1,586 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented

    Nature-Inspired Adaptive Architecture for Soft Sensor Modelling

    Get PDF
    This paper gives a general overview of the challenges present in the research field of Soft Sensor building and proposes a novel architecture for building of Soft Sensors, which copes with the identified challenges. The architecture is inspired and making use of nature-related techniques for computational intelligence. Another aspect, which is addressed by the proposed architecture, are the identified characteristics of the process industry data. The data recorded in the process industry consist usually of certain amount of missing values or sample exceeding meaningful values of the measurements, called data outliers. Other process industry data properties causing problems for the modelling are the collinearity of the data, drifting data and the different sampling rates of the particular hardware sensors. It is these characteristics which are the source of the need for an adaptive behaviour of Soft Sensors. The architecture reflects this need and provides mechanisms for the adaptation and evolution of the Soft Sensor at different levels. The adaptation capabilities are provided by maintaining a variety of rather simple models. These particular models, called paths in terms of the architecture, can for example focus on different partition of the input data space, or provide different adaptation speeds to changes in the data. The actual modelling techniques involved into the architecture are data-driven computational learning approaches like artificial neural networks, principal component regression, etc

    Development of software sensors for on-line monitoring of bakers yeast fermentation process

    Get PDF
    Software sensors and bioprocess are well-established research areas which have much to offer each other. Under the perspective of the software sensors area, bioprocess can be considered as a broad application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to achieving high productivity and high-quality products. Although throughout the past years in the field of software sensors and bioprocess, progress has been quick and with a high degree of success, there is still a lack of inexpensive and reliable sensors for on-line state and parameter estimation. Therefore, the primary objective of this research was to design an inexpensive measurement system for on-line monitoring of ethanol production during the backers yeast cultivation process. The measurement system is based on commercially available metal oxide semiconductor gas sensors. From the bioreactor headspace, samples are pumped past the gas sensors array for 10 s every five minutes and the voltage changes of the sensors are measured. The signals from the gas sensor array showed a high correlation with ethanol concentration during cultivation process. In order to predict ethanol concentrations from the data of the gas sensor array, a principal component regression (PCR) model was developed. For the calibration procedure no off-line sampling was used. Instead, a theoretical model of the process is applied to simulate the ethanol production at any given time. The simulated ethanol concentrations were used as reference data for calibrating the response of the gas sensor array. The obtained results indicate that the model-based calibrated gas sensor array is able to predict ethanol concentrations during the cultivation process with a high accuracy (root mean square error of calibration as well as the percentage error for the validation sets were below 0.2 gL-1 and 7 %, respectively). However the predicted values are only available every five minutes. Therefore, the following plan of the research goal was to implement an estimation method for continues prediction of ethanol as well as glucose, biomass and the growth rates. For this reason, two nonlinear extensions of the Kalman filter namely the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) were implemented separately for state and parameter estimation. Both prediction methods were validated on three different cultivation with variability of the substrate concentrations. The obtained results showed that both estimation algorithms show satisfactory results with respect to estimation of concentrations of substrates 6 and biomass as well as the growth rate parameters during the cultivation. However, despite the easier implementation producer of the UKF, this method shows more accurate prediction results compared to the EKF prediction method. Another focus of this study was to design and implement an on-line monitoring and control system for the volume evaluation of dough pieces during the proofing process of bread making. For this reason, a software sensor based on image processing was designed and implemented for measuring the dough volume. The control system consists of a fuzzy logic controller which takes into account the