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“Since all models are wrong the scientist cannot obtain a 

‘correct’ one…yet he can derive results which match to a 

useful approximation, those found in the real world”  

Georg Box 1979 

 

  



 
 

1 
 

Content 

 

Chapter 1 Introduction and Outline         02 

 - Introduction           03 

 - Outline          08 

Chapter 2 Automatic control of bioprocesses       09 

Chapter 3 Automated sonic velocity calculation based on ultrasonic  

resonator measurements for on-line process monitoring     44 

Chapter 4 Measurement and mathematical modelling of  

the relative volume of wheat dough during proofing      60 

Chapter 5 Summary and final remarks        80 

Appendices           88 

 - Eidesstattliche Versicherung        88 

 - Lebenslauf          89 

 

 

  



 
 

2 
 

 

Chapter  

1 

Introduction and outline 

 

  



 
 

3 
 

Introduction 

In August 2002, the Food and Drug Administration (FDA) announced a new initiative. The 

Pharmaceutical Current Good Manufacturing Practices (cGMP) for the 21st Century [1], which aims 

to improve pharmaceutical production as well as product quality. The aim of the initiative was to 

modernize the regulatory processes for medicine and biological products. To this end, the 

manufacturing industry is encouraged to use new technological advances and modern quality 

management techniques at an early stage. In addition, the assessment of new products and changes 

to existing processes should be carried out in a risk-based manner in order to focus the attention of 

the industry and the FDA on critical areas and thus to use the frequently limited resources 

effectively. Well documented and fully understood processes can be adapted more easily with an 

agile process. Otherwise it can be evaluated whether the changes are adapted in a well-understood 

area or in a critical field, which simplifies the estimation and facilitates the provision of additional 

data if necessary. In turn, the FDA also wants to do its part to ensure that their regulatory, audit and 

compliance guidelines are based on the state of the art science, as well as to improve the consistency 

and coordination of drug quality control programs. For this purpose, a number of multidisciplinary 

working groups have been set up, which are made up of FDA experts in various fields of scientific and 

regulatory practice within the FDA and are intended to advance the initiative's objectives. An 

important guiding principle of the initiative is the Science based regulation of product quality. Quality 

and productivity improvement have a common basis, reducing variability through process 

understanding. Producing companies have an interest to improve their productivity and the public 

health sector benefits from improved product quality and safety. The improved process 

understanding and the risk-based approach help the FDA to more efficiently perceive its regulatory 

role. 

The guide to the implementation of the science based regulation of product quality is a framework 

for innovative pharmaceutical development, production and quality assurance. This is described in 

the regulatory framework Process Analytical Technology (PAT) for implementation [2]. The Process 

Analytical Technology Framework consists of a set of scientific principles and tools to promote 

innovation and a strategy for implementation. The strategy for implementation includes a PAT team 

of interdisciplinary experts from the FDA who carry out the process reviews and cGMP inspections, 

and a series of training, certifications carried out on the industry side and FDA side in collaboration. 

Conventional production of many products is carried out in batch processes, the quality of which is 

validated in the laboratory. However, the FDA's investigation within the framework of the cGMP for 

the 21st Century initiative has shown significant opportunities to improve the development, 

production and quality of many places by introducing innovative processes for development, process 
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analysis and process control. At the same time, the investigations have also shown that many 

companies are reluctant to use new systems. The reason that is often mentioned is an uncertainty as 

to the impact of the change on the regulatory process by the FDA as it is perceived as very rigid and 

unfavourable for innovation. It is precisely this point that the PAT initiative wants to adopt. The 

production of pharmaceutical products continues to develop with new scientific discoveries and 

technical innovations. The effective use of these new principles throughout the lifecycle of a product 

can both improve productivity and simplify the regulatory process. Therefore the PAT initiative wants 

to address this very precisely and make this possible. Product quality is to be controlled through an 

effective and efficient manufacturing process. The product specifications are based on a mechanistic 

understanding of how formulation and process factors influence the product. The risk-based 

regulatory approach takes into account the degree of scientific understanding as well as the factors 

influencing the product and the ability to reduce or prevent reduced product quality through 

appropriate control strategies. A process counts as fully understood when all sources for the process 

variability are identified and understood and these are represented in the process. In addition, the 

product quality must be predictable accurately and reliably for all materials, processes and 

production parameters as well as environmental variables. This is necessary even though the 

analytical methods to determine the initial materials are very precise, many physical or mechanical 

attributes are not necessarily well understood. Consequently fluctuations in the initial situation will 

be reflected in the quality of the final product. 

 

Figure 1: Production flow chart, possible disturbance values and important properties of the final product found 

in typical food and drug production processes. The functional dependencies between the raw material, the 

production process and the properties of the final product are a key aspect of the PAT initiative.   
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The PAT Framework defines four possible tool categories. The field of (bio)informatics is a key player 

in the PAT framework to provide the necessary algorithms and software to implement the various 

tools. They allow scientists and producers to evaluate complex relations and do extensive 

calculations to interpret experiments and production processes.  

Process and endpoint monitoring and control tools 

With increasing computational power and improving miniaturization, the evaluation of 

measurements became available almost instantaneous for all sensor technology. This leads to the 

possibility of on-/ at- and in-line process parameter monitoring and data generation. This data can 

further be used to control the processes. Although in recent years many contributions have been 

published dealing with closed loop control, only a minority was actually applied in real bioprocesses. 

A review on this close loop control strategies is given by Stanke and Hitzmann [3]. In any case a 

control algorithm, capable of interpreting the input values is needed, which intelligently and reliably 

decides on the control action that needs to be taken. Process knowledge can be obtained studying 

the process itself, but to study the process an appropriate measurement system is needed. The 

measurement system must provide all necessary information needed to completely understand a 

process. This can be obtained via direct measurements which will give the best knowledge about a 

desired process value. Or in case of an indirect measurement via for example a soft sensor design. 

These are summarized in the following category. 

Modern process analysers or process analytical chemistry tools 

In biotechnology and food technology processes are often employing a biological component for 

their production which is especially affected by variations. Analytics and science in food production is 

facing complicated physical matrices of heterogeneous molecules. The main components in the food 

sector are due to their nutritional value various kinds of fats, proteins and carbohydrates. These are 

incorporated in matrices of very different states e.g. gels, foams with varying pore sizes and even as 

biological components. To ensure the desired product quality with reasonable financial investment is 

the given challenge. Two very specific approaches are given by Stanke et al. [4], presenting a very 

sensitive on-line capable sensor for process monitoring. Here the unspecific quantity “sonic velocity” 

is calculated, measuring resonance phenomena. Stanke et al. [5] are further presenting a theoretical 

model applied on actual measurements to predict important proofing parameters, introducing a soft-

sensor design for this specific process. More general approaches are metabolic engineering witch is 

trying to generate knowledge for e.g. biopharmaceutical and food engineering processes to improve 

the understanding of up-scaling processes as well as the influence of raw materials and varying 

process conditions. [6-8] The recent challenges for bioinformatics emerging from the vast amount of 
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data generated by personalized medicine is summed up in a review by G. H. Fernald et al. [9]. The 

translational bioinformatics and the system biology both try to extract knowledge from data. 

Dynamic mechanistic models as well as data driven models are fueled by the vast amount of 

available data. Many studies try to improve the amount of information that can be extracted from 

large unstructured datasets (NoSQL Databases) as well as generating mechanistic and data driven 

models.  Also handling big data in bioinformatics is the field of translational Bioinformatics emerging 

from the high throughput methods which became a key component in e.g. biomedical research. 

Examples for translational approaches can be found at J.D. Tenenbaum [10] and Y. Vodovitz and G.An 

[11]. Prior to the recent developed process analysers are potent tools for data acquisition and 

analysis summarized in the following category: 

Multivariate data acquisition and analysis tools 

To keep the degree of automation high and dynamically react to changes in the process the feature 

selection of a measurement (e.g. peak detection) becomes important in many applications. Over the 

years many approaches in the field of machine learning as well as data mining and specialised 

applications have been introduced. A review and forecast of upcoming applications can be found at  

Y. Saeys et al. [12].  

Continuous improvement and knowledge management tools  

With higher computerization and the availability of vast amounts of data new challenges emerge. 

New skill sets in the field of bioinformatics are needed to guarantee high quality data as well as the 

validation of the developed tools. Processes need to be standardized to help a safely introduction 

and effective use of new applications. A review on the current fields of regulatory bioinformatics can 

be found at M.J. Healy et al. [13].  

Since a higher degree of automation is the general purpose of the PAT initiative, all tools are aiming 

to provide the needed information for a successful realization.  In the last progress report from 

December 2014 [14] the formation of various internal committees and research teams is described. 

The FDA is building up its internal teams in regards of PAT and provides trainings, conferences, 

several workshops and collaborative research on PAT applications with major pharmaceutical 

companies. Despite all the effort of the FDA and various publications regarding PAT applications and 

tools there is still a long way to go.   
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Outline 

The work in this thesis focuses on the development and understanding of algorithms and software 

solutions for the implementation of PAT tools. To separate the work from mere theoretical concepts 

all the developed software underwent proof of principle measurements, hence demonstrating 

applicability. 

Chapter 2 “Automatic control of bioprocesses” will give a review on process control tools for 

biotechnological processes of the last seven years. New control strategies and sensor developments 

employed for process control in actual processes will be presented. 

Chapter 3 “Automated sonic velocity calculation based on ultrasonic resonator measurements for 

on-line process monitoring” is presenting a very sensitive on-line capable sensor for process 

monitoring. Here the unspecific quantity “sonic velocity” is calculated measuring resonance 

phenomena. The chapter is focusing on the optimal evaluation of the raw signals and is presenting 

measurements on pure water to demonstrate the high accuracy and precision.  

Chapter 4 “Measurement and mathematical modeling of the relative volume of wheat dough 

during proofing” is presenting a theoretical model applied on actual measurements to predict 

important proofing parameters. This soft sensor design (process analyzer) is used to obtain the 

specific CO2 production rate of a microorganism, number of incorporated bubbles and viscosity for 

this very specialized biotechnological process.  

Chapter 5 “Summary and final remarks” will sum up the findings of the previous chapters and link 

them in the context of the PAT tools.  
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Chapter 

2 

Automatic control of bioprocesses 

M. Stanke and B. Hitzmann (2013), 
 

Measurement, Monitoring, Modelling and Control of Bioprocesses. C.-F. Mandenius and N. J. 
Titchener-Hooker, Springer Berlin Heidelberg. 132: 35-63. 
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Abstract  

In this contribution different approaches for open loop and closed loop control applied in bioprocess 

automation are discussed. Although in recent years many contributions have been published dealing 

with closed loop control, only a minority was actually applied in real bioprocesses. Due to the 

immense variety of bioprocesses and increasing demands single approaches for a control suggestion 

are found more rarely. Most publications are combining closed loop control techniques to construct 

hybrid systems. These systems are supposed to combine the advantages of each approach to a well 

performing control strategy. The majority of applications are Soft-sensors in combination with a PID 

controller. The reason that soft-sensors got this importance for control purposes demonstrate the 

lack of direct measurements or its big additional expenditure for robust and reliable on-line 

measurement systems. On this account some applications are proposed to control fermentations 

either at their oxidative maximal capacity like the probing feeding approach or the control based on 

the metabolic state tolerating small amounts of overflow metabolism. Increasing fields are also 

model predictive controller. However reliable and robust process models are required as well as very 

powerful computers to provide the computational demand. The lack of theoretical bioprocess 

models is compensated by hybrid systems combining theoretical models, fuzzy logic and/or artificial 

neural networks methodology. Although many authors suggest a possible transfer of their presented 

control application to other bioprocesses, the algorithms are mostly specialized to a certain 

organisms or certain cultivation condition as well as to a specific measurement system 

Keywords: Closed loop control, PAT, fermentation, bioprocess, review 
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Abbreviations and nomenclature 

Symbol Name 

ANN Artificial neural network 

CER Carbon dioxide evolution rate 

Cfeed Substrate concentration in feed flow 

CO2,feed Oxygen concentration in gassing flow 

CPR Carbon dioxide production rate 

DO Dissolved oxygen  
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E Ethanol 

e(t) Control deviation at time t 

EKF Extended Kalman filter 

FIA  Flow Injection analysis 

GC Gas chromatography 

HCDC High cell density cultivation 

HPLC High pressure liquid chromatography 

K PID controller parameter matrix 

k1,k2,k3 Kinetic parameters 

Kd PID controller parameter derivative part 

Ki PID controller parameter integral part 

KLa Oxygen transfer coefficiant 

Kp PID controller parameter proportional part 

KS Kinetic constant for substrate consumption 

LLM Local linear model 

LoLiMoT Local linear model tree 

m Substrate consumption due to the cell maintenance 

MIMO Multiple input multiple output 

MISO Multiple input single output 

MPC Model predictive controller 

NMPC Non-linear model predictive controller 

ORP  Oxidation-reduction potential 

OTR Oxygen transfer rate 

OUR  Oxygen uptake rate 

PID Proportional, integral, derivative 

rDO specific oxygen consumption rate 

rDOXt oxygen consumption rate 

S Substrate 

Scrit Critical substrate value (overflow metabolite formation) 

SISO Single input single output 

t Time 

u(t) Control action at time t 

V Cultivation volume 

V0 Initial volume 
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V Substrate feeding flow 

X Biomass 

x(t),x Input values (measurement) 

X0 Initial biomass 

YXS Yield factor biomass formation 

µ Specific growth rate 

µB(X) Membership function of a fuzzy logic controller 

µcrit Beginning of overflow metabolism 

µmax Maximal specific growth rate 

µsp Set-point of specific growth rate 

YXS Yield factor biomass formation 

τ Integration variable 
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1 Introduction 

 

Due to competition the industry tends to increase the degree of automation in production processes. 

Only an automated system is never tired, always attentive and will act reliable and therefore can 

provide an optimal process operation. It can react fast to changes in the raw material’s quality as well 

as changes in environmental conditions. As a result the energy and material input can be decreased 

and the process safety, the product yield and quality can be increased. This applies, of course, also 

for bioprocesses. The operation of these processes is usually carried out in three successive steps:  

Up streaming (filing, sterilization, mixing) 

Cultivation / enzyme reaction (growth of cells, bioconversion and production) 

Down streaming (harvesting, separation, concentrating and crystallization)  

Each step demands a high degree of automation. In the first step standard automatic sequence 

control units are available. The quality of raw materials is of special importance for the subsequent 

steps. The automation in the second step is more complicated since complex transport processes are 

combined with a multitude of dynamic biochemical reactions during the cultivation. Therefore, one 

has to deal with a complex, non-linear, multi parameter, time variant system. Little detailed 

comprehensive knowledge is available. The microorganisms used for the synthesis of the product 

have many inherent closed loop systems on their own, which can only be manipulated indirectly 

through environmental conditions by physical and chemical variables. Frequently open loop control 

systems are employed to control cultivation processes. In order to realize a closed loop control 

system reliable measurements are vital. However, the application of closed loop control is still rare, 

due to many reasons: 

In many cases important process variables can only be determined on-line with excessive effort. They 

become available delayed by a dead time as well as lag elements and also discontinuous. Most of the 

bioprocesses are batch or fed-batch processes; therefore one has to deal with a transient (not 

stationary) process, where the automation task is to provide an optimal environment for the 

microorganism. The typical goals of automation of bioprocesses are to 

• compensate failure of any kind 

• minimize energy and raw materials 

• maximize yield and product quality 

• guarantee a safe operation 

• prevent substrate, overflow metabolite or product inhibition 
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• ensure a well-directed induction and repression of enzyme production 

• prevent high shear stress 

• present an optimal environment for the organism for growth as well as production  

 

With the help of standard control algorithms some of these goals can already be achieved. Basic 

bioreactor equipment often includes control algorithms for the volume, temperature, pH, dissolved 

oxygen, and addition of antifoam agents. However these basic controllers are not always sufficient 

for special application. 

In this contribution the state of the art bioprocess automation and recent progress will be discussed. 

An overview of the discussed application is presented in Table 3.1.  

2 Controller design  

2.1. Direct measurements  

 

Especially for closed loop control purposes measurements are fundamental. For bioprocesses in-situ 

measurements like temperature, pH, dissolved oxygen concentration (DO), optical density, pressure 

and at line measurements like the exhaust gas composition are performed most frequently and can 

be used as input variables for a controller [1,2]. At-line measurements based on spectrophotometric , 

mass spectrometric, HPLC, GC and flow injection analysis system (FIA-systems) are applied less 

frequently for on-line measurements and even less often as input variables for a controller [1-3]. Due 

to the fact that direct measurements of important variables, such as growth rate, substrate uptake 

rate and carbon dioxide production rate are missing, soft-sensors have been established which are a 

kind of indirect measurements that can provide an access to relevant variables using different 

techniques. 

2.2 Soft-sensors 

 

Economist and business consultant Peter Drucker once said: “If you can’t measure it, you can’t 

manage it”. Although he didn’t mean bioprocesses, it can also be applied here. Keeping that in mind, 

soft-sensors will here be introduced to “manage the immeasurable”. Soft-sensors or virtual sensors 

are employed to calculate variables out of one or more of the directly measured variables. 

Commonly employed indirect measurements based on theoretical models are oxygen uptake rate 

(OUR), oxygen transfer rate (OTR), carbon dioxide production rate (CPR) and the respiration 

coefficient, which are calculated from exhaust gas measurements and the aeration rate. The 
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identification of critical needs to successfully develop state of the art soft-sensors is presented by R. 

