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S u m m a r y

The following thesis deals with the problem of simulation and control of a 

multi-axes pneumatically actuated animated figure. This problem can be viewed as a 

specific case of the general problem of modelling and control of multi-degree-of- 

freedom pneumatically actuated manipulators or robots.

Developing a non-linear and a linear dynamic model of the pneumatic 

actuation system it was found that the dynamic characteristics were not only actuator 

position dependent as reported in literature but also direction of valve opening and 

hence direction of actuator motion dependent. This is due to the unequal quiescent 

actuator chamber pressures. As a result, an advanced linear model had to be derived 

in order to identify the dynamically worst conditions required for controller design. 

Furthermore, it was found that precisely calibrating the valve model of the non-linear 

simulation model was crucial in order to obtain a good agreement between 

simulation of the dynamic response of the pneumatic servo and experimental results. 

To calibrate the valve model a calibration routine based on the idea of charging and 

discharging a known dead volume under the assumption of a constant polytropic 

index was employed rather than using a gas mass flow meter. The obtained results 

were excellent.

Due to the complexity and the highly non-linear nature of the overall system 

dynamics it was decided to adopt an individual single-axis controller approach rather 

than an overall controller for the whole figure. This approach also supported the 

modular structure of the animated figure and allows for the addition or omission of 

individual axes without the need of a controller redesign. In order to provide the 

superior disturbance rejection capabilities and robustness to system parameter 

changes required by the highly non-linear system dynamics and the individual axis 

control approach it was decided to employ a Continuous Sliding Mode Controller 

(CSLMC). The design of the CSLM controller consisted of three steps: a basic 

design using the reachability condition for a chosen sliding surface defining the 

desired closed-loop system dynamics, the determination of occurring limit cycles 

based on the extended Nyquist criterion and the evaluation of possible digital, hybrid 

and analogue implementation approaches. It was found that an analogue CSLM



controller was the ideal solution for the control problem under consideration. The 

resulting controller is based on a novel analogue CSLM control card providing 

double differentiation of the measured displacement feedback signal, definition of 

the sliding surface by means of state gains and a boundary layer neighbouring the 

sliding surface to minimise chattering. The analogue controller provides the required 

closed-loop system dynamics, disturbances rejection capabilities and robustness to 

system parameter changes.
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1 In t r o d u c t io n

1.1 Mo d ellin g  and C o n tro l  o f  a P neumatically  Animated  

F ig u re

This thesis deals with the general problem of modelling and control of multi- 

degree-of-freedom (wDOF) pneumatically actuated manipulators or robots. In 

particular, the case of a pneumatically actuated animated figure for the entertainment 

industry is considered.

In a first attempt, most manipulators can be mathematically modelled 

assuming a chain of rigid links connected via rigid joints. To activate the axes of 

these manipulators usually electrical, hydraulic or pneumatic actuators provide the 

required torques or forces at the joints. These actuators introduce additional 

dynamics into the system which in case of electrical actuators are often neglected, 

because of their mainly first-order dynamic behaviour and their response time which 

is in general much shorter than the response time of the mechanical structure. The 

higher-order dynamic characteristics of hydraulic and pneumatic actuators though 

can have a significant influence on the overall manipulator dynamics and can 

therefore not be neglected. In particular, pneumatic systems are known to have a very 

slow response time and also exhibit a significant lack of stiffness due to the 

compressibility of air which makes them very sensitive to external disturbances.

Hence, when confronted with the task of designing a controller for a «DOF 

pneumatically actuated manipulator not only the kinematic and dynamic interactions 

of the various members of the manipulator but also the dynamic properties of the 

pneumatic actuators have to be taken into account.

In general, all linear and non-linear control design methods are based on a 

dynamic model of the system to be controlled. Therefore, the first step when 

designing a controller is to decide on a system model to be used as a design basis. 

The plant under consideration for this thesis is a highly non-linear coupled multi- 

degree-of-freedom («DOF) system. Although it is theoretically possible to use an
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inherently non-linear control method based on a non-linear plant model, in general 

the plant dynamics have to be precisely known to successfully apply these methods. 

The results of a preliminary study which illustrate this fact are presented in 

Appendix A l. If this is not the case, it can be generally recommended to apply a 

control method based on a linearised model of the non-linear systems.

In order to adopt the linearised model approach, the tiDOF manipulator can 

be modelled as a linearised multi-input multi-output (MIMO) system. Due to the 

non-linear nature of the physical plant though the dynamic parameters of this linear 

model are subject to changes depending on the system state and its position relative 

to the linearisation point. Another way of describing the system dynamics is to treat 

each member of the manipulator as a separate system and therefore to model the 

plant as n independent linear single-input single-output (SISO) systems. In the case 

of designing the controller based on the full linear MIMO model the linear parts of 

the kinematic and dynamic coupling of the members are an integral part of the 

resulting controller while in the case of treating each member separately the coupling 

torques and forces are seen as external disturbances by the single axis controller. 

Hence, if a full model of the plant to be controlled is available and the resulting 

MIMO controller can be realised with the available controller hardware, the first 

approach is preferable avoiding the necessity of treating linear coupling effects as 

external disturbances. In case the whole plant cannot be fully mathematically 

described or the burden of this task on the controller hardware proves to be too 

demanding, it is necessary to design n single-axis controllers which provide stability 

and a satisfactory dynamic behaviour of the closed-loop system in the presence of 

system parameter changes and external disturbances.

As mentioned at the beginning, the system that is to be investigated as part of 

this thesis is a pneumatically animated figure for the entertainment industry 

performing human like movements. This figure is of a modular structure that means 

it can, depending on its application, consist of between 2 and 14 axes to be 

controlled. Furthermore, the figure can exhibit different dynamic properties due to 

the fact that it can be covered with different body shells and costumes resulting in 

varying inertial and friction properties.
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The extreme complexity of this system and the related difficulty of modelling 

the system as a whole makes the single-axis approach mentioned above the 

favourable choice. This choice is further justified by the modular structure of the 

animated figure. Due to the fact that the superposition principle is not valid for non

linear systems this modular structure of the animated figure results in the necessity of 

providing a completely new linearised system model for every axes configuration 

and hence a new MIMO controller structure. Thus, when adding a further axis to the 

figure the system model cannot be simply upgraded by adding a further axis model to 

it.

From the above reflections the following conclusions can be drawn:

• The controller for the pneumatically animated figure has to be based on a 

linearised SISO model of a single-axis pneumatic servomechanism resulting in n 

independent single-axis controllers.

• The closed-loop system has to be robust to changes in the system parameters and 

guarantee stability and satisfactory dynamic behaviour over the whole working 

space of the figure.

• The controller has to provide the closed-loop system with excellent disturbance 

rejection capabilities due to the fact that kinematic and dynamic coupling effects 

between the members of the manipulator are not modelled and hence treated as 

external disturbances by the controller.

• Because of the fact that the axes of the animated figure are only fitted with 

displacement transducers measuring the actuator piston displacement this piston 

displacement is the only feedback signal available to the chosen controller.

It follows from above specifications that either a robust or an adaptive 

feedback control scheme has to be employed in order to guarantee robustness of the 

closed-loop system to severe parameter changes. Furthermore, the control algorithm 

should ideally enable the use of high feedback gains to ensure sufficient disturbance 

rejection capabilities of the single-axis system. If this conflicts with the obvious 

stability criteria an additional disturbance cancellation term has to be included in the 

controller structure. Moreover, since a significant number of pneumatic servo

mechanisms have to be controlled in parallel the control algorithm should be as 

simple as possible in terms of computational demands in order to limit the hardware
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costs and ideally allow for implementation on a standard personal computer or on an 

analogue control card. Since the animated figure is only equipped with potentiometer 

displacement transducers, the only information on the dynamic state of the system 

directly available to the controller is the displacement of the pneumatic cylinders 

actuating the members of the figure. Therefore, numerical differentiation and 

filtering, a system state observation technique or analogue differentiation filters have 

to be employed in order to obtain the additional information on the system state 

which cannot be obtained by means of measurement but are in general required for 

feedback control.

1 .2  S tr u ctu re  o f  T h esis

This thesis is structured as follows:

Chapter 2 gives a general overview of positioning control of pneumatic servo 

mechanisms. The main linear, non-linear, adaptive and robust control approaches 

reported in literature are described, compared and evaluated in terms of their 

applicability to the control problem under consideration in this thesis. The 

conclusion that can be drawn from this analysis is that Variable Structure Control 

(VSC) and in particular Continuous Sliding Mode Control (CSLMC) seems 

theoretically to be most appropriate despite the fact that previous attempts of 

applying it to pneumatic servo control failed.

In Chapter 3 the pneumatically animated figure to be controlled and the 

specific experimental test rig set-ups used in this investigation are described in detail. 

The rigs are a single-axis pneumatic servo system with variable gravity load and a 

vertically mounted unequal area linear actuator and the arm of the animated figure 

consisting of two pneumatically actuated members. In terms of the influence of 

system non-linearities and parameter changes the single-axis test rig represents the 

dynamically worst case which can occur on the animated figure. Therefore, the 

results concerning robustness to system non-linearities and parameter changes that 

were obtained with this simple test rig are also valid for the more complex animated 

figure. Only the external disturbance rejection capabilities of the system had to be
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determined directly using the 2 DOF arm of the animated figure. Furthermore, in this 

chapter the control and data acquisition system is described.

Chapters 4 and 5 present respectively a non-linear and a new linearised model 

of a pneumatic servo mechanism used to activate the manipulator axes. These 

chapters highlight the difficulties when modelling pneumatic systems. As will be 

shown, the key to successfully modelling a pneumatic servo is the highly non-linear 

servo valve model. A method to validate the simulation results by experimentally 

determining mass flow rates by charging and discharging dead volumes will be 

presented. Using this heuristic method the strongly non-linear relationship between 

mass flow rate and valve displacement, pressure ratio and heat exchange can be 

determined. Based on the non-linear simulation model a new linearised model of the 

servo-mechanism is then derived which predicts not only a position dependency of 

the dynamic behaviour of the servo but also a direction of valve opening dependency. 

This new linearised model proves to be ideally suited for determining the dynamic 

worst case conditions for which the resulting controller has to be optimised in order 

to guarantee stability over the whole workspace. Furthermore, by comparison of the 

response of the linearised and the non-linear system model, it can be demonstrated 

that the changing actuator chamber pressures, which are the only parameters assumed 

to be constant when linearising the system dynamics, have a stabilising effect on the 

system dynamics. This result gives further justification to the use of the chosen 

linearised model as a control design basis. The dynamic characteristics of pneumatic 

servo mechanisms under linear closed-loop control will be illustrated by means of 

simulation and experimental step response results. Using the new linear model to 

design the state-feedback controller results in improved dynamic performance of the 

servo system. Nevertheless, the presented results show the limitations of linear state- 

feedback control when applied to the highly non-linear pneumatic servo.

In Chapter 6 the Variable Structure Control (VSC) approach is introduced in 

detail. VSC is a particular type of robust control. The interesting feature of VS 

control is that in so called sliding mode, VS control theoretically offers maximum 

robustness to the action of external disturbances, system non-linearities and system 

parameter changes. This type of controller is also called Sliding Mode Control 

(SLMC). The switching characteristic of this control method lends itself to
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discontinuously dynamically changing systems (e.g. position of valve opening 

dependency) like the pneumatic servo as shown in Chapters 3 and 4. Sliding Mode is 

reviewed against the background of relay control, Variable Structure Control (VSC) 

and Model Reference Adaptive Control (MRAC). It will be shown that Sliding Mode 

is a particular type of Variable Structure control and can also be seen as a MRAC 

algorithm without integral action. The interpretation of the sliding surface as the 

reference model describing the desired dynamic performance of the system results in 

greater freedom when designing this surface and also results in natural limits on the 

system demand. The problems with the implementation of Sliding Mode control and 

in particular the problems with its digital realisation and with numerical 

differentiation at low sampling rates offered by a conventional personal computer are 

discussed.

Chapter 7 concentrates on the basic design procedure for a Continuous 

Sliding Mode Controller (CSLMC) for the pneumatic servo under consideration. 

Since in sliding mode the dynamics of the control system are determined by the 

dynamics of the switching surface, this surface can be seen as a reference model of 

the desired system response. Therefore, by designing the switching surface the 

closed-loop dynamics can easily be determined. Reachability of the chosen second- 

order switching surface is discussed. In this context, the effects of supply pressure 

and valve size are investigated. As a result, the presented basic design procedure can 

also be used to determine parameters like supply pressure and valve size in order to 

achieve a given dynamic performance of the closed-loop control system.

Since unmodelled dynamics significantly reduce the infinite switching 

frequency theoretically required by the control system, the effects of valve bandwidth 

and digital implementation are thoroughly investigated in Chapter 8. The switching 

frequency of the control system in quasi- or pseudo-sliding mode is estimated using 

the extended Nyquist criterion. Amplitude and frequency of the resulting limit cycles 

occurring in quasi-sliding mode are compared with simulation results.

Finally in Chapter 9 the synthesised CSLM control is implemented on the 

single-axis test rig and two members of the arm of the animated figure. As predicted 

by theory a purely digital implementation using numerical double differentiation of 

the measured displacement signal does not yield satisfying results for the maximum



sampling frequency of 1 kHz achievable with the controller hard- and software. By 

introducing an additional accelerometer an excellent dynamic performance of the 

pneumatic servo can be obtained. Since the use of an accelerometer is outside the 

scope of this project, analogue differentiation filters are implemented as alternative 

ways of generating the required unmeasureable system states. Differentiating the 

measured displacement signal by means of these analogue differentiation filters 

improves the system response significantly in comparison to numerical 

differentiation. Yet, discrete-time switching, in combination with the phenomenon 

that high-frequency noise is amplified by the differentiation filter, still leads to a 

rather jerky system response even in the presence of a boundary layer around the 

switching surface. This fact prompted the development of a novel purely analogue 

CSLM control card offering double differentiation of the measured displacement 

signal, definition of the switching surface using state gain potentiometers and relay- 

like switching by means of a saturated operational amplifier. Omitting the control PC 

as a closed-loop system element, reducing the switching frequency and introducing 

this purely analogue CSLM card yields the desired system response. As shown by 

experimental step and frequency response tests the novel analogue CSLM card offers 

excellent dynamic performance and robustness to system parameter changes (in 

particular the mass to be moved). Since no control PC is needed for implementation 

and the CSLM card only requires displacement as an input the hardware costs are 

minimised. The superior disturbance rejection capabilities allow the application of 

the analogue CSLM card to «DOF systems without the need of an overall coupling 

compensation algorithm as demonstrated experimentally. Therefore, it is ideally 

suited for the application to the animated figure allowing for freedom in the figure 

set-up. Adding or omitting axes, body shells or costumes does not result in complex 

retuning procedures or a redesign of the controller structure.
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2  CONTROL OF PNEUMATIC SERVO MECHANISMS

Servo position and/or velocity control for robots and other industrial 

machines is usually achieved through the use of hydraulic or electric actuators. In 

general, pneumatic actuation systems are only used for motion control to mechanical 

end-stops (e.g. for pick and place handling equipment or to open and close robot 

grippers). This situation can be attributed mainly to three reasons:

• Firstly, the compressibility of low pressure gas used as the working medium 

affects the steady-state and dynamic behaviour of the pneumatic servo resulting in 

a low natural frequency, significant time lag and high load sensitivity.

• Secondly, the highly non-linear equations describing compressible gas flow and 

the thermodynamics during charging and discharging of a control volume are 

more difficult to handle than those describing a hydraulic or electrical system. 

Therefore, in general, advanced control algorithms have to be applied in order to 

enable a servo controller to compensate for the inherent system non-linearities. To 

digitally realise these control algorithms in real time generally powerful control 

computer equipment is required. Using conventional linear control does usually 

not yield a satisfactory system performance.

• Thirdly, servo control is usually achieved through the use of high-performance 

proportional control valves which only recently have become available at 

competitive prices for pneumatics. Most commonly, cheap on/off-valves and 

analogue controllers have been and still are in use for pneumatic drives lending 

themselves mainly to motion control to end-stops.

2.1  C h a ra cteristics  o f  P neumatic S erv o  Mech a nism s

The fact that pneumatic servos use a very compressible working fluid 

accounts for the two main system characteristics: a comparatively low natural 

frequency and a lack of stiffness. These two characteristics distinguish pneumatic 

drives from hydraulic and electric ones.

Pneumatics always exhibit a significant time delay whereas hydraulic systems 

have a rapid initial response. If for example an actuator chamber is charged with air,
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a sufficient amount must flow into the cylinder volume to increase the pressure and 

build up enough force to overcome static Coulomb friction. In hydraulic systems a 

small mass flow into the actuator chamber causes a rapid pressure rise and hence an 

almost immediate system response. In this context Shearer and Lee (1956) showed in 

an example that the hydraulic system responds approximately 50 times faster than the 

pneumatic system for the same supply pressure and load mass. In other words, gas 

mass flow into a pneumatic actuator results in an increase in pressure and an 

increase in fluid density while oil mass flow into a hydraulic actuator results 

principally in an increase in pressure. That is the reason why conventionally in an 

analysis (as being performed in Chapters 4 and 5) it is pneumatic mass flow that is 

considered whereas hydraulic volumetric flow.

The other main difference between pneumatics and hydraulics, the lack of 

stiffness of pneumatic systems due to the compressibility of air results in a very high 

sensitivity to changes in external load and external disturbances. It has been shown 

by Burrows (1972) that a hydraulic system has a stiffness of approximately 400 times 

that of the equivalent pneumatic system. Therefore to achieve a sufficient stiffness of 

pneumatic systems, either the actuators must be large enough to counteract any load 

variations with relatively small changes in pressure or the servo valves must provide 

a flow rate large enough to rapidly add or remove gas to the actuator chambers. 

Especially in robotic systems with various kinematically and dynamically linked axes 

the actuation system is permanently subject to external disturbances due to the 

coupling effects. It is therefore very difficult to control such systems in a satisfactory 

manner if they are actuated pneumatically.

Another problem with pneumatic systems is the low overall efficiency of 

valve-controlled drives as stated by Shearer and Lee (1956). This is mainly due to 

energy losses caused by throttling. These losses are more serious with air than with 

oil, because more work is required to compress air between given pressure limits 

than is required to pump oil between the same limits. Furthermore, pneumatic servo 

mechanisms do not offer the possibility of pump control of the mass flow. This 

method is often used for hydraulic applications requiring large power output. There 

is no variable-displacement compressor commercially available, so the control of
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pneumatic servo mechanisms is always achieved by means of a servo valve throttling 

the flow and hence dissipating energy.

However, pneumatic servo mechanisms also provide advantages over 

hydraulic servos. Pneumatic systems in general are lighter than hydraulic systems 

due to the low weight of the gas in the lines and the lighter components designed 

only to withstand much lower system pressures. In pneumatic systems there is also 

no need to provide a return line since the relatively low pressure air from the motor 

can be exhausted to the atmosphere. An exhaust diffuser is often recommended to 

reduce excessive exhaust noise. Furthermore, pneumatic systems can work at 

temperatures above 500°C where electrical and hydraulic systems usually fail. For 

example in aircraft and missile applications products of combustion at temperatures 

ranging from 500°C to 2000°C are available as sources of energy. Drives used in 

these fields are called hot-gas servo mechanisms. Since temperature has only a 

second-order effect on the properties of gas like viscosity and bulk modulus the 

response of pneumatic servo mechanisms is little affected by changes in temperature. 

Also the power supply for pneumatic systems is cheap in comparison to hydraulic 

power units. Most industrial plants are equipped with an air supply of 5 to 10 bar. 

Moreover, there are no problems with leakage and pneumatics are also very 

environmentally friendly and clean.

To conclude the above reflections, pneumatic systems are particularly useful 

and possess inherent advantages in applications where the dynamic response 

requirements are not too demanding and where the system is not subjected to 

significantly varying external disturbance forces. Yet, in the context of this thesis it 

will be shown that with new high-performance servo valves and analogue control 

solutions the area of application of pneumatic servo control can be significantly 

extended to systems with fast dynamic responses, high positioning accuracy and 

varying external disturbances.
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2 .2  R eview  o f  R ecen t  C o ntribution s  in P neumatic S erv o  

C o n tro l

Despite the fact that in contrast to the study of hydraulic servos relatively 

little attention has been paid in the past to the analysis of the highly non-linear 

pneumatic servo systems some research studies as early as 1950 (e.g. Shearer (1956)) 

have demonstrated the feasibility of producing relatively low cost pneumatic servo 

drives. Following the introduction of reasonably priced pneumatic servo valves and 

the sharp decrease in the price of computing hardware in recent years, a variety of 

approaches have been used in deriving computer controls for pneumatic servos, 

leading to commercially available integrated drive system elements that have begun 

to be accepted by system designers and engineers in the manufacturing industry. In 

the following some of the most important contributions to pneumatic servo control 

reported in literature are described and their advantages and disadvantages are 

highlighted in brief. The fact that all the contributions mentioned in the following are 

generally only suitable for one specific control problem or application and not 

applicable to a wide range of pneumatic systems and in particular not applicable to 

the /zDOF pneumatically actuated animated figured under consideration prompted the 

research work being presented in this thesis.

2 .2 .1  L in ea r  F e e d b a c k  C o n t r o l

As will be demonstrated in Section 5.3 of this thesis, due to the highly non

linear dynamic characteristics of the pneumatic servo linear canonical state-feedback 

control utilising position, velocity and acceleration signals (also called PVA-control) 

is in general not capable of providing the required dynamic response of the closed- 

loop control system especially if the actuator chamber pressures are unequal due to 

unequal piston areas or an external load being applied. No matter whether pole 

placement (e.g. Burrows and Webb (1969), Taha and Nor (1989), Uebing et al 

(1997)), linear quadratic optimisation (Liu and Bobrow (1988)) or similar techniques 

are used to tune the controller, asymptotic stability can only be guaranteed in the 

neighbourhood of the linearisation point. Outside this neighbourhood the closed-loop 

dynamics can deviate significantly from the desired behaviour. Also a control system
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designer has to be aware of the fact that, since the bandwidth of the pneumatic servo 

is limited by the limited valve opening non-linearity and the choked flow effect, the 

closed-loop poles of the transfer function can only be shifted a certain distance to the 

left of the complex plane even with large feedback gains.

Large steady-state position errors due to Coulomb friction and leakage effects 

are an inherent part of the closed-loop state-feedback system dynamics. In order to 

reduce these errors integral action is often included into the control law. PI 

(proportional and integral action) and PID (proportional, integral and differential 

action) control schemes are very common and can reduce steady-state errors 

effectively. Yet, integral action has an adverse effect on closed-loop stability. It can 

therefore only be recommended when steady-state errors are a more important issue 

than speed of response.

2 .2 .2  E x t e n s io n s  o f  Lin ear  S ta t e -fe e d b a c k  C o n t r o l  and  O t h e r  L in ear  

T e c h n iq u e s

In order to adopt the linear canonical state-feedback approach to the control 

of pneumatic servo mechanisms various extensions to the basic method have been 

proposed. One way of dealing with the problem of position dependent servo 

dynamics for instance is to use different gains for different regions within the 

operating space as demonstrated by Virvalo (1995). This method, called gain 

scheduling can be implemented by means of an on-line lookup table of the optimal 

gains. Although by varying the feedback gains the dynamic performance of the 

control system can theoretically be improved, gain scheduling controllers are 

difficult to tune and also, in general, do not take account of discontinously changing 

system dynamics like the direction of valve opening dependency of the servo 

dynamics. For systems with unequal area actuators this effect is more significant than 

the position dependency as will be shown in Section 5.3.1 and would require a 

discontinuous switching of feedback gains with all the problems involved. Switching 

of control signals will be discussed in more detail in the context of Sliding Mode 

Control (SLMC) in Chapter 6.
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As mentioned before, a serious problem with linear canonical state-feedback 

control without integral action is its inability to compensate for the effects of stiction 

which can have a significant influence on the dynamics of a pneumatic servo. The 

stiction effect in combination with the compressibility of air often results in the so- 

called stick slip effect when the actuator piston is moving slowly. Abou-Fayssal and 

Surgenor (1997) clearly demonstrated the shortcomings of linear state-feedback 

control in the presence of stiction and investigated the application of friction model 

based compensators. Although their proposed algorithms do not yield the expected 

results the investigation highlights the seriousness of the problem. Another way of 

dealing with high Coulomb friction is to use a dither signal as reported by Surgenor 

and Wijesuriya (1992). A common problem with conventional dither signals is the 

constant demand for air due to the actuator piston constantly moving with a fixed 

dither frequency. Also, the high control action of the servo valve being constantly 

excited may result in excessive wear of its moving parts. The Intelligent Dither (ID) 

introduced by Surgenor and Wijesuriya is therefore only activated in the case that the 

actuator piston is stuck. Although the additional ID signal reduces the steady-state 

error effectively the system response is very jerky since the dither action is only 

activated once the piston stops moving.

If state-feedback control is used for path tracking as opposed to set point 

positioning of pneumatic servo systems large path tracking errors usually occur. By 

means of feedforward compensators in combination with state-feedback path 

tracking controllers as proposed by Moore et al (1985) and Pu et al (1991) these 

large position following errors can be reduced significantly but only if the actuator 

piston is moving. If the piston motion comes to a halt stiction causes a delay in the 

system response and increases the tracking error until the piston starts moving again 

and the compensator reduces the tracking error.

Cascaded or hierarchical feedback loops including additional pressure 

feedback as proposed by Noritsugu and Takaiwa (1995) and Kawamura et al (1989) 

theoretically add additional features like robustness to load changes while also 

compensating for stiction. It has been pointed out by Mannetje (1981) that the 

performance of pneumatic servo systems can be improved considerably by using 

embedded pressure feedback loops. Cotsaftis et al (1995) showed that in theory when
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applying a control law only using displacement and pressure feedback there exists a 

domain for the control gains where the closed-loop response is stable and not 

impaired by an oscillatory behaviour even without considering the dissipative effects 

of friction and leakage. By feeding back measured differential actuator chamber 

pressure load changes can be sensed and compensated for. Friction effects can be 

compensated for in a similar manner since differential pressure in combination with 

measured acceleration allows for the identification of the friction force. Although the 

experimental results presented by Noritsugu and Takaiwa show a clear improvement 

when compared to simple P and PI controller results they are overall not satisfying. 

Tuning of the inner and outer feedback loops is quite an involved task and even 

additional disturbance observers in the inner pressure feedback loop are necessary to 

provide acceptable dynamic performance of the control system under changing load 

conditions. Another disadvantage of an inner pressure feedback loop is the additional 

cost of pressure transducers.

An alternative way of improving the dynamic response of pneumatic 

actuation systems under closed-loop control is to choose appropriate demand signals 

into the system which do not exceed its dynamic limits. In this context a profile 

planning strategy has been proposed by Pu et al (1992) which represent an alternative 

way of optimising and tuning the system response. By means of cosine-, sine- , 

circular- and trapezoidally-shaped demand profiles a desired system response can be 

achieved by directly influencing load acceleration and deceleration and initial time 

delay. Therefore, profile planning represents an additional tool to improving the 

system dynamics and can complement controller optimisation.

2 .2 .3  N o n -L in ear  C o n t r o l

To fully account for the non-linearities of pneumatic servos a non-linear 

controller based on a precise non-linear system model can be employed. Usually, 

non-linear control algorithms consist of an inner linearisation loop which transforms 

the non-linear system state into an equivalent linear state. Outside this inner loop 

spans an outer linear feedback loop which can be tuned similarly to plain linear 

feedback control loops. In general, one of the main problems with the inner feedback 

linearisation loops is that apart from the transformation being mathematically
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involved it also might introduce local singularities where the transformation is 

impossible and hence the control concept breaks down. Kimura et al (1995) showed 

though that any SISO pneumatic system with an input-state feedback linearisable 

load and an isothermal pneumatic actuator is linearizable by state-feedback. He 

demonstrated by means of experimental results using a system with a rubber artificial 

muscle (RAM) actuator that feedback linearisation can improve the performance of a 

linear feedback controller. Further examples of controllers for electro-pneumatic 

servos based on input-output linearisation can be found in Richard and Scavarda 

(1989) and Lin et al (1993).

In general it can be said, that providing that the non-linear system model of 

the plant to be controlled is linearisable and no singularities occur within the 

operating space, the model has to be a precise description of the plant because any 

deviation of the model from the plant might cause an unpredictable dynamic 

behaviour due to the non-linear nature of the system. Discrepancies between non

linear model and plant, for instance due to parametric uncertainties, might have a 

more serious effect on the closed-loop dynamics than discrepancies between a linear 

model and the plant as is demonstrated in Appendix A l where linear and non-linear 

control methods are compared by means of simulation step response results of a 

2DOF system with ideal actuators.

2 .2 .4  A d a ptiv e  C o n t r o l

Especially in France many attempts have been made to use adaptive control 

algorithms to control pneumatic actuation systems. Guihard et al (1994, 1995) use 

two different model reference adaptive controllers (MRAC) to control a 2DOF 

pneumatically actuated robotic leg. The first control algorithm is based on a full non

linear 2DOF dynamic model of the system derived by means of the Lagrangian 

energy equation resulting in the required torques for a given trajectory. The control 

task is decomposed in two objectives: the computation of the optimal torque and the 

tracking of the desired trajectory. The time-varying system parameters are adapted 

on-line by an integral type parameter adaptation algorithm (PAA). The stability is 

guaranteed by applying Lyapunov’s stability theory. The second algorithm applied by 

Guihard is based on a single-axis decentralised approach proposed by Seraji (1989).



Each axis of the pneumatic leg is treated as a separate subsystem being controlled by 

an independent controller. In this case coupling effects are treated as external 

disturbances. Therefore, again by means of an integral type parameter adaptation 

algorithm, the single-axis dynamic system model and an additional error model have 

to be adapted. Guihard concludes that the 2DOF controller is highly complex and 

difficult to compute in real time even for only a 2DOF system. It is therefore only 

applicable for systems with a small number of actuated axes. The decentralised 

controller on the other hand can only be used within a limited system velocity range 

due to fact that a large number of controller gains have to be adjusted on-line. High 

velocities lead to instability.

Bobrow and Jabbari (1989, 1991) compared a model reference adaptive 

controller (MRAC) with a parameter identification type adaptive algorithm by means 

of experimental results obtained with a single-axis pneumatic servo with a linear 

actuator. Like Guihard, the authors also conclude that MRAC only yields satisfying 

results for small system velocities. Although the results with the parameter 

identification controller, based on a least-square identification method in 

combination with pole placement, was generally preferable, distinct and highly 

undesirable position dependent high-frequency components in the system response 

occurred. Increasing the order of the dynamic model underlying the controller in 

order to account for these high-frequency oscillations resulted in instability which 

was according to Bobrow due to the limited displacement sensor resolution.

Keller and Isermann (1993) also used an adaptive control algorithm based on 

least-square parameter identification. In their system they included an additional 

inner pressure feedback loop and a model based friction compensator. The reported 

experimental results look very promising. The system is robust to load changes and 

is perfectly able to cope with stiction. Yet, the high costs of the additional pressure 

transducers are a drawback which has to be taken into account.

McDonell and Bobrow (1993) also used an identification algorithm to update 

the adaptive controller parameters on-line by means of solving a discrete-time 

Riccati equation. The system state used to synthesise the control signal includes the 

differential actuator chamber pressure. Again, the results of the parameter 

identification adaptive control approach were satisfactory.



Generalising the results above it can be said that MRAC is always limited by 

the adaptation speed of the algorithm. This limitation restricts its use to systems with 

reasonably slow changes in the dynamic state relative to the adaptation speed. Li and 

Cheng (1994) and Fok et al (1995) give further examples demonstrating this fact.

Parameter identification adaptive control algorithms on the other hand are 

prone to high-frequency disturbances due to unmodelled dynamics and in general 

only allow for reasonable parameter identification if the system is sufficiently and 

constantly excited (Goodwin and Sin (1984)).

It should be mentioned that none of the algorithms discussed above provide 

exceptional disturbance rejection capabilities exceeding those of linear feedback 

controllers.

2 .2 .5  Va r ia b l e  S t r u c t u r e  and  S liding Mo d e  C o n t r o l

The Variable Structure or Sliding Mode approach to pneumatic servo 

position control is the most promising attempt reported in literature in particular due 

its robustness to system parameter changes and the excellent capabilities to linearise 

the system dynamics and to reject external disturbances.

A first attempt by Tang and Walker (1995) to apply a continuous (as opposed 

to discrete) sliding mode controller to a pneumatic servo failed due to the fact that a 

first-order sliding surface was used for a system whose predominant dynamics are of 

third-order (see Section 5.1).

Surgenor et al (1995) then successfully used a second-order surface and an 

additional phase compensator to compensate for the phase lag introduced by the 

numerical differentiation routines used to generate velocity and acceleration signals. 

The reported results were very satisfactory.

Drakunov et al (1997) showed that sliding mode control with a second-order 

sliding surface (including differential pressure feedback) is also able to cope with 

one of the most serious problems for pneumatic servos: stiction.
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Thomasset et al (1993), Bouri et al (1994) and Bouri et al (1996) used sliding 

mode control with additional system state linearisation. Although the experimental 

results with the nominal system were good, the linearising state transformation 

decreased the systems robustness to parameter changes significantly which, as 

mentioned above, is one of the main features of sliding mode control. Furthermore, 

the resulting control algorithm is highly complex and lacks the simplicity of 

conventional sliding mode algorithms. It is the authors opinion that, although some 

of the results reported by Thomasset and Bouri were extremely good, the additional 

state transformation contradicts the basic philosophy of sliding mode control and 

diminishes the benefits of its most distinguished characteristics.

2 .3  C l o su r e

Reviewing the control approaches reported in literature and presented above 

and first experimental results obtained in collaboration with the control laboratory of 

Queen’s University, Kingston, Canada lead to the conclusion that Variable Structure 

Control (VSC) is probably the most promising control method for pneumatic servo 

positioning systems. Therefore, this approach will be discussed in detail in Chapter 6 

and applied to the nDOF pneumatically animated figure which is the subject of this 

thesis.
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3  D e s c r ip t io n  o f  E x p e r im e n t a l  R ig s

In the course of the investigation two experimental rigs have been used:

• the pneumatically actuated animated figure to be controlled and

• a single-axis pneumatic servo test rig.

