
[116] 

Corn 
snake 
[114] 

[121] 

 
[115] 

GPS Livestock 
[134-

138]Zebra 
[134] 

Caprocorn 
[13] 

Mountain 
lions[135] 

Migratory 
birds [126, 
127, 157] 

- - - [158] 

Inertial 
sensors 

Rats [141, 
142] 

Cows [104, 
162] 

Different 
species[161], 

- - - - [139, 
140]. 

Radio 
transmitters 

Cows [146] - - - - - 

Table 2-3 Summary of the technological solutions with respect to the studied animal 
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2.5 Summary 

Wireless sensor networks provide additional advantages over previous telemetry 

methods in collecting spatio-temporal data, which make them suitable for various 

mobile entity sensing applications. Two types of movement modeling are possible 

using these networks (i.e. Lagrangian, and Eulerian). Collecting spatio-temporal 

data with wireless sensor networks especially for the Eulerian approach has various 

unexplored domains, as the number of research in this domain is limited and 

relatively sparse. To provide suitable outcome for the movement modeling, high 

level improvements are still needed both in terms of software (for extracting 

spatio-temporal properties) and hardware (for sensing). Different well-tested 

schemes in the domain of human sensing are not yet applied in wildlife monitoring 

approaches. For instance, gait biometric, a well-explored biometric in human-

sensing, is not considered seriously in wildlife monitoring projects. Gait pattern 

has the potential to be detected with different sensors (radar, seismic, visual, and 

acoustic) for extracting species type, identity or maybe physiological state 

information that it conveys. Furthermore, in some domains such as chemical 

sensing, the technology still has to improve to be able to provide necessary spatio-

temporal data. For instance, although there is evidence in favor of measuring 

different physiological states and identity level distinction through chemical 

disturbances, the technology that is usable in conjunction with wireless sensor 

networks is still far away from use.  

With respect to the previously mentioned advantages for Lagrangian technologies, 

which provide high quality spatio-temporal data, wide-range outdoor coverage, less 

need for infrastructures, and accuracy, in the rest of this thesis we use data 

acquired using these technologies. More specifically, we base our data analysis 

solutions on spatio-temporal GPS datasets. However, the techniques we propose are 

not specific to the Lagrangian based technologies, many of the algorithms we 

propose are also applicable to spatio-temporal data acquired from other 

technologies. 
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Chapter 3 

3 Mining periodic behavior from streaming mobility data4 

Both humans and animals pursue periodic activities in their lives. 
Extraction of periodic behavioral patterns hidden in large volume of 
mobility data helps in understanding the dynamics of activities, 
interactions, and life style of mobile entities. The ever-increasing 
growth in the volume and dimensionality of mobility data on the one 
hand, and the resource constraints of the sensing devices on the 
other, have not only made accurate pattern recognition a challenge, 
but it has also made low complexity, and low resource consumption 
important requirements for periodic pattern recognition algorithms. In 
this chapter, we propose a method for extracting periodic behavioral 
patterns from streaming mobility data, which fulfills the above-
mentioned requirements. Our experimental results on both synthetic 
and real datasets confirm the superiority of our method in 
comparison with the existing techniques. 

3.1 Introduction 

Periodicity is an important characteristic of humans’ and animals’ activities. 

Animal’s yearly migration, as well as, weekly work pattern of humans are examples 

of periodic behavioral patterns. Knowledge about activity periodicity is required by 

various applications. For example, ecologists are interested in knowing the periodic 

migration pattern of animals and how activities in vicinity of their living terrain 

cause abnormality in this behavior [160]. In humanitarian studies, it is interesting 

to identify interruptions in periodic routines by major life events or daily hassles, 

as this identification helps in understanding stress-induced changes in daily 

behavior of people [161]. Identification of such abnormalities in human behavior 

can be useful in designing solutions which alleviate the effect of such stresses (as 

used in participatory sensing-healthcare systems [7]). Apart from uncertainties 

associated with mobility data (such as noise and missing samples), which make 
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mining periodic patterns challenging, online extraction of patterns from streaming 

mobility data is difficult due to availability of limited processing and memory 

resources. The problem of identification of periodic behavioral patterns has been 

studied previously [162]. What distinguishes the work presented in this chapter 

from the existing research, however, is its focus on identification of periodic 

patterns from streaming mobility data through a light, and accurate technique. 

3.1.1 Contributions 

Our automatic pattern recognition method requires limited storage and processing 

capability and is able to detect periodic patterns upon arrival of every new mobility 

measurement. Our major contributions, in proposing such pattern recognition 

system, are: 

• Accurate discovery of periods of repetitive patterns from streaming 

mobility data  

• Extraction of periodic patterns with bounded memory requirement 

• Performance evaluation using both synthetic and real datasets  

The rest of this chapter is organized as follows. Related work is presented in 

Section 3.2. In Section 3.3, we will define the problem of finding periodic patterns 

from streaming mobility data. Our methodology is described in detail in Section 

3.4. Section 3.5 and 3.6 present performance evaluation, and case studies with real 

datasets, respectively. Section 3.7 summarizes this chapter. 

3.2 Related work 

Existing solutions for pattern mining from mobility data can be divided into 

solutions addressing either frequent [163-167] or periodic pattern mining [162, 168, 

169]. The former techniques focus on the “number of times” a pattern is repeated 

in limited duration (more representing the importance of a behavior in the number 

of time it repeats), while the latter focus on both the “number of times” a pattern is 

repeated and “the temporal trend” by which it is repeated. Considering the extra 

temporal trend, periodic patterns can provide extra information about the behavior 

of mobile entity. 

Frequent pattern mining: Association rule mining [170] has been popularly used 

for extracting frequent trajectory patterns [163-167]. The general approach taken 

by this technique is to use a support-based mechanism to find the longest frequent 

trajectory pattern. Support-based mechanisms focus on the number of occurrences 

of patterns. The main drawback of exiting frequent pattern mining techniques is 

that the longest frequent pattern cannot completely and accurately describe the 

normal behavior. Specifically, these techniques [163-167] fail to detect behaviors 
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that do not occur frequently but they happen with higher prior expectation at a 

certain period.  

Periodic pattern mining: There are a number of papers in the domain of time 

series analysis considering different questions regarding periodicity [171], such as 

asynchronous periodic patterns [172], and partial periodic patterns [173] of time 

series data. Recently, mining periodic patterns from mobility data has also received 

attention [162, 168, 169]. Use of signal processing techniques such as Fourier and 

wavelet transform was proposed in [174, 175]. As shown in [162], such forms of 

signal processing approaches perform weakly in presence of noise which make 

them inapplicable on raw mobility data. The authors of [162] proposed an 

automatic periodicity detection mechanism to find the periodic behaviors. They 

further extended their work for extracting periodicity from incomplete 

observations in [168]. They proposed a probabilistic measure for identifying 

periodicities in sparse mobility data. Their probabilistic measure is applied on data 

from visit to stay-points where the mobile entity spends a considerable amount of 

time. Similar to [168] we are interested in detection of periodic patterns from 

incomplete data. However, there are two main differences between these two 

techniques. Firstly, detection of periodic behavior in [168] is based on stay-points. 

Therefore, it is needed that the regions of interest are extracted beforehand. This 

requires a preprocessing phase, which is not needed by our technique, as we work 

with raw GPS measurements. Secondly, method of [168] is not designed for 

streaming data and consumes considerable amount of memory. Our method, on 

the other hand, has low resource consumption and complexity, which makes it 

applicable in streaming settings.  

3.3  Problem Definition 

In this section, we clearly define the problem of finding periodic patterns from 

streaming mobility data. We first start by providing a number of definitions: 

Definition 3.1: A trajectory 𝐿!, 𝐿!,… , 𝐿! is composed of a sequence of points denoted 

by 𝐿! = (𝑥! , 𝑦! , 𝑡!), where (𝑥! , 𝑦!) represents a spatial coordinate and 𝑡! is a time-stamp. 

Definition 3.2: A period 𝑇 is a time frame composed of 𝑇number of equally-sized 

segments denoted by  𝑠𝑒𝑔!..!! . 

Definition 3.3: A spatial neighborhood 𝑠𝑛(!!,!!) is a set of location points that fall 

within the radius 𝑟 of (𝑥! , 𝑦!).  

Definition 3.4: A spatial neighborhood is visited periodically in a period 𝑇, if the 

probability 𝑃!!of being in this neighborhood in a 𝑠𝑒𝑔!!of period 𝑇 is more than a 

threshold in all or a fraction of the observation time.  
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Problem definition: Having limited memory available, we are interested in mining 

the last periodic pattern followed in data stream (𝐿!…   𝐿!)   in form of 

<𝑇, (𝑃!! , 𝑆𝑁!!),… , (𝑃!! , 𝑆𝑁!!) >, where 𝑇 is the temporal period and 𝑆𝑁!!  is a spatial 
neighborhood 𝑠𝑛(!!,!!) which is expected to be visited periodically in  𝑠𝑒𝑔!!  with a 

period 𝑃!!. 

3.4 Methodology to find periodic patterns (StPPattern) 

Our method to find periodic patterns from streaming mobility data is composed of 

the following three stages (as shown in Figure 3-1):  

• Measuring the self-similarity of the streaming data in different lags 

(described in Section 3.4.1); 

• Discovery of the periods of repetition from the self-similarity graph 

(described in Section 3.4.2); 

• Extracting periodic patterns (described in Section 3.4.3). 

 

 

Figure 3-1 The framework for finding periodic patterns from streaming mobility data 

(StPPattern) 

3.4.1 Measuring self-similarity of the mobility data in different lags 

Behavioral patterns can have different periodicities (e.g. daily, weekly, monthly, and 

yearly). Therefore, it is important to first identify the period of repetition (day, 

week, or year) of visits to a certain spatial neighborhood. One of the most 

commonly used methods for identifying these periods is the circular Auto-

Correlation Function (𝐴𝐶𝐹) [176]. 𝐴𝐶𝐹 measures the similarity of a time-series to 

itself in different lags (delay). 𝐴𝐶𝐹 of a time series  𝑡𝑠, of size 𝑁 over lags 𝜏   ∈ {1. . .𝑁} 
is computed as follows: 

𝐴𝐶𝐹! 𝜏 = 𝑡𝑠 𝑖 . 𝑡𝑠(𝑖 + 𝜏)
!

!!!

 (3.1) 
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In its original form, 𝐴𝐶𝐹 is not applicable to mobility data because the GPS data is 

often sparsely measured and mixed with noise (due to difficulties such as cloud 

cover, or device malfunction) while 𝐴𝐶𝐹 requires the data to be uniformly sampled.  

In order to measure the self-similarity from GPS measurements, we propose an 

optimization to the original 𝐴𝐶𝐹. Assuming that we denote missing samples as 

invalid and the rest as valid,  we calculate the Uncertain circular Auto-Correlation 

Function (𝑈𝐴𝐶𝐹) for a set of mobility data (𝐿!… 𝐿!) using Eq. (3.2): 

𝑈𝐴𝐶𝐹! 𝜏 =
1
𝑣!..!!

𝛹!,!!!  
!

!!!

 
(3.2) 

Where 𝛹!,!!!  is equal to 1 when the Euclidean distance between a valid pair 

𝐿!   and    𝐿!!! (dist(𝐿! , 𝐿!!!)) is less than a distance threshold  𝑟, and 𝑣!..!!  is the number 

of pairs (𝑖, 𝑖 + 𝜏) in which both 𝐿! ,  and    𝐿!!! are valid. Computing 𝑈𝐴𝐶𝐹 in this way 

will help us measure the self-similarity of GPS data only in an offline fashion when 

the entire mobility data is available. In the next section, we optimize the memory 

requirements of 𝑈𝐴𝐶𝐹  (Eq. (3.2)) and enable it to measure self-similarity over 

different lags upon arrival of each mobility data measurement.  

3.4.1.1 Measuring self-similarity in streaming setting (online) 

Finding periodic behavioral patterns in streaming setting helps reducing the data 

transmission and storage (as not the raw data but only the patterns or whether the 

entity conforms to the pattern can be transmitted or stored). Computing 𝑈𝐴𝐶𝐹 

requires the entire data to be kept in memory. Therefore, its memory requirement 

is 𝑂 𝑁  (𝑁  is the number of measurements). Ubiquitous location-aware sensing 

devices have limited resources (both in terms of memory and power). Therefore, 

storing the entire data (especially, in case of high frequency sampled dataset) for a 

long period of time or its transmission to a central server for further analysis is 

neither practical nor is it possible. This motivates us to lower down the memory 

requirements. To do so, we need to calculate the 𝑈𝐴𝐶𝐹 in such a way that upon 

arrival of each new GPS measurement 𝐿!, we can measure self-similarity over lags 

{𝜏  |𝑁  𝑚𝑜𝑑  𝜏   = 0}. We claim that it is possible to reduce the memory requirement 

from 𝑂 𝑁    to 𝑂(𝑇!"# ), by having an estimation of the maximum period being 

followed in data (𝑇!"# ≪ 𝑁). (Since 𝑁  𝑚𝑜𝑑  𝜏   = 0, in what follows, we use 𝑛𝜏 instead 

of 𝑁). 

Theorem. Suppose that 𝐿!𝐿!…   represent the stream of mobility data. We can 

compute {𝑈𝐴𝐶𝐹!" 𝜏 |   𝜏   ≤ 𝑇!"#  }  for each {  𝑛 > 3} of this stream by having 𝑂(𝑇!"#) 
memory. 

Proof. In order to prove the above theorem we first prove that we can re-compute 

Eq. (3.2) in an alternative way. Consequently, we prove that in its new form, the 
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memory requirement of computing 𝑈𝐴𝐶𝐹 is bounded by 6×𝑇!"#. Therefore, we will 

first prove through mathematical induction that for each  (𝑛 > 3),   𝑈𝐴𝐶𝐹!" 𝜏  can be 

computed as follows: 

U𝐴𝐶𝐹!" 𝜏 =
1

𝑣!..!"! 𝑣!.. !!! !
! 𝑈𝐴𝐶𝐹 !!! ! 𝜏 − 𝛹!, !!! !!!

!

!!!

+ 𝛹 !!! !!!, !!! !!!

!

!!!

+          𝛹 !!! !!!,!

!

!!!

 

(3.3) 

 

Base Step. The base step is to check the validity of the above equation for 𝑛 = 4. 

For  𝑛 = 4 computing  𝑈𝐴𝐶𝐹!! 𝜏  by Eq. (3.2) results in Eq. (3.4) and computing this 

value by Eq. (3.3) will result in Eq. (3.5) (please note that due to circular shift 
operation ( 𝛹!!!!,!!!!!

!!! =   𝛹!!!!,!!
!!! ): 

𝑈𝐴𝐶𝐹!! 𝜏 =
1

𝑣!..!!! 𝛹!,!!!  
!!

!!!

=   
1

𝑣!..!!! 𝛹!,!!!

!

!!!

+ 𝛹!!!,!!!!

!

!!!

+    𝛹!!!!,!!!!

!

!!!

+ 𝛹!!!!,!

!

!!!

 

(3.4) 

𝑈𝐴𝐶𝐹!! 𝜏 =
1

𝑣!..!!! 𝛹!,!!!!

!

!!!

+ 𝛹!!!!,!!!!

!

!!!

+ 𝛹!!!!,!

!

!!!

         
(3.5) 

We replace   𝑈𝐴𝐶𝐹!! 𝜏   in Eq. (3.5) to see if it equals to Eq. (3.4). Using Eq. (3.2) we 

will have:  

𝑈𝐴𝐶𝐹!! 𝜏 =   
1

𝑣!..!!! 𝛹!,!!!  
!!

!!!

=
1

𝑣!..!!! 𝛹!,!!!

!

!!!

+ 𝛹!!!,!!!!

!

!!!

+ 𝛹!!!!,!

!

!!!

  
(3.6) 

By replacing 𝑈𝐴𝐶𝐹!! 𝜏  in Eq. (3.5) with Eq. (3.6) we achieve Eq. (3.4) as: 

𝑈𝐴𝐶𝐹!! 𝜏 =   
1

𝑣!..!!! 𝑣!..!!! . (
1

𝑣!..!!! ) 𝛹!,!!! + 𝛹!!!,!!!! +
!

!!!

!

!!!

𝛹!!!!,!

!

!!!

    

− 𝛹!,!!!!

!

!!!

) + 𝛹!!!!,!!!!

!

!!!

+    𝛹!!!!,!

!

!!!

 

(3.7) 

=   
1

𝑣!..!!! 𝛹!,!!!

!

!!!

+ 𝛹!!!,!!!! +
!

!!!

𝛹!!!!,!!!!

!

!!!

+      𝛹!!!!,!

!

!!!

  

Induction step. Assuming that {𝑘   ∈ 𝑁|  𝑘 > 3} is given and Eq. (3.3) is true for 𝑛   =   𝑘. 

Then we can prove that the Eq. (3.3) is valid for 𝑛 = 𝑘 + 1: 
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𝑈𝐴𝐶𝐹(!!!)! 𝜏 =   
1

𝑣!.. !!! !
! 𝛹!,!!!   

!!! !

!!!

=
1

𝑣!.. !!! !
! 𝛹!,!!!

!

!!!

+⋯+ 𝛹 !!! !! !!!, !!! !! !!!

!

!!!

+ 𝛹 !!! !! !!!, !!! !! !!!

!

!!!

=     
1

𝑣!..(!!!)!
!

𝑣!..!"!

𝑣!..!"! 𝛹!,!!!

!

!!!

+⋯+ 𝛹 !!! !!!, !!! !!!

!

!!!

+ 𝛹 !!! !! !,( !!! !!)!!!

!

!!!

+        𝛹 !!! !! !!!,!

!

!!!

=     
1

𝑣!..(!!!)!
! 𝑣!..!"! 1

𝑣!..!"! 𝛹!,!!!

!

!!!

+⋯

+ 𝛹 !!! !!!, !!! !!!

!

!!!

+ 𝛹 !!! !!!,!

!

!!!

− 𝛹 !!! !!!,!

!

!!!

+          𝛹 !!! !! !,( !!! !!)!!!

!

!!!

+ 𝛹 !!! !! !!!,!

!

!!!

=   
1

  𝑣!..(!!!)!
! 𝑣!..!"! . (U𝐴𝐶𝐹!" 𝜏 ) − 𝛹 !!! !! !!!,!

!

!!!

+ 𝛹 !!! !! !,( !!! !!)!!!

!

!!!

+ 𝛹 !!! !! !!!,!

!

!!!

  

                                   

(3.8) 

Now, we prove that we can calculate Eq. (3.3) with bounded memory. In this 
equation,   𝛹 !!! !!!,!

!
!!!  is calculated from 𝐿!…  ! and 𝐿(!!!)!!!…!". 𝛹 !!! !!!, !!! !!!

!
!!!  

is calculated from 𝐿 !!! !!!…!" . 𝑈𝐴𝐶𝐹 !!! ! 𝜏   and 𝛹 !!! !!!,!
!
!!!  are single values 

computed in the previous round. Using induction, it is straightforward to prove 
that we can also compute 𝑣!…!"!  from 𝑣!… !!! !

!  through (𝑣!…!"! = 𝑣!… !!! !
! − 𝑣 !!! !…!

! +
𝑣 !!! !…!"
! ), where 𝑣 !!! !…!

! , 𝑣 !!! !…!"
!  are computed from 𝐿!…  !  and   𝐿 !!! !!!…!" . We 

know that ( 𝜏 ≤ 𝑇!"# ) so (𝐿!…  ! ∊ 𝐿!…  !!"# ) and ( 𝐿 !!! !!!…!"   ∊ 𝐿 !"!!!!!"!! …!" ). 

Therefore, if we have 𝐿!…  !!"# , 𝐿 !"!!!!"#!! …!"   (which require on maximum 

3𝑇!"#memory) and{𝑣!…!"! ,𝑈𝐴𝐶𝐹(!!!)! 𝜏   , 𝛹!,(!!!)!!!!
!!! |𝜏   < 𝑇!"#  }(also with maximum 

3𝑇!"#memory) in memory we can compute 𝑈𝐴𝐶𝐹!!!" 𝜏  for any 𝜏. Thereby, instead 

of keeping 𝑁 measurements in memory we only need to keep 6×  𝑇!"# (𝑇!"# ≪ 𝑁) 

values and the rest of data can be destroyed.  
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3.4.2 Discovery of periods of repetition 

If there is a single period of repetition in a time-series, the self-similarity graph 

(with both 𝐴𝐶𝐹 and 𝑈𝐴𝐶𝐹) will show a peak in that period and its entire integer 

multiples. For instance, if there is a pattern repeated with period of 24 hours, the 

peaks will appear at 24, 48, 72, and so on. In order to extract periods of repetition 

from the self-similarity graph, normally the first highest peak is chosen. We cannot 

ignore the fact that there may exist multiple periodic patterns in mobility data. 

Therefore, it is advantageous to be able to extract all periodic patterns rather than 

the ones with the first highest peak. To clarify the case, in which multiple periodic 

patterns exist, we provide an example.  

 
(a)                                                        (b) 

 

 
 (c) 

Figure 3-2 (a) 𝐴𝐶𝐹 self-similarity graph on the presence sequence of Bob on visiting school 

for the first 1000 hours of 4 years (𝜏=1 hrs), (b)The result of performing 𝐴𝐶𝐹 on the presence 

sequence data of Bob on visiting his school (𝜏=24 hrs), (c) Removing peaks level by level to 

extract periods of repetition (Algorithm 3.1)  
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Let us consider Bob, a student, who goes to school every weekday during the study 

year and stops going to school during summer. From one perspective, this behavior 

is periodic over a year (9 months going to school and 3 months of holiday). From 

another view, we can also observe some other periods of repetition in this behavior 

(24 hours, 7 days) as Bob goes to school every weekday and stops going to school 

on weekends. If we build a binary presence sequence for this activity of Bob for 

four years by placing 1 at each time stamp when Bob is present at school and 0 at 

other times, the self-similarity graph by computing ACF on this sequence will look 

like Figure 3-2.a and Figure 3-2.b. 

As seen in self-similarity graph in Figure 3-2.a and Figure 3-2.b, there are multiple 

hierarchically ordered valleys and hills. The peaks with the highest 𝐴𝐶𝐹 values are 

the ones, which belong to the multiples of longer periods (in this example 365 

days). The lower hills, on the other hand, belong to multiples of shorter periods (24 

and 168). We can see in Figure 3-2.c that, if we iteratively extract peaks of the self-

similarity graph, such periods can be found by choosing the first peak in each 

iteration. This will enable us to define periods of repetition as: 

Definition 3.5: Time lags 𝑇!… 𝑇!  are the periods of repetition in a data stream if (i) 

the self-similarity graph has a local maximum in lags 𝑇!… 𝑇!,  and (ii) 𝑇!   is the first 
peak among peaks of level i-1, which is repeated in integer multiplies (2𝑇!,3𝑇!,.).  

Our procedure of extracting the periods of repetition is presented in Algorithm 3.1 

(PeriodExtract). 

 

Algorithm 3.1 (PeriodExtract) 

INPUT: 𝐔𝐀𝐂𝐅𝐍 𝟏. . .𝐍 (self-similarity graph) 
OUTPUT: T (set of periods)  

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

Find first level peaks, 𝑃𝑒𝑎𝑘𝑙𝑒𝑣𝑒𝑙 1  from 𝑈𝐴𝐶𝐹 1…𝑁 ; //Finding first level 
local maximums 
set 𝑖 = 1;// Counter of peal levels 
Repeat while 𝑃𝑒𝑎𝑘𝑙𝑒𝑣𝑒𝑙(𝑖) is not empty  

Find 𝑃𝑒𝑎𝑘𝑙𝑒𝑣𝑒𝑙(𝑖 + 1) among 𝑃𝑒𝑎𝑘𝑙𝑒𝑣𝑒𝑙(𝑖);// As depicted in Figure 3.2 
set 𝑖   = 𝑖 + 1; 

End while 
For each (  𝑗   <   𝑖  ) 

Set period 𝑇(𝑗) to the first peak in 𝑃𝑒𝑎𝑘𝑙𝑒𝑣𝑒𝑙(𝑗) which is repeated in 
integer multiplies;   

End for 
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3.4.3 Extracting periodic patterns in streaming setting 

Successful discovery and extraction of periods of repetition only informs us of 

periodic visits to some spatial neighborhoods. This, however, does not indicate 

which spatial neighborhoods and when (in which segment of the period) they have 

been visited. Considering that the random existence of a mobile entity in a spatial 
neighborhood 𝑠𝑛(!!,!!)  at 𝑠𝑒𝑔!!  of a discovered period 𝑇  follows a Bernouli 

distribution [177] (being in 𝑠𝑛(!!,!!)   1 , not being in 𝑠𝑛(!!,!!)   0 ), the probability that 

this entity appears in 𝑠𝑛(!!,!!) at 𝑠𝑒𝑔!!  randomly is ½. If this probability is more than 

½, it shows that the mobile entity has a tendency to appear in that 𝑠𝑛(!!,!!) and its 

visit conforms to a periodic pattern. Therefore, in order to find the periodic 

patterns we need to find spatial neighborhoods, which have been visited with a 

probability more than ½ in each segment of the discovered period of repetition.  

