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Abstract. In the last two decades there has been a large progress in the computational 
intelligence research field. The fruits of the effort spent on the research in the discussed 
field are powerful techniques for pattern recognition, data mining, data modelling, etc. 
These techniques achieve high performance on traditional data sets like the UCI 
machine learning database. Unfortunately, this kind of data sources usually represent 
clean data without any problems like data outliers, missing values, feature co-linearity, 
etc. common to real-life industrial data. The presence of faulty data samples can have 
very harmful effects on the models, for example if presented during the training of the 
models, it can either cause sub-optimal performance of the trained model or in the worst 
case destroy the so far learnt knowledge of the model. For these reasons the application 
of present modelling techniques to industrial problems has developed into a research 
field on its own. Based on the discussion of the properties and issues of the data and the 
state-of-the-art modelling techniques in the process industry, in this paper a novel 
unified approach to the development of predictive models in the process industry is 
presented. 
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1 Introduction 
Processing plants in the industry are heavily instrumented with a large variety of 
sensors. The original purpose of the instrumentation was for monitoring and controlling 
purposes but in the last two decades the data being measured and stored has found a 
new application in the form of Soft Sensors [13]. The term is a combination of the 
words “software”, because the models are usually computer programs, and “sensors”, 
because the models are delivering similar information as real or hard sensors. Soft 
Sensors extract useful information from the process data which in the first instance is 
recorded for process control purposes. On a very general level one can distinguish 
between two types of Soft Sensors. On one hand there are the so called First Principle 
Models. First principle models attempt to use the knowledge of the physical and 
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chemical laws for building models of the processes. Unfortunately the processes are 
usually much too complex to be fully described by this kind of models. This fact was 
one of the reasons which triggered the interest of the process industry in the 
development of Data-Driven Soft Sensors, which are the topic of this work. Within the 
process industry the most common data-driven Soft Sensors are based on the Principle 
Component Analysis [22] and Partial Least Squares [1] from the field of multi-variate 
statistics and Artificial Neural Networks [6], Self Organizing Maps [26] and Neuro-
Fuzzy approaches [21] from the soft computing research field. 
 There is a broad field of application possibilities for Soft Sensors which include:  

• Prediction of values, which can be measured with high financial or temporal 
effort only. Typical example of such a value is the product purity 
(concentration), which is often related to the product quality. Soft Sensors 
provide in such a case on-line estimation of the target values based on the 
available process data.  

• Another application domain is the back-up of measuring devices, where the 
Soft Sensors operate in parallel with the measuring device. Closely related to 
this application is another one, namely the replacing of measuring devices and 
thus reducing hardware requirements.  

• Next area of application is process monitoring, in this case the Soft Sensor is 
trained to recognize process states which violate the limits of ”normal 
operation” of the process.  

• Another area of Soft Sensor applications is their usage for validation, fault 
detection and diagnosis purposes. 

 Apart from advantages provided by the Soft Sensors there are some difficulties and 
drawbacks in their building and application. In order to take them in real-life operation, 
certain regulatory and process safety measures, like guaranteed precision and reliability, 
have to be fulfilled by the Soft Sensors. Another issue of the current Soft Sensor 
development practice is that there is still a lot of effort necessary for their development 
and maintenance. The main focus of the current research is to address the specific topic 
of adaptation to the changing environment or to internal changes of the process and, 
thus to achieve the ability to self-develop. This will, on one hand, reduce the 
development costs of Soft Sensors and, on the other hand, reduce the demand for their 
maintenance and life-cycle costs. This, in turn, will increase the productivity and bring 
additional economical benefits and higher quality products. The move in the direction of 
reduction of the incorporated a-priori information about the actual process facilitates the 
portability and deploying of Soft Sensors to different processes with as little effort as 
possible. 
 A lot of the issues of current Soft Sensor modelling originate in the nature of the data 
delivered from process industry. In larger plants it is quite common that parts of them 
are taken out of service because of maintenance or failure reasons. This fact causes that 
for a certain time there is no (useful) data provided by the affected sensors. There are 
several issues which have to be solved to be able to deal with missing values. The first 
one is the detection of missing values and their replacement if required. An alternative 
way of handling missing values is to provide the Soft Sensor with the capability of 
dealing with changing dimensionality of the input space. Another problem to deal with 
is data outliers. These are particular samples which, mainly because of measurement 