Both systems and their hardware are described in this chapter.

3.1 A nimated F igure

The animated figure for the entertainment industry for which a controller is to 

be designed as part of this thesis consists of seven axes actuated by linear and rotary 

pneumatic servo mechanisms. All actuated axes are manufactured of aluminium and 

are kinematically and dynamically coupled as can be seen in Figure 3.1. The moving 

members of the animated figure are mounted on low-friction roller bearings while 

the whole figure is mounted on a steel frame. The displacement of each individual 

member of the figure can be measured by means of linear or rotary displacement 

transducers. Further measurement equipment is not incorporated.

During the investigation mainly the arm providing 2 degrees of freedom as 

shown in Figure 3.1 was used in order to test the disturbance rejection capabilities of 

the proposed controller.

3.1 .1  P n eu m a tic  S er v o  Mech a nism

The pneumatic servo mechanisms employed to actuate the axes of the 

animated figure consist of a pneumatic actuator (linear or rotary), a pneumatic servo 

control valve and a potentiometer-type displacement transducer. The valves and 

actuators are connected via rubber pipes with an internal diameter of 2 mm and an 

average length of about 1 m. The pressure drop in the connecting pipes was 

measured to be less than 0.3 bar. A schematic of the linear and the rotary servo is 

depicted in Figure 3.2.
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To provide the required air supply pressure for the pneumatic actuators the 

supply port of each servo control valve is connected to the main air supply of the 

University. It was found during experimental testing that the air supply pressure 

varied between Ps = 6.5 bar and Ps = 7.7 bar depending on the total load on the main 

air supply.

3.1.1.1 Pneumatic Actuators

The following two actuator types are used to actuate the axes of the animated

figure:

• the linear double acting piston actuator JPA produced by Kyoto, Japan and

• the miniature rotary vane actuator comp-act 042-121 by Turn-Act, USA.

The technical data for both actuators can be found in Tables 3.1 and 3.2, 

respectively.

3.1.1.2 Pneumatic Servo Valve

The valves used on all axes of the animated figure are servo valves 

DDV 27A 1 produced by HR Textron, USA. It is a straightforward direct drive design 

as can be seen in Figure 3.3. A limited angle, rotary torque motor drives a sliding spool 

directly through an eccentric which is built into the motor shaft. Rotary operation of the 

motor results in linear spool motion, which modulates the flow from the pressure port 

S through the cylinder ports A and B of the valve. Flow is then ported to the system 

return R.

The direct drive servo valve (DDV) requires an electronic controller also 

depicted in Figure 3.3. This controller compares the command input signal with the 

actual spool position which is monitored by an electric device within the torque motor 

and compensates for the non-linear relationship between input voltage and flow area.

Technical data provided by the manufacturer can be seen in Table 3.3. The 

spool displacement-flow area characteristic is depicted in Figure 3.4. As mentioned 

above the non-linear nature of this characteristic is compensated by means of the 

valve driver module including the spool position controller.
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The frequency response provided by the manufacturer is shown in Figure 3.5. 

As can be seen, depending on the spool opening amplitude the bandwidth (-3 dB 

point) of the control valve varies between 500 Hz for a spool opening of 2.5% and 

135 Hz for a valve opening of 100%. When measuring the frequency response of the 

valve spool displacement under no-flow condition it was found that the bandwidth 

only varied between 290 Hz and 200 Hz. The damping ratio was found to be between 

0.68 and 0.71. Furthermore, the average valve spool delay under no-flow condition 

could be measured to be less than 1 ms.

The various pressure losses in the servo valve have been experimentally 

determined as shown for the example of the pressure loss in the flow path supply 

port S - port A in Figure 3.6. The resulting pressure loss coefficients are listed in 

Table 3.4.

3.1.1.3 Displacement Transducers

To measure the displacement of the pistons of the linear actuators the 

potentiometer-type displacement transducer HLP 095 150 12 K by Penny & Giles is 

used while the displacement of the rotary actuator is measured by means of the rotary 

potentiometer-type displacement transducer 89 44 0006 by the same manufacturer. 

The specification for both transducers are listed in Tables 3.5 and 3.6, respectively. 

The calibration results can be found in Figure 3.7. The relative measuring error 

depicted in Figure 3.7b relates the measured absolute displacement error to the 

displacement to be measured.

3 .2  S in gle-Axis T e st  R ig

In order to validate the simulation models of the pneumatic components and 

also to test and compare the performance of the controllers investigated a simple 

single-axis test rig as depicted in Figure 3.8 was designed. The system consists of a 

vertical linear actuator with variable gravity load and the HR Textron DDV 27A 1 

proportional control valve connected via 100 mm of rubber hose (internal diameter 

of 2 mm).
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Again the supply port of the servo valve was connected to the main air supply 

of the University and therefore the supply pressure varied between Ps = 6.5 bar and 

Ps = 7.7 bar in experiment. This fact did not prove to be a problem in the context of 

validating the simulation models since the supply pressure could be measured and its 

variations could be accounted for in simulation.

The dimensions of the linear actuator chosen can be found in Table 3.7. Li 

addition to one of the displacement transducers used on the animated figure, the 

single-axis test rig was fitted with chamber pressure transducers and an 

accelerometer.

Due to the vertical orientation of the linear actuator and the fact that the 

gravity load acts on the smaller actuator piston area the single-axis test rig represents 

the dynamically worst case in terms of controllability. Resulting from the large 

pressure difference in the actuator chambers, system non-linearities and parameter 

changes are more severe on the test rig than in the case of the animated figure. These 

phenomena will be discussed in more detail in Chapter 5. Therefore, results obtained 

with the single-axis test rig concerning controller robustness to system non-linearities 

and parameter changes could be directly evaluated and interpreted for the animated 

figure. Only the disturbance rejection capabilities of the proposed controller had to 

be tested directly on the animated figure as mentioned above.

3 .2 .1  P r e s s u r e  T r a n s d u c e r s

To enable the measurement of the actuator chamber pressures two miniature 

piezo-resistive pressure transducers EPK-125-300 were used which were mounted in 

the inlet and outlet pipes outside the actuator chambers as shown in Figure 3.9. The 

measured pressure signals were only used for the simulation model validation and 

not as inputs to the controller.

Due to the way the transducers were incorporated into the pipes they 

measured static pressure in the pipe instead of total pressure in the actuator 

chambers. This difference could be easily compensated for in simulation by adding 

the dynamic pressure (being a function of the gas flow velocity) to the measured 

static pressure in order to obtain the total pressure. The specifications of the pressure
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transducers can be found in Table 3.8. The calibration results are depicted in 

Figures 3.10 and 3.11. The relative measuring error depicted in Figures 3.10b and 

3.11b relates the measured absolute pressure error to the absolute pressure to be 

measured.

3 .2 .2  A c c e l e r o m e t e r

In order to obtain reliable actuator piston acceleration data the accelerometer 

4383 by Briiel & Kjaer, Denmark was fitted to the single-axis test rig. Its technical 

data can be found in Table 3.9.

Measuring actuator piston acceleration was important during the simulation 

model validation phase of the project. Furthermore, the measured acceleration signal 

could by used for control purposes and to determine the quality of acceleration 

signals obtained numerically and by means of analogue differentiation filters.

3 .3  Data  A cquisition  and C o n tro ller  Ha rdw are

To implement the various control algorithms digitally a commercially 

available PC with a 166 MHz Pentium processor was used. The D/A- and A/D- 

conversion was realised by means of a DT2812A I/O board by Data Translation as 

shown in Figure 3.8. The technical data concerning the I/O board can be found in 

Table 3.10.

23



T ab les

Table 3.1 - Data for linear double acting piston actuator JPA produced by Kyoto
stroke 30-50 mm
piston diameter 25-32 mm
piston rod diameter 10-12 mm

Table 3.2 - Data for miniature rotary vane actuator comp-act 042-121 produced by 
Turn-Act

maximum nominal rotation 90°, double vane
output torque 60 in-lbs at 100 psi
shaft double ended
shaft load capacity max. side load 250 lbs 

max. end load 10 lbs
air leak rate less than 4 cfh at 100 psi

Table 3.3 - Data for direct drive servo valve DDV 27A 1 produced by HR Textron
rated flow 2 SCFM at 100 psi
electrical power 0.1 Watts max for full pneumatic flow
null bias ± 1 %
hysteresis 1.0%
linearity 5.0%
amplitude ratio -3 dB at 200 Hz
phase angle -90°± at 150 Hz
linearity 5.0%
power 23 Watts (RMS) at 150 Hz
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Table 3.4 - Empirical leakage coefficients of pneumatic servo valve
flow path valve position ports leakage coefficient 

[(l/s)/bar]*10'7
S-A 0 blocked 7.42

0 open 5.46
-1 blocked 7.67
-1 open 2.48

S-B 0 blocked 7.91
0 open 5.04
1 blocked 9.71
1 open 2.79

A-B 0 blocked 7.11
0 open 0
1 blocked 8.40
1 open 3.10

B-A 0 blocked 7.39
0 open 0
-1 blocked 8.38
-1 open 4.81

A-E 0 blocked 9.28
0 open 10.05
1 blocked 8.73
1 open 4.47

B-E 0 blocked 8.03
0 open 8.75
-1 blocked 9.22
-1 open 3.35

S-E 0 blocked 6.93
0 open 0
1 blocked 11.36
1 open 3.76

-1 blocked 9.28
-1 open 3.59

Table 3.5 - Data for translational potentiometer-type displacement transducer HLP 
___________ 095 150 12 K produced by Penny & Giles_________________________
stroke 30 mm
range 0-10 V
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Table 3.6 - Data for rotary potentiometer-type displacement transducer 89 44 0006 
___________ produced by Penny & Giles ____________________________________

stroke 180°
range 0-10 V
resistance 10 kQ. ± 20%
linearity ±0.5%

Table 3.7 - Dimensions of linear actuator on single-axis test rig
stroke 30 mm
rod diameter 10 mm
internal cylinder diameter 25 mm
linearity ± 0.5%

Table 3.8 - Data for miniature pressure transducer EPK-125-300
range 300 psig (20.7 bar)
excitation 6 V
output 0.421 mV/psig
input impedance 551 Q
output impedance 328 Q

Table 3.9 - Data for accelerometer 4383 produced by Briiel & Kjaer
charge sensitivity 3.1 pC/ms'1
voltage sensitivity 2.44 mV/ms'2
capacitance (include, cable) 1271 pF
maximum transverse sensitivity 2.5 % at 30 Hz, 100 ms4
typical undamped natural frequency 51 kHz
typical transverse resonance frequency 10 kHz
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Table 3.10 - Data for DT 2812A I/O-board produced by Data Translation
analogue inputs
resolution 12 bits (0.024 % FSR)
throughput 100 kHz

input channels 16SE/8DI
gain 1 ,2 ,4 ,8
range 0-10 V
system error ±0.03 % of FSR for G = l ,  

±0.05 % of FSR for G = 8
conversion time 8 jis
CMRR > 70 dB at 60 Hz
S/H aperture uncertainty 0.3 ns
analogue outputs
DACs: 2
resolution: 12 bits (0.024 % FSR)
throughput: 100 kHz / D AC
range: ± 5 V at ± 5 mA
settling time: 10 |is
slew rate: 1.5 V/jis
error: ± 0 .2%  of FSR
drift zero: ±3 ppm of FSR/°C
drift gain: ±30 ppm of FSR/°C
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Figure 3.1 - Pneumatically actuated animated figure
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Figure 3.3 - Direct drive servo valve DDV 27A 1 produced by HR Textron
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Figure 3 .8 - Schematic of single-axis test rig
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4  N o n -L in e a r  Mo d e l  o f  a  P n e u m a t ic  S e r v o  

Me c h a n is m

In this chapter, the mathematical models describing the dynamics of the 

components of the pneumatic servo actuation system are derived in detail. This 

section basically summarises well known modelling approaches, discusses their 

validity and in some respects slightly extends their interpretation horizon. The 

presented mathematical relationships are used as the basis for the dynamic valve and 

actuator simulation models developed within the Bath#? simulation environment (Lo 

and Tilley (1993)) described briefly in Appendix A l.

In order to validate the proposed valve model a simple yet effective 

experimental calibration procedure will be presented. Instead of utilising expensive 

mass flow meters the calibration procedure is based on the idea of measuring the rate 

of change of pressure in a known volume while charging and discharging. The 

dynamic parameters of the pneumatic actuator model are obtained by means of least- 

square and genetic algorithm (GA) identification routines.

To illustrate the successful modelling of the highly non-linear dynamic 

behaviour of the pneumatic servo actuation system a comparison between simulation 

and experimental step response results will be presented to conclude this chapter. 

The excellent agreement between simulation and experiment allows the use of the 

pneumatic simulation models as a tool for controller design and testing.

4.1 Ba sic  E lem ents o f  P neumatic C o m po n en t  Mo d e l s

Apart from the dynamics of the actuator piston the dynamic behaviour of 

pneumatic servo systems is governed by two main physical processes:

• charging and discharging of a control volume and

• compressible gas flow through an orifice.

In the mathematical model of the servo mechanism these processes are represented 

by capacitive and restrictive elements respectively. Both processes also include heat 

exchange phenomena.
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4.1.1 Capacitive Element

4.1.1.1 Charging and Discharging of a Control Volume

Considering an infinitely small volume of gas with fixed boundaries as 

shown in Figure 4.1 across which mass and energy transfer may occur, the change in 

energy in the gas volume equates the net energy input through air flow, heat 

exchange and work:

thermodynamic definitions and laws are to be used. The procedure is fully described 

by Harris (1990) and leads to the following expressions:

For pneumatic systems it is reasonable to expect the kinetic and potential energy 

terms to be small. These terms are certainly negligible when compared to the specific 

enthalpy and specific internal energy terms (Lo and Tilley (1993)). The change in 

kinetic or potential energy between inflow and outflow will be even less significant 

(except for nozzles and diffusers which have a large difference between the inlet and 

outlet flow areas). For pneumatic systems, the work done on or by the gas is 

considered to be related to the change of gas volume:

E = £m,A - S'”-  K« + #,» - (4.1)

In order to obtain the expressions of E  and t i  in terms of gas properties the

(4.2)

E = j t (CvpVT) (4.3)

w = PVout * (4.4)

where negative V  represents the decrease of gas volume and therefore, work is done 

on the gas. Using the ideal gas law:

(4.5)
P

gives:

(4.6)
G



The rate of heat transfer Hin can be represented by the general expression:

H „ = a A {T ,„ -T )  (4.7)

a  represents the overall heat transfer coefficient between the gas and the 

surroundings taking into account convection, conduction and radiation. This 

linearised approximation is considered reasonable over the relatively limited 

temperature range of pneumatic actuation systems.

Differentiating the equation of state given by the ideal gas law (Equation

(4.5)) the rate of change of pressure is:

• RT . P m R  • ..
P =  m  V +  T  (4.8)

V V V

Using the relationships of gas properties:

CP- C V = R and y  = $ t-  (4.9)
C y

Equation (4.8) can be written as:

M UA(Tlur - T) (4.10)
V

Since the heat transfer is strongly dependent on the geometry of the area over which 

the heat transfer occurs and also on the flow conditions of the gas (laminar or 

turbulent) the analysis is very complicated and experimental data are often desirable 

(Scholz (1990)). Hence, the determination of pressure variation related to the heat 

transfer may be regarded as being approximately polytropic in form (Rogers and 

Mayhew (1973), Andersen (1985)):

- I
p j

It follows that:

= const (4.11)

(4.12)

It is generally assumed that n lies between 1 (isothermal process) and y  (adiabatic 

process). For slow movement of gas, heat may transfer through the boundary 

maintaining a constant gas temperature inside the volume resulting in a 

thermodynamic equilibrium and a polytropic index n equal to 1 (isothermal). For
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rapid change or a well insulated pneumatic component, little heat is assumed to flow 

into or out of the control volume and n will be equal to /(adiabatic).

Assuming that no gas flows out of the control volume the mass flow going 

into the control volume can be expressed as:

Note, that for pneumatic systems the mass flow rate is determined and not the 

volumetric flow rate as for hydraulic systems. It can be seen in Equation (4.13) that 

the mass flow causes a change in volume and a change in pressure. The ratio of these 

two changes is quantified by the polytropic index n.

4.1.1.2 Temperature Changes in Control Volume

Once the rate of change of pressure has been determined, the rate of change 

of gas temperature inside the gas volume can be obtained by rearranging 

Equation (4.8) into the following form:

Note, that m is the net mass flow rate in the gas volume (= X min - 'L mout )•

The theoretical analysis described above is based on the assumption of an 

infinitely small gas volume with uniform pressure and temperature throughout the

lumped parameter-approach.

Summarising, when deriving the capacity model the following assumptions 

were made:

• The change in condition of the gas is polytropic in form.

• Air behaves like an ideal gas ( /=  1.4).

• Pressure and temperature are constant throughout the volume.

• Potential and kinetic energy of the gas flow are negligible.

(4.13)

PV
(4.14)

volume. The extension of the results to a volume with realistic dimensions is called
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4.1.2 Restrictive Element

4.1.2.1 Gas Flow through an Orifice

Restrictive elements as depicted in Figure 4.2 are those components requiring 

a sizeable local pressure drop to cause gas to flow. Fixed restrictions which have 

constant flow area are usually called orifices. Variable restrictions which have 

variable flow areas are called valves. Neglecting heat transfer and assuming that no 

work crosses the boundary the flow through an orifice can be fairly accurately 

predicted by (Backe (1986), McCloy and Martin (1980)):

rh = CdCmAv (4.15)

The value of the mass flow coefficient Cm depends upon whether the flow is sonic or 

subsonic. The flow is subsonic, if:

p  = f± >  
r P..

y I (=0.528 for air) (4.16)
v r - i

and the flow coefficient Cm is given by (see Figure 4.3):

cm = J^ ^ [(P r) -̂(Pr)(r+w] (4.17)

Note, that the pressure ratio Pr is defined as the ratio of downstream static pressure 

Pd in the minimum cross section flow area (vena contracta) to upstream stagnation 

pressure Pu.

Otherwise, if Pr < 0.528 the flow is sonic and said to be choked. In this case 

Cm can be calculated as:

C =

i

\Y  + 1.
' ^  (= 0.0404 for air) (4.18)

\R (r+ D

For the choked condition Cm has reached its maximum and is now only dependent on 

the upstream temperature Tu (Backe (1986)). When the flow is choked the fluid is 

moving at the speed of sound through the vena contracta of the flow path. Assuming 

a constant upstream pressure (charging with constant supply pressure) a further 

reduction in the downstream pressure will not result in a higher mass flow rate as can 

be seen in Figure 4.4a. The reduction in pressure will not propagate back to the
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nozzle since pressure waves travel with the speed of sound. When assuming a 

constant downstream pressure (exhaustion to atmosphere) the relation between 

upstream pressure and mass flow rate becomes linear after a small initial curved 

portion as can be seen in Figure 4.4b.

It has to be mentioned that a super sonic flow speed can be achieved by 

gradually increasing the flow area behind the smallest cross section and expanding the 

gas adiabatically. In this case Cm can be calculated using Equation (4.17) for the whole 

pressure range. This means the flow coefficient drops again after reaching the 

maximum at Pr = 0.528 for air (see grey line in Figure 4.3). Although the flow velocity 

now becomes super sonic as pressure ratio Pr drops below the critical pressure ratio the 

mass flow decreases because the density of the gas decreases more than the velocity 

increases.

Nevertheless, the mass flow rate can only be calculated as shown above 

(Equation (4.15)) provided that the upstream total pressure Pu, upstream total 

temperature Tu and static pressure in the vena contracta Pd are known and the 

velocities across these sections are constant. In the usual situation, however, none of 

these provisions is satisfied. The discharge coefficient Cj is introduced as a 

correction factor mainly to take account of the jet contraction. As mentioned above, 

this contraction results in an effective flow area (vena contracta) which is smaller 

than the orifice area Av (see Equation (4.15)). Also reduction in mass flow due to 

friction and heat losses and velocity profile effects are included in the discharge 

coefficient. Andersen (1985) reported on the following range of values for Q :

• nozzles 0.95

• squared edged orifices 0.82

• sharp edged orifices 0.61 to 0.84

• poppets: conical 0.72 to 0.87

spherical 0.75 to 0.88

He recommends calibration tests for any unusual configurations or mountings. 

If this is impractical, the square edged orifice value of 0.82 is considered within +/- 

10% for nearly all types of restrictions. It should be noted that in recent studies Ye et al 

(1992) used a value of 0.68 for a poppet type valve, whereas Lai et al (1990) used a 

value of 0.95 for a dissimilar poppet type valve. Thus, it appears that calibration tests
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are in order regardless of the configuration being used. Furthermore, Grace and Lapple 

(1951) published results (see Figure 4.5a) which indicate a drop off in Q  for subsonic

0.528). Perry (1949) also reported a drop off in Q  with increasing pressure ratios for 

gas flow through a sharp edged orifice. This results can be seen in Figure 4.5b. The 

decrease in Cd with increasing pressure ratio Pr implies a decreasing throat area (vena 

contracta). Moreover, Stenning (1955) found by investigating ‘two-dimensional’ gas 

flow through spool valve orifices that the discharge coefficient was greater for 

reattached flow than for jet flow. Also, for pressure ratios near unity the flow will be 

laminar which results in a further reduction of Q . Nevertheless, when gas is flowing 

through an orifice the Reynolds number due to the low kinematic viscosity is in general 

sufficiently high to neglect this Reynolds number effect (McCloy and Martin (1980)).

As will be shown in Section 4.3.1, all of the effects described above have a 

measurable influence on the flow characteristics of a pneumatic valve and hence have 

to be considered when modelling its dynamic behaviour.

4.1.2.2 Thermodynamic Behaviour of Gas Flow through an Orifice

The analysis of the thermodynamic behaviour of gas flow through an orifice 

and valve can be carried out using the steady-state energy balance equation. For a 

given streamline the energy equation is expressed as:

does work on its surrounding nor has work done on itself. In the case of flow through 

an orifice or valve, the heat transfer across the boundary can be neglected as the 

surface area over which the heat transfer might occur is very small. Since in general 

the inlet and outlet chambers are large in comparison to the flow area (i.e. v„ * vj «  

v/) the kinetic energy in these chambers can be neglected. The energy equation can 

now be written as:

flow through a square edged orifice (pressure ratios above the critical pressure ratio of

CPT + — = const 
P 2

(4.19)

This is the form of equation for steady adiabatic gas flow in which the gas neither

(4.20)
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Hence, for a flow of gas passed through an orifice or valve, the outflow gas 

temperature Td is assumed to be equal to the inflow gas temperature Tu as the 

recovery of the gas temperature occurs while the temperature in the vena contracta 7/ 

can be significantly lower. As a matter of fact, it was found in various applications 

that the decrease of temperature in the vena contracta can cause valves to freeze if 

the air used in the system is humid (Lo (1995)).

If an attempt is made to determine the gas temperature 7} at the flow area, the 

isentropic relationship (Backe (1986)) can be used. Subsonic flow yields:

T - TJu

r-i

(4.21)

Sonic flow gives:

T. = T . - ^ -  (4.22)
7 y+ 1

Summarising, when deriving the restriction model the following assumptions 

were made:

• No heat is exchanged with the surroundings due to a small surface area.

• The upstream stagnation pressure and stagnation temperature are known.

• The static pressure in the vena contracta is known.

• The velocity is constant across the cross sections where the pressures are 

determined.

• No work is done by the gas nor is done on the gas.

• Air behaves like an ideal gas (y= 1.4).

• Kinetic energy in the inlet and outlet chambers can be neglected.

4 .2  P neumatic C o m po n en t  Mo d e ls

In order to simulate the dynamic behaviour of the pneumatic actuation system 

two component models have been developed within the Bath/p simulation 

environment described briefly in Appendix Al: a model of linear pneumatic actuator 

and servo control valve model. The dynamic influence of the connecting pipes has 

been incorporated into these two models: the capacity effect of the pipes has been
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considered by adding the pipe volume to the actuator chamber volume and the 

restriction effect has been incorporated into the valve restriction by means of 

calibrating the discharge coefficient Q .

4 .2 .1  L in ea r  P neu m a tic  A c tu a to r

Linear actuators are used to convert gas pressure or flow into force or motion 

of the piston. The motion of the piston is obtained by taking into account the forces 

acting on the piston as shown in Figure 4.6. These are:

• net pressure force ( PaAa -  PbAb)

• weight of the piston and mass to be moved ( mg sin (p)

• viscous friction force ( cf x )

• Coulomb friction force ( Fc sgn(x))

• spring compression force ( k(x -  ))

• external disturbance force (Fext)

Using Newton's law the equation of motion of the cylinder piston is given by:

mx = AaPa - A bPb -mgsin(p - c f x - F c sgn( x ) - k ( x - x max) - F ext (4.23)

It is assumed that the spring is fully extended for a fully extended actuator. 

Furthermore, it has to be noted that the net force acting on the piston has to exceed 

the stiction force Fcs before the piston can move. Neglecting Coulomb friction and 

external forces and differentiating Equation (4.23) gives:

mx+cf x + kx = AaPa -  AbPb 

Substituting Equation (4.12) ioiPa andP* results in:

(4.24)

nix+ c/x + kx = n ^ \ R ( m j : s - m mTa) -P aVc]
a

(4.25)

The volumes of chambers a and b can be written as:

K = A*X + V*,inand Vb =Ab(l-x )+ V n 

Hence, the rate of change of volumes is:

(4.26)
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Va = A ax  and Vb = - A bx (4.27)

Inserting Equation (4.27) into Equation (4.25) yields:

mx + cf x  + Ic + n f PaA l + PbA l '

k J

x  = n ^ [ R { m csTs -m J T c)]
a

- n ^ [ R ( m bJ , - m btTb)]

(4.28)

For ease of analysis it is now assumed that Ta - T b - T s - T  and that no external 

spring is attached to the actuator (k = 0). Considering a piston motion in the positive 

x-direction (extension of actuator piston) that means chamber A is charged while 

chamber B is discharged ( mae = 0, mbs = 0 )  yields:

mx + cf x  + n
f  p  A 2 P A 2^a a  ̂ * b A b

Kb

x — nKT
Aarnm | Abmbt

(4.29)

For motion in the negative jc-direction (retraction of actuator piston) the differential 

equation of the system dynamics is:

mx +cf x + nfPaA l { P X ') x  = -nR T A„m„ Abmbs
I V. Vb ) v. vb J

(4.30)

These differential equations are of third order with coefficients depending on 

displacement x, chamber pressures Pa and Pb and temperature T. The system is 

excited by the mass flow rates ma and mb being the external inputs.

4 .2 .2  P n eu m a tic  S e r v o  Valve

The valve model consists of two distinct operations. Firstly, the spool motion is 

carried out by various forces acting on it. The spool opens and closes the gas flow area 

and hence increases and decreases the gas flow rate. Secondly, due to a pressure drop 

across the valve air flows through the valve opening.

The mass flow rate through the opening of the valve is determined using a 

similar approach to that for the orifice described above (Equation (4.15)) where the 

effective flow area is related to the spool displacement xv and the maximum flow 

area Av:
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(4.31)

The spool motion is modelled using a second-order transfer function between 

the applied voltage u and the spool displacement xv:

In general, in order to simplify the analysis it is possible to neglect the spool 

dynamics since for pneumatic systems the natural frequency of the valve is usually 

more than a magnitude higher than the natural frequency of the pneumatic actuation 

system. The equation relating the gas mass flow rate to the input voltage would 

hence be:

Yet, within this investigation the natural frequency of the valve spool is taken into 

account in the simulation model as its influence on the closed-loop system dynamics 

in sliding mode control is of major importance as will be demonstrated in Chapter 8.

Leakage is not included in the valve model although it has been measured in 

a similar manner to the mass flow rate through the valve as described in 

Section 3.3.1. It was found that the leakage coefficients vary with valve opening and 

pressure difference across the valve and between the actuator chambers as can be 

seen in Table 3.4. Since the leakage flow rates are almost negligible though and 

mainly result in steady-state errors which are of no concern in the context of the 

research work presented it has been decided not to include an additional leakage 

model into the valve model.

4 .3  Validation  o f  P neumatic S ervo  Mo d el

In order to use the previously presented component models for simulating the 

dynamic behaviour of the pneumatic actuation system, each model had to be 

validated and calibrated. An initial simulation study revealed that the simulation 

results are most sensitive to the flow characteristics of the pneumatic control valve. 

Therefore, most effort has been spent on calibrating in particular this component

msxv + csxv + ksxv = u (4.32)

(4.33)
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model. The calibration of the models of the pneumatic actuator and the connecting 

pipes was found to be fairly straight forward.

4 .3 .1  Va lida tion  o f  Valve  Mo d e l

As described in Section 3.1.1.2, the valve to be modelled in this investigation is 

the 4 port servo valve HR Textron 27A1. From the rated mass flow the nominal 

discharge coefficient can be determined to be Cd -  0.8 for a pressure ratio of Pr = 0.15. 

This compares well with values given by other researchers as listed in Section 3.1.2. 

Nevertheless, as will be demonstrated by the results presented in this chapter the 

discharge coefficient is strongly dependent on the pressure ratio and the geometry of 

the orifice. To determine the discharge coefficient as a function of pressure ratio Pr and 

input voltage (valve opening) the steady-state mass flow rate was measured at 10 

different spool displacements across the spool stroke for all four flow paths: supply to 

port A (S-A), supply to port B (S-B), port A to return (A-R) and port B to return (B-R).

In order to avoid the use of expensive mass flow meters the mass flow rate 

through the control valve was determined indirectly by measuring the rate of change 

of pressure in a dead volume of known size. The experimental set-up used can be 

seen in Figure 4.7. This indirect way of measuring the mass flow proved to be 

advantageous in many respects. For instance, using this method it was possible to 

measure the mass flow for a fixed input voltage (valve opening) and a varying pressure 

ratio Pr (due to the build-up of downstream pressure Pd for charging and the decrease 

of upstream pressure Pu for discharging). Using Equation (4.12) the mass flow rate can 

be derived from the measured rate of change of pressure:

P V P
«  = J B L .=  C , C , A - f  (4.34)

nRTu “

The problem is that the polytropic index n for the change in condition in the dead 

volume is unknown and there are no precise guidelines available on how to choose 

its value. Nevertheless, in the course of the research work presented here this was 

found to be an irrelevant problem. A simulation study done by Lo and Tilley (1993) 

showed that although the polytropic index n has a significant influence on the 

simulated temperature, the influence on the actuator chamber pressures is much
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smaller and the influence on actuator piston displacement is almost negligible. Since 

actuator piston displacement is the most important entity in the context of position 

controller design (without pressure feedback) the choice of the polytropic index 

appears to be mainly of academic interest as long as the discharge coefficient Cd is 

calibrated under the assumption of the chosen fixed numerical value.

As explained in Section 4.1.1 in general it is assumed that n lies between 1 

(isothermal change in condition) and 1.4 (adiabatic change in condition). In the 

following n is set to 1.4 (adiabatic flow). This assumption is based on the idea that the 

charging and discharging of the dead volume is so rapid that no heat exchange with the 

surrounding can occur. For large valve openings where the charging time is less than 

1 s it seems to be a reasonable assumption. Yet, for smaller valve openings of for 

example 2% of the full spool stroke the charging time can increase to more than 3 

minutes. In this case, the change in condition in the dead volume is closer to being 

isothermal than to being adiabatic. Therefore, assuming a polytropic index of 1.4 

(adiabatic) results in the fact that the mass flow through the valve predicted from the 

rate of change of pressure in the dead volume is assumed to be lower than it is in 

reality. As a consequence, for small valve openings the discharge coefficient Q  is 

predicted to be lower than its real value by a factor of up to 70%. Yet, using the above 

approach and calibrating Cd accordingly it is not necessary to determine the polytropic 

index n for the actuator model as a function of e.g. process time. Therefore, by 

calibrating the valve model assuming a constant polytropic index n the same index can 

be used for all component models in the simulation routine. The variations in n are in 

this case taken into account by means of the variations in the calibrated discharge 

coefficient Q .

As a results of the chosen calibration method, one has to be aware of the fact 

that although the simulated system displacement results agree well with experiment 

only for fast changes in condition all simulated variables are modelled physically 

correct while for slower changes in condition temperatures and pressures might deviate 

from measured values.

If it is of interest to exactly measure the mass flow rate through the valve by 

means of charging or discharging a dead volume without using a mass flow meter the 

technique above can be slightly modified. In a recent publication Kawashima et al
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(1997) describe the use of approximately isothermal chambers which were filled with 

steel wool. The use of these chambers justified the assumption of isothermal changes 

of condition. Hence, the polytropic index n can be set to unity.

When determining the mass flow through the valve as described above it was 

found that the maximum flow areas were different for each flow path and also up to 

8% different to the value given by the manufacturer. Furthermore, it was found that the 

return port areas were smaller than the supply port areas. The results can be seen in 

Table 4.1. Also, despite the fact that the input voltage-flow area characteristic depicted 

in Figure 3.4 is linearised by means of a linearisation circuit on the valve control card, 

the actual characteristic was found to be far from being linear. Especially for valve 

openings of less than 20%, the valve’s steady-state characteristics become significantly 

non-linear. The deviation from the linear behaviour can become up to 70% in the worst 

case. It is suspected that the overlap compensation circuit on the valve control module 

and a change in flow path are the reason for this observed behaviour. In the valve 

simulation model an additional position dependent spool displacement-flow area gain 

for all four flow paths as depicted in Figure 4.8 had to be introduced to compensate for 

this non-linearity.

The numerical values of the discharge coefficient Q  resulting from the 

calibration procedure described above and used in the simulation model can be found 

in Tables 4.2 to 4.5. The valve model uses linear interpolation to predict the flow rates 

for the pressure and spool displacement regions not exactly measured. The resulting 

discharge coefficient-pressure ratio relationship can be seen in Figure 4.9.