Luttmann et al. [4]. They particularly discuss soft-sensor methods for bioprocess engineering and 

pharmaceutical applications. 

Data-driven soft-sensors are using chemometric models for the estimation of process variables 

[2,3,5]. An example is the calculation of the glucose concentration and dry cell mass concentration 

out of fluorescence data [6]. Using these data driven approaches one has to be attentive not to leave 

the calibration range. Therefore theoretical model-based soft-sensors have usually a more broad 

application range. An important class of these soft-sensors is based on state-observers.  

2.2.1 State observer  

 

A state-observer uses a dynamic theoretical model (state model) of the process to estimate process 

variables (state variables). Using available measurements the state observer corrects the estimated 

state variable in such a way, that its values will converge to the true process values. For the 

implementation of a state observer detailed knowledge of the process is necessary. The advantage of 

state-observers is the determination of immeasurable process variables which can be used for 

process automation.  

An example is given by Jenzsch et al. [7]. They estimated the biomass out of a mass-balance-based 

state-observer employing the relation between OUR, CPR and base consumption. One kind of 

standard state-observers are the Luenberger observer [8] and the Kalman filter. A special class of 

Kalman filter will be discussed in the next chapter.  

2.2.2 Extended Kalman filter 

 

To smooth noisy measurement signals as well as to estimate non measurable process variables, 

different Kalman filters have been applied for controller implementation. For this purpose process 

knowledge is required in the form of a dynamic state model, a measurement model and known 

measurement noise. The main idea of the Kalman filter [9] is the minimization of the error covariance 

of the state variables estimation. Therefore not only the process model, but also the estimated error 

covariance differential equations have to be integrated on-line. If a non-linear state model is used, 

the filter is called extended Kalman filter (EKF). A continuous-discrete EKF uses a continuous non-

linear state model and a discrete measurement model. The differential equations are integrated as 

long as no new measurement value is available. If a new measurement is available, the filter 

equation is applied. As a result the estimation error covariance is minimized and the estimated 
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values of the state variables are adjusted to the measurements. By using a Kalman filter, the time 

varying characteristics of cultivation processes can be implemented in a control algorithm.  

A general overview of specialized state observers is given by Kawohl et al. [10] who compared 

different optimization-based state estimation algorithms in order to judge their estimation quality. 

The Bayesian maximum, a posteriori based constrained extended Kalman filter, the moving-horizon-

state-estimation and the classical unconstrained extended Kalman filter are compared during Monte 

Carlo simulation experiments. The authors conclude that the moving-horizon-state-estimation shows 

higher potential for state estimation in small systems. For higher order systems the adjustments of 

the filter parameters as well as the numerical optimizations were more difficult.  

2.3 Control action 

 

The control action (actuating variable) is the resulting action the controller performs corresponding 

to the control law, e.g. setting substrate flow rate to the appropriate value. Figure 2.3.1 shows the 

principle of a closed loop controller. The control action is the result of the feedback given by the 

process measurement, which might be further processed by a soft-sensor, and the control algorithm. 

The overall goal is to minimize the deviation between the set-point and the controlled variable. 

  

Figure 2.3.1 A general schematic of different (alternative) closed loop control schemes  

The following chapters will discuss a wide variety of applications of state of the art control 

applications for bioprocess automation. First, PID-based controllers in combination with different 

soft-sensors will be presented and after that model linearization approaches are discussed. This is 

followed by fuzzy logic and artificial neural network-based controller, model predictive controller as 
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well as combinations of the three latter methods. Lastly probing feeding, extremum seeking control 

and a heuristic control strategy will be discussed. 

A very basic approach is presented by Lindgren et. al. [11] and Kriz et al. [12] based on a real time in 

situ SIRE® biosensor system combined with an two-step controller (on-off control) for yeast 

cultivations at different biomass concentrations. Their controller could manage a set-point of 10 mM 

glucose for 60 min with a standard deviation of 0.99 mM at biomass concentration up to 80 gL-1. 

3 State of the art control algorithm 

 

The most common closed loop control algorithm is the PID controller. Here e(t) the difference 

between the controlled variable and the set-point at the time t is used to calculate the control action. 

Equation (2.1) is the general form of a PID controller, with 𝐾𝑝 as proportional gain, Ki the integral 

gain, Kd the derivative gain parameter and u(t) as control action. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡)       (3.1) 

The basic PID control is an algorithm responding to current changes with constant parameters, in 

which the knowledge of the process is presented. A special form of the PID controller is the PI 

controller which is lacking the derivative part Kd=0 leading to a more steady system against noisy 

measurement data. This type of controller can be found most frequently.  

3.1 Open loop – closed loop controller  

 

The simplest control action for a cultivation process is an open loop control. One can rearrange 

typical mass balance equations describing a cultivation process in a stirred tank reactor to obtain e.g. 

equation (3.2), representing the feeding law of substrate. This is basically an assumption of a known 

constant substrate consumption rate as well as a predetermined constant specific growth rate µsp, 

which is smaller than the maximal specific growth rate. 

𝐹0(𝑡) = (
µ𝑠𝑝

𝑌𝑋𝑆
+ 𝑚)

𝑉0𝑋0

𝐶𝑓𝑒𝑒𝑑
𝑒µ𝑠𝑝(𝑡−𝑡0)        (3.2) 

𝑋0 = 𝑋(𝑡 = 0)   𝑉0 = 𝑉(𝑡 = 0) 

Using such a controller the cultivation feed is performed following a predefined trajectory. The 

knowledge of the inoculum size as well as the specific growth rate and the yield factors are obviously 

needed to perform this kind of open loop control which is called feed-forward control. Advantages 

and disadvantages of open loop control are presented by Gnoth et al. [13]. In case of disturbances 
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(e.g. wrong pH value in consequence of a failure) the system’s behavior is going to differ from the 

prediction. In this case the feed is predicted incorrectly and the result of the cultivation is not as 

designated, resulting in a waste of resources. To prevent this, the plainest closed loop control 

approach is to add a feedback to the feed-forward term for regulatory action. These feed-forward / 

feedback controllers are usually a class of single input single output (SISO) controller. The control law 

equation (3.4) is the sum of the feed-forward part 𝐹0 which is the estimation of the approximately 

needed feed rate equation (3.2) at time t and the feedback part 𝐹𝑏, in this case delivered by a PI 

algorithm equation (3.3).  

𝐹𝑏(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
         (3.3) 

𝑢(𝑡) = 𝐹𝑏(𝑡) + 𝐹0(𝑡)          (3.4) 

3.2 PID control based on soft-sensors measurements  

 

Controller with more than one input value are classified as multiple input single output (MISO) or 

multiple input multiple output (MIMO) and are represented as multi-loop PID controller or cascade 

PI controller. MIMO systems are coupling their input values according to the interaction and are 

therefore able to map higher complexities of the controlled process. They are supposed to be more 

accurate in their control action than SISO systems. The structures of both controllers (SISO and 

MIMO) are shown in Figure 3.2.1. 

  

 

Figure 3.2.1: The scheme of a SISO controller compared with a MIMO controller 

Applications of these controller types for bioprocess automation will be discussed in the following 

sections. 
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3.2.1 Single input single output control 

 

A combination of a Kalman filter, which measurements came from a glucose FIA system and a PI 

controller, are presented by Arndt and Hitzmann [14]. The system was applied for a S. cerevisiae 

cultivation to control the glucose concentration. The Kalman filter estimates the glucose and biomass 

concentration, the volume of culture broth and the maximal specific growth rate. The predicted 

values were used for a PI feedback controller with set-points of 0.08 gL-1 and 0.05 gL-1. The controller 

established well defined growth conditions over several hours. The authors demonstrated that in 

contrast to the higher set-point, no ethanol was produced at the lower set-point. A similar approach 

was applied by Arndt et al. [15] for an E. coli cultivation to produce phytase. They discussed the 

response of the controller during a failure of the glucose FIA measurement. After the process 

analyser was fixed, the on-line glucose measurement returned after 0.2 h to the set-point of 0.2 gL-1 

and in total of 0.4 h to the intended performance. Control strategies based on DO set-points 

between 5 and 10 % did not result in a higher yield of phytase as shown by Kleist et al. [16].  

A set-point substrate controller of glucose concentration for baker yeast fermentation was presented 

by Klockow et al. [17]. They compensated the dead time of 6 min. caused by the FIA measurement 

system using an extended Kalman filter in combination with a ring buffer, where the estimated 

variables as well as the pumping rate are stored. If a new measurement value from the FIA system is 

sent to the Kalman filter the dead time is considered by taking the historic process variable data of 

that time point out of the ring buffer and the ordinary filtering is carried out followed by the 

simulation up to the current time. Since during the control phase the relative standard deviation of 

the measured values and the set-point were 2.9 % and 4.4 % for the set-point of 0.07 gL-1 and 0.5 gL-1 

respectively, the authors concluded that the control was successful.  

Roever and Slavov [18,19] presented a closed loop control for the application of an E. coli cultivation. 

They also used the measurements from a glucose FIA system for a substrate control of the 

bioprocess. They tested three different approaches by using the FIA measurements with a PI 

controller, the measurements processed by an EKF and a PI controller as well as the measurements 

processed by an EKF combined with a Smith predictor and a PI controller. The latter was used to 

compensate the dead time of the FIA measurements. The authors claim a satisfactory control of the 

glucose concentration and emphasize the superiority of the control employing an EKF resulting in 

higher biomass yields.  
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3.2.2 Multiple input single/multiple output control 

 

Wahab et al. [20] applied a multiple input single output controller for the DO and nitrate control in 

Waste Water Treatment process (WWT). They carried out extensive simulation studies on a non-

linear model to demonstrate the superior performance concerning set-point tracking and 

disturbance robustness.  

Another MISO approach is given by Jenzsch et al. [7] presenting a non-linear adaptive controller 

based on multiple input (oxygen uptake rate, carbon dioxide production rate and base consumption ) 

to estimate the specific growth rate. They are comparing the results of their generic model control to 

the control performance employing only a PI controller. The generic model control shows better 

performance due to the model based feed-forward part and on-line adjusted control parameters 

obtained out of the state estimation.  

Cascade PI/PID controller are employed and used to increase the precision of the PI principle mostly 

for non-linear control problems. Typically a so called slave control loop (inner control loop) is nested 

into a master control loop (outer control loop) as can be seen in Figure 3.2.2.  

 

Figure 3.2.2 Scheme of a cascade process control system 

 

Biener et al. [21] are using this principle to precisely control the temperature in the reactor 

considering a controller cascade for the reactor jacket and the reactor inside. The temperature inside 

the reactor is the main purpose of this control. Therefore it is the outer cascade circle that is called 

master-loop. The temperature of the reactor jacket is used for the inner slave-loop. The state 

observer for process control is using a heat balance equation that calculates the specific growth rate 

out of the heat flow that is meant to be evoked by the cell metabolisms. Based on the specific growth 

rate estimation they formulate a control law for the substrate feed rate. This controller design is 

employed on a high cell density cultivation (HCDC) of E.coli producing green fluorescence protein. 

The authors suggested that the method is advantageous for HCDC because of the high heat flow due 

to the high cell density and describe a gain of sensitivity with increasing biomass. The specific growth 
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rate can be controlled just below the critical growth rate where overflow metabolites occur. The 

authors demonstrate that no other measurement is necessary except DO concentration to guarantee 

an aerobic milieu. The determination of the heat flow generated by the cells and therefore the 

specific growth rate can be estimated reliably. Since the method is only using easy and fast 

measurable process variables, they suggest a potential for its application in standard industrial 

bioprocesses. They recently applied the described method to a Saccharomyces cerevisiae cultivation 

[22] showing the transfer of the technique to another organism. However, this method is applied to 

standard cell growth in 15 L and 30 L reactors. The method is not applicable after e.g. product 

induction, due to the changing heat balance while the cells change their metabolism.   

Soons et al. [23] applied the cascade principle to precisely control the dissolved oxygen using the 

oxygen in the reactor headspace (slave-loop) and the dissolved oxygen in the medium (master-loop). 

They employ a closed loop control based on the DO concentration. With the simplification that the 

oxygen uptake rate is proportional to the OTR, the specific growth rate of the cultivation can be held 

at a constant level by controlling the DO concentration. This is shown in equation (3.5). According to 

Figure 3.2.2 the closed loop control of the dissolved oxygen is carried out through the cascade 

control. The outer loop equation (3.7) is comparing the measured DO (𝐷𝑂𝑠𝑒𝑛𝑠𝑜𝑟) with the set-point. 

The result is handed to the inner loop equation (3.8), calculating the controller output through the 

difference between headspace and medium.  

𝑂𝑈𝑅 = 𝑂𝑇𝑅 = 𝑘𝐿𝑎(𝑂2,ℎ𝑒𝑎𝑑 − 𝐷𝑂)        (3.5)  

𝑑𝑂2,ℎ𝑒𝑎𝑑

𝑑𝑡
=

𝐹02

𝑉ℎ𝑒𝑎𝑑
(𝑂2,𝑖𝑛 − 𝑂2,ℎ𝑒𝑎𝑑) − 𝑂𝑇𝑅       (3.6) 

𝑂2,𝑎 = 𝐾𝑝(𝐷𝑂𝑠𝑒𝑡 − 𝐷𝑂(𝑡)𝑠𝑒𝑛𝑠𝑜𝑟) + 𝐾𝑖 ∫ (𝐷𝑂𝑠𝑒𝑡 − 𝐷𝑂(𝜏)𝑠𝑒𝑛𝑠𝑜𝑟)𝑑𝜏
𝑡

0
     (3.7) 

𝑂2,𝑖𝑛 = 𝐾𝑝(𝑂(𝑡)2,𝑎 − 𝑂(𝑡)2,ℎ𝑒𝑎𝑑) + 𝐾𝑖 ∫ (𝑂(𝜏)2,𝑎 − 𝑂(𝜏)2,ℎ𝑒𝑎𝑑)𝑑𝜏
𝑡

0
    (3.8) 

The cascade is realized by using the result of the PI control action of equation (3.7) in the control 

action of equation (3.8). It provides a more flexible and sophisticated control as if only one PI 

controller would be employed because not only the transport of oxygen between the gassing flow 

and the medium is considered, but also the transport from the headspace of the reactor into the 

medium. Further, Soons et al. are using a Kalman filter calculating the specific growth rate from the 

oxygen consumption provided from the DO control cascade. They demonstrated the implementation 

of a stable and robust closed loop controller for specific growth rate control. The method does not 

need an on-line model and lacks therefore a complex implementation. They show through 

simulations and feed batch experiments, that the controller is robust against disturbances and able 
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to maintain the specific growth rate of vaccine producing Bordetella pertussis at a constant level of 

=0.05 h-1.  

Bodizs et al [24] observed that simple PI controllers for DO does not perform well enough in their 

system and therefore employed a cascade controller. Since they implement the controller to an 

established reactor, they used a set of available multiple inputs, namely OUR, CPR, DO and volume. 

The process is a 2,700 L fed-batch filamentous fungal fermentation. The control is applied to 

substitute a predetermined feeding strategy that is employed to guarantee no limitation of oxygen. 

The dissolved oxygen consumption rate 𝑟𝐷𝑂𝑋𝑡 is measured via a soft-sensor using the approximation 

of equation (3.9), whereas β is a proportionality factor and CER is the carbon dioxide evolution rate, 

which is assumed to be approximately the carbon dioxide transfer rate.  

𝑟𝐷𝑂𝑋𝑡 = 𝛽
𝑂𝑈𝑅+𝐶𝐸𝑅

𝑉
           (3.9) 

The master-loop is controlling the specific consumption rate 𝑟𝐷𝑂. The slave loop controller is applied 

to control the feed rate based on OUR and CPR measurements. It is possible to efficiently control the 

specific consumption rate of oxygen. The main advantage is that it is not limited to a specific strain of 

microorganisms and applicable for a wide variety of fungal fermentations.  

Another application for MIMO-PID bioprocess control is a multi-loop PID feedback controller for 

HCDC control applied by Chung et al. [25], coupling the OTR and the CPR. They are comparing the 

method to a model predictive controller and presented better results for their MIMO-PID using 

simulation studies. The controller can compensate disturbances in the measurement data for 

exhaust gas. Ranjan and Gomes [26] are also applying a cascade MIMO showing the performance 

enhancement against a normal PI controller.  

For all these previously described applications the parameters of the PID controller must be 

determined. Different approaches to determine the PID parameters will be discussed in the next 

chapter.  

3.2.3 PID Tuning  

 

The obviously crucial part for all PID control based approaches is the determination of the 

corresponding PID parameter values. Changes in the process dynamic will most likely lead to 

suboptimal control actions. Ideally tuned controller should show a minimum of oscillation and lead 

the system fast and reliable to the set-point.  



 
 

24 
 

The tuning methods are divided into two groups: the parametric model methods tuning approaches 

and non-parametric. The parametric methods are using either model or experimental data to 

determine the controller parameters and are mostly described as off-line tuning methods, though 

also on-line approaches are tested. The non-parametric methods only partially use models like 

critical states and are suitable for on-line use as well as for an implementation without previous 

extensive plant studies. Wahab et al. [20] are comparing four non-parametric methods for 

multivariable PID tuning introducing one on their own and comparing it with the established 

methods from Davison [27], Penttinen–Koivo [28] and Maciejowski [29]. Soons et al. [23] are using a 

parametric tuning algorithm proposed by Bastin and Dochain [30] guaranteeing a stable behavior and 

a fast convergence towards the set-point. Other parametric approaches to tune a PID controller are 

described in many publications [19,20,31-33] where the authors are using e.g. genetic algorithms to 

obtain the optimal parameters. 