failures, are distinct from the other samples. These samples are also not easy to identify 
and a strategy for their replacing or skipping should be implemented by the Soft Sensor 
(for a review of outlier detection mechanisms see [17]). Drifting values are another 
problem for Soft Sensors. It is not easy to distinguish between drifts in the 
measurements (sensors) and drifts related to gradual process changes. The last issue 
discussed here is the co-linearity of the data. This originates in the redundancy of some 
of the process measurements, e.g. temperature sensors located relatively close to each 
other may represent highly correlated features. The problem of co-linearity may be 
handled using the Principle Component Analysis [22] or Partial Least Squares method 
[1]. 
 Based on the theoretical consideration of the issues of the process industry data, there 
is a novel Soft Sensor architecture proposed in this work. This architecture reflects the 
need for the adaptation and evolution of the models. One of the main aspects of the 
architecture is the definition of data processing paths. A path consists of one or more 
pre-processing steps (e.g. feature selection algorithm, outlier detection, normalisation, 
etc.) and one computational learning method (e.g. multiple linear regression, ANN, 
etc.). Another key aspect of the architecture is the capability to use meta-learning 
approaches to model building and to it closely related model combination approaches. 
 The rest of the paper is organized as follows. The next section is giving an 
introduction to the Soft Sensor types as well as discussing current Soft Sensor 
development methodology and finally providing a list of application areas together with 
examples of published Soft Sensors. Based on the identified issues a novel Soft Sensor 
architecture focusing on the adaptation aspects of the Soft Sensor is introduced in 
Section 3. Finally, a summary is given in Section 4. 
 
2 Soft Sensors 
2.1 First Principle and Data-Driven Soft Sensors 

As mentioned before, at a very general level one can distinguish between two types of 
Soft Sensors, namely First Principle Models and Data-Driven Models.  
 The original purpose of the First Principles Models (FPM) is for the planning and 
development of the process plants, therefore the models describe the knowledge about 
the processes in form of often complex mathematical equations. These equations 
describe the chemical and physical principles underlying the process. A typical example 
is applying mass-preservation principles, exothermal equation, energy preservation, 
reaction kinetics in form of reaction rate equations, etc. The drawback of the first 
principle models is that the models are usually systems of differential equations which 
are very complex for real processes. These systems of equations are not easy to solve 
and the results to solve them often results in numerical or stability problems. For these 
reasons the models focus only on the most important parts of the process and try to 
simplify the model by making various assumptions and simplifications as far as 
possible. The first principle models are usually used for planning and designing of new 
processes and plants. They usually focus on the description of the steady-state of the 
process. But due to the constraints mentioned above the use of the first principle models 
in the on-line monitoring and predictive analysis is very difficult or infeasible.  



 The focus of this work is therefore put on the Data-Driven Models (DDM) which 
have emerged as very attractive modelling approaches enhancing the toolbox of 
diagnostic, prognostic and decision support methods available for plant operators and 
embedded in automated control systems. These models are based on the data which is 
being recorded by the PIMS (Process Information Management Systems) of the 
processes. Dependent on the applied methods, one can further distinguish different 
types of DDM. One stream of data-driven Soft Sensors uses methods originating from 
statistics, for example regression methods, principle component analysis [22] or partial 
least squares methods [1]. Another stream of Soft Sensors is based on methods 
developed in the field of soft computing (for an overview of soft computing methods 
see e.g. [21] or [37]). Apart from the above mentioned two groups of data-driven 
methods there is also a number of approaches which combine both types of methods in 
hybrid approaches (e.g. NN-PCA [10], which is PCA in combination with ANN).  
 
2.2 Soft Sensors Development Methodology 

This section describes some practical steps and issues of the state-of-the-art of Soft 
Sensor development. It is based on extensive discussions with experienced Soft Sensor 
developers from the process industry and as such reflects the current adopted practices. 
The whole process of Soft Sensor development may be split into several steps. 
  