estimated volume. The controller is designed to maintain the volume of the dough pieces similar to the volume expansion of a dough piece in standard conditions during the proofing process by manipulating the temperature of the proofing chamber. Dough pieces with different amounts of backers yeast added in the ingredients and in different temperature starting states were prepared and proofed with the supervision of the software sensor and the fuzzy controller. The controller was evaluated by means of performance criteria and the final volume of the dough samples. The obtained results indicate that the performance of the system is very satisfactory with respect to volume control and set point deviation of the dough pieces.Softwaresensoren und Bioprozese sind gut etablierte Forschungsgebiete, die sich gegenseitig viel befruchten können. Unter dem Blickwinkel der Softwaresensorik kann der Bioprozess als ein breites Anwendungsgebiet mit einer wachsenden Zahl komplexer und anspruchsvoller Aufgabenstellungen betrachtet werden, deren Lösung zur Erzielung hoher Produktivität und qualitativ hochwertiger Produkte beitragen kann. Obwohl in den letzten Jahren auf dem Gebiet der Softwaresensoren und des Bioprozesses rasch und mit großem Erfolg Untersuchung erzielt wurden, fehlt es immer noch an kostengünstigen und zuverlässigen Sensoren für die Online-Zustands- und Parameterschätzung. Daher war das primäre Ziel dieser Forschung die Entwicklung eines kostengünstigen Messsystems für die Online-Überwachung der Ethanolproduktion während des Kultivierungsprozesses von Backhefe. Das Messsystem basiert auf kommerziell erhältlichen Metalloxid-Halbleiter-Gassensoren. Die Headspace-Proben des Bioreaktors werden alle fünf Minuten für 10 s an der Gassensor-Anordnung vorbeigepumpt und die Spannungsänderungen der Sensoren werden gemessen. Die Signale des Gassensorarrays zeigten eine hohe Korrelation mit der Ethanolkonzentration während des Kultivierungsprozesses. Um die Ethanolkonzentrationen aus den Daten des Gassensorarrays vorherzusagen, wurde ein Hauptkomponenten-Regressionsmodell (PCR) verwendet. Für das Kalibrierungsverfahren ist keine Offline-Probenahme notwendig. Stattdessen wird ein theoretisches Modell des Prozesses genutzt, um die Ethanolproduktion zu jedem beliebigen Zeitpunkt zu simulieren. Die kinetischen Parameter des Modells werden im Rahmen der Kalibration bestimmt. Die simulierten Ethanolkonzentrationen wurden als Referenzdaten für die Kalibrierung des Ansprechverhaltens des Gassensorarrays verwendet. Die erhaltenen Ergebnisse zeigen, dass das modellbasierte kalibrierte Gassensorarray in der Lage ist, die Ethanolkonzentrationen während des Kultivierungsprozesses mit hoher Genauigkeit vorherzusagen (der mittlere quadratische Fehler der Kalibrierung sowie der prozentuale Fehler für die Validierungssätze lagen unter 0,2 gL-1 bzw. 7 %). Die vorhergesagten Werte sind jedoch nur alle fünf Minuten verfügbar. Daher war der folgende Plan der Untersuchung die Implementierung einer Schätzmethode zur kontinuierlichen Vorhersage von Ethanol sowie von Glukose, Biomasse und der Wachstumsrate. Aus diesem Grund wurden zwei nichtlineare Erweiterungen des Kalman Filters, nämlich der erweiterte Kalman Filter (EKF) und der unscented Kalman Filter (UKF), getrennt für die Zustands und Parameterschätzung implementiert. Beide 8 Vorhersagemethoden wurden an drei verschiedenen Kultivierungen mit Variabilität der Start substratkonzentrationen validiert. Die erhaltenen Ergebnisse zeigen, dass beide Schätzungsalgorithmen zufriedenstellende Ergebnisse hinsichtlich der Schätzung der Konzentrationen von Substraten und Biomasse sowie der Parameter der Wachstumsrate während der Kultivierung ermitteln. Trotz der einfacheren Implementierung des UKF zeigt diese Methode jedoch genauere Vorhersageergebnisse im Vergleich zur EKF-Vorhersagemethode. Ein weiterer Schwerpunkt dieser Untersuchung war der Entwurf und die Implementierung eines Online-Überwachungs- und Regelungssystems für die Volumenauswertung von Teigstücken während des Gärprozesses bei der Brotherstellung. Aus diesem Grund wurde ein auf Bildverarbeitung basierendes Überwachungssystem zur Messung der Teigvolumenauswertung entworfen und implementiert. Das Regelsystem besteht aus einem Fuzzy-Logic-Controller, der das gemessene Volumen für die Regelung nutzt. Die Regelung ist so ausgelegt, dass das Volumen der Teiglinge mit Werten des Volumens eines Teiglings unter Standardbedingungen während des Gärprozesses vergleicht und die Temperatur der Gärkammer entsprechend anpasst. Teiglinge mit unterschiedlichen Hefemengen in den Zutaten und verschiedenen Temperaturstartwerten wurden vorbereitet und unter Anwendung des Fuzzy-Reglers gegärt. Der Regler wurde anhand von Leistungskriterien und dem Endvolumen der Teigproben bewertet. Die erhaltenen Ergebnisse zeigen, dass die Leistung des Systems in Bezug auf die Volumenregelung und die Sollwertabweichung der Teigstücke sehr zufriedenstellend ist