Algorithm 3.2 (PeriodicPatternExtract) 

INPUT:   𝑳𝑵(𝒅𝒂𝒕𝒂  𝒑𝒐𝒊𝒏𝒕), Buffer, 𝑷𝑳𝑻!𝟏…𝑻𝑴𝒂𝒙=[𝑷𝒊..𝑻𝑻 ,𝑽𝒊..𝑻𝑻 , 𝑺𝑵𝒊..𝑻
𝑻 ]  , 𝑻𝒎𝒂𝒙,  𝒓(radius) 

OUTPUT: Buffer, 𝑷𝑳𝑻!𝟏…𝑻𝑴𝒂𝒙=[𝑷𝒊..𝑻𝑻 ,𝑽𝒊..𝑻𝑻 , 𝑺𝑵𝒊..𝑻
𝑻 ], 𝑷𝑷𝒂𝒕𝒕𝒆𝒓𝒏𝒔𝟏…𝑻𝒎𝒂𝒙 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

9: 

10: 

11: 

12: 

13: 
14: 

Add   𝐿! to the end of the Buffer and remove a point from the beginning of 
Buffer; 
Update UACF! τ where 𝑁 mod 𝜏 = 0;// Eq. (3.6) 
Find periods of repetition 𝑇!…! from self-similarity graph 
𝑈𝐴𝐶𝐹  (1… 𝑇!"#);// Algorithm (3.1) 
For each period 𝑇! in periods 𝑇!…!  

𝑡 = 𝑁  𝑚𝑜𝑑  𝑇! 
𝐈𝐟  (dist (𝑆𝑁!! ,   𝐿!)<2𝑟)  

𝑃!
!!   = 𝑃!

!!  +1, 𝑆𝑁!
!!   = (𝑃!

!!  . 𝑆𝑁!
!!   +   𝐿!)/(𝑃!

!!   + 1); 

Else if  (
!!
!!  

!!
!!  
< 1/2),   𝑆𝑁!

!!   = 𝐿!,   𝑃!
!!   = 1,𝑉!

!!  =0;             

𝑉!
!!   = 𝑉!

!!   + 1; 

End if 

𝑃𝑃𝑎𝑡𝑡𝑒𝑟𝑛!!={𝑆𝑁!
!!  |  𝑃!

!!   > 1} 

End for  

Algorithm 3.2 (PeriodicPatternExtract) summarizes how we can extract both 

temporary and permanently periodic behaviors from streaming data. The algorithm 

proceeds as follows. Firstly, we use 𝑈𝐴𝐶𝐹 to extract the periods. Next, for each 

discovered period of repetition 𝑇!, we update the entries of a list of size 𝑇! (referred 
to as 𝑃𝐿!! , 𝑃𝐿!! =[(𝑃!

!! ,𝑉!
!! , 𝑆𝑁!

!!),… , (𝑃!!
!! ,𝑉!!

!! , 𝑆𝑁!!
!!) ]). For each spatial neighborhood 

𝑆𝑁!
!! , 𝑃!

!! denotes the number of presences in 𝑆𝑁!
!! and 𝑉!

!! represents the number of 
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valid observations 𝑉!
!! in segment 𝑠𝑒𝑔!

!! . In each timestamp entities of 𝑃𝐿!! lists get 

updated. Each measurement {  𝐿!| 𝑁  𝑚𝑜𝑑  𝑇!   = 𝑡} will be compared with the value 
of  𝑆𝑁!

!!of 𝑃𝐿!! list. In case the measurement lies within 2𝑟 from   𝑆𝑁!
!! , the value of 

  𝑆𝑁!
!! will be updated with the average of the previous   𝑆𝑁!

!! values and the new 

value   𝐿!. The values of 𝑃!
!!and 𝑉!

!! will also be updated correspondingly. Finally, the 

pattern composed of the value of spatial neighborhoods with a probability over ½ 
will be returned as periodic pattern and those spatial neighborhoods (  𝑆𝑁!

!!)  with a 

probability less than ½ will be removed.  

3.5 Evaluation  

3.5.1 Complexity analysis 

In this section, we analyze the processing complexity and memory resources 

needed for extracting periodic patterns from streaming data (StPPattern) of size 𝑁 

by Algorithm 3.2 (PeriodicPatternExtract) assuming that the maximum repetitive 

period in the stream is less than 𝑇!"#. We compare our method with the method 

proposed in [168] and with the original 𝐴𝐶𝐹 [176]. It should be mentioned that 𝐴𝐶𝐹 

and [168] only measure self-similarity. Therefore, we only have to address their 

memory and processing power for this task. In our method, StPPattern, arrival of 

each new point, extracting repetition periods, and updating the 𝑃𝐿  lists have 

processing complexity of (𝑇!"#),  O(𝑇!"#𝑙𝑜𝑔𝑇!"#) , and O(𝑇!"#! ),  respectively. As 

shown in Section 3.4.1.1, we reduced the memory requirements of measuring self-

similarity to 𝑂(𝑇!"#)  and discovery of the periods of repetition has memory 

complexity of 𝑂(𝑇!"#). In pattern extraction, we keep a list of size 𝑇 𝑃𝐿   for each 

period (𝑇 < 𝑇!"# ). Therefore, memory requirement of this task 

(PeriodicPatternExtract Algorithm) is O(𝑇!"#
!) . The method proposed in [168] 

extracts periodicities from each region of interest rather than from the original 

data stream. In order to perform streaming period extraction, this method should 

be able to identify the regions of interest first, which is not needed by our 

technique. The regions of interest are not known beforehand. Therefore, to be able 

to compare our technique with [168], we simply assume that we compare each new 

GPS measurement with cells of a grid of size 𝐺 . In this case, the processing 

complexity for this comparison will be 𝑂(𝐺). In order to measure the self-similarity, 

method of [168] requires having all the previous data points in memory. As new 

data arrives, it needs to update probability of presence in each segment of each 

period. Then it measures the self-similarity for each possible period, with a 

complexity of O(𝑇!"#𝑁). This task should be performed 𝐶 number of times (𝐶 is a 

constant value) in order to normalize the data. Therefore, the total computational 

complexity is 𝑂(𝐶𝑁𝑇!"#) +   𝑂 𝐺  and memory requirements will be 𝑂(𝑁). Complexity 

of 𝐴𝐶𝐹 using Eq. (3.1) is 𝑂(𝑁!) and it also requires the whole data to be stored in 
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memory. Table 3-1 summarizes the memory and processing complexity of these 

three techniques. As seen, concerning the required memory and computational 

resources, StPPattern is best suited for streaming settings and resource restricted 

devices. 

 
Method Processing Memory 

Measuring 
self-similarity 

Period 
extraction 

Pattern 
extracti

on 

Measuring 
self-

similarity 

Period 
extracti

on 

Pattern 
extracti

on 
StPPatte
rn 

𝑂(𝑇!"#) 𝑂(𝑇!"#𝑙𝑜𝑔𝑇!"#) 𝑂(𝑇!"#
!) 𝑂(𝑇!"#) 𝑂(𝑇!"#) 𝑂(𝑇!"#

!) 

[168] 𝑂 𝐺 +
𝑂(𝐺𝑁𝑇!"#) 

- - 𝑂(𝑁) - - 

ACF 
[176] 

𝑂(𝑁!) - - 𝑂(𝑁) - - 

Table 3-1 Complexity comparison 

3.5.2 Performance in presence of uncertainties 

3.5.2.1 Description of synthetic dataset 

In this section we validate the performance of Algorithm 3.2 

(PeriodicPatternExtract) using a synthetic dataset to test its sensitivity under 

parameters, which cause imperfections in mobility data. For this purpose, we 

implemented a mobile object sequence generator to produce a sequence 

representing a person’s periodic movement in 𝑁 number of days. This periodic 

sequence is in form of a test sequence (𝑡𝑒𝑠𝑡! ={(𝑥! , 𝑦!)|𝑖 ∈    [1,𝑁×24]}), where each 

index represents a spatial neighborhood in which a person is between [(𝑖 −
1)  𝑚𝑜𝑑  24, 𝑖  𝑚𝑜𝑑  24] in the ( !

!"
+ 1)th day. Ten spatial neighborhoods are defined, each 

composed of two-dimensional points lying within radius 𝑟  from a predefined 

center. We consider two of these spatial neighborhoods (representing home and 

office) being periodically visited (daily, and weekly) in specific intervals. For 

workdays, the interval 10:00-18:00 is chosen for “being at work” and 20:00-8:00 for 

“being at home”. On weekends, the interval between 01:00-24:00 is chosen for 

“being at home”. Each of these intervals is subject to a random event with 

probability of µμ and is normal otherwise. In normal intervals with defined start 

(𝑡!"#$")  and end ( 𝑡!"# ), the event of “visit” (being at home or office) starts 

somewhere between (𝑡!"#$"  ± 𝜎!  )   and ends around ( 𝑡!"# ± 𝜎!  ) . The behavior in 

abnormal intervals is randomly chosen from the other 9 spatial neighborhoods 

with a random start-time and random duration. Such abnormal intervals can 

represent different un-periodic events such as absence at work, working overtime, 
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or visit to places such as cinemas, shops, etc. After defining the normally and 

abnormally visited places (spatial neighborhoods) for each day, we add trajectories 

between them, each with different duration. This can represent different modes of 

transport, (for instance, car, or bike). The effect of missing samples was tested by 

removing data from the random indexes (both (x, y)) with probability of 𝛼. In order 

to add noise, we formed a randomly permuted array of data between the maximum 

and minimum longitude and latitudes in selected spatial neighborhoods. Next, we 

randomly picked samples with probability of 𝛽 and replaced them with the values 

in the random array. The parameters used to form the test sequence are: radius of 

spatial neighborhood (𝑟 =100 meters), number of periodic repetition (𝑁 =100), 

missing samples (𝛼 =0-50%), noise (𝛽 =0-50%), standard deviation of start/end-time 

(𝜎!  ,𝜎!   = 2), and probability of random events (µμ =0-50%).  

3.5.2.2 Performance evaluation with the synthetic dataset 

The synthetic dataset generated by movement generator follows two periods of 

repetition of 24, and 168 hours (corresponding to a day and a week). In this 

section, we evaluate Algorithm 3.1 (PeriodExtract) in terms of its success in 

correctly extracting these two periods using 𝐴𝐶𝐹 and 𝑈𝐴𝐶𝐹 self-similarity graphs 

(method of [168]  is not applicable on raw data). We calculate self-similarity in 

different lags by 𝐴𝐶𝐹 on latitude (𝑙𝑎𝑡), longitude (𝑙𝑜𝑛𝑔) and their root mean square 
(𝑅𝑀𝑆 =   𝑙𝑎𝑡! + 𝑙𝑜𝑛𝑔!  ). Running these experiments 100 times, we test the effect of 

uncertainty parameters, noise, missing samples, and random events on detection of 

correct periods. In each experiment the samples to be changed based on these 

parameters were selected randomly. Figure 3-3 (a-c) compare 𝑈𝐴𝐶𝐹  and 𝐴𝐶𝐹 

(𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔,𝑅𝑀𝑆) in correctly identifying the period of 24 form the synthetic dataset. 

These techniques are compared in finding the period of 168 in Figure 3-3 (d-f). Each 

graph represents the performance of these algorithms under a certain percentages 

of these uncertainty parameters (x axis label). Generally, looking at these graphs it 

is inferred that 𝑈𝐴𝐶𝐹  clearly outperforms 𝐴𝐶𝐹  in presence of noise, missing 

samples, and random events. Even when these uncertainty parameters reach 50%, 

𝑈𝐴𝐶𝐹  still can find a high percentage of correct periods. This outstanding 

performance of 𝑈𝐴𝐶𝐹 , compared to 𝐴𝐶𝐹 , is achieved by the measuring self-
similarity only for the points that fall within a spatial neighborhood (𝛹!,!!!). 
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(a)                                                 (b) 

 

(c) 

 
(d)                                                  (e) 

 

(f) 

Figure 3-3 (a-f) Comparison of the accuracy of Algorithm 3.1 in extracting periods of 

repetition 24,168) using 𝑈𝐴𝐶𝐹 and 𝐴𝐶𝐹 in presence of noise, missing samples and random 

events  
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This way, 𝑈𝐴𝐶𝐹 overcomes the effect of sparse, pattern-less, and noisy data. 𝐴𝐶𝐹, 

however, measures self-similarity by multiplication of changed samples with the 

unchanged ones, which follow a pattern. Therefore, noise and random events can 

clearly degrade the performance of 𝐴𝐶𝐹 leaving no effect on that of 𝑈𝐴𝐶𝐹. 

 

Figure 3-4 Average precision of Algorithm 3.1 in extracting periods of repetition 

Accuracy, as shown in Figure 3-3, relates to how well algorithms extract the correct 

period from the mobility time series. The periodicity detection method might be 

accurate but not precise. Meaning that, other than extraction of correct periods, it 

may also extract wrong periods. An ideal self-similarity measure should offer both 

an accuracy and a precision measure close to 1. Figure 3-4 compares the precision 

computed by 
!!

!!!  !!
 where 𝑃!  is the sum of correct prediction of two periods and 𝑃! 

is the number of false alarms in all the previous experiments (an average for both 

periods of repetition and all uncertainty parameters). As Figure 3-4 shows, the 

overall precision of 𝑈𝐴𝐶𝐹 is also higher than that of 𝐴𝐶𝐹. An increase in the amount 

of noise, missing samples, and random events, cause the precision of 𝐴𝐶𝐹  to 

rapidly fall below 0.5. This shows that the number of false alarms exceed the 

correct prediction. 𝑈𝐴𝐶𝐹 Algorithm, however, maintains its precision, which only 

decreases slightly as the uncertainties increase.  

3.6 Case studies 

Having proved the validity of 𝑈𝐴𝐶𝐹 in finding periods of repetition, in this section, 

we describe our experiments with two of the previously mentioned datasets. 

3.6.1 Case study using Dataset 1 

We applied 𝑈𝐴𝐶𝐹  and 𝐴𝐶𝐹  (root sum of square) on Dataset 1 to measure self-

similarity over different time lags (results shown in Figure 3-5.a-e, Figure 3-6.a-e). 

Algorithm 3.1 (PeriodExtract) was used to extract periods of repetition for two 
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entities in this dataset. For the first entity, we were able to extract the period of 24 

hours using 𝑈𝐴𝐶𝐹, while no period was found using 𝐴𝐶𝐹. We noticed that it was not 

possible to extract the period of 168 as no data were available for weekends.  

 
(a)                                                                     (b) 

 
 

(c)                                                                      (d) 

 

 (e) 

Figure 3-5 Extracting periodic behavior of the first entity in dataset 1. (a,b) extracting 

periods from self-similarity graph of real dataset using 𝐴𝐶𝐹 and 𝑈𝐴𝐶𝐹, (c) mobility data 

stream (shown in blue) and identified periodically visited spatial neighborhood (shown in 

red), (d) periodic patterns extracted from algorithm 2, (e) state-diagram of periodic behavior 

0 100 200 300
0

1

2

3

4

5 x 106 ACF(RMS)

AC
F(

RM
S)

Hour
0 100 200 300

0.5

0.6

0.7

0.8

0.9

1
UACF

UA
CF

Hour

24

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Hour

Pr
ob

ab
ilit

y

Periodic patterns (T=24)

 

 
Home (1)
Office (2)

Home

Office

24	
  Hrs

x5



	
   	
  

	
  

57 

For the second entity, using 𝑈𝐴𝐶𝐹 we were able to detect both periods of 24 and 

168 hours, while with 𝐴𝐶𝐹 only the period of 24 could be found. It can be seen 

from Figure 3-6.b-c, that the lag of 24 represents the first highest peak in 𝐴𝐶𝐹 

graph while there is no distinguishable peak afterwards. This huge difference in 

performance of 𝐴𝐶𝐹 and 𝑈𝐴𝐶𝐹 is due to long travels, which show themselves as 

random events. While the random events cannot degrade the performance of 𝑈𝐴𝐶𝐹, 

as shown in Section 3.5.2.2, they do considerably degrade the performance of 𝐴𝐶𝐹. 

The hierarchy of peaks is clearly distinguishable using 𝑈𝐴𝐶𝐹 . Therefore, both 

periods were easily found using Algorithm 3.1 (PeriodExtract).  

 

(a)                                             (b) 

 
(c)                                                              (d) 

 

(e) 

Figure 3-6 Extracting periodic behavior of the second entity in dataset 1. ((a-e) The same as 

Figure 3-5 
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After finding the spatial neighborhoods for each segment of the discovered periods 

using Algorithm 3.2 (PeriodicPatternExtract) we merged those which were lying 

within a spatial neighborhood. Using this algorithm we were able to find two 

spatial neighborhoods for the first entity (his home and office) (Figure 3-5.a) and 

three spatial neighborhoods for the second entity (home, office, and market) 

(Figure 3-6.a).        

The histograms in Figure 3-5.d and Figure 3-6.d represent the probability of 

appearance in 𝑆𝑃!! in segment 𝑠𝑒𝑔!! of each of the larger discovered periods. The 

state diagrams on the right are drawn based on the histograms to represent the 

periodic pattern. As illustrated in the state diagrams, the periodic pattern of the 

first entity is composed of a loop between home and work. For the second entity, a 

periodic pattern of two loops is identified. These loops are repeated 5 times with 

the duration of 24 hours (Weekdays). Next, a new loop of 48 hours emerges, which 

is only followed once. Afterwards, the first loop is repeated again.  

3.6.2 Case study using Dataset 2 

In Dataset 2, the sampling schedule through which the dataset is acquired from 

Capricorn is fixed but uneven. This dataset was collected such that samples are 

acquired when the animal is known to be mostly active. Thus, there are 8 constant 

missing values in selected hours of day. To avoid being biased, we removed these 

constant missing samples from the time series, forming an evenly sampled time 

series. After plotting the self similarity measured by 𝑈𝐴𝐶𝐹 and 𝐴𝐶𝐹 (with the spatial 

neighborhood of radius 500 meters) a dominant peak is observed, which is near 16 

considering the 8 empty timestamps, this value can represent the 24 hours daily 

periodic pattern. For this dataset, both 𝑈𝐴𝐶𝐹 and 𝐴𝐶𝐹 can find the period of 16 

accurately. As opposed to the previous dataset, 𝐴𝐶𝐹 is also applicable here. This is 

due to the limited movement range of the Capricorn. As seen in Figure 3-7, 

eventually by merging adjacent spatial neighborhoods, a small spatial 

neighborhood is found. The center of this spatial neighborhood with the radius of 

500 meters is shown in Figure 3-7.c with red. The periodic pattern of visit to this 

spatial neighborhood is shown in Figure 3-7.d which corresponds to the last valid 

periodic behavior of this animal in special timestamps of the day. This means that, 

it is highly expected that this animal is present in the spatial neighborhood shown 

in Figure 3-7.c during the timestamps shown in Figure 3-7.d.  
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  (a)                                                              (b) 

 
(c)                                                            (d) 

 

Figure 3-7 Extracting periodic behavior of the first entity in Dataset 2. (a-d) The same as 

Figure 3-5 

3.7 Summary 

In this chapter, we addressed the problem of extracting periodic behavioral 

patterns from streaming mobility data. Firstly, we proposed a self-similarity 

measure to identify periods of repetition from raw streaming mobility 

measurements. We proved that as opposed to the other methods used for 

extracting periods of repetition from mobility data, the memory requirement of 

this method is controllable and can be bound to the resources available. We 

empirically evaluated the performance of our method using a synthetic dataset 

under different controllable uncertainty parameters such as noise, missing 

samples, and random events. Results of our evaluations on the synthetic dataset 

shows that the self-similarity measure, which we proposed for identifying periods 

of repetition in mobility data, is strongly resistant to noise, missing samples, and 

random events. We further used the periods found based on this similarity 

measure to extract periodic patterns. Case studies with real datasets represent how 
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the result of period extraction can be used to visualize the periodic behavior of the 

mobile entity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
  

 

Chapter 4  

4 Trajectory modeling5 

A trajectory model can capture high-level semantics of the spatio-
temporal mobility data. By reducing randomness, such model can 
make the trajectories more understandable. Thus, they can better be 
used in different applications such as future movement predictions or 
movement anomaly detection. In this chapter, we study the problem 
of modeling trajectories by looking for associations in consecutive 
mobility data. We address the problem of trajectory modeling using 
both deterministic and probabilistic approaches. In the first approach, 
we directly break down trajectories to find their smallest meaningful 
segments and then count their frequency of occurrence. In the second 
approach, we use generative state-space modeling techniques to 
probabilistically model trajectories. 

4.1 Introduction 

 

All applications and services, which use spatio-temporal mobility data, depend on 

availability of some knowledge about the behavior of mobile entities. Having such 

knowledge helps us predict future mobility patterns, as well as identify abnormal 

occurrences in the current mobility patterns. A detailed movement model, which 

identifies patterns of visit to frequently visited places, greatly contributes to 

acquiring this knowledge.  

                                                        
5	
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A trajectory model gives us the possibility of taking the observations in form of 

mobility measurements and explain their meaning either in form of the path, the 

activity, or the means of transportation they are presenting. 

Various spatio-temporal rules and dependencies are hidden in mobility data caused 

by different types of context variables such as the type and frequency of activities 

performed. A detailed model should encompass all these rules and dependencies. 

To better elaborate the spatio-temporal rules hidden in mobility data, an example 

from Dataset 3 is shown in Figure 4-1. Two visited grid cells, denoted by  𝐺!  and 𝐺!, 
have been extracted from a user’s trajectory {𝑜! | t  ∈ [1,𝑇]} in Geolife dataset [15-17]. 
Figure 4-1.a represents the probability 𝑃!

!!  of user’s presence (𝑜!) in these two 

different grid cells during different hours ℎ  of day (𝑃!
!! =

!!
!!

!!
!  if 𝑆!

!! = 𝑜! 𝑜! =

𝐺!&  𝑡  𝑚𝑜𝑑  24 = ℎ}  and 𝑆!! = 𝑜! 𝑜! = 𝐺!∈!...!  &  𝑡  𝑚𝑜𝑑  24 = ℎ }. Figure 4-1.b represents 

the probability distribution of the duration of visits to these cells and Figure 4-1.c 

is the probability that visit to one place is followed by visit to the other in one 

hour. 

 
(a)                                                                (b) 

 

 G1 G2 

G1 - 0 

G2 1 - 

 
(c) 

Figure 4-1 An example depicting spatio-temporal rules in a mobile object’s history, (a) 

presence probability in two grid cells over 24 hours, (b) duration distribution of visits, (c) 

transition probability from one place to another 
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A number of rules can be extracted from these images. It can, for instance, be seen 

from the duration distribution graph, that presence of the user in each of these 

grid cells has a certain distribution (rule of duration of visits). Another interesting 

point is existence of a dependency in visits to these places. Although presence in 

each of these grid cells is of low probability, all visits to grid cell 𝐺! are followed by 

visit to grid cell 𝐺!, while no visit to 𝐺! has been followed by a visit to 𝐺! (rule of 

transition between grid cells). This information can be used to efficiently model 

movement of this particular entity. Such model can be later applied for different 

purposes such as predicting future movements or to identify changing points in 

the mobility habits, or even to provide an adaptive sampling technique.  

Designing a model, which can capture all the above-mentioned dependencies from 

real-life mobility datasets, is a challenging task.  Firstly, trajectories are formed by 

components with different speeds (stay-points and transitions) being repeated with 

different frequencies. A model, which only captures frequency of visit to places, 

turns out to be biased to stay-points [179, 180]. On the other hand, preprocessing 

trajectories to take out segments with similar speed is time and energy consuming. 

Secondly, mobility data are extremely sparse and noisy. The sparseness, is 

sometimes caused by the system designer, as a tradeoff between accuracy and 

lifetime. Other times, it is caused by technical issues such as device mal-function. 

Mobility data is also noisy due to multipath and atmospheric effects.  

The problem of trajectory modeling has so far been addressed through two 

perspectives, i.e., (i) determinist (through partitioning and clustering), and (ii) 

probabilistic (probabilistic modeling).  

In the deterministic perspective, the approach towards modeling trajectories is to 

segment trajectories, assign segments to the clusters using a similarity measure, 

and calculate the frequency of usage of each cluster [164, 181-184]. Eventually, the 

observations are explained as the most probable cluster they belong to. Trajectory 

segmentation as mentioned above is simple and straightforward. However, it is 

time and energy consuming. Furthermore, such deterministic approach is useful 

when there exists a-priori knowledge about mobility patterns in the data (stay-

points, duration of stay in stay-points, and etc.). 

When not enough information over mobility data is available, probabilistic 

modeling technique can be used to discover patterns [179, 180, 185, 186]. These 

techniques generatively model trajectories as the sequence of observations that are 

representing a higher-level state. 

4.1.1 Contributions 

The general approach we follow in this chapter for modeling trajectories is 

answering the following questions: What are the building blocks of a trajectory and 
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how do mobility transitions happen? We address these questions from two 

viewpoints. The basis of our first approach is segmentation and clustering of 

trajectories and counting the frequency of occurrence of certain patterns, while the 

second approach utilizes probabilistic state-space modeling techniques to identify 

patterns. In other words, the first approach is more deterministic, whereas the 

second one is probabilistic. 

With respect to deterministic trajectory modeling through partitioning and 

clustering, our contributions are as follows:  

• We propose a two-leveled grid based clustering approach based on 

semantic and geographical data to find the frequently visited paths by 

mobile entities to the finest level of similarity.  

• We use the concept of collective knowledge to deal with the uncertainty of 

trajectory representation when the level of uncertainty caused by missing 

samples and discrete sampling is increased.  

• We evaluate our trajectory-clustering algorithm in comparison with Traclus 

Algorithm [181] (which is also based on trajectory partitioning) and show 

that our algorithm performs better in differentiating between trajectories 

in existence of uncertainties. We further perform a case study to see how 

this algorithm performs in finding frequent paths. 

With respect to probabilistically modeling trajectories using state-space modeling 

techniques, our contributions are as follows:  

• We propose a hierarchal hidden semi-Markov-based model (𝐻𝐻𝑆𝑀𝑀) which 

can capture both frequent and rare mobility patterns in the movement of 

mobile objects. 

• We apply the proposed model on real datasets and show how the model 

can find such patterns (e.g. frequent, rare, weekly) without a-priori 

knowledge about mobile object’s behavior. 

• We evaluate the performance of our model in terms of its correctness in 

prediction of mobility behavior and compare it with other spatio-temporal 

models. 