First data inspection: During this initial step, the first inspection of the data is 
performed. The aim of this step is to gain an initial view of the data structure and 
identify any obvious problems which may be handled at this initial stage (e.g. locked 
variables having constant value). The next aim of this stage is to assess the likely 
requirements for the model complexity to be used. It is quite common that an 
experienced Soft Sensor developer can, already at this stage, make a reasonable decision 
whether to use a simple regression model, a rather more sophisticated but more 
powerful PCA regression model or a non-linear neural network to solve the problem. In 
some cases, the model family decision at this stage may not be correct, therefore the 
models and their performance should be always evaluated and compared to alternative 
models. It is also at this stage that the rough assessment of the number of outliers and 
missing data is carried out. This observation may then influence the selection of the 
strategy for handling such problems as previously mentioned. 
  
Identification of stationary states: Here, the stationary parts of the data have to be 
selected. The further modelling will deal only with the stationary states of the process. 
This non-stationarity of the process occurs usually during the start-up or shut-down of 
the plant only and therefore usually does not need to be modelled. The identification of 
the stationary process states is not a trivial task and is usually performed by manual 
annotation of the data though it should be noted that there are some automated 
approaches for the selection of stationary process states. 
  
Data pre-processing: The aim of this step is to modify the data in such a way, that it 
can be more effectively processed by the actual data-driven model. An example of a 
typical pre-processing step is the standardisation of the data to the mean value 0 and 
unit variance. In the case of the data which are produced in the process industry there 



are more pre-processing steps necessary. The usually involved steps are the handling of 
missing data, outliers detection and replacement, selection of relevant variables (i.e. 
feature selection), handling of drifting data and detection of delays between the 
particular variables. Most of the listed issues are at the moment handled manually or 
need at least a supervised inspection of the results. The data pre-processing is usually 
done in an iterative way, i.e. after the standardisation and missing values treatment 
which are usually performed only once, an outlier removal and feature selection are 
repeatedly applied until the model developer considers the data as being ready to be 
used by the actual model. At the moment the pre-processing of the data is the step 
which affords the most manual work and expert knowledge incorporation of the whole 
soft sensor modelling. The need for the discussions with plant operators and process 
experts is also stressed in the literature, e.g. [13]. 
  
Model selection: This is the next step toward the Soft Sensor. In this step the model 
type (if not done until now) and the parameters of the model have to be selected. 
Usually cross-validation or related approaches together with a significance test are used 
to accomplish this task. The usual approach is to start with a basic, i.e. low complexity, 
model and add complexity as long as the performance of the model improves 
significantly. The employed rule of thumb is to use a linear regression model for 
problems with less than 5 variables, for higher dimensional problems usually PCA 
regression is applied and for non-linear problems often Multi-Layer Perceptron neural 
network or other technique from the class of universal approximators are used. For the 
performance evaluation of the models after the learning stage it is crucial to use 
validation data which have not been seen by the model during the learning phase. 
  
Soft Sensor maintenance: After developing and deploying the Soft Sensor, it has to be 
maintained on a regular basis. The maintenance is necessary due to the changing 
environment which causes the performance of the Soft Sensor to deteriorate and has to 
be compensated for by adapting or re-developing the model. 
 The typical flow of the Soft Sensor development methodology is summarised in 
Figure 1. The figure is partially motivated by the approach presented in [13], where a 
similar methodology for Soft Sensor development was presented. It has to be stressed 
that the above conforms to a number of common practice approaches for predictive 
model building which have been used in the computational intelligence community for 
a number of years and has now been firmly established in industrial and business 
contexts as highlighted above through the summary of the practices in the process 
industry. 
 
2.3 Application Areas of Soft Sensors 

The application of Soft Sensor can be found across different fields of process industry. 
Most of the applications can be found in the particular parts of process industry where 
the traditional modelling techniques like FPM fail to deliver the required precision. In 
chemical industry, there is a large number of processes where the final product quality 
may not be estimated using automated approaches. The traditional approach in this case 
is to evaluate the product quality by manual or semi-automated lab measurements.  
 