    Algumas aplicações da Inteligência Artificial em Biotecnologia

    Get PDF
    The present work is a revision about neural networks. Initially presents a little introduction to neural networks, fuzzy logic, a brief history, and the applications of Neural Networks on Biotechnology. The chosen sub-areas of the applications of Neural Networks on Biotechnology are, Solid-State Fermentation Optimization, DNA Sequencing, Molecular Sequencing Analysis, Quantitative Structure-Activity Relationship, Soft Sensing, Spectra Interpretation, Data Mining, each one use a special kind of neural network like feedforward, recurrent, siamese, art, among others. Applications of the Neural-Networks in spectra interpretation and Quantitative Structure-activity relationships, is a direct application to Chemistry and consequently also to Biochemistry and Biotechnology. Soft Sensing is a special example for applications on Biotechnology. It is a method to measure variables that normally can’t be directly measure. Solid state fermentation was optimized and presenting, as result, a strong increasing of production efficiency.O presente trabalho é uma revisão sobre redes neurais. Inicialmente apresenta uma breve introdução a redes neurais, lógica difusa, um breve histórico, e aplicações de Redes Neurais em Biotecnologia. As subáreas escolhidas para aplicação das redes neurais são, Otimização da Fermentação no Estado-Sólido, Sequenciamento de DNA, Análise Molecular Sequencial, Relação Quantitativa Strutura-Atividade, Sensores inteligentes, Interpretação de espectros, Mineração de Dados, sendo que cada um usa um tipo especial de rede neural, tais como feed forward, recorrente, siamesa, art, entre outros. Aplicações de Redes Neurais em interpretação de espectros e Relação Quantitativa Estrutura-Atividade, como uma aplicação direta à química e consequentemente também para a Bioquímica e Biotecnologia. Os sensores Inteligentes são um exemplo especial de aplicação em Biotecnologia. É um método de medir variáveis que normalmente não podem ser medidas de forma direta. Fermentações no Estado-sólido foram otimizadas e, apresentaram como resultado um forte aumento do rendimento na produção final

    Process analytical technology in food biotechnology

    Get PDF
    Biotechnology is an area where precision and reproducibility are vital. This is due to the fact that products are often in form of food, pharmaceutical or cosmetic products and therefore very close to the human being. To avoid human error during the production or the evaluation of the quality of a product and to increase the optimal utilization of raw materials, a very high amount of automation is desired. Tools in the food and chemical industry that aim to reach this degree of higher automation are summarized in an initiative called Process Analytical Technology (PAT). Within the scope of the PAT, is to provide new measurement technologies for the purpose of closed loop control in biotechnological processes. These processes are the most demanding processes in regards of control issues due to their very often biological rate-determining component. Most important for an automation attempt is deep process knowledge, which can only be achieved via appropriate measurements. These measurements can either be carried out directly, measuring a crucial physical value, or if not accessible either due to the lack of technology or a complicated sample state, via a soft-sensor.Even after several years the ideal aim of the PAT initiative is not fully implemented in the industry and in many production processes. On the one hand a lot effort still needs to be put into the development of more general algorithms which are more easy to implement and especially more reliable. On the other hand, not all the available advances in this field are employed yet. The potential users seem to stick to approved methods and show certain reservations towards new technologies.Die Biotechnologie ist ein Wissenschaftsbereich, in dem hohe Genauigkeit und Wiederholbarkeit eine wichtige Rolle spielen. Dies ist der Tatsache geschuldet, dass die hergestellten Produkte sehr oft den Bereichen Nahrungsmitteln, Pharmazeutika oder Kosmetik angehöhren und daher besonders den Menschen beeinflussen. Um den menschlichen Fehler bei der Produktion zu vermeiden, die Qualität eines Produktes zu sichern und die optimale Verwertung der Rohmaterialen zu gewährleisten, wird ein besonders hohes Maß an Automation angestrebt. Die Werkzeuge, die in der Nahrungsmittel- und chemischen Industrie hierfür zum Einsatz kommen, werden in der Process Analytical Technology (PAT) Initiative zusammengefasst. Ziel der PAT ist die Entwicklung zuverlässiger neuer Methoden, um Prozesse zu beschreiben und eine automatische Regelungsstrategie zu realisieren. Biotechnologische Prozesse gehören hierbei zu den aufwändigsten Regelungsaufgaben, da in den meisten Fällen eine biologische Komponente der entscheidende Faktor ist. Entscheidend für eine erfolgreiche Regelungsstrategie ist ein hohes Maß an Prozessverständnis. Dieses kann entweder durch eine direkte Messung der entscheidenden physikalischen, chemischen oder biologischen Größen gewonnen werden oder durch einen SoftSensor. Zusammengefasst zeigt sich, dass das finale Ziel der PAT Initiative auch nach einigen Jahren des Propagierens weder komplett in der Industrie noch bei vielen Produktionsprozessen angekommen ist. Auf der einen Seite liegt dies mit Sicherheit an der Tatsache, dass noch viel Arbeit in die Generalisierung von Algorithmen gesteckt werden muss. Diese müsse einfacher zu implementieren und vor allem noch zuverlässiger in der Funktionsweise sein. Auf der anderen Seite wurden jedoch auch Algorithmen, Regelungsstrategien und eigne Ansätze für einen neuartigen Sensor sowie einen Soft-Sensors vorgestellt, die großes Potential zeigen. Nicht zuletzt müssen die möglichen Anwender neue Strategien einsetzen und Vorbehalte gegenüber unbekannten Technologien ablegen