• We test the sensitivity of the proposed model in presence of noise and 

missing measurements. 

The remainder of this chapter is organized as follows. In Section 4.2, the related 

work in both of the above-mentioned approaches is presented. In Section 4.3 our 

deterministic model for finding frequent patterns in trajectories is discussed. The 

probabilistic state space modeling approach to find patterns in trajectories is 

presented in Section 4.4. Finally, in Section 4.5, we summarize this chapter. 
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4.2 Related work  

4.2.1 Deterministic trajectory modeling 

Previous research on deterministic trajectory modeling, mainly apply the 

commonly used data mining techniques such as clustering on mobility data. 

Trajectories have also been clustered using similarity measures [181, 182]. Some 

popular similarity measures which have been used to compare trajectories are 

Euclidian distance [187], LCSS (Least Common Subsequence) [188], DTW (Dynamic 

Time Warping) [183], ERP (Edit distance with Real Penalty) [189], EDR (Edit Distance 

on Real sequences) [182], and CATS (Clue Aware Trajectory Similarity) [190]. 

Recently, a few methods have also been proposed to deal with different notions of 

uncertainty in collected mobility data. In order to deal with the uncertainty caused 

by sampling error, a constant uncertain area around the trajectory points 

(cylindrical or square) is often considered [191, 192]. The problem of uncertainties 

in trajectories is also addressed by proposing a variant of fuzzy C-Means clustering 

algorithm [193]. Without getting help from a complementary mechanism such as a 

sliding window, the previously mentioned similarity measures can only find the 

similarity between complete trajectories but not between common sub-trajectories. 

In order to build a deterministic model, knowledge about similar sub-trajectories is 

needed.  

To be able to find similar fractions of trajectories, Traclus [181] was proposed to 

find the common portions of trajectories (sub-trajectories) by first partitioning 

them based on the movement behavior and then clustering these trajectory 

partitions. Another approach to finding frequent trajectories is by considering the 

semantic information such as stay-points [164, 184, 194] and finding frequent 

patterns in semantically defined trajectories. Stay-points are spatial neighborhoods 

were the mobile entity has a speed near zero. However, when semantic information 

is used for segmenting trajectories, trajectory-clustering techniques do not perform 

as robust when uncertainties such as missing samples and noise in the trajectories 

increase (this problem is shown with an example in Section 4.3). In our 

deterministic approach, we use collective knowledge of trajectories to reconstruct 

trajectories and cluster them to the finest level of similarity. 

4.2.2 Probabilistic trajectory modeling 

Recently, a number of probabilistic models have been proposed to model the 

movement of mobile objects. These models attempt to capture the variation in 

spatial dependencies. An ensemble method has been used by [186] to 

probabilistically model the movement on frequently visited places considering 
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different context variables. Authors of [195, 196] have used topic models to learn 

mobility patterns from long duration sequences. A probabilistic kernel method is 

proposed in [197] to predict future locations. Different versions of Markov models 

have also been applied on mobility data. For instance, Order-k Markov model was 

used in [198] to predict the movement of users in Wi-Fi network cells. In [180], a 

model based on hidden Markov models is proposed for modeling movements from 

one stay-point to another, while authors of [199] used mixed Markov model for the 

same purpose. A mixed autoregressive hidden Markov model is proposed in [179] 

on stay-points. 

The main drawback of these methods is that they do not completely consider the 

temporal variability in the mobility data. In these models, a trajectory is only 

partially modeled either as a sequence of visited stay-points or just as the 

transition path between stay-points. Apart from being incomplete, these methods 

require pre-processing the data to extract regions of interest or stay-points. The 

required pre-processing phase is rather time/energy inefficient. The above-

mentioned problem is caused due to the inherent limitation of hidden Markov 

model, which is considering constant duration for each system state. Therefore, 

there is still need for a model, which can be applied on complete mobility data, 

consisting of both stay-points, and transitions by considering their temporal 

variability.  

Hidden semi-Markov model addresses the above-mentioned issue by considering an 

additional duration property for each state. To the best of our knowledge there is 

only one previous research [185] which has considered using hidden semi-Markov 

model on mobility data. However, the authors of this research have only evaluated 

their model on a synthetic dataset representing data of few hours. As we will show, 

when modeling large dataset of human mobility, composed of complex patterns 

(e.g. weekly), the technique used in [185] results in a very course grained model.  

4.3 A two-leveled deterministic trajectory model  

Regions of interest and stay-points can provide a good basis for segmenting 

trajectories. After trajectories are broken into smaller sub-trajectories based on 

stay-points a clustering algorithm can be used to find the frequencies. While 

considerable attention has so far been paid to find similar trajectories considering 

the entire trajectory [181, 182], not much attention has been paid on finding 

similar sub-trajectories between regions of interest (e.g. between semantic areas).  
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(a)                                       (b) 

 

(c) 

Figure 4-2 (a) Path 1 (b) Path 2 (c) trajectories representing Path 1 and Path 2 

The semantically similar sub-trajectories may represent different (physical) paths. 

When trajectories are partitioned and grouped based on stay-points, the sub-

trajectories in each partition are already similar with respect to their origin and 

destination and potentially have common smaller sections (referred to as sub-

paths). Therefore, identifying these different sub-paths in a group of trajectories, 

which are to some extent similar in the path they present, is difficult. Additionally, 

different sources of uncertainty in trajectories, such as noise and missing samples, 

make this procedure even more challenging. In Figure 4-2, the challenge in 

distinguishing between trajectories, which represent different paths, is shown. 

Figure 4-2.a-b represents two different paths between two spatial spots (A and B). 

Figure 4-2.c shows three different trajectories between these spatial points resulted 

by interpolating the measured spatial points. Black and red trajectories each follow 

one of these paths and the blue trajectory is not classifiable due to having a crucial 

sample missing. 
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Other than the challenge mentioned above, there exists another challenge in 

representing trajectories from mobility samples in presence of uncertainties such 

as missing samples and noise. One of the most popular methods in presenting 

uncertain trajectories is interpolating two consecutive GPS measurements. 

Depending on the sampling rate, number of missing samples, and their position, 

interpolation of GPS measurements of two similar trajectories may result in two 

completely different trajectory representations. Trajectory representation while 

dealing with the uncertainties can also be performed through correcting 

trajectories using the collective knowledge [200]. The collective knowledge in this 

case is the knowledge gained by considering mobility data of all trajectories on a 

specific path. This knowledge is achieved by aggregating all the points on different 

trajectories. As seen in Figure 4-3, the red points can better represent the 

frequently visited paths than the blue interpolating lines. The knowledge extracted 

by aggregating all red dots, is the collective knowledge. 

 
Figure 4-3 Individual trajectories (blue lines) alone do not provide enough information to 

construct the route while their aggregation (red dots) can help us reconstruct the route more 

accurately 

In order to build a trajectory model, we are interested in segmenting trajectories 

and counting their frequency of repetition. These segments represent the building 

blocks of trajectories and their differences. In terms of finding partitions which are 

shared by different trajectories, our work is more in-line with Traclus [181]. While 

Traclus does not take the uncertainty of trajectory representation into account, we 

deal with this notion of uncertainty through using the collective knowledge of 

trajectories.   
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4.3.1 Problem definition  

Let us assume a trajectory database denoted by D= {𝑇𝑟!,… ,𝑇𝑟!}, composed of 
trajectories 𝑇𝑟! = 𝑃!!

! …   𝑃!!!
! , where 𝑖 is the trajectory 𝐼𝐷 and the indexes  (𝑡!…   𝑡!!) 

represent the time-stamps of samples representing a sequence of spatial points 

visited by a mobile entity during a day. We aim to find frequently traversed paths 

and sub-paths between stay-points. The length of trajectories is variable and there 

are missing samples due to different reasons (hardware failure, environmental 

conditions, etc.).  

We use the following definitions: 

Definition 4.1: Sub-trajectory 𝑆𝑇𝑟! = 𝑃!!
! …   𝑃!!!

!  (the mobility data between two 

semantic places) is a fraction of a trajectory which has its first point in one stay-

point (origin) and its last point is in another (destination).  

Definition 4.2: Path 𝑃𝐴! = {𝑆𝑃!…   𝑆𝑃!} is a group of sub-paths (retrieved from the 

collective knowledge) that represent a real-world equivalent of route from an origin 

to a destination (for instance a street segment).  

Definition 4.3: Sub-path 𝑆𝑃! ={𝑔! …   𝑔!}  is a section of a path composed of a list of 

cells (𝑔!) on a grid. Sub-paths can be considered as units of difference between paths.  

 

Figure 4-4 Overview of our two-level approach 
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4.3.2 Methodology 

Grid based clustering methods quantize the object space into a finite number of 

grid cells on which all of the operations for clustering are performed [201]. We use  

two levels of such grids as shown in Figure 4-4, to find frequently visited paths and 

sub-paths. Our technique consists of three steps, (i) sematic-based clustering, (ii) 

geographical-based clustering, and (iii) cluster intersection. 

4.3.2.1 Level 1: semantic-based clustering 

We use the semantic information acquired from a semantic grid which groups 

trajectories based their origin and destination. This way, we first cluster the sub-

trajectories based on the information we can achieve from the stay-points in which 

a person stays longer than a predefined threshold. Such stay-points are extracted 

by the method proposed in [202], in which each stay-point is a place where the 

speed of the person is near zero. Then we group sub-trajectories into clusters such 

that each cluster contains sub-trajectories between the same set of origin and 

destination. A grid cell in the semantic grid can store, for instance, all the sub-

trajectories traversing from home (origin) to work place (destination). (Existence of 

a pattern mining layer on top of the semantic grid is also possible to find the 

frequent semantic trajectories [192]). 

4.3.2.2 Level 2: geographical grid-based clustering 

In the next level, we cluster sub-trajectories to find frequently visited paths and 

sub-paths between each pair of origin and destination. The challenge to face here is 

that these sub-trajectories are already somewhat similar (as they have the same 

origin and destination). Therefore, it is necessary to first find the source of 

difference between them. Additionally, some sub-trajectories have missing points 

which make their correct representation difficult and consequently make them 

unclassifiable with respect to different paths traversed.  

To address these challenges we follow four steps. First, we aggregate all sub-

trajectory points (from the same semantic grid cell) to find a connected 

neighborhood between the origin and destination based on the common knowledge 

of sub-trajectories. Next, we find the source of difference between paths (sub-

paths) in such neighborhood. Later, we find the order of subpaths in a path. 

Eventually, we redefine and group sub-trajectories with respect to these units of 

difference. These procedures are better explained in the following sections.  

Step 1: Finding connected neighborhoods: We form a geographical grid of size 

𝑀×𝑀. Having the start time of all sub-trajectories synchronized, each grid cell 

denoted by 𝑔!, (1< 𝑖 < 𝑀!) will hold the number of sub-trajectories which have a 
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point on it, denoted by 𝑐(𝑔!), along with the median of their time index, denoted by 

𝑚(𝑔!). With this median we can later keep the order of sub-paths. 

 

(a)                         (b)                           (c)                         (d) 

Figure 4-5 (a) A connected neighborhood between a pair of origin and destination and, (b-d) 

3 frequently visited paths, inferred from collective knowledge achived by aggregating all 

trajectories 

Assuming that there is no backwards movement between the origin and 

destination, if we only filter the cells {𝑔!| 𝑐(𝑔!) > defined threshold}, the layout of 

frequently visited paths between the origin and destination will become visible (in 

form of a connected neighborhood) based on the common knowledge of sub-

trajectories. As seen in Figure 4-5, the paths that form a connected neighborhood 

may have some sub-paths in common and some different sub-paths. These sub-

paths can be considered as the unit of (dis)similarity between two paths. Therefore, 

we need to break down the connected neighborhood into sub-paths to be able to 

use them for defining the frequent paths.  

Step 2: Finding sub-paths in connected neighborhoods: A frequently visited path 

can be represented as an ordered list of sub-paths. An idea to find sub-paths in the 

connected neighborhood is to find breakpoints where a group of paths meet each 

other (converge) or where they separate from each other (diverge). Afterwards, the 

connected neighborhood between these breakpoints can be defined as sub-paths.  

Algorithm 4.1 (SPdefine) explains how we find sub-paths between the origin and 

destination. This algorithm starts traversing the grid from the cell, which 

represents the origin. It follows the path on the grid by iteratively selecting 

neighbors (referred to as selected cell(s) (𝑆𝐶)) and moving forward following the 

adjacent neighbors. 
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Algorithm 4.1 (SPdefine) 

INPUT: S (start point), 𝑻𝑯 (threshold), 𝑮 = {𝒈|𝒄(𝒈) > 𝟎 (grid cells)} 
OUTPUT: 𝑳𝑺𝒖𝒃𝑷𝒂𝒕𝒉𝒔 (List of subpaths)   

1: 
2: 
3: 
4: 

5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

13: 
14: 
15: 
16: 
17: 
18: 
19: 

20: 

21: 

22: 
23: 

24: 

25: 
26: 

27: 

28: 

𝑄𝑢𝑒𝑢𝑒 ← ∅, 𝐿𝐵𝑃 ← ∅; //𝐿𝐵𝑃 is a list of breakpoints 
Add 𝑆 to 𝐿𝐵𝑃 & add {𝑁|  𝑁 is non-visited non-adjacent neighbor of 𝑆   & 
𝑐(𝑁) >   𝑇𝐻} to 𝑄𝑢𝑒𝑢𝑒 ; 

While 𝑄𝑢𝑒𝑢𝑒 is not empty 

Do 𝑆𝐶 ← Dequeue a cell from 𝑄𝑢𝑒𝑢𝑒; 
While 𝑆𝐶 is visited;     
Visit 𝑆𝐶;//setting a visit flag for each cell  
Add 𝑆𝐶 to TempSubPath; 
𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← {𝑁|  𝑁 is non-visited non-adjacent neighbor of 𝑆𝐶 
  & 𝑐(𝑁) >   𝑇𝐻}; 
Intersection ← 𝐹𝑎𝑙𝑠𝑒  ; 
While  length   𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠   == 1  &  ! 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

Visit 𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(1); 
Add 𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(1) to 𝑇𝑒𝑚𝑝𝑆𝑢𝑏𝑃𝑎𝑡ℎ; 
𝑆𝐶 ←   𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(1); 
𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← {𝑁|  𝑁 is non-visited non-adjacent neighbor  of 
𝑆𝐶 & 𝑐(𝑁) >   𝑇𝐻}; 

𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← {𝑁|  𝑁 is visited neighbor  of 𝑆𝐶}; 
If any of 𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 are in (𝐿𝐵𝑃)   
      𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← True; 

End if 

End while 
If  |  𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  | > 1 

Add 𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(1. .𝑛) to 𝑄𝑢𝑒𝑢𝑒;  
Add 𝑆𝐶 to the 𝐿𝐵𝑃; 

       End if 
       Add 𝑇𝑒𝑚𝑝𝑆𝑢𝑏𝑃𝑎𝑡ℎ to the list of 𝐿𝑆𝑢𝑏𝑃𝑎𝑡ℎ𝑠 
End While 

The Adjacent/non-adjacent neighbor concept is depicted in Figure 4-6. The reason 

for choosing this concept is to be able to select more than one grid cell to move 

forward to whenever necessary. This happens, for instance, when the width of a 

path is more than the width of a grid cell. Adjacent neighbors are neighbors of 

selected cell(s), which have a common edge, and non-adjacent neighbors are those 

neighbors without a common edge. A group of adjacent neighbors should be 
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considered as one non-adjacent neighbor for the selected cell. Therefore, when we 

choose neighbors as the next round’s selected cell(s), a group of adjacent neighbors 

might be chosen. 

 

Figure 4-6 Left: a selected cell in black with three neighbours (dark red), two of them are 

adjacent with each other, one is non-adjacent with the other two. Right: two selected cells 

(black) and their two non-adjacent neighbours (dark red) 

In each iteration, the algorithm extracts a selected cell(s) from the queue, adds it to 

the start of a sub-path and checks its neighbors. While there is only one unvisited 

non-adjacent neighbor (𝑁) (with  𝑐(𝑁) >   𝑇𝐻) and no breakpoints in the neighbors, 

selected cell(s) will be added to the sub-path (lines 12-22). In case there are more 

than one adjacent cell to move forward to, the selected cell(s) will be added to the 

list of break points, the non-adjacent neighbors will be added to the queue (the 

order of cells is not important), the current sub-path will be terminated and added 

to the list of sub-paths (lines 23-27). 

After a while, some sub-paths may have cells from both of their ends in the queue 

(a cell from their start and a cell from their end). In order to avoid traversing the 

sub-paths twice, when removing cells from the queue we will only select the cell(s), 

which are not already visited (lines 3-5). Finally, we will have a list of sub-paths in 

which each sub-path is defined by a list of cells denoted by {𝑔!|  𝑖 ∈ 𝑀×𝑀 } and one 

or two breakpoints (one on each end).  

Step 3: Ordering sub-paths in the tree of sub-paths: After finding sub-paths in a 

connected neighborhood between a pair of source and destination, we order them 

using a tree structure (tree of sub-paths). Matching the breakpoint in the beginning 

and end of each sub-path performs this ordering. As seen from Figure 4-7, the 

ordered sequence of sub-paths from the route to the leaf of the tree shows the 

frequent paths from origin to destination. 
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 In this figure, the frequent paths inferred from the tree of sub-paths are: 

𝑃𝐴!={𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!}, 𝑃𝐴!={𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!}, 𝑃𝐴!={𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!}. 

 
                                                                                              (𝑃𝐴!)            (𝑃𝐴!)                 (𝑃𝐴!)    

(a)                                                       (b) 

Figure 4-7 (a) A connected neighborhood between a pair of origin and destination with 7 sub-

paths, (b) the representative tree of sub-paths 

Step 4: Redefining trajectories based on sub-paths and clustering them based on 

the tree of sub-paths: After fragmenting a neighborhood into the frequently visited 

sub-paths and finding the frequently visited paths using the tree of sub-paths, we 

redefine each sub-trajectory in terms of sub-paths. We read the points on each sub-

trajectory in their temporal order. If a point was on or near (in the neighboring 

cells) a sub-path, it will be replaced by that sub-path. This means that, existence of 

only one point in the sub-path indicates that this sub-trajectory passes through the 

sub-path completely. Other points that are not on any sub-path will remain intact 

(in case we are interested in outliers too). For instance, looking at Figure 4-7, the 

new representation of sub-trajectory 𝑆𝑇𝑟! will be {𝑆𝑃!,   𝑆𝑃!,𝑃!, 𝑆𝑃!, 𝑆𝑃!}. 

If we consider that each path in the tree is the core of a cluster, then the final step 

is to assign the redefined sub-trajectories to the correct cluster. For the comparison 

we have chosen to use a similarity measure similar to 𝐿𝐶𝑆𝑆 [188], which ranks the 

matching parts between two time series based on their similarity.  
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If 𝑆𝑃!…!, and 𝑆𝑅𝑇!…!, denote the list of sub-paths from a path (cluster), and the sub-

path list (only sub-paths and not points in case of 𝑆𝑇𝑟!, the sub-path list will be 

{ 𝑆𝑃!,   𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!}  of a redefined sub-trajectory, then the similarity measure 

between the redefined sub-trajectory and a path (cluster) formed by the tree is: 

𝑆𝑀 =
0                                                                                                                                                        𝑖𝑓  𝑚 = 0  𝑜𝑟  𝑛 = 0
𝑆𝑀 𝑟𝑒𝑠𝑡 𝑆𝑃 , 𝑟𝑒𝑠𝑡 𝑆𝑅𝑇 + 1                                                  𝑖𝑓   𝑆𝑃! =   𝑆𝑅𝑇!
𝑆𝑀 𝑟𝑒𝑠𝑡 𝑆𝑃 , 𝑆𝑅𝑇                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.1) 

This way, each sub-trajectory is compared with all clusters and assigned to one or a 

number of clusters based on the maximum similarity. The points that remain on 

the redefined sub-trajectory can be ignored (considered as noise).  

During this procedure we can also score the sub-paths. The score of a sub-path 𝑆𝑃! 
denoted by 𝑆𝑐𝑜𝑟𝑒(𝑆𝑃!) is the number of the sub-trajectories that have followed it. If 

the maximum similarity measure of a sub-trajectory and the paths (clusters) is 

owned by one path (cluster), then the sub-trajectory belongs to that path (cluster) 

and the score of all sub-paths on the path are incremented by one. If the maximum 

similarity measure of the sub-trajectory is shared by a number of paths (clusters), 

that sub-trajectory is uncertain between those paths (clusters). We can increment 

the score of these sub-paths by 1/|paths with maximum similarity measure|. Sub-

trajectories that have equal similarity measure to all paths (by only following the 

sub-paths on the start and end) and those with a considerable number of remaining 

points are outliers.  

Let us consider the tree shown in Figure 4-7. A sub-trajectory, which is redefined as 

{𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!} has a similarity measure of 2 to 𝑃𝐴!  and 𝑃𝐴! (shown in the figure) and 

similarity measure of 3 to 𝑃𝐴! . Therefore, it will be clustered with 𝑃𝐴! . This 

increases the score of each sub-path on 𝑃𝐴! by one. A sub-trajectory represented by 

{𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!, 𝑆𝑃!} is similar to 𝑃𝐴! and 𝑃𝐴! with a similarity score of 3 while its 

similarity score to 𝑃𝐴! is 2. Therefore, it will be considered as uncertain between 

𝑃𝐴! and 𝑃𝐴!, and cause the score of each sub-path on these paths to increment by 

½ score.  

4.3.2.3 Level 3: cluster intersection 

After all the sub-paths are scored with respect to the sub-trajectories that follow 

them, for each cell of the semantic grid (each pair of source and destination), we 

compare the sub-paths from one cell of the semantic grid to the sub-paths of other 

cells. In case the intersection of two sub-paths (in terms of the id of geographical 

grid cells) is not empty, the intersected sub-path 𝑆𝑃! = {𝑔!|𝑔! ∈ 𝑆𝑃!   ∩   𝑆𝑃!}  will be 

added to the list of sub-paths with a score equal to the score of two sub-paths 
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(𝑆𝑐𝑜𝑟𝑒 𝑆𝑃! =   𝑆𝑐𝑜𝑟𝑒 𝑆𝑃! +   𝑆𝑐𝑜𝑟𝑒 𝑆𝑃! ). By so doing, we will have a list of scored sub-

paths, out of which the top sub-paths can be chosen as the most frequently visited 

sub-paths. 

4.3.3 Evaluation 

4.3.3.1 Complexity analysis 

In this section, we evaluate the complexity of Algorithm 4.1 (SPdefine). If we 

consider having 𝑁  number of trajectories and 𝑃  clusters (frequent paths), the 

complexity of the algorithm will be 𝑂(𝑁𝑃). The complexity of Traclus [181], to 

which our approach is more similar, is O(𝑁!).  Therefore, when the number of 

frequent paths (𝑃) shared by a large number of trajectories is limited, our approach 

performs more efficiently. The memory required for SPdefine to perform is 

dependent on the size of queue it uses. This makes its requirement equivalent to 

𝑂 𝐺  (maximum queue size) with 𝐺 representing the grid size. 

4.3.3.2 Performance evaluation 

In this section, we present performance evaluation of our model on data of a 

mobile entity from Dataset 1. As the first step, we extracted the stay-points where 

the person has stayed longer than 30 minutes. As shown in Figure 4-8, we then 

chose the group of sub-trajectories between two different staying points. The only 

previous clustering approach which addresses the problem of finding common sub-

trajectories is Traclus [181]. Traclus first partitions trajectories based on the 

change in the behavior of trajectory (e.g. direction). It then clusters the resulted line 

segments using a line-based similarity measure. The behavior of sub-trajectories 

that we formed between two semantic places is quite similar. Therefore, we simply 

consider the sub-trajectory partitions as being the line segments achieved through 

interpolating consecutive measurements. 

We compare 74 sub-trajectories between two semantic places shown in Figure 4-8-

a. These sub-trajectories represent the two paths between two stay-points shown in 

Figure 4-8-b-c. It can be seen that some sub-trajectories have enough number of 

points to be assigned to Path 1 or Path 2, while some other have only points on the 

intersected sub-paths and cannot be clustered by human eye (see the example 

shown in Figure 4-2). Our goal is to distinguish between these two paths as two 

clusters, to find the number of sub-trajectories that have followed them and also to 

find their intersection as the most frequently visited sub-path.  

As shown in Figure 4-8.d, Traclus will only find one cluster. The reason is that due 

to closeness of two different paths, there is small spatial difference between sub-
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trajectories of two different paths and the uncertain trajectories fill this gap. In 

addition, existence of missing points and the spatial result in similarity between 

sub-trajectories. The tree of sub-paths formed by our method, however, can find 

two frequent paths (clusters) between the source and destination with 4 sub-paths. 

Traclus represents the trajectories by getting an average of the cluster by a 

sweeping mechanism. We, however, represented the sub-paths by getting the 

average of points in each grid cell and ordering them by their median of 

timestamps. Using this mechanism the representation of sub-paths is closer to 

their realistic representation. Moreover, our method can make a distinction 

between spatially close paths and uncertain sub-trajectories. 