 
Figure 1: Methodology for Soft Sensor development 

This represents a prominent application field for Soft Sensors, which are in more detail 
described later on in this section. Fermentation processes are another target group for 
Soft Sensors. Models of fermentation processes are very difficult to build because these 
processes are not easy to control and may differ significantly from one batch to the 
other even under constant condition. Similar problems occur in the polymerisation 
processes, these are very hard to control because they depend on a lot of external 
factors, which are out of the sphere of the traditional techniques. Therefore similarly to 
the previous case as well as in the paper process industry and various other fields of the 
process industry, Soft Sensors have established themselves as the method of choice. 
 
Continuous Data Stream Prediction: The most common application of Soft Sensors is 
the prediction of values, which cannot be measured or else estimated on-line. This may 
be for technological reasons (e.g. there is no equipment available for the required 
measurement), economical reasons (e.g. the necessary equipment is too expensive), etc. 
From the computational learning point of view these problems are equivalent to 
supervised regression. Usually, there is historical data available. This data consists of 
the past plant measurements (e.g. temperatures, pressures, etc.) which form the input 
data space of the Soft Sensor. The typical modelling approach used for these problems 
is the application of artificial neural networks (ANN). ANN have found broad 
application in the computational learning, and thus also in the Soft Sensor modelling, 
after the invention of the back-propagation algorithm. They attracted the attention of 



scientists due to their generalisation power and abilities to solve non-linear problems. 
Apart from the previous fact, which probably led to the wide application areas of ANN, 
there are also some issues related to their application. Typically, the learnt knowledge is 
stored globally in the connection weights of the ANN which make it difficult to extract 
the knowledge in human readable form from the model. Besides this fact there is also a 
problem with the determination of the topology of the network. Usually it is selected 
using cross-validatory or heuristic approaches. 
An application of ANN for the sugar quality estimation was published in [9]. The 
approached problem in this publication is the modelling of the massecuite electrical 
conductivity because this is an important value for the control loop controlling the sugar 
production process. The input features of the model were selected manually and limited 
to eight from the modeller perspective important process measurements. The results 
achieved by the ANN were good enough for taking the Soft Sensor into operation. In 
[23] artificial neural networks are compared to First Principle Models (FPM) and 
extended Kalman Filter (EKF) [43], which are other common approaches to Soft Sensor 
building. The disadvantages of FPM and eKF are the complexity of the development 
and amount of a-priori knowledge which has to be available for the model development. 
The before mentioned publication gives an overview of some ANN applications of 
bioprocess (i.e. fermentation) Soft Sensors. Thorough analysis of the application of 
ANN for Soft Sensor building has been presented in [35]. This work discusses a lot of 
practical issues of the application of neural networks for Soft Sensor modelling. A 
particular focus is set on the necessary pre-processing steps like, the handling of 
missing values, outliers, etc. Focusing the identified issues, there is also a modification 
of the error measure of the back-propagation algorithm (using of Manhattan distance 
instead of mean squared error) proposed.  
 In the last few years a very popular research topic in computational learning field is 
the hybridisation of different modelling approaches. An overview together with the 
definition of different hybridisation levels was presented in [2]. The advantage of 
successful hybrid systems is their ability to overcome the drawbacks of the particular 
component methods and make use of their advantages at the same time. The probably 
most commonly used hybrid approach is the Neuro-Fuzzy System (NFS). It combines 
the Fuzzy Information System (FIS) [21] with ANN. Neurofuzzy models combine the 
learning capabilities of ANN with the human-like reasoning of FIS. In this way the 
disadvantages of ANN, namely the problems with the interpretability of the learnt 
knowledge, and at the same time the issues of FIS, namely the missing of a straight-
forward learning algorithm, are compensated. NFS inherits the connectionist structure 
from ANN.  
The first example of Soft Sensors based on neuro-fuzzy approaches is an ANFIS-based 
[21] Soft Sensor being applied to rubber viscosity prediction [34]. Another ANFIS-
based Soft Sensor was presented in [42], in this work the data is pre-processed using 
PCA transformation. The paper defines a methodology for the development of Soft 
Sensors using soft computing methods. The methodology is applied to prediction of 
polymeric-coated substrate anchorage. Neuro-fuzzy Soft Sensor based on rough set 
theory and optimized by a genetic algorithm is discussed in [32]. The application shown 
in this work is the prediction of freezing point of the light diesel fuel in a fluid catalytic 
cracking unit. In the framework of neuro-fuzzy techniques, there has been few 