The most important results from the valve calibration procedure are the 

following:

• The Cd value of 0.8 obtained by using the rated mass flow represents the flow 

condition fairly accurately for choked flow (Pr < 0.528) and large valve openings.

• For larger pressure ratios a drop off in Cd can be observed. This implies a 

decreasing throat flow area (vena contracta).

• In some cases a further drop-off in Q  occurs for very large pressure ratios near 

unity. This is due to a change from turbulent to laminar flow causing an increase 

in flow friction.
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• For smaller valve openings an increase in Cd with pressure ratio after an initial 

drop off was found. This implies a reattachment of the flow jet to the walls of the 

orifice as described by Stenning (1995).

• For very small valve openings the discharge coefficient for the flow paths A-E 

and B-E decreases significantly already at relatively small pressure ratios. This 

can be explained by the long discharging times and hence the occurrence of heat 

exchange with the surrounding.

• For the flow path B-E the discharge coefficient decreases to 0 for an input voltage 

of 2% of the maximum voltage. Although a pressure drop exists across the valve 

orifice no gas flow can be observed. This effect is not due to spool movement in 

the valve since the valve spool position remains constant throughout the 

discharging.

It can be derived from the experimental results that also the choking point 

varies from Pr = 0.49 to 0.33 depending on the valve opening. Since air chokes 

theoretically for Pr = 0.528 the different choking point is reflected in a further drop in 

Cd in the model. The choking at pressure ratios less than the critical pressure ratio is 

caused by the fact that air does not behave like an ideal gas (McCloy and Martin 

(1980)) which is assumed in the theoretical derivation of the mass flow in 

Section 4.1.2. Furthermore, the choking point seems to be dependent on the orifice 

geometry. Due to the length of the flow path through the orifice the flow can 

theoretically choke at varying points along the path. This affects the pressures 

measured outside the valve. Hence the measured pressures can be closer to or further 

away from the pressures theoretically assumed. It follows, that the prediction of the 

choking point can be more or less accurate depending on the geometry.

Altogether, the above results highlight again the importance of calibration tests 

as suggested by Andersen (1985).

As mentioned already in Section 3.1.1.2, by means of frequency response tests 

the natural frequency of the valve spool for maximum valve opening was determined to 

be about 200 Hz. This corresponds to the natural frequency given by the manufacturer 

for a valve opening of 2.5% (see Figure 3.5).
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4.3.1.1 Comparison between Simulation and Experimental Charging 

and Discharging Results

A comparison of simulated and measured pressures in the measuring volumes 

for charging and discharging can be seen in Figures 4.10 to 4.13. In Figure 4.10 the 

results obtained with an uncalibrated simulation model using the nominal discharge 

coefficient of Q  = 0.8 are shown. It can be seen that the simulation results deviate 

significantly from the experimental ones. Using the calibrated valve model with a 

valve opening and pressure ratio dependent discharge coefficient yields a good 

agreement between simulation and experiment as can be seen in Figure 4.11. 

Obviously, the gas flow effects described above have a significant influence on the 

mass flow rate through the valve and calibration is of major importance in order to 

achieve good simulation results. Nevertheless, despite the fact that all the above 

described effects on the steady-state mass flow characteristic have been modelled 

there are still small observable differences between simulation and experiment. 

These differences are mainly due to the following factors:

• the influence of measuring errors and limited transducer accuracy on the 

experimental data

• the measurable flow area deadband of 0.03V (0.6% of maximum input voltage)

• manufacturing accuracy of the valve

In particular, when discharging the measuring volumes slight discrepancies 

between simulation and experiment are visible. This can be explained by the influence 

of the linearisation circuit of the valve control card described in Section 3.1.1.2: for 

small valve openings the linearisation circuit opens the charging port 

overproportionally in order to successfully linearise the charging side as the 

experimental results imply. Yet, this also results in an overproportional reduction in 

flow area on the discharging side and hence an overproportional reduction in the 

discharging air flow. A further effect which reduces the gas flow near the spool centre 

position and which has not been modelled is a deadband of about 0.6% of the 

maximum voltage of 5 V.

The effects of the manufacturing tolerance of the valve are illustrated in 

Figure 4.12. The simulation results are compared to experimental results taken with a
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different valve of the same make. Differences between simulation and experiment 

are up to about 0.2 bar.

Even when using a calibrated valve simulation model one has to be aware of 

the sensitivity of the gas flow to changes in the environmental conditions as depicted 

in Figures 4.13. Here, the simulation results are compared to experimental results 

obtained on a different day than the ones used to calibrate the valve model. As can be 

seen, slight changes in the air temperature and pressure of the surroundings have a 

visible influence on the flow rate through the valve.

4 .3 .2  Validation  o f  A ctu a to r  a n d  Lo a d  Mo d e l

Having calibrated the valve model as described in the previous chapter the 

last step of synthesising the pneumatic servo simulation model is to validate the 

actuator and the load model. The main parameters of the pneumatic actuator and load 

that had to be identified were:

• effective mass to be moved m

• viscous friction coefficient Cf

• dynamic Coulomb force Fed and stiction force Fcs

• actuator geometry

The geometric sizes of the actuator and connecting pipes were derived from 

data provided by the manufacturer. It should be mentioned again that the capacitive 

effects of the pipes were taken into account by adding their volume to the actuator 

chamber volumes. The accuracy of these parameters proved to be sufficient for this 

analysis. Therefore, only parameters remained to be identified which relate the net 

pressure force to the motion of the actuator piston. The relationship of all of these 

parameters is described in the force balance Equation (4.23).

One way of identifying the required parameters from experimentally 

measured data is to use the least-square method. Since this is in general the simplest 

method to be used it has been chosen for this investigation. Other methods to identify 

the dynamic system parameters are based on for example neural network approaches 

or genetic algorithm (GA) search engines. In the following these alternative methods
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are also presented briefly and their advantages and disadvantages are discussed. 

Moreover, due to the importance of gaining a precise knowledge of the required 

system parameters the results obtained with the least-square method are compared 

with the results from the GA parameter search.

Having determined the numerical values of the required system parameters 

these parameters are then used in simulation and experimental and simulation results 

are compared.

4.3.2.1 Least-Square Method for Parameter Identification

In this section, the least-square approach to parameter identification is 

presented, its limitations are discussed and it is applied to the specific identification 

problem. The algorithm is tested and validated using simulation data obtained by 

means of the developed non-linear simulation model described in Section 3.2. The 

algorithm is then used to determine the required system parameters mass m, viscous 

friction coefficient c/ and dynamic Coulomb friction force Fed of the single-axis test 

rig-

The stiction force Fcs is neglected in this investigation although usually when 

investigating pneumatic systems, stiction is a serious problem which strongly effects 

the dynamic behaviour of these systems and also their controllability. In this context, 

the so-called stick-slip effect is often mentioned (see for instance Abou-Fayssal and 

Surgenor (1997)). Nevertheless, stiction proved to be of minor importance in this 

investigation due to the low friction properties of the actuators used and the fact that 

most joints on the animated figure were fitted with low friction roller bearings.

Using the same notation used by Lin and Korttim (1992) and following their 

train of thoughts the dynamics of a mechanical system with non-linear components 

can always be written in the following form:

Mx(t) + Cx(t) + Kx(t) + r[x, i ,  p N) = u(t) (4.35)

or in component notation:

n n n

Y j mijX,(‘) + ̂ L ciji i(t) + H kijxi i t) + ri(x ’i ’Pf' ) :=uM ’ i = l,2,...,n  (4.36)
j=] j =1 j=l
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where x(t) represents the system’s state, u(t) is the external excitation force vector 

and M , C and K  represent the linear part of the system dynamics that is the inertia, 

viscous friction and compliance. The last term on the left-hand side of 

Equation (4.36) is the vector containing all non-linear elements with respect to the 

measured system variables. As mentioned before, to identify the vector of unknown 

parameters pN using the least-square method it is necessary that the non-linear 

elements of the system equation are linear in the parameters that means:

Assuming that piston displacement, velocity and acceleration and also the 

actuator chamber pressures can be measured or determined otherwise it can be seen 

that Equation (4.23) is linear in the parameters mass, viscous friction and Coulomb 

friction to be identified despite the fact that Coulomb friction is a non-linear term in 

the force balance. As a result, the chosen least-square approach is valid.

Since discrete experimental data is to be processed Equation (4.36) has to be 

converted into its discrete form. Furthermore, due to the fact that in this investigation 

only displacement is measured at a constant discrete time interval h - t q -  r , the

following approximations are used for x q and x q :

r * +1 —  r 9_1 r 9+1 _ 9 y U  r q~l
#  = t  ±__5 x q = - ------4 - (4.40)

2 h h

Please note, that these centre differencing schemes do not introduce an additional 

phase shift into the differentiated signals.

Error cost functions can be defined as follows:

(4.37)

where:

(4.38)

(4.39)

(4.41)

with:
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A\ = m (x,H - 2 x ” +x"-l) + c{ -{x"*1 -  X ) + P J r  sgn

- h 2{AaPa - A bPb)

Minimising these error cost functions yields the parameters to be identified pt : 

dtp,

(4.42)

dp,
= 0 =* p,

As a result the following linear equation system is obtained:

Pi
( \  m ( a An A } "13

Pi = cs = A2i A22 <̂23

<P*J f e d . ^31 A 32 A33j

-i

h 2uq

(  N - 1

Y ,{ x ^ 1 -2 x "  + x q-')
9=1

-x " - ')
9=1

£ sg n (x *+1 - x 9~l )
\ q = l

with:

N - l

An = 2 '£ (x '!*' - 2 x ‘‘ + xq~l)
9=1

An = - ^ { x q*' - x r '){x^ ' - 2 x q + x“-')
2  9=1

N - l

N - l

Aj3 = h2^ ( x q+1 - 2 x q + ;c9' 1)sgn(;c9+1 -jc*-1)
9=1 

.2  AT—1I , /  y v - i

^  9=1

N - l

A,3=fc4X l
9=1

Ay = Aj,

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

Using the above algorithm on data synthesised by means of the non-linear 

simulation model with known parameters and additional noise it was found that the 

following four measures were able to improve the identification results significantly:
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• Filtering of the measured system data

• Introducing a velocity deadband

• Scaling of the force terms in the force balance Equation (4.23)

• Iterative identification of the individual terms

Filtering of the measured data was important to minimise the effects of noise 

in the measured signals on the identification results. Especially, the Coulomb force 

term was found to be very sensitive to noise due to it being a function of the sign of 

the differentiated displacement (see Equation (4.23)). In this investigation a second- 

order Butterworth filter with a cut-off frequency of f cut = 50 Hz was used for 

experimental data acquired with a sampling frequency of f samp = 500 Hz. The filter 

was used on all measured signals although the measured pressure signals were of 

very low noise in comparison to the displacement signal. Yet, filtering all measured 

signals like this, all force terms in the force equation to be identified maintained their 

relative phase angles.

In order to further reduce the influence of noise on the identified Coulomb 

friction force and also to prevent stiction effects to influence the identification results 

a low velocity deadband of Vdead = 0.005 m/s around zero velocity as depicted in 

Figure 4.14 was used within which no identification was performed.

Scaling the force terms in order to obtain equal maxima during the 

identification process resulted in the identification algorithm being theoretically 

almost equally sensitive to variations in all force terms in Equation (4.23) therefore 

allowing for all parameters to be identified with the same accuracy.

Despite the scaling of the force terms it was found though, that mass m and 

viscous friction c/ could be determined with a greater consistency than Coulomb 

friction Fed due to the discontinuous sign function characteristic of Coulomb friction. 

Therefore, above identification algorithm was implemented as an iterative scheme. In 

other words, in a first instance all three parameters were identified from a given data 

set. It was found that usually the identification of mass was the most reliable. During 

the second iteration, mass was then assumed to be known using the identified value 

resulting in the viscous friction to be identified with greater accuracy. In the third
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iteration, also viscous friction was set to its identified value and only Coulomb 

friction was identified.

Another important factor of influence on the identification results is the 

demand signal exciting the pneumatic servo mechanism. In a noise-free environment 

it can be seen from the linear Equations (4.23) that three linearly independent state 

vectors are needed in order to solve the system for three unknown parameters. In the 

presence of noise the measured signals have to be significantly richer in information 

in order to compensate for the disturbing influence of noise. It was therefore decided 

to excite the pneumatic servo system under closed-loop proportional feedback 

control with a sinusoidal demand signal sweeping through frequencies from 0.5 Hz 

to 20 Hz over a time period of 60s. Since it was suspected that the friction properties 

of the actuator piston are position and also direction of motion dependent, the system 

was demanded to perform small amplitude oscillations around three different piston 

positions: 2/5 (12 mm), 1/2 (15 mm) and 3/5 (18 mm) of the piston stroke. 

Furthermore, two identical but independent identification routines were performed 

per data set, one for each direction of motion.

As already mentioned, the proposed identification routine was first tried on 

simulation data produced using the non-linear simulation model to be validated. 

Since in this case the friction effects are independent of piston position and direction 

of motion the system was only excited round the mid stroke. The results in 

Figure 4.15 demonstrate the capability of the proposed algorithm to identify a mass 

of m = 7 kg, a viscous friction coefficient of c/= 100 N/(m/s) and a Coulomb force of 

Fed = 15 N. It was found that in general only 500 points are needed to successfully 

obtain the correct results in the presence of a maximum noise level of 0.3% of the 

maximum measured signals. This was about the noise level of the displacement 

transducer used for this investigation (about 0.09 mm with a stroke of 30 mm).

Using the validated identification algorithm on experimental data obtained on 

the single-axis test rig resulted in the values for mass, viscous friction and Coulomb 

friction listed in Table 4.6. (As a comparison, when dismantling the test rig and 

weighing the effective mass to be moved it was determined to be m = 1.82 kg as 

opposed to the identified value of m -  1.81-1.84 kg.)
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It should be mentioned that although it was found that the friction effects 

were piston position and direction of motion dependent it was not possible to obtain 

a consistent relationship between friction and these variables due to the fact that 

repeatability of the experiments was rather low and friction effects changed 

constantly from experiment to experiment. Therefore, only average values are 

reported here which are used for the simulation model. One interesting result is the 

low value of the dynamic Coulomb force of only Fed = 1-3 N.

4.3.2.2 Alternative Identification Methods

As discussed in the previous section, the least-square identification method 

requires the system model to be linear in the parameters to be identified. Since this is 

not always the case or not known a priori another way of identifying system 

parameters is to use inherently non-linear neural networks which can be trained with 

simulation data obtained using a simulation model of the system to be identified and 

known system parameters. This method is discussed and successfully applied in the 

context of fault analysis and condition monitoring of fluid power systems by 

Pollmeier (1997) and therefore not further detailed here.

It is also possible to employ genetic algorithms (GA’s) in combination with 

non-linear dynamic simulation models for parameter identification. The genetic 

algorithm in this application is used to minimise the error between experimental and 

simulation results by altering the unknown system parameters in the simulation 

model. The optimal solution for this problem yields the desired values of the 

parameters to be identified.

Although both techniques are able to cope with highly non-linear 

identification problems, they require powerful computers to deal with the time 

consuming training or optimisation procedure. Also, a detailed dynamic model of the 

system to be investigated representing all concerning dynamic influences on the 

system’s behaviour is essential.

Due to the fact that for this investigation a detailed system simulation model 

is available and also to validate the least-square method results, it was tried to
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identify the unknown dynamic parameters by means of the GA technique. The 

identification procedure can be described as follows:

• A generation of individuals (sets of parameters to be identified) is generated by 

randomly varying the numerical values of the parameters to be identified (mass, 

viscous friction, dynamic Coulomb friction and stiction).

• A simulation run is performed with each individual.

• The fitness of each individual is determined by evaluating the following error cost 

function representing a quantitative measure for the difference in response 

between simulation and experiment:

• The error cost function is minimised by crossing and modifying the genetic 

information stored in the individuals according to the rules of procreation of the 

genetic algorithm.

• The fittest individual minimising the error cost function E  provides the set of 

system parameters which results in the best agreement between simulation and 

experiment.

As can be seen in Table 4.7 the optimised system parameters are within the 

range identified by the least-square algorithm and hence confirm the results found by 

using least-square identification.

Due to the random nature of the observed friction effects no significant 

improvements in identifying friction could be achieved with this method using the 

constant parameter friction model:

Yet, using GA’s is was possible to find a numerical value of Fcs = 1 N for the 

stiction force which has to be exceeded before the actuator piston starts moving and 

which was not identified using the least-square method. Since as mentioned before 

and as the identification results confirm stiction effects are of minor importance for 

this investigation and are hence neglected in the following.

me as (4.52)

Ff n c = Cf i  + FCdSgn { i ) (4.53)

It was observed during experimental testing that friction is strongly position 

and direction of motion dependent. Perhaps, it would have been possible to fit
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simulation and experimental results more closely by introducing a position and 

direction of motion dependent friction model such as:

for x > 0

It was decided though, that the simple model was sufficient for the requirements of 

this research work.

4 .3 .3  C o m pa r iso n  o f  S im ulated  and  E x per im en t a l  S t e p  R e s p o n s e  

R e s u l t s

Having identified all unknown system parameters the last and most crucial 

step of the validation of the non-linear model is a comparison between experimental 

and simulation data. For this purpose, the dynamics of the single-axis test rig under 

proportional displacement feedback control were simulated. In Figures 4.16 and 4.17 

the simulated and experimentally measured step responses for a proportional 

feedback gain of Kp = 1 are compared. In order to obtain a close match between both 

responses the parameters in Tables 4.7 and 4.8 were used in the simulation model. It 

can be seen that the simulation model predicts the displacement of the physical 

system very accurately. Figure 4.17 reveals that even small oscillations of the 

actuator piston when approaching the set-point are modelled precisely. As expected, 

the steady-state errors of the physical system are slightly larger than the errors of the 

simulation model since stiction and also leakage effects are not modelled. 

Furthermore, the simulated actuator chamber pressures differ slightly from the ones 

obtained experimentally. This is as well due to unmodelled stiction effects especially 

in the case of a retracting actuator piston and also the assumption of a constant 

polytropic index n as explained in Section 4.3.1.

Increasing the proportional feedback gain to Kp = 3.4 results in a more 

oscillatory system response depicted in Figures 4.18 and 4.19. In this case the 

physical system falls into a mode of sustained oscillation in the mid position. When 

validating a simulation model it is of great importance to consider this oscillatory 

behaviour and to model the system oscillations correctly in order to be able to use the 

simulation model as a controller design tool. Looking at Figure 4.18 the first

for x  < 0
(4.54)
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impression is that now the discrepancies between simulation and experiment have 

increased significantly. Yet, examining the responses in more detail (see Figure 4.19) 

reveals that the actuator piston extending motion is modelled very accurately. Only 

when retracting the piston the simulated system response is more oscillatory than the 

experimental one.

Concentrating first on the extending motion of the actuator piston it can be 

seen in Figure 4.19 that the first step response from mid position (15 mm) to 475th of 

the stroke (24 mm) is modelled very precisely. Also the step response from 1/5* of 

the stroke (6 mm) to mid position is modelled precisely at the beginning. Yet, after 

this initial agreement between simulation and experiment the experimental 

oscillation amplitude and frequency increases while the simulated amplitude and 

frequency remains constant. This increase in experimental amplitude and frequency 

can be explained by the fact that the sustained vertical oscillation of the actuator 

piston excites also a horizontal oscillation which could clearly be observed in 

experiment and is not modelled. Even the second step response from 15 mm to 24 

mm being performed right after the mid position test which has been modelled 

precisely before without the horizontal disturbance oscillations is now showing 

differences between simulation and experiment due to the fact that the horizontal 

oscillations have not vanished completely.

When retracting the actuator piston now from 24 mm to 15 mm and from 15 

mm to 6 mm the simulated response is slightly more oscillatory than the response 

obtained experimentally. This is due to changing friction properties. Increasing the 

viscous friction coefficient c/to  the maximum value of 109 N/(m/s) as identified by 

the least-square method (see Table 4.6) a close match can be achieved. In this case 

though the simulated step responses for extending the actuator piston are more 

damped than the experimental ones. Hence, it was decided to use the lower damping 

properties in order to concentrate on the dynamic case more difficult to control.

4 .4  C l o su r e

To summarise, the non-linear pneumatic servo simulation model using the 

constant polytropic index approach to represent the changes of gas condition and a
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constant coefficient friction model is able to precisely predict the dynamic behaviour 

of the pneumatic actuation system under investigation. The developed model is 

therefore an ideal tool for further investigating the dynamic behaviour of the 

pneumatic actuation system. Moreover, it provides an ideal environment for 

controller development and testing.

Another interesting fact that can be concluded from the results presented in 

this chapter is that the servo dynamics are position and also direction of motion 

dependent. This phenomenon will be discussed in more detail in Chapter 5 where the 

linearised model of the pneumatic servo is introduced and investigated.
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T a b l e s

Table 4.1 - Maximum flow area of the flow paths of servo valve HR Textron DDV
27 A 1

flow path maximum flow area
S -A 0.870 * 10'6 mm2
B -E 0.810 * 10"6 mm2
S -B 0.870 * 10‘6 mm2
A -E 0.795 * lO’6 nun2

Table 4.2 - Discharge coefficient Q  as a function of pressure ratio Pr as used in the 
___________ valve simulation model for flow path S-A

input
voltage

C/0 /PrO Cdl / Pn Cd2 / Pr2 C/3 / Pr3 C/4 / Pr4

5 V 0 .8 0 /0 0.80/0.25 0.75/0.60 0.65/0.90 0 .60 /1
4 V 0 .8 0 /0 0.80/0.20 0.75 / 0.53 0.66 / 0.73 0.61 / 1
3 V 0 .8 0 /0 0.80/0.20 0.74 / 0.53 0.60 / 0.90 0.57 / 1
2 V 0 .8 2 /0 0.82/0.20 0.78/0.30 0.65 / 0.90 0.50 /1
1 V 0 .8 3 /0 0.83/0.15 0.76 / 0.28 0.64 / 0.90 0.40 /1
0.8 V 0 .8 0 /0 0.80 / 0.25 0.80/0.30 0.65 / 0.95 0.30 /1
0.6 V 0 .8 0 /0 0.80/0.20 0.75 / 0.53 0.62/0.90 0.40 / 1
0.4 V 0 .8 0 /0 0.80 / 0.20 0.78/0.45 0.61/0.90 0.35 / 1
0.2 V 0 .8 0 /0 0.80 / 0.20 0.78 / 0.50 0.52/0.85 0.20 / 1
0.1 V 0 .8 0 /0 0.80/0.20 0.72/0.50 0.40/0.80 0.00 /1

Table 4.3 - Discharge coefficient Q  as a function of pressure ratio Pr as used in the 
___________ valve simulation model for flow path B-E

input
voltage

C/0 /  P r0 Cdl ! Pr\ Cdl / Pr2 Ci3 /  Pr3 C/4 / Pr4

5 V 0 .9 0 /0 0.90/0.15 0.55/0.65 0.45 / 0.90 0.30 / 1
4 V 0 .8 5 /0 0.85/0.15 0.60/0.50 0.44 / 0.80 0 .32 /1
3 V 0 .8 3 /0 0.82/0.15 0.67 / 0.30 0.42/0.90 0.32 /1
2 V 0 .8 4 /0 0.84/0.14 0.59 / 0.40 0.46/0.80 0.33 / 1
IV 0 .8 0 /0 0.80/0.15 0.53/0.29 0.50/0.80 0.37 / 1
0.8 V 0 .8 0 /0 0.80/0.15 0.50/0.30 0.52/0.80 0.32/1
0.6 V 0 .8 0 /0 0.80/0.15 0.51/0.25 0.54/0.70 0.40 /1
0.4 V 0 .8 0 /0 0.80/0.15 0.57 / 0.20 0.30/0.80 0.00/ 1
0.2 V 0 .8 0 /0 0.80/0.15 0.48/0.20 0.31/0 .30 0.00 / 1
0.1 V 0 .8 1 /0 0.70/0.15 0.18/0.20 0.00 / 0.25 0.00 / 1
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Table 4.4 - Discharge coefficient Q  as a function of pressure ratio Pr as used in the
valve simulation model for flow path S-B

in p u t
v o lta g e

C/0 /  PrO C dl /  P rl C d l /  P r l C /3  /  Pr3 C /4  /  Pr4

5 V 0.83 / 0 0.83 / 0.20 0.80/0.30 0.70 / 0.80 0.60/ 1
4 V 0 .8 3 /0 0.83/0.20 0.80/0.30 0.66 / 0.80 0.60/1
3 V 0 .8 2 /0 0.82 / 0.20 0.70/0.60 0.62/0 .90 0.40/ 1
2 V 0 .8 2 /0 0.82/0.20 0.78/0.30 0.63 / 0.90 0.40/1
1 V 0 .8 2 /0 0.82 / 0.20 0.78 / 0,50 0.65/0 .90 0.40/ 1
0.8 V 0 .8 0 /0 0.80/0.20 0.75/0.30 0.60/0.95 0.40/1
0.6 V 0 .8 1 /0 0.81/0.20 0.78/0.50 0.65/0 .90 0.40 / 1
0.4 V 0 .8 1 /0 0.81/0.20 0.80/0.40 0.65/0 .85 0.40/1
0.2 V 0 .8 1 /0 0.81/0.20 0.78/0.40 0.54 / 0.90 0.40/1
0.1 V 0 .8 1 /0 0.81/0.20 0.76/0.50 0.53/0.85 0.35 / 1

Table 4.5 - Discharge coefficient Q  as a function of pressure ratio Pr as used in the
valve simulation model for flow path A-E

in p u t
v o lta g e

CdO /  PrO Cdl / Prl Cdl /  Prl Cd3 /  Pr3 C /4  / Pr4

5 V 0 .8 2 /0 0.82/0.16 0.68 / 0.33 0.50 / 0.74 0.33 / 1
4 V 0.82 / 0 0.82/0.15 0.60 / 0.40 0.56/0 .70 0.25 / 1
3 V 0 .8 2 /0 0.82/0.15 0.58/0.35 0.45 / 0.90 0.20 / 1
2 V 0 .8 2 /0 0.82/0.14 0.58/0.35 0.44/0 .80 0.30/1
1 V 0 .8 2 /0 0.80/0.13 0.53/0.32 0.48 / 0.80 0.30 /1
0.8 V 0 .8 0 /0 0.75/0.15 0.46/0.32 0.48 / 0.80 0.48 /1
0.6 V 0.80 / 0 0.73/0.14 0.46 / 0.25 0.47/0.83 0.20 /1
0.4 V 0 .8 2 /0 0.70/0.15 0.45 / 0.25 0.46 / 0.45 0.10/1
0.2 V 0 .8 2 /0 0.81/0.14 0.48/0.19 0.10/0.85 0.00 /1
0.1 V 0 .8 2 /0 0.82/0.14 0.41/0.16 0.05 / 0.42 0.00 /1

Table 4.6 - Identified system parameters using least-square algorithm
p a r a m e te r id e n t if ie d  v a lu e

mass to be moved: m [kg] 1.81 - 1.84
viscous friction coefficient: Cf [N/(m/s)] 97 - 109
Coulomb friction force: FCd [N] 1 -3
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Table 4.7 - Identified system parameters using genetic algorithms (GA’s)
parameter identified value
mass to be moved: m [kg] 1.825
viscous friction coefficient: cf [N/(m/s)] 102.53
dynamic Coulomb friction force: Fed [N] 1.013
stiction force: Fcs [N] 1.234

Table 4.8 - Simulation system parameters
parameter chosen value
sampling time: Tsamp [ms] 1
natural frequency of valve: 0Wv« [Hz] 200
damping ratio of valve: ^vaive 1
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5  L in e a r is e d  A n a ly sis  o f  P n e u m a t ic  S e r v o  

M e c h a n is m

In this chapter the characteristics of the linearised dynamic model of the 

pneumatic actuation system as depicted in Figure 5.1 are investigated. A new 

advanced linearised model is derived which represents an extension to the 

conventional linearised model commonly referred to in literature. The new advanced 

linearised model predicts accurately the piston position and direction of valve 

opening dependent dynamics of the pneumatic servo already envisaged during the 

experimental testing as reported in the Chapter 4. Using the advanced linear model 

therefore as a basis for linear feedback controller design improves the closed-loop 

system response significantly as demonstrated in this chapter.

5.1 C o n v e n t i o n a l  L in e a r is e d  M o d e l

Relatively little attention has been paid in literature to the linearised analysis 

of pneumatic servo systems. This is mostly due to the fact that the equations 

describing compressible gas flow are highly non-linear and difficult to handle. 

Furthermore, pneumatic servos are by far not as popular as hydraulic or electrical 

actuation systems.

Shearer (1956, 1957) first published a linear analysis of a pneumatic servo,

depicted in Figure 5.1. He required the following assumptions to be made:

• Supply pressure Ps and supply temperature Ts are constant.

• Temperatures are uniform throughout the system: Ta = 7* = Ts = T.

•  No heat is transferred between the gas and the surrounding: n = 1.4 (i.e. 

adiabatic).

• The cylinder is of equal areas: Aa = Ab = A.

• The central position is chosen as a linearisation point and the piston only moves

small distances from this position:

VI, = A 'I  '

 h X +Vm, = A U v ma,Vki = A  X
v 2  j

+ V ^ = a U v^  for* = 0.
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Cylinder chamber A is charged while chamber B is discharged.

The cylinder pressures in chambers A and B are equal and vary only by small 

amounts from any initial steady value: Pai -  Pbi = Pi .

Following the approach presented by McCloy and Martin (1980) the valve 

characteristics (Equation (4.15)) can be expanded as a Taylor’s series about some 

initial point i. Since only small changes are considered higher order terms can be 

neglected. It yields:

m — m. — 8m  —
dm  

\ d u A
8u + 8P..+

dm
\d P d j .

8Pd +
r d m ^
K ^ uJi

ST..
(5.1)

= kl8u  + kl8Pu + k38 Pd + kA8 Tu 

The partial derivatives are evaluated as follows:

dm

\ d u ) i

C C A   —kL'd'~'m-nv = ki
J i

k ur  A c_ + dc \ \

dP

f d m ' r

Us Ji V
C A  /c

“ J J i

f dm  >
r

U d « V
~ 2 CdCmA’ ^ kvUZ

= k*

(5.2)

(5.3)

(5.4)

(5.5)
•A

Partial derivatives of Cm with respect to Pu and Pd are zero for choked (sonic) gas 

mass flow (Pr < Prcnt = 0.528). For unchoked flow follows:

<5.®{ 3 C A
f

i V

fdcm)tn
(

i \ c.ntr
It has to be noted that:

(dcm)m 1 \ dcA
J P r [ d P j (5.8)

Using Equations (5.6) and (5.7) the partial derivatives and £3 can be written as 

follows:
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The variation of &2 and k 3 with pressure ratio Pr can be seen in Figure 5.2.

Assuming that the piston is moving in the positive ^-direction chamber A of 

the actuator is charged while chamber B is discharged. The linearised mass flow 

rates are:

8 ™ a s  =  k l a $ U +  k 2 a $  P s +  k 3a8  P a +  K T s C5 -1 ! )

Sm be= klbSu + k2b6Pb+k3b6Pe+k4bSTb (5.12)

Now SPs = 8 Pe = 0  and 8 Ts = 8 Tb = 0. This results in:

5 r h as = k l aS u  +  k 3 a $ P a (5-13)

^  ™be -  k \b 5  U +  k 2bS  Pb ( 5 - 1 4 )

The valve coefficient k\ is often called flow gain, or flow sensitivity, the coefficients 

&2 and ks flow-pressure coefficient (Burrows (1972)). Assuming now that the flow 

charging into chamber A is choked and the flow discharging from chamber B is 

unchoked the analysis can be further simplified by using k2b = - k 3a (see Figure 5.2).

McCloy and Martin (1980) use the same simplification but he justifies it by 

assuming that the pressure ratios tend to unity which implies small pressure drops 

across the orifices. As can be seen in Figure 5.2, McCloy and Martin’s strong 

assumption of small pressure drops is not necessary. Even for realistically large 

pressure drops with a pressure ratio of e.g. 0.8 the above simplification can be valid. 

Furthermore, using klb = kla results in:

8m as= kl8u  + k28Pa (5.15)

8 mbe = k18 u -  k2S Pb (5.16)

Linearising the equation for the rate of change of the pressures Pa and Pb 
(Equation (4.10)) for motion in the positive jc-direction results in:



SP. = r d p ^  

\ W . J ,
8 v J iP- '

dm
5m„ +

as J  i

dP.
s v .