 

(a)                                 (b)                                (c) 

 

(d)                               (e)                                (f) 

Figure 4-8 (a) group of sub-trajectories, (b,c) two different paths common in one subpath, 

(b) Path1, (c) Path2, (d) representation of the only cluster found by Traclus, (e) representation 

of 4 sub-paths identified by our method, (f) the tree of sub-paths 

We performed experiments with 3 different grid sizes. Table 4-1 and Table 4-2 

respectively represent the number of frequently visited paths, and their score of 

sub-paths found. 
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Clusters Number of sub-trajectories 

assigned to the cluster 

Number of sub trajectories 

in clusters 

GS= 
70×70 

GS= 
80×80 

GS= 
100×100 

Path 1 13 22 22 24 
Path 2 12 35 37 38 
Uncertain 49 17 15 12 

Table 4-1 The number of clustered trajectories being identified using the tree of sub-paths 

Sub-path Score of sub-path Number of sub trajectories 

with a point in the sub-path GS= 
70×70 

GS= 
80×80 

GS= 
100×100 

Sub-path 1 74 74 74 74 
Sub-path 2 40.5 30.5 29.5 24 
Sub-path 3 37.5 43.5 44.5 38 
Sub-path 4 70 74 74 74 

   Table 4-2 The score of sub-paths 

In each table, the last column shows the actual values, which were measured by 

analyzing sub-trajectories visually. Table 4-1, shows that the precision of the 

method increases as the grid size decreases. This is due to the fact that, the smaller 

the cell is, the easier it is to precisely represent the start and end of a sub-path. 

Therefore, the sub-trajectories with points only near the start and end of a sub-

path are better assigned to the right sub-path. It is inferred from Table 4-2 that the 

scores of Sub-paths 2 and 3 are higher than the actual number of sub-trajectories 

that have a point on them. The reason is that, there are 12 unclassifiable 

trajectories between the two paths, which we chose to split their score between 

their sub-paths. Also, it is seen that with grid size 70×70 the number of sub-

trajectories in Sub-path 4 is less than the total number of trajectories. This is due 

to the fact that, with this grid size, some of the sub-trajectories do not have a point 

in this small sub-path. This is a rare case where a stay-point covers a wider area 

than the sub-path. 

4.3.3.3 Different approaches and their desirable properties 

Table 4-3 shows a comparison between different clustering approaches in terms of 

their support for different desirable properties in finding frequent sub-paths 

between semantic places. 
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Generally, methods that are interpolation-based are sensitive to uncertainties 

caused by discrete sampling and missing points. Methods that do not rely on a 

framework for partitioning trajectories are not able to find their similar sections in 

trajectories. Noisy measurements can be ignored by a non-metric system of 

comparison (not measuring the distance of points but counting the number of 

similar points) [187] or density based clustering. In our two-leveled approach, we 

ignore noisy measurements by scoring the similarity between trajectories and 

frequent paths. We use collective knowledge of sub-trajectories to redefine them. 

Doing so, we deal with trajectory representation uncertainties caused by discrete 

sampling and the problem of missing samples. We also address the measurement 

errors to some extent by defining adjacent neighbors to move forward to and 

assigning points on sub-paths, if they are close to them. 

Method Sub-
trajectory 

based 
clustering 

Noise Missing 
samples & 
Discrete 
sampling 

Measurement 
error 

EDR [182] No Yes No6 No 
Traclus [181] Yes Yes No No 
[193] No No No Yes 
SPdefine Yes Yes Yes No 

Table 4-3 Comparison of different trajectory clustering approaches with respect to 

different desirable properties 

4.3.3.4 Case study using Dataset 2 

In this section, we perform experiments with the Capricorn dataset. Data from 

three Capricorns are available. In order to perform these experiments, we extracted 

stay-points using the methods explained in Section 4.3.3.2. Apart from the 

accidental sparseness, caused by technical issues; in this dataset selected samples 

are missing using a predefined duty cycle. Due to this sparsity, we looked for stays 

of over 5 hours in neighborhood of 200 meters.  

As seen from Figure 4-9, using the selected parameters, there are only three 

different stay-points for Entity 1. For the other Capricorns, only one distinguishable 

stay-point is found. Using Algorithm 4-1 and a grid with the size of 10×10, we 

found the most frequent path used between the two stay-points (Shown in Figure 

                                                        
6	
  EDR	
  has	
  a	
  mechanism	
  to	
  deal	
  with	
  gaps	
  in	
  data,	
  but	
  in	
  case	
  the	
  paths	
  are	
  close	
  to	
  each	
  other	
  and	
  
have	
   common	
   sub-­‐paths	
   it	
   will	
   not	
   be	
   able	
   to	
   deal	
   with	
   the	
   uncertainty	
   of	
  missing	
   samples	
   and	
  
discrete	
  sampling	
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4-9 by red and blue) for Entity 1. The results of this experiment are presented in 

Figure 4-10. 

 

(a)                                         (b) 

 

(c) 

Figure 4-9 Staypints extracted from the entities in the Capricorn dataset 

 

Figure 4-10 The most frequent path used by Entity 1 in the Capricorn dataset 
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4.4 A hierarchal probabilistic trajectory model 

In Section 4.3, we proposed a trajectory-clustering approach, which could 

breakdown complex trajectories using semantic information from stay-points. 

Although this approach captures short-term dependencies in trajectories, it is yet 

partial, as it does not consider other factors that explain the dynamics of a 

trajectory. Some of these factors are the duration of stays, speed, or longer-term 

dependencies. Furthermore, the previous approach relies on prior information form 

stay-points such as minimum stay-duration.  

Considering what mentioned above, in order to make such form of deterministic 

models complete, many assumptions need to be made by the person who 

writes/runs the algorithm. 

To address the drawbacks of the previous approach, we further studied other 

modeling approaches, which do not strictly rely on assumptions. In the rest of this 

chapter, we use a probabilistic modeling approach and propose a hierarchical 

hidden semi-Markov model offering the following advantages: (i) it efficiently 

captures temporal characteristic of visits to places, (ii) its hierarchical structure 

enables it to find complex patterns, (iii) its granularity is adjustable to resources 

available, and (iv) it requires minimum assumptions made by the user. 

4.4.1 Problem definition 

Let us assume that the movement dataset 𝑂   = {𝑜!! … 𝑜!!} of a mobile entity over 

several days is given. This dataset is composed of chronologically ordered two-

dimensional geo-spatial points representing object’s location at time-stamp 𝑖, where 

the distance between 𝑡! and 𝑡  !!! is variable. We are looking for a model 𝜆 composed 

of a number of spatio-temporal rules relating the noisy and unevenly sampled 
movement data to their context related state 𝑄 = {𝑞!! … 𝑞!!} . These states can 

represent the activity that governs the movement.  

4.4.2 Background  

We begin this section by providing background information on different state space 

models and their parameters. 

4.4.2.1 State space models 

Hidden Markov model is a dynamic Bayesian network highly capable of 

representing data in form of temporal sequences of discrete states. Observations in 

this model are described in terms of a number of unobservable states with higher-
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level semantic concepts, in which transition from one state to another happens on 

the basis of a specific probability distribution [203].  

The hidden Markov model 𝜆  composed of 𝑀  number of states {𝑠!… 𝑠!}  and 𝑁 

number of unique observations {𝑣!… 𝑣!} is defined by a number of parameters (Eq. 

(4.2)):   

𝜆 =    (𝑄,𝑂,𝐴,𝐵,𝜋) (4.2) 

In the above model, 𝑂 = {𝑜!|𝑡 ∈ 𝑇} and 𝑄 = {𝑞!|𝑡 ∈ 𝑇} represent the entire observation 

sequence, and the entire high-level state sequence, respectively (𝑇 is the set of 

uniformly distanced timestamps). 𝐴 is the 𝑀×𝑀 state transition probability matrix 
representing the probability of transition between states expressed as ( 𝑎!" =
𝑃[𝑞!!! = 𝑠!|𝑞! = 𝑠!] ). 𝐵  is 𝑀×𝑁  emission probability matrix representing the 

conditional probability between states and observations (𝑏!(𝑣!) = 𝑃[𝑜! = 𝑣!|𝑞! = 𝑠!]), 
and 𝜋  is the initial probability distribution vector of size 𝑀×1, (𝜋 = 𝑃[𝑞! = 𝑠!]).  

In the original hidden Markov model, due to the first order Markov assumption, it 

is implicitly assumed that the duration of each system state is constant or 

exponentially distributed. As a consequence, in these models transition between 

states happens at any time and self-transition is allowed.  

Apart from simplicity and flexibility offered by the model, its downside is that it 

does not take any advantage of the information hidden in the duration of visit to 

different places. Stay-points and transition paths have different duration 

distributions, which are also needed to be taken into account. In order to deal with 

this problem, later the original hidden Markov model was extended to hidden semi-

Markov model, where apart from the transition between states there is an 

additional parameter for explicitly modeling the duration of states. 

The hidden semi-Markov model (also known as explicit duration hidden Markov 

model or variable duration hidden Markov model) is represented by 

𝜆 = (𝑄,𝑂,𝐴,𝐵,𝐶,𝜋). In this extended model, 𝐶  is the additional important (𝑀×𝐷) 

matrix added to the previously mentioned parameters of hidden Markov model 
where 𝐷  is the maximum state duration and 𝑐!(𝑑) = P (𝑐!! = 𝑑 ) represents the 

probability of state 𝑠! last for 𝑑 time units. This type of model is previously used 

for presenting a sequence of events with different duration for instance, in video 

image processing, and daily activity modeling. 

Given an output sequence in form of a sequence of observations; a parameter-

learning algorithm is performed to estimate the parameters of the model 𝜆. The 

best set of state transitions, output probabilities, and state duration matrices is 

estimated in this way.  
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4.4.2.2 Model parameter estimation 

Estimation of the transition and emission probabilities in a hidden Markov model is 

performed by iterative re-estimation of the model parameters until a maximum 

likelihood is achieved. One of the well-known decoding algorithms used for this 

purpose is Baum-Welch algorithm [203]. In each iteration of this algorithm, forward 

𝛼! 𝑚,𝑑   and backward variables 𝛽! 𝑚,𝑑  for each state 𝑠! at time 𝑡 with duration 𝑑 

are calculated and the new parameters are re-estimated by maximizing the 

likelihood of the posterior probability density over the model parameters. Among 

different variations of Baum-Welch used for modeling with hidden semi-Markov 

model, we have chosen the method proposed in [185] as it considers missing 

observations.  

Assuming that 𝜏!  denotes the remaining time of the current state 𝑞! ,  then the 

forward variable 𝛼! 𝑚,𝑑   which is the probability of the system being at state 𝑠!, 
with remaining time 𝑑 at time 𝑡 is calculated by (Eq. (4.3)): 

𝛼! 𝑚,𝑑 = 𝑃𝑟  [𝑜!! , 𝑞! , 𝜏! = (𝑠!,𝑑)] (4.3) 

Achieved by the recursion formula in Eq. (4.4.). As seen in this equation, in case the 

observation is not valid, by using 𝛼!!! 𝑚,𝑑 + 1       implicitly equal probability is 

considered for all states: 

𝛼! 𝑚,𝑑 =
𝛼!!! 𝑚,𝑑 + 1 𝑏! 𝑜!               𝑡 ∈ 𝑇
𝛼!!! 𝑚,𝑑 + 1                                           𝑡 ∉ 𝑇  

 (4.4) 

Where the initial condition is measured using Eq. (4.5): 

𝛼! 𝑚,𝑑 =   𝜋!𝑏! 𝑜! 𝑝!(𝑑) (4.5) 

The backward variable is defined as Eq. (4.6): 

𝛽! 𝑚,𝑑 = 𝑃𝑟  [𝑜!!!! | 𝑞! , 𝜏! = 𝑠!,𝑑 ] (4.6) 

With the recursion formula (Eq. (4.7), Eq. (4.8)) and initial condition (Eq. (4.9)) 

defined as: 

𝛽! 𝑚,𝑑 =
𝑏! 𝑜!!! 𝛽!!! 𝑚,𝑑 − 1       𝑡 ∈ 𝑇
𝛽!!! 𝑚,𝑑 − 1                                           𝑡 ∉ 𝑇

   (4.7) 

𝛽! 𝑚, 1 = 𝑎!"𝑏! 𝑜!!! 𝑝! 𝑑 𝛽!!! 𝑛,𝑑
!!!

 
(4.8) 

𝛽! 𝑚,𝑑 = 1, (𝑑 ≥ 1) (4.9) 

The other variables defined below are used later in estimation of model 

parameters: 
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𝜉! 𝑚,𝑛 = 𝑃𝑟 𝑜!! , 𝑞!!! = 𝑠!, 𝑞! = 𝑠! =   𝛼!!! 𝑚, 1 𝑎!"𝑏! 𝑜! . 𝑝! 𝑑 𝛽!(𝑛,𝑑)
!!!

 (4.10) 

𝛾! 𝑚 = 𝑃𝑟[𝑜!! , 𝑞! = 𝑠!] = 𝛾!!! 𝑚 + 𝜉!!! 𝑚,𝑛 − 𝜉!!! 𝑛,𝑚
!!!

 (4.11) 

𝜂! 𝑚,𝑑 = 𝑃𝑟  [𝑜!! , 𝑞!!! ≠ 𝑠!, 𝑞! = 𝑠!, 𝜏! = 𝑑]  

              = 𝛼!!! 𝑛, 1 𝑎!"
!!!

𝑏! 𝑜! 𝑝!(𝑑)𝛽! 𝑚,𝑑  

(4.12) 

By maximizing the a-posteriori probability path, parameters of the model are 

inferred. Estimation and re-estimation of model’s parameters can be performed 

through the following equations [204]: 

The maximum a posteriori estimate of state 𝑞! (Eq.  (4.13)) is:  

𝑞! = 𝑎𝑟𝑔 𝑚𝑎𝑥
!!!!!

𝑃𝑟 𝑞! = 𝑠! 𝑜!!] = 𝑎𝑟𝑔 𝑚𝑎𝑥
!!!!!

  𝛾! 𝑚  (4.13) 

The maximum likelihood re-estimate of initial state 𝜋! is:  

𝜋! =   𝛾! 𝑚 /𝐺! (4.14) 

With 𝐺!  as a normalization constant ( 𝛾! 𝑚!
! ). The maximum likelihood re-

estimates of the transition probability 𝑎!" ( 𝑛   ≠   𝑚) is calculated by Eq. (4.15): 

𝑎!" = 𝜉! 𝑚,𝑛
!

!

/𝐺(𝑚) 
(4.15) 

The maximum likelihood re-estimate of the state duration is (Eq. (4.16)): 

𝑐!(𝑑) = 𝜂! 𝑚,𝑑
!

!

/𝐻(𝑚) 
(4.16) 

Where 𝐻(𝑚) is a normalizing constant calculated as (Eq. (4.17)): 

  𝐻(𝑚) = 𝜂! 𝑚,𝑑
!

!!!

!

!!!

 
(4.17) 

The re-estimation of observation of 𝑣! over given state for 𝑜! =   𝑣! is: 

𝑏! 𝑣! = 𝛾! 𝑚 .
!

!

𝛿(𝑜! −   𝑣!)/𝑉(𝑚) 
(4.18) 

With 𝑉(𝑚) as a normalization constant calculated by (Eq. (4.19)): 

𝑉 𝑚 = 𝛾! 𝑚 𝛿(𝑜! −   𝑣!)
!

!!
 

(4.19) 

For 𝑜! =   𝑣! , 𝛿 𝑜! −   𝑣! is equal 1 and it is 0 otherwise.  
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The above-mentioned equations are used in learning the parameters of the Hidden 

semi-Markov model. The iterative procedure of parameter learning is explained 

algorithmically in Algorithm 4.2 (TrainHSMM) based on [204]. 

Algorithm 4.2 (TrainHSMM)  

INPUT: 𝑴  (Maximum number of States), 𝑫  (Maximum state duration), 𝑶𝟏…𝑻 
(Observation sequence), 𝒎𝒂𝒙𝑰𝒕𝒆𝒓 (Maximum number of iterations) 
OUTPUT: 𝑨  (State transition matrix), 𝑩  (Emission matrix), 𝑪  (State duration 
distribution matrix),𝝅  (𝐢𝐧𝐢𝐭𝐢𝐚𝐥  𝐬𝐭𝐚𝐭𝐞  𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲  𝐦𝐚𝐭𝐫𝐢𝐜𝐞𝐬), 𝑸 (State sequence) 

1: 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

For 𝑖=1 to 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 
Calculate the initial forward variable;// Eq. (4.5) 
For t=2 to T 

Calculate the forward variable; // Eq. (4.4) 
End for 

If the model reached a desired level of convergence break 
For t=T-1to 1 

Calculate  𝜉! , 𝛾! , 𝜂!;// Eq. (4.10)(4.11)(4.12) 
𝑞!=𝑚𝑎𝑥(𝛾! ,);//Estimate state at time t 
Calculate the backward variable;// Eq. (4.7) 

End for  
Re-estimate model parameters, 𝐴,𝐵,𝐶,𝜋   //Eqs. (4.14)(4.15)(4.16)(4.18)  

End for 

 

4.4.3 Methodology 

Our aim is to model the complete movement track in a way that each state in the 

model is either a stay-point or the transition path from one stay-point to another, 

where spatial coordinates have some form of spatio-temporal similarity. We 

assume that the sequence of places that the person visits is a Markov process with 

hidden states being the context ruling person’s activities and the places, that a 

person visits, being observable two-dimensional spatial points.  

A possible solution would be to consider each spatial point as an observation and 

use hidden semi-Markov model to find the most probable sequence of states that 

explain the observations. However, when a series of behaviors are repeated 

periodically (for example, over a day) they will be found as one super-state, while 

the whole super-state might be composed of smaller states. This way the desirable 

granularity, which is required to relate observations to concepts such as stay-points 
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and paths, is not provided. In fact, spatial points, which are closer to each other 

spatially (i.e. stay-points) or spatio-temporally (paths) are more probable to belong 

to the same state. Therefore, as the state duration distribution of different 

activities are different, simply considering each observation as a spatial point is not 

enough for finding the states that are explainable with human logic. The problem is 

better explained in Figure 4-11.  

 

Figure 4-11 Hierarchical structure in mobility data 

In this figure, the repetitive behavior of a person is illustrated. This behavior is 

consisted of three super-states with duration of a day. As seen, each super-state is 

also composed of a number of smaller states, which represent visit to different 

places each with their specific durations. As will be shown in Section 4.4.4.2, by 

using HSMM only the higher level states are found giving a very high granular view 

of the movement pattern where sometimes a complete day is discovered as a single 

state. We identified the following problem with the original HSMM: 

The original 𝐻𝑆𝑀𝑀  treats observations as nominal values. Thereby, there is no 

consideration for the distance between the observations.  

In order to solve the problem mentioned above, we propose using a hierarchical 

hidden semi-Markov model taking into account the distance between observations 



	
   	
  

	
  

87 

in each state. This hierarchical model is defined as 𝜆 = (𝑄,𝑂,𝐴,𝐵,𝐶,𝜋) such that each 
state 𝑠! in the model is itself a hierarchical hidden semi-Markov model 𝜆!!

! , (ℎ > 1):  

𝜆!!
! = (𝑄!!

! ,𝑂!!
! ,𝐴!!

! ,𝐵!!
! ,𝐶!!

! ,𝜋!!
! ) (4.20) 

 

 

Figure 4-12 Graphical model representing hierarchical hidden semi-Markov model 

The new observation sequence 𝑂!!
! is only composed of the observations which were 

categorized into one higher-level state 𝑂!!
! = {𝑜!|𝑞!!!! = 𝑠!!}. Each state in the final 

level (ℎ) is only composed of observations, which are spatially close to each other. 

Figure 4-12 visualizes our proposed hierarchical hidden semi-Markov model 

through a graphical model. 

Algorithm 4.3 summarizes the procedure of training our hierarchical model. It gets 

the input sequence and models the mobility pattern. Due to various environmental 

(such as cloud cover) and technical reasons (such as device malfunction), it is 

improbable that equal coordinates are reported for one place. Therefore, we firstly 

map location coordinates into cells of a gridded map where each observation is 

replaced by the relevant cell id, where it is located. The algorithm further proceeds 

as follows. First, hidden semi-Markov model is used to model the input sequence 

and to find the super-states in the model (line 1). It is probable that regular days 

with similar repetitive sequence of places being visited are found as one state. To 

have an insight with higher resolution, in case in each of these high level super-

states, there are observations with a distance greater than a threshold then, that 

state will be chosen for being remodeled. On the next step, we apply hidden semi-
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Markov model on each of these states (lines 7-9). This step can be repeated until no 

other states with such condition are found.  

Algorithm 4.3 (HHSMM) 

INPUT: 𝑴𝟏..𝒉 (Maximum number of states in each level), 𝒕𝒉 (distance threshold), 
𝑫𝟏..𝒉 (Maximum state duration), O (observation sequence) 

OUTPUT: 𝑨𝒔𝒊
𝒉  (State transition probability matrices), 𝑩𝒔𝒊

𝒉  (Emission probability 

matrices), 𝑪𝒔𝒊
𝒉  (State duration probability matrices), 𝝅𝒔𝒊

𝒉  (initial probability 

matrices)  

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

[𝐴,𝐵,𝐶,𝜋,𝑄]= TrainHSMM(𝑀!,𝐷!, O); // Train the basic level HSMM; 
For  𝑖 = 2 to ℎ do  

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠= all states  found in previous level;  
While 𝐶𝑎n𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠 is not empty repeat 

Remove all state from 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠 with points lying within a 
circle with radius 𝒕𝒉; 
For 𝑗 = 1 to length (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝑡𝑎𝑡𝑒𝑠) do 

  𝑂!!
! ={𝑜!|𝑞!!!! = 𝑠!!!! }; 

[𝐴!!
! ,  𝐵!!

! , 𝐶!!
! , 𝜋!!

! ,𝑄!]= TrainHSMM(𝑀! ,𝐷! ,𝑂!!
! ); 

End for 

End while 

End for 

4.4.4 Evaluation 

4.4.4.1 Complexity analysis 

Complexity of the light Baum-Welch training algorithm [204] is 𝑂((𝑀𝐷 +𝑀!)𝑇) and 

the memory required for its training is 𝑂(𝑀𝑇). Here 𝑀 is the maximum number of 

states, 𝐷 is the maximum state duration and 𝑇 is the length of observations. Like all 

hidden Markov based algorithms, when a large number is chosen for the states and 

their duration (the maximum “naïve” number for 𝑀 and 𝐷 is the number of unique 

observations, and length of the observation sequence, respectively), the algorithm 

becomes computationally expensive. This, however, is not the case for 𝐻𝐻𝑆𝑀𝑀 

algorithm. As shown in [185], there is high degree of temporal and spatial 

regularity in human trajectories, and each individual can be characterized by a 

significant probability of returning to a few frequently visited locations. Due to this 

reason, a high degree of people’s activities can be summarized using very little 

number of super-states, which can be analyzed in more detail in case of necessity. 

The advantage of this hierarchical model is that its complexity is adjustable. It is 
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not required that the number of states are initially set equal to all unique 

observations. A limited number of states, with longer durations for the higher 

levels can be used. In each iteration of the algorithm, the number of states 

𝑀!   increases while the parameters 𝐷!  and 𝑇!  decrease, leaving the learning 
complexity for each intermediate state in each level balanced: 𝑂 (𝑀!𝐷! +𝑀!

!)𝑇! , 

(𝑇! < 𝑇!!!,𝐷! < 𝐷!!!,𝑀! > 𝑀!!!) . Therefore, the model can be efficiently trained 

with respect to the resources available and the granularity required. The 

hierarchical model also provides the possibility of further performance 

improvements in terms of sampling frequency and resolution of observations in 

each level. In higher levels, the number of super-states is limited and sampling with 

low frequency is enough. By adjusting the size of the grid based on the movement 

area, the number of distinct observations will be reduced requiring less number of 

states for higher-level states.  

4.4.4.2 Performance evaluation 

In this section, we evaluate the performance of our proposed model and compare it 

with the other models in literature, using both synthetic and real datasets. It is not 

possible to compare this modeling technique with the one proposed in the previous 

section. The reason is that, by only focusing on the transitions the previous model 

only works for frequent trajectories, and it does not model trajectories as a whole. 

To be more precise, and inspired by [205], we choose the following models for 

performance evaluations which model trajectories as a whole: 

Spatial Prior model (SP): In this model presence in each location depends on a 

prior location. 𝑆𝑃 is purely spatial and does not use any temporal context. 

𝑝!" 𝑜! = 𝑣!   𝑡 = 𝑡! , 𝑜!!! = 𝑣!) 

= 𝑝 𝑜! = 𝑣! 𝑜!!! = 𝑣!)   

 

(4.21) 

Hourly Prior model (HP): In this model presence in each location depends on its 

hourly visit distribution.  

𝑝!" 𝑜! = 𝑣!   𝑡 = 𝑡! , 𝑜!!! = 𝑣!) 

= 𝑝 𝑜! = 𝑣! 𝑡!   𝑚𝑜𝑑  24 = ℎ)   

(4.22) 

Spatial-Hourly Prior model (SHP): In this model presence in each location depends 

on the hourly distribution, as well as the prior location: 

𝑝!"# 𝑜! = 𝑣!   𝑡 = 𝑡! , 𝑜!!! = 𝑣!) 

= 𝑝 𝑜! = 𝑣! 𝑜!!! = 𝑣!&  𝑡!   𝑚𝑜𝑑  24 = ℎ)   

(4.23) 
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Hidden Semi-Markov Model (HSMM): This model is the basic hidden semi-Markov 

model where presence in each location depends on the current state, and the 

residual time of the states: 

𝑝!"## 𝑜! = 𝑣!   𝑡 = 𝑡!   ) 

= 𝑝(𝑜! = 𝑣!|     𝑞! , 𝜏! = (𝑠!,𝑑)) 

(4.24) 

Hierarchical Hidden Semi-Markov Model (HHSMM): This model is the one 

proposed in this chapter where presence in each location depends on a hierarchy of 

current states, and their remaining times: 

𝑝!!"## 𝑜! = 𝑣!   𝑡 = 𝑡!) 

 =   𝑝(𝑜! = 𝑣!|∀ℎ,   (𝑞!! , 𝜏!!) = (𝑠!! ,𝑑!))  

