269 research outputs found

    Vibration suppression in flexible structures via the sliding-mode control approach

    Get PDF
    Sliding mode control became very popular recently because it makes the closed loop system highly insensitive to external disturbances and parameter variations. Sliding algorithms for flexible structures have been used previously, but these were based on finite-dimensional models. An extension of this approach for differential-difference systems is obtained. That makes if possible to apply sliding-mode control algorithms to the variety of nondispersive flexible structures which can be described as differential-difference systems. The main idea of using this technique for dispersive structures is to reduce the order of the controlled part of the system by applying an integral transformation. We can say that transformation 'absorbs' the dispersive properties of the flexible structure as the controlled part becomes dispersive

    Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model

    Get PDF
    We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for many classes of trajectories, such as those in which height is a polynomial function of Center of Mass horizontal displacement, the Orbital Energy can be solved in closed form. Given expressions for the Orbital Energy, we can compute where the foot should be placed or how the Center of Mass trajectory should be modified in order to achieve a desired velocity on the next step. We demonstrate our results using a planar biped simulation with light legs and point mass body. We parameterize the Center of Mass trajectory with a fifth order polynomial function. We demonstrate how the parameters of this polynomial and step length can be changed in order to achieve a desired next step velocity

    Anomaly Detection in Test Equipment via Sliding Mode Observers

    Get PDF
    Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control allow not only control of the model internal states to the states of the real-life system, but also identification of the disturbance or anomaly that may occur

    Time Optimal State Feedback Control with Application to a Spacecraft with Cold Gas Propulsion

    Get PDF
    A cold gas propulsion system is well suited to provide the required thrust for a small surveyor spacecraft operated near an asteroid or planetary surface. The cold gas propellant can obtained in-situ from local surface or atmospheric constituents. For small spacecraft, the cold gas system may be limited to only on-off control of the main tank where the generated thrust is directly dependent on the tank pressure. As such the thrust will slowly decrease as the propellant is expended. A state feedback, time optimal, control law is developed for a vehicle with propellant is expended. A state feedback, time optimal, control law is developed for a vehicle with decreasing thrust in translational motion. The success of the control law is shown in simulation

    Delay identification in time-delay systems using variable structure observers

    Get PDF
    In this paper we discuss delay estimation in time-delay systems. In the introduction section a short overview is given of some existing estimation techniques as well as identifiability studies. In the following sections we propose several algorithms for the delay identification based on variable structure observers

    Finite-Time State Estimation for an Inverted Pendulum under Input-Multiplicative Uncertainty

    Get PDF
    A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous analysis of the finite-time state estimator under input-multiplicative parametric uncertainty in addition to a comparative numerical study that quantifies the performance improvement that is achieved by formally incorporating the proposed compensator for input-multiplicative parametric uncertainty in the observer. In summary, our results show performance improvements when applied to both SMC- and LQR-based control systems, with results that include a reduction in the root-mean square error of up to 39% in translational regulation control and a reduction of up to 29% in pendulum angular control

    Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model

    Get PDF
    Abstract—We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for many classes of trajectories, such as those in which height is a polynomial function of Center of Mass horizontal displacement, the Orbital Energy can be solved in closed form. Given expressions for the Orbital Energy, we can compute where the foot should be placed or how the Center of Mass trajectory should be modified in order to achieve a desired velocity on the next step. We demonstrate our results using a planar biped simulation with light legs and point mass body. We parameterize the Center of Mass trajectory with a fifth order polynomial function. We demonstrate how the parameters of this polynomial and step length can be changed in order to achieve a desired next step velocity. I

    Finite-Time State Estimation for an Inverted Pendulum under Input-Multiplicative Uncertainty

    Get PDF
    A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous analysis of the finite-time state estimator under input-multiplicative parametric uncertainty in addition to a comparative numerical study that quantifies the performance improvement that is achieved by formally incorporating the proposed compensator for input-multiplicative parametric uncertainty in the observer. In summary, our results show performance improvements when applied to both SMC- and LQR-based control systems, with results that include a reduction in the root-mean square error of up to 39% in translational regulation control and a reduction of up to 29% in pendulum angular control

    SMC framework in motion control systems

    Get PDF
    Design of a motion control system should take into account both the unconstrained motion performed without interaction with environment or other system, and the constrained motion where system is in contact with environment or has certain functional interaction with another system. In this paper control systems design approach, based on siding mode methods, that allows selection of control for generic tasks as trajectory and/or force tracking as well as for systems that require maintain some functional relation like bilateral or multilateral systems, establisment of virtual relation among mobile robots or control of haptic systems is presented. It is shown that all basic motion control problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance control - can be treated in the same way while avoiding the structural change of the controller and guarantying stable behavior of the system In order to show applicability of the proposed techniques simulation and experimental results for high precision systems in microsystems assembly tasks and bilateral control systems are presente

    Decentralised delay-dependent static output feedback variable structure control

    Get PDF
    In this paper, an output feedback stabilisation problem is considered for a class of large scale interconnected time delay systems with uncertainties. The uncertainties appear in both isolated subsystems and interconnections. The bounds on the uncertainties are nonlinear and time delayed. It is not required that either the known interconnections or the uncertain interconnections are matched. Then, a decentralised delay-dependant static output feedback variable structure control is synthesised to stabilise the system globally uniformly asymptotically using the Lyapunov Razumikhin approach. A case study relating to a river pollution control problem is presented to illustrate the proposed approach
    • …
    corecore