The on-line estimation of the control parameters is described by Bastin and Dochain [30] as well as 

by Perrier et al. [34]. This is used in various control strategies [35-38], where the upper bound of the 

estimation error is minimized on-line and the resulting parameters are considered to be the optimal 

ones. Another approach in this direction is given by Kansha et al. [39] introducing a self-tuning PID 

design applying just-in-time learning. This algorithm is comparing a given database to the state of the 

process on-line and adjusts the gain parameter according to the obtained results and performs a self-

tuning that is derived from the Lyapunov method [40] to guarantee a convergence of the given gain 

parameters. 

3.3 Model linearization based control 

 

Due to the inherent complexity, non-linearity and non-stationarity of the bioprocess Renard et al. 

[41] propose a so called RTS control scheme with Youla parameterization to overcome the bioprocess 

problems. They are developing their control approach for a S. cerevisiae cultivation controlling the 

ethanol concentration on a non-zero value. For substrate concentrations higher than the critical 

substrate concentration 𝑆𝑐𝑟𝑖𝑡 the occurrence of overflow metabolism is assumed. Since 𝑆𝑐𝑟𝑖𝑡 for 

yeast fermentations is at 0.1 gL-1 the authors suggest respiro-fermentative conditions and a quasi-

steady state of the substrate concentration (considering no accumulation of substrate and 

instantaneous consumption, as long as the process does not deviate dramatically from the 

predetermined operation conditions). They get the following model for the relation between feed Fin 

and the measured ethanol concentration as well as the discrete time transfer function, respectively, 
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which are shown in the equations (3.10) – (3.13) (Here we are neglecting a few simplifications to 

keep the introduction of the model as simple as possible). 

𝑑𝐸

𝑑𝑡
=

𝑘1𝑆𝑖𝑛−𝐸

𝑉
(𝑉̇ − 𝑑𝑥(𝑡))          (3.10) 

𝑑𝑥(𝑡) =
𝑘2𝑟1

𝑘2𝑉̇−𝐸
𝑉0𝑋0𝑒(µ∙𝑡)          (3.11) 

𝑟1 = 𝑚𝑖𝑛(µ𝑠 , µ𝑐𝑟𝑖𝑡)          (3.12) 

µ = µ𝑚𝑎𝑥
𝑆

𝑆+𝐾𝑆
    𝑤𝑖𝑡ℎ    µ𝑐𝑟𝑖𝑡 = µ𝑚𝑎𝑥

𝑆𝑐𝑟𝑖𝑡

𝑆𝑐𝑟𝑖𝑡+𝐾𝑆
        (3.13) 

Derived from equation (3.11) they get a time discrete transfer function that maps the feeding rate to 

the ethanol concentration, which is linearized for the purpose of control law application. The 

controller is considering the cell growth as an unstable exponential disturbance. The control method 

is only based on the on-line measurement of ethanol. For the yield coefficient a rough estimation 

(e.g. from literature) seems sufficient. They identify the state between fermentative and respirative 

operation as another way to control the specific growth rate close to the critical value where 

overflow metabolism occurs. They initially employ the controller to a laboratory scale fermentation 

[41] with a set-point of 0.7 g L-1 ethanol concentration with very small errors in the controlled 

variable. Later in the cultivation they observe an accumulation of ethanol, considering the limitation 

of oxygen. This is considered in a subsequent investigation [42] leading to a redesign in the controller 

scheme employing a feed-forward term and determination of the OTR from the exhaust gas 

measurements. The performance of the new proposed controller is evaluated via simulation studies 

of the process with off-line data. The same control algorithm was later [43] employed in an industrial 

fermentation process. The authors are claiming an increased productivity of 40 % using their 

algorithm compared to the up to then used open-loop control. 

Cannizzaro et al. [44] and Valentinotti et al. [45] are describing a linearization approach capturing the 

main macroscopic processes, exponential substrate uptake and very small production of ethanol for 

laboratory scale. They suggest it as another way to control the specific growth rate close to the 

critical value where overflow metabolism occurs. They maintain the overflow metabolite 

concentration (ethanol and acetate for yeast and E. coli, respectively) and view the cell growth as 

perturbation to the system. They introduce an adaptive control strategy for the unstable exponential 

disturbance and are able to hold the ethanol concentration at 0.7 g L-1 while the biomass is growing 

exponentially with a specific growth rate of 0.1 h-1, despite only the overflow metabolite was 

obtained on-line. Hocalar and Türker [46] are presenting an upscaling of this control approach to a 

25 m3 airlift reactor with on-line ethanol, CO2, and O2 measurements. They present good results for 
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the ethanol control around 0.7 g L-1 and high biomass concentration of up to 75 g L-1 with a mean 

specific growth rate of 0.1 h-1. 

3.4 Fuzzy logic based control 

 

Fuzzy logic uses linguistic expressions to handle uncertainties. It does not need a mathematical 

model but rule based process knowledge of an expert operator. In fuzzy control the control action is 

executed by a predefined rule basis, using rather imprecise linguistic expressions. The expansion of a 

crisp false and true based logic to a vague partial true linguistic concept is required, because 

operators are more familiar with it. In fuzzy logic process variables like pH and temperature whose 

values can be very high, low or middle are formulated in expressions. Therefore fuzzy sets are used 

to represent these linguistic values. A classical set like A = {x | 5 < x < 7, x ∈ } contains all real 

numbers between 5 and 7. An extended version of this classical crisp set is a fuzzy set. A fuzzy set B is 

defined as a set of ordered pairs B = {(x, µB(x)) | x ∈ X, ]1,0[: →XB }. Where X contains all 

elements of measurement values which can occur, µB(x) is the membership function of x in B that 

maps each element of X to a membership value. An element belongs to a set which is expressed by 

the membership function to a certain degree that can be a value between 0 and 1 (e.g. the 

temperature in the reactor is high to a degree of 0.7). The membership function can be of any shape. 

Triangual, gaussian or sigmoidal functions are often used. To demonstrate the operation of a fuzzy 

controller a simplified example is presented in Figure 3.4.1 with just two rules:  

Rule 1: If substrate is low OR DO is high then feeding rate is high.  

Rule 2: If substrate is high AND DO is low then feeding rate is low. 

The control action is calculated in three steps: 1. Fuzzification, 2. Inference and 3. Defuzzification. In 

the fuzzification step the membership function is used to calculate the memberschip value of the 

measurements for the corresponding linguistic term. In the inference step the fuzzy operators (here 

OR and AND) are applied, which is equal to the maximum and mimumum determination of the 

membership values of a rule respectively. For each rule the so obtained value is used as upper limit 

value for the conclusion (then-part) of the rule. During the defuzzification the the output fuzzy sets of 

all rules are aggregated to one output fuzzy set as shown in Figure 3.4.1. The centroid of the output 

fuzzy set is calculated as value for the actuating variable of the controller. 
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Figure 3.4.1: Basic fuzzy logic scheme for 2 input values, two rules and one output value  

A fuzzy controller using 9 rules was implemented by Ruano et al. [47] for a biological nitrification 

process in a pilot plant with waste water from a full scale plant. Instead of using an expensive 

nitrogen sensor they employed several pH, ORP (oxidation-reduction potential) and DO sensors. 

Their fuzzy controller comprises two independent controllers: the nitrification as well as the 

denitrification process controller. The first one works as a supervisory control of the aeration control 

system, the second modifies the internal recycle flow rate from the aerobic to the anoxic reactor. 

The authors demonstrated that using the low-cost sensors in combination with their fuzzy controller 

leads to a minimized energy consumption of the process. 

For the temperature control of a batch reactor Causa et al. [48] compared different versions of a 

hybrid fuzzy predictive controller. Two on/off input valves and a discrete-position mixing valve were 

used as controlled variables. The authors concluded that the hybrid fuzzy predictive control in 

combination with an optimization algorithm based on a genetic algorithm gives similar performance 

to that of typical hybrid predictive control strategy but a significant saving with respect to the 

computation time. Compared to a non-linear optimization algorithm [49-51] the genetic algorithms 

make a time saving of approximately 25 %.  

A nonlinear fuzzy controller is presented by Cosenza and Galluzzo [52] for the control of pH and 

temperature during a penicillin production process. In their application the authors used the so 
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called type-2 fuzzy set, where uncertainty in the membership function is also implemented. If no 

uncertainty is present, the membership function is as described above, which is called type 1. In 

simulations the performance of the type-2 fuzzy controller is compared with an ordinary (type-1) 

fuzzy controller as well as a PID controller. It was concluded by the authors that due to the 

nonlinearities and uncertainty of the process the PID controller cannot be compared with the fuzzy 

controller equitable. The best results were obtained with the type-2 fuzzy controller. When 

increasing the measurement noise level, the difference between the type-1 and type-2 becomes 

more clear and evident.  

A special controller based on fuzzy logic has been developed by Takagi and Sugeno [53].The 

difference to the above mentioned fuzzy logic systems is that in the conclusion part a function is 

defined with the input values as arguments. The conclusion of the whole rule system is the sum of 

the function values weighted by the corresponding membership functions. Belchior et al. [54] have 

implemented an adaptive Takagi-Sugeno (TS) fuzzy control algorithm for DO of a activated sludge 

wastewater treatment process, where the parameter of the conclusion are adapted on-line. The 

controller has been constructed by using the Lyapunov synthesis approach with a parameter 

projection algorithm. Parallel to the adaptive control algorithm the authors implemented a 

supervisory fuzzy control with a smooth switching scheme between supervisory and nonsupervisory 

modes. In simulations they could demonstrate that the error obtained by the fuzzy controller was 

less than 2 %, whereas a PI controller produced peaks greater than 10 % 

3.5 Artificial neural network based control 

 

Artificial neural networks copy the functionality as well as the structure of biological neural networks 

by using a mathematical model. In such networks a possible very complex input vector (e.g. visual 

and/or acoustical signal) can be transferred via various neurons to condense information. Figure 

3.5.1 presents a basic artificial neural network (ANN) with four inputs in the input layer, five neurons 

in the hidden layer and two outputs in the output layer. The structure of an ANN can vary in the 

number of layers, the connections of the layers and the number of neurons in each layer depending 

on the complexity the network is supposed to map. Even more outputs than available inputs can be 

generated. To determine if an artificial neuron “transmits” a signal, all its weighted input values are 

employed as argument of a transfer function, which can be e.g. sigmoidal functions for smooth 

transitions or step functions for on/off behavior.  



 
 

29 
 

 

Figure 3.5.1: basic artificial neural network with four inputs in the input layer, five neurons in the hidden layer and one 

output in the output layer 

Corresponding to a biological neural network, an artificial neural network needs to be trained for 

pattern recognition or decision making. During training the parameters, here called weighting 

factors, are calculated by an optimization algorithm. The weighting factors are used to weight each 

input of a neuron. The sum of the weighted inputs is used as argument of the activation function to 

calculate the output of the neuron. A vast amount of different training data is necessary to build the 

training sets for a certain problem. A higher variety in the training data leads thereby to better 

prediction performance of unknown scenarios and prevents that the training data is only memorized.  

Karakuzo et al. [55] present an ANN soft-sensor with fuzzy controller for fed–batch fermentations of 

baker’s yeast. The performance of the controller was compared to a controller using a theoretical 

model-based estimation of the specific growth rate. As input to the network the exhaust gas O2 and 

CO2 concentration, the feeding rate as well as the temperature and pH are used (5 input neurons). 

The neural network consists of six neurons in the hidden layer and one output neuron to estimate 

the specific growth rate. For globally robust training data of their ANN, cultivation data sets under a 

lot of different process conditions were necessary: The authors generated a training data set 

containing 360 patters and an evaluation data set with the same number of patterns from cultivation 

data. The results of the model predictive controller they used for comparison gave satisfactory 

estimation for the specific growth rate, however only under fixed inoculum sizes. The potential of 

their ANN becomes obvious during the change of inoculum sizes. The ANN continues to generate 

reliable estimations for the specific growth rate. They also applied a fuzzy logic controller for air flow 

and feeding control based on the ANN soft-sensor specific growth rate estimation. They performed 

simulation studies with this controller setup leading to acceptable results for large scale applications.  
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Gadkar et al. [56] are presenting an on-line adapting neural network as a soft-sensor that estimates 

the substrate, ethanol and biomass concentration based on dissolved oxygen measurements (1 input 

neuron, 3 output neurons) during a S. cerevisiae fermentation. Their neural network got three hidden 

layers with ten, eight and four neurons respectively. They discuss the performance with and without 

an on-line adaption of the weights in the layers of the ANN. Based on the estimation and a mass 

balance equation the feed rate was calculated by the controller to maintain the glucose 

concentration at the desired set-point. During controlled substrate fermentations with 

concentrations between 0.8 g L-1 – 1.0 g L-1 and a specific growth rate around 0.2 h-1 the functional 

efficiency of the control algorithm is demonstrated. The calculation time for the weight adaption is at 

1 – 2 s, allowing an on-line implementation. They admit the need of a priori off-line data, mirroring 

different cultivation behaviors for training purposes, although in industrial plants such information is 

usually available. Furthermore, they carried out simulation studies with more than one measured 

variable and concluded that more than one measured variable will significantly increase the precision 

of the control. Especially the on-line adaption of the weighting factors of the ANN seems promising, 

leading to a broader range of its applications even outside the training domain. 

3.6 Model predictive control  

 

In the model predictive control (MPC) strategy a dynamic model of a process is applied, to simulate 

the future evolution of the process depending on possible simulated values of the controlled 

variable. Typically the future evolution will only be calculated up to a predefined prediction horizon. 

Using an optimization algorithm the best value of the controlled variable is calculated using a cost 

function. Due to the fact that a differential equation system must be solved on-line, MPC is 

computationally demanding. Therefor for MPC a state estimator as well as a controller is required.  

The better understanding of penicillin formation mechanisms, morphological features and the role of 

mycelia for the synthesis led Ashoori et al. [57] to implement a detailed unstructured model of 

penicillin production in a fed-batch fermenter. This model is used to implement a non-linear MPC 

(NMPC) for the control of the feed rate to increase the penicillin formation. As controller input they 

are applying the on-line measurements of pH and temperature. They propose the performance of a 

novel cost function applying the inverse of the product rather than the common quadratic 

regulation. This is implemented to avoid ordinary differential equation solver problems where it is 

not possible to guarantee the efficiency of set-point tracking. They are comparing the control 

performance to a regular auto-tuned PID controller and identify the NMPC as superior with higher 

process yields. The NMPC is controlling the acid as well as the base flow and the cooling water 
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system. Due to the more sophisticated model the control reaches better performance than a 

previous work by Birol et al. [58]. To face the computational cost of this more detailed model they 

are proposing the application of a locally linear model tree (LoLiMoT) in order to simplify the original 

non-linear model, which is described in the next section. 

Certainly due to the high computational power that needs to be provided for a MPC many of the 

NMPC approaches are still only simulation proven and not yet applied to real processes. Santos et al. 

[59] are working on simulated E. coli NMPC controlled cultivations. They assume the measurement of 

the substrate concentration and keep the specific growth rate at maximum oxidative capacity as well 

as inhibiting the product formation. They applied a special NMPC scheme named min-max based 

robustness consideration. Another new NMPC method as well as a comparative performance 

assessment is applied by Kawohl et al. [10]. They are comparing the performance of NMPC and 

NMPC – EKF for input signal prediction to a method called on-line trajectory planning (OT). OT is 

basically an NMPC in which the estimation horizon is extended to the end of the cultivation. If the 

system is strongly disturbed, this method has certain advantages for the estimation in order to get 

back to optimal productivity, however at the cost of computational power. The experiments were 

carried out through Monte Carlo simulations, simulating experiments through disturbance scenarios. 

The aim of the experiments was to maintain the optimal productivity of the product penicillin. The 

authors are showing the potential of this closed loop control by improving the mean productivity by 

25 % for the MPC and 28 % for the OT method compared to open loop control, where these methods 

especially increase the minimum productivity due to disturbances.  

3.6.1 ANN Fuzzy Hybrid based estimation for NMPC control  

 

A possibility to decrease the complexity of nonlinear models in control algorithms like MPC is given 

by locally linear models, which are applied in a hybrid structure combining neuronal network and 

fuzzy logic abilities. The basic structure is displayed in Figure 3.6.2. Each neuron in the hidden layer 

consists of a membership function and a local linear model (LLM). The arguments of the membership 

function are the input value xi. The function value itself indicates the validity of the corresponding 

LLM, which is in fact a multi linear regression model. The estimate of this model type is the sum of 

the LLM output weighted by the normalized membership function.   
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Figure 3.6.1: Basic structure of a Fuzzy-ANN local linear model 

The algorithm was successfully applied by Ashoori et al [57] to generate a Neuro–Fuzzy model to 

replace equations in a mass balance model for penicillin formation. The authors assessed the 

resulting computational costs as very acceptable for a real time process. They show results which are 

comparable to results generated by the whole model. Although the method is rarely applied for 

biotechnological applications, it gives opportunities to overcome frequently mentioned 

computational limits.  