~ { R T smasi~ P X ) S V a + nRT*-Sm.. —^ -8V.
V_

(5.17)

8Pb = ' i V
ydVbA

8V„ + ( i h '
\d™b' j ,

5mte + '£ 5 '* 5VL

~'7pi{~RTbthb'i -Pb,Vbl)8Vb - ^ S m b! ~ ^ 8 V b
(5.18)

nPu:
Vvbi V,bai Vbi

At this stage it is necessary to linearise the load equation (Equation (4.23)). The 

linearised load equation is:

mS x  + cf8 x  = A S  P„ -  Ah8 Ph'fv •'*' * * a * xb'~' £ b
Inserting from Equations (5.17) and (5.18) gives:

(5.19)

8 x  +— 8 x  + —  
m m

p a : bi b
V* f

8x

+ nAl r    -  i nAl \
I/2 [RT,K , -  P X \+ - A - { - R TAb„ -  P X \

\ ai bi
8 x (5.20)

= nj /  TA .X .+ T X X
{  V,

\

v» J
8u + nR

f TA TA ^
±&LSPa- ^ 8 P b

Vbi

It can be shown for equal area actuators that the last term on the right-hand side 

increases the damping and the stiffness of the servo. It has been demonstrated by 

Burrows and Webb (1969) that the effects arising from the increase in downstream 

pressure for charging and the decrease of upstream pressure for discharging is 

negligible, especially for a closed-centre valve; that is, k2 can be set to zero to 

simplify the linear analysis. To justify this simplification step response results of the 

system with constant and with varying actuator chamber pressures are shown in 

Section 5.3. The analysis is further simplified by = mbei = 0 , Vai -  Vbi = 0 . For 

motion in the positive ^-direction the following dynamic equation is obtained:

8x + — 8 x  + 
m

n
m

K iK  
V v-

•+ PbAl
VL-

Y nR (8 x  = —
). m

^AaKa_ _ j_  TbAbklb
ybi

8u  (5.21)

A similar argument for motion in the negative ^-direction yields:

8x +— 8 x  + 
m

n
m

PaiK , PbAb 
\  Vai V* J

S x  = nR
m

P a\K a . + Ps^bKb
Vbi ,

8u  (5.22)
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With the assumptions made at the beginning of this section it follows:

Sx h——Sx+  
m

nP;A
m — + x +■VL

■+
r I \  V ■-j- mm X

Sx

(5.23)

_  nR-JfCdCmA,
m

P
I-  + x VL. /—  x  1+

Su

Due to the fact that the actuator is assumed to be of equal area and in horizontal 

position so that no gravity load has to be supported the chamber pressures Pa and Pb 

are equal. Therefore, no distinction between the different direction of valve opening 

has to be made. The choice of the central piston position as a linearisation point (that 

is x  = 0) yields:

Sx H——Sx + 
m

with: £>— = 2mV™

ml + D ■ j'  “  1 ^ n u n  J

S x ( p + p ) 8 u
 1 , T \ \  s « /ml  + D:

(5.24)

As stated by Pu and Weston (1990) the steady-state chamber pressures in equal area 

actuators are in general assumed to be approximately 80% of the supply pressure. 

This yields:

8 x+ — 8x + 
m

32nP.A N
ml + D,

, 3.6nRjTCdC„AP,Sx = Su (5.25)
i ml + Dminmin j  nun

Introducing the Laplace operator gives the open-loop transfer function of the 

pneumatic servo system:

G(j) =
X(s) _  b0 
U{s) ,s(j2

with:

32nPsA
a, =

_  'S.6nR-jTCJCmAvPs 
ml +

(5.26)

(5.27)
ml + mnun mi At

As can be seen from Equation (5.26) the transfer function is of third-order consisting 

of a second-order system and an integrator. The frequency response of the linear 

model can be seen in Figures 5.3 and 5.4. Figure 5.3 shows a Bode plot of the 

frequency response for the three different actuator piston positions listed in
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Table 5.1. It is assumed that the actuator piston is retracting. In Figure 5.4 the 

frequency response of the linear model is depicted for both directions of piston 

motion (retracting and extending) and the piston being in position 1. The system 

parameters used in the model can be found in Table 5.2. They represent the dynamic 

characteristics of the single-axis test rig described in Chapter 3. One can observe that 

the frequency response changes with piston position but not with its direction of 

motion since the coefficients of the linear transfer function (Equation (5.27)) are 

position but not direction dependent. To examine the implications of the position 

dependent dynamics on natural frequency co„, and damping ratio £ in detail the 

following explicit relationships describing these parameters can be used:

I------------- 7 + P™n
_  r ~_  32nP*A [ - _ a2 _ cf  m

1 ym l + D ^  ’ 2 ^  3.6^ rrmP'A

Furthermore, using Routh-Hurwitz the ultimate gain at the stability border Kuit of the 

pneumatic servo system under closed-loop proportional feedback control can be 

calculated to be:

a,a* 0.89cf A
K u = = ------■=-£■------  (5.29)

b0 m R jT C jC ^

Using the above linearisation approach but varying the piston position x  (measured 

from the mid position) shows that the stiffness and hence the natural frequency of the 

pneumatic servo reaches a minimum at the actuator mid point while the damping 

ratio reaches a maximum (see Figure 5.5).

The dependency of the ultimate gain on the piston position can be seen in 

Figure 5.6. Like the natural frequency the ultimate gain reaches its minimum when 

the actuator piston is in its mid position. The relationship between the ultimate gain 

and the piston position is linear unlike the relationship reported by Pu et al (1992) 

which is also depicted in Figure 5.6. The relationship presented by Pu et al can only 

be achieved assuming that the numerator of the open-loop transfer function bo is 

constant (i.e. not dependent on the linearisation point) which is clearly not the case 

(see right-hand side of Equation (5.23)). Yet, the above results justify the choice of 

the mid position as the linearisation point for a system with an equal area actuator 

and no gravity load. When designing a controller based on the linear mid position
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model and tuning the controller in order to ensure stability for this position it can be 

assumed that the system is also stable for all other possible piston positions.

5 .2  A d v a n ced  L in e a r ise d  Mo d e l  o f  a  P n eu m a tic  S e r v o

5 .2 .1  U n d erly in g  A s s u m p t io n s

Considering now an unequal area actuator which is also supporting an 

additional gravity load (e.g. due to the fact that it is not aligned horizontally) a few 

assumptions and simplifications used in Section 5.1 when linearising the equations 

for an equal area horizontal actuator are no longer valid. First of all, the total actuator 

chamber volume of the unequal area actuator is not constant along the actuator stroke 

as was the case for the equal area actuator. The total chamber volume of the unequal 

area actuator increases when the piston moves outwards resulting in a lower overall 

stiffness of the system when the actuator is fully extended in comparison to the 

stiffness when the actuator is fully retracted. Furthermore, unlike for the equal area 

actuator the central piston position is not the position where both actuator chambers 

have the same volume and consequently the actuator exhibits the lowest stiffness. In 

addition, due to the unequal areas of the piston acted upon by the chamber pressures 

the steady-state pressures are not equal anymore. The pressure ratio across the piston 

now depends on the piston area ratio and also on the gravitational load to be 

supported. The different chamber pressures result in different charging and 

discharging conditions depending on whether the valve is open in the positive or the 

negative direction and hence charging or discharging the chamber with the higher 

steady-state pressure or the with the lower one.

As a result, the following assumptions are made now to linearise the equa

tions for the pneumatic servo system with an unequal area vertical actuator and 

unequal chamber pressures:

• Supply pressure Ps and supply temperature Ts are constant.

• Temperatures are uniform throughout the system: Ta = Tb = Ts = T.

• No heat is transferred between the gas and the surrounding: n = 1.4.
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The cylinder pressures vary only by small amounts from any initial steady value.

5 .2 .2  O p e n -L o o p  T r a n s f e r  F u nction

As explained above, since there is no apparent reason anymore for choosing 

the piston mid position as the linearisation point, the actuator displacement is now 

measured from the fully retracted piston position that is x = 0 at this point. The 

chamber volumes are calculated to be:

Vci=Aax+Vmm, Vbl=Ab(l-x )+ V am (5.30)

Inserting Equation (5.30) into Equation (5.21) and considering above assumptions 

yields:

Sx h——Sx+  
m

P a A a  , PbA
v .

X - \  SSE { l - x ) + ■ ”to
Sx

(5.31)

_  n R ^ r C ^
m

C Pma s

v .x + - ma

CmbPb
/ x V ■ ( / - * ) +  mn

Su

A a \  .

It follows for the parameters of the open-loop transfer function (Equation (5.26)):

n
a, = — 

m
PaAaat a

X  +

PbA b

( l - x )  + VL.

lb J

Cfa2 =-J-
m

(5.32)

^Oext
nRyffCdAv

m
C Pma * s

V ■x  + 1™l
^  mb Pb

A b J

(5.33)

The above equation assumes that the valve opening is positive that means that 

chamber A of the actuator is charged while chamber B is discharged. A similar 

argument for negative valve opening yields a different denominator of the open-loop 

transfer function:
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f

j_ _ n R 'jT C dAv
Oret — (5.34)

m

5 .2 .3  Q u ie s c e n t  C h am ber  P r e s s u r e s

A further effect that has not been taken into account yet, is that the mass flow 

is generally choked when discharging (Cm = 0.0405) and unchoked when charging 

(Cm < 0.0405). In addition to that, due to the different chamber pressures in the 

unequal area actuator the flow coefficient Cm also depends on whether chamber A or 

chamber B is charged or discharged.

Extending the derivation presented by Pu and Weston (1990) to unequal area 

actuators to determine the quiescent chamber pressures in a pneumatic actuator it is 

assumed that the gas flow is always choked when discharging and unchoked when 

charging as is the case in most pneumatic systems. This results in the fact that the 

piston velocity only depends on the valve opening xv and not on the chamber 

pressures. Charging chamber A and discharging chamber B (positive valve opening 

and hence positive direction of motion) yields:

= Q_= m bRTb _  c J b C ^ , K ^ R x  (5 3 5 )
\  A„Pb A„

Determining the resulting mass flow rate into chamber A gives the pressure ratio 

from supply to chamber A:

The flow coefficient Cmb is constant for choked flow while the flow coefficient Cma is 

a function of Pra. Assuming now that the temperature is uniform throughout the 

system and that the discharge coefficients and flow areas for all valve ports are equal 

yields:

(5.37)

with
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D = A_ l r + i f  r + i

K vr-1
1

= 3.864—  (for air) 
A. '

(5.38)

A similar relationship is reported by Pu and Weston (1990). Charging now chamber 

B instead of chamber A results in a different piston velocity:

Q maRTa C ^ K a ^ l R
m K  AaPa Aa

and hence a different driving pressure ratio:

(5.39)

with:

+ D I - &  
b 2

y - 1

(5.40)
J

7  +  1

A  v r - i

7  +  1
= 3 .8 6 4 -^ -  (for a ir) (5.41)

The above equations result in the steady-state driving pressures for the single-axis 

test rig model listed in Table 5.3. The pressures in the opposite chamber are 

determined assuming a zero resulting force acting on the actuator piston for motion 

with constant velocity. In this force balance the gravity load is taken into account.

It can be seen that the steady-state pressures depend on the direction of piston 

motion. Assuming now that during a representative working cycle the piston is 

moving back and forth with the same frequency it can be concluded that the steady- 

state pressures would tend to reach a level in-between the upper and lower bounds in 

Table 5.3. Using non-linear simulation models and experimental data it was found 

that due to the unequal charging and discharging conditions for the two actuator 

chambers the chamber pressures are closer to the lower bound (for a retracting 

actuator piston) and increase slightly when the piston is moving outwards. It has to 

be noted though that when the piston is mainly moving outwards the pressures 

approach the upper bound.

5 .2 .4  Dynam ic  C h a r a c t e r is t ic s  o f  A d v a n c ed  L in e a r ise d  Mo d e l

The frequency response of the advanced linear model for the pneumatic servo 

with an unequal area vertical actuator can be seen in Figures 5.7 and 5.8. Figure 5.7
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shows the response for the three different piston positions listed in Table 5.1 and a 

retracting piston while Figure 5.8 shows the response for both directions of piston 

motion and piston position 1. The parameters of the dynamic model are similar to the 

ones used in the conventional linear model (see Table 5.2) corresponding to the 

dynamic characteristics of the single-axis test rig. It is clear that the response is 

dependent on the piston position and also on the direction of piston motion.

The equations for natural frequency (On, damping ratio f  and ultimate gain 

Kuu of the open-loop pneumatic servo system resulting from the advanced linear 

model can easily be obtained by inserting Equations (5.32) to (5.34) into 

Equations (5.28) and (5.29) to give:

CO. = Jou  = Pgj^a  ^ b i \

x + --==- ( / - * )  +
VL

(5.42)

- 1/2

a2 _ cf 4n
2 2m 3/2

P,.A„ Pb A
x + ( / - * )  +

VL,.
Vb J

(5.43)

axa2 _
ultext

nct

at a

x + -VL,.
+ • PmA

( /- * )  +

K a 2mR-JfCdAv
CmaPs | CmbPb

x + -
VL;„

__ a i a 2 _
A. ,.n

nc4

Xb

\

Pgi^a _j Pbi^b
V„,.

yb y

b0M ImR-jTCA  ̂'  d  v
C P  C Pma a _|_______ m b s

X  +  •
VL,. ( l - x )  +

VL:.

xb y

(5.44)

(5.45)

83



As can be seen when looking at the natural frequency and the damping ratio 

as a function of piston position and direction of motion (Figure 5.9), these two 

parameters are still almost symmetrical with respect to the piston mid position. The 

lowest natural frequency and highest damping are still experienced in the middle of 

the stroke. At the end positions it has to be noted though that the natural frequency is 

slightly lower and the damping is slightly higher for a fully extended than for a fully 

retracted piston. This is due to the larger total volume at the fully extended position 

resulting in a slightly lower total stiffness. It has to be noted furthermore that both 

natural frequency and damping ratio are only position dependent as predicted by the 

conventional linear model. No direction dependency is envisaged.

The ultimate gain KU[t at the stability border though is position and direction 

dependent as can be seen in Figure 5.10. For positive valve opening (extension, that 

means charging chamber A and discharging chamber B) the ultimate gain is 

significantly lower than for negative valve opening (retraction, charging chamber B 

and discharging chamber A). Furthermore, for positive valve opening the ultimate 

gain increases with the actuator moving outwards while for negative valve opening 

the gain increases with the actuator moving inwards. The conclusion seems to be that 

the system can become unstable while moving outwards and becomes stable again 

when moving inwards. The difficulty with this interpretation of the results in 

Figure 5.10 is that when the system becomes unstable it starts oscillating in both 

directions with the control valve changing its direction of opening in quick succes

sion hence switching between a stable and an unstable mode. Therefore, the only 

conclusion that can be drawn at this point is that the system is stable as long as the 

proportional feedback control gain is lower than the lowest ultimate gain (positive 

valve opening) and unstable when the proportional gain exceeds the highest ultimate 

gain (negative valve opening). That means that the system is most likely to become 

unstable when the piston is fully extended and not in the mid position as predicted by 

the conventional linear model.

Using the advanced linear model now to model again the equal area actuator 

with no gravity load yields the same natural frequency and damping ratio as the 

conventional linear model due to the fact that for this system the denominator of the 

open-loop transfer function which determines natural frequency and damping ratio is
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the same in both models. The ultimate gain Kuit now becomes direction dependent as 

can be seen in Figure 5.11. This is caused by the numerator of the open-loop transfer 

function being a function of the flow conditions and the valve opening direction. The 

changes in gain with direction of piston motion are almost negligible though.

It is important to note that the advanced model predicts higher ultimate 

feedback gains than the conventional model so that the latter can still be safely 

recommended to be used when tuning a controller for a pneumatic servo with an 

equal area actuator and no gravity load. Using the conventional model as a design 

basis for such a system, stability can be guaranteed over the whole piston stroke and 

for both directions of motion. Yet, the full dynamic capabilities of the system cannot 

be exploited.

5 .3  D e s ig n  and  T uning  o f  a  S ta te- F e e d b a c k  C o n t r o l l e r  

B a s e d  o n  t h e  L in ea r  Mo d e l

In the following the conventional and the advanced linear model will be used 

as a basis for controller design and tuning. A controller often used for positioning 

control of servo actuation systems is a linear state-feedback controller. Position, 

velocity and acceleration (the canonical system state) of the system to be controlled 

are measured or derived from measured data and used to compute the controller 

input. The closed-loop transfer function of a pneumatic servo system under state- 

feedback control (see Figure 5.12) is given by:

When tuning the controller the poles of the closed-loop transfer function are placed 

in order to obtain the desired dynamic behaviour of the closed-loop system. The 

above transfer function is of third order, therefore three poles have to be placed. 

Choosing the settling time Tsett and damping ratio f  of the closed-loop system the 

poles can be placed as follows:

F(s) =
X(s)

(5.45)
U(s) s3 + (a2 + Kab0)s2 + (a, + Kvb0 )s+ Kpb0

4
(5.46)
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This above choice of poles results in the following explicit relationships for the state- 

feedback gains:

(Another easy way of synthesising the controller gains is to use the place- 

algorithm in MATLAB or similar software.) As can be seen from Equations (5.47) 

to (5.49) all feedback gains are a function of the open-loop transfer function 

numerator bo and hence not only position but also direction of piston motion 

dependent. Using the above relationships and the dynamic parameters of the single

axis test rig (see Table 5.2) a state-feedback controller for a pneumatic servo system 

with an unequal area vertical actuator has been tuned. The resulting state-feedback 

gains as a function of piston position and direction of motion can be found in 

Figure 5.13. As an example the response time is chosen to be Tsett — 0.4 s and the 

damping ratio is set to f  = 0.4. It can be seen that the highest proportional, velocity 

and acceleration gains occur around the piston mid position. The negative values of 

the velocity gains indicate a decrease in damping due to velocity feedback. The 

direction of motion and piston position dependency of the controller gains needed to 

provide the desired system response can be clearly seen.

5 .3 .1  S t e p  R e s p o n s e  o f  t h e  L in e a r  M o d e l

To further investigate the dynamic characteristics of the pneumatic servo 

system step response results have been performed. First, the advanced linear model 

of the servo with an equal area actuator and no gravity load was used to tune the 

state-feedback controller. The sets of controller gains tuned for positions 1 to 3 as 

defined in Table 5.1 can be found in Table 5.4. As in the previous examples, the 

dynamic parameters correspond to the ones of the single-axis test rig (Table 5.2).

0(extlret) 0{ext/ret)

(5.47)

0 (ext I ret) 0 (ext/ret)

(5.48)

.  l:
a

0 (ext/ret)0 (ext I ret)
(5.49)



Figure 5.14 to 5.16 show the step responses of the linear model at the piston 

positions 1 to 3 for all three sets of controller gains, respectively. The framed graphs 

show the step responses for which the controller is tuned. For comparison the ideal 

system response that means the response the control system is tuned for is plotted as 

well. It can be observed that the simulated step response at all three piston positions 

and with all three sets of controller gains is as required and in no case more 

oscillatory. A similar step response can be obtained using the conventional linear 

model to synthesise the controller gains. The step response results therefore confirm 

the findings from the analysis in Section 5.2. Thus, for a system with equal area 

actuator and no gravity load the conventional model is sufficient as a basis for 

controller design.

Performing the same tuning procedure now assuming a servo with an unequal 

area actuator and additional gravity load results in the feedback gains listed in 

Table 5.5. As can be seen the resulting feedback gains not only depend on the 

actuator piston position but also on its direction of motion. The simulated step 

response results using the advanced linear model and the feedback gains in Table 5.5 

can be seen in Figures 5.17 and 5.18. Again the framed graphs depict the response of 

the linear model for which the controller is tuned.

It was found that all sets of controller gains in Table 5.5 obtained assuming 

negative valve opening (and hence retraction of the actuator piston) result in an 

unstable or highly oscillatory step response of the linear model assuming positive 

valve opening (extension of actuator piston) almost independent of the piston 

position as shown in Figures 5.17 and 5.19 for one set of controller gains. 

Interestingly, a similar oscillatory response of the control system can be observed 

using the controller gains based on the conventional linear model. In this case, the 

step response of the linear model is also unstable when extending the actuator.

For this specific servo configuration a step response of the linear model 

which is guaranteed stable for all piston positions and directions of motion can only 

be achieved with controller gains resulting from the advanced linearised model 

assuming positive valve opening (extension of actuator piston) as can be seen in 

Figures 5.18 and 5.20. In this case the system response is generally more damped 

than it is tuned for.
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The conclusion that can be drawn from this investigation is that in the case of 

pneumatic servos with unequal quiescent chamber pressures the direction depend

ency can be more important to the system dynamics than the position dependency as 

it is the case for the servo system under consideration. Therefore, changing the 

direction of valve opening (piston motion) can result in a significant change in the 

system dynamics and has to be taken into account when designing a linear feedback 

controller. As a consequence, the conventional model might not be a sufficient basis 

for controller design and it can be necessary to employ the advanced linearised model 

in order to determine the dynamically worst conditions and tune the controller 

accordingly.

5 .3 .2  S t e p  R e s p o n s e  o f  t h e  No n -L in ear  Mo d e l

The results and conclusions presented above are only based on a linearised 

analysis. The validity of these results depends on the ability of the advanced 

linearised model to predict the dynamic behaviour of the highly non-linear pneumatic 

servo and has to be determined separately.

Comparing therefore the step response of the linear with the step response of 

the non-linear model for all sets of controller gains listed in Table 5.5 yields that the 

non-linear model response does for none of the controller gains exhibit the highly 

oscillatory behaviour the linear model exhibits when controller gains for a retracting 

actuator piston are applied to a system with extending actuator piston. This fact is 

illustrated in Figure 5.21 for the set of controller gains tuned for position 1 and a 

retracting actuator piston.

Nevertheless, comparing the response of the non-linear model with the ideal 

system response (ideal refers to the response the control system is tuned for) it can be 

seen that when using controller gains determined for an retracting motion of the 

actuator piston the extension overshoots of the non-linear system are significantly 

larger than the ideal ones while the retraction overshoots are satisfactory. The 

explanation for this phenomenon can be found by looking at the characteristics of the 

advanced linear model. As a first approximation, the non-linear response for any 

specific set point can be interpreted as a superposition of the two related direction
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dependent step responses of the advanced linear model as depicted in Figure 5.22. 

When the non-linear system moves outwards it follows the highly-oscillatory 

response of the linear model for extension. When the non-linear system moves 

inwards it follows the damped response of the linear system for retraction. Hence, the 

non-linear response exhibits large outwards overshoots and rather small inwards 

overshoots.

Therefore, the advanced linear model predicts the dominant non-linear 

characteristics of the pneumatic servo correctly despite the fact that two phenomena 

of the non-linear dynamics have not been included in the linearised analysis: the 

continuously with the piston position changing stiffness of the charged actuator 

chambers and also the changing chamber pressures. As can be seen though from a 

comparison between linear and non-linear response, these two effects add damping 

and are therefore not critical for the dynamic analysis and hence for controller 

design.

Thus, applying controller gains based on the advanced linear model yields a 

response of the non-linear system which in any case is more damped than the 

response the control system is tuned for. Therefore, any instability problem can be 

ruled out by analysing the relatively simple advanced linear model. Hence, this 

model represents a sufficient tool for feedback controller design for this highly non

linear system.

In Figure 5.23 a comparison between experimental and simulation step 

response results is presented. It confirms the validity of the non-linear simulation 

model presented in Chapter 4 and as expected proves the usefulness of the advanced 

linear model as a basis for controller synthesis. The most significant difference 

between simulation and experiment is a slightly larger steady-state error in the 

experimental results. The reason for this slight discrepancy is leakage in the 

pneumatic actuator and valve and also stiction. Both effects have not been included 

in the simulation model.
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5.3.3 Step Response of the P a r a m e t e r  Up d a t e  Model

As mentioned before, since the two effects of changing stiffness and 

changing actuator chambers pressures are not included in the advanced linearised 

model they are investigated in more detail in this section. In order to distinguish 

between these two effects an additional model has been developed which is called 

the parameter update model. It takes account of the changing stiffness of the actuator 

chambers without modelling the changing chamber pressures. Its transfer function is 

as follows:

The dynamic parameters in the transfer function F  are updated during simulation 

depending on the current system state. Therefore, the only difference between the full 

non-linear model and the parameter update model is the effect of the changing 

actuator chamber pressures not taken into account by the update model. In 

Figure 5.24 step response results of the linear, the non-linear and the parameters 

update model are shown. As can be seen from a comparison between the response of 

the linear and the parameter update model the changing stiffness adds damping to the 

system dynamics. Additional damping is than added by the changing chamber 

pressures as a comparison between the responses of the non-linear and the parameter 

update model indicates. The latter observation corresponds to the results presented 

by Burrows and Webb (1969) who also states that the effects arising from the 

increase in downstream pressure for charging and the decrease in upstream pressure 

for discharging add damping to the dynamic response of the pneumatic servo. 

According to Burrows these effects are so small though that they can be neglected 

(see Section 5.1). This is also validated by the results in Figure 5.24. The main 

additional damping effects arise from the changing chamber stiffness and only a 

small part results from the changing chamber pressures.

To conclude the analysis conducted in this chapter, the advanced linear model 

describes all the significant dynamic phenomena of a pneumatic servo with unequal 

quiescent chamber pressures e.g. due to unequal area actuators or additional load. It 

is therefore sufficient to analyse the dynamics of such a system.

(5.50)
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5 .3 .4  G u id e l in e s  o n  H o w  t o  C h o o s e  t h e  R ig h t  L in ea r isa tio n  C o n d it io n s  

f o r  S e r v o  C o n t r o l l e r  D e sig n

It is worth mentioning that when using the results obtained in the above 

investigation, the specific conclusions about the dynamically worst conditions arising 

from the advanced linearised model are only valid for the specific servo system 

considered here. This includes the component sizes and the dynamic parameters. For 

other systems with unequal area actuators or unsymmetric load (e.g. gravity) it can be 

recommended to proceed as follows:

1. Determine the steady-state actuator chamber pressures by taking into account the 

actuator piston area ratio between chamber A and B and also possible external 

loads as demonstrated in Section 5.2.

2. Determine the dynamic parameters of the advanced linearised model as a function 

of piston position and valve opening over the whole piston position range space.

3. Determine the ultimate gain Kuit at the stability border as a function of piston 

displacement and direction of valve opening as described in Section 5.2 and 

choose the conditions with the lowest ultimate gain as a basis for controller 

design.

Following the above procedure one can always be sure that the dynamic 

response of the non-linear system will not be less damped than the response of the 

advanced linear system no matter whether direction of motion, piston displacement 

or actuator chamber pressures change. Stability of the highly non-linear pneumatic 

servo system can therefore be guaranteed by following this simple procedure.
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T a b l e s

Table 5.1 - Actuator piston positions
piston position displacement

[mm]
fractional displacement 

[fraction of piston stroke]
1 6 1/5
2 15 1/2
3 24 4/5

Table 5.2 - Numerical data representing the single-axis pneumatic test rig
equal area horizontal actuator unequal area vertical actuator

Aa [m2] 412.3 * 10'6 490.9 * 10'6
A* [m2] 412.3 * 10'6 412.3 * lO-6
Pa [bar] 5.25 5.49
P i [bar] 5.25 5.57
Pj [bar] 6.5 6.5
c d 0.70 0.70
Av [mi]

oo*00o

0.81 * 10-6
VminM 1.7* 10'3 1.7* 10'3
n 1.4 (adiabatic) 1.4 (adiabatic)
k [N/(m/s)] 100 100
m [kg] 1.82 1.82

Table 5.3 - Steady-state chamber pressures for unequal area vertical actuator
extension retraction

Pa [bar] 6.50 6.50
P i [bar] 5.85 5.49
P j [bar] 6.00 5.57

Table 5.4 - State-feedback gains for pneumatic servo with equal area horizontal
actuator (Tsett-  0.4 s, £=  0.4)

position 1 position 2 position 3
k d 0.2056 0.2743 0.2056
Kv -0.0485 -0.0478 -0.0485
Ka 0.0002 0.0003 0.0002

Table 5.5 - State-feedback gains for pneumatic servo with unequal area vertical
actuator (Tsett = 0-4 s, £=  O-4)

retraction extension
position position position position position position

1 2 3 1 2 3
Kv 0.2341 0.2907 0.2151 0.1729 0.2407 0.1993
Kv -0.0314 -0.0458 -0.0460 -0.0380 -0.0379 -0.0427
Ka 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002
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Figure 5.1 - Schematic of pneumatic servo mechanism
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6  S lid in g  Mo d e  C o n t r o l

Sliding Mode control is a specific type of Variable Structure control which 

has, historically speaking, received most attention of the almost unlimited supply of 

Variable Structure control laws. The reason for the particular interest in sliding mode 

control lies in its many advantages like the insensitivity to plant parameter variations, 

the excellent disturbance rejection capabilities and the simplicity of the control 

algorithms. Nevertheless, serious difficulties can be encountered when applying 

Sliding Mode control to real physical systems.

The following chapter will introduce the basic concepts of Sliding Mode 

control (SLMC) in detail. Furthermore, a comprehensive overview of Various aspects 

of sliding mode control, its advantages and disadvantages and also its discrete 

realisation will be given. Moreover, this chapter reviews and discusses most relevant 

references which deal with SLMC. The application of SLMC to a pneumatic 

positioning servo mechanism will be investigated then in Chapters 7 to 9.

6.1 C o n t r o l  o f  U n certa in  S y s t e m s

When modelling a physical plant for controller design purposes the degree of 

accuracy of this model is in general limited by the fact that either the dynamic 

behaviour of the plant is not fully known or that certain dynamics have to be 

neglected in order to reduce the complexity of the model. Furthermore, the dynamic 

characteristics of the plant might change during operation. When using a dynamic 

model of the plant now as a basis for controller design the resulting modelling 

inaccuracies (in form of parametric uncertainties or unmodelled dynamics) can have 

a significant influence on the dynamic behaviour of a closed-loop control system. 

Consequently, the need arises to take account of these uncertainties which are not 

part of the nominal system model and hence are considered as being external 

disturbances by a controller based on the nominal model. The two major and 

complementary approaches to dealing with these uncertainties are:

• adaptive control and

• robust control.
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6.1.1 Adaptive Control

One way an adaptive controller deals with model uncertainties is by updating 

the system model during operation based on measured performance using for 

instance an on-line parameter estimation technique. Another possibility is to update 

the closed-loop feedback gains based on the difference in response between the 

nominal or reference model and the plant response. The former approach is called 

self-tuning control the latter is referred to as model reference adaptive control 

(MRAC).

Self-tuning controllers use input and output signals to and from the plant to 

estimate the plant dynamics and update the parameters of a chosen dynamic plant 

model. A controller based on this dynamic plant model is then designed on-line 

which in general explicitly places the poles of the closed-loop system to give the 

desired dynamic characteristics. In most cases, the only use for the estimated plant 

model is to determine the controller gains. In some cases, the system model can also 

be used for condition monitoring purposes (Pollmeier (1997)). A comprehensive 

review of self-tuning controllers based on model parameter identification and 

consecutive controller gain computation by means of pole-placement or 

eigenstructure assignment methods can be found in Astrom and Wittenmark (1980), 

some examples for the application of these controllers to pneumatic systems can be 

found in Bobrow and Jabbari (1991), Shih and Huang (1992), McDonell and Bobrow 

(1993) and Shih and Tseng (1994).

In model reference adaptive control (MRAC) a reference model describing 

the desired dynamic behaviour of the plant to be controlled is excited by the same 

external inputs as the adjustable closed-loop system including plant and adjustable 

controller. The difference between the dynamic state of the reference model and that 

of the adjustable system is then used by an adaptation algorithm to modify the 

control parameters or to generate an auxiliary control signal in order to minimise this 

difference. An excellent introduction into MRAC has been given by Landau (1979) 

and Slotine and Li (1991). The application of MRAC to pneumatic systems is for 

instance described by Tse and Leung (1990), Araki and Yamamoto (1990) and Fok et 

al (1995).
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It has been shown by Landau (1981) that both approaches are in some cases 

equivalent and both control methods have resulted in excellent closed-loop 

performance in numerous applications as reported in a vast and rapidly growing 

number of publications (for instance Walters and Byoumi (1982), Edge and 

Figueredo (1987), Vaughan and Plummer (1990) and Anand et al (1993)).

Nevertheless, both methods entail certain drawbacks. Self-tuning control 

methods are often based on a recursive least-square identification algorithm which 

requires an input signal sufficiently rich in information to obtain accurate predictions 

of the system parameters. Moreover, in general a large number of samples have to be 

evaluated by the identification algorithm which often restricts the application of self

tuning controllers to plants which only change slowly over time.

In comparison to self-tuning control, one of the main advantages of model 

reference adaptive controllers is their high speed of adaptation. One of the main 

problems though is to choose an appropriate reference model whose dynamics can be 

followed by the plant to be controlled. Also, when synthesising the control algorithm 

the common inclusion of an integrator in the control law often requires persistent 

excitation or other measures in order to avoid integrator wind-up.

6 .1 .2  R o b u s t  C o n t r o l

The concept of robust control was first introduced by Bode (1945). It was 

then basically neglected though until Horowitz introduced the theory of quantitative 

feedback theory in 1963. Unlike adaptive control, in robust control the system model 

is neither identified on-line nor used to update the controller gains. A typical robust 

controller consists of a nominal part based on a nominal plant model and an 

additional term dealing with model uncertainties. One approach to robust control is 

the so-called Variable Structure Control (VSC) in particular when it operates in 

sliding mode. Although by definition, sliding mode control (SLMC) belongs to the 

group of robust controllers, it significantly differs from other robust control methods. 

It not only guarantees stability and robustness to parameter variations, non-linearities 

and external disturbances but also precisely defines the dynamic properties of the 

closed-loop system by means of a so-called sliding surface. In VSC dynamic
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uncertainties in the system model are dealt with by forcing the system state onto this 

sliding surface invariable of unmodelled dynamics or external disturbances. Against 

the background of MRAC, the sliding surface can also be interpreted as a reference 

model describing the desired dynamic system response. (In this context, de Almeida 

(1993) showed that using hyperstability theory (Landau (1979)) and choosing an 

integrator-free control law results in a similar control algorithm to the one obtained 

by using VSC theory.)

The dynamic phenomenon of a sliding mode was first envisaged in control 

systems using relay elements. It was initially regarded as being highly undesirable 

because the high speed switching action tended to wear out the relay element 

contacts. Only when the theory of Variable Structure systems was developed in the 

1950’s the advantages of sliding mode control were better understood. In this context 

sliding mode control can be classified as a specific mode of operation of VSC 

systems. However, practical application of the theory was and still is today limited by 

the lack of suitable high speed switching devices. Tsypkin (1984) presented a very 

thorough investigation into the occurrence of sliding modes in relay control systems 

and showed that perfect dynamic performance of the control system can in principle 

be achieved even in the presence of arbitrary parameter inaccuracies assuming full 

state switching. This perfect performance, however, is obtained at the price of 

extremely high control activity.