publications dealing with the adaptivity and evolving capabilities of the neuro-fuzzy 
models. Examples of such models are the extended evolving fuzzy Takagi-Sugeno 
models exTS [4] and Dynamic Evolving Neural-Fuzzy Inference System DENFIS [25] 
or General Fuzy Min-Max GFMM model [15]. The advantage of these models is that 
they can, by modifying their knowledge, evolve together with the changing 
environment. 
In [33] an exTS model has been applied to the prediction of the quality of crude oil 
distillation. The advantages of the proposed approach are numerous, one of them is the 
already discussed ability of the model to evolve together with the changing data by 
adapting and deploying new hidden units in the neuro-fuzzy network, another advantage 
common to all fuzzy based models is the interpretability of the learnt knowledge, which 
is represented in the form of human-readable fuzzy rules. 
 Apart from the combination of ANN and FIS, there is a large number of other 
models which are combination of two or more computational learning techniques. The 
work of Qin et al. [35] has been already mentioned. On of the contributions of this work 
is the definition of Neural-Network Partial Least Squares (NN-PLS) algorithm which is 
a hybrid system combining the PLS algorithm with ANN. This algorithm makes use of 
the capabilities of ANN to map the input variables onto the latent variables of the PLS. 
The discussed hybrid algorithm is also applied to a real-life problem, namely to a 
refinery process. Another application of NN-PLS to soft sensing was presented in [10] 
where the NN-PLS (and NN-PCA) algorithm is applied to the prediction of emissions of 
NOx gas in exhaust streams. A hybrid system consisting of Particle Swarm Optimisation 
(see [7]) which is used for the training of an ANN was presented in [30]. In this work 
the PSO algorithm is combined with the Alopex algorithm [39] to avoid local minima to 
which the PSO is prone. The proposed algorithm is applied to the ethylene distillation 
column data set. Another hybrid approach to Soft Sensor modelling has been developed 
by Kordon et al. [27]. In this case, the hybridisation is done on a lower level. The 
involved methods perform pre-processing of the data for the succeeding modelling 
steps. The methodology for the inferential sensor building consists of three different 
steps. The first step is the analysis of the data by an analytical neural network [28]. The 
aim of this step is to perform feature selection on the input data to deal with time delays 
between the selected features. In the next step the data is processed using SVM [40]. 
During this step the outlier detection is done. In the third step the actual Soft Sensor is 
built. This is performed by applying Genetic Programming (GP) algorithm [29]. The GP 
algorithm selects a function from a pool of available functions and trains it to model the 
output variable using the pre-processed input data. The Soft Sensor is a set of analytical 
functions which maps the input space to the target variable space. The proposed 
approach was applied to several real-life problems, e.g. the interface level estimation in 
an organic process [24]. 
 
Process Monitoring: Another application area of Soft Sensors is process monitoring 
and related to it process and sensor fault detection. Process monitoring is usually an 
unsupervised learning task. The systems can be either trained to describe/ analyse the 
normal operating state or to recognize possible process faults. Commonly, process 
monitoring techniques are based on multivariate statistical techniques like PCA, more 
precisely on Hotelling’s T2 [18] and Q-statistics [19]. These measures have on one hand 