Simulation studies for the optimal model training, parameter identification and comparisons 

between the closed loop performances are presented by Xu et al. [60-62]. Among others they 

employed the LOLIMOT algorithm to achieve optimal parameters for the membership function as 

well as for the LLM. The LOLIMOT algorithm is an incremental tree-based learning algorithm. A 

detailed description can be found by Nelles [63]. The algorithm adds consecutive locally linear model 

neurons and thereby optimizes the error of calibration. Obviously a high number of neurons will 

describe a trajectory best, but will possibly not decrease the computational power that is needed. 

3.6.2 ANN based estimation for NMPC  

 

Meleiro et al. [64] presented results of a MPC strategy of a fuel-ethanol fermentation process using 

simulations. A neural network has been applied as internal model for the controller. The authors 

used an optimization algorithm to determine a neural network structure as well as the shape of their 

activation functions guiding to parsimonious network architecture. The inputs were the feed flow 

rate, cells recycle rate and flash recycle rate; the output were the biomass, substrate and product 

concentration. The authors presented results demonstrating successfully the control of the biomass, 
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substrate and ethanol concentration with varying set-points between 37 and 32 gL-1, 10 and 3 gL-1 

and 45 and 40 gL-1, respectively. 

3.7 Probing feeding controller strategy  

 

Velut et al. [65] are presenting a probing feeding strategy for E. coli fermentations, operating close to 

the maximum oxygen transfer rate capacity. The probing feeding strategy principle is to superimpose 

a short glucose pulse to the glucose feeding flow and evaluate the response in the dissolved oxygen 

signal. If the dissolved oxygen level decreases the feed rate is increased, due to the determined 

capacity. If no response can be detected the feeding rate is decreased. The technique is combined 

with DO control, which is performed by adjusting the stirrer speed and the temperature control to 

decrease the oxygen demand when the reactor is at its maximum oxygen transfer capacity. They are 

presenting the performance of the combined controller employing an E. coli cultivation. Due to the 

probing feeding control no acetate was produced. The dissolved oxygen concentration was adjusted 

to a set point of 30 % over 22 h while decreasing the temperature from 36 °C to 25 °C.  

For the probing feeding strategy Velut et al. [66] examined the effect of the reactor scale as well as 

the influence of different media types. They apply 1.5 min. glucose pulses for lab scale fermenters 

and longer pulses of 3 min. for large scale fermenters to compensate the slower response. The 

probing feeding strategy showed good results independent of the medium used. However, the use of 

a complex medium leads to complications in the interpretation of the pulse response. They 

determine that the pulsed feeding does not harm the productivity and propose an optimized 

predetermined feeding trajectory with additional superimposed pulses only for monitoring purposes. 

The control strategy is also employed by Xue and Fan [67] for lab and pilot plat (500 L) scale of a 

recombinant E. coli strain producing human-like collagen. For the lab scale experiments they 

obtained similar results to previous performed optimized studies with 69.1 gL-1 dry cell weight and 

13.1 gL-1 human-like collagen. Compared to previous experiments they observe a reduction of the 

resulting dry cell weight when applied to the pilot plant. They assume that this results from the 

different oxygen transfer capacity. However, the resulting collagen with 9.6 gL-1 was a satisfying 

result. They therefore propose a successful application of the probing feeding strategy in a pilot plan 

scale fermentation process. 
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3.8 Extremum seeking control  

 

The extremum seeking control is a gradient method to determine on-line unknown parameters 

throughout the analysis of measurement results as response to a periodical excitation signal called 

dither. Dochain et al. [68] are presenting a survey on two important classes of extremum seeking to 

control the perturbation based and the model base method. They investigate the applicability to 

processes and reaction systems using theoretical models and show the theoretical efficiency of this 

closed loop control algorithm. Cougnon et al. [69] carried out numerical simulation studies on a fed-

batch process model to illustrate their performance for bioprocesses closed loop control. They 

present an adaptive extremum seeking controller. The controller drives the system to an unknown 

desired set-point in order to maximize the biomass production. In this contribution the authors 

assume that the primary carbon source is measurable.  

Dewasme et al. [70] are noticing that model based controls are subject to high uncertainty. Therefore 

they are presenting a model-free extremum seeking strategy on a simulation study of S. cerevisiae. 

They present simulations where the tracking of the critical substrate level (border between 

fermentative and reparative metabolism) is correctly performed by two different gradient estimation 

procedures. The input variables for the algorithm are OUR and CPR. The actuating variable is the 

feeding rate. When parameter uncertainties and noise disturbances occur, they determined a 

recursive least-squares formulation as simple to implement and better in the resulting set-point 

tracking.  

3.9 Control based on a heuristic procedure 

 

Spectroscopic measurements are providing a wide range of information because of the interaction of 

electromagnetic radiation with matter. At the same time, this abundance of information is the 

reason why it is often difficult to interpret. Advanced mathematical tools like partial least squares or 

principle component analysis are employed to overcome the information overload. Hantelmann et 

al. [71] are presenting a new method to monitor and control S. cerevisiae cultivations by 2D in-situ 

fluorescence spectroscopy. They introduce a chemometric model that is derived from multivariate 

data analysis. The glucose feeding rate is thereby controlled predicting the metabolic state directly 

from the fluorescence intensities. The glucose concentration was held in-between 0.4 and 0.5 gL-1 

over 11 h, completely avoiding ethanol formations. They point out that the BioView® they used for 

the cultivation control is suitable for industrial environments.  
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Schenk et al. [72] are presenting a soft-sensor based on mid-infrared spectroscopy. They introduce a 

simple and fast method to calibrate the instrument for Pichia pastoris fermentations. For this 

purpose they assume that only the substrate concentration will change significantly during the 

cultivation and that the absorbance is proportional to the concentration. The control action is 

performed using a PI – controller. They propose that in some cases like Pichia pastoris a multivariate 

calibration procedure is not necessary and the measurement of one compound of interest is 

sufficient (in case of P. pastoris methanol). The calibration is performed in situ using two points. One 

spectra at the beginning without carbon source, one with carbon source. They carried out six 

cultivations in the range of 0.8-15 gL-1 to demonstrate the performance of the control system. The 

standard error of prediction over all cultivations was 0.12 gL-1. They point out that long term baseline 

instability had an influence on the accuracy, which could be fixed using a linear correction of the 

signal. Even though the method was designed for the special case of P. pastoris, the authors mention 

a possible application for other microorganisms.  

4 Conclusions 

 

In this contribution different approaches of open loop and closed loop control for bioprocess 

automation are discussed. As a result of the diversity of bioprocess requirements not just one control 

algorithm can be applied to fulfill all the divers’ requirements but different approaches are 

necessary. During the last 6 years (2006 – 2012) 97 contributions have been published dealing with 

closed loop control for fermentation processes (ScienceDirect found by “closed loop control” AND 

fermentation OR cultivation). But only a minority of up to 30 applications was actually applied to real 

bioprocesses; the majority is based on theoretical applications using simulated processes.  

For closed loop control applications in the majority of cases a soft-sensor is combined with a PID 

controller to determine the feeding rate of substrate or the specific growth rate. This approach can 

be combined with a forward loop, to reduce the problems generated by the dynamic of the 

bioprocess. The reason that soft-sensors got this importance for control purposes demonstrate the 

lack of direct measurements or its big additional expenditure for robust and reliable on-line 

measurement systems.  

Model predictive control has been applied in other application fields successfully and their 

importance will increase in bioprocess automation as well. However reliable and robust process 

models are required as well as very powerful computers to provide the computational demand. The 

lack of theoretical bioprocess models is compensated by hybrid systems combining theoretical 
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models, fuzzy logic and/or artificial neural networks methodology. These systems are supposed to 

combine the advantages of each approach to a well performing control strategy.  

Some application are made to control fermentations either at their oxidative maximal capacity like 

the probing feeding approach or the control based on the metabolic state tolerating small amounts 

of overflow metabolism. Again both approaches demonstrate the lack of necessary direct 

measurements for important process variables like oxidative capacity or the metabolic state of 

microorganisms.  

Although many authors suggest a possible transfer of their presented control application to other 

bioprocesses, the algorithms are mostly specialized to a certain organisms or certain cultivation 

condition as well as to a specific measurement system. The effort to adapt the algorithm and the 

required measurement system to a specific application is still very high. Therefor in near future the 

closed loop control of the feeding rate or growth rate will still be a challenge.  

However, like Max Planck said: “A new scientific truth does not triumph by convincing its opponents 

and making them see the light, but rather because its opponents eventually die, and a new 

generation grows up that is familiar with it.” 
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Table 3.1 Outline over the employed algorithms, the measured values and the controlled processes presented in this contribution 

Measured value Actuating variable Controlled process  Remarks Employed Algorithm References  

Glucose Feeding rate Yeast cultivation   on-off control Lindgren et. al. [11] 

Glucose  Feeding rate Yeast cultivation / E. coli EKF 

 

 

EKF + ring buffer 

EKF + Smith Predictor 

SISO PID Arndt and Hitzmann [14]  

Arndt et al. [15] 

Kleist et al. [16] 

Klockow et al. [17] 

Roever and Slavov [18,19] 

 DO, nitrate Waste water treatment 

process 

Simulation studies MISO PID Wahab et al. [20] 

OUR, CPR, pH 

Temperature, DO 

 

DO 

OUR, CPR, DO, V 

Feeding rate E. coli 

 

S. cerevisiae 

 

Fungal fermentation 

 

Calorimetric model 

 

EKF 

 

MISO PID 

MISO PID cascade 

Jenzsch et al. [7] 

Biener et al. [21] 

Biener et al. [22] 

Soons et al. [23] 

Bodizs et al [24] 

OTR, CPR  HCDC Simulation studies MIMO PID Chung et al. [25] 

Ranjan and Gomes [26] 

Ethanol, DO Feeding rate  S. cerevisiae 

 

 

E.coli 

 

Industrial fermentation 

 

 

Pilot Plant 

RTS controller Renard et al. [41] [42] 

Dewasme [43] 

Cannizzaro et al. [44] Valentinotti et al. 

[45] 

Hocalar and Türker [46] 

pH, ORP, DO Recycle flow rate Nitrification process  Fuzzy logic Ruano et al. [47] 
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pH, temperature 

Air flow 

pH, temperature 

 

Penicillin production 

 

Type 2 – fuzzy logic 

Simulation studies 

 

Cosenza and Galluzzo [52] 

Temperature Temperature  Genetic algorithm Hybrid Fuzzy logic Causa et al. [48] 

  Waste water treatment 

process 

Simulation studies 

 

TS fuzzy logic Belchior et al. [54] 

O2, CO2, feeding rate, 

temperature, pH 

Feeding rate S. cerevisiae ANN Soft Sensor  Fuzzy logic Karakuzo et al. [55] 

DO Feeding rate S. cerevisiae on-line adapting neural 

network 

ANN Gadkar et al. [56] 

pH, temperature pH, temperature Penicillin production  NMPC Ashoori et al. [57] 

Substrate Feeding rate E. coli Simulation studies 

 

NMPC  

NMPC EKF 

on-line trajectory planning 

(OT) 

NMPC Santos et al. [59] 

 

Kawohl et al. [10] 

Feeding rate, cell 

recycle rate, flash 

recycle rate 

Biomass, 

Substrate 

Ethanol 

fuel-ethanol 

fermentation 

ANN model 

Simulation study 

NMPC Meleiro et al. [64] 

DO Temperature, 

feeding rate 

E.coli  

 

Pilot plant 

Probing feeding Velut et al. [65] 

Velut et al. [66] 

Xue and Fan [67] 

   Simulation studies Extremum seeking Dochain et al. [68] 
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OUR, CPR 

 

Feeding rate 

Cougnon et al. [69] 

Dewasme et al. [70] 

Chemometric model 

 

Methanol 

Feeding rate 

 

Methanol feeding 

rate 

S. cerevisiae 

 

Pichia pastoris 

Spectroscopic 

measurements 

heuristic procedures Hantelmann et al. [71] 

 

Schenk et al. [72] 
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Abbreviations and nomenclature 

Value Description Unit 

𝜏𝐺 group delay time 1∙s-1 

𝜑 phase angle  rad 

𝜔 angular frequency rad∙s-1 

   

𝑛 harmonic order 1 

𝑓𝑛 resonance frequency with harmonic order n Hz 

𝑓𝐿 fundamental frequency of the liquid loaded cavity Hz 

𝑧𝐿 impedance liquid Kg∙m-2∙s-1 

𝑧𝑇 impedance transducer Kg∙m-2∙s-1 

𝑓𝑇 fundamental frequency transducer Hz 

𝜎 dispersion factor 1 

   

𝐷 resonator length m 

𝑐𝐿 sonic velocity of the liquid loaded cavity m∙s-1 

   

𝑐𝐿
𝐿𝑖𝑡 literature (reference) value of the sonic velocity m∙s-1 

∆𝑐𝐿
𝐿𝑖𝑡 uncertainty of the reference value  m∙s-1 

∆𝑐𝐿
 uncertainty of the sonic velocity  m∙s-1 

∆𝑓𝐿 uncertainty fundamental frequency  Hz 

∆𝐷 uncertainty resonator length m 
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Abstract 

 

Many applications of sonic velocity measurements for material testing are known and widely 

employed. Yet the technique is rarely employed in biotechnology especially for process monitoring. 

The ultrasonic resonator technology allows a highly precise measurement of the sonic velocity in 

small volumes, which makes this technology interesting for process analytics. New techniques give 

information about various process parameters on-line and in real time. Nowadays special interest is 

the on-line product analytic. Not only is the product concentration is in focus, but the purity and 

activity, which are currently rarely accessible on-line. The ultrasonic resonator is an opportunity to 

close this gap. An evaluation method will be introduced to ensure a maximum in precision and 

accuracy during the measurement. The best obtained precision of less than 0.3 mm∙s-1 sonic velocity 

and an accuracy of 0.027 m∙s-1, for water at different temperatures, give the possibility to detect 

slightest changes and recover worthwhile information during the measurements. 

Keywords: ultrasonic resonator, sonic velocity evaluation, protein detection, protein folding, on-line 

process monitoring 

1 Introduction 

 

The fermentation industry is a constantly growing sector and especially the development of new 

products and manufacturing methods are not only growing, but also changing. Real time process 

monitoring is fundamental for an efficient process control [1](Vojinovic, Cabral et al. 2006). In the 

past years the classical off-line analytic has been displaced from process accompanying methods to 

development only methods. Nowadays the aim is to give a robust and reproducible high quality 

process evaluation on-line and in real time. Different strategies are employed to obtain this for 

biological or chemical processes. [1](Vojinovic, Cabral et al. 2006). Especially noninvasive methods 

based on chemometrical data evaluation are growing more and more. New technologies like the 

recently upcoming Raman spectroscopy and the mid / near infrared spectroscopy as well as the 

fluorescence spectroscopy can possibly give information about a wide range of process variables 

such as glucose, ethanol, lactic acid and biomass concentration [2-5](Solle, Geissler et al. 2003; 

Roychoudhury, Harvey et al. 2006; Kim, Hwang et al. 2008; Shih and E. A. 2009). Many applications 

for ultrasonic measurements are known and widely employed, especially as distance sensors 

[6](Henning and Schröder 2011), but only rarely as sonic velocity measurements for process 

analytics. Krause et al. [7](Krause, Schöck et al. 2011) describe a sonic time of flight measurement 

system using a pulse-echo method for on-line ethanol and glucose concentration characterization.  
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No commercially available device is yet capable to detect the folding state of solvated proteins on-

line. In particular the pharmaceutical industry is in need of effective techniques not just concerning 

product concentration but purity and activity. Ultrasonic resonator measurements have already been 

applied as a suitable process analytical tool for pharmaceutical problems [8](Cavgen, Douglas et al. 

2011). Protein purification is also an ubiquitary occurring topic. There are several crucial steps that 

can compromise the protein folding, which is strictly correlated to activity. That can be for example 

during the inclusion body processing or the purification via a column. Since the recent breakthrough 

in the THz absorption spectroscopy [9](Scheller and Koch 2009) a new method at presumably low 

cost is available for high precision spectroscopy. A research group around Havenith has been working 

on that technology for some time now [10-12](Heugen, Schwaab et al. 2006; Ebbinghaus, Kim et al. 

2007; Kim, Born et al. 2008). The method is highly sensitive and capable to give information about 

the solvation dynamics of solutions. Born et al. [13](Born, Kim et al. 2009) describe that even a single 

phenylalanine-to-tryptophan substitution leads to a detectable change in the solvation dynamics. 

However, there are no practical applications yet. 

Here an on-line monitoring system based on sonic velocity measurements will be introduced. Eggers 

gave an approach to calculate the sonic velocity from an ultrasonic resonator [14, 15](Eggers 1967; 

Eggers 1997). Based on that approach an automated on-line capable evaluation procedure was 

developed. The sonic velocity is a material constant whose square is inversely proportional to the 

product of adiabatic compressibility κad and the density ρ. Different folding states will lead to 

different values for compressibility and therefore different sonic velocities. E.g. an unfolded protein 

is less compressible than a complex folded protein with α-helices, β-sheets and enclosed water 

molecules. This technology has been found sensitive enough to be a possible technique to detect 

protein folding and even different folding pathways. Smirnovas et al. [16, 17](Smirnovas, Winter et 

al. 2005; Smirnovas and Winter 2008) showed that the sonic velocity obtained by the ultrasonic 

resonator can be correlated to other protein analytic methods and give distinct different 

measurement results for varying aggregation pathways. A detection system has been realized for an 

on-line observation of protein related processes which allows access to the parameter folding. Here 

results for an optimal evaluation of ultrasonic resonator measurements are presented to accomplish 

a maximum in precision and accuracy. 
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2 Theory and instrumentation  

2.1 Sample preparation and process link 

In Figure 1 the experimental setup is presented as well as the actual measurement cavity. The 

measurement is realized as a reference method. Two volume flows are directed through a dialysis 

system to even the distinctions between the reference and the sample.  