The classical VSC methodology was mainly developed in the literature from 

the Soviet Union by EmaTyanov (1959), Taran (1964) and Barbashin and 

Gerashchenko (1965). It was later described and extended by Itkis (1976) and Utkin 

(1978). The basic mathematical ideal was derived by Filippov (1960) constructing 

the equivalent dynamics while Drazenovic (1969) first established early results on 

the invariance of Variable Structure systems to a class of disturbances and parameter 

variations. An early survey paper by Utkin (1977) gives reference to many of these 

first Russian contributions available in English translation. More recent 

comprehensive survey papers and books have been written by Utkin (1983, 1987), 

Btihler (1986), de Carlo et al (1988), Zinober (1990) and Hung et al (1993).

As mentioned above, SLMC forces the system state onto a sliding surface. 

Once the system state has reached this sliding surface and the so-called sliding mode
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has been established the system dynamics are then only determined by the dynamics 

of the sliding surface which in general are of a lower order than the plant dynamics. 

A sliding mode can be reached by switching between different controller structures 

depending on the position of the dynamic state of the system relative to the sliding 

surface or switching manifold in the state space. The individual controller structures 

may be unsatisfactory when used as fixed controllers over the whole operating space 

and may even result in an unstable closed-loop system response when used as such. 

Nevertheless, in certain regions of the state space these controller structures might 

have desirable properties. For instance, dynamically unstable systems often exhibit a 

very fast response which might be desirable in certain subspaces of the state space 

but not over the whole working space. The switching function <t (jc) determining the 

change of controller structure is a function of the dynamic states of the plant to be 

controlled (Itkis (1976)). Usually, there are two different types of controller 

structures used to achieve sliding mode. In one control algorithms the gains of a state 

feedback controller are switched according to the switching function. These 

algorithms are called switched gains algorithms. Alternatively, the controller output 

can be switched according to the sign of the switching function. These relay-like 

algorithms are called on/off or relay switching algorithms.

Assuming an ideal control plant the existence of a sliding mode requires a 

switching of the controller structures at an infinite frequency. Obviously, this infinite 

switching frequency cannot be obtained in real applications especially not with 

digital control systems. As a result, a high-frequency oscillation of the system state 

around the sliding surface can be observed. This in practice undesirable chattering 

not only leads to excessive wear in the control elements but might further excite 

high-frequency dynamics (e.g. structural modes of vibration, neglected time delays, 

etc.). These serious problems with sliding mode control have resulted in the fact that 

most recent research has been concentrating on the application of sliding mode 

control to non-ideal systems and especially on the development of sliding mode 

control algorithms avoiding the undesirable chattering and achieving an optimal 

compromise between control bandwidth and tracking precision. See in this context 

for example Sabanovic et al (1983), Slotine and Sastry (1983), Borojevic et al 

(1984), Walcott and Zak (1987), Min-Ho et al (1989), Xu et al (1989) and Zinober 

(1990).
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In terms of application, the recent introduction of reasonably priced high 

bandwidth hydraulic and pneumatic control valves have made sliding mode control 

an interesting and important control alternative to conventional control methods for 

fluid power systems. Gamble (1992) applied sliding mode control to a proportional 

solenoid valve. De Almeida (1993) used a model reference adaptive controller with a 

Variable Structure switching logic to successfully control a 2DOF hydraulically 

actuated manipulator. Surgenor et al (1995) for the first time successfully applied 

sliding mode control to a pneumatic positioning servo-mechanisms. Lantto (1994) 

gives a detailed insight in various aspects of the application of sliding mode control 

to fluid power systems such as reduction of feedback transducers, low- and high- 

frequency disturbances, reduction of chattering and the effects of sampling.

6 .2  S liding  M o d e  C o n t r o l  o f  a  S e c o n d -O r d e r  S y st em

The probably easiest way of getting familiar with sliding mode control is to 

consider a second-order plant as it was originally done by Emal’yanov (1967). This 

simple example allows for the dynamic behaviour of the system to be shown 

graphically on a phase plane plot.

Assume that the dynamics of the second-order system to be controlled can be 

described by the following differential equation:

x(t) + ax{t) = bu{t) (6.1)

where x{t) represents the system state and u{t) the controller output. A relay-like 

switching control strategy results in the following two distinct dynamic structures 

depicted in Figure 6.1:

x(t) + ax(t) = bUm2X (6.2)

x(t) + ax(t) = bU ni„ (6.3)

As can be seen both of these structures are unstable yet velocity limited. The 

following switching function cr(jc) can now be chosen:

cj(jc) — - c xx — x  (6.4)

whose null space cr(x) = 0 describes a straight line in the phase plane and

interestingly is of one order less than the dynamics of the second-order system to be
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controlled (Equation (6.1)). This switching line cr{x) = 0 divides the phase plane 

into two separate regions: <7(jt)>0 and <r(;t)<0. Assuming now that the initial 

system state lies in the phase plane region where <t(jc) < 0 the controller output will 

be u = Umax- The system state will therefore follow the structure depicted in 

Figure 6.2 until it reaches the switching line that is <t(jc) = 0 . The motion of the 

system is determined by its own open-loop dynamic structure described by 

Equation (6.1). This is called the reaching phase. When the state trajectory crosses 

the switching line, that is c (x )  > 0 , the system switches to the second structure with 

u = t/min until the switching line is reached again. It can be seen in Figure 6.2 that 

once the state point reaches the switching line defined by Equation (6.4) the 

controller switches between its two structures (Equations (6.2) and (6.3)) in order to 

keep the system state on this line. The motion of the system now does not follow its 

own dynamic structure anymore but the system dynamics are rather determined by 

the dynamics of the switching line. The system is said to be in sliding mode. It can be 

seen from Equation (6.4) that the closed-loop dynamics of the system are therefore 

now of one order less than the dynamics of the open-loop system to be controlled.

Ideally, the controller in sliding mode will switch with an infinite switching 

frequency and hence the system state will oscillate around the switching line with an 

infinite frequency and zero amplitude. In practice however, the controller structure 

switching is necessarily imperfect due to the fact that, for instance, the switching is 

not instantaneous. Furthermore, neglected higher-order system dynamics, time 

delays, the effects of digital implementation, non-linearities like hysteresis and the 

fact that the switching function g ( x )  is only known with finite precision will reduce 

the switching frequency and therefore increase the amplitude of the state point 

oscillation around the sliding line. This phenomenon is called chattering and is 

generally undesirable. Therefore, in practice perfect sliding mode is unachievable 

and only a so-called quasi-sliding or pseudo-sliding mode can be achieved. Although 

this distinction is made in many references, it is also common to refer to this mode as 

sliding mode, since in practice ideal sliding mode cannot be achieved. This 

convention will therefore be used in this thesis unless a distinction between both 

phenomena adds clarity to the explanations.
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As shown above, in sliding mode the transient response of the closed-loop 

system is equivalent to that of a first-order system with a time constant given by the 

slope of the switching line -cy It can be seen in Figure 6.3 that sliding mode may not

occur, if the slope of the switching line is steeper than the slope of the open-loop 

plant response. In this case the state point may be driven away from the switching 

surface and might reach the surface again in another quadrant of the phase plane. The 

slope of the open-loop plant response can be expressed as:

^ ±  = ̂ Msm. + a for * *  o (6.5)
O X  X

Sliding mode now can be guaranteed if

q  < a (6.6)

over the whole range space. If q  > a the state point might not be forced onto the 

sliding surface if it is far away from the origin (that is if x  is large), but by increasing 

the maximum control signal the region in which the state point is forced onto the 

surface can be increased. Nevertheless, it cannot be guaranteed that sliding mode can 

be established over the whole range space.

As can be seen in Figure 6.4 even if sliding mode cannot be established the 

resulting system response can change from an unstable response of the two 

individual structures to a damped though oscillatory response of the switched system. 

In the worst case, a limit cycle may be reached resulting in a sustained oscillation of 

the control system.

6 .3  D e s ig n  o f  S liding  S u r fa c e

To describe the motion of the system in sliding mode mathematically the 

rigorous mathematical definition given by Filippov (1960) can be used. Following 

his definition, the motion of the system in sliding mode can be given an interesting 

geometric interpretation as an average of the system dynamics on both sides of the 

surface. A summary of this intuitive construction can be found in Itkis (1976) and 

Slotine and Li (1991). Although Filippov’s method is mathematically rigorous it is 

rather inconvenient. Wonham (1963) proposed a much simpler method which can be
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used instead. The formal procedure may be described as follows. In sliding mode the 

following equalities are required to hold:

These two equalities imply that once sliding mode has been reached the state simply 

moves on the sliding surface without ever leaving it. In physical terms, the proposed 

procedure replaces the infinitely fast oscillation of the system state about the sliding 

surface by the slow average component of the motion on the sliding surface itself.

Since in sliding mode the dynamics of the sliding surface describe the 

dynamics of the closed-loop control system, it has to be made sure that the sliding 

surface itself describes a stable system response with the desired dynamic 

characteristics. When designing a linear surface, linear system theory can be used to 

determine the defining state gains (e.g. pole-placement and eigenstmcture 

assignment techniques, frequency domain design methods (Konno and Hashimoto 

(1993)), solution of the Algebraic Riccati Equation (Diong and Medanic (1992))). 

Also, optimisation methods like the evolution strategy (Kim et al (1996a)) and 

genetic algorithms have been used to determine the surface parameters.

Using Slotine’s (1991) formalism for defining a sliding surface:

where A is a strictly positive constant, a second-order surface can be expressed as:

The question is how to choose the sliding surface tuning parameter A . In this case, 

A can be interpreted as the natural frequency of the ideally damped control system in 

sliding mode. Therefore assuming reachability of the sliding surface (which will be 

discussed in Section 6.4), A can be chosen to obtain the required system dynamics. 

Yet, there are other factors beside the closed-loop dynamics and reachability that 

may impose limits. For example in mechanical systems there are generally three 

factors limiting the tuning parameter A and therefore the choice of the sliding 

surface:

• Unmodelled structural resonant modes:

<7 =  0 (6.7)

a  (x) = 0 (6.8)

(6.9)

a(x)  = x + 2 h x  + A2jc (6 .10)
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x < x struc struc (6.11)

• Neglected time delays:

(6.12)

• Sampling rate of digital control circuit elements:

1
samp (6.13)

samp

6 .4  R ea ch a bility  o f  S liding  S u r fa c e

As could be seen in the simple example given in the Section 6.2, it is very 

important that the system state is forced onto the sliding surface to establish sliding 

mode. Therefore, in order to guarantee stability of the closed-loop system it has to be 

ensured that:

• firstly, the sliding surface results in a stable response of the control system in 

sliding mode as discussed in the previous section

• secondly, the sliding surface is reachable by the system state from any initial 

condition over the whole range space.

The condition for having the state trajectory directed towards the switching 

line can be formulated by looking at the following candidate of a Lyapunov function 

describing the square of the distance of the state point from the sliding surface:

The above function is positive semidefinite. It is in fact positive everywhere in the

the sliding surface and hence stability of closed-loop control system (if the dynamics 

described by the sliding surface are stable) the first derivative of L has to be less than 

zero for all x ■£ 0 that is:

This inequality represents a necessary condition for the reachability of the sliding 

surface and is commonly used in the design and stability proof of sliding mode

L = - a \ x )
2

(6.14)

state space except on the switching surface ct(jc) = 0 itself. To ensure reachability of

c—>0 o —>0
limL = limc7(x)(7(x)<0, Vx^O (6.15)
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control systems. If condition (6.15) is satisfied, the function L is by definition a 

conditional Lyapunov function for the system to be controlled relative to the 

subspace a  (jc) = 0 and the system is therefore conditionally stable relative to this

manifold (Itkis (1976)). If this condition is verified for the whole state space (with 

exception of the origin) the system state will reach the sliding surface from any 

possible initial condition and hence, assuming a sliding surface defining a stable 

dynamic response of the closed-loop control system, is stable. The range of the state 

space the system exists in is called range space. If any state vector in this range space 

will be driven towards a stable sliding surface, the control system is said to be 

globally stable.

Considering again the second-order plant presented in Section 6.2, the 

reachability condition (Equation (6.15)) yields the same condition for the existence 

of sliding mode as the one obtained by comparing the slope of the open-loop plant 

response with the slope of the switching line (Equation (6.6)).

Another way of looking at the problem of reachability of a given sliding 

surface is to use relay theory (Tsypkin (1984)). Re-writing for example the equation 

defining a linear second-order sliding surface:

G  — —cxx — c2 x  -  c3x  (6.16)

yields:

(7, = —c,x -  c7x
(6.17)

<T =  G 1 — C3X

As can been seen from Figure 6.5, a x is the demand input to the innermost feedback 

loop spanning the relay element depicted in Figure 6.6. Differentiating 

Equation (6.17) yields:

g - g x - c 3x  (6.18)

Substituting Equation (6.18) into Equation (6.15) gives:

lim a (a , -  c3x ) < 0 (6.19)O—>0 ' '

According to Tsypkin (1984) reachability of the chosen sliding surface can hence be 

guaranteed, if at any moment the external (relative to the part of the system
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containing the relay and being spanned by the inner feedback loop) action <r1 varies 

more slowly than the inner feedback action c3x . That is, if at any moment:

j o - j l  <  | c 33i:| ( 6 . 2 0 )

Having now designed the sliding surface and assured its reachability it can be 

also of interest to determine the duration of the reaching phase before sliding mode is 

established since in general it is desirable to drive the system state as rapidly as 

possible towards the sliding surface. It is easy to determine the time taken by the 

system to reach the sliding surface from any initial condition even when the system is 

excited by a step input. However, this can only be done assuming that the plant is 

well known and linear. In this context it might be interesting that Eydinov (1965) 

proposed an approximate method for predicting this reaching time which can be used 

to minimise the reaching phase.

6 .5  E q u iv a len t  C o n t r o l

Solving the equations describing a control system in sliding mode formally 

for the control signal yields the so-called equivalent control signal ueq, which can be 

seen as the continuous control action that would maintain the system state on the 

sliding surface. The equivalent control signal can also be seen as an average value of 

the switched control signal in ideal sliding mode. To obtain this equivalent control 

signal though the system dynamics have to be known precisely:

x = Ax + Bueq (6.21)

As shown in Section 6.3 in sliding mode the following equalities are required to 

hold:

C7(x) = 57x = 0 (6.22)

cr (x) = sT x  = 0 (6.23)

The continuous equivalent control action replacing the control signal switching at an 

infinite frequency is hence:

ucq= -[sTB ) ''s TA x  (6.24)
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Assuming now that the equivalent control action is synthesised by means of the 

following relay-like control signal:

u = - U ^  sgn(<r) (6.25)

where Umax represents the switching gain, the equivalent gain factor of the relay 

element (see Figure 6.6) can be determined as the ratio of the output to the input 

signal (Tsypkin (1955)):

 a  (6'26)

The smaller the input signal, the larger is the equivalent gain Keq In the limit of 

<7-»0:

lim Kea = oo (6.27)
<T —>0 H

Therefore, when the system is operating in sliding mode, it contains an element 

equivalent to an amplifier with infinite gain and therefore of infinite power 

overcoming all parametric and external disturbances acting on the system. 

Considering the second-order example used by Tsypkin (1984) shows that in sliding 

mode the innermost feedback loop spanning the relay and the system parameter 

dependent part of the system dynamics can be replaced by the reciprocal of the 

feedback element. Since this feedback element contains no plant dependent terms, 

the closed-loop response of the system in sliding mode is invariant to changes of 

system parameters.

It is now possible to construct a control law consisting of an equivalent term 

and a switching term (Yallapragada et al (1996)) such as:

“ = “«,+ = ~ K,,X -  sgK0' ) (6-28)

In this case, the switching part MWIfCfc of the control law forces the system state onto 

the sliding surface while the equivalent part ueq operates like a state-feedback 

controller and keeps the state on this surface. Like this, no switching is required once 

the sliding surface has been reached. As mentioned above, in order to compute the 

equivalent gain, the dynamics of the system have to be known precisely. Therefore 

applying the above control law to a real system, the equivalent control signal only 

keeps a nominal system on the sliding surface while the switching control has to 

compensate for discrepancies between the physical plant and the nominal model used
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as a basis for control design. Furthermore, the relay-like switching part of the control 

law provides robustness to plant parameter changes and the action of external 

disturbances.

6 .6  S w it c h e d  G a in s  C o n t r o l  La w s

Other control laws than the relay-like algorithm presented in Equation (6.25) 

can be used to establish sliding mode. In particular for higher-order systems the 

following linear feedback with switched gains algorithm has been considered (Utkin 

(1977), Utkin (1978), Zinober (1990), Chem and Wu (1991), Hung et al (1993)):

k

u = y/ix i ( \< k < n )  (6.29)
i=i

where

f a ,  x , g > 0

( 6 - 3 o )

For sliding motion, the required inequality conditions for the values of the individual 

state-dependent switching gains (% and $  can be obtained using the standard sliding 

condition (see Equation (6.15)) provided that the range of the expected plant 

parameter variations are known (Itkis (1976)).

One reason for using switched gains control laws like the one presented in 

Equation (6.29) is the fact that the relay-like control term sgn(<7) which is

normally used in relay-type sliding mode control is not present in the control 

algorithm. This term is usually the reason for excessive switching activity 

(chattering).

Further switching laws commonly used in VSC systems can be found in 

Hung eta l (1993).

6 .7  S liding  D om a in s

As shown by Biihler (1990), due to the fact that only a limited control action 

Umax is available to the control system (because of power limitation in the actuators)
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sliding will not be possible over the whole sliding surface but rather will be restricted 

to an area around the origin called the sliding domain. The boundary of the sliding

domain for a given sliding surface can easily be found by setting the equivalent 

control signal ueq equal to the maximum available control signal 1]^'.

maximum values of the components of the system state x  determine the limits of the 

sliding domain for a given maximum control action C/max- As demonstrated by Biihler 

(1990), for a second-order system and a linear first-order sliding surface the sliding 

domain is limited by two points on the straight sliding line. In general now, for a 

second-order system:

with a damping ratio f  < 1 the sliding domain increases with a decrease in the slope 

ci of the sliding surface. Therefore, a slower system response in sliding mode can be 

achieved over a larger state-space region as shown in Figure 6.6. (Hence by 

definition, the sliding domain is bounded by the time optimal phase trajectory). The 

size of the sliding domain can further be increased by increasing the maximum 

control signal as depicted in Figure 6.8. According to Biihler (1986) similar relations 

exist for higher-order systems.

Although the closed-loop response of the control system in sliding mode is 

invariant to changes in the system parameters it can be deducted from 

Equation (6.32) that the size of the sliding domain is not. Increasing for instance the 

damping ratio f  of the second-order dynamics increases the sliding domain until it 

reaches infinity for f  = 1 and ci = (On as can be seen in Figure 6.9. Increasing the 

natural frequency (On of the second-order dynamics on the other hand decreases the 

sliding domain as shown in Figure 6.10.

Concluding the above discussion, the existence of the sliding domain mainly 

results in two guidelines for the design of sliding mode control systems:

(6.31)

This yields:

0  =  s t { Ax ± B U ^ ) (6.32)

According to Equation (6.32) the dynamics of the sliding surface given by sT and the

x  + 2 £(Qnx  + Q)2nx = ±bU rtax (6.33)
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• When choosing the parameters of the sliding surface it should be ensured that the 

sliding domain exists over the whole state space the system operates in. In the 

case of changing system parameters the worst case system matrices A  and B  

resulting in the smallest possible sliding domain should be chosen when 

determining its size

• The maximum control signal f/max should be chosen large enough to obtain a 

sufficient size of the sliding domain

6 .8  N o n -lin ea r  a n d  o t h e r  S liding  S u r f a c e s

In order to extend the sliding domain, to improve reachability of the sliding 

surface or to obtain a faster transient response of the control system in sliding mode, 

non-linear sliding surfaces can be designed. In general, a non-linear sliding surface 

matches more closely the so-called time optimal system trajectory limiting the 

sliding domain as demonstrated in Section 6.7. Therefore, it can be made sure that 

the dynamics of the sliding surface do not exceed the dynamic limits of the 

controlled plant. Various approaches have been mentioned in literature, for instance:

• piecewise linear surfaces (Makarov and Rakhmankulov (1969))

• non-linear surfaces (Matthews et al (1987), Sira-Ramirez (1987), Dwyer and Sira- 

Ramirez (1988), Lee and Youn (1989), Zhu and Chen (1990), Kwatny and Kim 

(1990), Lee et al (1991), Qi and Hoft (1994))

• velocity limited surfaces (Bose (1985))

• constant deceleration surfaces (Harashima et al (1985), Feller and Benz (1987), 

Workman et al (1987), Gilbert (1989))

• constant jerk surfaces (Gamble (1992))

• adaptive surfaces (Zinober (1975), (1977), Nouri et al (1994), ParraVega and 

Arimoto (1995), Lee and Kwok (1995a), (1995b), Bekiroglu et al (1995))

• fuzzy surfaces (Kung and Liao (1994), Xu and Smith (1994), Ashrafzadeh et al 

(1996), Kim eta l (1996b))

• time-varying surfaces (Fossas and Martinez (1993), Park and Lee (1993), Kim et 

al (1993), Choi and Park (1994), Bartoszewicz (1995))

• Lagrangian surfaces (Jumarie (1996))

• moving surfaces (Choi et al (1994), Gayed et al (1995), Lee et al (1995))
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As reported, all these methods have been developed and implemented 

successfully. A comparison of the above mentioned approaches can be found in 

Harashima et al (1985) and Hashimoto and Harashima (1987).

In general, the realisation of complex non-linear sliding surfaces requires a 

digital or hybrid implementation of the VSC controller.

6 .9  I n v a r i a n c e  o f  C o n t r o l  S y s te m s  in S l id in g  M o d e

As first shown by Drazenovic (1969), sliding regimes have an important 

property: the motion of the system in sliding mode is independent of changes in the 

plant parameters and of external disturbances. In the second-order control system 

considered as an example in the Section 6.2 the performance of the closed-loop 

system is independent of the plant time constant a as long as it remains in sliding 

mode. As shown above, in sliding mode the closed-loop system dynamics are only 

governed by the sliding surface time constant c\.

In general, the dynamics of a linear plant acted upon by an arbitrary 

disturbance vector F{t) can be described by the state-space equation:

x(t) = Ax(t) + Bu{t) + EF(t) (6.33)

The dynamics of a system with changing system parameters can be expressed as:

x(t) = (A  + A A)x{t) + Bu(t) (6.34)

where A A is a matrix representing the parameters variations. The system now is 

invariant to disturbances or parameter changes, if there are matrices A D(t) and 

A A(t) such that the following relations:

E(t) = B A D(t) (6.35)

AA (t) = BA  A(t) (6.36)

are true (Utkin (1978), Gao and Hung (1993)). One important conclusion from 

Equations (6.35) and (6.36) is that the invariance of a VSC system in sliding mode to 

external disturbances and parameter changes only depends on the magnitude of these 

disturbances and not on their frequency content or their rate of change. In this respect
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sliding mode control is far superior to self-tuning or adaptive control (Guzzella and 

Geering (1990)).

Yet, it has to be mentioned again that disturbance rejection and robustness to 

parameter changes can only be guaranteed if the system is in sliding mode with an 

infinite switching frequency. If the switching frequency is not infinite which is the 

case for all real physical applications, it can be easily shown that the system state will 

deviate from the sliding surface in-between two control structure switching instants 

due to external disturbances acting on the system. Also, changes in plant parameters 

will result in similar deviations of the system state from the sliding surface. 

Therefore, robustness to parameter changes and the disturbance rejection capability 

of a real (as opposed to an ideal) control system in sliding mode (or better quasi- 

sliding mode) have to be investigated carefully.

Furthermore, if the power limits of the control system are exceeded by 

external disturbances or parameter changes sliding mode may break down. One way 

of exceeding the power limits of the control system is for example to exert an 

external force to the system which is larger than the force available from the plant’s 

actuators to compensate for this disturbance. The system state might be forced away 

from the sliding surface by the external disturbance force and therefore, the 

reachability conditions might not be fulfilled anymore.

When reachability of the sliding surface is guaranteed for the nominal plant 

model and a given minimum switching gain, an increase in this switching gain which 

will result in an increase in the magnitude of the available control action will 

improve the system’s robustness and disturbance rejection capabilities. In case of 

fluid power positioning systems for instance, the switching gain can be increased by 

increasing the control valve size or the supply pressure.

Finally, external disturbances and system parameter changes will distort the 

phase trajectories in the reaching phase which occurs prior to the establishment of 

sliding mode. However, if the reachability conditions (see Equation (6.15)) are not 

violated by these disturbances the system will proceed to reach sliding mode (Itkis 

(1976)).
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6.10 Choice o f  system s ta te s

According to Drazenovic (1969), the invariance conditions of a control 

system in sliding mode can only be fulfilled, if the system model used as a basis for 

controller design is in its controllable canonical form. In this case, the system state 

to be controlled and its derivatives are chosen as state variables. The canonical model 

of the system dynamics in state-space representation is:

x = Ax  + Bu + d

with:

(6.37)

(6.38)

(6.39)

The system order and the number of states is n while the excess of poles over zeros 

(the relative degree) is r. Here, x  is the system state, u the control signal, y  the system 

output and d  a vector describing external disturbances. The switching function now 

can have the form:

H Xj X  X -,,r

'  0 1 o ••• 0 0 '

A  =
0 0 o ••• 0 1

, B =
0

“ *2 -0 3 -• ~ a n -1 ~1a n ; A ,

<7 (x) = sTx  = —cxx — c2x - . ..—cnx^n~  ̂ (6.40)

This equation defines a linear switching plane of order n-1 in the n^-order state 

space.

In general, when obtaining the required derivatives of the plant state to be 

controlled severe problems might be encountered (for instance, additional noise and 

phase lags due to differentiation, high costs for additional transducers, etc.). These 

problems increase with the order of the plant. Hence, in many applications more 

accessible internal states are used or a reduced-order switching law is employed 

ignoring higher-order derivatives completely (White (1983), (1986)).

If other states than the canonical ones are chosen to synthesis the switching 

function sliding mode might still exist. The resulting motion though contains plant 

dependent terms. Therefore, the response of the closed-loop system will not be 

robust to changes in these terms.
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6.10.1 Reduced-Order Variable Structure Control (VSC) Systems

Omitting the highest system states when synthesising the switching function 

results in the so-called reduced-order switching. Although in many cases acceptable 

dynamic performance of the control system can be obtained when ignoring the 

highest system states (White (1983,1986)) it can be shown that reducing the order of 

the sliding surface always results in a finite switching frequency. Therefore, a stable 

limit cycle might be established resulting in the fact that the system can ideally only 

reach quasi-sliding mode. Thus, the transient response of the closed-loop system is 

not invariant to changes in the plant parameters or to the action of external 

disturbances.

Considering again the second-order system presented in Section 6.2 as an 

example and omitting the velocity signal in the switching function results in the 

closed-loop response shown already in Figure 6.4.

For switched gains VSC systems an approximation to sliding mode can be 

produced by means of compensation techniques. This is not possible though for VSC 

systems with relay-type control algorithms. Consequently, only quasi-sliding motion 

can be achieved with these control systems.

In terms of relay control theory, the requirement for full state switching in 

order to achieve sliding mode is equivalent to the statement that the index (excess of 

poles over zeros) of the forward and feedback path of the innermost loop spanning 

the relay element must be one (Tsypkin (1984)).

6 .1 0 .2  O btaining  th e  S y stem  S ta te

In VSC, as in other state-feedback strategies, the dynamic state of the plant 

has to be either measured directly or derived in some way from measurements of 

other plant variables. From the standpoint of a control engineer, it is always the 

better alternative to measure the system state directly. Nevertheless, in most cases it 

is not possible to do so because suitable transducers are not available, too expensive 

or cannot be incorporated into the system. Hence, the need arises to obtain the 

missing information by other means. The possible techniques available are:
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• State observation

• Differentiation or integration of measured system states

• Measuring of non-canonical system states

6.10.2.1 The Use of State Observers for Obtaining the System State

One way of determining the dynamic state of a system is to use a state 

observer. State observers are in general based on a linear model of the plant 

dynamics and use measured data to predict the system states which cannot be 

measured. Obviously, the accuracy of the obtained information on the unmeasureable 

system states depends on the accuracy of the system model being the basis of the 

observer.

In case of a linear Luenberger observer unmodelled dynamics and changes in 

system parameters can result in large errors between the real system state and the one 

predicted by the observer. Hence, when using this observer in combination with a 

sliding mode controller these measurement errors result in the system response being 

highly sensitive to changes in the plant parameters even in sliding mode (Nadam and 

Sen (1987, 1988, 1990). Therefore, the use of Luenberger observers degrades one of 

the most interesting features of sliding mode control, the robustness to plant 

parameter changes.

One way of accounting for changing system parameters is to use an adaptive 

observer which not only predicts the system state but also updates its plant model 

based on the measured data. Nevertheless, the introduction of an adaptive observer 

increases the complexity of the control system significantly and hence might reduce 

the available sampling rate especially when using the digital processor of a personal 

computer. Furthermore, the introduction of an adaptive observer might introduce 

some or all of the problems with adaptive systems like the need for sufficient 

excitation of the system, integrator wind-up etc.

6.10.2.2 Differentiation of Measured System States

When directly differentiating measured system states, the applied 

differentiation methods usually amplify the high-frequency content of the measured
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signal which means they amplify the high-frequency noise. Furthermore, the 

application of numerical differentiation routines introduces an additional phase lag 

into the differentiated signal because past system state information is required in 

order to use backwards differencing schemes. This phase lag can be decreased by 

increasing the sampling frequency but at the same time an increase in sampling 

frequency also increases the sensitivity to noise of the differencing scheme.

In order to attenuate the high-frequency content of the differentiated signal 

and therefore noise, low-pass filters are generally used. These filters introduce 

additional phase lags into the system. Therefore, using a direct differentiation method 

always results in a trade-off between noise attenuation and an additional phase lag.

6.10.2.3 Measuring Non-Canonical System States

As mentioned at the beginning of this chapter Drazenovic (1969) showed that 

when using a non-canonical system representation for controller synthesis robustness 

to system parameter changes and maximum disturbance rejection cannot be 

guaranteed.

One way of looking at this fact is to consider the desired dynamic behaviour 

of the plant. This desired dynamic behaviour directly translates to a desired 

behaviour of the canonical system states, e.g. position error (for example), velocity 

and acceleration, no matter whether the system parameters change or external 

disturbances act upon the system. It is not possible to say the same about for instance 

the differential pressure of a pneumatic or hydraulic positioning system because it 

must change with changes in the system parameters and in the presence of external 

disturbances in order to make the system behave as desired.

Nevertheless, Pandian et al (1997) successfully applied sliding mode control 

to a pneumatic servo using position, velocity and differential pressure feedback and 

therefore avoiding acceleration feedback. The experimental results presented show 

that under nominal conditions the system is behaving well while changes in pay load 

resulting in changes in the differential pressure lead to an oscillatory response about 

the reference trajectory.
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6.11 S w itching  F requency  o f  C o n t r o l  S y st em s  in Q uasi- 

S liding Mo de

Theoretically, a VSC system requires an infinite switching frequency in order 

to operate in sliding mode. As mentioned already, an infinite switching frequency 

cannot be achieved with a real physical system. Therefore, only a so-called quasi- 

sliding mode can be realised. The motion of the control system in quasi-sliding mode 

can be interpreted as the existence of a sustained oscillation due to a limit cycle. The 

frequency and amplitude of this limit cycle determines frequency and amplitude of 

the chattering in the control system. When determining the switching frequency of 

the control system in quasi-sliding mode the following effects have to be taken into 

account for an analogue control system:

• unmodelled plant dynamics, not considered when designing the sliding surface 

(i.e. neglected higher order dynamics, structural modes)

• neglected time delays

• signal filters (i.e; noise filters, non-ideal differentiators)

For a digital system, additionally the effects arising from the discretisation 

and numerical differentiation have to be considered. These are:

• latency introduced by sampling process

• computing delay

• phase lag due to numerical differentiation (due to backwards differencing scheme)

It is worth mentioning that these effects are a function of the sampling 

frequency of the digital system. Therefore, an increase in the frequency will decrease 

the adverse influence of the above factors on the system dynamics.

Due to the fact that the limit cycle is caused by the switching of a non-linear 

relay element its existence cannot be predicted by means of linear control theory. 

There are a number of methods though which can be used in order to predict the 

existence of a limit cycle in VSC systems and determine its frequency and amplitude. 

On possibility is to use the Tsypkin method (Tsypkin (1984), Atherton (1981)). This 

method results in an exact prediction of limit cycles based on an assumed relay 

output waveform rather than its input. Assuming a relay without deadzone, the 

output of this non-linearity will be a square wave with known amplitude. Because
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this square wave is transmitted to the relay element input through the linear 

components of the closed-loop system, the relay input can be expanded to a Fourier 

series. The relay input now must be determined so that it generates the assumed 

square wave at the correct time. The resulting non-linear algebraic equation can then 

be solved for the limit cycle frequency. When the relay element has a dead zone the 

similar method yields two algebraic equations which give the limit cycle frequency 

and pulse width.

Another simpler way of determining the existence and dynamic 

characteristics of a limit cycle in a non-linear control system is to use describing 

functions. These describing functions can be conveniently used regardless whether 

the non-linearity is continuous (soft) or discontinuous (hard), as it is the case for a 

relay (see Nagarth and Gopal (1982), D’Azzo and Houpis (1986)). The advantage of 

using describing functions is that by substituting the non-linear element (relay) by its 

linear describing function, linear control theoiy can be applied to analyse the control 

system.

Although the more complex Tsypkin method produces an exact solution to 

the problem unlike the approximate describing function method it is also based on a 

linear plant model which is only an approximation of the real plant’s dynamics. 

Therefore, the results are not necessarily more accurate when applying this method to 

non-linear systems. Additional validation of the results using computer simulations 

of the system dynamics are in both cases advisable.

Furthermore, Atherton (1981) showed that the difference in the results 

between the Tsypkin method and the describing function method is small if the linear 

elements in the control system are good low-pass filters. Hence, in the following the 

describing function method will be explained in more detail and used for the analysis 

of the limit cycles occurring in the control system under investigation.

