1,082 research outputs found

    Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    Get PDF
    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control

    Active control for non-autonomous diaphragm-type pneumatic isolation system by using an augmented adaptive sliding-mode controller

    Get PDF
    An augmented adaptive sliding-mode controller is proposed in this paper for a diaphragm-type pneumatic vibration isolation (PVI) system containing nonlinear characteristics and time-varying uncertainties with unknown bounds. To capture and deal with the time-varying uncertainties, a controller design based primarily on the functional approximation (FA) technique complemented with an adaptive fuzzy sliding-mode control (AFSMC) is adopted. The resultant hybrid design is denoted as FA+AFSMC to differentiate itself from other attempting solutions. Lyapunov stability theory is utilized not only to stabilize the closed-loop system but also to formulate updating laws for weighting coefficients of the FA and tuning parameters of the AFSMC. This developed scheme has online learning ability when it faces the system’s nonlinear and time-varying behaviors. Experimental explorations which incorporates both pressure and velocity measurements as feedback signals reveals that the proposed FA+AFSMC scheme outperforms other attempting solutions, such as passive isolation and pure AFSMC scheme, by a significant margin

    Linear identification of a servo-pneumatic system

    Get PDF
    The identification of a nonlinear system is quite challenging for engineers. This paper presents the automatic identification of a servo-pneumatic cylinder based on a framework implemented in MATLAB. The introduced application shortens the process length of identification and gives areference model, important for controlling

    Controller design of a robotic orthosis using sinusoidal-input describing function model

    Get PDF
    Stroke is one of top leading causes of death in the world and it happens to more than 15 million people yearly. According to the National Stroke Association of Malaysia (NASAM), stroke is the third leading cause of death in Malaysia with around 40,000 cases reported annually. Forty percent of stroke survivors suffer from movement impairments after stroke. My grandfather was one of the victims and he was unable to attend any rehabilitation sessions due to several reasons. Hence, he lost the golden time to regain his movement and freedom. There are a lot of similar cases that happen daily in Malaysia. Besides, as the number of stroke patients increases yearly, the need for physiotherapists or rehabilitation machines equally increases. Hence, a low-cost clinical rehabilitation device is essential to provide assistance for an effective rehabilitation program and substitute the conventional method, as well as to reduce the burden of physiotherapists. In future, the proposed rehabilitation device would benefit not only stroke patients, but any patients who lost their normal walking ability including post-accident patients or those who suffer from spinal cord injury. The rehabilitation device aims to provide training assistance to patients not only in rehabilitation centres but also at home for daily training. The robotic orthosis is planned to be configured based on moving joint angles of human lower extremities. In the first stage of this research, angle-time characteristics for knee and hip swinging motion are utilised as a sagittal motion reference for the rehabilitation devices. The aim of following a proper gait cycle during rehabilitation training is to train patients to perform standing and swinging phases at proper timing and simultaneously provide the correct position reference to the patient during rehabilitation training. This can prevent patients from walking abnormally with an asymmetric gait cycle along or after the rehabilitation program. Besides, various limitations and the bulky structure of other rehabilitation devices lead to the design of the two-link lower limb rehabilitation device. This project aims to develop an assistive robotic rehabilitation device that generates a human gait trajectory for hemiplegic stroke patient gait rehabilitation in future. The shortcomings of other control applications due to environmental conditions and disturbances lead to the implementation of the describing function approach in the development of the devices. A sinusoidal-input describing function (SIDF) approach was implemented to linearize the nonlinear robotic orthosis with linear transfer function. The reason for utilising the SIDF approach is due to the nonlinear actual plant model with the present of load torque disturbances, discontinuous nonlinearities such as saturation and backlash, and also multivariable in the system. The nonlinear properties of the plant were proven in the preliminary stage of the research. A conventional controller, PID control combined with position and trajectory inputs were also applied to the system in the early stage of research. However, the experimental results were not satisfying. Finally, the SIDF approach was chosen to linearize the nonlinear system. Hence, generating a controller is much easier with a linear model of the nonlinear system. A SIDF approach was implemented to generate a controller for the multivariable, nonlinear closed loop system. Firstly, the SIDF approach enables the determination of the linear function of the nonlinear model known as the SIDF model. By utilising the linear model to mimic the behaviour of the nonlinear rehabilitation system, the controller for the nonlinear plant was able to be generated. In this research a controller based on linear control theory technique was used. The MATLAB library was used to design the lead-lag controller for the rehabilitation device. Various simulations such as step responses, tracking and decoupling of both links were performed on the generated controller with the nonlinear model to study the capability of the controller. Besides that, real life experiment testing was carried out to validate the feasibility of the controller designed via the SIDF approach. Simulation and experimental results were obtained, compared, and discussed. The highly accurate responses gained from experimental setup showed the robustness of the controller generated via SIDF approach. The implementation of the SIDF approach in a rehabilitation device (vertical two-link manipulator) is a first and hence, fulfils a novelty requirement for this research

    A Knowledge-based Energy-saving Approach to PWM Control of a Novel Integrated Pneumatic Valve