 

Figure 1 (left) Scheme of the experimental setup. The scattered line is the analyte stream the draw 

through line is the reference stream. They will be equalized in the dialysis and measured in the UR 

block. Based on the process the analyte stream can be returned or disposed. (right) (A) Picture of the 

resonator cavity. (B) Resonator cavity in the copper block slit. 

 

The pore size of the dialysis membrane is selected in a way that proteins cannot pass. A degassing 

unit is applied to prevent air bubbles from rising into the measurement cell which would disturb the 

measurement signal significantly. At the point where the volume flow reaches the ultrasonic 

resonator (UR) the only difference between the two solutions should be the proteins. 

 

2.2 Data acquisition and evaluation 

The actual measurement unit contains a titan block with a cavity enclosed by two gold-layered 

LiNbO3 piezoelectric elements. On one side of the cavity a waveform generator leads the 
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piezoelectric element to vibrations; on the other side of the cavity a second piezoelectric element’s 

function is to act as a receiver. With assistance of an electrical reference circuit the output signals of 

the resonator for a certain input frequency are the amplitude, the phase angle 𝜑 and the group delay 

time 𝜏𝐺: 

𝜏𝐺 = −
𝑑𝜑

𝑑𝜔
 (1) 

with 𝜔 the angular frequency. Due to the complex electro-mechanical coupling between the liquid 

and the piezoelectric material itself, the system does not behave ideally harmonic, but inharmonic. 

As a consequence the fundamental frequency which is needed to determine the sonic velocity 

cannot be measured directly. Therefore an extensive data evaluation is needed. Figure 2 displays a 

characteristic series of resonant frequencies, which have to be determined precisely. This series of 

frequencies is used by Equation 2 to calculate the fundamental frequencies [14, 15](Eggers 1967; 

Eggers 1997). 

𝑓𝑛 = 𝑓𝐿 ∙ [𝑛 +
2

𝜋
∙ atan (

𝑧𝐿

𝑧𝑇
∙ cot (𝜋 ∙

𝑓𝑛

𝑓𝑇
))] (2) 

With fL the fundamental frequency of the liquid-loaded cavity, fn resonance frequency with harmonic 

order n (also called normal modes or overtones), fT fundamental frequency of the transducer, zL 

impedance of the liquid, zT impedance of the transducer. The prediction preciseness was further 

improved by Kononenko [18](Kononenko 1997). He took the diffraction phenomenon in both the 

liquid and the piezoelectric transducers into account. With his work the prediction of the inharmonic 

resonant conditions is more accurate. Therefore Equation 3 is used for the data evaluation which is 

the model described by Eggers [15](Eggers 1997)  

𝑓𝑛 = 𝑓𝐿 ∙ [𝑛 +
2

𝜋
∙ atan (

𝑧𝐿

𝑧𝑇
∙ cot (𝜋 ∙  

𝑓𝑛∙(𝜎∙
(𝑓𝑛−𝑓𝑇)

𝑓𝑇
)

𝑓𝑇
))] (3) 

with 𝜎 as a dispersion factor introduced by Kononenko [18](Kononenko 1997).  

2.3 Estimation of the theoretical error for the absolute sonic velocity determination  

For the uncertainty propagation calculation the following equation will be used. 

∆𝑝(𝑝1. . 𝑝𝑛) = [∑ (
𝜕𝐹

𝜕𝑝𝑖
∙ ∆𝑝𝑖)

2
𝑛
𝑖=1 ]

1

2

 (4)  

Equation 5 is applied to determine the sonic velocity out of the fundamental frequency fL of the 

liquid loaded cavity obtained out of Equation 3.  
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𝑐𝐿 =  2 ∙ 𝐷 ∙ 𝑓𝐿   (5) 

After rearrangement of Equation 5 and with a reference value for the sonic velocity 𝑐𝐿
𝐿𝑖𝑡, the distance 

D can be calculated as 𝐷 =  𝑐𝐿
𝐿𝑖𝑡 ∙ 2𝑓𝐿

−1. Using Equation 6 one can calculate the uncertainty to the 

resonator length caused by the calibration due to a known sonic velocity and its uncertainty ∆𝑐𝐿
𝐿𝑖𝑡 at 

temperature T. 

∆𝐷(𝑇) = [(
−𝑐𝐿

𝐿𝑖𝑡(𝑇)

2𝑓𝐿
2 ∙ ∆𝑓𝐿)

2

+ (
1

𝑓𝐿
∙ ∆𝑐𝐿

𝐿𝑖𝑡)
2

]

1

2

 (6) 

With known uncertainty of the resonator length one can calculate the uncertainty of the absolute 

sonic velocity calculation using the variance of the fundamental frequency determination ∆𝑓𝐿
2 and 

Equation 7. 

∆𝑐𝐿
(𝑇) = [(2𝑓𝐿 ∙ ∆𝐷(𝑇))2 + (2𝐷 ∙ ∆𝑓𝐿)2]

1

2  (7) 

2.4 Software and instrumentation 

The control and evaluation software was programmed in Visual C# .Net Framework 4.0. The 

computer system needed to run the software must at least support Windows XP Service Pack 2.  

The measurement system is an ultrasonic resonator based on the ultrasonic resonator technology of 

the company TF-Instruments (Heidelberg, Germany) modified for flow-through operations. These 

modifications include an inflow and an outflow on opposite sides rather than one opening in the 

measurement cavity.  

Temperature constancy better than 10-3 K between 5 °C and 85 °C of the Peltier thermostat is 

specified by the manufacturer, which has been verified (data not shown). The ultrasonic resonator is 

equipped with a control unit which provides a basic control of the measurements. The maximal 

measurement range of the device is from 6.6 MHz to 11 MHz deviating between resonators, due to 

fabrication variances of the piezo-ceramics. Two data acquisition modes are available: 

Measurements with predetermined frequency steps and measurements employing a Phase Loop 

Lock (PLL). The Frequency mode provides two operating modes: An extended range scan, measuring 

the whole range with a step size of 15 kHz and an operating range scan providing the frequency 

range from 7.1 – 8.9 MHz in 6.5 kHz steps.  

The PLL mode provides a control system that adjusts the oscillator frequency to keep to phases 

matched. The system can be combined with the operating range scan. On a phase shift between two 

resonant frequencies the PLL pulls the oscillator frequency to the next overtone. This mode gives 

crude information (variance of ~625 Hz) for the actual resonant frequency maximum. The last mode 
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is a fine scan mode applying also the PLL. The maximal range of the fine scan mode is ~400 kHz 

around a given frequency (typically obtained from the PLL operating range scan). The step size 

deviates between 10 Hz and 4 kHz for the whole range and around the resonance peak maximum 

between 10 – 40 Hz. This leads to a high resolution resonance peak which is used for further 

evaluations. Because of the fact that the frequency steps are automatically chosen, the 

measurement points are rarely equidistant and uneven gaps occur. 

The device is designed as an on-line process monitor for aqueous solutions. Therefore the evaluation 

procedure will be presented using 19 measurements of deionized water between 20-30 °C, each with 

ten resonance frequencies between 7.5 MHz and 8.5 MHz. The well described dependency of the 

sonic velocity to the temperature down to 0.02 m∙s-1 [19-21](Bilaniuk and Wong 1993; Erratum:, 

Bilaniuk et al. 1996; Marczak 1997) serves as a reference to calculate the accuracy of the evaluation. 

Values in between were interpolated using a polynomial of 3rd degree. To exclude disturbances the 

pump rate was kept very low at 0.01 ml∙min-1. 

 

3 Results and discussion  

The calculation of the sonic velocity is performed in two steps. First step is the determination of the 

resonant frequencies. Second step is the calculation of the sonic velocity from these resonant 

frequencies. The resonance frequency determination can be achieved using the amplitude maxima as 

well as the position of the group delay time maxima. Therefore a comparative evaluation is 

presented. 

3.1 Determination of resonance frequencies  

Decisive for the precision is the preferably exact determination of the resonant frequency, which can 

be calculated from either the group delay time maximum or the amplitude maximum. In order to 

determine the resonant frequency the approach is to fit an analytical function to the resonant peak 

and calculate the position of the maximum of that function. An approach for an analytical function is 

the Lorentz profile which describes the natural line width. The amplitude is considerably affected by 

two effects. The first effect is the base line elevation of the resonant peaks with increasing frequency 

which can be seen in Figure 2.  
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Figure 2 Measurement between 7.3 MHz and 8,8 MHz excitation frequency. The step size of 

excitation is ~6.5 kHz. Displayed data for group delay time and amplitude values in units. Each peak 

represents a resonant peak. The strong differing heights are due to the resolution not always hitting 

the tip of the peaks. 

This is an effect caused by the resonant peak of the piezo-ceramic which is also a system capable to 

oscillate. This effect leads to an angular dislocation of the peaks. The amplitude information is more 

effected by this elevation than the group delay time. Secondly and in agreement with Kaatze et al. 

[22](Kaatze, Lautscham et al. 2000) it can be confirmed that the amplitude peaks are showing distinct 

satellite peaks on both flanks, which can be seen in Figure 3a. The two satellites cannot be measured 

completely because of the PLL usage, ensuring the measurement of the actual resonant peak. For 

comparison Figure 3b shows the group delay time at the same excitation frequency. These satellites 

influence the fit of the Lorentz profile and therefore the determination of the maxima. Both facts 

lead to the assumption, that a fit of the whole peak is not the method of choice. Experiments have 

shown that a fit to the whole peak leads to a less precise evaluation of the peak maximum especially 

for the amplitude. Figure 4 shows this relation. The maximum evaluation was compared to a 

manually performed interpolation of the data to find the maximum of 30 measured resonant peaks. 

Using only the tip (10 %) of the amplitude and group delay peaks leads to the most precise resonant 

peak evaluation, although there is only a slight improvement in the group delay time evaluation. 

Slightly better results can also be obtained by using a polynomial of fourth degree although the 

Lorenz profile is advantageous for automatic processing due to the default shape and therefore less 

failure-prone. 
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Figure 3a High resolution scan of the amplitude resonant peak with flanking satellites. Scattered lines 

are fitted Lorentz profiles. The amplitude peak is superposed signal of more than one resonant peak. 

Figure 3b High resolution scan of the group delay time resonant peak at the same excitation 

frequency as the amplitude peak in Figure 3a.The Scattered line is a fitted Lorentz profile. 

 

Another benefit of not using the whole peak is the obvious reduction of data points, speeding up the 

measurement. Keeping in mind that the evaluation needs to be designed for a flow through system, 

a reduced measurement time is of interest.  

3.2 Calculation of the sonic velocity and uncertainty propagation 

From the series of resonant frequencies the impedance ratio zL/zT as well as the fundamental 

frequency of the liquid-loaded cavity fL can be numerically solved using Equation 8. In Table 1 the 

determined resonant maxima between the harmonic order n=71..79 of deionized water at 21 °C and 

27 °C are given. Applying a constrained nonlinear multivariable optimization algorithm (e.g. Matlab® 

fmincon) can solve the problem described in Equation 8 

𝑓 (𝑓𝐿,
𝑧𝐿

𝑧𝑇
) = ∑ (𝑓𝐿 ∙ [𝑛 +

2

𝜋
∙ atan (

𝑧𝐿

𝑧𝑇
∙ cot (𝜋 ∙  

𝑓𝑛∙(𝜎∙
(𝑓𝑛−𝑓𝑇)

𝑓𝑇
)

𝑓𝑇
))] − 𝑓𝑛)

2

= 𝑚𝑖𝑛79
𝑛=71   (8) 



 
 

54 
 

using zL/zT and fL as variables for the algorithm and the parameter fT = 9313367.457 Hz and for σ = 

1.2. This will lead to results described at the bottom of Table 1. 

With the calculated impedance ratio, a fundamental frequency can be calculated from each 

resonance frequency. The advantage is that further measurements only need to be applied to one 

resonant frequency. The change in sonic velocity will be described due to the differing position of 

that particular peak, which can be determined precisely, as discussed above. Though, Equation 3 is 

only correcting the inharmonic behavior of the resonator and is as well subject to the error that is 

caused by the resonator geometry displacement. That was also proposed by Padilla et al. [23](Padilla, 

Gindre et al. 2001) for this system, who gave an attempt for a new mathematical model to solve this 

problem. To display the error that occurs during the measurement a brief error analysis will be given. 

For the presented data sets a standard deviation of ∆𝑐𝐿𝐿=0.02 m∙s-1 is calculated for all literature 

values of 20 °C - 30 °C. Applying Equation 6 is leading to a mean standard deviation for the resonator 

distance D (∆𝐷) of 1.11·10-7 m. 

The mean standard deviation for the absolute sonic velocity calculation over all test sets is 0.45 m∙s-1. 

In the literature [15](Eggers 1997) is suggested to increase the accuracy by taking a “well-chosen” 

resonant peak for each velocity calculation. The criteria to choose though are not given.  

In this contribution a polynomial correction function is used for the fundamental frequencies which 

lead to a much less variant data. The corrected fundamental frequencies 𝑓𝐿𝑐(𝜔) can be obtained as 

𝒇𝑳𝒄(𝝎) = (𝒇𝑳(𝝎) − 𝒑(𝝎)) +
𝟏

𝒏
∑ 𝒇𝑳(𝝎)𝒏

𝟏 .  (9) 

with 𝐟𝐋(𝛚) fundamental frequency of the liquid loaded cavity at frequency 𝝎 and 𝒑(𝝎) the function 

value of the polynomial of 3rd degree at the frequency 𝝎. An uncorrected and corresponding 

corrected data set can be seen in Table 2 and Table 3 respectively. Although the actual fundamental 

frequency is not calculated in this step, all resonant frequencies will lead to the same sonic velocity 

within a standard deviation of 0.011 m∙s-1 and therefore, by using this procedure, a high reproducible 

value for the sonic velocity is obtained. The mean standard deviation for the absolute sonic velocity, 

applying Equation 7 again, is 0.027 m∙s-1 using the corrected values for the fundamental frequency of 

the liquid loaded cavity. 

The cell length of the cavity is calibrated with an analyte of known sonic velocity (e.g. water at a 

certain temperature). Therefore a defect that probably emerges due to the baseline correction is 

displaced to the cavity cell length. There is an error to the actual fundamental frequency, but 

measurements of the sonic velocity will be recovered correctly. Since the aim is the reproducible 
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determination of the sonic velocity, an uncertainty for the cell length and fundamental frequency 

seems to be tolerable. The best recovery rate was 9 mm∙s-1. 

 

Figure 4 Standard deviation of peak maximum determination dependent to the percentage of used 

peak information for fitting. 100% is the full peak. 10% (of the peak height) only the tip. Data 

obtained from 30 resonance peaks between 7.4 MHz and 8.7 MHz. The peak maximum evaluation 

was obtained using a Lorentz profile and a Simplex algorithm.  

 

Comparable, recently published methods like precise time of flight measurements e.g. by Rodrígues 

López et al. [24](Rodríguez-López, Segura et al. 2012) showing precisions of 30 mm∙s-1 sonic velocity. 

A comparable resonator method (Sonas Technologies) as described by Pablo and Buckin [25](Resa 

and Buckin 2011) is showing similar reproducibility of 0.3 mm∙s-1 and a comparable, but lower 

accuracy of 0.5 m∙s-1. A totally new approach using echo signals from scattering particles as described 

by Lenz et al. [26](Lenz, Bock et al. 2011) shows uncertainties of up to 50 m∙s -1. 