the advantage of involving all input features into consideration, whether the process 
remains within the acceptable limits, and on the other hand providing information about 
the contribution of the particular feature to a possible violation of the monitoring 
statistics [8]. The PCA algorithm [22] reduces the number of variables by building 
linear combinations of the input variables in such a way that these combinations cover 
the highest variance in the input space and are additionally orthogonal to each other. In 
case of the process industry data, there is a very useful feature because it is very often 
the case that there is a co-linear variable present in the data. Although the PCA is a 
powerful and very often applied algorithm it has several drawbacks. Probably the most 
important issue is the selection of optimal number of principal components. 
This can be solved using cross validation techniques. Another problem is that the 
principal components describe very well the input space but do not say anything about 
the relation between the input data space and the output space which has to be modelled. 
A solution of the previous problem is the Partial Least Squares (PLS) algorithm [1]. 
This algorithm, instead of focusing on the covering of the input space variance, pays 
attention to the covariance matrix between the input space and the output space. The 
algorithm decomposes both spaces simultaneously with the constraint of explaining as 
much of the covariance between the input and output space as possible. 
Li et al. is dealing with the application aspects of the PCA and related methods to the 
process industry problems in [31]. The focus is put on the development of a recursive 
PCA approach targeting adaptive process monitoring. Within this framework it has also 
been shown that the method can deal with outliers, missing values and delayed 
measurements. They presented an effective approach for the update of the correlation 
matrices and two algorithms for the update of the PCA base using the old PCA 
structure. Additionally a review of the most common techniques for the selection of the 
number of principle components, which is one of the drawbacks of the PCA, is 
presented and a new technique for recursive selection of the number of principle 
components is shown. For the purpose of adaptive process monitoring, it is necessary to 
update the confidence limits of the model with the new incoming data, therefore the 
authors define also a monitoring scheme, which detects and handles data outliers, 
missing values and process faults before updating the model. Finally the proposed 
monitoring scheme is applied to a rapid thermal annealing process monitoring. 
 Self-organizing maps (SOMS) [26] is artificial neural network type which is able to 
deal with unsupervised problems and can therefore be applied to process monitoring 
tasks. Provided a set of high-dimensional input samples it maps this features to a lower 
dimensional, usually 2-dimensional, space. The mapping is done with the constraint of 
keeping the topological properties of the data. The properties of the SOM make it useful 
for both the visualisation of multivariate data and for clustering. In terms of Soft Sensor 
modelling SOMs may be applied for process monitoring purposes. Process monitoring 
means the extraction of meaningful process states from the input data. A set of practical 
applications of process monitoring and quality prediction, etc, using SOMs was 
published in [3]. In this work SOMs have be found as useful tool for the monitoring of a 
continuous pulp digester. Before feeding the data into the SOM model they have been 
manually pre-processed using a-priori knowledge of the process. Another application 
presented in the work is the quality prediction of steel prediction based on the 



concentration of the input elements and some process parameters. The last application 
of SOMs presented in the work is the analysis of the data from paper and pulp industry.  
 
Process and Sensor Fault Detection: It was already mentioned in the introduction 
section that process industry plants are usually equipped with a large number of various 
measuring and monitoring devices. Larger plants can house up to several hundreds of 
sensors. In such an environment, it happens quite often that either individual sensors or 
group of them fail and do not deliver any meaningful data. These data samples represent 
data outliers or missing values. As a vast majority of modelling techniques applied 
within the process industry as Soft Sensors are not able to handle this kind of data as a 
matter of their normal operation, there is a need to identify and replace sensor and 
process faults before the actual model building and model application. 
Process and sensor faults are detected and handled using the PCA in [12]. The faults are 
detected in the PCA residual space. This has the advantage that one can on one hand 
identify the sensor or process faults effectively and on the other hand by projecting the 
fault state to the original space one can also find which particular sensors are 
responsible for the fault state. The proposed approach is again evaluated in form of case 
studies. In the case of this work it is the detection of faults in a boiler process. 
In [36], a self-validating Soft Sensor is discussed. The input data is validated using a 
PCA-based approach for fault detection published in [11]. In the case of a detected 
failure, the sensor can be reconstructed using the correlation structure of the affected 
input measurement to the other input space variables, which is one of the valuable 
capabilities of the PCA. After this pre-processing step, which on one hand removes the 
co-linearity of the input data and on the other hand reconstructs fault sensor data, a Soft 
Sensor using traditional modelling techniques is built. 
 