6 .1 1 .1  D e s c r ib in g  F unction  o f  a R elay  E lem en t

The application of describing functions to limit cycle analysis is based on the 

fact that the form of the signals in a limit-cycling system is usually approximately 

sinusoidal. If there is a limit cycle in the system, then the system signals must all be
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periodic. Since, as a periodic signal, the input to the linear elements of the system 

can be expanded as the infinite sum of harmonics, and since the linear element, 

because of its low-pass filter properties, filters out higher frequency signals, the 

output of the linear element must be composed mostly of the lowest harmonics.

The describing function for a relay-type non-linearity without dead zone (see 

Figure 6.6) is:

N(& ) = (6.41)
V ' K G

[/max represents the switching step height while G is the amplitude of the input 

signal (switching function) into the relay element. One can observe three features of 

this describing function:

• When the input is infinitely small, the describing function is infinitely large.

• When the input is infinitely large, the describing function converges towards zero.

• The describing function has no imaginary part. Hence, the relay element does not 

produce a phase shift.

Ideally, the input signal into the switching or relay element of the SLMC 

system is equal to zero hence the gain of the non-linear element increases to infinity 

which corresponds to the equivalent gain results of Tsypkin (1984).

6.11.2 T h e  E x ten d ed  Ny q u ist  C riterio n

Having substituted the non-linear relay element by its linear describing 

function the slightly extended Nyquist criterion can be used to check for the 

existence of limit cycle oscillations in the system depicted in Figure 6.11. Assuming 

that a self-sustained oscillation of amplitude <7 and frequency co exists, the following 

equality must have a solution (Slotine and Li (1991)):

<642)

In other words, the amplitude <7 and frequency co of the limit cycle in the system 

must satisfy Equation (6.42).
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Particularly for higher-order systems, it is generally not easy to solve this 

equation using analytical methods. Therefore, a graphical approach is often used. The 

idea is to plot both sides of the complex Equation (6.42) in the complex plane and 

find the points where the two curves intersect. Limit cycles now exist, if the two 

curves intersect, and the values of & and co corresponding to the intersection point 

are the solutions of Equation (6.42). If points near the intersection and along the 

increasing amplitude a  side of the curve -VN(a> ) are not encircled by the curve of

the linear part G(ico) , the predicted limit cycle is stable. Otherwise, the limit cycle is 

unstable (Slotine and Li (1991)).

As mentioned already, for a relay element without hysteresis and backlash the 

describing function N {&) is real and therefore the plot of - V N (&) always lies on

the real axis of the complex plane. Resulting from this observation, it is also possible 

to examine the Bode plot of the frequency response of the linear part of the system 

G(ico) . The points where the phase of G(ico) reaches -180° indicate the existence of 

stable limit cycles. Using the Bode plot method, it is easier to obtain frequency co 

and amplitude a  of the limit cycles since frequency and oscillation amplitude are 

both plot parameters.

It seems to be important, to point out again that the above procedure only 

gives an approximate prediction of the existence of limit cycles. The validity and 

accuracy of this prediction should be confirmed by computer simulation as in 

Chapter 9 of this thesis where the limit cycles of the control system under 

investigation are analysed.

6 .1 2  B oundary  Layer

Since chattering is an inherent dynamic characteristic of quasi-sliding mode 

and is generally undesirable it has to be reduced if not eliminated in order to enable 

the controller to perform satisfactorily. As mentioned earlier, for switched gains VSC 

systems sliding mode can be approximated by means of compensation techniques. 

For relay VSC systems chattering reduction is usually achieved by means of a thin 

boundary layer neighbouring the switching surface (Slotine and Li (1991)). This
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boundary layer smoothes out the control switching discontinuity by altering the 

control algorithm within this layer. Using a relay-like switching algorithm a 

boundary layer can be incorporated as shown in Figure 6.12 (Surgenor et al (1995)):

sgn(0' ) when \<y\>oBL
« = < a  (6.43)

when ] p \< 0 BL
< *BL

or:

u = -— with 5 > 0  (6.44)|cr| + <5

The boundary layer basically acts as a low-pass filter attenuating chattering 

by filtering the switching function a. The cut-off frequency coBL of this low-pass 

filter can be determined as:

mBL =  ̂ - m a x M  = ̂ LUtmx (6.45)
< *BL ° B L

Recognising the filter-like structure allows for the tuning of the control law in order 

to achieve a trade-off between tracking precision and chattering reduction. The 

introduction of a boundary layer leads to tracking within a guaranteed precision 

rather than perfect tracking. As explained by Slotine and Li (1991), the thickness of 

the boundary layer can also be monitored and made time-varying in order to fully 

exploit the control bandwidth available (see also Dwyer et al (1989)).

Due to the fact that chattering is caused by unmodelled system dynamics 

(reduced-order switching) the cut-off frequency should by smaller than the lowest 

frequency of the unmodelled dynamics limiting the switching frequency:

®BL — ® unmodelled (6.46)

It can be shown that the closed-loop system dynamics of a control system 

with boundary layer can be similar to those of a system without boundary layer. In 

order to achieve this, the boundary layer has to be chosen sufficiently small (Lantto 

(1994)):

coBL = - ^ m i n i Mmax~ ^ n-} » ;  i = 1,2,...,n (6.47)
G Bl  I  2  J c i
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6.13 D ig ital Implementation  of Sliding  M ode Control

The dynamic characteristics of discrete-time VSC systems significantly differ 

from those of continuous-time VSC systems. The main difference is that in discrete

time systems the control action can only be activated at discrete sampling instants. 

The controller output is then held constant by the D/A-converter over each sampling 

period. As a result, the switching frequency of the discrete-time VSC system cannot 

exceed half of the sampling frequency of its digital elements (microprocessor, D/A- 

and A/D-converier). Therefore, discrete-time VSC systems (as all VSC systems with 

finite switching frequency) can only undergo quasi-sliding modes (Verghese et al 

(1988)) with the switching frequency limited by the sampling frequency. Often these 

dynamic modes are also called pseudo-shding modes (Er and Wang (1993)) to 

emphasise the fact that the similarity between discrete-time sliding modes and 

continuous-time sliding modes disappears as the sampling frequency decreases.

In pseudo-sliding mode the state of the system approaches the switching 

surface but in general cannot stay on it. Hence, the switching surface is bounded by a 

sector repelling the system state trajectory as shown in Figure 6.13. Outside this 

sector the trajectory is still directed towards the switching surface. It was shown by 

Lim et al (1991) that, even if the switching frequency is equal to its maximum of half 

the sampling frequency, the system state does not necessarily stay within this 

repulsion sector surrounding the sliding surface for two consecutive sampling 

periods. Lim et al (1991) also used an application to demonstrate that the trajectory 

in the phase plane of a discrete-time VSC system is not necessarily symmetrical 

about <7 = 0 in particular, if the controller gains vary for e.g. positive and negative 

input signals. It was shown that this unsymmetrical switching about the sliding 

surface can lead to steady-state control errors. Baida (1993) showed, using a simple 

example, that the implementation of a discrete-time VSC controller may also lead to 

both high- and low-frequency chattering. This result was confirmed by Lantto (1994) 

in a simulation study. Unlike the high-frequency chattering though, the low- 

frequency chattering cannot be filtered out by the system.

As a result of the limited switching frequency, discrete-time VSC systems (as 

all VSC systems only reaching quasi-sliding mode) do not possess the invariance 

properties found in ideal continuous-time VSC systems with an infinite switching
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frequency. Therefore, the robustness issues of discrete-time VSC systems have to be 

investigated carefully (Hung et al (1993)). In this context, Milosaviljevic (1985) 

showed for example that disturbances acting on the system at intersample instants 

prohibit exact tracking of the sliding surface cr = 0 . Research in this area is still 

ongoing.

To determine now the switching frequency of a discrete-time VSC systems 

one has to consider the influence of the sampling process on the system dynamics 

and also additional time lags being inherent to the discrete-time dynamics. Since 

each sampled controller output value u(kt) is held constant by the D/A-converter 

until the next value has been made available by the control computer, the continuous 

value of u(t) consists of steps that lag behind the sampled values u(kt) by Tsamp/2 on 

average as can be seen in Figure 6.14. A further time lag might be introduced by the 

time required by the control computer to do the necessary computation steps. Finally, 

numerical differentiation routines add a further lag into the system since they require 

past information of the signal to be differentiated in order to calculate an 

approximation of the derivative.

In general, there are two possible ways of analysing time delays in discrete- 

time control systems: One can either incorporate the time delays resulting from the 

discrete character of the control system into the continuous analysis of the digital 

system or alternatively look at a discrete model of the system under consideration. 

When analysing a continuous equivalent of the discrete control system the 

characteristics of the D/A-converter can be modelled by including the Laplace- 

domain transfer function of a zero-order-hold (ZOH) into the continuous model of 

the system. The Laplace-domain transfer function of a ZOH with sampling time of

Tsamp i S .

1 -  e~sTamp
G0{s) = — ------  (6.48)

s

As can be seen from Equation (6.48) the time delay model does not result in a 

polynomial. Therefore, to investigate the effects of time delay on the dynamics of the 

system the transcendental function has to be either approximated or the phase 

conditions have to be applied directly to the system. The most common means of 

finding such an approximation is to use the so-called Pade approximation (Houpis
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and Lamont (1985)). This approximation consists of matching the series expansion 

of the transcendental function describing the time delay with the series expansion of 

a rational function whose numerator is polynomial of degree p  and whose 

denominator is a polynomial of degree q. The result is commonly referred to as the 

(p,q)-Pad6 approximation. To give an example, the (1,1)- and (0,1)-Pade 

approximations of a time delay Td are:

, + K " 2 )  ,6 .4 9 ,

(0,1): e~'': =
1

The additional phase lag introduced to the system by a time delay Td can also 

be directly calculated as follows (see Figure 6.15) and added to the system’s phase:

<p, = x 360" = x 180" (6.50)
COj n

It can generally be said that, if an average delay of half the sampling time is 

incorporated into the continuous analysis of a digital system without any further 

computing time delays, excellent agreement results for many reasonable sampling 

frequencies (Franklin et al (1994)).

Rather than using the above approximations for the delays in discrete-time 

systems in combination with a continuous-time analysis method, an often better 

approach is to analyse the entire discrete-time system using an exact discrete-time 

analysis technique. To do this the z-transform (Dorf and Bishop (1995)) is usually 

employed. For discrete-time systems the z-transform plays the same role as the 

Laplace-transform does for continuous-time systems.

When performing a discrete analysis of a control system containing some 

discrete elements, the first step is to determine the discrete transfer functions of the 

continuous elements. The discrete transfer function G(z) of continuous plant 

described by G(s) and preceded by a ZOH element as depicted in Figure 6.16 is:

G(Z) = ( l - Z- ' ) z f ^ 4  (6.51)
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The discrete transfer function G(z) is an exact discrete equivalent of the continuous 

system under consideration because the ZOH element models the dynamic behaviour 

of the system in-between sampling instants exactly. It is also possible to use 

approximation methods which make different assumptions about what happens in- 

between sampling instants. One method is called Tustin’s method or bilinear 

approximation (Phillips and Nagle (1990)). The method is based on the trapezoidal 

integration formula substituting:

2
s = (6.52)

Tsc

Other methods are the matched pole-zero (MPZ) method and the modified matched 

pole-zero (MMPZ) method. There description can be found in Franklin et al (1990). 

A very helpful tool for converting the continuous-time transfer function G(s) into its 

discrete-time equivalent G(z) is the c2dm routine in MATLAB (MathWorks (1992)). 

This routine allows for the use of either the exact ZOH method or the above 

approximation techniques.

In the case that velocity and acceleration cannot be measured directly, these 

signals can be obtained from the measured displacement signal x(k) using the 

following backwards differencing:

v(fc) = -z r~  (x(k) -  x{k -1 )) (6.53)
samp

a(k) = ~~2— (x(k) -  2x{k - 1) + x(k  -  2)) (6.54)
samp

It is also possible to use the bilinear transformation to compute velocity and 

acceleration. This transformation results in zero phase shift for frequencies below the 

Nyquist frequency and maximum phase shift for frequencies above the Nyquist 

frequency. Nevertheless, using the bilinear transformation does not give an exact

system representation in the sampling points resulting in distorted amplitude and

phase in the high-frequency range. Velocity and acceleration obtained by the bilinear 

transformation are:

v(fc) = •“ “ (*( k) -  x{k - 1)) -  v(k - 1) (6.55)
samp
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4
— (*(&)“  - 1) + x(k - 2 ) ) - 2 a ( k - l ) - a ( k - 2 )  (6.56)

samp

The additional phase lags introduced to the system dynamics by the above mentioned 

factors at a sampling rate of Tsamp = 1 ms can be seen in Figures 6.17 to 6.18. 

Obviously, these phase lags depend on the sampling time. It can be seen that at the 

sampling frequency of f samp = 1 kHz the numerically differentiated velocity signal 

lags 180° and the numerically differentiated acceleration signal lags 360° behind the 

ideal response. In order to keep these significant phase lags small, the sampling time 

has to be as short as possible.

6 .1 3 .1  S a m plin g  F r eq u en c y

The previous analysis indicates that (for the same plant to be controlled), a 

much higher sampling frequency is required for digital VSC systems than for 

conventional digital control systems due to the adverse effects of a low sampling 

frequency on the switching frequency in sliding mode. This result is further 

confirmed by Dote et al (1982), Hashimoto and Harashima (1987), Hashimoto et al

(1988), MacCarley and Meyer (1991) and Surgenor et al (1995).

In order to successfully implement a continuous-time VSC algorithm digitally 

much higher sampling frequencies than the bandwidth of the plant are mentioned in 

literature, for example:

• Astrom and Wittenmark (1990) 20 times the system bandwidth

• Gamble (1993) 75 times the system bandwidth

• Hwang et al (1993) 100 times the system bandwidth

• Lin and Chen (1994) more than 100 times the system band

width

As a comparison, Franklin et al (1994) mention a sampling frequency of 20 times the 

system bandwidth to be used for the digital implementation of conventional control 

methods.

According to the above authors, the listed sampling frequencies are sufficient 

to enable the digital sliding mode controller to emulate the action of an analogue 

controller. If the system is further subject to disturbances with a frequency content 

above the bandwidth of the system, an even faster sampling time has to be used in
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order to fulfil the invariance conditions reasonably. Hence, the highest disturbance 

frequency can also determine the required sampling frequency (Lantto (1994)).

One way of determining the minimum sampling rate required in order to 

obtain a satisfactory system response is to use the Lyapunov exponent method. This 

method can be used to estimate the rate of change of distance between neighbouring 

trajectories of non-linear chaotic dynamic systems. Using the Gramm-Schmidt 

algorithm allows for the calculation of the Lyapunov exponent as a function of the 

sampling rate (Grantham and Athalye (1990)). Depending on whether the exponent 

is negative, zero or positive the distance between trajectories decreases, remains 

constant or increases. Furthermore, Yu and Potts (1992) proposed a relationship for 

determining the upper bound for the sampling rate which should not be exceeded 

when implementing a continuous-time VSC controller digitally. The proposed 

relationship is based on the best discretisation scheme.

Another way of obtaining a lower bound for the sampling frequency is to 

require the system state to stay within a certain region around the switching surface 

once the surface has been reached. MacCarley and Meyer (1991) derived the 

following equation relating the maximum sampling time to the maximum deviation 

of the system state from the switching surface:

5 U
2\sTBU r

Tsamp ■ , (6.56)

where 8 is a Euclidean norm bound on state deviations from the switching surface 

during a single sampling period Tsamp• In practice, 8 may be selected based upon 

some maximum acceptable deviation of each system state \Ax{\ < a i :

8 = min|sra with a  = (6.57)

Equation (6.57) requires very little knowledge about the plant dynamics and 

therefore represents a simple criterion for choosing the sampling time for uncertain 

systems.
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A comparable method is presented by Zhao and Utkin (1996) to determine 

the effect of the sampling frequency on the tracking error for a path tracking VSC 

controller.

6.13.2 D i s c r e t e  S l id in g  M o d e  C o n t r o l  (DSLMC)

If the sampling rate cannot be made high enough one way of dealing with the 

problem of limited switching frequency in discrete-time VSC systems due to low 

sampling rates is to use discrete sliding mode (DSLM) theory when designing the 

controller. The aim of DSLM theory is to ensure the existence of pseudo-sliding 

mode in discrete-time VSC systems. When designing DSLMC systems, the control 

law is usually derived on the basis of a discrete-time Lyapunov function (Furuta 

(1990)) or contraction mapping (Utkin and Yang (1978), Utkin and Drakunov

(1989)) and hence takes into account the effect of sampling on the control system 

dynamics.

The reachability condition for the sliding surface can be derived from a 

difference equation instead of a derivative equation (Milosaveljevic (1985)):

lim ra(fc + l)~(T(/:)]<0 ; lim [<7(fc + l)-<7(fc)l>0 (6.58)

In practice though, it is in general impossible for the system state to approach the 

sliding surface close enough. Therefore, the conditions c (k )-> 0 + and <j(k)—>0~ 

are rarely fulfilled. Hence, the following condition can be used to determine whether 

a discrete-time sliding mode (pseudo-sliding mode) exists or not:

[<7(ifc + l)-ff(ifc)](7(fc)<0 (6.59)

A further condition for the existence of pseudo-sliding mode often quoted is:

|cj ( k  + 1)| < |<t(/:)| (Sarpturk et al (1987)) (6.60)

or equivalently:

c 2(k + l) < G 2(k) (Furuta(1990)) (6.61)

\o(k)o{k  + 1)| < cr 2{k) (Sira-Ramirez (1987)) (6.62)

As shown by Spurgeon (1992) though, Condition (6.60) and its equivalents are 

sufficient but do not have to be satisfied necessarily, if Condition (6.59) is satisfied.
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In general, a switched gains type control law similar to the one described in 

Section 6.6 is used for discrete-time VSC systems. Using Condition (6.59) lower 

bounds for the state gains a { and /3, can easily be found. Yet, the existence of

asymptote hyperplanes, on which the system trajectory diverges from the switching 

surface imposes another restriction on the choice of the state gains. An algorithm 

which determines the upper bounds for the state gains by ensuring that the system 

trajectory stays within the state space region bounded by these asymptote 

hyperplanes can be found in Yu (1994).

A comprehensive overview over various approaches to sliding surface design 

for DSLMC systems and a comparison between those methods and the ones used for 

CSLMC systems can be found in Iordanou and Surgenor (1997).

Although it was found that for low sampling rates DSLMC could improve the 

system response significantly in comparison to CSLMC, DSLMC is not as robust to 

parameter changes as CSLMC (Iordanou and Surgenor (1997)). This is due to the 

fact, that DSLMC is taking the model of the system dynamics into account on a more 

basic design level than CSLMC in order to compensate for chattering introduced by 

the reduction of the switching frequency caused by discretisation. Hence, changes in 

the plant parameters have a more dramatic effect on DSLMC systems than on 

CSLMC.

A detailed analysis of DSLMC can be found in the recently published thesis 

of Iordanou (1998).

6 .1 4  Im p le m e n ta t io n  o f  S l id in g  M o d e  C o n t r o l  - A n a lo g u e  

V e r s u s  D ig i ta l

In general, there are three different approaches to the implementation of 

sliding mode control. These are:

• Analogue implementation using analogue switching circuit cards, amplifiers and 

filters (e.g. Dote et al (1982), Bengiamin and Kauffmann (1984), Feller and Benz 

(1987), Mestha and Yeung (1991)).
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• Digital implementation using fast microprocessors, dedicated processors or 

Digital Signal Processors (DSP) to realise the control algorithm (e.g. Hashimoto 

et al (1988), Min-Ho et al (1989), Leung et al (1992), Surgenor et al (1995), 

Chem et al (1997)).

• Hybrid implementation using digital and analogue elements to realise specific 

control tasks best suited for these elements (Bellini et al (1989), Gamble (1992)).

Each of these approaches has its advantages and disadvantages:

• Digital control offers an increased flexibility of the system. The implementation 

of non-linear switching surfaces and additional functions can be done easily. 

Nevertheless, when using a digital sliding mode controller the switching 

frequency achieved by the control system depends on the sampling frequency of 

the processor and often the switching frequencies of control systems using 

conventional processors are not sufficient to guarantee sliding motion.

• Analogue controllers, on the other hand, are cheaper and offer higher speeds of 

operation at the cost of a reduced flexibility and user-friendliness.

• One way of combining the advantages of digital and analogue controllers is to use 

a hybrid approach to implementation. Gamble (1992) described a hybrid 

controller using an analogue filter to obtain the acceleration feedback signal from 

the measured velocity signal. The control algorithm was realised using a DSP 

with a maximum sampling frequency of 4 kHz. By using the analogue 

differentiation filter to obtain the acceleration signal the switching frequency 

could be increased greatly without the need of increasing the processor speed used 

to compute the switching surface.

6 .1 5  C l o s u r e

The above review on sliding mode control confirms the conclusion already 

drawn from the results of the preliminary study presented in Appendix A l: for the 

control of the wDOF pneumatically actuated figure sliding mode control seems to be 

the most appropriate control approach.
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Moreover, due to its greater invariance to changes in the system parameters 

and its better disturbance rejection capabilities the continuous version (CSLMC) 

seems to be of more interest than the discrete version (DSLMC).

In the remainder of this thesis the development and implementation of a 

CSLM controller for the animated figure will therefore be described.

140



F igures

Figure 6.1 -Open-loop dynamics of second-order system



switching line \

Figure 6.2a - Phase plane plot of the dynamics of a second-order system (c\ < a)

reaching
phase

sliding
mode

Figure 6.2b - Dynamic response of a second-order system (c\ < a)
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switching line

Figure 6.3a - Phase plane plot of the dynamics of a second-order system (ci > a)

Figure 6.3b - Dynamic response of a second-order system (ci > a)
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<7 (*) <  0

switching line

<T (*) > 0

Figure 6.4a - Phase plane plot of the dynamics of a second-order system (c\ > a)

\ x

Figure 6.4b - Dynamic response of a second-order system (ci > a)
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innermost feedback loop

Figure 6.5 - System under relay control

Figure 6.6 - Relay-like switching element

time optimal trajectory

sliding domain

Figure 6.7 - Sliding domain of second-order system with a damping ratio of f  < 1
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Figure 6.8 - Sliding domain for increasing control signal Umax

c, <<o,

Figure 6.9 - Sliding domain for increasing damping ratio f

Figure 6.10 - Sliding domain for increasing natural frequency con
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describing function 

N{a)

linear element

Figure 6.11 - Describing function analysis

boundary 
layer

Figure 6.12 - Boundary layer neighbouring the switching surface cr= 0

repelling sector

Figure 6.13 - Repelling sector around the switching surface <7=0
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Figure 6.14 - Time lag due to sampling
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Figure 6.15 - Additional phase lag due to time delay

Figure 6.16 - Discrete transfer function G(z)
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Figure 6.17 - Bode plot of discrete differentation routine (Tsamp = 1 ms)
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7  B a s ic  D e s ig n  o f  a  S lid in g  Mo d e  C o n t r o l l e r  f o r  a

P n e u m a t ic  S e r v o

As mentioned already, it was decided to develop a CSLMC algorithm instead 

of a DSLMC one because CSLMC generally offers greater robustness to parameter 

changes and the action of external disturbances provided that, when implementing it 

digitally, the sampling frequency is sufficiently high (Iordanou and Surgenor (1997)). 

A CSLM controller therefore seems to be better suited for the animated figure (and 

other wDOF applications like industrial manipulators) where parameter changes and 

external disturbances are of major concern.

In this chapter therefore, a continuous-time sliding mode controller (CSLMC) 

for the pneumatic actuation system of the animated figure described in Chapter 3 will 

be designed. The design will be based on the advanced linear model of the pneumatic 

servo system introduced in Section 5.2. Critical design questions in the context of the 

reachability condition will be discussed and its limitations as a design tool for CSLM 

controllers will be analysed. The CSLMC design procedure will be completed in 

Chapter 8 by means of a limit cycle analysis using the extended Nyquist criterion. In 

Chapter 9 the CSLM control algorithm is then validated by means of computer 

simulations using the non-linear simulation model presented in Chapter 4 and 

experimental results.

7.1 D e s ig n  P r o c e d u r e

The first step when designing a sliding mode controller is to decide on a 

nominal system model and to choose a sliding surface accordingly. The sliding 

surface has to fulfil the following requirements:

• It has to be of sufficient order.

•  Since it defines the system’s closed-loop dynamics it has to be stable.

• It has to be reachable by the system state over the whole range space.

The CSLMC design aspects presented in this chapter will in particular 

concentrate on these requirements by analysing the reachability condition for a given
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sliding surface, a realistic system range space and the nominal model of the servo 

dynamics. At this stage the influence of parameter changes are included in the 

analysis by using the parameter update model introduced in Section 5.3.3. The results 

of this procedure are the state gains of the chosen sliding surface which guarantee 

that the sliding surface is reachable by the nominal system model.

7 .2  S u rfa ce  O rd er

As demonstrated in Section 6.2, the order of a continuous-time switching 

surface along which the system state is driven towards its origin is generally n-1 for 

an n^-order plant to be controlled. Although all physical systems have an infinite 

order, the dominant dynamics of a pneumatic servo mechanism including the valve 

spool dynamics as described in Chapter 5 can be expressed as a fifth-order linear 

transfer function resulting in the need for a fourth-order sliding surface. In order to 

synthesise this surface based on the canonical representation of the system dynamics, 

the system displacement (or displacement error) and the first four of its derivatives 

have to be available. From the implementation standpoint this can be very difficult if 

not impossible. Even in the ideal case of displacement, velocity and acceleration 

being measurable the output of the accelerometer still has to be differentiated twice 

introducing significant noise into the system and also an additional phase lag if this is 

done numerically or a noise filter is used.

Since the animated figure is only fitted with a potentiometer-type 

displacement transducer it was decided to neglect the fast dynamics of the servo 

valve and only to use a third-order servo model. A linear second-order sliding surface 

can now be constmcted by means of the system displacement (or displacement error) 

and only the first two of its derivatives (velocity and acceleration or for path tracking 

velocity error and acceleration error):

a (x) = - q ( x - x d) -  c2x -  c3x (positioning) (7.1)

a  (x) = - q  (x -  xd)~  c2(x -  xd) -  c3(x -  xd) (path tracking) (7.2)

Obviously, neglecting the valve dynamics will only yield reduced-order switching 

with the neglected valve dynamics being treated as external disturbances by the 

reduced-order CSLMC system. As will be demonstrated and discussed in Chapter 8,
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the reduction of the order of the plant model and hence of the switching surface 

results in the fact that the bandwidth of the neglected valve dynamics limits the 

switching frequency of the control system.

7 .3  S u rfa ce  Dynamics

The sliding surface can be interpreted as a description of the desired response

of the closed-loop control system. It can therefore be seen as comparable to the 

reference model in model reference adaptive control (MRAC) (de Almeida (1993)). 

Hence, when tuning the chosen second-order sliding surface the following relations 

can be used relating natural frequency (On and damping ratio f  of the desired system 

response to the state gains of the sliding surface (Surgenor et al (1995)):

These again can be related to the following performance specifications in the time- 

domain:

where Tsett is the ± 2% settling time and Mp the precentage overshoot. The sliding 

surface will be designed to achieve a critically damped system response with the 

damping ratio f  set to unity. The settling time Tsett of the closed-loop system in the 

sliding mode has to be chosen under the requirement of guaranteed reachability 

within the system range space as will be shown in the following.

7 .4  R eachability  o f  S liding S u rfa ce  and  S liding Domain

To determine whether a chosen switching surface is reachable by the system, 

state Condition (6.15) derived in Section 6.4 has to be verified. For a dynamic system 

with changing system parameters (like a pneumatic servo mechanism) described by:

C l ~  » C 2 ~  » C3 ~~ 1 (7.3)

4
and M„ = 1 0 0 e ^ (7.4)

x  = (Aq + A A )x  + (Z?0 + AB)u  + d (7.5)

the reachability condition can be written as:

limc7C7= c s T(AQx + B0u + AAjc + ABu + d)<  0ST wA ' '
(7.6)
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where A A  and A B  are matrices containing the maximum parameter variations from 

their nominal values A q and Bq. The vector d  here represents external disturbances.

The following equivalent control signal is required to keep the system state of 

the nominal model of the pneumatic servo on the sliding surface defined by sT once it 

has been reached:

r \
0 /  \

X

C1 ”■ C3°l ■v*

c3b0
X

c2 ~ A

K. C3^0 J

(7.7)

Here the parameters a\, <z2 and bo describe the system’s open-loop dynamics as 

shown in Section 5.2. Using now the on/off-relay control law:

“ = «„** = -Onu sgn(cr) (7.8)

the sliding domain on the sliding surface can be determined by requiring that the 

absolute value of the switching control signal has to be greater or equal to the 

absolute value of the equivalent control signal ueq. Therefore, just considering the 

nominal system model the following inequality has to hold true:

I Ml =  M • k\ = u  >switch max x + ■ 3 2

c3bQ
(7.9)

Including the effects of parameter changes due to actuator piston position and 

direction of motion results in an additional control signal upar necessary to assure that 

the pneumatic servo system remains in sliding mode once the sliding surface has 

been reached:

Upar = - ( /(B 0 + 4B)) /A,)Y

0

b „ + A b 0
- 4 a ,~ ^ L ( c , - « , c 3)

C3°0
W

(7.10)

Therefore, the sliding domain is limited by the following condition: 

|m| | ^ h* cA | — |^max | —
*um „ + M m , — Mnom par (7.11)
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7.5 System  Range Space

As mentioned before, the reachability of the sliding surface (and the existence 

of the sliding domain) has in general to be guaranteed over the whole system’s range 

space. It is therefore important to determine the range space boundaries that is, 

considering the positioning switching function (Equation (7.1)), maximum and 

minimum displacement error, velocity and acceleration achievable by the pneumatic 

servo. When implementing the path tracking switching function (Equation (7.2)) 

limits also have to be determined on the demand velocity and acceleration.

The dynamic limits of the linear model can easily be obtained by evaluating 

the frequency response of the system’s open-loop linear transfer function G(s) 

(Equation (4.26)) and its derivatives sG(s) and s2G(s). These are shown Figure 7.1. 

The following velocity and acceleration limits were obtained using the linear 

pneumatic servo model and the dynamic parameters listed in Table 5.2. It was further 

assumed that the displacement is limited by the actuator stroke:

|x |£ 0.03m; |i |< 0 .7 5 m /s  and |x |< 9 5 m /s2 (7.12)

Please note, that the system jerk is also limited. The amplitude of the frequency 

response of the system jerk s3G(s) is 12696 m/s3. With increasing frequency the 

system jerk then converges towards 5225 m/s3 for a fully open control valve.

The above velocity and acceleration limits are only relevant for the linear 

model. The non-linear system is further limited by the maximum mass flow rate 

through the control valve (due to choked flow) and a maximum available pressure 

force acting on the actuator piston. The maximum mass flow rate limits the piston 

velocity while the maximum pressure force limits the piston acceleration. Using 

Newton’s law and the choked flow condition for exhausting the actuator chambers 

results in the following boundary values for the non-linear model:

|x|< 0.03m; -0 .2 5 m /s < jc< 0.356m /s  and
2 2 (7*13) - 6 7 m /s2 < * < 8 2 m /s2

From experimental data it was found that the smaller extreme velocity and 

acceleration values in Equation (7.13) fairly accurately represent the limits of the 

physical system.
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7.5.1 System Range Space Based on Physical Limits of Servo

It can be deduced from the reachability condition (Equation (7.9)) that in 

order to freely control the sign of & by switching between C/max and -C/max the 

following inequality has to hold true:

+ -  c3a2)x S c3fc0C/m„  (7.14)

This inequality defines a space within which reachability is guaranteed by the fact 

that the sign of <7 can be freely controlled by means of the switching control action. 

This space will therefore be called controllability space in the following. The area of 

the sliding surface contained within this controllability space represents the sliding 

domain. In general, it can be shown that even if the controllability space is smaller 

than the range space the reachability condition will still be satisfied if the sliding 

domain boundaries are outside the range space. This fact is illustrated in Figure 7.2 

for a sliding surface with a settling time of Tsett = 0.25 s. It shows the rectangular box 

which defines the range space for the non-linear limits given in Equation (7.13). The 

grey regions signify regions which are within the range space but outside the 

controllability space. The light grey regions in the comers of the range space are the 

regions in which the system state is still forced towards the sliding surface. Only in 

the dark grey region is the system state repelled by the sliding surface. On the right 

hand side of Figure 7.2 it can be seen that the sliding domain boundary lies within 

the range space. Therefore, the reachability condition is not satisfied since the system 

state is not forced towards the sliding surface from above and below. On the left 

hand side though, the reachability condition is satisfied from both sides despite the 

limited controllability region due to the fact that the sliding domain boundary lies 

outside the range space. Hence, in order to guarantee reachability over the whole 

system range space, it has to be proved that the boundaries of the sliding domain on 

the sliding surface are outside the range space limits. Alternatively, it should be made 

sure that no regions where the system state is repelled from sliding surface (dark grey 

regions) exist within the range space .

Figure 7.3 emphasises the importance of choosing the appropriate range 

space boundaries. As can be seen, choosing the boundaries based on the linear 

system model result in large areas where the reachability condition is not satisfied 

(dark grey areas) while choosing the smaller range space boundaries based on the
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physical limitations of the servo as depicted in Figure 7.2 results in a significant 

reduction of these areas. Yet it has to be mentioned that in the case of the chosen 

range space being smaller than the physical system’s range space the reachability 

condition might be violated by the real physical system.

Similar to the case of a second-order plant and a first-order surface as 

demonstrated in Section 6.7 the sliding domain decreases with a decrease in sliding 

surface settling time assuming a fixed maximum control signal C/max as can be seen 

in Figures 7.4 to 7.6.