 

4 Conclusions 

 

An evaluation method for a precise on-line capable sonic velocity determination from ultrasonic 

resonators has been presented. It has been shown that significant differences in the precision of the 

evaluation are reached according to the resonator signal that is used for the sonic velocity 

determination. The best results could be obtained using only the tip of the group delay time resonant 

peak; here the standard deviation for the repetitive sonic velocity determination (precision) was 

3∙10-4 m∙s-1. Secondly and more important for the automation capability a new evaluation method 
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was presented for the determination of the sonic velocity. The accuracy of the device could be 

improved using a simple polynomial correction to 0.027 m∙s-1. 
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Table 1 Example for two measured series of overtones and the result of the resonator evaluations at 

21 °C and 27 °C, respectively. The variables zL/zT and fL are obtained solving equation 4 and Matlab® 

fmincon using the overtones described in this table and fT = 9313367.457 Hz and σ = 1.2  

Overtones at 20,5 °C Overtones at 27°C 

F71 = 7523461.503 F71 = 7608700.488 

F72 = 7628932.188 F72 = 7715278.362 

F73 = 7734287.157 F73 = 7821794.367 

F74 = 7839628.702 F74 = 7928280.114 

F75 = 7944961.607 F75 = 8034716.200 

F76 = 8049974.766 F76 = 8140817.320 

F77 = 8155219.156 F77 = 8247131.579 

F78 = 8260099.561 F78 = 8352800.032 

F79 = 8365144.642 F79 = 8458692.132 

  

zL/zT = 0.0796794 zL/zT = 0.0852844 

fL = 106073.43123 fL = 107290.85264 
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Table 2 Calculated fundamental frequencies (fL) for six measurements with ten resonance peaks, respectively with corresponding mean, standard deviation and 

variation coefficient.  

series fundamental frequency of the liquid-loaded cavity fL  [Hz] mean cL std var. coefficient 

21°C 106112,4 106111,7 106110,2 106109,8 106110,6 106108,6 106111,6 106112,1 106117,7 106121,6 106112,63 3,76 3,55E-05 

22°C 106326,3 106327,4 106326,0 106325,5 106326,3 106324,4 106327,8 106328,3 106334,0 106341,5 106328,75 4,93 4,63E-05 

23°C 106537,2 106536,1 106534,3 106533,7 106535,0 106533,1 106536,4 106537,2 106542,7 106551,3 106537,70 5,19 4,87E-05 

25°C 107428,2 107427,1 107426,4 107425,7 107427,2 107428,3 107427,6 107432,3 107434,3 107437,0 107436,97 3,59 3,34E-05 

26°C 107043,5 107040,7 107041,4 107040,5 107040,4 107041,4 107039,8 107043,7 107046,1 107049,4 107042,70 2,87 2,68E-05 

28°C 107140,8 107139,2 107138,3 107137,7 107137,9 107139,2 107138,5 107141,8 107142,9 107145,4 107140,17 2,39 2,23E-05 

           

mean std 3,79 

  

Table 3 Baseline-corrected calculated fundamental frequencies (fL) for six measurements with ten resonance peaks, respectively with corresponding mean, 

standard deviation and variation coefficient.  

series fundamental frequency of the liquid-loaded cavity fL  [Hz] mean cL std var. coefficient 

21°C 106112,7 106112,7 106112,3 106112,6 106113,7 106111,5 106113,4 106111,6 106113,6 106112,3 106112,63 0,71 6,73E-06 

22°C 106329,3 106329,9 106328,9 106329,1 106330,5 106328,6 106330,9 106328,7 106329,6 106329,8 106329,53 0,73 6,83E-06 

23°C 106538,8 106538,5 106537,8 106538,2 106540,1 106538,0 106539,9 106537,7 106538,2 106539,4 106538,66 0,83 7,78E-06 

25°C 107435,2 107435,3 107435,2 107434,6 107435,5 107435,5 107433,1 107435,6 107434,9 107434,3 107434,93 0,73 6,75E-06 

26°C 107044,0 107042,3 107044,0 107043,7 107043,9 107044,6 107042,1 107044,2 107044,0 107043,8 107043,67 0,77 7,20E-06 

28°C 107140,3 107140,2 107140,3 107140,2 107140,3 107140,9 107139,2 107140,9 107140,1 107140,3 107140,27 0,45 4,19E-06 

           

mean std: 0,70 
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Abstract 

Dough is a complex system where yeast cells produce carbon dioxide during the leavening process. 

Mechanistic models were fitted to measurements of the relative volume of wheat dough during 

proofing obtained from a Rheofermentometer. The measurements are carried out using 2 and 4% of 

fresh yeast and proofing temperatures of 28, 32 and 35 °C. The free parameters were the viscosity, a 

specific CO2 production rate and the number of bubbles. The following assumptions were made: 

spherical bubbles in the dough liquid, considered to behave as a Newtonian liquid, the applicability of 

the Bernoulli and ideal gas equations as well as the diffusion theory. The relative volume during 

proofing was simulated with an average percentage error less than 0.5% and the dependency 

between volume expansion and calculated CO2 production rate was obtained with an R2 of 0.88.  

Keywords: Numerical simulation, relative dough volume prediction, proofing, CO2 production rate, 

Rheofermentometer, particle swarm optimization 

1 Introduction 

Proofing of dough is a key step in the production of voluminous baked goods. However dough is a 

complex system where yeast cells are used in the leavening process to produce carbon dioxide for 

the typical sponginess and fluffiness of the final product. Variances in the leavening time are 

common and can possibly lead to non-optimal capacity utilization in bakeries or products with a 

minor volume. The optimal proofing time can only be determined by specially trained and 

experienced operators. Often baking improvers are added to standardize dough and thus minimize 

variances. Supervising this process by calculating the production rate, and possibly predicting the 

optimal proofing time as early as possible during the fermentation, could strongly assist this process 

and avoid non optimal leavened dough. A computational assisted method using mathematical 

process models could also be integrated in computer assisted optimization of bakeries as described 

by Hecker et al. (Hecker et al., 2013).  

One of the first attempts to model the leavening process was presented by de Cindio and Correra (de 

Cindio and Correra, 1995). They introduced a complex model, including the kneading and baking 

process. The different metabolic pathways like lactic acid and ethanol production were included to 

calculate pH and acidity. Later Shah et al. (Shah et al., 1998) presented a more simple model, based 

on classical one-component (carbon dioxide) diffusion theory for the rising gas bubbles. The model 

described a single representative bubble with a mean bubble radius. The carbon dioxide 

concentration available in the dough was considered to be constant at its maximum solubility, but 

the influence of the viscosity was not considered. Chiotellis and Campbell (Chiotellis and Campbell, 

2003b) extended the model from Shah et al. with a Michaelis-Menten-like time-dependent CO2 
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production rate, allowing the carbon dioxide concentration in the dough liquid to increase over time. 

They further extended the model by using a bubble distribution rather than one mean bubble size. 

Córdoba (Córdoba, 2010) also considered viscous effects and the Michaelis-Menten-like kinetic 

modification. However, by choosing a Michaelis-Menten constant of zero, it resulted in a constant 

CO2 production rate. He also performed model simulations to fit the model to actual measured data 

using four different dough recipes. 

Romano et al. (Romano et al., 2007) described the variation of dough volume as a function of time, 

using the more often used Gompertz model derived from the description of bacterial growth in pH-

controlled batch cultures. Bikard et al. (Bikard et al., 2008) presented a 3D numerical simulation 

approach, modeling a 1 cm3 of dough sample using the finite element method.  

Many individual properties of dough are already known and have been often described. For example 

Upadhyay et al. (Upadhyay et al., 2012) described rheological characteristics and the microstructure 

of dough. Zúñiga and Le-Bail (Zúñiga and Le-Bail, 2009) presented results of heat transfer 

measurements in the dough, showing gradients towards the core. Also pressure inhomogeneity can 

be observed as described by Grenier et al. (Grenier et al., 2010). In situ methods like the X-ray 

tomography give insights into the actual bubble growth as described by Babin et al., Bellido et al. and 

Turbin-Orger et al. (Babin et al., 2006; Bellido et al., 2006; Turbin-Orger et al., 2012). They presented 

changes of dough porosity during the leavening process (an increase in porosity from 0.1 to 0.7) as 

well as coalescence phenomena. The phenomenon of coalescence was also discussed by Mills et al. 

(Mills et al., 2003). They showed the appearance of coalescence after a certain amount of time based 

on model simulations derived from Shah et al. (Shah et al., 1998). The formation of new bubbles was 

neglected due to the very high pressure that needs to be overcome according to the Young Laplace 

law. By introducing an anisotropy factor (ratio of the major to the minor axis of an ellipsoid), Bellido 

et al. (Bellido et al., 2006) showed that only ellipsoid bubbles were present. They showed that the 

bubbles size was distributed according to a log-normal distribution with a geometric mean of 50 µm 

radius. The mean of the bubble radii varied in publications between 16 µm (Upadhyay et al., 2012), 

110 µm (Turbin-Orger et al., 2012), 180 µm (Babin et al., 2006) and 300 µm (de Cindio and Correra, 

1995).  

For the mechanistic mathematical description of the volume evolution during the proofing process, 

certain assumptions are necessary: only spherical bubbles are present which are evenly distributed in 

liquid dough and which do not change in number; the Bernoulli, the Henry and the ideal gas law as 

well as the diffusion theory can be applied; the CO2 is the only diffusing substance. The temperature 

is the same all over the dough. One representative bubble is simulated. 
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As the statistician George Box once taught: “Since all models are wrong the scientist cannot obtain a 

“correct” one…yet he can derive results which match, to a useful approximation, those found in the 

real world ” (Box, 1976), hence the obvious inadequacies of the model were accepted. Certain 

modifications to the model used by Córdoba (Córdoba, 2010) are introduced such as a factor for the 

specific CO2 production rate as well as the yeast concentration The model is fitted to measurements, 

using experiments at different temperatures and different amounts of yeast to show the prediction 

accuracy of the modified model. The measurements are carried out in a specialized proofing 

chamber called Rheofermentometer, restricting the dough to develop its volume only in one 

dimension and giving precise results for the actual dough volume. The model is proposed as a 

possible monitoring system to supervise the dough leavening process through the indirect 

measurement of the specific CO2 production rate. 

 

Table 1 Nomenclature of all parameters and variables with corresponding symbol and value. 

Name Symbol Unit Value 

Parameters (Constant) 

Diffusion coefficient D m2/s Equation 6 

Herny Constant H J/kmol Equation 5 

Pressure p Pa 105 

Ideal gas constant Rg J/kmol K 8.314 

Surface tension 𝛾 J/m2 0.04 

Water fraction Xw 1 0.4 

Amount of substance n kmol  

Radius R m  

CO2 dough concentration CD kmol/m3  

CO2 equibrillum concentration C* kmol/m3  

Dough volume at time t V(t) m3  

Gas volume Vgas m3  

Relative dough volume 𝑉𝑟𝑒𝑙 , 𝑣̂𝑟𝑒𝑙  1  

Volume of gas free dough VGas free m3  

Piston height at time t h(t) mm  

Porosity 𝑃, 𝑃̂ 1 0.1 – 0.7 

Parameters (Due to the experimental conditions) 

Temperature (experiments) T °C 28 , 32, 35 
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Temperature (equations) T K  

Initial Bubble Radius R0=Rt=0 m 3-4 

Biomass (fresh yeast) X g 4, 8 

CO2 production rate qCO2 X kmol/m3/s  

Variables 

Viscosity 𝜂 Pa s  

Specific CO2 production rate qCO2 1/s  

Number of bubbles per volume Nb 1/m3  

 

2 Material and Methods 

The dough was produced with commercial wheat flour (196.82 g, Schapfenmühle, type 550: 0.51 – 

0.63% mineral supplements in dry matter, 11.87% moisture content), water (119.18 g), salt (4 g) and 

commercial yeast (4 g and 8 g, Omas Ur Hefe, Fala, Germany, four 41 g units taken from one batch 

and stored in a fridge at 7 °C for 2 days) in a mixer (N50, Hobart GmbH, Germany). 

Mixing time and water temperature were kept constant at 4 min and 32 °C, the temperature of the 

prepared dough ranged between 23.8 °C and 27.8 °C depending on the room temperature. After 

mixing, 200 g of the dough was hand rounded on a worktop, until the dough formed a ball. 

Subsequently the dough was incubated for 80 min in a Rheofermentometer (Chopin, France) at 

temperatures of 28, 32 and 35 °C, charged with 1 kg weight.  

The six different experimental conditions were repeated four times; therefore 24 individual 

experiments were performed in total. 

 

3 Calculations 

3.1 Model calculations  

The differential equation system for the dough modeling is based on the work of Córdoba (Córdoba, 

2010). However, only first order differential equations were used. The increasing bubble radius over 

time is described by Equation 1.  

𝑑𝑅

𝑑𝑡
=

3𝑛𝑅𝑔𝑇

16𝜋𝑅2𝜂
−

𝑝𝑅

4𝜂
−

𝛾

2𝜂
      (1) 

R is the bubble radius, n the amount of substance in the bubble, Rg the gas constant, T the 

temperature,  the viscosity, p the pressure in the liquid dough, and  the surface tension. The 
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change of CO2 concentration in the liquid dough is presented in Equation 2. As distinguished from 

Córdoba (Córdoba, 2010) where the CO2 production rate was modeled by a Michaelis-Menten-like 

kinetic, here it is described by the product of a specific CO2 production rate 𝑞𝐶𝑂2
 and the yeast 

biomass X. The decrease of the CO2 concentration in the liquid dough (last term of Equation 2) is 

obtained by the total amount of CO2 diffusing in the overall Nb existing bubbles per unit volume of 

gas-free dough. The exchange area was determined from the sphere radius R. 

𝑑𝐶𝐷

𝑑𝑡
= 𝑞𝐶𝑂2

𝑋 − 4𝑁𝑏𝐷𝜋𝑅(𝐶𝐷 − 𝐶∗)    (2) 

D is the diffusion coefficient, CD the carbon dioxide concentration in the dough, C* the carbon dioxide 

concentration, which is in equilibrium with its partial pressure in the bubble. Equation 3 represents 

the increase of the amount of substance in a bubble due to its concentration difference in the liquid 

and the gas phase.  

𝑑𝑛

𝑑𝑡
= 4𝐷𝜋𝑅(𝐶𝐷 − 𝐶∗)      (3) 

According to Shah et al. (Shah et al., 1998) Henrys law can be applied in the form of Equation 4. 

𝐶∗ =
𝑝

𝐻
(1 − (

𝑅0

𝑅
)

3
) +

8𝛾

𝐻𝑅
(1 − (

𝑅0

𝑅
)

2
)    (4) 

The temperature dependence of the Henry’s constant was used as described by Chiotellis and 

Campbell (Chiotellis and Campbell, 2003a) for a carbon dioxide-in-dough system (Equation 5).  

𝐻 = 60,000 
𝐽

𝑘𝑚𝑜𝑙∙𝐾
∙ 𝑇 + 900,000 

𝐽

𝑘𝑚𝑜𝑙
     (5) 

The temperature dependence of mass diffusion coefficient D was considered according to the 

Chemical Engineers Handbook (Reid, 1974) as 

𝐷 = 1.77 ∗ 10−9 ∙ 𝑋𝑤 ∙
𝑇

298 𝐾

𝑚2

𝑠
     (6) 

with a water fraction of 𝑋𝑤 = 0.4.  

The specific CO2 production rate, viscosity and the number of bubbles were used as free parameters. 

Table 1 gives an overview of the parameters and variables used in the model equations as well as the 

units and their common values. 

To solve the differential equation system the initial conditions were:  

R(t=0) = R0,  

CD(t=0)= 0,  
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C*(t=0) = 0 , 

𝑛(𝑡 = 0) =
2𝜋𝑅0

2

3𝑅𝑔𝑇
(2𝑝𝑅0 + 4𝛾) (7) 

 

3.2 Solving the differential equation system  

The system of ordinary differential equations of first order was solved using Matlab (R2012a, The 

MathWorks Inc., Natick, Massachusetts USA). The Euler method was used with a step size of Δt = 1 s 

for the integration. For the parameter optimization, a generic particle swarm optimizer (PSO) was 

applied as described by Kennedy and Eberhart (Kennedy and Eberhart, 1995) with a local 

convergence parameter (c1 = 1.2) and a global convergence parameter (c2 = 1.2).  

The particle swarm optimization is a metaheuristic approach, i.e. a method to find optimal solution 

candidates within a given search space. It roots in the idea of an animal swarm on its search for food. 

They spread out and if one individual finds a good spot, the swarm will follow. The movement of 

each single particle is random to some extent, but the swarm as a whole moves towards the 

optimum position. This concept is adapted to the minimization of a function 𝑦 = 𝑓(𝑥), where f is a 

quality function to be minimized and x represents the parameters determining the position of a 

particle in the n-dimensional search space. Each particle owns a velocity vector which determines the 

direction and speed of the particle. The best position every particle has ever reached and the overall 

best position achieved by all members of the particle swarm is attached to each single particle. Every 

iteration of the optimization algorithm the new position of all particles is calculated by changing the 

present velocity in the direction of the best position for both each single particle and the entire 

swarm for a specific time step. A random component is applied during the change of velocity. To 

improve convergence, the velocity is reduced with increasing iterations. The PSO is a global 

optimization algorithm that does not get stuck in local optimal solutions. It does not need knowledge 

of the quality function to be optimized, unlike gradient decent algorithms. Furthermore it is able to 

cover large solution spaces. 

 

To calculate the free parameters (specific CO2 production rate, viscosity and number of bubbles) as 

quality function the method of least squares was used, where the difference between measurement 

and simulation of the relative dough volume was compared (Equation 8). 

F(𝑞CO2
, 𝜂, 𝑁𝑏) = ∑ (𝑉𝑟𝑒𝑙,𝑖 − 𝑉̂𝑟𝑒𝑙,𝑖)

2
+ (𝑃𝑛 − 𝑃̂𝑛)2 = 𝑚𝑖𝑛𝑛

𝑖=1     (8) 
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To ensure agreement between the simulated and measured gas volumes, a constraint was applied. 

The porosity 𝑃̂ was calculated from the relative volume, where an initial porosity of P(t=0) = 0.1 was 

assumed at the beginning of the fermentation, and for ∆𝑉 = 𝑉(𝑡) − 𝑉(𝑡 = 0) was used. 