3 Adaptive Soft Sensor 
To cope with the challenges listed in this work, especially those discussed in the 
introductory section, we propose a novel architecture for a self-adapting Soft Sensor. A 
broad overview of the architecture is shown in Figure 2.  
A significant part of the proposed architecture are the two pools, namely the Pre-
processing Methods Pool (PPMP), including all pre-processing methods, which is 
further split into actual pre-processing methods (e.g. filtering, normalisation), feature 
selection methods (e.g. correlation-based feature selection) and instance selection 
methods (receptive fields filtering). The second pool, Computational Learning Methods 
Pool (CLMP), consists of various computational learning methods (e.g. linear 
regression, multi-layer perceptron models, etc.). The particular instances of the methods 
in the pools are connected to paths by the Path/Pool Management module. Path may be 
for example built from the following elements: data standardisation, correlation-based 
feature selection and a multi-layer perceptron method (see Figure 3 for a path example). 



 
Figure 2: Proposed architecture of an self-adapting Soft Sensor 

 
Figure 3: Transformation path example 



 At the path level, there is an additional mechanism for the local control necessary. 
Such a mechanism is shown in Figure 3. The presented path consists of three path 
elements. The first two elements are pre-processing steps, namely the PCA and feature 
selection, and the third one is a linear regression computational method. The prediction 
of the method is fed to the Local Evaluation, where together with the data input the 
evaluation of the path prediction is performed. The results of the prediction are passed 
to the Local Control Unit which based on the implemented control method controls the 
parameters of the path elements. Additional input to the Local Control Unit is the 
control information from the high-level decision making methods (i.e. Path/Pool 
management, Meta-Level Learning, etc.). 
 Another key aspect of the architecture is the Path Combination module. Typically the 
combination is carried out at the level of the computational learning methods (e.g. 
stacking of a group of MLP networks [13]). In the proposed architecture the 
combinations are performed at the path level which provides several advantages. One 
can do the combination while including different methods from PPMP (e.g. a 
combination of several paths consisting of MLP with different approaches to feature 
selection as pre-processing step). Another advantage is that it is possible to combine 
different methods from the CLMP, in this way it is possible to do combination across 
different types of computational learning methods (e.g. a combination of MLPs and 
RBF together with linear regression models is possible). The path combination module 
together with the instance selection methods from PPMP provides also the possibility to 
combine different local paths (local learning models) to a global path. 
 The architecture provides also the possibility of using meta-learning approaches [41], 
[16]. There are two modules in the architecture for this purpose. The first one, Meta-
Feature Management, having information about the data together with the performance 
of the particular paths builds the meta-features. This module may e.g. extract the 
information about the performance of the different paths in the different parts of the 
input data space and pass this information further to the Meta-Level Learning module 
which can, using the provided information, control the Path/Pool Management and Path 
Combination modules. The Instance Selection Management module is responsible for 
the filtering of the instance and thus providing the possibility for building of local 
models, i.e. local experts, [5], [38], [14], [20]. The local approach to the model building 
is, apart from the pool and path concepts and meta-learning techniques, one of the key 
aspects of the proposed architecture. 
 
3.1 Adaptivity of the architecture 

One of the key functions of the proposed architecture for Soft Sensor development is its 
ability to adapt to the changing environment of the process industry data. A simplified 
diagram of the adaptation possibilities within the architecture are shown in Figure 4. 
There are three different levels of adaptation possible. The first one is at the local level. 
Local level means the level of the particular paths and their parameters in this context. 
In this case, the particular path are adapted using the knowledge about their 
performance (see feedback loop a) and some global parameters (see feedback loop d). 
The next level of adaptation is the level of the path combinations, here the particular 
combination are adapted in a similar way, like it is the case at the path level.  