(4.25) 

Three mobile entities (two people, and one capricorn) have been chosen from 

Dataset 2 and 3 with three different movement profiles. Table 4-4 summarizes the 

movement profile of each of these mobile entities. As seen, these three cases 

represent three general movement profiles, which are 1) high range movement, 

high average speed, 2) medium range movement, medium average speed, and 3) 

low range movement, low average speed. We see that for the second user, both 

maximum speed and movement area have large values. The maximum speed is in 

range of an airplane’s speed (254 Km/h), which can also be explained by a number 

of coordinates in the dataset, which are in proximity of the airport.  

Parameter Mobile entity 

Geolife User 1 Geolife User 2 Capricorn 1 
Movement area (𝒌𝒎𝟐) 76.6 5.2×10! 2.8  ×10! 

Total disp 1.4×10! 9.7×10! 2.6  ×10! 
Dt (days) 76 254 133 

Average speed (km/h) 5  ×10!! 0.24 0.08 

Max speed 71.6 240 2 

Missing 76% 88% 71% 

Table 4-4 Movement profile of the mobile entities 

4.4.4.2.1 Model-based prediction accuracy 

In order to evaluate the models, we chose to test how we can use them to 

accurately predict near future events. Our analysis is composed of two phases: 

• Training phase: First, all three datasets are equally sampled per hour 

forming a time-series where missing values are replaced by 0. Next, we 
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divide each dataset into two parts. During training, the first half is 

completely given as input to Algorithm 4.3. The maximum state duration is 

168 and 24 hours, which represent states of maximum size of a week and a 

day. While these values are chosen with respect to the length of datasets 

used for training, longer durations for super-states can be used to find 

longer patterns when the datasets are larger. The number of states is set to 

10 and 5 for the first and second level, respectively. During tests, we 

observed that the number of states chosen is more than enough for all 

datasets, as some states are not assigned to any observation. The distance 

threshold used for algorithm to re-model a state is 1000 meters. After the 

model is trained, for 𝐻𝑆𝑀𝑀 and 𝐻𝐻𝑆𝑀𝑀 models we calculate a 𝑁×𝑀 size 

matrix 𝑅 which represents the relation between observations and states 
(𝑟!(𝑠!) = 𝑝[𝑞! = 𝑠!|𝑜! = 𝑣!])). This matrix is used in prediction.  

• Prediction phase: We check predictability of the models on the second half 

of the dataset. For each two consecutive timestamps where data is not 

missing {∀  (𝑖, 𝑖 + 1)|   𝑜! , 𝑜!!!   𝑎𝑟𝑒  𝑛𝑜𝑡  𝑚𝑖𝑠𝑠𝑖𝑛𝑔}, and 𝑜!!! had been observed in 

the training dataset, we check to see how we can predict the data of the 

second timestamp (𝑜!!!) from the prior one (𝑜!).  

The procedure was repeated 50 times with different grid sizes (varying from 

10×10-500×500 for the first user, 500×500-1000×1000 for the second, and 1×1-

50×50 for the capricorn). These sizes have been chosen based on the movement 

ranges. Figures 4-13, 4-14, and 4-15 show a comparison between the efficiency of 

each of these models in terms of their prediction accuracy. Figure 4-13 and Figure 

4-14 represent the results of performing experiments on the users from Geolife 

dataset (Dataset 3) and Figure 4-15 is that of Capricorn data (Dataset 2). In each 

figure, the movement range of the mobile entity after being sampled, total 

prediction accuracy, prediction of change accuracy, and the cost of wrong 

prediction are shown. These parameters are explained below: 

• Total prediction accuracy: This graph represents the total correct 

predictions both when the next destination is in the same cell and when it 

is in another cell.  

• Prediction of change accuracy: As the periods of stay and movement are 

unequal, it is almost always easier to predict points where the mobile 

entity is stable (predicting the current spatial point as the next 

destination  (𝑜  (𝑡 + 1) = 𝑜  (𝑡))). Therefore, as well as showing the accuracy of 

models in terms of total prediction, we also show the results of predicting 

the points which represent a change from the previous timestamp 

(𝑜  (𝑡 + 1)   ≠ 𝑜  (𝑡)). This helps in showing the difference of algorithms in 

predicting these two different types of measurements. 

• Cost of wrong prediction: This graph represents the number of cells 

proposed with highest probability for each wrong prediction. This will 
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show the cost of each wrong prediction. The reason for showing this graph 

is that, for 𝐻𝑆𝑀𝑀 and 𝐻𝐻𝑆𝑀𝑀, it is possible that each state is composed of 

a group of observations. Therefore, by using the observation/state matrix 

(𝑅) this group of points, belonging to one state, will be suggested as the 

next point prediction having the same probability ranges. In the other 

models, however, the most probable point has a higher probability, which 

can be used in prediction. In order to be fair, we also compare the methods 

in terms of the cost of this inaccuracy. As the cost of HHSMM is lower than 

HSMM, we adjusted the cost of the other models with this model by 

accepting more predictions. This way, for the other models we always 

accept the top 5 most probable points for predicting the next destination. 

Looking at Figure 4-13, Figure 4-14, and Figure 4-15 one notices the following: 

For the first two datasets, the 𝐻𝑆𝑀𝑀 model performs considerably better than all 

the other models in terms of total and prediction of change accuracy. This comes, 

however, with a considerable high cost for each wrong prediction. This represents 

the high granularity of the states, which is the outcome of 𝐻𝑆𝑀𝑀. 𝐻𝐻𝑆𝑀𝑀 follows 

𝐻𝑆𝑀𝑀 in total and prediction of change accuracy with a cost of wrong prediction 

being much lower than that of 𝐻𝑆𝑀𝑀 and in range of the other methods. Prediction 

of change accuracy with these two methods is higher than the others. This is 

resulted by correct duration estimation for each state. For the Capricorn dataset, 

𝐻𝑆𝑀𝑀 and 𝐻𝐻𝑆𝑀𝑀 are very close in prediction of change accuracy whereas the 

total prediction accuracy of 𝐻𝑆𝑀𝑀 is higher than that of 𝐻𝐻𝑆𝑀𝑀. However, this 

time the cost of wrong prediction of two methods is very close. This is explained by 

the fact that, the animal’s movement is less structured, and that the hierarchical 

structure has not been able to add to the accuracy. In this case, the higher granular 

model is more successful. 

In most cases by increasing the grid size, the accuracy decreases. This is due to an 

increase in the number of unique observations. The uneven shape of lines is due to 

discretizing observations to grid cells and is caused by the fact that the data had 

not been preprocessed. The other reason is that for 𝐻𝑆𝑀𝑀 and 𝐻𝐻𝑆𝑀𝑀 the result of 

training is not always a unique model. Therefore, the best model is chosen 

(empirically) after ten times of training. 
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(a)                                                    (b) 

 
(c)                                                          (d) 

Figure 4-13 Applying different movement modeling techniques on the first user of Dataset 

3, (a) Original movment tracks, (b) Total prediction accuracy, (c) Prediction of change 

accuracy, (d) Cost of wrong prediction 
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(a)                                                   (b) 

 

(c)                                                     (d) 

Figure 4-14 Applying different movement modeling techniques on the second user of 

Dataset 3,  (a) Original movment tracks, (b) Total prediction accuracy, (c) Prediction of change 

accuracy, (d) Cost of wrong prediction 
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(a)                                                 (b) 

 
(c)                                                      (d) 

 Figure 4-15 Applying different movement modeling techniques on the first capricorn of 

Dataset 2, (a) Original movment tracks, (b) Total prediction accuracy, (c) Prediction of change 

accuracy, (d) Cost of wrong prediction  
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4.4.4.2.2 Robustness against noise and missing values 

In this section, we prove the validity of our approach in presence of noise and 

missing values. For this purpose we use a synthetic dataset. This test helps us in 

checking the sensitivity of the models in a controlled setting. In order to produce 

the synthetic data, a movement generator was written with the parameters 

mentioned in Table 4-5 to produce a test sequence. It should be noted that, the 

value 𝑟  is represented in terms of the offset added to the raw longitude and 

latitude. 

 

 

 

 

Table 4-5 Parameters chosen for the test with synthetic dataset 

The test sequence produced with the movement generator is composed of the 

repetition of a sequence of geo-spatial points, which can represent a repetitive 

behavior of a person in visiting a number of places  (𝑡𝑒𝑠𝑡! = 𝑥! , 𝑦! 𝑖 ∈    [1, 𝐿×24]}). 𝐾 

number of places and the paths connecting them are chosen. The event of start and 

end of visit to each of these places is expected to be at 𝑡!"#$" and 𝑡!"# and the actual 

visit happens within 𝑡!"#$" ± 𝜎!"#$" and 𝑡!"# ± 𝜎!"#. After forming this sequence we 

perform the following tests to analyze the effect of missing samples and noise: 

• Test 1 (Missing samples): We generate 𝜃 random indexes and replace the 

indexing values (𝑥!, 𝑦!) by (0, 0) (representing missing observations). Next, 

we train each of the models on the resulting sequence. The success of each 

model is in correctly finding observations, which can replace each missing 

value.  
• Test 2 (Noise): We generate 𝜌 random indexes and replace (𝑥!, 𝑦!) with a 

noisy value (𝑥! + 𝑒!, 𝑦!+𝑒!) where 𝑒! and 𝑒! are randomly chosen from [0, 𝑟].  

The success of each model is on correctly replacing the noisy observation with the 

original value. 

Parameter Value 

𝛔𝐬𝐭𝐚𝐫𝐭 120 min 
𝛔𝐞𝐧𝐝 120 min 
𝒓 0.001 
𝑳 10 
𝐊 8 
Missing samples (𝜽) 5-50% (N×24) 
Noise (𝝆) 5-50% (N×24) 
Number of Grid cells 100×100 
Total number of paths and places 7 
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For the models 𝑆𝑃, 𝑆𝐻𝑃, and 𝐻𝑃, we chose the values, which had a probability over 

0.5 for predicting the missing and noisy values. For 𝐻𝑆𝑀𝑀 and 𝐻𝐻𝑆𝑀𝑀 we chose 

the cells, which belonged to the state detected with probability more than 0.5. 

 

(a)                                                           (b) 

Figure 4-16 Success of algorithms in predicting the (a) missing value and (b) noise 

As seen from Figure 4-16.a and Figure 4-16.b, 𝐻𝑆𝑀𝑀  followed by 𝐻𝐻𝑆𝑀𝑀  are 

superior to the other models both when missing values and noise are present in the 

dataset. Even when noise or missing values reach up to 50%, these two models 

perform considerably well. This is thanks to considering both forward and 

backward variables, which are able to find the best model representing the entire 

dataset. The accuracy of 𝐻𝑆𝑀𝑀 is higher than 𝐻𝐻𝑆𝑀𝑀 as it predicts all the points 

belonging to the super-states whereas, 𝐻𝐻𝑆𝑀𝑀  gives finer grained predictions 

having a slightly reduced accuracy. 

4.4.4.3 Case studies 

In order to show the process of training 𝐻𝐻𝑆𝑀𝑀  and the form of patterns 

discovered by it, we show the procedure of building a two-level hierarchical model 

with Algorithm 4.3 on three Datasets 1,2 and 3.  

4.4.4.3.1 Case study using Dataset 1 

Figure 4-17.a shows that the mobility data of User 1 is more concentrated in a 

small area. In order to train 𝐻𝐻𝑆𝑀𝑀, we chose the value 168 for the maximum state 
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duration in the first level, the values 60 and 24 for the maximum state duration in 

the second level, and 10 for the number of states in each level.  

 
 

(a)                                                                       (b) 

 

(c)                                                                      (d) 

Figure 4-17 Modeling the mobility data of user 1 in Geolife dataset  (a) duration 

distribution of superstates, (b) remodeling super-state 1 (weekdays), (c) remodeling super 

state 2 (weekends). 

In the first level, two super-states are found with different duration distributions 

shown in Figure 4-17.b (while we chose number 10 for the number of states, after 
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training, the rest of the states were not assigned to any observation). These two 

duration distributions, with means near 100 and 60 hours, evidently represent the 

general distinction in mobility behavior of this person in weekdays (4.5 days) and 

weekends (2.5 days). This is an interesting positive characteristic of our model, as it 

can find proper duration distribution without us making any assumption on this 

typical weekly behavior. Such patterns were previously found with complex 

periodicity analysis, which was the subject of Chapter 3.   

After remodeling, for both super-states 1 (weekdays) and 2 (weekends), 2 lower-

level states are found. The duration distributions of these states are shown in 

Figure 4-17.c-d. During weekdays (Figure 4-17.c) there are two states with duration 

of 8 and 16 hours, respectively. These two can represent the stays at work and 

home of this user (spatial neighborhood 1 and 2 in Figure 4-17.a). During weekends 

(Figure 4-17.d) there are two stays of near 50 and 5 hours, which represent stays at 

home and market (spatial neighborhood 1 and 3 in Figure 4-17.a). These results are 

also inline with the results achieved in Section 3.6.1 by extracting periodic behavior 

of this user. 

It should also be mentioned that, without a rough guess about the emission and 

transition matrices, hidden semi-Markov models do not always converge to the 

same results. In order to have understandable states, we repeat the learning 

process few times to get state durations, which follow a normal distribution.  

4.4.4.3.2 Case study using Dataset 2 

In section 4.3.3.4, we saw that the mobility track of one of the capricorns (Entity 1) 

was more versatile in term of stay-points and transitions. As mentioned before, 

there are constantly 8 missing samples in this dataset. Removing the constant 

missing samples we acquired a time series where each 16 timestamps represent 1 

day.  

We hierarchically modeled the mobility data of this entity using Algorithm 4.3 

(HHSMM). The results are presented in Figure 4-18 and Figure 4-19. After modeling 

the movement for the first time, with maximum duration of the length of total 

dataset, we found three general super-states. The duration distribution of these 

super-states are shown in Figure 4-18.a. As suggested by the model, these three 

super-states can summarize three different long epochs where the animal has 

different behavior. More specifically, the model has been able to find changes in the 

mobility behavior. For instance, as seen in this figure, the first super-state has a 

duration of 1500 timestamps (1500/16=93 days) while the other two have 

durations less than 500 timestamps.  
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(a) 

 
 (b) 

 
  (c)                                                                 (d)  

Figure 4-18 Modeling the mobility data of a Capricorm, (a) duration distribution of 

superstates, (b-d) observations representing each super-state 
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The observations representing each super-state are shown in Figure 4-18.(b-d) in 

red color. The black circles on each map show the observations that highly 
represent that state (p  [o! = v!|q! = s!]). As suggested by Figure 4-18.b, the first 

super-state shows the epoch where the animal has mainly spent his time in two 

different stay-points (black circles). The second and third super-states represent 

days where the animal has mainly stayed around a limited area shown in Figure 4-

18 (c-d). We remodeled the first super-state, which was represented in Figure 4-

18.b, and found two other smaller states with their specific duration distribution. 

The results are shown in Figure 4-19.a-b. The observations, which highly present 

each state, are depicted with black circles on the map. The duration distribution of 

each state shows stays of 6 and 10 timestamps, respectively. Summing the duration 

distribution of these two states we acquire 16 which is the number time-stamps per 

day. 

 
(a)                                                (b) 

Figure 4-19 (a) Observations representing the states found by remodeling super-state 1, (b) 

duration distribution of the two states found by remodeling Super-state 1. 

4.4.4.3.3 Case study using Dataset 3 

As seen in Figure 4-20.a, the mobility data of User 2 of Geo-life dataset is composed 

of very long travel sequences. We used the Algorithm 4.3 (𝐻𝐻𝑆𝑀𝑀) with a grid size 

of 100×100, values 168, and 24 for maximum state duration of first and second 

level, and 10 for the number of states in each level.  

23.93 23.94 23.95 23.96 23.97 23.9835.28

35.285

35.29

35.295

35.3

35.305

35.31

35.315

Longitude

State 1 being remodeled

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Hours

S
ta

te
 d

u
ra

tio
n

 P
ro

b
a

b
ili

ty

Duration distribution of States (remodeling Super−state 1)

 

 

State 1
State 2



	
  

	
  

102 	
   Trajectory modeling 

	
  

 

(a) 

 

(b)                                                        (c) 

  

Figure 4-20 Modeling the mobility data of user 2 in Geolife dataset, (a) Superstates, (b,c) 

Second level states in each super-state. 

We were able to find two general super-states for this user as shown in Figure 

4-20.a. The super-state colored in blue represents the points corresponding to long 

traveling sequences. Due to its rare nature (9% of dataset) and average high speed 

of the user’s movement in this super-state, most of the points in this super-state 
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observation is observed in the dataset is 1 and 3, respectively). However, as seen in 

Figure 4-20.b, after the observations in this super-state are remodeled, 4 states are 

found which can represent the ways to and from two stay-points, as well as the 

stay-points in different cities. Although most of the points in this super-state (blue) 

are only observed once, the similarity between points in this state relates to the 

fact that they are followed by visit to the points in the other state. This way the 

model also works as an abnormal pattern detection method. Existing Markov 

model-based methods, which only use stay-points for modeling, are unable to find 

such visible states. The red super-state is a dense representation of points in an 

area where more than 91% of the observations are located. After the super-state is 

remodeled (Figure 4-20.c), two lower-level states are found.  

4.5 Comparison 

In Sections 4.3 and 4.4, we elaborated our two proposed techniques for trajectory 

modeling. Each of these techniques has their own pros and cons. It is worthwhile to 

take the differences into account, before using them for a specific application. In 

what follows, we name a number of parameters important for modeling techniques 

and compare the two trajectory modeling algorithms (Algorithm 4.1 and 4.3) 

proposed in this chapter. 

Capability of pattern discovery: Generally, state-space models are extremely 

powerful in terms of pattern discovery. Such capability is provided through 

expectation maximization in estimating model parameters. There is no prior 

description of the model or the pattern to look for. Any pattern is discoverable, as 

long as it can be expressed in terms of states with specific duration and their 

transitions. Therefore, such techniques cover a family of spatio-temporal patterns 

rather than a specific pattern. As seen in Section 4.4.4.3, using 𝐻𝐻𝑆𝑀𝑀 we were 

able to discover three different types of patterns (Periodic, abnormal, and change). 

𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒, however, is only capable in finding one form of pattern, which is the  

most frequent pattern.  

Dependence on input parameters: Both of the algorithms proposed in this chapter 

require certain input parameters. Algorithm 4.3 (𝐻𝐻𝑆𝑀𝑀) requires the maximum 

number of states and maximum state duration. Algorithm 4.1 (𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒) requires 

the mean threshold for the number of points in each grid cell and the minimum 

stay duration in stay-points. In order to choose the parameters of 𝐻𝐻𝑆𝑀𝑀 one can 

choose the highest value possible. This way only the memory requirement of the 

algorithm is increased. However, 𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒 strongly depends on parameters such 

that, careless choice of parameters jeopardizes the accuracy of the algorithm or 

even causes the algorithm not to perform. 

Easy interpretation of results: 𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒 is designed based on a known concept in 

mind (matching trajectories to paths). Therefore, the results achieved by it require 
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no further investigation. This way, they are straightforward to be used in any 

application. The fact that 𝐻𝐻𝑆𝑀𝑀 is more general than specific, also makes its 

interpretation challenging. After modeling with 𝐻𝐻𝑆𝑀𝑀, one may need to spend 

some time interpreting the pattern by looking at duration distributions and state-

transitions probabilities. 

Guaranteed convergence: 𝑆𝑝𝑑𝑒𝑓𝑖𝑛𝑒 always provides the same results. However, this 

is not the case for 𝐻𝐻𝑆𝑀𝑀. There is no guarantee that the parameter learning 

procedure of state-space models converge to the most understandable model. In 

other words, you do not always get the same model when you run the algorithm.  

Reasonable memory and processing: As we explained in the complexity analysis 

in Section 4.4.4.1 and 4.3.3.1, 𝑆𝑃𝑑𝑒𝑓𝑖𝑛  consumes less memory compared to 𝐻𝐻𝑆𝑀𝑀. 

However, when the model is learnt, classification based on both of these 

approaches is reasonable both in terms of memory and processing resources. 

Independence of preprocessing phase: 𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒 requires pre-processing to extract 

stay-points and removing noisy samples. However, 𝐻𝐻𝑆𝑀𝑀  is directly applied on 

the data points after they are gridded. 

Modeling the whole trajectory: As mentioned before, 𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒 is only applicable 

on trajectory segments, which represent transitions from one stay-point to another. 

Whereas, 𝐻𝐻𝑆𝑀𝑀  is applicable on complete trajectories. Specifically, this 

probabilistic approach is powerful in capturing the duration distribution of stays in 

stay-points. 

Resistance against missing values: 𝐻𝐻𝑆𝑀𝑀 is implicitly resistant against missing 

values. Learning the parameters is by considering both forward and backward 

transition between states and then iteratively finding the best set of parameters for 

the model. This way, the support for missing values is extremely strong. Even when 

data is continuously missing for a long duration, the parameter estimation still 

finds the best model. However, in 𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒, the solution for missing values (using 

collective knowledge) works as long as, values are missing for a limited duration.  

Implicit resistance against Noise: 𝑆𝑃𝑑𝑒𝑓𝑖𝑛𝑒 can cope with noisy measurements as 

long as they are within a certain threshold. 𝐻𝐻𝑆𝑀𝑀, on the other hand, has an 

implicit resistance against noise. Using the emission probability table, the 

importance of observations is defined based on their probability. As noisy 

measurements have lower probability, they will not degrade the parameter learning 

performance. 
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Property SPdefine HHSMM 

Capability of pattern discovery - + 

Dependence on input parameters - + 

Easy interpretation of results + - 

Guaranteed convergence + - 

Reasonable 

Memory required  

Learning + - 

Inference + + 

Independence of preprocessing phase - + 

Modeling the whole trajectory - + 

Resistance against missing values + (Short term) + (Long term) 

Implicit resistance against noise - + 

Table 4-6 Comparison of the probabilistic and determinisitic modeling algorithms 

proposed in this chapter 

 

Table 4-6, summarizes the comparison of these two algorithms in terms of the 

above-mentioned parameters. 

4.6 Summary 

In this chapter, we proposed two techniques for trajectory modeling. The first 

approach was based on a hierarchical clustering algorithm. In this algorithm, we 

segment trajectories to the smallest meaningful unit of movement and then find 

the frequent segments. In our second approach, we addressed the problem through 

proposing a hierarchical modeling technique. We used hidden semi-Markov models 

to model the trajectories, considering movement in different contexts, as 

observations that are repeated with certain durations. The first approach is more 

powerful in finding only one specific form of patterns. As seen before, in order to 

make a complete deterministic model we need to make many assumptions about 

the patterns, and thresholds. The second approach is more powerful in discovering 

general and longer-term patterns. As shown with examples from real movement 

datasets, using this technique we were able to find patterns (periodic, rare, 

frequent) without having any presumption of their existence. In spite of the power 

of the second approach in discovering patterns, it still requires supervision during 

the learning process.  

With respect to the abovementioned, it is suggested that, the second technique is 

used initially when not enough knowledge is available on the trajectories to find 
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the general structure of patterns. The first approach can be used afterwards on 

each specific form of pattern discovered before. 

 



	
  

	
  

Chapter 5  

5 Social context mining from mobility data8 

Large volumes of mobility data not only provide information about 
individuals themselves, but also about their interactions with each 
other. Unlike mining individual mobile entity behavior, discovery of 
social ties and interactions using mobility data has not yet been fully 
explored. Compared to data types such as phone call and message 
posts, mobility data convey less information about the direct 
interaction between entities. Therefore, identifying the type of tie 
between two entities by only using mobility data is a great challenge. 
In this chapter, we propose a method for identifying the type of social 
tie between mobile entities by looking at the spatio-temporal 
correlations at stay-points based on the purpose of visit to them. To 
this end, we propose two types of indicators based on mutual 
information for identifying the purpose of visit to different locations 
and relate it to the social tie between entities. Our experimental 
results show that, compared to the popularly used co-location 
indicator, these indicators can better represent the strength of social 
ties between mobile entities. 

5.1 Introduction  

In previous chapters, we studied spatio-temporal trajectories from an individual 

mobile object’s point of view. In this chapter, we look at the possibility of 

extracting social context from mobility data. An interesting topic in studying such 

data is finding the existence of a social tie between entities and describing the 

purpose of such ties being formed. Social ties between mobile entities are formed 

due to having different relationships. In case of humans, these ties are formed due 

to friendship, work-related acquaintance, and family membership, to name but a 

few. Each type of social tie conveys different information about the habits, 

interactions, and information exchange between the entities connected by it. While 

friends tend to show more similarity in their interests and habits, more 

information is exchanged between acquainted people [207]. Distinguishing between 
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different types of social ties is essential for discovering different communities and 

understanding the interaction between individuals [208]. In order to find 

communities with a certain characteristic, identifying members, who are connected 

with a social tie relevant to that characteristic, is important. Nowadays, this 

information can also be used in different recommendation systems [6]. Similar to 

human studies, differentiating social ties is important in ecological research. Being 

able to differentiate social ties between animals can provide insights about their 

evolution and gene flow, maintenance of society, analyzing epidemic patterns, 

transmission of information, events, and social learning [209]. 

The success and reliability of a system for analyzing social ties greatly depends on 

the data it uses. The types of data, which are normally used for the discovery of 

social ties, are acquired from emails, phone calls, and online social networks. Such 

data are richer than mobility data as they convey more interaction information. 

Discovery of social ties using solely mobility data is challenging due to their lack of 

interaction content. For example, working in the same building does not guarantee 

that two people are friends or even acquainted (example: those who work in two 

different floors of a building or in two different departments of the same 

organization). In contrast, the fact that two people post on each other’s Facebook 

wall, send an SMS or email to each other, or talk on the phone indicates existence 

of an interaction between them. Furthermore, uncertainty of mobility data acquired 

by existing technologies, which may be in order of tens of meters, makes the 

discovery of social ties even more difficult.  