Figure 7.7 shows the settling time of a linear second-order sliding surface as a 

function of the maximum fractional valve opening under the condition that the 

surface is globally reachable by the nominal linear servo model. It can be seen that 

with a supply pressure of Ps = 6.5 bar the fractional valve opening has to be at least

1.2 in order to guarantee reachability of the sliding surface over the whole system 

range space. In particular for a fractional valve opening of 1 (representing valve 

dimensions of the 1DOF pneumatic servo test-rig) the sliding surface is not globally 

reachable by the nominal model even for long settling times. In this case there are 

two ways of assuring global reachability:

• Increasing the valve size (fractional valve opening)

• Increasing the supply pressure Ps

Doubling the valve flow rate (fractional valve opening = 2) results in a 

sliding surface with a settling time of Tsett = 0.05 s being globally reachable. 

Increasing the supply pressure to Ps = 10 bar yields that a sliding surface with a 

settling time of Tsett = 0.143 s is globally reachable even for a fractional valve 

opening of 1 and less.

Considering the effects of system parameter changes (due to actuator piston 

position and direction of valve opening) by using the parameter update model 

introduced in Section 4.3.3 results in an increase of the achievable settling times of 

Tsett ~ 0 .02 s as can be also seen in Figure 7.7. Therefore, parametric uncertainties 

have an adverse influence on the reachability of a sliding surface and obviously 

require a larger control action for compensation.
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The above results have been obtained by verifying the reachability condition 

over the whole specified range space for a linear second-order sliding surface. As a 

result, the fastest globally reachable sliding surfaces are determined representing the 

fastest achievable closed-loop system response in sliding mode.

It should be noted, that the above results are only valid assuming that the 

control action is solely used to force the system state onto the sliding surface and

keep it there. In this case no control action is available to compensate for further

parameter changes or the influence of external disturbances.

7 .5 .2  R a n g e  S p a c e  B a s e d  on  R e p r e s e n t a t iv e  S t a t e  T r a je c t o r ie s

The fact that no linear second-order sliding surface is globally reachable by 

the dynamic state of the pneumatic servo mechanism with a given supply pressure of 

Ps = 6.5 bar and a fractional valve opening of 1 (nominal valve flow rate of 2 SCFM 

at 100 psi) would usually require the introduction of non-linear switching strategies 

or the alteration of the physical plant (larger valve size, larger supply pressure). An 

increase in supply pressure or the use of a larger valve size were outside the scope of 

this project though and non-linear switching strategies result in rather complex 

controllers which are more difficult to tune and rule out the possibility of an easy 

analogue implementation.

Nevertheless, although ideally reachability should be guaranteed over the 

whole range space, in general a real physical dynamic system operates in a fairly

limited region of its theoretical space of existence based on the physical limitations

as defined in this case by Equation (7.13). This limited space of existence depends on 

possible initial conditions, demand signals and also on external disturbances. It can 

for instance be assumed that for positioning control, initial velocity and acceleration 

of the actuator piston are zero or close to zero. Therefore, it is an appropriate 

assumption to define only these initial conditions and the open-loop state trajectories 

starting from these initial conditions as the system range space. It was found that 

based on the above initial conditions and the requirement that the reachability 

condition is not violated at any time along the state trajectory very fast sliding
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surfaces with a settling time of Tsett= 0.1 s are now reachable by the system state for 

a fractional valve opening of 1 as shown Figure 7.7.

Another factor that should be considered when designing the sliding surface 

is its orientation relative to the range space. The orientation of the sliding surface 

might result in the fact that although a decrease in sliding surface settling time 

reduces the closed-loop system response time in sliding mode significantly, the 

reaching phase before the establishment of sliding mode might increase leaving the 

system response sensitive to parameter changes and external disturbances for an 

extensive period of time. It can be seen in Figures 7.4 and 7.6 that a faster sliding 

surface (Tsett = 0.05 s) despite offering a smaller sliding domain also only covers a 

smaller displacement error region than a slower surface (Tsett = 0.09 s). Therefore, 

when choosing a slower surface for a positioning VSC controller the reaching phase 

will be shortened and the surface will be reached faster even though the displacement 

error is still significant. When choosing a faster surface on the other hand, most of 

the set point approach will be performed during the reaching phase and not in sliding 

mode. Therefore, it might not always be advisable to choose a fast sliding surface 

although reachability might be guaranteed. In this case sliding mode might only be 

established shortly before the set point has been reached.

In some cases a fast surface can be reachable all along a given state trajectory 

while a slower surface results in the reachability condition being violated. This is 

again due to the fact that changing the settling time of the sliding surface not only 

alters the sliding domain but also changes its orientation (compare Figures 7.6 and 

7.9). Since the open-loop response is fixed for a given initial condition and a given 

maximum valve opening, the open-loop trajectory might enter the region outside the 

controllability space where it is repelled by the sliding surface in case of a slow 

surface and not in case of a faster one. An example demonstrating this phenomenon 

is given in Figure 7.10 and 7.11 for the settling time of Tsett= 0.05 s and Tsett= 0.02 s, 

respectively.

It can be concluded from the above analysis that for the system under 

consideration a linear second-order sliding surface with a settling time of 

T sett — 0 .07 s (as shown in Figure 7.5) would represent a satisfactory compromise 

between fast closed-loop dynamics of the VSC system in sliding mode and the region
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within the range space in which it is reachable. The resulting state weights are the 

following:

Cj = 3265.3-y; c2 = 114.3- and c3 = 1 (7.15)
s s

Computer simulations showed that the time of the reaching phase is Treach = 0.065 s 

assuming an initial velocity and acceleration of zero and an initial displacement of 

xi=  30 mm (stroke of the actuator). A representative CSLMC response with the 

chosen surface is depicted in Figure 7.12. It should be noted that for the chosen 

initial conditions the reachability condition is violated once. Yet, the system response 

seems satisfactory.

It seems interesting and important to mention that the reachability method 

described above can generally be used to size physical system components or 

parameters like valve size or supply pressure in order to enable the control system to 

meet certain dynamic criteria. All that has to be done is to determine the equivalent 

control action for a given dynamic response and to confirm that this control action 

can be achieved by the system.

7 .5 .3  S u sta in ed  O sc illa tio n s  a s  a  V iolation  o f  R ea ch a bility  C o nd ition

Temporary violations of the reachability condition prior to sliding mode can 

deteriorate the CSLMC system response noticeably. However, the dynamically worst 

response occurs when the system falls into a mode of sustained oscillation. As 

mentioned already in Section 6.2 although this mode of oscillation can occur in the 

case of non-ideal switching (due to a limited switching frequency because of 

reduced-order switching, discretisation, time delays etc.) it can also occur if the 

sliding surface settling time is chosen too fast. Therefore, another way of determining 

the fastest reachable sliding surface is to use the extended Nyquist criterion as 

explained in Section 6.11.2 and determine if limit cycles exist. Reachable in this 

context means that the system does not fall into a mode of sustained oscillation. As 

will be demonstrated in Section 8.1.1 the extended Nyquist criterion reveals that no 

limit cycles occur when choosing a settling time of Tsett = 0.07 s. This confirms the 

results of the above analysis. Therefore, sliding mode can be established and the 

system is not falling into a mode of sustained oscillation although the reachability
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condition might be violated temporarily. According to the Nyquist criterion, the 

minimum settling time of a sliding surface not causing a limit cycle is Tsen = 0.018 s.

It has to be stressed again, that in the above analysis the valve spool dynamics 

were neglected. Therefore, what can be said at this point of the investigation is that 

limit cycles that might exist in the control system are not due to the choice of the 

dynamic parameters of the sliding surface but result from its order or other factors 

reducing the switching frequency.

7 .6  External  D istu rba n ces

Having chosen the sliding surface state weights the definition of the 

equivalent control action (Equation (7.7)) and the sliding domain (Equation (7.9)) 

can now be used to determine the systems robustness to additional parameter 

changes and the action of external disturbances. This can be done by estimating the 

difference between the maximum control action f/max and the equivalent control 

action ueq (including parameter changes due to piston position and direction of valve 

opening) required to establish sliding mode.

£
The difference in control signal voltage between ueq = unom + upar (black solid 

line in Figure 7.13) and the maximum voltage of C/max = 5 V (fully open control 

valve) can be used to compensate for additional parameter changes or external 

disturbances. It can be seen in Figure 7.13 that this voltage decreases with a decrease 

in sliding surface settling time. It should be noted that the sliding surface settling 

times presented in Figure 7.13 are based on the requirement that the sliding surface 

does not yield a limit cycle and not on global reachability of the chosen sliding 

surface.

Assuming that all the remaining voltage can be used to reject external 

disturbances yields the maximum external disturbance vector dmax allowed to act on 

the system without changing the reachability properties of the sliding surface defined 

by sT:
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\s d  =I max

d  1max

5 7 dmax

dV ^ m ax  y

< |/ [ ( 4 ,  + A A )x  + (B0 + A B )Una] (7.16)

Figure 7.14 shows as an example the maximum allowable disturbance 

acceleration as a function of the sliding surface settling time, assuming that no 

disturbance velocity and jerk are acting on the system.

7 .7  C l o s u r e

In this chapter the requirements on the closed-loop CSLMC dynamics and the 

reachability condition were used to choose an appropriate second-order sliding 

surface.

Although this approach gives a good insight into the functioning of sliding 

mode control it is rather limited. The result presented above can be seen as a first 

CSLMC design step. They show that global reachability cannot be assured with the 

chosen control valve and supply pressure.

Despite violations of the reachability condition no limit cycles (sustained 

oscillations) are induced by the choice of the dynamic parameters of the sliding 

surface, only its order as will be demonstrated in the next chapter.

Since the CSLMC system under investigation is of reduced-order, limit 

cycles are an inherent part of the closed-loop dynamics. Amplitude and frequency of 

these limit cycles will be analysed in the next chapter to conclude the CSLMC 

design.
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8  L im it C y c l e  A n a l y s is  o f  t h e  C S L M C  S y s t e m

In this chapter a limit cycle analysis of the CSLM control system for the 

pneumatic servo will be performed. This is of major importance for two reasons:

• Firstly, as shown in Chapter 7 global reachability cannot be achieved with the 

control system due to its physical limitations. However, it has to be ensured that 

for the ideal CSLMC system (fiill-order switching and no additional time delays) 

no limit cycles exist due to the choice of the dynamic parameters of the switching 

surface.

• Secondly, amplitude and frequency of the limit cycles resulting from the reduced- 

order of the CSLMC system and also from additional time lags have to be 

determined. By means of this analysis it can be decided how to synthesis the 

velocity and acceleration signals which cannot be measured. Furthermore, the 

question of whether an analogue, hybrid or digital implementation of the CSLM 

controller should be chosen can be answered.

In the following the influence of the following factors on the switching 

frequency will be investigated:

• sliding surface settling time

• neglected valve dynamics (reduced-order switching)

• second-order Butterworth filter of position feedback (e.g. LVDT)

• sampling of the system state (digital implementation)

• numerical differentiation of the displacement signal in order to synthesise velocity 

and acceleration

The limit cycle analysis is based on the extended Nyquist criterion as 

described in Section 6.11.2. To verify the results obtained by this method linear and 

non-linear simulation results of the closed-loop CSLMC system will be presented.
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8.1 A n a l o g u e  CSLMC S y s te m

8 .1 .1  P n eu m a tic  S er v o  S y stem  w it h o u t  Valv e  Dyn a m ics

To determine whether limit cycles due to the choice of the dynamic 

parameters of the sliding surface are induced into the CSLMC system, a closed-loop 

system consisting only of the linear model of a pneumatic servo mechanism and a 

relay element as depicted in Figure 8.1 is considered. The transfer function Gi(s) of 

the linear part of this closed-loop system can be written as:

The Bode plot of this transfer function with a chosen surface settling time of 

Tsett = 0 .07 s shown in Figure 8.2 reveals that the phase angle does not reach -180 

degree. Therefore the system exhibits no limit cycles. Hence, the switching frequency 

of the control system in sliding mode is infinite.

These results can be verified by using the linear and non-linear simulation 

model in Bath#? described in Chapters 4 and 5. In simulation the switching time 

interval in sliding mode reduces to the minimum integration time interval of the 

simulation programme. Comparing the response of the linear and the non-linear 

simulation model in Figure 8.3 shows that both responses are equal. Therefore as 

predicted by theory, CSLMC in sliding mode compensates for the system’s non- 

linearities (Tsypkin (1984)). Furthermore it should be appreciated that both responses 

are similar to the ideal response the control system is tuned for.

Reducing the sliding surface settling time and performing the same analysis 

described above it was found that a limit cycle occurs only when reducing the sliding 

surface settling down to Tsett = 0.013 s and less. Therefore, the ideal system will only 

fall into a mode of sustained oscillation if the sliding surface settling time is less or 

equal to Tsett = 0.013 s.

Interestingly, the good agreement between Nyquist and simulation results 

confirms the suitability of the use of the describing function approximation to 

represent the dynamics of the relay element as presented in Section 6.11.1.

(8.1)

171



8.1.2 Pneumatic Servo System with Valve Dynamics

To determine the influence of the neglected valve dynamics on the closed- 

loop response of the CSLMC system a second-order model representing the valve 

spool dynamics is included in the plant model as shown in Figure 8.4. The resulting 

transfer function of the linear part of the control system is:

with C0 v being the natural frequency of the valve spool and fv being its damping ratio. 

The Bode plot of the above transfer function is depicted in Figure 8.5. The results 

indicate the existence of a limit cycle with a frequency of fumit = 203.4 Hz and an 

amplitude of = 3.84 m/s2 as listed in Table 8.1. As expected, the bandwidth of 

the servo valve of 200 Hz limits the switching frequency of the CSLMC system.

Including the valve dynamics into the Bath/p simulation circuit yields the 

simulated step response results presented in Figure 8.6. The responses of the linear 

and the non-linear model now lag behind the ideal response while the non-linear 

response also exhibits a steady-state error of eSm = 0.46 mm.

As can be seen in Figure 8.7 the limit cycle predicted by simulation of the 

response of the linear model has a frequency of fumit = 204.1 Hz and an amplitude of 

Aumit = 3.73 m/s2 which compares well with the theoretical results. Using the full 

non-linear model in simulation results in a limit cycle with a frequency of 

fumit = 204.9 Hz and an asymmetric amplitude of Aumit = +3.43 m/s2 and -2.80 m/s2. 

The reason for this asymmetry is the difference in switching gain for different 

switching directions as is the case for the non-linear model where the transfer 

function numerator bo is dependent on the direction of valve opening (see Section 

5.2). According to Lantto (1994) this asymmetry in the switching results in the 

observed steady-state errors. The maximum possible steady-state error e can be 

approximated to be:

(8.2)

max(e) =
max((J) -  min(cr)

(8.3)
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Using Equation (8.3) a theoretical maximum steady-state error due to asymmetric 

switching of etheo = 0.47 mm can occur which compares well with the observed error 

of eSim = 0.46 mm.

One interesting conclusion from Equation (8.3) is that the steady-state error 

due to asymmetric switching can be reduced by increasing the switching frequency in 

sliding mode.

8 .1 .3  P n eu m a tic  S e r v o  S y stem  w ith  Va lve  Dy na m ics  and  S e c o n d -O r d e r  

B u t t e r w o r t h  F ilter

8.1.3.1 Butterworth filter acting on the full system state

One possibility of measuring the system displacement is to use a LVDT 

position sensor. In this device a second-order Butterworth filter in the demodulation 

stage with a bandwidth of 500 Hz is used to filter out noise partly due to the exciting 

carrier frequency of the LVDT. Assuming that the position is measured using the 

LVDT and velocity and acceleration signals are derived from this LVDT signal 

without introducing any further time delays, the second-order Butterworth filter 

influences the whole system state. The resulting control system is depicted in Figure 

8.8. The transfer function of the linear part of the closed-loop control system is:

v - n - r 1 iT <8-4>( j  + 2 £ vQ)vS +  CQv )  5(5 +<Z2J  +  fl1) (y  + 2 £ f G)f S + G ) f )

Using the Nyquist criterion (see Figure 8.9), the system exhibits a limit cycle with a 

frequency offiMt = 148.6 Hz with an amplitude of A/z-raf = 6.55 m/s2 listed Table 8.2. 

Hence, the Butterworth filter in the demodulation stage of the LVDT reduces the 

CSLMC switching frequency significantly due to the fact that it introduces an 

additional phase shift into the system state used to synthesis the switching function.

Figure 8.10 shows the simulated step response of the linear and the non-linear 

model. As in the previous case the responses of the linear and the non-linear model 

lag behind the ideal response and the non-linear model exhibits an additional steady- 

state error. As can be seen in Figure 8.11 the limit cycle predicted by simulation of 

the response of the linear model has a frequency offiumt = 143.7 Hz and an amplitude
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of A limit = 6.57 m/s . This compares well again with the theoretical results listed in 

Table 8.2. Using the full non-linear model in simulation results in a limit cycle with a 

frequency of fumit = 142.5 Hz and an asymmetric amplitude of Aumt = +6.37 m/s2 and 

-4.57 m/s2. The steady-state error in this case is esim =1.3  mm which agrees with a 

maximum steady-state error of etheo = 2.01 mm predicted by Equation (8.3).

Therefore, the additional Butterworth filter reduces the switching frequency 

and increases the steady-state error considerably.

8.1.3.2 Butterworth filter acting only on position and velocity

Assuming now that the Butterworth filter only acts on the position and 

velocity signal and not on the acceleration as shown in Figure 8.12 results in the 

following closed-loop transfer function:

g4M  =

h  •__________°h (8.5)

( j2 + 2 f vt»„s + ®v)J s(s2 + a2s + a,) (s2 + 2£f (Of s + m) )

This transfer function corresponds to the case where position is measured by means 

of a LVDT and differentiated to obtain the velocity. Acceleration is measured using a 

separate accelerometer.

From the Bode plot depicted in Figure 8.13 it can be seen that the switching 

frequency now is 202.7 Hz and the amplitude is 3.73 m/s2. These results are similar 

to ones obtained without the Butterworth filter which is confirmed by simulation as 

shown in Figures 8.14 and 8.15. All results can be found in Table 8.3.

8 .1 .4  C o n c l u s io n s  fr o m  t h e  Limit C y c l e  A n a ly sis  o f  t h e  A n a l o g u e  

CSLMC S y ste m

The conclusions that can be drawn from the results listed in Tables 8.1 to 8.3 

is that only a phase shift in the highest system state (here acceleration) reduces the 

switching frequency of the CSLMC system in sliding mode. In other words, the 

bandwidth of the innermost (acceleration) feedback loop spanning the relay element 

limits the bandwidth of the CSLMC system and hence the switching frequency of the

174



system in sliding mode. This corresponds to the results found by Tsypkin (1984) 

using relay theory.

As a result, for an analogue implementation of a sliding mode controller for 

the pneumatic servo system under investigation the following two system set-ups are 

advisable:

• Displacement is measured using a potentiometer, velocity and acceleration are 

obtained by differentiating the displacement signal without introducing an 

additional phase lag. This can for instance be done by means of an analogue 

differentiation filter.

• Displacement is measured using a LVDT. Velocity is obtained by differentiating 

the displacement signal. Acceleration is measured separately.

If the above guidelines are adhered to only the bandwidth of the servo valve 

limits the switching frequency of the analogue CSLMC system.

Another interesting finding is that the bandwidth of the innermost feedback 

loop (acceleration) limits the switching frequency. Therefore, applying the extended 

Nyquist criterion just to the innermost feedback loop results in the same limit cycle 

prediction as applying it to the whole system. This fact can be utilised when looking 

at discrete or hybrid implementations of sliding mode controllers. Especially for 

hybrid systems it can be very difficult to synthesise a system model when part of the 

feedback loops are closed using analogue filters and others are closed numerically. 

Modelling just the inner feedback loop whether it is digital or analogue is 

comparably easy and will yield the same results.

8.2  Digital CSLMC S ystem

8 .2 .1  M e a su r in g  a nd  S a m plin g  t h e  S y ste m  S t a t e

To obtain first of all a discrete system model of the pneumatic servo 

mechanism assuming that position, velocity and acceleration are measured the zero- 

order-hold (ZOH) approach can be used. The resulting discrete transfer function can 

be obtained by adding a ZOH element to its continuous counterpart. This can be
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easily done using the MATLAB simulation software. The description of the c2dm.m 

routine in MathWorks, Inc. (1992) and Section 6.14 give further explanation. The 

circuit diagram of the discrete system without valve dynamics and Butterworth filter 

can be seen in Figure 8.16. The transfer functions of the systems with valve 

dynamics and the Butterworth filter can be obtained in a similar manner.

Figures 8.17 to 8.19 demonstrate the influence of the ZOH element with a 

sampling frequency of f samp = 1 kHz on the switching frequency of the following 

three CSLMC systems:

• ideal system without valve dynamics

• system with valve dynamics and

• system with valve dynamics and Butterworth filter acting on all system states

As mentioned in Chapter 3 the sampling frequency of 1 kHz is the maximum 

achievable by the control PC and the software used. The resulting switching 

frequencies and amplitudes obtained using the extended Nyquist criterion are listed 

in Table 8.4. As can be seen from these results the ZOH element reduces the 

switching frequency significantly while the switching amplitude decreases only 

slightly at higher frequencies. In Figure 8.17 the maximum switching frequency 

achievable with the discrete CSLMC system without valve dynamics and 

Butterworth filter is half the sampling frequency. In this case the controller switches 

at every sampling instance.

Simulating the step responses of the discrete CSLMC systems using the 

linear and non-linear models with and without valve dynamics yields the limit cycles 

listed in Tables 8.5 and 8.6. Again Nyquist and simulation results are in good 

agreement. The step response results can be found in Figures 8.20 to 8.23. It can be 

observed that the response of the linear model now also exhibits a steady-state error 

while the response of the non-linear model shows an additional low-frequency 

oscillation. The results in Figures 8.21 and 8.23 show clearly an additional low- 

amplitude oscillation at the sampling frequency being superposed to the switching 

function due to the influence of the discrete-time sampling and updating of the 

control signal.
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The steady-state error in the linear model is due to the fact that the state 

trajectories for discrete-time switching are asymmetrical around the switching 

surface even though the switching gain is independent of the switching direction (see 

Gamble (1992)). Interestingly, the introduction of the valve dynamics reduces the 

steady-state error as can be seen in Figure 8.22. These valve dynamics act like a low- 

pass filter and therefore reduce the high-frequency switching asymmetry as can be 

seen when comparing the switching amplitudes in Tables 8.5 and 8.6.

An explanation of the origin of the observed low-frequency oscillation in the 

non-linear model response can be found in Baida (1993). The reason for this 

oscillation is again the direction dependent denominator bo of the transfer function of 

the plant model in combination with the switching being only possible at discrete 

instants. Lantto (1994) reported similar results when simulating the dynamic 

response of a discrete second-order CSLMC system with direction dependent 

switching gains.

As expected, an increase in sampling frequency improves the dynamic 

response of both the linear and the non-linear model significantly as can be seen in 

Figures 8.24 and 8.25. The resulting limit cycle frequencies and amplitudes obtained 

using simulation of the linear and non-linear model response can be found in 

Tables 8.7 and 8.8, respectively. For very high sampling frequencies of for example 

10 kHz the response of the discrete CSLMC system approaches the response of the 

continuous system as can seen by a comparison between Figure 8.24 and Figure 8.3 

and between Figure 8.25 and Figure 8.6.

8 .2 .2  S a m plin g  D ispl a c e m e n t  a n d  D iffer en tia tin g  N u m erica lly

As mentioned in Section 6.14 when differentiating the system output 

numerically using the backwards differencing scheme described by Equations (6.53) 

and (6.54) an additional phase lag is introduced into the system states and hence the 

closed-loop dynamics of the CSLMC system. In order to model this phase lag due to 

numerical differentiation the following discrete switching function has to be 

considered:
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\  samp

r

samp
+ c, x(k )~  j r ~  +

J  \  samp Trsamp J samp

■ 4 - + -T  7\  samp
(8.6)

= D(z)x(k)

In order to obtain the closed-loop transfer function G(z) of the discrete CSLMC 

system as depicted in Figure 8.26, the open-loop transfer function F(s) of the plant 

has to be transformed from the continuous Laplace-domain into the discrete z- 

domain. The ZOH approach as explained in Section 6.14 is chosen. The discrete 

transfer function of the servo without valve dynamics is of the form:

7?/_\ _  Xik ) _  «lZ'' + a2 ^  +

The parameters <2,- and bi are determined using the c2dm routine in MATLAB 

(MathWorks (1992)). Similarly, the discrete transfer function of the plant with valve 

dynamics can be obtained.

The Bode plot of the resulting closed-loop transfer function

for the system without and with valve dynamics and a sampling frequency of 

fsamp = 1 kHz can be seen in Figures 8.27 and 8.28. Clearly, the introduction of the 

numerical differentiation routines reduces the switching frequency more significantly 

than the sampling of the system state.

The limit cycles of the CSLMC system without and with valve dynamics are 

listed in Tables 8.9 and 8.10. As in the previous examples the results obtained with 

the extended Nyquist criterion agree well with the simulation results. Increasing the 

sampling frequency f samp increases the switching frequency but even for a sampling 

frequency of f samp = 1 0  kHz the switching frequency stays considerably below the 

Nyquist frequency of f samp/2 for the system without valve dynamics and also below 

the valve’s natural frequency f v for the system with valve dynamics.

The simulation step response and switching function results for a sampling 

frequency of f samp = 1 kHz can be found in Figures 8.29 to 8.32. It can be seen, that

G (z) =  D { z )F (z) =  ^ §  
u(k)

(8.8)
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the response of the linear model without valve dynamics exhibits a larger steady-state 

error than the comparable response of the system with measured system states 

depicted in Figure 8.20.

The additional valve dynamics result in a visible chattering in the 

displacement signal at a frequency of about 80 Hz. The response of non-linear model 

shows again the low-frequency oscillation which has already been observed in the 

discrete system with sampled system states. The oscillation frequency now is lower 

while the amplitude is higher than in the discrete case with measured system states.

8.2.3 Conclusions from the Limit Cycle Analysis of the Digital CSLMC 
System

From the above limit cycle analysis it can be concluded that a digital 

implementation of the CSLM controller with a sampling frequency of f samp = 1 kHz 

results in a switching frequency below the bandwith of the control valve (chattering). 

In particular the low-frequency oscillation in the response of the non-linear model is 

highly undesirable.

Numerical differentiation has the strongest influence on the switching 

frequency of all the investigated factors. Differentiating the displacement signal to 

obtain velocity and acceleration reduces the frequency of this chattering further and 

increases its amplitude. The resulting system response is unacceptable. Numerical 

differentiation should therefore be avoided.

When increasing the sampling frequency to f samp = 10 kHz the system 

response is satisfactory even when differentiating the displacement signal twice to 

obtain acceleration. Since this sampling frequency is not achievable though with the 

available hard- and software a digital implementation of the CSLM controller for the 

pneumatic servo under consideration cannot be recommended.
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T ables

Table 8.1 - Limit cycle of continuous CSLMC system with valve dynamics
frequency [Hz] amplitude & [m/s2]

Nyquist criterion 203.4 3.84
Simulation of linear model 204.1 3.73
Simulation of non-linear model 204.9 +3.43/-2.80

Table 8.2 - Limit cycle of continuous CSLMC system with valve dynamics and 
Butterworth filter acting on displacement, velocity and acceleration

frequency [Hz] amplitude & [m/s2]
Nyquist criterion 148.6 6.55
Simulation of linear model 143.7 6.57
Simulation of non-linear model 142.5 +6.37/-4.57

Table 8.3 - Limit cycle of cont 
Butterworth filter ac

inuous CSLMC system with valve dynamics and 
ting on displacement and velocity

frequency [Hz] amplitude & [m/s2]
Nyquist criterion 202.7 3.73
Simulation of linear model 202.0 3.68
Simulation of non-linear model 200.5 +3.37/-2.69

Table 8.4 - Limit cycle of discrete CSLMC system obtained using Nyquist criterion
_____________________ (fsamv = 1 kHz)________________________________________________

frequency [Hz] amplitude & [m/s2]
Servo 500.0 3.41
Servo+valve 145.1 6.35
Servo+valve+filter (all states) 115.2 8.22

Table 8.5-  Limit cycle of discrete CSLMC system without valve dynamics
______________________(fsamv = 1 kHz)________________________________________________

frequency [Hz] amplitude a  [m/s2]
Simulation of linear model 500.0 +1.91/-3.29
Simulation of non-linear model 492.6 not constant

Table 8.6-  Limit cycle of discrete CSLMC system with valve dynamics
_____________________ (fsamv = 1 kHz)________________________________________________

frequency [Hz] amplitude a  [m/s2]
Simulation of linear model 148.3 +4.88/-5.35
Simulation of non-linear model 140.9 not constant
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Table 8.7 - Limit cycle of discrete CSLMC system obtained using simulation of 
linear model

sampling frequency 
[kHz]

frequency
[Hz]

amplitude <7
[m/s2]

Servo 1 500.0 +1.91/-3.29
Servo+valve 148.3 +4.88/-5.35
Servo 2 1000.0 +0.99/-1.58
Servo+valve 168.2 +4.84/-5.51
Servo 10 5000.0 +0.22 / -0.28
Servo+valve 194.2 +4.01 /-4.08

Table 8.8 - Limit cycle of discrete CSLMC system obtained using simulation of 
non-linear model

sampling frequency 
[kHz]

frequency 
[Hz] '

amplitude &
[m/s2]

Servo 1 500.0 not constant
Servo+valve 140.9 not constant
Servo 2 1000.0 not constant
Servo+valve 178.2 not constant
Servo 10 5000.0 not constant
Servo+valve 194.5 not constant

Table 8.9 - Limit cycle of discrete CSLMC system with differentiated velocity and 
___________ acceleration (valve dynamics not included)

sampling frequency 
[kHz]

frequency 
[Hz] '

amplitude &
[m/s2]

Nyquist 1 167.0 5.7
linear model 164.8 +5.5 / -7.2
non-linear model 144.3 not constant
Nyquist 2 334.0 2.8
linear model 330.0 +2 .7 /-3 .4
non-linear model 330.3 not constant
Nyquist 10 1667.7 0.5
linear model 1664.7 +0.6 /-0 .7
non-linear model 1408.5 not constant
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Table 8 .10- Limit cycle of digital CSLMC system with valve dynamics and 
___________ differentiated velocity and acceleration

sampling frequency 
[kHz]

frequency
[Hz]

amplitude <7
[m/s2]

Nyquist 1 93.3 11.7
linear model 86.2 +13.3/-14.4
non-linear model 92.5 not constant
Nyquist 2 126.4 7.9
linear model 117.7 +7.6/-8.7
non-linear model 128.0 not constant
Nyquist 10 177.8 4.7
linear model 175.4 +4.9/-5.0
non-linear model 175.8 not constant
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Figure 8.4 - Circuit diagram of closed-loop CSLMC system with valve dynamics
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Figure 8.8 - Circuit diagram of closed-loop CSLMC system with valve dynamics 
and a second-order Butterworth filter
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Figure 8.12 - Circuit diagram of closed-loop CSLMC system with valve dynamics 
and a second-order Butterworth filter acting on displacement and 
velocity
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Figure 8 .16 - Circuit diagram of discrete CSLMC system
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Figure 8.23 - Switching function of discrete CSLMC system with valve dynamics
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9  IMPLEMENTATION OF THE C S L M  CONTROLLER ON THE

P n eu m a tic  S e r v o  M e c h a n ism

In this chapter, the issues concerned with the implementation of the CSLM 

control algorithm designed in Chapters 7 and 8 will be discussed. For experimental 

testing the controller will be implemented on the single-axis test rig and on two axes 

of the pneumatically actuated figure.

Prior to the actual implementation of the CSLM controller though the effects 

of a limited sensitivity of the A/D-card will be investigated in this chapter. The 

results of this investigation are important in terms of further evaluating the feasibility 

of a digital CSLMC implementation. As the results of Chapters 7 and 8 indicate, a 

digital implementation of the control algorithm is not expected to yield a satisfactory 

dynamic behaviour of the control system. Nevertheless, it has been assumed in the 

theoretical analysis so far that chattering which occurs when implementing the 

CSLM controller digitally can be detected by the control system. Yet, when the 

CSLMC algorithm is implemented on the physical plant the sensitivity of the A/D- 

card determining the maximum switching frequency being detectable by the control 

system has to be considered. Therefore, at the beginning of this chapter the limit 

cycle results obtained in the previous chapters are reviewed taking into account the 

sensitivity of the A/D-card of the experimental rig.

Considering the problems with the digital implementation of CSLMC a novel 

analogue CSLM control card will then be presented which offers adjustable state 

gains, an adjustable boundary layer and the possibility to generate velocity and 

acceleration signals by means of analogue differentiation filters. This novel control 

card represents a new, effective, cheap and simple way of closed-loop control for 

systems of third-order being subject to significant external disturbances and system 

parameter changes.

To demonstrate the capabilities of the new control card its performance will 

be benchmarked against the performance of digital and hybrid CSLMC systems and 

also classical state-feedback control.
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In order to test the robustness of the CSLMC system to parameter changes the 

mass to be moved is varied while the disturbance rejection capabilities are tested by 

means of the 2DOF implementation where the dynamic reaction torques and forces 

are treated as external disturbances by the single-axis controller and have to be 

compensated.

9.1 Maximum Detecta ble  S w itching  F req u en cy

In Chapter 8 the maximum achievable switching frequencies of the digital 

and analogue implementation of the CSLM control system have been determined. 

The interesting question in this context is now how high the switching frequency has 

to be in order to avoid chattering. To determine this minimum switching frequency 

required the sensitivity of the A/D-card which is providing the information on which 

the calculation of the switching function is based must be examined. Theoretically, if 

the switching of the system cannot be detected by the microprocessor due to the 

limited sensitivity of the A/D-card no chattering will occur. A similar method has 

been used by Gamble (1992) and has also been successfully applied by Lantto (1994) 

to design a sliding mode control system.