𝑃̂ =
𝑉𝑔𝑎𝑠

𝑉(𝑡)
=

𝑃(𝑡=0)∙𝑉(𝑡=0)+∆𝑉

𝑉(𝑡)
=

𝑉𝑟𝑒𝑙(𝑡)−𝑃(𝑡=0)−1

𝑉𝑟𝑒𝑙.(𝑡)
     (9) 

The porosity P was calculated from the volume occupied by the bubbles and the relative measured 

volume.  

𝑃 =  
4

3
𝜋𝑅(𝑡=𝑛)3𝑁𝑏∙𝑉𝐺𝑎𝑠 𝑓𝑟𝑒𝑒

𝑉(𝑡=𝑛)
      (10) 

with 𝑉𝑟𝑒𝑙 as the relative volume as described in Equation 11 and 𝑉𝐺𝑎𝑠 𝑓𝑟𝑒𝑒 as the gas free dough volume 

described as 0.9 V(t=0). 

𝑉𝑟𝑒𝑙(𝑡) =
𝑉(𝑡)

𝑉(𝑡=0)
=

ℎ(𝑡)

ℎ(𝑡=0)
     (11) 

𝑉̂𝑟𝑒𝑙.(𝑡) =  [𝑅(𝑡)/𝑅0]3      (12) 

Here h(t) is the height measurement of the piston performed by the Rheofermentometer. 

For each particle (i.e. for each corresponding value of the specific CO2 production rate, viscosity and 

number of bubbles) the system of differential equations was solved and F(𝑞CO2
, 𝜂, 𝑁𝑏) was 

calculated. This was performed in each iteration until the maximum was reached. The parameter 

estimation for one leavening curve took 2 min with 150 particles and a maximum of 300 iterations on 

a computer with a 2.4 GHz processor. 

 

3.3 Calculation of CO2 production rate using pressure measurements by the Rheofermentometer  

Aside from the dough development curve, the Rheofermentometer also measures the pressure in 

the proofing chamber. These values were used to calculate the amount of produced CO2. Since the 

integral of the pressure measurements is proportional to the amount of CO2 produced,the amount of 

CO2 and the production rate were calculated using the ideal gas law  𝜌 𝑉 = 𝑛 𝑅𝑔 𝑇 ..  
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4 Results and Discussion 

4.1 Data pre-processing 

In Figure 1 a typical result from a Rheofermentometer dough height measurement is shown. The 

solid line is the result of the change of the sensor height value resulting in the development curve. 

The development curve shows a distinct lag phase which can be caused by multiple effects. Examples 

include: CO2 dissolving in the liquid phase before evaporation in the gas bubbles; the typical lag 

phase, known from population dynamics, due to adaption in the new environment; the dough 

relaxation after the kneading process. After a certain amount of time the height evolution reduces 

asymptotically towards a maximum. This is most likely because of bubble coalescence and associated 

loss in dough stability (Bellido et al., 2006; Penner et al., 2009; Romano et al., 2007; Shehzad et al., 

2010). 

 

Figure 1 Typical curve of a Rheofermentometer measurement dough development (solid line). On the second 

axis the gradient of the dough development curve is shown (dotted line). The vertical dashed lines are 

representing the points where the data were cut for the following evaluation. 

 

Since the description of a lag phase as well as saturation is not included in the mechanistic model 

presented, pre-processing steps are required. Therefore, only data points for the modeling after the 

end of the lag phase indicated by a gradient greater than 0 (left vertical dashed line in Figure 1) were 

used. After the gradient decreased (right vertical dashed line in Figure 1) the remaining data points 

were discarded. All measurements were pre-processed according to this method. 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000

g
ra

d
ie

n
t 

o
f 

d
o
u
g
h
 d

e
v
e
lo

p
m

e
n
t 

[m
m

/s
]

d
o
u
g
h
 d

e
v
e
lo

p
m

e
n
t 

[m
m

]

proving time [s]



 
 

69 
 

 

4.2 Pre-processed experimental data 

In Figure 2 the pre-processed results of the experiments, condensed to a mean curve with 

corresponding standard deviation within the groups of same amount of yeast and at the same 

temperature are presented. Although the dough samples were carefully prepared, variations within 

the same experimental setup can be seen.  

 

Figure 2 Mean curves of the six different experimental conditions in the Rheofermentometer proofing chamber 

for 4 and 8 g of fresh yeast with 28, 32 and 35 °C proofing temperature, respectively. The error indicator bars 

are describing the respective standard deviation within the corresponding group. 

 

Nonetheless each experimental setup has a characteristic mean curve that can be clearly separated 

from other setups. As expected, the higher the amount of yeast cells and the higher the 

temperature, the higher the relative dough volume increase, indicating the yeast cells produce more 

CO2. Calculating the porosity according to equation 9, all dough samples show the characteristic of 

decreasing gradient of the dough height evolution at a porosity of 0.53 ± 0.05. This happened at 

different times during the proofing. The maximal porosity at the end of leavening for all the various 

dough was around 0.65 ± 0.02, which is in agreement with the described porosity of 0.1 – 0.7 during 

the leavening process (Babin et al., 2006; Bellido et al., 2006). A reference time t=1620 s was chosen 

to give measurement volumes, referenced as V(1620) to compare the volumes of all 24 experiments.  
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In Figure 3 the obtained relative volumes V(1620)/V(t=0) with respect to different temperatures are 

shown. The difference between the individual measurements carried out with 4 g of fresh yeast and 

8 g of fresh yeast can clearly be distinguished. Also a certain temperature dependency can be seen, 

especially distinct for the measurements carried out at 28 °C. The experiments with 4 g of yeast at 

28 °C and 8 g of yeast at 32 °C show the greatest deviation. However one experiment carried out 

with 8 g of yeast and at 32 °C seems to be an outlier (V(1620)/V0= 2.06). 

 

 

Figure 3 Measured relative volume of the dough after 1620 s of proofing time with respect to the 

proofing temperature. 
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In Table 2 the percentage error for the individual experiments within the different conditions are 

presented. Excluding all the experiments with 4 g of yeast at 28 °C and the one experiment with 8 g 

of yeast at 32°C the average percentage error is 10.6%, which seems to be acceptable.  

Table 2 Percentage error of the V(t=1620) values of the experiments  

Percentage error of 28 °C 32 °C K 35 °C 

V(t=1620) from experiment 4 g yeast 39.47 % 9.59 % 9.06 % 

V(t=1620) from Experiment 8 g yeast 10.75 % 24.90 % 14.84 % 

 

Although the production of fresh yeast is highly standardized, as can be seen in Birch et al. (Birch et 

al., 2013), where different commercially available fresh yeast samples were examined, variation of 

the dough leavening cannot be excluded. The difference between batches of dough highly depends 

on environmental conditions, especially the temperature. The experiments presented in this 

contribution showed up to a 4 °C difference in the temperature of the kneaded dough. This was 

mainly caused by fluctuating room temperatures. The temperature gradient in the dough also affects 

the leavening process. Furthermore, the process of hand rounding influenced the inner tension of 

the dough sample, the distribution of gas bubbles and their size distribution. The conditions of the 

raw materials particularly influences the leavening behavior as can be seen e. g. in Sahlström et al. 

(Sahlström et al., 2004). The dough samples showed the variation in their behavior due to the 

combination of all these effects,.  

 

4.3 Calculation results 

An example of measured and simulated values of the relative volume of the dough is shown in Figure 

3, presenting the relative volume of one measurement at 32 °C with 4 g yeast. The percentage error 

of the simulation fit to the measured data is less than 0.5%.  

The results obtained from the parameter estimation can be seen in Table 3 as mean values of the 

free model parameters specific CO2 production rate (qCO2), viscosity (𝜂) and the number of bubbles 

(Nb) with its standard deviation. A sensitivity analysis was performed to determine the quality of the 

parameters. The relative values with respect to the optimal values of the parameters were varied 

between 0.5 and 1.5. The sensitivity of a parameter was then determined by the values of the quality 

function. A high increase of the values of the quality function indicates a high sensitivity of the 

parameter whereas a low increase indicates a poor determination of the parameter during fitting. In 
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Figure 4 the results of the sensitivity study are presented. The specific CO2 production rate and the 

number of bubbles are the free parameters with the highest sensitivity while the viscosity has a 

much smaller impact compared to the other two.  

 

Figure 4 Exemplary dough development (relative volume) measurements for 32 °C and 4 g of yeast as 

well as the result of the model simulation fit (solid line). The square sum of error of the model fit is 

<0.05. 

This is nonetheless in accordance with the standard deviation presented in Table 3. The experimental 

variation is inherent in the error value of Table 3 whereas the values of the quality function represent 

the influence of the parameters for the description of one experiment by the model. As it can be 

seen in Figure 4, the quality function is asymmetrical. Smaller values for the parameters, number of 

bubbles and the viscosity result in a higher increase in the quality function compared to higher 

values. For the specific CO2 production rate the behavior is reversed. 
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Table 3 Mean values of the results obtained from the parameter estimation of the free parameters 

with corresponding standard deviation and percentage error. The specific CO2 production rate is 

discriminated between the different temperatures. For the viscosity and number of bubbles per 

volume the mean values over all experiments are presented. 

Free parameter Mean value Standard deviation Percentage error 

% 

Specific C02 

production rate 

[1/s] 

28 °C 2.31 x 10-6 0.56 x 10-6 24.1 

32 °C 3.54 x 10-6 0.56 x 10-6 15.8 

35 °C 3.54 x 10-6 0.45 x 10-6 12.9 

Viscosity [Pa s] 3.92 x 107 3.18 x 107 81.0 

Number of bubbles [1/m3] 3.15 x 109 0.41 x 109 13.1 

 

The viscosity is not expected to change due to the dough formulation and treatment. However the 

temperature variation and the increased sheer stress, due to the higher CO2 production rate, could 

influence the viscosity values. The low sensitivity of the viscosity of the dough is also reflected in the 

calculation results. Here the majority is in the same dimension with a mean value of 3.92 x 107 Pa s 

and a standard deviation of ± 3.18x107 Pa s. 

The calculated CO2 production rates are presented in Figure 5 with respect to temperature and yeast 

concentration. Similar to the results presented in Figure 3, the difference between 4 and 8 g of yeast 

can be distinguished. A clear linear dependency between the actual reached relative volume at 

1620 s and the calculated production rate is seen (Figure 6) with a coefficient of determination of R2 

= 0.88. This indicates that the calculated production rate is in good agreement with the 

measurements and capable of representing the actual rate of leavening. Figure 7 is obrained by 

plotting the CO2 production rates calculated from the CO2 measurements by the Rheofermentometer 

against the results from the model fit. As seen from the trendline the Rheofermentometer data are 

proportional to the model data with a small intercept. Therefore the systematic deviation is not 

absolute but relative. However the correlation is significant, with a coefficient of determination of 

R2= 0.93. 
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Figure 5 Typical dependence of the quality function on the relative change of free model parameters 

with respect to their optimal values (experiment 8 g yeast, 32 °C).  
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Figure 6 Calculated CO2 production rate with respect to the proofing temperature for experiments 

with 4 and 8 g of yeast. 

 

Figure 7 Calculated CO2 production rate with respect to the relative dough volume after t =1620 s of 

proofing time. 
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Figure 8 Calculated CO2 production rate versus the CO2 production rate calculated from the amount of 

produced gas measured with the Rheofermentometer 

 

4.4 Number of bubbles and bubble radius 

The initial bubble radius was assumed to be 300 µm, which is roughly the value calculated by 

Córdoba (Córdoba, 2010). According to most of the publications addressing the determination of 

bubble sizes and its distribution, this is a very high value. However the best model fits and the best 

prediction was achieved using this bubble size. This is most likely due to the simplification of the 

bubble shape as a sphere. The surface area of the bubble and the number of total bubbles influence 

the amount of CO2 that is diffusing in the bubble (Equation 2 and 3). Here the spherical surface area 

is not capable of describing this phenomenon with more frequently described radii (≈50 – 180 µm). 

Using smaller spherical bubbles resulted in no satisfactory model fits as higher errors were obtained 

and the characteristic evolution of the leavening curve could not be achieved.  

The additional constraint, resulting from equations 8 and 9, prohibits unrealistic void volumes and 

determines the number of bubbles. Here the mean number of bubbles is 3.15 x 109 1/m3 with a 

standard deviation of 0.41x 109 1/m3. The use of the high bubble radius prevents an accurate 

simulation of the trajectory of porosity using Equation 10 during the fermentation, but ensures a 

correct final porosity. The superposition of different sized and shaped bubbles and associated ratio of 
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bubble surface to volume can be reasonably approximated by a radius of 300 µm, covering the actual 

substance transfer.  

 

5. Conclusion 

The maximum error for the relative volume determination in the experiments were 40% for 4 g of 

yeast at 28 °C and the minimum error 9% for 4 g of yeast at 35 °C, indicating the variation caused by 

the yeast and temperature inadequacies for identically prepared samples. This shows the importance 

of well-trained personnel, the addition of baking improvers to standardize dough and thus minimize 

these variances or a computational assisted method predicting the optimal time for the leavening 

process.  

Supervising this process by calculating the production rate and possibly predicting when the proofing 

time is optimal could strongly assist this process, thus avoiding non optimal leavened dough. We 

demonstrated that the model is able to describe the leavening process by introducing the specific 

CO2 production rate as variable and the biomass as parameter. Using different amounts of yeast at 

different temperatures, the process could be modeled with an average percentage error less than 

0.5%. The dependency between the relative volume reached and calculated CO2 production rate had 

an R2 of 0.88. Therefore the model can be used to establish a monitoring system for the leavening 

process. 

  



 
 

78 
 

6. References 

Babin, P., Della Valle, G., Chiron, H., Cloetens, P., Hoszowska, J., Pernot, P., Réguerre, A.L., Salvo, L., 

Dendievel, R., (2006). Fast X-ray tomography analysis of bubble growth and foam setting during 

breadmaking. Journal of Cereal Science 43(3), 393-397. 

Bellido, G.G., Scanlon, M.G., Page, J.H., Hallgrimsson, B., (2006). The bubble size distribution in wheat 

flour dough. Food Research International 39(10), 1058-1066. 

Bikard, J., Coupez, T., Della Valle, G., Vergnes, B., (2008). Simulation of bread making process using a 

direct 3D numerical method at microscale: Analysis of foaming phase during proofing. Journal of 

Food Engineering 85(2), 259-267. 

Birch, A.N., van den Berg, F.W.J., Hansen, Å.S., (2013). Expansion profiles of wheat doughs fermented 

by seven commercial baker's yeasts. Journal of Cereal Science 58(2), 318-323  

Box, G.E.P., (1976). Science and Statistics. Journal of the American Statistical Association 71(356), 791 

- 799. 

Chiotellis, E., Campbell, G.M., (2003a). Proving of Bread Dough I: Modelling The Evolution of the 

Bubble Size Distribution. Food and Bioproducts Processing 81(3), 194-206. 

Chiotellis, E., Campbell, G.M., (2003b). Proving of Bread Dough II: Measurement of Gas Production 

and Retention. Food and Bioproducts Processing 81(3), 207-216. 

Córdoba, A., (2010). Quantitative fit of a model for proving of bread dough and determination of 

dough properties. Journal of Food Engineering 96(3), 440-448. 

de Cindio, B., Correra, S., (1995). Mathematical modelling of leavened cereal goods. Journal of Food 

Engineering 24(3), 379-403. 

Hecker, F.T., Hussein, W.B., Paquet-Durand, O., Hussein, M.A., Becker, T., (2013). A case study on 

using evolutionary algorithms to optimize bakery production planning. Expert Systems with 

Applications 40(17), 6837-6847. 

Kennedy, J., Eberhart, R., (1995). Particle swarm optimization, Neural Networks, 1995. Proceedings., 

IEEE International Conference on, pp. 1942-1948 vol.1944. 

Penner, A., Hailemariam, L., Okos, M., Campanella, O., (2009). Lateral growth of a wheat dough disk 

under various growth conditions. Journal of Cereal Science 49(1), 65-72. 

Reid, R.C., (1974). Chemical engineers' handbook, R. H. Perry and C. H. Chilton (eds.), McGraw-Hill, 

New York (1973). $35.00. AIChE Journal 20(1), 205-205. 



 
 

79 
 

Romano, A., Toraldo, G., Cavella, S., Masi, P., (2007). Description of leavening of bread dough with 

mathematical modelling. Journal of Food Engineering 83(2), 142-148. 

Sahlström, S., Park, W., Shelton, D.R., (2004). Factors Influencing Yeast Fermentation and the Effect 

of LMW Sugars and Yeast Fermentation on Hearth Bread Quality. Cereal Chemistry Journal 81(3), 

328-335. 

Shah, P., Campbell, G.M., McKee, S.L., Rielly, C.D., (1998). Proving of Bread Dough: Modelling the 

Growth of Individual Bubbles. Food and Bioproducts Processing 76(2), 73-79. 

Shehzad, A., Chiron, H., Della Valle, G., Kansou, K., Ndiaye, A., Réguerre, A.L., (2010). Porosity and 

stability of bread dough during proofing determined by video image analysis for different 

compositions and mixing conditions. Food Research International 43(8), 1999-2005. 

Turbin-Orger, A., Boller, E., Chaunier, L., Chiron, H., Della Valle, G., Réguerre, A.L., (2012). Kinetics of 

bubble growth in wheat flour dough during proofing studied by computed X-ray micro-tomography. 

Journal of Cereal Science 56(3), 676-683. 

Upadhyay, R., Ghosal, D., Mehra, A., (2012). Characterization of bread dough: Rheological properties 

and microstructure. Journal of Food Engineering 109(1), 104-113. 