5.1.1 Contributions 

Motivated by the fact that entities with social ties, to some degree, share spatio-

temporal context [210, 211], our contribution in this chapter can be summarized 

as: 

• Using mobility data for identifying social ties between mobile entities with 

daily behaviors of different entropies. 

• Proposing two information theory-based indicators to measure the 

correlation between mobile entities at stay-points based on their purpose 

of visit to them.  

• Identifying the nature of social ties between two mobile entities based on 

the above-mentioned indicators. 

• Experimenting with Nokia Mobile Data Challenge dataset to compare the 

proposed indicators with normal co-location indicator on representing the 

strength of social tie achieved from phone call/sms features. 

The rest of this chapter is organized as follows. Section 5.2 and 5.3 present the 

related work and problem definition. The detailed description of our approach is 
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provided in Section 5.4. Evaluation results and case studies are reported in Section 

5.5 and 5.6, while Section 5.7 is the summary. 

5.2 Related work 

Most of the research performed previously in analyzing social ties defines binary 

associations (existence versus absence of social tie) between social entities [212-

215]. These researches ignore the importance of the type of social tie between 

entities. There are a number of previous work with the focus on link description 

based on the data acquired from online social networking websites [216-218], and 

heterogeneous networks [219]. The description and prediction of social ties in 

these works are normally based on a number of links formed previously by user 

input. In contrast, no prior information on links is available when mobility data is 

used. Furthermore, these works benefit from the amount of different type of 

“interaction” content available for each individual (number of photos tagged, 

number of wall posts, etc.). 

More recently, identifying social ties using mobility data has been proposed. In the 

research presented in [220], existence of social tie between two people is inferred 

from the semantic similarity of their trajectories without interpreting the type of 

social tie. In [221], authors have used communication and mobility data from 

mobile phone records for finding friendships. They have used four factors, i.e., (i) 

presence on campus/off campus, (ii) daytime/nights, (iii) weekend proximity, and 

(iv) phone communication for measuring the social ties. This approach is specific to 

social ties in one affiliation and does not work for mobile entities with different 

spatial domain. Furthermore, not all people have the same working habits that are 

dependent on the day of week. A number of co-location metrics are introduced in 

[222] to be used along with mobile phone data to measure the social tie strength 

between people. These co-location metrics are based on the probability of two 

people being in the same place. The use of mobile phone data, as used in [221, 

222], can bring additional interaction content to the analysis process. 

In contrast to the above-mentioned research, we consider extracting social 

information only using mobility data. The major difference between our work and 

previous research in differentiating social ties [216-219] is the way we describe the 

links. Existing works relate the strength of the tie to the strength of friendship. 

Thereby, strong ties show strong friendships and weak ties show acquaintance. We 

however, make a clear distinction between different classes of social ties, namely 

friends, acquaintances, and families by analyzing two indicators. Another major 

difference between our work and the existing solutions is that, all existing 

solutions focus on the value of joint probability (co-location) of two people visiting 

places for measuring the strength of their social tie. The joint probability of two 

people in visiting one place might be higher for acquaintances who work together 
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than for friends who have different working and living habits. Therefore, this 

measure is not a good indicator for the type of social ties. We consider the use of 

mutual information content of people over places with both high and low 

frequency of visits. To the best of our knowledge, there are only two previous 

research [223, 224], which have considered using the mutual information content 

in measuring social ties between people. Authors of [224] have used mutual 

information to measure social ties and use it as an additional tool for prediction of 

human mobility pattern. The authors only use the data of people with strongest 

mutual information to increase their prediction efficiency. In the work presented in 

[223] mutual information is used to measure the social tie strength in bi-partite 

networks. There are, however, two major differences between our work and the 

work presented in [223]. Firstly, the work presented in [223] does not make any 

distinction between the type of ties, while we propose two indicators to describe 

different classes of ties. Secondly, [223] considers measuring the social tie between 

people using a non-location dataset of people who participated in selected one-time 

events. As will be shown in Section 5.5.1, such a metric is not applicable in 

inferring social tie information of mobile entities from their location data. 

5.3 Problem Definition 

Let 𝐷 = {𝑃!,𝑃!…𝑃!} represent a set of mobility data collected from 𝑁  number of 

mobile entities. For each entity 𝑖, there exists a list of time-stamped measurements 

denoted by 𝑃𝑖 ={𝑇𝑠!,  𝑇𝑠!,  …,𝑇𝑠!} over observation duration of 𝑚 time stamps, where 

𝑇𝑠! is a two-dimensional spatial coordinate. 

 We are interested in inferring different classes of social ties between entities from 

𝐷. These social ties can identify the nature of interaction between entities. For 

instance, for two people denoted by 𝑖  and 𝑗, we define these social ties to be 

acquaintance, friendship (ordinary or buddy), cohabitee, and un-related. In a special 

case, we look for known social ties between mobile entities. Acquainted are those 

who know each other due to an un-emotional reason. The social tie between 

colleagues is an example of this type. Friends have special emotional relationship. 

Ordinary friends only have emotional relationships while buddies have both un-

emotional reasons (for instance, they work or study in the same place) and 

emotional ones. Cohabitees refer to people who live in the same place. There are 

also people who do not fall under any of these categories and have no relationships 

with each other. Different social ties based on the same concept may exist for 

animals.  
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5.4 Methodology 

5.4.1 Background 

5.4.1.1 Social ties and stay-points 

A trajectory is composed of transition lines and transition endpoints. Transition 

endpoints are places that mobile entities stay for a considerable amount of time 

while transition lines are the paths, which the mobile entities traverse to reach one 

transition endpoint from another. Most of people’s social ties are formed in places 

where they stay rather than on paths they traverse to get to those places. Inspired 

by this observation, we only use the mobility data in transition endpoints (stay-

points) for describing the type of social tie between people. Based on the Theory of 

Homophily [225], people tend to build social ties with whom they have more 

similarity. Therefore, correlation and similarity of people in visiting stay-points can 

be used to describe their social tie. 

In this chapter, we use mutual information for measuring the correlation between 

people at stay-points. In what follows, we first present background information on 

mutual information. 

5.4.1.2 Mutual information 

Information theory-based measures relate the information content of events to 

their probability of occurrence. The mutual information metric [226] (𝑀𝐼), measures 

the dependency of two random variables on each other in terms of the amount of 

information they share. Given two random variables 𝑋  and 𝑌 , with marginal 

probability mass function  denoted by 𝑝 𝑥  and 𝑝 𝑦 , and the joint probability mass 

function of 𝑝(𝑥, 𝑦), their mutual information is defined as the relative entropy 

between the joint distribution and their product distribution 𝑝 𝑥 𝑝 𝑦   as stated 

below [226]: 

𝑀𝐼 𝑋,𝑌 = 𝑝(𝑥! , 𝑦!)𝑙𝑜𝑔
𝑝 𝑥! , 𝑦!

𝑝 𝑥! . 𝑝 𝑦!!!∈!,!!∈!

       (5.1) 

The unit of mutual information is Bits and if two random variables are independent 

of each other, their mutual information is equal to 0 bits. 

An extension of mutual information is normalized mutual information [227] (𝑁𝑀𝐼), 
which scales the above-mentioned measure between 0 and 1 where 𝐻(𝑋) and 𝐻(𝑌) 
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are the entropy of 𝑋  and 𝑌 , respectively. Normalized mutual information is 

calculated as follows: 

𝑁𝑀𝐼 𝑋,𝑌 =   
2𝑀𝐼 𝑋,𝑌

𝐻 𝑋 + 𝐻 𝑌
     (5.2) 

This measure shows how predictable one random variable is from another and its 

advantage is quantifying the information content of events by their probability. 

Thereby, an event which is less likely to happen, contains more information than 

the one, which is more likely. This property can be used in distinguishing different 

types of social ties. A short visit of two friends should bring more information 

about their social tie than a frequent visit of two colleagues at work. Mutual 

information metric is extensively studied in different domains of science such as 

biology [228]. However, its potential to identify the social tie between people from 

mobility data has not yet been fully explored.  

5.4.2 A naïve approach for using mutual information 

In this section, we explain how to utilize the mutual information metric to 

distinguish between people’s social ties. 

If we assume that mutual information can be used for measuring similarity 

between two people 𝑖 and 𝑗, then a naïve idea will be to first compose an ordered 

list of time-stamped stay-points over a period of 𝑚 timestamps for each person 

(𝑆𝑃𝐿 = {𝑥!…   𝑥!} where 𝑥! is 𝑆𝑃! when the person is at stay-point 𝑎 at timestamp 𝑏, 
and 𝑆𝑃!… 𝑆𝑃!  represent 𝑘  different extracted stay-points). Next, we can apply 

normalized mutual information on the defined ordered list of time-stamped stay-
points (𝑆𝑃𝐿! , 𝑆𝑃𝐿!) and then take the measured value as an indicator of strength of 

their social tie. Although simple, the naïve approach suffers from a number of 

shortcomings highlighted below using Example 1: 

Example 1:  Let us consider four persons, i.e., Alice, Bob, Chuck, and Linda. Alice 

and Bob are friends. Bob and Chuck are colleagues and work in the same building. 

Linda is Chuck’s wife and they live together. Every 8 hours, we collect data from 

places that these four people visit for a period of three weeks. Let us consider the 

activity of visiting places as listed in Table 5-1. These four persons go to work 

every weekday, one weekend Alice and Bob go to a musical and the next weekend 

Chuck and Linda go to the same musical. We give an identifier to each visited place 

(see Table 5-1) and represent the list of time-stamped stay-points in Table 5-2. 

Table 5-3 shows mutual information measured between these four persons on the 

set of visited places. 



	
   	
  

	
  

113 

From this simple example (looking at Table 5-2), we can conclude that although the 

normalized mutual information can say how predictable behavior of a person is 

using information of another person, it does not well indicate how people are 

socially connected. Firstly, all these people have relatively high normalized mutual 

information with each other while they have different social ties. Furthermore, 

there is no distinction between the two pairs ‘Alice-Bob’ and ‘Chuck-Linda’. The 

first pair are friends who only visited each other once, while the second pair live 

together. Also, Alice has not visited Chuck and Linda in any place but her 

normalized mutual information with them is as high as the normalized mutual 

information between Bob and Chuck, who work together.  

A disadvantage of this measure is that it does not consider the fact that social tie 

between people is (mainly) formed due to their co-existence in the same place. The 

fact that people follow similar daily patterns in distinctive places cause their 

normalized mutual information to be high. Perhaps this is one of the reasons why 

normalized mutual information metric has not yet been fully explored in 

describing the social ties.  

 

 

Table 5-1 List of places 

Person String 

Alice 121121121121121115111121121121121121111111121121121121
121111111 

Bob 343343343343343335333343343343343343333333343343343343
343333333 

Chuck 646646646646646666666646646646646646566666646646646646
646666666 

Linda 676676676676676666666676676676676676566666676676676676
676666666 

Table 5-2 Ordered list of stay-points during a period of 3 weeks collected every 8 hours 

 

Place Place Code 

Alice’s house 1 

Alice’s office  2 

Bob’s house 3 

Bob and chuck’s office 4 

Musical 5 

Chuck and Linda’s house 6 

Linda’s office 7 
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Another drawback of the naïve approach is that it computes the normalized mutual 

information using the entire set of visited places without considering the purpose 

of these visits. To this end, it is not logical to use predictability of people over a 

long period of time (their entire life span) to measure their social ties. 

𝑵𝑴𝑰 Alice Bob Chuck Linda 

Alice  1 0.87 0.87 

Bob   0.87 0.87 

Chuck    1 

Linda     

Table 5-3 Normalized Mutual information (NMI) computed using equation (5-2) measured over 

the set of visited places shown in Table 5-2 

5.4.3 A heuristic based approach 

Having highlighted the disadvantages of the naïve approach, in what follows we 

present our proposed heuristic approach. Our approach exploits the advantage 

offered by normalized mutual information measure and at the same time deals 

with the two above-mentioned drawbacks. 

Figure 5-1 abstractly shows the process of extracting the type of social tie between 

two people by this approach. The core of this approach is two indicators that 

represent the interest in common places (𝐼𝑃𝐿) and interest in person (𝐼𝑃𝑅).  

 

Figure 5-1 The process of extracting the type of social tie with our heuristic approach 
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Before we define these indicators, we explain two key observations related to the 

social behavior of people: 

Observation 1: The social tie between people may cause correlation in their visits 

only to some places and not to all the places that they visit. By correlation, we mean 

simultaneous absence and presence at a place. For example, ordinary friends may 

have correlation in visit to places such as cafés and restaurants (not at work) while 

people who work in the same place only have correlation in visiting their working 

place and not in visiting other places. When the visit of two people to their work 

place is correlated such that they are present at work on the same days, are absent 

on the same days, and work late on the same days, this is an indication that they 

may be socially related (e.g. they work on the same project). The fact that these 

persons visit different places when they are absent is not important anymore in 

deriving any conclusion about their social tie. Therefore, it is better to define the 

mutual information of people for each single place separately and to ignore the 

information content of correlation between two persons on the entire set of stay-

points.  

Observation 2: People’s intention of visiting a place is related to the social tie they 

have. Being with a friend is one of the primary reasons of visiting a place by those 

who have friendship tie. This means that two persons usually go to a café to be 

with each other and there is a friendship relation between them before going to the 

café. The correlated visit of friends to different places are normally of low frequency 

and short duration. Acquaintances, however, come to know other people as a 

consequence of their presence in a special place and not because they intend to be 

with those people. For example people start working and then get to know their 

colleagues and there is no acquaintance relationship between them before they 

start working. The correlated visits of acquaintances to a specific place normally 

happen with high frequency. Therefore, a solution to distinguish between different 

classes of social ties from visits to a set of places can be using measures that make 

a distinction between these two types of interests (in a person (infrequently visited 

places) or in a place (frequently visited places)) by considering the frequency of 

correlated visits. 

Based on these two observations, we propose to compute mutual information 

content of mobile entities at each stay-point separately and then use the results in 

computing two indicators, which show the interest in person or interest in stay-

points. Each indicator will accentuate the correlation between two mobile entities in 

visit to specific type of stay-point. One of these indicators will emphasize on 

correlation between two mobile entities in terms of their visit to frequently visited 

places and the other on infrequently visited places. In other words, the first 

indicator is an interest indicator for a stay-point (𝐼𝑃𝐿), implying that being at the 

stay-point is the purpose of the visit, while the second one (𝐼𝑃𝑅) is the interest 

indicator for a person, implying that being with a person is the reason behind the 
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visit. Using different combination of these two indicators we can discover people’s 

social tie. We continue this section by providing a number of definitions, which are 

required to further define these two interest indicators. 

Definition 5.1: Shared information content (𝑆𝐼) of two persons 𝑖 and 𝑗 for the time 

they spent at stay-point 𝑎 is defined as:  

𝑆𝐼! 𝑖, 𝑗 = 𝑙𝑜𝑔
𝑝! 𝑖, 𝑗

𝑝! 𝑖 𝑝! 𝑗
   (5.3) 

Where 𝑝! 𝑖  is the probability of a person  𝑖  being at stay-point 𝑎, while 𝑝!(𝑖, 𝑗) is the 

joint probability of two persons 𝑖 and 𝑗 being at stay-point 𝑎. One should note that 

this measure is different from the original mutual information. In contrast to 

mutual information, we only measure the information of simultaneous visits of two 

persons to the same stay-point using shared information content and not the 

combinations of stay-points at which one or both of these persons are absent.  

Definition 5.2: Normalized shared information 𝑁𝑆𝐼   content of two people 𝑖 and 𝑗 
for the time they spent at stay-point 𝑎 is defined as follows:  

𝑁𝑆𝐼! 𝑖, 𝑗 =
2  ×  𝑝! 𝑖, 𝑗   ×  𝑆𝐼! 𝑖, 𝑗

𝐻! 𝑖, 𝑗
 (5.4) 

Where 𝐻! 𝑖, 𝑗  is computed as follows: 

𝐻! 𝑖, 𝑗 = 𝑙𝑜𝑔 𝑝! 𝑖 + 𝑙𝑜𝑔 𝑝! 𝑗  (5.5) 

We use 𝑆𝐼! 𝑖, 𝑗  and 𝑁𝑆𝐼!(𝑖, 𝑗) to define two indicators for shared information created 

by the interest in (i) common stay-points and (ii) persons. Considering that 

different set of stay-points provide different information about social ties, each of 

these indicators accentuate the value of shared information content from the 

relative important set of stay-points (i.e., frequently visited stay-points and 

infrequently visited stay-points). The maximum value of each of these indicators 

will be 1. 

Definition 5.3: The indicator of shared information due to Interest in common 

Place (IPL) for two persons 𝑖  and 𝑗  over a set of stay-points A= {𝑎! ,   … , 𝑎!  } with 

𝑁𝑆𝐼! 𝑖, 𝑗 > 𝑇ℎ , where Th is a predefined threshold is defined as: 

𝐼𝑃𝐿   = 𝑁𝑆𝐼! 𝑖, 𝑗
!∈!

     (5.6) 

As seen in Definition 5.3, for computing 𝑁𝑆𝐼!(𝑖, 𝑗), the fraction of time that people 

spend together at each stay-point denoted by 𝑝! 𝑖, 𝑗  is scaled by the information 
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they share at that stay-point 𝑆𝐼!(𝑖, 𝑗). This way, we put more focus on the shared 

information content over stay-points which are visited regularly and have higher 

𝑝! 𝑖, 𝑗 . As mentioned before, regular visit is an indication of interest in a place. 

The  𝐼𝑃𝐿 indicator value should be high for people who work, study, or live together. 

This indicator represents the information that two persons share over the whole 

observation time. The longer the amount of time that two persons spend together, 

the higher the effect of their shared information content on 𝐼𝑃𝐿. 

Definition 5.4: The Indicator of shared information due to Interest in Person (IPR) 

between two persons i and j over a set of stay-points 𝐴 = {𝑎!,… , 𝑎!  }  with (𝑁𝑆𝐼!(𝑖, 𝑗) >
𝑇ℎ) is defined as: 

𝐼𝑃𝑅 =
𝑝!"#

𝑁×  𝑆𝐼!"#
  
𝑆𝐼! 𝑖, 𝑗
𝑝! 𝑖, 𝑗

    
!∈!

 (5.7) 

In this equation, 𝑝!"# is the lowest probability possible for a person over a stay-
point (1/𝑡!"#$) where 𝑡!"#$ is the minimum stay time used to extract the stay-points,  

𝑆𝐼!"# is 𝑙𝑜𝑔(1/𝑝!"#), and 𝑁 is the total number of stay-points. We add the condition 

𝑁𝑆𝐼! 𝑖, 𝑗 > 𝑇ℎ  to prevent mistakenly ranking the low shared information content 

of two persons over a stay-point as being high because of the low probability of 

occurrence. 

As opposed to 𝐼𝑃𝐿 indicator, which scales the shared information content of two 

persons by the fraction of time they spend at that stay-point to focus on 

information shared over frequently visited stay-points, the 𝐼𝑃𝑅 indicator divides the 

shared information content of two persons 𝑆𝐼!(𝑖, 𝑗) over the fraction of time they 

spend together 𝑝!(𝑖, 𝑗) . 𝐼𝑃𝑅  accentuates the shared information content of two 

persons at stay-points visited infrequently (with lower 𝑝!(𝑖, 𝑗)). The shorter the 

amount of time two persons spend together, the higher the effect of their shared 

information content on IPR will be. 

5.4.4 Identifying ties based on interest in location (𝑰𝑷𝑳) and in person (𝑰𝑷𝑹) 

Different combinations of the two 𝐼𝑃𝐿 and 𝐼𝑃𝑅 indicators can show various types of 

social ties between people. The correlation between people in regular visits to their 

working place will be shown by their high 𝐼𝑃𝐿. These people may visit some random 

places together as well. For example, imagine a group of people who work in the 

same building. They mutually have high 𝐼𝑃𝐿. Among these people, those who work 

in the same group may spend some time in another place for a social activity. This 

will cause their 𝐼𝑃𝑅  to slightly increase. This small amount of 𝐼𝑃𝑅  will help in 

distinguishing the members of this group from all the rest who work in the same 

building and have lower probability of acquaintance. Cohabitees or buddies (those 
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who work or study together as well as perform non-frequent activities) might have 

both high 𝐼𝑃𝑅 and 𝐼𝑃𝐿. The difference between these two groups is distinguishable 

if the time of day when activities due to interest in place are performed is also 

taken into account (for example, cohabitees will have high 𝐼𝑃𝐿 during night-time 

and day-time, buddies will have high 𝐼𝑃𝐿 only in day-time). Ordinary friends who do 

not work or study together may only visit each other once in a while and in some 

random places. Their correlation in such stay-points will cause their 𝐼𝑃𝑅 measure to 

increase considerably. 

We summarize combinations of these two indicators with respect to the type of 

social tie they represent in Table 5-4. 

Link type 𝑰𝑷𝑳 𝑰𝑷𝑹 

Acquaintances (with 
high probability) 

High Low 

Acquaintances (with 
low probability) 

High Zero, Extremely low 

Cohabitees High (Night time) High 

Friends (buddies) High (Day time) High 

Friends (ordinary) Low High 

No relation Zero, High Zero-low 

Table 5-4 Link types based on 𝐼𝑃𝐿 and 𝐼𝑃𝑅 indicators 

The pseudocode of Algorithm 5.1 (to discover social ties, is presented below: 

Algorithm 5.1 (LinkDescription)  

INPUT: 𝑫 = {𝑷𝟏,𝑷𝟐…𝑷𝑵} (data set of trajectories from people) 
OUTPUT: 𝑳 ={𝑳𝟏,𝟐…   𝑳𝑵!𝟏,𝑵} (set of link types) 

1: For each (𝑃! ∈ 𝐷)  
2:  Extract the stay-point and add them to the list 𝑆𝑃𝐿; 
3: End for 
4: For each (𝑃! ,𝑃! ∈ 𝐷)  

5: 

6: 

7: 

 For each 𝑆𝑃! ∈ 𝑆𝑃𝐿  

       Measure 𝑆𝐼!"! 𝑃! ,𝑃! ; 

End for 

8: 
9: 

 
 

Measure 𝐼𝑃𝐿 and 𝐼𝑃𝑅 using 𝑆𝐼!!!∈!"#  ; 
Set 𝐿!,! based on 𝐼𝑃𝐿 and 𝐼𝑃𝑅 ;//using Table 5-4 

10: End for 
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Considering Example 1, after measuring 𝐼𝑃𝐿 and 𝐼𝑃𝑅 indicators using Algorithm 5-

1, we will have the values presented in Table 5-5 and 5-6: 

𝑰𝑷𝑳 Alice Bob Chuck Linda 

Alice  0.01 0 0 

Bob   0.23 0 
Chuck    0.76 

Linda     

Table 5-5 𝐼𝑃𝐿 indicator for Example 1 

𝑰𝑷𝑹 Alice Bob Chuck Linda 

Alice  0.14 0 0 

Bob   0.003 0 

Chuck    0.14 

Linda     

Table 5-6 𝐼𝑃𝑅 indicator for Example 1 

An important issue to be considered in interpreting these results is the role of 

time. As the observation time increases some of the above values change. As seen 

in Table 5-1, in this example for Linda and Chuck the 𝐼𝑃𝐿 indicator measure is 

higher than that of Alice and Bob and also of that of Bob and Chuck. By extending 

the time of observation this indicator will decrease rapidly for Alice and Bob, while 

it stays the same for Chuck and Linda. The high value of 𝐼𝑃𝐿 for Linda and Chuck is 

due to their high shared information content for the time they spend at home, 

while Alice and Bob have different working and living habits. 𝐼𝑃𝐿 correlation of Bob 

and Chuck is 0.23 which is also a good indicator of their correlation at work. Their 

𝐼𝑃𝐿 will stay the same, as the observation duration increases. The indicator of 

interest in person for two couples (Alice-Bob and Chuck-Linda) is 37 times more 

than that of Bob and Chuck. If we extend the time of observation and Bob and 

Chuck keep working with each other and not visiting any random places together 

while they visit random places with their partners, then even this small interest 

between them will disappear. By increasing the time of observation, the correlation 

between the partners will stay the same. Using the combination of these two 

indicators based on Table 5-4, we can classify the social tie between these four 

people, results of which are presented in Table 5-7. 
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Link Alice Bob Chuck Linda 

Alice  
Friend 

(ordinary) 
No-relation No-relation 

Bob   
Acquainted (Low 

probability) 
No-relation 

Chuck    Cohabitee 

Linda     

Table 5-7 Social ties of Example 1 based on IPL and IPR indicators 

5.5 Evaluation 

Evaluating the above-mentioned indicators in representing social ties is a 

challenging task. We require a mobility dataset, which has the necessary ground 

truth on the social tie information. We have chosen to use a dataset, which in 

addition to mobility data also contains some form of social context. MDC dataset 

[19, 20] collected by Nokia research is a newly released dataset collected by mobile 

phones with different data types such as phone call records and mobility data. 

Therefore, for our evaluations, in this section, we perform experiments with this 

dataset. In order to evaluate effectiveness of the above-mentioned indicators 

extracted from mobility data in representing social context, we compare the results 

suggested by these indicators with a number of features extracted from phone calls 

and short messages. Although our main aim is labeling the social ties with proper 

labels (mentioned in Section 5.3), using this dataset we can only prove that these 

indicators are powerfully representing the social ties inferred with the mobile 

phone related data.   