 
Figure 4: Adaptation loops within the architecture 

The particular combinations are adapted independently to each other using their 
performance (feedback loop b) and again global/meta-level parameters (feedback loop 
c). 
 The last level is the global or meta-level adaptation. At this level decisions, which 
influence the dynamic behaviour of the whole architecture, are being made. The aims at 
this level may be more sophisticated than plain search for the best performance given an 
error measure. The goal of the meta-level learning may be for example trying to keep a 
large diversity of paths and not just to keep paths with the best performing type of 
method. Keeping a broad variety of methods in the pools may be of benefit if there is 
for example a sudden change in the process causing a change of the data which may 
further on cause a decrease of the performance of the best paths in the pool. Another 
aspect which may be handled at this level is the different adaptation speeds. There may 
be a set of paths focusing on short-term changes in the data and adapting to these 
changes. In contrast to that there may also be a set of paths or path combinations 
focusing on long-term performance and adapting rather slowly to the process changes. 
 Figure 5 shows the adaptation mechanisms in a more detailed way. It shows the 
details of two different paths together with their adaptation loops. The local adaptation 
consists of the feedback of the prediction which is compared to the correct target values 
in the Local Evaluation block. Given an error measure, there is the error between the 
prediction and the correct values measured within this block. The measured error is 
passed to the next part of the loop, namely to the Local Control Unit. Another input to 
this block is the information from the global level decision making parts of the 
architecture. This input may for example stimulate the speed of the adaptation or 
completely skip it. Another task of the Local Control Unit is the control of the 
parameters of the learning algorithm (e.g. the learning rate or momentum of the gradient 
descent learning approaches). The learning itself is a part of the particular method 
blocks and is indicated as Method Control in Figure 5. 
 The adaptation approach for the path combinations is similar to the one of the single 
paths. Again, the performance of the prediction of the combination, which is measured 
in the Path Combination Evaluation, is applied, together with the global level 
information, in the Path Combination Control Unit. This unit has access to the learning 
methods of the combination algorithm. 



 
Figure 5: Adaptation mechansisms of the architecture in detail 

 The adaptation at the global level plays the most important role. It controls the global 
behaviour of the whole architecture. The decisions to deploy and remove path and path 
combinations are also done at this level. There are several parts of the architecture 
involved into this adaptation loop. Within the Global Evaluation part of the architecture, 
there are different criteria (i.e. evaluation functions) involved into the assessment of the 
path and path combination, such a criterion may be for example the diversity of the 
methods in pools. The results of the evaluation are passed to the Meta-Feature 
Management block. Here, together with some statistics of the data meta-level features 
are built. This kind of features may for example be the linearity of the data or the 
dynamics of the data, which may influence the need for the adaptation of the methods. It 
may also be a combination of certain characteristics of the data and of the performance 
of the path/path combinations. Based on the extracted meta-feature the Meta- Level 
Learning module takes appropriate actions and controls the Path/Pool Management and 
Path Combination Controls.  
 In a practical scenario the Path Combination Control could be a genetic algorithm 
controlling a set of individuals (i.e. path combinations). The parameters of the genetic 
algorithm (e.g. reproduction rate, number of individuals) would be in this scenario 
controlled by the Meta-Level Learning module, which makes the decision on the basis 
of the information delivered from Meta-feature  Management. 



 
4 Summary 
Undoubtedly modern Soft Sensors have to be able to adapt to the changing 
environments as required by the process industry. Current practice of Soft Sensor 
development is too inefficient in terms of time spent on the development of the models 
as well as time needed for periodical re-tuning or re-training of the Soft Sensors. To 
make Soft Sensors a real alternative to the current process industry procedures, they 
should posses abilities like self-adaptibility, self-healing, etc. The proposed architecture 
is an attempt to move the Soft Sensor into the desired direction. The architecture 
provides the ability to manage a set of models. Within this model-pool there can be 
models from different modelling families, like regression models or neural networks, 
but also several instances of the same model type (e.g. several neural networks with 
different topologies) at the same time. In the same sense, there is a possibility to manage 
a set of model combinations. The goal of the management of the pools is to provide 
diversity of approaches to solve the given problem and to include a variety of different 
modelling philosophies with distinct strengths and weaknesses as well various 
approaches to adaptation into a single model. The hierarchical structure of the 
architecture allows the adaptation of the Soft Sensor at 3 different levels, namely at the 
level of the individual modelling methods, at the level of the model combinations and at 
global (meta-) level, where the behaviour of the whole Soft Sensor is controlled. 
 While there are many challenges remaining at each of these adaptation levels we 
believe that the added flexibility and robustness of the proposed architecture is 
necessary for the challenges already present in the process industry as well as a number 
of other application areas characterised by changing environments. 
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