Zúñiga, R., Le-Bail, A., (2009). Assessment of thermal conductivity as a function of porosity in bread 

dough during proving. Food and Bioproducts Processing 87(1), 17-22. 

 

 

  



 
 

80 
 

 

 

Chapter  
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Summary 

Biotechnology is an area where precision and reproducibility are vital. This is due to the fact that 

products are often in form of food, pharmaceutical or cosmetic products and therefore very close to 

the human being. To avoid human error during the production or the evaluation of the quality of a 

product and to increase the optimal utilization of raw materials, a very high amount of automation is 

desired. Tools in the food and chemical industry that aim to reach this degree of higher automation 

are summarized in an initiative called Process Analytical Technology (PAT). Within the scope of the 

PAT, is to provide new measurement technologies for the purpose of closed loop control in 

biotechnological processes. These processes are the most demanding processes in regards of control 

issues due to their very often biological rate-determining component. Most important for an 

automation attempt is deep process knowledge, which can only be achieved via appropriate 

measurements. These measurements can either be carried out directly, measuring a crucial physical 

value, or if not accessible either due to the lack of technology or a complicated sample state, via a 

soft-sensor.  

First of a review is given to present the scope and problems of PAT tools in biotechnological 

applications. The process control, especially the closed loop control is requiring the highest amount 

of process knowledge. The biological component, mostly microorganisms, makes the prediction of 

these processes exceptionally demanding. The latest approaches to control complex biological 

processes from various fields are presented. The most basic tool for a control action is a suitable 

sensor or in the case of bioprocesses a sensor array, delivering vast amounts of process data. Only a 

minority of the available applications during the reviewed time period was actually applied to real 

bioprocesses; the majority is based on theoretical applications using simulated (idealized) processes. 

For closed loop control applications, in the majority of cases a soft-sensor is combined with a PID 

controller to determine the feeding rate of substrate or the specific growth rate. The reason that 

soft-sensors got this importance for control purposes demonstrates the lack of direct measurements 

or its big additional expenditure for robust and reliable on-line measurement systems. The lack of 

theoretical bioprocess models is often compensated by hybrid systems combining theoretical 

models, fuzzy logic and/or artificial neural networks methodology. The review is showing that the 

noble PAT target of a well-known process is still not fully achieved at this level of complexity. The 

effort to transfer the presented algorithms and the required measurement systems to new 

applications is still very high. Which leads to the assumption that closed loop control in many 

bioprocesses will still be a challenge in the near future.  

It is, however, clear that frequently suitable sensors are missing in order to measure all important 

process variables. In the long term, the development of new sensors is necessary to implement 
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powerful control algorithms. In this thesis, an on-line sensor design based on the measurement of 

the sonic velocity is presented. The sonic velocity is a material constant which is highly sensitive to 

changes in the material composition if varying the adiabatic compressibility or density. The aim of the 

presented sensor design was to detect the slightest changes in the composition of a volume flow, 

which is why the focus was on the maximum achievable precision and accuracy of the device.  As 

presented these are not only given by the limitations of the individual components but also by the 

mathematical model and the chosen solution algorithm. The best results could be obtained using 

only the tip of the group delay time resonant peak; here the standard deviation for the repetitive 

sonic velocity determination (precision) was 3∙10-4 m∙s-1. Secondly and more important for the 

automation capability a new evaluation method was presented for the determination of the sonic 

velocity. The accuracy of the device could be improved using a simple polynomial correction to 

0.027 m∙s-1. 

It was examined which information the mathematical description of the proofing process provides 

for the development and application of a soft sensor for a specific biotechnological process in the 

food sector. The yeast dough is responsible for the desired sponge-like structure of the final bread 

and therefore a key step to produce baked goods, typical in the Western world. For the mechanistic 

mathematical description of the change in volume during the fermentation, certain assumptions 

must be made. Examples are: Supposed spherical bubbles, which are uniformly distributed in the 

dough adopted as Newton's fluid, and do not alter their number. The Bernulli, Henry and ideal gas 

law are applicable. In the dough, carbon dioxide is the only diffusing gas and the temperature is the 

same throughout the dough. In the model a representative bubble is simulated and extrapolated on 

the whole dough. The model is based on a differential equation system, modeling the expansion of 

the gas bubbles that get incorporated in the dough during its preparation. The sum of all growing 

bubbles is causing the dough to increase its volume. By measuring the volume increase over time the 

specific production rate of CO2 could be calculated. The maximum error for the relative volume in the 

experiments was 40 %, indicating the variation caused by the yeast and temperature inadequacies 

for identically prepared samples. This showcases the importance of well-trained personnel and the 

complexity of predicting the optimal time for the leavening process. It was demonstrated that the 

model is able to describe the leavening process by introducing the specific CO2 production rate as 

variable and the biomass as parameter. The process could be modeled with an average percentage 

error less than 0.5 %. The dependency between the relative volume reached and calculated CO2 

production rate had an R2 of 0.88. Therefore, the model is a candidate to establish a monitoring 

system for the leavening process. 
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Final remarks 

Even after several years the ideal aim of the PAT initiative is not fully implemented in the industry 

and in many production processes. On the one hand a lot effort still needs to be put into the 

development of more general algorithms which are more easy to implement and especially more 

reliable. On the other hand, not all the available advances in this field are employed yet. The 

potential users seem to stick to approved methods and show certain reservations towards new 

technologies. 

However, like Max Planck said: “A new scientific truth does not triumph by convincing its opponents 

and making them see the light, but rather because its opponents eventually die, and a new 

generation grows up that is familiar with it.” [2] 
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 [2] Planck, Max, Wissenschaftliche Selbstbiographie , Mit der von Max von Laue gehaltenen Traueransprache, Johann 

Ambrosius Barth 3. Auflage Leipzig 1955. 

https://www.zvab.com/servlet/BookDetailsPL?bi=17550055703&searchurl=hl%3Don%26tn%3Dwissenschaftliche%2Bselbstbiographie%2Bmit%26sortby%3D20%26an%3Dmax%2Bplanck
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Zusammenfassung 

Die Biotechnologie ist ein Wissenschaftsbereich, in dem hohe Genauigkeit und Wiederholbarkeit eine 

wichtige Rolle spielen. Dies ist der Tatsache geschuldet, dass die hergestellten Produkte sehr oft den 

Bereichen Nahrungsmitteln, Pharmazeutika oder Kosmetik angehöhren und daher besonders den 

Menschen beeinflussen. Um den menschlichen Fehler bei der Produktion zu vermeiden, die Qualität 

eines Produktes zu sichern und die optimale Verwertung der Rohmaterialen zu gewährleisten, wird 

ein besonders hohes Maß an Automation angestrebt. 

Die Werkzeuge, die in der Nahrungsmittel- und chemischen Industrie hierfür zum Einsatz kommen, 

werden in der Process Analytical Technology (PAT) Initiative zusammengefasst. Ziel der PAT ist die 

Entwicklung zuverlässiger neuer Methoden, um Prozesse zu beschreiben und eine automatische 

Regelungsstrategie zu realisieren. Biotechnologische Prozesse gehören hierbei zu den aufwändigsten 

Regelungsaufgaben, da in den meisten Fällen eine biologische Komponente der entscheidende 

Faktor ist. Entscheidend für eine erfolgreiche Regelungsstrategie ist ein hohes Maß an 

Prozessverständnis. Dieses kann entweder durch eine direkte Messung der entscheidenden 

physikalischen, chemischen oder biologischen Größen gewonnen werden oder durch einen Soft-

Sensor. Ein Soft-Sensor kommt zum Einsatz, wenn direkte Messungen auf Grund fehlender 

Technologie oder durch die Art, in der die Probe vorliegt, nicht möglich sind. Der Stand der 

Automation von Prozessregelung in der Biotechnologie wird zunächst in einem Review betrachtet, 

um den Rahmen und die Probleme der PAT Werkzeuge in biotechnologischen Anwendungen zu 

beschreiben. Die Prozesssteuerung und besonders die Regelung benötigen in diesem Bereich den 

höchsten Grad an Prozesswissen. Die biologische Komponente, die in den meisten Fällen durch einen 

Mikroorganismus repräsentiert wird, macht die Vorhersage des Verhaltens dieser Prozesse 

besonders fordernd. In diesem Review werden die neuesten Ansätze aus unterschiedlichen 

Bereichen biotechnologischer Prozesse dargestellt. Das grundlegendste Werkzeug für eine Regelung 

ist ein geeigneter Sensor oder im Fall eines Bioprozesses ein ganzes Array an Sensoren, die große 

Mengen an Prozessdaten liefern. Nur eine geringe Anzahl der vorgestellten Methoden wurden in 

realen biotechnologischen Prozessen verwendet. Die meisten Applikationen waren theoretisch und 

wurden an simulierten (idealisierten) Prozessen erprobt. Für die Regelungsanwendungen kamen in 

den meisten Fällen eine Kombination aus Soft-Sensor und PID Regler zum Einsatz, um die optimale 

Rate der Substratzugabe oder die spezifische Wachstumsrate zu bestimmen. Anhand der vermehrten 

Verwendung von Soft-Sensoren ist zum einen das Fehlen einer direkten Messmethodik ersichtlich 

und zum anderen der große Aufwand für ein robusteres und zuverlässigeres Messsystem. Da oft 

hinreichende Bioprozessmodelle fehlen, kommen hybride Systeme zum Einsatz, die theoretische 

Modelle, Fuzzy - Logiken und / oder künstliche neuronale Netze kombinieren. Es wird klar, dass das 
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hohe Ziel der PAT Initiative von einem tiefen Prozessverständnis auf dieser Ebene der Komplexität 

noch lange nicht erreicht ist. Der Aufwand, um die vorgestellten Algorithmen und benötigten 

Messsysteme auf einen neuen Prozess zu portieren, ist immer noch sehr hoch. Dies lässt den Schluss 

zu, dass zumindest in naher Zukunft das Regeln von Bioprozessen weiterhin eine Herausforderung 

bleibt.    

Deutlich ist jedoch, dass häufig geeignete Sensoren fehlen, um alle wichtigen Prozessgrößen zu 

messen. Langfristig ist die Entwicklung neuer Sensoren notwendig, um leistungsfähige 

Regelungsalgorithmen zu realisieren. In dieser Arbeit wurde ein on-line Sensoraufbau basierend auf 

der Messung der Schallgeschwindigkeit vorgestellt. Die Schallgeschwindigkeit ist eine 

Materialkonstante, die hochsensibel von der Dichte und adiabatischen Kompressibilität des Materials 

abhängig ist. Das Ziel des vorgestellten Sensoraufbaus ist es, kleinste Änderungen der 

Zusammensetzung eines Volumenstroms zu detektieren. Daher lag der Fokus der präsentierten 

Arbeit auf der maximal erreichbaren Genauigkeit und Wiederholbarkeit des Sensors. Es wurde 

gezeigt, dass die Güte der Messung nicht alleine an den Grenzen der verwendeten Komponenten 

liegt, sondern auch am verwendeten mathematischen Modell und den Auswertealgorithmen. Die 

besten Ergebnisse konnten erzielt werden, indem nur die Spitze des Gruppenlaufzeitpeaks 

verwendet wurde. Die Standardabweichung für die wiederholte Schallgeschwindigkeitsbestimmung 

lag hier bei 3∙10-4 m∙s-1. Wichtiger jedoch für den Aspekt der Automation ist die Vorstellung einer 

neunen Auswertung für die absolute Schallgeschwindigkeitsbestimmung. Die Genauigkeit der 

Messmethode konnte hierdurch durch den Einsatz einer polynomischen Korrektur auf 0.027 m∙s-1 

verbessert werden.  

Im Weiteren wurde untersucht, welche Informationen die mathematische Beschreibung der Gare für 

die Entwicklung und Anwendung eines Soft-Sensors für diesen speziellen biotechnologischen Prozess 

im Lebensmittelsektor zur Verfügung stellt. Die Gare von Hefeteig ist verantwortlich für die 

gewünschte schwammartige Struktur des finalen Gebäcks und daher ein Schlüsselschritt für die 

Herstellung von Backwaren, wie sie in der westlichen Welt typisch sind. Für die mechanistische 

mathematische Beschreibung der Volumenänderung während der Gare müssen bestimmte 

Annahmen getroffen werden, im Folgenden einige Beispiele: Angenommen werden kugelförmige 

Blasen, welche in dem als Newtonsche Flüssigkeit angenommenen Teig gleichmäßig verteilt vorliegen 

und ihre Anzahl nicht verändern. Das Bernulli-, Henry- sowie ideale Gasgesetz sind anwendbar. In 

dem Teig ist Kohlenstoffdioxid das einzige diffundierende Gas und die Temperatur ist überall im Teig 

gleich. In dem Modell wird eine repräsentative Blase simuliert und auf den ganzen Teig 

hochgerechnet. Dem Soft-Sensor liegt ein Modell zu Grunde, dass auf einem 

Differentialgleichungssystem basiert. Dieses simuliert die Ausdehnung der Gasblasen, die bei der 



 
 

86 
 

Herstellung des rohen Teiges eingetragen werden. Die Summe aller wachsenden Blasen im Teig führt 

dabei zu einer Erhöhung des Volumens. Durch die Messung der zeitlichen Veränderung des 

Teigvolumens wird die spezifische Kohlenstoffdioxid Produktionsrate errechnet. Die maximale 

Varianz des Teigvolumens lag bei 40 %, für identisch hergestellte Proben. Dies ist ein Anzeichen 

dafür, wie stark dieser Prozess durch die Hefe- und Temperatur Unterschiede bei der Herstellung 

variiert, obwohl die Proben identisch hergestellt wurden. Dies zeigt die Komplexität der Vorhersage 

sowie die Wichtigkeit von gut geschultem Personal um den optimalen Zeitpunkt zu bestimmen, um 

den rohen Teig dem nächsten Prozessschritt zu übergeben. Es konnte gezeigt werden, dass das 

Modell durch Einführung der spezifischen Kohlenstoffdioxid Produktionsrate als Variable und der 

Biomasse als Parameter in der Lage ist den Prozess der Gare zu beschreiben. Der Prozess konnte 

dabei mit einem durchschnittlichen prozentualen Fehler von weniger als 0,5 % simuliert werden. Der 

Zusammenhang zwischen erreichtem relativem Volumen und der errechneten spezifischen 

Kohlenstoffdioxid Produktionsrate hatte ein Bestimmtheitsmaß von 0,88. Daher scheint das Modell 

ein geeigneter Kandidat zu sein, um ein Überwachungssystem für die Gare zu etablieren. 
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Schlussbemerkung  

Zusammengefasst zeigt sich, dass das finale Ziel der PAT Initiative auch nach einigen Jahren des 

Propagierens weder komplett in der Industrie noch bei vielen Produktionsprozessen angekommen 

ist. Auf der einen Seite liegt dies mit Sicherheit an der Tatsache, dass noch viel Arbeit in die 

Generalisierung von Algorithmen gesteckt werden muss. Diese müsse einfacher zu implementieren 

und vor allem noch zuverlässiger in der Funktionsweise sein. Auf der anderen Seite wurden jedoch 

auch Algorithmen, Regelungsstrategien und eigne Ansätze für einen neuartigen Sensor sowie einen 

Soft-Sensors vorgestellt, die großes Potential zeigen. Nicht zuletzt müssen die möglichen Anwender 

neue Strategien einsetzen und Vorbehalte gegenüber unbekannten Technologien ablegen.  

Wie jedoch Max Planck einmal sagte: "Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der 

Weise durchzusetzen, dass ihre Gegner überzeugt werden und sich als belehrt erklären, sondern 

vielmehr dadurch, dass ihre Gegner allmählich aussterben und dass die heranwachsende Generation 

von vornherein mit der Wahrheit vertraut gemacht ist." [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________________ 

 [1] Planck, Max, Wissenschaftliche Selbstbiographie , Mit der von Max von Laue gehaltenen Traueransprache, Johann 

Ambrosius Barth 3. Auflage Leipzig 1955. 

http://de.wikiquote.org/wiki/Wahrheit
http://de.wikiquote.org/wiki/Aussterben
https://www.zvab.com/servlet/BookDetailsPL?bi=17550055703&searchurl=hl%3Don%26tn%3Dwissenschaftliche%2Bselbstbiographie%2Bmit%26sortby%3D20%26an%3Dmax%2Bplanck
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Appendices 

 

Eidesstattliche Versicherung gemäß §7 Absatz 7 der Promotionsordnung der Universität 

Hohenheim zum Dr. rer. nat. 

 

1. Bei der eingereichten Dissertation zum Thema: 

„Process Analytical Technology in Food Biotechnology -  by means of sensors, signal 

processing, modelling and process control – „ 

handelt es sich um meine eigenständig erbrachte Leistung. 

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen 

Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken 

übernommene Inhalte als solche kenntlich gemacht 

3. Ich habe nicht die Hilfe einer kommerziellen Promotionsvermittlung oder Beratung in 

Anspruch genommen. 

4. Die Bedeutung der eidesstattlichen Versicherung und der strafrechtlichen Folgen einer 

unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt. 

 

Die Richtigkeit der vorstehenden Erklärung bestätige ich: Ich versichere an Eides Statt, dass ich nach 

bestem Wissen die reine Wahrheit erklärt und nichts verschwiegen habe. 
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