Figure 5-2, 5-3, and 5-4 represent the social tie strength from message exchange 

and phone call information. The graphs shown in these figures are drawn based on 

the total number of seconds of phone call (in Figure 5-2), the number of messages 

exchanged (Figure 5-3), and the total number of attempts to contact (sent sms, 

received sms, outgoing call, received call, and missed call) (shown in Figure 5-4) 

between each two users. In these networks, nodes represent users and links are 

drawn based on the existence of contact between two users in terms of one of the 

previously mentioned factors. The link width is proportional to the phone call 

duration/sms counts/number of times reached between two users. As seen in these 

figures, evidently the social link strength in the graphs are versatile. 
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Figure 5-2 Wighted network of phone conversation duration 

 

Figure 5-3 Wighted network of number of messages exchanged 
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Figure 5-4 Wighted network of total attempts to contact 

 

 

Assuming that phone call/sms features can strongly represent the social tie 
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whether there is a meaningful correlation between the proposed mobility based 

social indicators and the phone call/sms based indicators. Secondly, we compare 

the results achieved using 𝐼𝑃𝐿/𝐼𝑃𝑅 indicators to the ones based on the total co-

location indicator. The co-location indicator is the total amount of time two 

persons have co-existed at the same place. In what follows, we describe how to 

proceed with studying the relationship between mobility indicators (𝐼𝑃𝐿/𝐼𝑃𝑅/co-

location) and the phone call/sms indicators. 
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(a)                                         (b)                                      (c) 

 
(d)                                       (e)                                       (f) 

 

(g)                                     (h)                                     (i) 

Figure 5-5 Comparing the 𝐼𝑃𝐿/𝐼𝑃𝑅 indicator and co-location indicator in representing the 

strength of phone call and sms features. Each graph shows the percentage of people with a 

strong mobility indicator in terms of the strength of tie extracted from phone call/sms 

features 

Correlation coefficient [229] is a popular indicator for studying correlation between 

two random variables. However, this value can only represent linear relationships. 

Co-location indicators and phone call/sms indicators have different natures and 

their strength is not comparable. As mentioned before, phone call/sms indicators 

represent direct interaction while co-location indicators do not. In other words, 
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even a short phone call strongly represent interaction, while large amount of co-

location may still not represent any interaction (e.g. working in different 

floors/department of a building). Therefore, a common correlation metric such as 

correlation coefficient does not represent the relationship we are looking for. In 

order to find meaningful relationships, we look into both strong and weak co-

location indicators and see if there is a relationship between the strength of the 

phone call/sms indicators. 

Figure 5-5, represents how strength of a mobility indicator is related to the phone 

call/sms indicators. In order to identify pairs with strong 𝐼𝑃𝐿/𝐼𝑃𝑅/co-location 

indicators, we chose the ones, which are above one standard deviation over the 

mean of the indicator (as we are not interested in people with average 𝐼𝑃𝐿/𝐼𝑃𝑅 

indicators). The graphs show the percentage of people with strong co-location 

indicators in terms of their phone/sms tie. Generally, if there is a positive 

relationship between the two groups of indicators ( 𝐼𝑃𝐿 / 𝐼𝑃𝑅 /co-location- 

phone/sms), the percentage of people with strong 𝐼𝑃𝐿/𝐼𝑃𝑅/co-location indicators 

should increase as the strength of phone call/sms indicators increase. 

As seen in Figure 5-5, compared to the ordinary co-location indicator, 𝐼𝑃𝐿 and 𝐼𝑃𝑅 

indicators can better represent the strength of social tie. This is due to the fact that 

for both of these indicators, percentage of people suggested by them increases 

more as the strength of the social tie represented in term of phone call/sms 

increases. As shown in Figure 5-5-b, especially the 𝐼𝑃𝑅  indicator and the 𝐼𝑃𝐿 

indicator over day can successfully represent the social tie strength based on the 

phone call/sms features. The difference between these 𝐼𝑃𝐿/𝐼𝑃𝑅 indicators and the 

total co-location index is that the information content extracted from the visits 

from different places has been able to somehow make a differentiation between 

accidental co-locations and more correlated visits. Especially, the results achieved 

from the 𝐼𝑃𝑅  indicator (Figure 5-5.a-c) are able to better represent social tie 

strength shown by call/sms as they focus on correlation of two people on visit to 

infrequently visited places (such as cafes, bars, and cinemas). All in all, we can 

conclude from Figure 5-5 that considering that the strength of phone call/sms 

features can relate to strength of social ties, 𝐼𝑃𝐿 and 𝐼𝑃𝑅  indicators can better 

represent social tie strength compared with the total co-location indicator.  

Graphs presented in Figure 5-5 illustrate the relationship between strong mobility 

indicators and phone call/sms features. Figure 5-6 illustrates the relationship 

between weak mobility indicators and phone call/sms features. If there is a 

relationship between these two group of indicators, the percentage of people with 

weak indicators should decrease with the strength of the phone call/sms 

indicators. For weak indicators respectively, we choose cases under one standard 

deviation below the mean. We see that the percentage of people with weak co-

location indicators and strong phone call/sms indicators is very low and it 
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decreases rapidly as the strength of the phone call/sms indicator increases. The 

𝐼𝑃𝑅 indicator is performing slightly better than the total co-location indicator as it 

decreases faster as the strength of phone call/sms feature increases. Generally, 

Figure 5.6 shows that all co-location indicators can represent the weakness of 

social tie.  

 

(a)                                     (b)                                    (c) 

 

(d)                                  (e)                                 (f) 

 

(g)                                    (h)                                (i) 

Figure 5-6 Comparing the 𝐼𝑃𝐿/𝐼𝑃𝑅  indicator and co-location indicator in representing the 

strength of phone call and sms features. Each graph shows the percentage of people with 

weak mobility indicators in terms of the strength of tie extracted from phone call/sms 

features  
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It should be mentioned that these graphs are for 𝐼𝑃𝐿/𝐼𝑃𝑅 indicators over zero. We 

observed that for 𝐼𝑃𝐿/𝐼𝑃𝑅 indicators equal to zero the percentage of people with 

zero phone call is about 100 percent. This large difference, made the graphs 

unreadable. Therefore, we did not represent them. 

5.6 Case study 

5.7.1 Case study using Dataset 1 

In the first case study, we investigate the usage of indicators on Dataset 1 for a 

period of 21 days. The study group was composed of two couples (#1 & #2 and # 4 

& #5) and two other colleagues (#3, and #6). All of these people work in the same 

building. Persons #1 and #2 mostly visit different places together. They only have 

very little difference in working hours because one works later. Persons #4 and #5 

have very similar activities at work but normally one of them does some extra 

activities such as shopping alone. This couple has visited several random places 

together. Person #6 works one day less than the other five persons and lives in 

another city. The two couples once visited person #6 at his home. Person #5 is a 

visiting researcher who does not have any special social tie with the other five 

persons. He has only been at the same stay-point with person #1 and #2 accidently 

once in a super market. 

We used the method proposed in [230] to extract the stay-points. Each stay-point is 

a set of spatial locations within the maximum radius of 100 meters of where people 

had stayed more than 1 hour. We later merged the stay-points closer than 100 

meters. Due to high density of places, sometimes one stay-point does not 

necessarily show one specific attraction but a group of them (a shopping center 

rather than a single shop). We extracted 23 places as stay-points, 11 of which were 

at least visited by 2 persons.  

Figure 5-7 compares visits of the five persons in terms of the time they have stayed 

in the 11 extracted stay-points. We do not represent the visit to other 12 stay-

points as they do not represent the social tie (being visited by only one person). 

Stay-points 1, 5 and 8 are the houses of the two couples and person #6, 

respectively. Stay-point 2 is the place in which these five persons work. Stay-point 4 

is an area in the city center with shopping centers, Stay-point 10 is a gym and the 

rest of the stay-points are random places in which at least 2 people had stayed.  

As seen in Figure 5-7, the distinction between low and highly visited stay-points is 

evident. The only stay-point that all candidates have visited is their working place 

(Stay-point 2) and their visit to this stay-point has been relatively high but less than 

their houses.  
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After measuring the shared information content of each pair based on Definition 

5.1 over all stay-points, we use the results to measure 𝐼𝑃𝑅 and 𝐼𝑃𝐿 indicators for 

each pair. Figure 5-8 and Figure 5-9 illustrate the obtained results. Since the results 

are symmetric, we only show the values over the diagonal line in Figure 5-8 and 

Figure 5-9. Furthermore, considering the fact that the use of these indicators is 

meaningless for comparing one person to himself, we also omit the values on the 

diagonal line for better visibility. 

 

Figure 5-7 The amount of time spent in each stay-point by different candidates 

The 𝐼𝑃𝑅 indicator shows the information that two people share relative to the time 

they spend together. In this case, the effect of information that people share in 

frequently visited stay-points such as Stay-point 1,2 and 5 will be degraded. By 

looking at 𝐼𝑃𝑅 indicator measure in Figure 5-9, we realize that the level of 𝐼𝑃𝑅 is 

high for the two couples than the rest. This high 𝐼𝑃𝑅 value is due to the correlated 

visit to infrequently visited stay-points such as Stay-points 3, 4 and 6-11. The 

couple (#4&#5) have visited more random stay-points compared with the first 

couple and naturally their 𝐼𝑃𝑅 is higher. The level of interest between person #2 

and person #5 is also high due to their coordinated random visits to a gym and 

their visit to the house of person #6. 
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Figure 5-8 Information shared due to Interest in place (𝐼𝑃𝐿) 

As seen in Figure 5-8, the 𝐼𝑃𝐿 value of all these persons is higher than 0.2 bits. This 
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result of correlation was under the threshold used by Definition 5.2 which could be 

considered as an accidental co-occurrence. 

The results illustrated in Figure 5-8 and Figure 5-9 show that a clear distinction can 

be made between the colleagues who only work at the at same stay-point with no 

specific social tie with those who have social ties outside work. 

 

Figure 5-9 Information shared due to Interest in person (𝐼𝑃𝑅) 

5.7.2 Case study using Dataset 3 

In the previous case study, we showed how 𝐼𝑃𝐿 and 𝐼𝑃𝑅 indicators can provide 
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first stay-point. From the 𝐼𝑃𝐿 and 𝐼𝑃𝑅  indicators, illustrated in Figure 5-11 and 

Figure 5-12, it can be seen that Capricorn #1 and #2 have both high IPL and IPR 

indicators. This is due to their more similar daily mobility habits. An IPL indicator 
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which has resulted into high correlated behavioral mobility pattern. 
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Figure 5-10 The amount of time spent in different stay-points by the three capricorns 

 

Figure 5-11 Information shared due to Interest in place (IPL) 
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Figure 5-12 Information shared due to Interest in person (IPR) 

5.7 Summary 

In this chapter, we presented a method for differentiating between different types 

of social ties between mobile entities. We defined shared information content 

metric based on mutual information to extract the information content which 

shows correlation between two mobile entities at a certain location. Next, we used 

the information content from each place in computing two indicators. These two 

indicators represent the interest in common places (𝐼𝑃𝐿) or in person (𝐼𝑃𝑅). We 

further used these indicators to identify the type of social tie between two mobile 

entities.  

We have shown that, the proposed indicators are useful in identifying the existence 

of a social tie between two mobile entities as well as in describing the type of social 

tie using mobility data only. A potential application of these indicators can be used 

as an additional tool in improving the performance of online location-based social 

networks.  

Our evaluation results using Nokia Mobile Data Challenge dataset showed the 

superiority of IPL and IPR indicators compared to normal co-location indicator in 

representing the social tie information derived from the phone call/sms data. In 

our case study, we showed how these indicators show the specific form of 

correlation both between a group of people and capricorns. One interesting future 

research topic is studying extraction of social ties with a dataset with more ground 

truth on social tie type. 
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Last but not least, such form of social context analysis should always be performed 

considering privacy requirements. Although, in this chapter we did not address the 

privacy requirements, research is currently being performed in this direction. For 

instance, in [231] a framework is proposed to provide multi-layer privacy 

requirements to safe-guard users private information before the data is analyzed 

for any purpose. 
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Chapter 6  

6 Trajectory Compression 

Human beings and animals exhibit common patterns in their activities 
and movements. Transmission and collection of all the repetitive data 
representing these activities and movements is neither needed, nor is 
it efficient (in terms of processing, memory and communication 
overhead). Mobility data can be summarized and expressed compactly 
with respect to the patterns it conforms to. In this chapter, we 
propose two solutions to efficiently collect and store spatio-temporal 
mobility data. These two techniques reduce the communication, 
memory overhead, and consequently energy consumption required for 
collection and storage of mobility data. In particular, we first propose 
a model based compression technique to predict the future samples 
continuously and to send data when it is needed. We then propose a 
technique, which further reduces the energy consumption of the data 
acquisition devices by adaptively changing the sampling rate with 
respect to the predicted movement of the mobile entity. We evaluate 
the performance of the above-mentioned techniques by comparing 
them with commonly used trajectory compression techniques in terms 
of the memory saved, total error in trajectory representation, and 
energy consumption (both in sensing and communication). 

6.1 Introduction  

The number of mobile entities equipped with some form of location-acquisition 

device is increasing rapidly. In addition to the challenges enforced by data analysis 

techniques to interpret and understand mobility data, management of such huge 

amount of mobility data has also introduced new challenges. The mobility samples 

collected by sensing devices are profoundly redundant. On the one hand, due to 

limited speed and high spatio-temporal resolution of data collection, consecutive 

visited locations may be similar (i.e., existence of spatial correlation). On the other 

hand, as shown in [232], there is a great number of movement patterns, which in 

the longer term are repeated with different frequencies (spatio-temporal 

correlations). While this abundance of data produces different capabilities and 

possibilities for mining habits and behaviors, the massive volume of spatio-

temporal data imposes unnecessary burdens on the data acquisition, transmission, 

and storage systems, if all data should be transmitted and stored. More specifically, 

such volume of mobility data increases the system costs in 4 different ways. Firstly, 

there are costs in terms of storage capacities of current devices. As shown in [233], 
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assuming that GPS data is acquired over 10 second intervals, without applying any 

data compression, 1 Gigabyte of storage capacity is required to store the data of 

just 4000 objects for a single day. Secondly, the cost of sending such data in terms 

of price is high ($5 to $7 per Megabyte) [234]. The third cost is the processing cost 

imposed by different pattern recognition algorithms. The complexity of such 

algorithms is always proportional to data size. Last but not least, the energy cost of 

sensing and acquiring location data from GPS satellites is considerably high. As 

shown in [235], the amount of energy spent during a single GPS sample acquisition 

can be as high as 60 times more than the amount used when sending it over the 

radio of a wireless sensor node. High-energy consumption is the major 

performance bottleneck of networks, which acquire GPS samples. It drastically 

reduces the lifetime of a system, which is intended, for collecting mobility data 

from GPS satellites in comparison to the other types of data.  

6.1.1 Contributions 

If mobility data generated by GPS enabled devices is efficiently compressed, 

lifetime of the mobility acquisition device will be improved and the memory will be 

efficiently used. Respectively, our contributions in this chapter are two fold and 

can be summarized as: 

• Proposing a technique to use the patterns in the mobility data to represent 

trajectories in a compressed way.   

• Extending the abovementioned approach by an adaptive sampling 

technique to increase the lifetime of the mobility-sensing device. 

• Comparing the proposed solution with existing solutions in terms of total 

error, memory saved, and (sensing and communication) energy 

consumption using real and synthetic datasets. 

The rest of the chapter is organized as follows. Section 6.2 presents the related 

work. Formal definition of our problem statement is described in Section 6.3. The 

detailed description of our approaches are provided in Section 6.4. Evaluation 

results and case studies are reported in Section 6.5 and 6.6, while Section 6.7 is the 

summary. 

6.2 Related works 

Various data compression algorithms have been designed in literature for different 

purposes. In general, these algorithms either work on a lossy or loss-less basis. In 

lossy compression, redundancies in data (or information) are subject to permanent 

elimination. Lossless compression, on the other hand, compresses data by 

identifying and reducing statistical redundancies. This implies that the original 
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data can be later reconstructed with no further loss. Trajectory compression is 

normally performed through lossy compression.  The reason is that [233] (i) raw 

mobility data contain a substantial amount of noise which is of no use to be 

recovered (ii) understanding mobility behavior is achieved easier when smaller 

amount of data with behavior-related context is available. The existing solutions for 

trajectory compression can be classified into two general categories, i.e., geometric 

compression techniques and non-geometric compression techniques: 

Geometric compression algorithms: Naturally, the very first methods proposed for 

trajectory compression were based on geometrical trajectory simplification. Line 

and curve simplification have been used for compression and de-noisification of 

trajectories [81, 236, 237]. This simplification is based on a maximum distance 

error function. Such algorithms are concerned with approximating the trajectory 

with another one within a predefined error tolerance. The first and commonly used 

trajectory compression technique on this basis is Douglas-Peuker [236]. As this 

algorithm is purely spatial, it does not capture the temporal characteristics of the 

trajectory. To increase the efficiency of Douglas-Peuker and make it better suited 

for spatio-temporal trajectories, TD-TR [233] was proposed based on the concept of 

synchronous Euclidean distance. Synchronous Euclidean distance uses the 

information achieved from speed of the trajectory for synchronizing and 

identifying the position of measurements to be discarded. Bellman’s algorithm 

[204] is also another well-known technique which uses dynamic programming to 

minimize the area between the original trajectory and its compressed 

representative. 

The above-mentioned algorithms were originally meant to be applied on data in a 

batch mode. They were later modified through window-based alternatives where a 

sliding or an opening window was used to make the previous algorithms suited for 

streaming data [233, 238]. Following the same goal, a bottom-up algorithm was 

proposed in [239]. This technique starts from the consecutive sample points and 

approximates a new trajectory by merging the consecutive segments into one line 

segment with the least error. Dead reckoning [159] and priority queues [240] are 

also proposed for provision of the use of previous algorithms in streaming setting. 

Following the same research track on geometric compression, recently a number of 

researchers have considered optimization through approximating the trajectory by 

a small “coreset” of data [241-243]. This coreset is a small set which approximately 

represents the original data. For instance, in [242] points in the trajectory are 

approximated by 𝑘  number of cylinders with a certain radius that cover the 

trajectory. By applying map-reduce techniques, authors of [241] proposed a method 

to reduce the size of the trajectory according to available memory. These methods 

are concerned with optimizing the error function. 
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Non-geometric compression algorithms: While looking at a trajectory from a 

geometric point of view is the first option for compression, there are also other 

redundancies in trajectories, which can be used for compression. Very recently, 

some researchers have looked into semantic trajectory compression [244]. The 

semantic features of trajectories such as stay-points and transitions between them 

have been used in order to compress trajectories. Authors of [245] utilize heuristic 

prediction to decide on the locations which should be preserved while compressing 

trajectories. This group of trajectory compression algorithms, referred to as Map 

matching algorithms, [246-248] map trajectories on available indexed maps from 

road networks and reduce the number of points required for representing 

trajectories. The downside to these techniques is their reliance on map data, which 

make them only applicable for cars, which have strictly structured movement. 

Recently, authors of [238] have proposed using compressed sensing in trajectory 

compression. In this technique a projection matrix is used based on a previously 

collected dataset from the same area.  

In this chapter, we have a new view on trajectory compression. As shown in Section 

4.3 of Chapter 4, by applying state-space model on trajectories we were able to find 

high-level patterns in the mobility data. Such information can also be used for 

efficiently compressing trajectories and even increasing the energy efficiency. To 

the best of our knowledge, such view on trajectory compression has not been taken 

into account before. The trajectory compression methods we propose in this 

chapter are based on reducing such form of redundancies in trajectories, which are 

represented in form of patterns. Generally, compared with the geometric 

compression algorithms, this trajectory compression goes beyond redundancies, 

which are captured in form of lines. It is light and suitable for compression in 

streaming setting.  Compared with the non-geometric techniques proposed in the 

geometric setting, it does not require background information from maps and 

works also for entities with unstructured movement (humans and animals).   

6.3 Problem Definition 

As shown in Chapter 4.3, the complete movement track of a mobile entity can be 

modeled as transitions between states with their specific duration distribution. 

These states can explain behavior of the mobile object from observations in form 

of mobility data. For instance, these states can represent stays of the mobile object 

in specific places with certain duration distribution. Using the parameter-learning 

algorithm HHSMM (Algorithm 4.3), parameters of this model, i.e., 𝜆 = (𝑄,𝑂,𝐴,𝐵,𝐶,𝜋), 
can be learnt. These parameters are state transition probability matrix 𝐴, emission 

probability matrix 𝐵 , state duration probabilities  𝐶 , and initial state probability 

matrix 𝜋. Assuming that such parameters are learnt from the data collected for a 

specific initial duration (dependent on the duration of states found), the problem 
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we face in this chapter is to use such model for the purpose of compressive 

representation of trajectories and increasing the lifetime of the mobility data 

acquisition device. 

6.4 Methodology 

6.4.1 Assumptions  

Before we continue with our proposed compression algorithms, in this section, we 

provide background information on data collection setting. We have a sensor 

network composed of at least two types of nodes. The base station, denoted by 𝐵𝑆, 

is a powerful node capable of processing data and learning the parameters of the 

model. The sensor node 𝑆!, which samples mobility data, is a mobile sensor node 

equipped with GPS carried by a mobile entity. In regular timestamps, each sensor 

node  𝑆! sends the location it has acquired to the base station 𝐵𝑆. The base station 

computes the parameters of the model 𝜆! = 𝑄,𝑂,𝐴,𝐵,𝐶,𝜋  and sends the 

corresponding parameters 𝜆! to each mobile node. Assuming that the movement 

model does not change during the observation period, both node types (𝐵𝑆, 𝑆!) 
move on with prediction based on the exchanged model.  

6.4.2 Increasing mobile node lifetime using a trajectory model 

Considering that the model can be extracted in the base station using Algorithm 

4.3 and be sent to the mobile entities, there are two possibilities to improve the 

lifetime of the mobile sensor node:  

• Model-based trajectory compression: In which the mobile sensor node 

uses the model 𝜆!	
  for predicting the future locations of the mobile entity 

and only sends those results, which are not predictable with the model. 

This way, unnecessary samples are omitted and the sensed trajectory is 

compressed before being sent to the base station. 

• Model-based adaptive sampling: In which the mobile sensor node uses the 

derived model for changing the sampling rate so that, less samples are 

acquired when the mobile entity is stationary and more samples are 

acquired when the mobile entity is moving. 

In what follows, we explain both of the above-mentioned techniques: 
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6.4.3 Model-based trajectory compression 

In this section, we propose our technique for compressing trajectories using the 

pre-computed model  (𝜆!). In this model-based trajectory compression, both the 

base station (𝐵𝑆) and mobile nodes (𝑆!) use the model (𝜆!) for synchronous location 

prediction. Sensor node carried by the mobile entity acquires the location of the 

entity at time  (𝑜!). Concurrently, it makes prediction about the next position of the 

mobile object (𝑜!!) based on the model (𝜆!) received from the base station and 

previous location measures (𝑜!…!). In case the predicted location (𝑜!!)  and the newly 

measured position 𝑜! are within an acceptable error bound (provided based on the 

application requirements), the node does not transmit the position measurement 

𝑜!  but will transmit it otherwise. When no measurement is received from the mobile 

node, the base station will predict the position at time 𝑡 (𝑜!!) using its prediction 

model. 

Given the parameters of the model (𝜆!), the future state (𝑞!) and its duration (𝑑) can 

be estimated using the forward algorithm [249]. When the parameters of the 

hidden Markov model is known, the forward algorithm can be used to calculate a 

'belief state' which is the probability of a state at a certain time, given the history of 

evidence.  

Assuming that 𝜏!  denotes the remaining time of the current state 𝑞! ,  then the 

forward variable 𝛼! 𝑚,𝑑   that is the probability of the system being at state 𝑠!, with 

remaining time 𝑑 at time 𝑡 is calculated by: 

𝛼! 𝑚,𝑑 = 𝑃𝑟  [𝑜!! , 𝑞! , 𝜏! = (𝑠!,𝑑)]         (6.1) 

We assume that we get mobility samples in each pre-specified time stamp. 

However, it is possible that not all observations are acquirable (due to cloud cover, 

or device mal-functions). This will lead to missing samples. As seen in Eq. (6.2), in 

case the observation is not valid (𝑡 ∉ 𝑇), equal probability is considered for all 

states.  

𝛼! 𝑚,𝑑 =
𝛼!!! 𝑚,𝑑 + 1 𝑏! 𝑂! , 𝑡 ∈ 𝑇
𝛼!!! 𝑚,𝑑 + 1 ,                            𝑡 ∉ 𝑇  

 (6.2) 

Where the initial condition is measured by: 

𝛼! 𝑚,𝑑 = 𝜋!𝑏! 𝑜! 𝑝! 𝑑  (6.3) 

Originally, the computational cost of the forward algorithm increases with the 

length of observations, as it uses all the measurements. Conforming to the Markov 

property, [250] future state only depends on the current state. Therefore, we only 

keep the memory of the last state, and its duration discarding the probabilities of 

the corresponding state. Thereby, the initial state can be calculated using the 
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corresponding line from the emission matrix. This process is explained in 

Algorithm 6.1. 

 

Algorithm 6.1 (ModelBasedCompression)  

INPUT: A (State transition matrix), B (Emission matrix), C (State duration matrix), 
PAI (initial state matrix), rate (Compression rate), preTimestamp, curTimestamp, 
repO (observation representing each state), pState (Previous state) 
OUTPUT: nextTimestamp (next timestamp to be saved), preTimestamp, PAI 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

[𝑎𝑙𝑝ℎ𝑎]= forward (𝐴,𝐵,𝐶,𝑃𝐴𝐼,𝑂  (𝑝𝑟𝑒𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 1)); 
[𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑚𝑎𝑖𝑛]=find (𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑚𝑎𝑖𝑛) where 
alpha(𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑚𝑎𝑖𝑛)==maximum(alpha); 
If 𝑠𝑡𝑎𝑡𝑒   ≠   𝑝𝑆𝑡𝑎𝑡𝑒 

Update 𝑃𝐴𝐼, 𝑝𝑟𝑒𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ; 
End if 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑏𝑠 = 𝑟𝑒𝑝𝑂(𝑠𝑡𝑎𝑡𝑒) 
If distance (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑏𝑠, 𝑂(𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝))> 𝑡ℎ 

Send (𝑂(𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)); 
update 𝑃𝐴𝐼; 

End if 

6.4.4 Model-based adaptive sampling 

As seen above, having a trajectory model offers an opportunity for compressing 

trajectories through its predictive capability. When used as a basis for adaptive 

sampling, this capability can also help in increasing the mobile object’s lifetime. 