    Get PDF
    As manufacturers, the automotive industry, and many other sectors face an increasingly competitive global business environment; they seek opportunities to reduce production costs by reducing energy consumption. Energy costs have become one of the fastest-rising expenses of doing business, and the industrial sector is rushing to implement new energy conservation initiatives. Pressurized air, as an important source of energy, has been widely used by various industries, providing simple solutions for automated lines. In this project, an Accumulator-Based Equalization (ABE) strategy was combined with a knowledge-based PWM (Pulse Width Modulation) protocol, and then incorporated into an integrated solenoid valve to increase the energy efficiency of pneumatic systems through the optimization of ow consumption. Modeling and simulation of the proposed system was carried out to assess the proposed ideas and reduce the cost of system developments. An experimental setup was constructed to assess the performance of the proposed strategy when implemented on configured pneumatic control valves. Equalization was performed at home positions of a typical linear actuator, where the chambers of the pneumatic actuators were momentarily connected to each other. Furthermore, during the extension and retraction, a knowledge-based PWM signal was applied to the valves to maintain the actuator dynamics in an acceptable posture. To obtain the knowledge-based PWM signal, an expert-fuzzy controller was designed to control the speed of the actuator. This knowledge-based protocol was based on fuzzy structures, which were implemented on the configured pneumatic valves in an open-loop fashion to decrease the amount of ow consumption without compromising the dynamic performance of the pneumatic actuators. The identified duty cycles profiles from the expert fuzzy controller were implemented on an open-loop system. It was observed that, while an open-loop system is used, the pressurized air can be saved about 20% under 50 N load and almost 10% under 150 N load. "Smoothness index" was defined as a measure of the piston motion smoothness when applying the proposed strategies. In addition to smoothness of the motion in the closed-loop control methods, the energy-saving results were compared to the results of the open-loop system and the performance under different conditions was evaluated

    Controller design of a robotic orthosis using sinusoidal-input describing function model

    Get PDF
    Stroke is one of top leading causes of death in the world and it happens to more than 15 million people yearly. According to the National Stroke Association of Malaysia (NASAM), stroke is the third leading cause of death in Malaysia with around 40,000 cases reported annually. Forty percent of stroke survivors suffer from movement impairments after stroke. My grandfather was one of the victims and he was unable to attend any rehabilitation sessions due to several reasons. Hence, he lost the golden time to regain his movement and freedom. There are a lot of similar cases that happen daily in Malaysia. Besides, as the number of stroke patients increases yearly, the need for physiotherapists or rehabilitation machines equally increases. Hence, a low-cost clinical rehabilitation device is essential to provide assistance for an effective rehabilitation program and substitute the conventional method, as well as to reduce the burden of physiotherapists. In future, the proposed rehabilitation device would benefit not only stroke patients, but any patients who lost their normal walking ability including post-accident patients or those who suffer from spinal cord injury. The rehabilitation device aims to provide training assistance to patients not only in rehabilitation centres but also at home for daily training. The robotic orthosis is planned to be configured based on moving joint angles of human lower extremities. In the first stage of this research, angle-time characteristics for knee and hip swinging motion are utilised as a sagittal motion reference for the rehabilitation devices. The aim of following a proper gait cycle during rehabilitation training is to train patients to perform standing and swinging phases at proper timing and simultaneously provide the correct position reference to the patient during rehabilitation training. This can prevent patients from walking abnormally with an asymmetric gait cycle along or after the rehabilitation program. Besides, various limitations and the bulky structure of other rehabilitation devices lead to the design of the two-link lower limb rehabilitation device. This project aims to develop an assistive robotic rehabilitation device that generates a human gait trajectory for hemiplegic stroke patient gait rehabilitation in future. The shortcomings of other control applications due to environmental conditions and disturbances lead to the implementation of the describing function approach in the development of the devices. A sinusoidal-input describing function (SIDF) approach was implemented to linearize the nonlinear robotic orthosis with linear transfer function. The reason for utilising the SIDF approach is due to the nonlinear actual plant model with the present of load torque disturbances, discontinuous nonlinearities such as saturation and backlash, and also multivariable in the system. The nonlinear properties of the plant were proven in the preliminary stage of the research. A conventional controller, PID control combined with position and trajectory inputs were also applied to the system in the early stage of research. However, the experimental results were not satisfying. Finally, the SIDF approach was chosen to linearize the nonlinear system. Hence, generating a controller is much easier with a linear model of the nonlinear system. A SIDF approach was implemented to generate a controller for the multivariable, nonlinear closed loop system. Firstly, the SIDF approach enables the determination of the linear function of the nonlinear model known as the SIDF model. By utilising the linear model to mimic the behaviour of the nonlinear rehabilitation system, the controller for the nonlinear plant was able to be generated. In this research a controller based on linear control theory technique was used. The MATLAB library was used to design the lead-lag controller for the rehabilitation device. Various simulations such as step responses, tracking and decoupling of both links were performed on the generated controller with the nonlinear model to study the capability of the controller. Besides that, real life experiment testing was carried out to validate the feasibility of the controller designed via the SIDF approach. Simulation and experimental results were obtained, compared, and discussed. The highly accurate responses gained from experimental setup showed the robustness of the controller generated via SIDF approach. The implementation of the SIDF approach in a rehabilitation device (vertical two-link manipulator) is a first and hence, fulfils a novelty requirement for this research