    AI-based Diagnostics for Fault Detection and Isolation in Process Equipment Service

    Get PDF
    Recent industry requires efficient fault discovering and isolation solutions in process equipment service. This problem is a real-world problem of typically ill-defined systems, hard to model, with large-scale solution spaces. Design of precise models is impractical, too expensive, or often non-existent. Support service of equipment requires generating models that can analyze the equipment data, interpreting the past behavior and predicting the future one. These problems pose a challenge to traditional modeling techniques and represent a great opportunity for the application of AI-based methodologies, which enable us to deal with imprecise, uncertain data and incomplete domain knowledge typically encountered in real-world applications. In this paper the state of the art, theoretical background of conventional and AI-based techniques in support of service tasks and illustration of some applications to process equipment service on bio-ethanol production process are shortly described

    Soft Computing Techniques and Their Applications in Intel-ligent Industrial Control Systems: A Survey

    Get PDF
    Soft computing involves a series of methods that are compatible with imprecise information and complex human cognition. In the face of industrial control problems, soft computing techniques show strong intelligence, robustness and cost-effectiveness. This study dedicates to providing a survey on soft computing techniques and their applications in industrial control systems. The methodologies of soft computing are mainly classified in terms of fuzzy logic, neural computing, and genetic algorithms. The challenges surrounding modern industrial control systems are summarized based on the difficulties in information acquisition, the difficulties in modeling control rules, the difficulties in control system optimization, and the requirements for robustness. Then, this study reviews soft-computing-related achievements that have been developed to tackle these challenges. Afterwards, we present a retrospect of practical industrial control applications in the fields including transportation, intelligent machines, process industry as well as energy engineering. Finally, future research directions are discussed from different perspectives. This study demonstrates that soft computing methods can endow industry control processes with many merits, thus having great application potential. It is hoped that this survey can serve as a reference and provide convenience for scholars and practitioners in the fields of industrial control and computer science

    Control Implementation in Bioprocess System: A Review.

    Get PDF
    Bioprocess control consists of establishing a strategy for the management of the biocatalyst environment. Bioprocesses include several different units in which a near optimal environment is desired for microorganisms to grow, multiply, and produce a desired product

    Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks

    Full text link
    [EN] Electrochemical impedance spectroscopy (EIS) technique has been applied to determine the ethanol concentration in pineapple waste samples. To do this, six different concentrations of ethanol were added to the pineapple samples and were analyzed using the system designed by our research group and consisting of the Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) device associated to a stainless steel double needle electrode. Results indicated that phase data in frequencies between 6.0 x 10(5) Hz and 8.0 x 10(5) Hz showed the highest sensitivity to ethanol concentrations. A principal component analysis (PCA) confirmed the potential discrimination and partial least squares (PLS) regression showed mathematical models able to quantify ethanol in samples accurately. In order to implement flexible and precise models in programmable equipment, different types of artificial neural networks (ANNs) have been studied: Fuzzy ARTMAP and multi-layer feed-forward (MLFF) algorithms. As a result, a coefficient of determination (R2) = 0.996 and a root mean square error of prediction (RMSEP) = 0.408 have been obtained. Therefore, it allows us to introduce this technique as an alternative method for ethanol quantification along the fermentation of pineapple waste in an easy, low-cost, rapid and portable way.Financial support from the European FEDER and the Spanish government (MAT2012-34829-C04-04), the Generalitat Valenciana (PROMETEOII/2014/047) and the FPI-UPV Program funds are gratefully acknowledged.Conesa Domínguez, C.; Gil Sánchez, L.; Seguí Gil, L.; Fito Maupoey, P.; Laguarda-Miro, N. (2017). Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks. Chemometrics and Intelligent Laboratory Systems. 161:1-7. https://doi.org/10.1016/j.chemolab.2016.12.005S1716
    corecore