Location acquisition consumes major part of the mobile nodes’ energy resources. 

Therefore, cutting down on the number of samples, greatly reduces the node’s 

energy consumption. Using hidden semi-Markov model as mentioned before in 

Section 4.4 each state will be assigned with a duration distribution. Accordingly, it 

seems logical to use the estimated duration of each state to adjust the sampling 

rate.  

For those states with relatively longer durations, it is only necessary that the start 

and end of that state is sampled. At the same time, even when the mobile entity 

has a very repetitive behavior, the start and end times of states do not always occur 

at a fixed moment. Nonetheless, start and end times of states are of high 

importance as they represent changes in the trajectories. In order to avoid losing 

the unpredictable movements, which change the duration of the current state, we 

propose sampling less frequently during the state and more frequently near the 

end of the predicted state. This process is explained Algorithm 6.2 

(ModelBasedSampling). 
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Algorithm 6.2 (ModelBasedSampling) 

INPUT: A (State transition matrix), B (Emission matrix), C (State duration matrix), 
PAI (initial state matrix), rate, preTimestamp, curTimestamp 
OUTPUT: nextTimestamp (next timestamp to be sensed), preTimestamp, PAI 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

12: 
13: 

𝐶𝑢𝑟𝑠𝑡𝑎𝑡𝑒 =   𝑓𝑖𝑛𝑑𝑠𝑡𝑎𝑡𝑒(𝑂(𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝))  
If 𝐶𝑢𝑟𝑠𝑡𝑎𝑡𝑒  ! =   𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑠𝑡𝑎𝑡𝑒 
         𝑃𝐴𝐼 = 𝐵(: ,𝑂(𝑝𝑟𝑒𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)); 
End if 
[𝑎𝑙𝑝ℎ𝑎]= forward (𝐴,𝐵,𝑃𝐴𝐼,𝑂(𝑝𝑟𝑒𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 1))  
[𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑚𝑎𝑖𝑛] = find(state, remain) where alpha(state, 
remain)==maximum(alpha); 
If 𝑟𝑒𝑚𝑎𝑖𝑛 >   𝑑𝑢𝑟/𝑟𝑎𝑡𝑒 
      𝑛𝑒𝑥𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = (  𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑑𝑢𝑟/𝑟𝑎𝑡𝑒); 
                𝑝𝑟𝑒𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 =   𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚; 
Else 

𝑛𝑒𝑥𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝   = (  𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 1); 
End if 

6.5 Evaluation  

6.5.1 Complexity analysis 

The complexity of Algorithm 6.1 is dependent on calculating the forward variable, 

finding the current state, and its remaining duration. The second task is composed 

of finding a state with the maximum probability in the transition matrix. This task 

is of 𝑂(𝑀) complexity where 𝑀 is the number of states. Complexity of calculating 

the forward variable at time 𝑇 from the start of the sampling is 𝑂(𝑀𝑇𝐷), where 𝐷 is 

the maximum state duration. However, in case the forward variable is computed 

from the beginning of the previous state, as explained in Section 6.4.3, the cost of 

computing it will be reduced to 𝑂(𝑀𝐷).  

Complexity of Algorithm 6.2 is dependent on estimating the current state, 

calculating the forward variable, estimating the future state and its duration. 

Estimating the current state is performed through finding the state with the 

maximum probability in the emission matrix. The computational complexity of this 

task is of 𝑂(𝑀). Calculating the forward variable and estimating the future state 

and its duration is the same as Algorithm 6.1. Hence, the overall complexity of both 

of the Algorithms 6.1 and 6.2 is 𝑂(𝑀𝐷).  

The major difference between these algorithms, in terms of energy consumption, is 

in their cost of sensing. In the first algorithm, sensing is performed on a fixed 
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timestamp basis, in the second algorithm; however, sensing is performed based on 

the state duration. 

6.5.2 Benchmarking 

We compare the performance of the two algorithms suggested above with the 

following algorithms in the field of trajectory compression: 

Uniform sampling [240]: Uniform sampling is basically down-sampling the 

trajectory with respect to the resources available. In this technique, choosing the 

time-stamps to sample the trajectory is based on fixed predefined intervals. The 

only advantage of this method is its simple implementation. On the contrary, due 

to the oversimplified choice of samples often critical points of trajectories are lost. 

Douglas-Peuker [236]: This algorithm is one of the well-known algorithms in 

trajectory compression. It recursively partitions the trajectory and removes the 

furthest point from the resulted segment. When recursion is over, a new output 

curve is generated. An input error threshold 𝜀  > 0 provided as input to the 

algorithm guarantees that the Euclidean distance of the returned curve from the 

original does not exceed 𝜀 . This is the main advantage of this compression 

technique compared to the other lossy data compression techniques such as 

wavelets [251]. Another advantage of this technique is its simple implementation. 

Furthermore, it is proven that this algorithm achieves near-optimal saving at a far 

superior performance in terms of spatial error.  

TD-TR (Top down-Time ratio) [233]: The distance metric used in Douglas-Peuker 

algorithm is the Euclidian distance, which is based on the perpendicular distance 

between a point and a line. This way, however, the temporal data inferred from the 

speed of the mobile entity is not taken into account. In order to take advantage of 

speed information, usage of Synchronous Euclidean Distance (𝑆𝐸𝐷) is proposed in 

[245]. For computing 𝑆𝐸𝐷 the difference between a point and its spatio-temporal 

image is considered. Given three points 𝐴, 𝐵, and 𝐶 (t! <    t! <    t!) the 𝑆𝐸𝐷 between 

point  𝐵  and its estimation 𝐵’ is calculated as: 

𝑆𝐸𝐷(𝐴,𝐵,𝐶)   = 𝑥!! − 𝑥! ! + 𝑦!! − 𝑦! ! (6.4) 

Where 

𝑥!! = 𝑥! +
!!!  !!
!!  !  !!

  ×  (𝑡! − 𝑡!)  and 𝑦!! = 𝑦! +
!!!  !!
!!  !  !!

  ×  (𝑡! − 𝑡!)     (6.5) 

There are different algorithms in literature, which can be used for comparison. We 
have chosen the ones mentioned above for specific reasons. The Douglas-Peuker 
algorithm acquires optimal result in terms of the spatial error in trajectory 
representation. TD-TR is optimal in terms of the spatio-temporal error. We compare 
the proposed algorithms with these two techniques to compare performance in 
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terms of error. As the model based adaptive sampling technique, also changes the 
sampling rate, we compare our proposed algorithms with the uniform sampling to 
see the amount of performance improvement in terms of error and energy 
consumption. We have chosen this technique since, to the best of our knowledge, 
there is no other previous work on changing the sampling frequency of mobile 
sensor nodes. 

6.5.3 General features  

There are certain generic features, which need to be taken into account in order to 

compare trajectory compression algorithms. These attributes are (summarized in 

Table 6-1): 

Memory and Computational complexity: These parameters define the amount of 

memory and computational resources required for the algorithm to operate on 

trajectories. Efficiency of algorithms in terms of these parameters is one of the 

essential requirements of wireless sensor networks. As seen in Table 6-1, both 

Douglas-Peuker and TD-TR require considerably higher amount of memory and 

computational resources which is in the order of the size of the mobility data 

stream, while using the model based techniques, the complexity will always stay 

bound to limited number of states. 

Mode of operation: This parameter defines whether the algorithm is executed on 

each newly measured sample or on the whole dataset. In case of the latter, the 

algorithm’s mode of operation is batch. As seen in Table 6-1 the major problem of 

Douglas-Peuker and its synchronous version is their batch mode of operation.  

Error bound adjustability: This parameter defines if it is possible to set the 

maximum distance of each point on the uncompressed trajectory and its 

compressed version. As explained before, the error bound of Douglas-Peuker and 

its synchronous version is fixed. This means that it is ensured that the trajectory 

data points are saved so long as they are further away from their estimation on the 

compressed version of the trajectory. For these algorithms, the error bound can be 

provided as input. In model-based compression, the data needs to be gridded 

(discretized with a grid) beforehand. Therefore, the error bound is dependent on 

the area of each grid cell. For model-based sampling this error bound is not 

assured. 

Compression ratio: This parameter defines if it is possible to set compression ratio 

as input to the algorithm. Having this possibility is desirable as it helps managing 

and predicting the energy requirements and the memory resources. As seen, among 

the five algorithms compared in this section, only Douglas-Peuker and TD-TR do 

not support this characteristic inherently. 
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Method Computational 

Complexity 

Memory Mode of 

operation 

Error 

bound 

Compressio

n ratio 

Douglas-
Peuker 

𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛) Batch Fixed - 

TD-TR 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛) Batch Fixed - 
Uniform 
sampling 

𝑂(1)  
 

- Online - Adjustable 

Model 
based9 

𝑂(𝑀𝐷) 𝑂(𝑀! + 𝐺
+𝑀𝐷) 

Online Fixed 
over> 

grid cell 

Adjustable 

Model based 
sampling 

𝑂(𝑀𝐷) 𝑂(𝑀! + 𝐺
+𝑀𝐷)  

Online - Adjustable 

Table 6-1 Compariosn of generic attributes of different compression techniques 

6.6 Case study 

We use Dataset 1 and 2 for comparing compression algorithms. As these 

algorithms work on different bases and different input requirements, we repeated 

compression for each algorithm by changing the input parameters separately. We 

use the total error, maximum error, and memory footprint reduction as 

performance metrics for our comparisons. The total error and maximum error, as 

defined in Eq. (6.6) and Eq. (6.7) are used to compare the average performance and 

extreme deviations, respectively. 

• Total error metric: This metric represents the total sum of distance 

between the trajectory and its compressed version. In order to calculate 

this distance, we use the distance between points ( 𝑥!" , 𝑦!")  and their 

compressed representative (𝑥!"′, 𝑦!"′).  

𝑇𝑜𝑡𝑎𝑙𝐸𝑟𝑟 = 𝑥!" − 𝑥!"!
!
+ 𝑦!" − 𝑦!"!

!
!

!!!

 
(6.6) 

• Maximum error: This metric represents the maximum difference between 

points on a trajectory and their compressed representative.  

𝑀𝑎𝑥𝐸𝑟𝑟 = 𝑀𝑎𝑥{ 𝑥!" − 𝑥!"! ! + 𝑦!" − 𝑦!"! !}!!!!    (6.7) 

• Memory saved: This metric represents the amount of memory saved in the 

data storage by representing the trajectory in the compressed format and 

it is calculated as: 

                                                        
9	
  M	
  is	
  the	
  number	
  of	
  states,	
  G	
  represents	
  the	
  number	
  of	
  unique	
  observations	
  (N)	
  which	
  does	
  not	
  go	
  
beyond	
  the	
  grid	
  size,	
  and	
  D	
  is	
  the	
  maximum	
  state	
  duration	
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MemorySaved = 1 − ( !"#$%&''&(  !"#$
!"#$%&'())(*  !"#$

) (6.8) 

6.7.1 Case study using Dataset 1 

Figure 6-1 compares the previously mentioned algorithms when applied on Dataset 

1. These algorithms are compared in terms of total and maximum error versus the 

amount of memory saved. It is desirable that the algorithms can save as much 

memory as possible by maintaining lower error. 

 As seen in Figure 6-1.a, for this dataset the model-based compression technique 

performs better than the rest. Compared to the other algorithms, by saving higher 

amount of memory, this technique is resulting in a much lower amount of total 

error. The total error of TD-TR, Douglas-Peuker, and model-based sampling are very 

close to each other. Using model-based adaptive sampling the amount of memory 

saved is very limited to specific ranges. The reason is that, the other three 

compression algorithms (TD-TR, Douglas-Peuker, and model based compression) 

sample all the data and compress them afterwards. Adaptive sampling however, 

estimates the number of samples required and then acquires them. This way, 

compression is done before sampling. In order to have samples form start, middle, 

and end of each state, it is inevitable to have bounds for the amount of memory 

saved. However, it is seen that with a sampling scheme, which is based on the 

movement model, more than half of the samples are reduced. This is acquired with 

an error in the same range as TD-TR and Douglas-Peuker. Among the 5 techniques, 

which are compared here, Uniform Sampling is the worst in terms of total error. By 

using this technique even when the memory saved is very low, the error is still 

considerably high. Moreover, in lower compression ranges, instability in the error is 

observed. This is due to the fact that, the points are not chosen based on any 

significance criteria. Having minimal logic behind sampling, in some cases, highly 

significant points are removed leaving a considerable change in the total error. 

Figure 6-1.b compares algorithms mentioned in Section 6.5.2 in terms of their 

maximum error versus the memory saved. The maximum error presented in this 

figure as mentioned in Section 6.6, is based on 𝑆𝐸𝐷. It can be seen that, TD-TR 

followed by model-based compression algorithm performs considerably better than 

the other techniques in terms of maximum error. Better performance of TD-TR is 

expected as this compression algorithm operates based on 𝑆𝐸𝐷 . Model based 

compression is following TD-TR by having lower amount of maximum error. Higher 

error of Douglas-Peuker than model-based compression and TD-TR is justified by 

the fact that the error function in this algorithm is purely spatial (as opposed to 

𝑆𝐸𝐷 which is spatio-temporal). In this case, performance of Douglas-Peuker is close 

to model-based sampling. As expected, uniform sampling has the highest 
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maximum error, which is consistently very high even when the amount of memory 

saved by this technique is very low.  

   

(a)                                                       (b) 

Figure 6-1 Comparison of different methods in terms of memory saved versus, (a) total 

error, (b) maximum error (Dataset 1) 

6.7.2 Case study using Dataset 2 

The results of comparing compression algorithms on Dataset 2 (capricorns) is 

presented in Figure 6-2.  In Figure 6-2.a the amount of total error versus memory 

saved is shown. As seen, the total error of TD-TR and model-based compression 

techniques are only marginally different. Douglas-Peuker and model-based 

sampling have the same total error and as expected uniform sampling has the 

highest amount of error compared with the rest of algorithms. 

 

(a)                                                    (b) 

Figure 6-2 Comparison of different methods in terms of memory saved versus, (a) total 

error, (b) maximum error (Dataset 2) 
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Figure 6-2.b represents the amount of memory saved versus the maximum error. 

As suggested by this figure, the three compression algorithms, Douglas-Peuker, 

model-based compression, and TD-TR are performing in the same range of 

maximum error. The total error of model-based sampling is slightly higher than the 

previously mentioned algorithms. Compared to the previous dataset, the maximum 

error is in general considerably higher for all methods. This similarity in 

performance and the higher maximum error can be justified by three reasons. 

These reasons are (i) animal’s random movement, (ii) its limited movement range, 

and (iii) the fact that this dataset is already sparsely sampled. Therefore, these 

algorithms cannot represent their highest performance capacity in trajectory 

compression. As expected, the uniform sampling technique is performing worse 

than the other techniques and the difference between the maximum error resulted 

by this algorithm and that of the others, is considerably high.  

6.6.1 Comparisons in terms of energy consumption 

Contribution of different parts of a mobile sensor node in power consumption is 

different. Before we continue with comparing algorithms in terms of their energy 

consumption, we take a look at major energy consuming components of a basic 

mobile sensor node. Table 6-2 represents the amount of energy spent in radio and 

GPS sensor of a prototype mobile wireless sensor node.  

 Component Current 
(mA) 

Contribution in 
sec/min 

Energy in 
mWh 

Measurement 
inactive 

Radio TX 30 0.12 0.3 

Radio RX 8 0.1 0.07 

Measurement  
active 

Radio TX 30 0.32 0.8 

Radio RX 8 0.2 0.13 

GPS (POT 
high) 

49 12 49 

GPS (POT 
low) 

22 48 88 

Table 6-2 Energy consumption in the radio and GPS components of mobile sensor node 

[235] 

As seen in this table, when the sensor node is actively sensing GPS samples, the 

power consumption of the sensor is extremely higher than when it is inactive. 

Figure 6-3 compares the algorithms mentioned in terms of the energy consumption 

of a typical mobile sensor node for sensing and transmitting previous datasets. For 
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each dataset, we have estimated the total energy consumption of the sensor node 

when running the algorithm against the total amount of space saved by 

compressing the trajectory. As expected, methods that encompass some form of 

reduction in sampling, such as uniform sampling and model based sampling will 

perform considerably better than the rest. Using these algorithms energy 

consumption is considerably low when the trajectory is highly compressed. 

Compared to these techniques, reduction in energy consumption of other 

compression algorithms (Douglas-Peuker, TD-TR, and Model based compression) is 

negligible. This is caused by the relatively high share of GPS component in total 

power consumption. Although compressed trajectory can reduce the amount of 

energy spend by the radio, this improvement is not visible. The major advantage of 

model-based sampling to uniform sampling is its operation with much lower 

amount of total and maximum error. 

    

(a)                                                   (b) 

 

Figure 6-3 Comparison of different methods in terms of energy saved in the hardware  

versus space saved, (a) Dataset 1, (b) Dataset 2 

6.7 Summary 

In this chapter, we looked at a specific problem in mobility data sensing which is 

trajectory compression. Trajectories sensed with location acquisition devices can 

be extremely redundant specifically when inspected in temporal domain. In order 

to avoid sensing and transferring trajectories with such redundancies, we proposed 

using the state space models, which were studied before in Section 4.4. Firstly, we 

used the model to reduce the amount of data sent form sensor nodes to the base 

station based on their prediction of the next data point. Later, we extended the 

system using the model in an adaptive sampling technique. Results of comparison 

with state of the art techniques in trajectory compression show that the model 

based trajectory compression can effectively reduce the size of trajectories, 
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specifically when trajectories have repetitive patterns. Trading off for accuracy, the 

model based adaptive sampling can greatly reduce the power consumption of the 

sensor node and improve its lifetime. In this chapter, we studied model-based 

compression only using GPS data. Combining other sensors input such as 

accelerometer can also improve the performance of these compression algorithms. 

 



	
  

	
  

Chapter 7 

7 Conclusions and future directions 

In this thesis we presented solutions for understanding the individual and social 

behavior of mobile entities from the mobility data. We addressed the requirements 

of such data analysis systems considering both application requirements and the 

constraints imposed by technology. In Chapter 2, we firstly reviewed different 

technologies, which can be used for collecting spatio-temporal data and compared 

them in terms of different performance parameters. In Chapters 3-5 we presented 

our contributions in understanding mobile entity’s behavior from application point 

of view. In Chapter 6 we elaborated our contribution in mobile trajectory 

compression and transmission for resource-constrained devices to meet the 

requirements enforced by data collection technologies. 

In this chapter, we review our contributions and results. Next, we present our 

lessons learnt and future direction. 

7.1 Contributions 

• (Contribution 1) A review of Technological solutions for collecting 

spatio-temporal data from mobile objects 

In order to choose the proper technology for collecting relevant data for 

our spatio-temporal data analysis, we reviewed different technological 

solutions. We classified these technologies based on their relevant 

application in movement modeling to two groups of Lagrangian and 

Eulerian technologies. Having reviewed the technologies, and their previous 

usage in mobile entity sensing application, we chose the Lagrangian based 

technologies and more specifically GPS data to proceed with our mobility 

data analysis since the technologies in the Eulerian category are yet far 

from usage in remote fields. 

• (Contribution 2) Extracting periodic patterns 

In Chapter 3, we studied the problem of extracting periodic patterns from 

trajectories. We proposed a periodicity detection technique for streaming 

mobility data, which can extract periodic patterns with bounded memory 

and processing requirements. We evaluated the performance of this 

technique in presence of common uncertainties and showed that compared 

with the popularly used Autocorrelation function, the method performs 

with higher accuracy in presence of noise and uncertainties. Experiments 
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on different datasets show how periodic patterns can be accurately 

extracted and represent the mobile entities’ periodic behavior. 

• (Contribution 3) Modeling trajectory dynamics 

In Chapter 4, we proposed two trajectory-modeling techniques for 

understanding trajectory dynamics. We proposed both deterministic and 

probabilistic modeling solutions based on two different views on 

trajectories, which could capture short-term dependencies in the mobility 

data. 

In our deterministic modeling approach we segmented trajectories to find 

the frequently visited paths by mobile objects to the finest level of 

similarity. We compared performance of this technique with the other 

trajectory clustering approaches and showed that, using the collective 

knowledge of trajectories this technique can better perform in existence of 

uncertainties. 

In our probabilistic modeling approach we used hidden semi-Markov 

model, to model trajectories. Our proposed technique hierarchically 

models activities of the mobile entity in terms of states with their specific 

duration distribution. We compared this technique with other spatio-

temporal models and showed that it can perform better in prediction of 

future mobility patterns. As the results on different mobility datasets 

show, complex patterns such as weekly patterns, long travel sequence, and 

change in the behaviors were all found using the second model. 

Finally, we compared both of these techniques and concluded that the first 

modeling approach can find frequent patterns efficiently and without extra 

time spent on interpreting the results. The second approach on the other 

hand, can discover unknown patterns at the expense of more effort by the 

data analyst in interpreting the results.  

• (Contribution 4) Extracting social context from mobility data 

In Chapter 5, we addressed the interaction between entities in terms of the 

information extracted from mobility data and co-location patterns. We 

proposed two indicators based on information theory, which could focus 

on correlation in visits to frequent, and infrequent places. Using the MDC 

dataset, we studied the relationship between these indicators and the 

indicators extracted from phone call and sms features. The results show 

that these two groups of indicators are related and can be used as a basis 

for extracting social tie information. Also, compared with the commonly 

used co-location indicator, the proposed indicators perform better in 

representing the strength of social ties extracted from phone/sms 

indicators. Our case studies showed how these indicators represent 

information about the social ties between entities. 



	
  

	
  

151 

• (Contribution 5) Model based trajectory sensing and compression 

In order to increase the lifetime of the mobile device, and dealing with the 

ever-increasing loads of mobility data, in Chapter 5, we proposed two 

trajectory compression solutions. We used the trajectory modeling 

techniques proposed in Chapter 4.3 to (i) compress trajectories and (ii) to 

adaptively sample the data when it is mostly needed. The results of our 

experiments on two mobility datasets in this thesis shows that, (i) the 

proposed trajectory compression technique can perform superiorly in 

terms of total error, compression ratio, and energy preservation and (ii) 

although the adaptive trajectory sampling technique cannot meet optimum 

error requirements, it still performs considerably better than the unwise 

adaptive sampling while saving a considerable amount of energy. 

7.2 Conclusions and Lessons learnt 

The important lessons learnt during this thesis can be summarized as: 

• The rate of data generation is so high that there is no option other than 

streaming data analysis 

Being able to analyze streams of data as they arrive is a prerequisite of 

various real time applications. Nevertheless, with the massive data 

explosion and the increasing rate of data generation of any kind, it is 

evident that saving incoming data for future analysis is not an option 

anymore even for non-real time applications.  

• The paradox of incompleteness in excess 

The question always at back of our minds during all chapters of this thesis 

was: “How to deal with missing data?”. At the same time, there is so much 

redundancy in the mobility data in terms of short-term, long-term, and 

social patterns that the missing data do not necessarily imply loss of 

content anymore. The previous statement holds true so long as, there is an 

efficient inference technique, which uses these redundancies to fill the lack 

of data.  

• Looking at problems from different perspectives provides advantage 

In Chapter 4, we addressed the problem of modeling trajectories from two 

perspectives. One based on intuition and the other based on mathematics. 

Eventually, we cannot say which one is the best but both can be used for 

the relevant application. 

• Worry or enthusiasm? 

Last but not least, talking about data analysis, the first reaction is always 

to worry. Mobility data, as shown in this thesis are rich in different 

contextual information. The applications are plentiful but so are the 

threats. Rather than impeding the flow of data, there should be actions 

taken to avoid the possible threats.  
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7.3 Future research directions 

In this thesis a number of research questions regarding mobility data analysis were 

studied. There are still issues to be addressed in future research. Some of these 

issues are: 

• Support for streaming data: We addressed the problem of mining 

streaming data in Chapter 3. However, there is still more effort required in 

this domain. For instance, in Chapter 4 we proposed trajectory-modeling 

approaches, which are not yet supporting streaming data. Providing 

support for streaming version of algorithms proposed in Chapter 4 is 

beneficial for future applications. 

• Group behavior and community detection: In Chapter 5, we studied social 

context from mobility data. Another interesting topic not yet well studied 

is community detection and mining group behavior from such data. 

• Incorporation of other types of data: In this thesis, we mainly focused on 

mobility data acquired from GPS. Many other types of data, which are less 

studied, can also be topic of research using similar techniques. For 

instance, the data collected by Wi-Fi access points, or PIR sensors can be 

used to provide finer-grained information about habits and interactions. 

• Finding “abnormal” behavior using streams of mobility data: In different 

chapters of this thesis (Chapter 3,4) we showed how we could use different 

techniques to identify frequent or normal behavior. Another research 

direction can be using these techniques to also see how we can identify 

abnormal behavior. 

• More application specific research: There are many applications which 

can benefit from knowledge hidden in data. The data analysis results can 

be directed into usage to acquire knowledge of matters of high importance 

such as: “How livable cities are?” or “How to deal with disasters?”. 

• Support for maximum security: As mentioned in the previous section the 

threats of mishandling data analysis techniques are numerous. Mobility 

data can explain a lot about the mobile entity. When, social context is 

available, the social network of the mobile entity can reveal the identity of 

the mobile entity. Therefore, simple anonymization of mobility data does 

not provide maximum privacy. Looking for privacy techniques, which 

ensures only positive results from data analysis, is an important research 

direction. 
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