    Robust controller design: Recent emerging concepts for control of mechatronic systems

    Get PDF
    The recent industrial revolution puts competitive requirements on most manufacturing and mechatronic processes. Some of these are economic driven, but most of them have an intrinsic projection on the loop performance achieved in most of closed loops across the various process layers. It turns out that successful operation in a globalization context can only be ensured by robust tuning of controller parameter as an effective way to deal with continuously changing end-user specs and raw product properties. Still, ease of communication in non-specialised process engineering vocabulary must be ensured at all times and ease of implementation on already existing platforms is preferred. Specifications as settling time, overshoot and robustness have a direct meaning in terms of process output and remain most popular amongst process engineers. An intuitive tuning procedure for robustness is based on linear system tools such as frequency response and bandlimited specifications thereof. Loop shaping remains a mature and easy to use methodology, although its tools such as Hinf remain in the shadow of classical PID control for industrial applications. Recently, next to these popular loop shaping methods, new tools have emerged, i.e. fractional order controller tuning rules. The key feature of the latter group is an intrinsic robustness to variations in the gain, time delay and time constant values, hence ideally suited for loop shaping purpose. In this paper, both methods are sketched and discussed in terms of their advantages and disadvantages. A real life control application used in mechatronic applications illustrates the proposed claims. The results support the claim that fractional order controllers outperform in terms of versatility the Hinf control, without losing the generality of conclusions. The paper pleads towards the use of the emerging tools as they are now ready for broader use, while providing the reader with a good perspective of their potential

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Design and development of intelligent actuator control methodologies for morphing wing in wind tunnel

    Get PDF
    In order to protect our environment by reducing the aviation carbon emissions and making the airline operations more fuel efficient, internationally, various collaborations were established between the academia and aeronautical industries around the world. Following the successful research and development efforts of the CRIAQ 7.1 project, the CRIAQ MDO 505 project was launched with a goal of maximizing the potential of electric aircraft. In the MDO 505, novel morphing wing actuators based on brushless DC motors are used. These actuators are placed chord-wise on two actuation lines. The demonstrator wing, included ribs, spars and a flexible skin, that is composed of glass fiber. The 2D and 3D models of the wing were developed in XFOIL and Fluent. These wing models can be programmed to morph the wing at various flight conditions composed of various Mach numbers, angles of attack and Reynolds number by allowing the computation of various optimized airfoils. The wing was tested in the wind tunnel at the IAR NRC Ottawa. In this thesis actuators are mounted with LVDT sensors to measure the linear displacement. The flexible skin is embedded with the pressure sensors to sense the location of the laminar-to-turbulent transition point. This thesis presents both linear and nonlinear modelling of the novel morphing actuator. Both classical and modern Artificial Intelligence (AI) techniques for the design of the actuator control system are presented. Actuator control design and validation in the wind tunnel is presented through three journal articles; The first article presents the controller design and wind tunnel testing of the novel morphing actuator for the wing tip of a real aircraft wing. The new morphing actuators are made up of BLDC motors coupled with a gear system, which converts the rotational motion into linear motion. Mathematical modelling is carried out in order to obtain a transfer function based on differential equations. In order to control the morphing wing it was concluded that a combined position, speed and current control of the actuator needs to be designed. This controller is designed using the Internal Model Control (IMC) method for the linear model of the actuator. Finally, the bench testing of the actuator is carried out and is further followed by its wind testing. The infra red thermography and kulite sensors data revealed that on average on all flight cases, the laminar to turbulent transition point was delayed close to the trailing edge of the wing. The second journal article presents the application of Particle Swarm Optimization (PSO) to the control design of the novel morphing actuator. Recently PSO algorithm has gained reputation in the family of evolutionary algorithms in solving non-convex problems. Although it does not guarantee convergence, however, by running it several times and by varying the initialization conditions the desired results were obtained. Following the successful computation of controller design, the PSO was validated using successful bench testing. Finally, the wind tunnel testing was performed based on the designed controller, and the Infra red testing and kulite sensor measurements results revealed the expected extension of laminar flows over the morphing wing. The third and final article presents the design of fuzzy logic controller. The BLDC motor is coupled with the gear which converts the rotary motion into linear motion, this phenomenon is used to push and pull the flexible morphing skin. The BLDC motor itself and its interaction with the gear and morphing skin, which is exposed to the aerodynamic loads, makes it a complex nonlinear system. It was therefore decided to design a fuzzy controller, which can control the actuator in an appropriate way. Three fuzzy controllers were designed each of these controllers was designed for current, speed and position control of the morphing actuator. Simulation results revealed that the designed controller can successfully control the actuator. Finally, the designed controller was tested in the wind tunnel; the results obtained through the wind tunnel test were compared, and further validated with the infra red and kulite sensors measurements which revealed improvement in the delay of transition point location over the morphed wing
    • …
    corecore