For the chattering in the actuator piston displacement to remain undetected by 

the microprocessor, the amplitude of the oscillation being converted by the A/D-card 

must be less than half the value of the Least Significant Bit (LSB). The A/D- 

converter card used in this investigation is a DT2812A card by Data Translation® 

working on a 12-bit basis (see Section 3.3). For an actuator stroke of 30 mm this 

corresponds to a minimum piston displacement oscillation amplitude detectable by 

the microprocessor of:

1 30mm , __3 /r.
x LSB= — x — -2— = 3.662x10 mm (9.1)

2 2

Using the Bode plot of the frequency response of the servo system the 

maximum detectable switching frequency can now be obtained. It has to be 

mentioned though, that, as shown in Chapter 5, the servo dynamics change with 

actuator piston position and direction of motion. Hence, in order to guarantee
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chatterfree operation of the system for all piston positions and directions of motion 

the maximum of this maximum detectable switching frequency has to be determined.

Figure 9.1 and Table 9.1 show the maximum detectable switching frequency 

at the piston mid position and two positions near the extreme ends of the piston 

stroke for both directions of motion. The servo valve dynamics are neglected in this 

case. Depending on the actuator piston position and its direction of motion the 

detectable switching frequency lies between fswitch = 163 Hz and fswitch = 233 Hz. The 

results imply that the system is most likely to exhibit chattering when the actuator 

piston is near the fully retracted position and moving outwards. This agrees with the 

results presented in Chapter 5, where it was shown that the above conditions exhibit 

the lowest system stability margin. It follows that in order to avoid chattering over 

the whole actuator stroke and for both directions of motion it should be insured that 

the switching frequency is higher than /switch = 233 Hz.

As can be seen in Figure 9.2 and Table 9.2 including the dynamic response of 

the valve spool into the analysis reduces the maximum detectable switching 

frequency to between /switch = 155 Hz and fswitch = 204 Hz.

So far it has been assumed that just displacement is measured and acquired 

by the A/D-card. If an additional accelerometer is used, the maximum resolution of 

the acceleration signal has to be checked as well. The minimum acceleration 

amplitude detectable by the A/D-converter is:

1 322.57 m / s 2 riMrkA , 2= — x  ------- = 0-0394 m / s (9.2)
2 2

Even for very high switching frequencies of up to /switch = 950 Hz the acceleration 

amplitude exceeds Aacc = 0.04 m/s2 as can be seen in Figure 9.3. As a result, 

switching in the acceleration signal is always detectable by the A/D-converter and 

hence will be affecting the switching function <7 (jc) .

The conclusion that can be drawn from comparing the maximum detectable 

switching frequency with the CSLMC limit cycle switching frequencies determined 

in Chapter 8 is that for a digital implementation with a sampling frequency of 

fsamp = 1 kHz chattering will always be detectable by the A/D-converter. Therefore,
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only an analogue CSLMC card can achieve the required system performance. The 

design of this card will be described in the following section.

9.2 Analogue CSLMC Caro

The analogue CSLMC card to be developed for the animated figure has to 

provide the following functions:

• Double differentiation of the measured displacement signal

• Synthesis of the switching function

• Provision of a boundary layer to reduce chattering

• Variable control voltage

9 .2 .1  D e sig n  o f  t h e  A n a l o g u e  Do u b l e  D iffer en tia tio n  F ilter

A circuit diagram of the analogue differentiation filter can be seen in 

Figure 9.4. The differentiator circuit is based on the operational amplifier CA3140 

offering a very low bias current of 3.3 p,V. A resistor Rp is also included to balance 

any offset due to the bias current flowing in R. In order to avoid differentiator 

instability which occurs when the differentiator frequency response reaches the open- 

loop response Ad of the operational amplifier as shown in Figure 9.5 the 

differentiator amplitude response is attenuated at high frequencies (Clayton (1979), 

Maddock and Calcutt (1994)). The amplitude attenuation also significantly reduces 

high-frequency noise contained in the differentiated signals. The resulting 

differentiator transfer function is as follows:

  i0£ R (93)
V,„ (l + io)C/ i?)(l + ia>CRs)

In this case the two break frequencies are chosen equal. Hence:

/o  = — -—  = — -—  (9.4)
0 2 jcCRs 2 nC sR

Derived from the transfer function the differentiator amplitude gain can be calculated 

to be:
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-  Vou, = R C -£  (9.5)

At frequencies below fo the basic differentiation function is still provided by the 

numerator. At high frequencies, the 20 dB roll-off indicates integration preventing 

excessive noise amplification.

Double differentiation of the measured displacement signal is realised by 

means of a series connection of two single differentiation circuits.

9 .2 .2  D e sig n  o f  t h e  A n a lo g u e  C o n t r o l  C a rd

The circuit diagram of the analogue CSLMC card can be found in Figure 9.6. 

Since only displacement can be measured on the animated figure two differentiation 

filters as described in Section 9.2.1 are connected in series in order to obtain velocity 

and acceleration signals. Both signals can also be picked up for display and 

measurement purposes and also to allow for a hybrid use of the control card. In this 

case for instance the filtering can be done by means of the analogue differentiation 

filters on the card while the generation of the sliding surface and the switching of the 

controller output can be realised by means of a control PC.

A second-order linear sliding surface is synthesised by means of state 

weights. These state weights can be adjusted by means of two potentiometers (PI 

and P2). It should be noted that the additional gains introduced by the analogue 

differentiation filters (Equation (9.5)) have to be taken into account when setting the 

gains defining the switching surface.

A saturated operational amplifier realises the relay-like switching control 

action. An additional potentiometer (P4) allows for the adjustment of the switching 

voltage C/max.

The width of a boundary layer neighbouring the switching surface as 

described in Section 6.12 can be controlled by means of the potentiometer P3 in 

order to suppress chattering of the closed-loop system.
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In order to test the disturbance rejection capabilities of the analogue CSLMC 

card two separate CSLM controllers as described above have been implemented on 

the card.

9,3  E x p e r im e n ta l  T e s t in g  o f  T h e  CSLM C S y s te m

In order to validate the theoretical results derived in Chapters 7 and 8 and to 

proof that the new analogue CSLM controller is the best solution to the control 

problem under consideration experimental test have been performed. In the following 

the new control card will be benchmarked against the performance of the following 

control systems:

• Digital CSLMC system with measured position and numerically differentiated 

velocity and acceleration

• Digital CSLMC system with measured position and acceleration and numerically 

differentiated velocity

• Hybrid CSLMC system with digitally implemented control algorithm, measured 

position and velocity and acceleration being obtained by means of analogue 

differentiation filters

• Digital state-feedback system with measured position and numerically 

differentiated velocity and acceleration

9 .3 .1  S et  u p  o f  E x per im en ta l  C o n t r o l  S y s t e m s

The set up of the single-axis experimental control systems can be seen in 

Figures 9.7 to 9.9. The control computer used for the realisation of the digital 

controller, the numerical differentiation of the measured displacement signal and for 

data acquisition is a PC with a 166 MHz Pentium processor as described in 

Section 3.3.

In order to test the analogue controllers disturbance rejection capabilities both 

channels on the control card are set up as single-axis controllers for the 2 members of 

the arm of the animated figure depicted in Figure 3.1.
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9.3.2 S t e p  R e s p o n s e  o f  Digital CSLMC S ystem

The digital CSLMC system with numerically differentiated velocity and 

acceleration as depicted in Figure 9.7 is investigated first. Figure 9.11 shows the step 

response of this control system with the sampling times of Tsamp = 1 ms and 2 ms and 

no boundary layer surrounding the switching surface. As suggested by the theoretical 

design the settling time of the ideally damped switching surface is chosen to be 

T sett ~ 0 .07 s. As already suspected from the simulation study in Chapter 8 the 

responses are far from being satisfactory. Both responses are extremely chattery. A 

steady-state condition is not being reached by either of the systems, rather a 

chattering around a position a significant distance away from the demanded set point. 

Decreasing the sampling time from Tsamp = 2 ms to 1 ms reduces the distance but by 

no means improves the general result of the step response. Both sampling times yield 

an intolerable phase lag in the numerically differentiated acceleration signal.

Even introducing a fixed width boundary layer with (p = 5000 m/s2 to reduce 

chattering as explained in Section 6.12 does not improve the system response as can 

be seen in Figure 9.12. The low-pass filter properties of the boundary layer do not 

reduce chattering but rather reduce the system response time in a similar manner as 

the low-pass valve dynamics. Varying the width q> of the boundary layer between 

1000 m/s2 and 20000 m/s2 yields no improvement.

Introducing an additional accelerometer to the control system as shown in 

Figure 9.8 yields the step response depicted in Figure 9.13. Again no boundary layer 

is applied and the sampling times are chosen to be Tsamp = 1 ms and Tsamp = 2 ms. 

Still the system response is not satisfactory although it has improved significantly. 

Chattering is envisaged and expected since the switching frequency can be detected 

by the A/D-card as predicted by the limit cycle analysis. Furthermore, large steady- 

state errors occur.

It can be seen that with a sampling time of Tsamp = 2 ms not only high- 

frequency chattering but also low-frequency oscillations occur, which have been 

predicted by simulation. As explained in Section 8.2 this phenomenon results from 

an unsymmetric switching around the switching surface due to direction dependent 

switching gains in combination with discrete time switching. A decrease in sampling
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time to TSamp = 1 ms eliminates the low-frequency oscillation without affecting the 

high-frequency chattering or the steady-state error.

Introducing now a fixed width boundary layer of <p = 5000 m/s2 results in an 

almost ideal step response of the digital CSLMC system as can be seen in 

Figure 9.14. The closed-loop response follows the dynamics of the sliding surface 

without overshoot or significant steady-state errors. The remaining slight chattering 

in the control signal in this case is partly due to noise in the measured displacement 

and the differentiated velocity signal. The influence of this noise disturbance can be 

reduced by introducing a digital (second-order) Butterworth filter. As shown in 

Section 9.1.3.2 filtering these signals does not result in a reduction in switching 

frequency and therefore does not increase the chattering amplitude.

As a conclusion from the above results it can be said that using an 

accelerometer to obtain the highest system state yields a satisfying system response 

even with a relatively low sampling frequency of 1 kHz if an appropriate boundary 

layer is chosen whereas numerical differentiation is not applicable.

Yet, as the use of an accelerometer is out of question for the control problem 

under consideration another means of obtaining the required acceleration signal is 

necessary.

9.3.3 S t e p  R e s p o n s e  o f  H y b r id  CSLMC S y s te m

A schematic of the hybrid CSLMC system can be seen in Figure 9.9. Velocity 

and acceleration are obtained by means of analogue differentiation filters while the 

CSLMC algorithm is realised by means of the control PC.

The step response of the hybrid CSLMC system for sampling frequencies of 

Tsamp = 1 ms and Tsamp = 2 ms and no boundary layer is depicted in Figure 9.15. In 

both cases the response is very chattery. Increasing the sampling frequency does not 

yield visible improvements.

A

Introducing now a boundary layer of (p = 5000 m/s improves the step 

response significantly as shown in Figure 9.16. A small steady-state error occurs at
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the mid position set point while almost no steady-state error occurs at the near end 

position set point. Although the response has improved significantly it is still not 

ideal but rather jerky when compared to the response of the digital CSLMC system 

with an accelerometer depicted in Figure 9.14. The reason for the difference between 

both responses is mainly the noise of the measured displacement signal being 

amplified by the analogue differentiation filter. Using an additional low-pass noise 

filter on the differentiated acceleration filter would decrease the switching frequency 

though and is therefore not advisable.

9.3.4 S t e p  R e s p o n s e  o f  A n a lo g u e  CSLMC S y s te m

In Figure 9.17 the step response results of the digital CSLMC system with 

accelerometer, the hybrid CSLMC system with the analogue differentiation filters 

and the analogue CSLMC system with the analogue CSLMC card are compared. It 

should be noted that with the digital and the hybrid CSLMC system a boundary layer 

of (p = 5000 m/s2 is used. The exact width of the boundary layer used with the 

analogue card is difficult to determine since it depends on the setting of 

potentiometer P3 described in Section 9.2.2. In this case the ideal boundary layer can 

be identified by simply adjusting potentiometer P3 (described in Section 9.2.2) until 

a satisfactory step response is achieved.

The responses of the digital and the analogue system are virtually identical. 

Both responses exhibit precisely the closed-loop dynamics the system is designed 

for. The main difference between the two responses is a slight increase in the steady- 

state error from about 0.02 mm for the digital system to 0.3 mm for the analogue 

system.

Comparing the response of the analogue system to the response of the hybrid 

system reveals that omitting the control PC as the main switching frequency limiting 

factor yields excellent results. The jerky response of the hybrid system resulting from 

noise being amplified by the analogue differentiation filters is smoothed out by 

introducing the analogue CSLMC card and the resulting increase in switching 

frequency.
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It can be concluded that the digital CSLMC system with the additional 

accelerometer and the analogue CSLMC system both yield the desired dynamic 

response of the single-axis pneumatic servo under nominal conditions.

Yet, in comparison to the digital CSLMC system the analogue CSLMC 

system offers the advantage of a significant reduction in hardware cost due to the fact 

that neither accelerometer nor a control PC are required. Furthermore, the digital 

CSLMC system does not lend itself to being applied to an nDOF application since 

the accelerometer measures the absolute acceleration. For control purposes only the 

acceleration of the actuator piston relative to the actuator is required though.

Therefore, for further testing in the following only the analogue CSLMC card 

will be used.

9 .3 .5  S liding  S u r fa c e  S e ttlin g  T ime

By means of the extended Nyquist criterion is was predicted in Section 9.1.1 

that the system would fall in a mode of sustained oscillation if a sliding surface 

settling time of less than Tsett= 0.013 s was chosen. To confirm this theoretical result 

and also to demonstrate the effect of the sliding surface settling time on the closed- 

loop system dynamics, step response tests with sliding surface settling times Tsen 

between 0.25 s and 0.01 s have been performed.

In order to tune the state gains of the analogue card (potentiometers PI and 

P2) it proved to be advantageous to compare the resulting system response to the one 

obtained with the digital CSLMC system. In this system the state gains are precisely 

defined by the variables in the control programme on the PC. By matching the two 

responses the exact settings of the tuning potentiometers can be found easily.

It can be seen in Figure 9.18 that a settling time Tsett = 0.07 s results in a 

satisfactory system response. For a settling time of Tsett = 0.02 s the step response 

exhibits a slight undesired ripple near the set point. When reducing the settling time 

further to Tsett =0.01 s the system falls into a mode of sustained oscillation as 

predicted by theory.
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As a consequence the settling time of Tsett = 0.07 s determined in the 

theoretical analysis in Chapters 8 and 9 is confirmed by experiment.

9 .3 .6  R o b u s t n e s s  t o  C h a n g e s  in M a s s  a n d  D i s tu r b a n c e  R e j e c t i o n  

C a p a b i l i t i e s  o f  T h e  A n a lo g u e  CSLMC S y s te m

So far the analogue CSLMC system has only been tested for nominal system 

conditions. Although the response of the highly non-linear pneumatic servo could be 

improved significantly when compared to the response of the system using classical 

state-feedback control as shown in Section 5.5.3 one of the most attractive features 

of CSLM control, robustness to changes in the dynamic system parameters and the 

capability to reject external disturbances, has not yet been tested.

Besides the servo’s non-linearities the most important effects the CSLM 

control has to compensate for in the context of the pneumatically animated figure are 

changes in the effective mass to be moved and external disturbance torques and 

forces resulting from the kinematic and dynamic coupling of the individual members 

of the figure. Therefore, in the following two sections these influences will be 

analysed and experimentally investigated.

9.3.6.1 Robustness to Changes in Mass

In order to determine the robustness of the analogue CSLMC system to 

changes in the mass to be moved the mass was increased from m = 1.82 kg firstly to 

m = 6.82 kg and than to m = 11.82 kg. The chosen gravity loads approximately 

represent the range of change of mass for a single axis of the animated figure.

As can be seen from the results of the analogue CSLMC system depicted in 

Figure 9.19 increasing the mass only increases the steady-state error slightly. 

However, the dynamic characteristics of the response are not affected at all. The 

same results could be achieved with the digital CSLM controller including the 

accelerometer.
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As a result the robustness of the CSLM controller to changes in the effective 

mass to be moved is as predicted by theory and sufficient for controlling the 

animated figure.

9.3.6.2 Disturbances Rejection Capabilities - 2D0F implementation

Since it is the aim of this research project to use the single-axis CSLM 

controller to control an animated figure with seven dynamically coupled axes of 

motion the disturbance rejection capabilities of the control system are of crucial 

importance. Therefore, in order to test the disturbance rejection capability of the 

system two analogue single-axes CSLM controllers were implemented on two axes 

of the animated figures. For this experiment the arm of the figure was chosen since it 

exhibits the most significant coupling disturbances. The two members of this arm 

can be interpreted as an inverted double pendulum as depicted in Figure 9.20.

The disturbance rejection capabilities of the analogue CSLMC card has been 

benchmarked against the classical state-feedback controller shown in Figure 5.12.

As can be seen from the results presented in Figures 9.21 and 9.22 when 

using the single-axis CSLM controllers instead of single-axis state-feedback 

controllers (which both treat coupling effects as external disturbances) coupling 

effects resulting from the reaction forces and torques are compensated for much 

more effectively. The displacement ripples being observed in the response of the 

state-feedback control system (Figure 9.22) are almost eliminated by the CSLM 

controller. Therefore, efficient decoupling of the dynamic responses of the individual 

members of the animated figure has been achieved by means of simple single-axis 

controllers without the need of an overall control algorithm.

Decoupling by means of single-axis controllers offers a major advantage 

since an overall control algorithm has to be based on the complete highly complex 

and non-linear nDOF system model taking account of all the main non-linear 

coupling effects. How involved this can be even in the case of a relatively simple 

inverted double pendulum is demonstrated in Appendix A l.

As a result of the individual single-axis control approach, individual members 

of the animated figure can be added or omitted without the need of changing an
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overall control algorithm or even the individual single-axis controllers. As derived in 

Section 7.7 it only has to be made sure that the amplitude of the disturbance does not 

exceed a certain maximum level. The disturbance frequency content and its highly 

non-linear nature is of no consequence for the disturbance rejection capabilities of 

the rcDOF control system.

It should be mentioned that the response of axis 1 of the animated figure 

shows the influence of high-frequency noise. This is due to the high noise level of 

the displacement transducer used on this member. As a result it has to be made sure 

that only high-quality low-noise transducers are used for CSLM control.

A further interesting result from applying CSLM control to the animated 

figure is the fact that the overall vibrations of the animated figure during operation 

are greatly reduced when comparing it to the state-feedback control results. 

Obviously, reducing the coupling between the individual members of the animated 

figure prevents these disturbances from travelling through the rigid structure of the 

figure. When accelerating one member of the figure the adjacent members will 

compensate for these disturbances and therefore the disturbance effects on the 

dynamic behaviour of the other members in the dynamic chain are greatly reduced.

9 .3 .7  E x per im en t a l  F r eq u e n c y  R e s p o n s e  R e s u l t s

To investigate fully the performance of the analogue CSLM control card 

frequency response tests have been performed. Again the CSLM control card is 

benchmarked against the state-feedback controller depicted in Figure 5.12. The 

frequency response results of both control systems are shown in Figures 9.23 and 

9.24.

Comparing both results one of the most interesting observations is the ability 

of the CSLM controller to compensate for the stick-slip effect which is a dominant 

feature of the dynamics of pneumatic servos in the case of small actuator velocities. 

This stick-slip effect can clearly be observed in the frequency response of the state- 

feedback control system with a demand frequency of /  = 1 Hz as depicted in 

Figure 9.23. As described in Section 6.2.2 a vast number of publications deal with 

the stick-slip problem without given satisfying answers. Methods such as e.g.
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additional dither signals (Surgenor and Wijesuriya (1992)) or stick-slip 

compensation components in the forward path of the control law (Abou-Fayssal and 

Surgenor (1997)) do not yield the required system response or entail drawbacks like 

complicated tuning procedures or the need for determining a detailed friction model.

As the results in Figure 9.24 clearly demonstrate the stick-slip motion 

problem is of no concern for the CSLMC system. The switching characteristic of 

CSLM control automatically prevents the actuator piston from exhibiting this highly 

undesirable behaviour. Since the system state in sliding mode oscillates around the 

sliding surface the actuator piston is constantly in motion and is therefore prevented 

from being subject to the adverse effects of stiction.

In Figure 9.25 the Bode plot of the frequency response of the CSLMC system 

and the state-feedback system is depicted. In order to allow a qualitative judgement 

both responses are benchmarked against the frequency response of the sliding surface 

dynamics (being the ideal system response) and the frequency response of the 

proportional-feedback system. It can be seen that the state-feedback amplitude 

response exhibits a peak at a frequency of about 12 Hz which can be observed in the 

response of the proportional-feedback system as well. This amplitude peak results 

from the third-order open-loop dynamics of the pneumatic servo depicted in 

Figure 9.26. The amplitude peak in the CSLMC system response is significantly 

smaller and its amplitude response follows more closely the response of the ideal 

second-order response of the sliding surface.

The phase shift of the CSLMC and the state-feedback system are larger than 

the phase shift of the sliding surface. For small frequencies of up to 8.5 Hz the phase 

shift of the CSLMC system is larger than the phase shift of the state-feedback system 

while it follows more closely the phase shift of the sliding surface for frequencies 

greater than 8.5 Hz.

It can be concluded that CSLM control is far superior to state-feedback 

control in providing second-order closed-loop dynamics for a predominantly third- 

order plant. Even the adverse effects of highly non-linear friction (stick slip) can be 

compensated effectively.
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T a b l e s

Table 9.1 - Maxmimum detectable switching frequency for pneumatic servo system
___________ without valve dynamics_________________________________________

act
1.5 mm 

(near end)

uator piston positii
15 mm 
(mid)

on
28.5 mm 
(near end)

direction extend J H7 176 Hz 218 Hz
of motion retract 210 Hz 163 Hz 205 Hz

Table 9.2 - Maximum detectable switching frequency for pneumatic servo system 
___________ with valve dynamics____________________________________________

act
1.5 mm 

(near end)

uator piston positic
15 mm 
(mid)

in
28.5 mm 

(near end)
direction extend 165 Hz 196 Hz
of motion retract 190 Hz 155 Hz 187 Hz
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Figure 9 .1- Maximum detectable switching frequency (displacement signal) of 
digital CSLMC system without valve dynamics
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Figure 9.20 - Schematic diagram of inverted double pendulum
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1 0  C o n c l u s io n s  a n d  r e c o m m e n d a t io n s  f o r  F u t u r e  

W o r k

The objective of the research project presented in this thesis was to develop a 

cheap, simple and robust controller for a multi-degree-of-freedom (nDOF) 

pneumatically actuated animated figure. In order to reduce the hardware costs to a 

minimum only an actuator displacement transducer was to be used.

The main achievements of the research work can be summarised under the 

following two headings:

• Derivation of an accurate linear and non-linear model for a pneumatic positioning 

servo system assisting with the analysis of these systems and enabling the 

development and design of suitable control methods.

• Proposal of a novel robust, low cost and easy to tune analogue CSLM control card 

which only requires system displacement as an input.

10 .1  P n eu m a tic  S er v o  S y stem  M o d e l

The non-linear pneumatic component models developed within the Bath/p 

simulation environment provide a user-friendly tool to simulate and study the 

dynamic behaviour of highly non-linear pneumatic actuation systems. It was found 

during the investigation and the development of the pneumatic components for the 

Bath/p component library that an exact model of the pneumatic control valve is of 

crucial importance when simulating pneumatic systems. A detailed model of the 

direct drive servo valve HR 27A1 by HR Textron has been developed. It was found 

that the valve opening / flow area relationship was far from being linear. Also the 

discharge coefficient and the choking point proved to be valve opening and pressure 

ratio dependent. Therefore, as suggested by Andersen (1985) a large number of 

calibration tests had to be performed in order match the simulation results to the 

experimentally observed behaviour. In order to provide the experimental data 

necessary to perform the valve calibration a test routine was developed. This test 

routine was developed with the aim of enabling the provision of flow rate data 

without the need of using complicated or expensive flow measuring devices. It was
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found that by charging and discharging constant dead volumes the flow rates for 

different valve openings and pressure ratios could be determined as a function of the 

polytropic index n. It was therefore decided to base the whole modelling 

methodology on the polytropic index n rather than on modelling heat exchange with 

the surrounding. Using this approach the agreement between simulation and 

experiment was excellent. Consequently, the developed simulation models provided 

an excellent tool to test the feasibility of various control methods for the pneumatic 

positioning servo.

The development of the linear model of a pneumatic positioning servo 

represents a significant extension to the basic models developed by Shearer (1956) 

and Burrows (1972) which are still widely used in literature. The new extended 

linear model takes into account the effects of unequal area actuator piston areas and 

constant gravity load resulting in unequal chamber pressures. These unequal chamber 

pressures result in a dependency on the direction of valve opening and consequent 

charging and discharging properties. Including these effects into the linear model 

results in the fact that even this relatively simple model describes position and 

direction of valve opening (and assuming zero initial velocity, direction of piston 

motion) dependent dynamic characteristics. In the context of linear controller design, 

the extended linear model eases the determination of the dynamically worst system 

state conditions to be used as a linearisation basis when synthesising a linear 

feedback controller. As a result the performance of pneumatic servo systems using 

conventional linear feedback controllers could be improved significantly.

1 0 .2  C o n t r o l ler  D esig n

As a consequence of the decision to use a separate single-axis controller 

approach, the single-axis controller had not only to compensate for the non- 

linearities being an inherent characteristic of the pneumatic actuation system, but 

also had to be robust to severe system parameter changes due to the kinematic 

linking of the members of the manipulator. Furthermore, it had to provide excellent 

disturbance rejection capabilities in order to compensate for the coupling forces and 

torques resulting from the dynamic linking of the manipulator axes.
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It was found that a continuous sliding mode control (CSLM) algorithm 

provided all the required features and hence would be best suited to the control 

problem. To achieve a sufficiently high switching frequency required by this 

controller in order to provide a satisfactory closed-loop system response it was found 

that working with a sampling rate of less than 10 kHz the innermost feedback loop 

(providing the feedback signal of the highest system state acceleration) could not be 

closed by means of a numerical differentiation routine. This sampling rate could not 

be achieved by the 166 MHz Pentium PC and the control software available for this 

project. An analogue double-differentiation filter was therefore designed providing 

the necessary information on the required system state (velocity and acceleration). 

Based on this double-differentiation filter a purely analogue CSLM control card was 

developed realising the relay-like switching action by means of a saturated 

operational amplifier. Experimentally testing the new analogue control card showed 

that it is far superior to linear state-feedback control in terms of robustness to system 

parameter changes (in particular the effective mass to be moved) and the action of 

external disturbances. Even the effects of non-linear stiction resulting in stick slip 

motion of the actuator piston in the case small velocities could be efficiently 

compensated for. Implementing the control card on two axes of a pneumatically 

actuated animated figure resulted in an excellent closed-loop system performance.

The new analogue control card therefore represents a simple and cheap 

device for a variety of third-order non-linear and linear control problems where 

disturbance rejection and robustness to system parameter changes are of major 

importance like for instance industrial manipulators. The tuning of the controller is 

simple and can be done by control engineers with only little prior knowledge of the 

system dynamics. The tuning parameters are closed-loop natural frequency or 

response settling time, damping ratio, maximum control action (controlling the 

disturbance rejection capabilities) and boundary layer width (smoothing the system 

response in the case of chattering). Additionally, the roll-off frequency of the 

differentiators can be tuned in order to minimise noise in the differentiated signals.

An interesting result that arose from the theoretical analysis of the control 

system in sliding mode and the reachability of the sliding surface was a way of 

determining important system design parameters like control valve bandwidth,
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nominal valve flow rate and system supply pressure. By Using equivalent control 

theory these parameters could be related to a desired system response and chosen 

accordingly. The same procedure can also be used for sizing of conventional control 

systems.

1 0 .3  R e c o m m e n d a t io n s  f o r  F u tu r e  W o r k

An area into which the research presented in this thesis can be extended is the 

inclusion of direction dependent switching gains or integrator elements into the 

control algorithm. These elements would minimise the small steady-state errors 

which could be observed in experiment and simulation but did not prove to be of any 

consequence in the context of this research project. These steady-state errors result 

from unsymmetric switching around the sliding surface caused by direction of valve 

opening dependent changes in the charging and discharging conditions of the 

actuator chambers.

Furthermore, it would be interesting to increase the order of the sliding 

surface to take account of the valve spool dynamics which have been neglected here. 

Neglecting the valve spool dynamics resulted in a third-order dynamic model and 

hence a second-order sliding surface. The resulting closed-loop system can only 

achieve reduced-order switching. Including an additional accelerometer and 

differentiating the measured acceleration signal by means of analogue differentiation 

filters could yield a fourth-order sliding surface which would be of appropriate order 

for a dominantly fifth-order plant. In this case switching would not be limited by the 

bandwidth of the control valve but its dynamics would rather be an integral part of 

the sliding surface.

Implementing a non-linear switching surface could also improve the closed- 

loop dynamics and should therefore be investigated. By means of non-linear state 

gains the switching surface can approximate the so called time-optimal trajectory and 

therefore take fully account of the dynamics properties of the plant. A non-linear 

switching surface could be realised in the first instance by superposition of piecewise 

linear switching surfaces. These can for instance be implemented by means of a gain 

scheduling approach.
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A1 C o n t r o l  o f  M ulti-a x e s  Ma n ip u l a t o r s  w it h  Id e a l  

A c t u a t o r s

This appendix presents the results of a preliminary study of the problems in 

connection with the control of nDOF manipulator systems. In this context the 

particular problems of coupling between the individual members of the manipulator 

and state dependent changes in the system parameters are addressed. In order to 

investigate these problems a 2 degree of freedom (2DOF) manipulator as shown in 

Figure A 1.1 is examined and different well known and established control methods 

are compared.

The control of a 2DOF manipulator exhibits the same problems as the control 

of a higher degree of freedom system. Therefore and for convenience of presentation, 

only a 2DOF manipulator is considered here, although 3DOF and 4DOF 

manipulators have been investigated with similar results. In order to clarify the 

dynamic effects of the mechanical system and to compare the controllers’ ability to 

overcome its undesired characteristics (dynamic coupling, unknown and state 

dependent changes of system parameters), the actuator dynamics have been neglected 

at this stage. They will be the subject of interest in the main part of the thesis.

The appendix is organised as follows: Section A 1.1 describes the general 

problems in manipulator control. Section A 1.2 then derives the mathematical model 

of the manipulator dynamics using Lagrange’s method. A state-space representation 

of the manipulator dynamics is also obtained. Section A1.3 compares the suitability 

of three different conventional control strategies for manipulator tracking control. 

These are single axis proportional and differential (PD) feedback control, state- 

feedback control and computed torque control. Section A 1.4 then introduces a 

model-based variable-structure adaptive control algorithm which is known to 

overcome problems of parameter uncertainties in the manipulator model used to 

synthesise the controller. All control strategies are compared in terms of step 

response simulation results and the robustness in case of system parameter 

variations.
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The results of this preliminary study lead to the conclusion that due to the 

complexity and non-linearity of the mathematical models describing even relatively 

simple system like a double inverted pendulum depicted in Figure A 1.1 individual 

single-axis controllers based on simple linear axis models are the preferable choice. 

However, these individual single-axis controllers have to provide superior 

disturbance rejection capabilities and robustness to system parameter changes.

A 1.1 G en era l  P r o blem s  in Manipulator  C o n tro l

In general, when designing a control system for a manipulator the following 

problems have to be considered (Stoten (1990)):

•  Non-linear dynamics: Non-linear dynamics can be classified in terms of their 

mathematical properties as continuous or discontinuous. Because discontinuous 

non-linearities cannot be locally approximated by linear functions, they are also 

called hard non-linearities. Continuous non-linearities can be classified as steady- 

state non-linearities, such as gravity forces which are a function of position only, 

and transient non-linearities. The latter are due to centrifugal and Coriolis forces 

caused by the velocity of the manipulator links and actuator dynamics. Hard non- 

linearities are for example backlash, hysteresis, stiction and end stops.

• Dynamic coupling between manipulator links: These coupling effects are a 

natural consequence of Newton’s Third Law. The acceleration of one link of the 

manipulator causes reaction torques at the other links which have to be controlled 

by an effective co-ordination of all control signals.

•  Internal parameter variations: These parameter variations may be due to 

changes in hydraulic oil viscosity for hydraulically actuated manipulators, heat 

exchange with the environment for pneumatics, wear in joints, and changes in 

masses to be manipulated.

• Unmodelled dynamics: These dynamics are typically due to the flexibility of 

links, joints and mountings, which are otherwise considered to be rigid. If one of 

these high-frequency modes is excited, the system behaviour may change 

significantly. Furthermore, actuator dynamics are often neglected when the 

bandwidth of the actuators is higher than the bandwidth of the mechanical 

structure.

245



•  External disturbances: External disturbances are e.g. noise, and forces due to 

interaction with a work piece or the environment.

• High speeds of response: In most applications high speeds of response are 

required to reduce cycle times to make processes more effective. This problem 

further exacerbates the non-linear dynamics and dynamic coupling problems.

• In general a controller for a manipulator has to enable the manipulator to fulfil one 

of the following two tasks: reaching a desired position along a path determined 

by the manipulator dynamics or following a desired trajectory. The latter task is 

the more demanding one because it requires the closed-loop error dynamics to 

converge towards zero which puts a higher burden on the controller and demands 

trajectory velocity and acceleration as an input. To obtain these velocities and 

accelerations generally a smooth path for the manipulator to track is required. This 

can for instance be realised in the trajectory programming stage or by means of a 

filter which smoothes out abrupt changes in the demand signals and hence enables 

their numerical differentiation.

Regarding the desired behaviour of the non-linear control system, a designer 

has to consider the following characteristics:

• Stability must be guaranteed for a nominal model (the model used for design), 

either in a local sense or in a global sense. The regions of stability and 

convergence are also of interest.

• Robustness is the sensitivity to effects which are not incorporated in the 

controller design such as external disturbances, measurement noise, unmodelled 

dynamics, etc. The system should be able to withstand these neglected effects 

within certain boundaries when performing the task of interest.

• Accuracy and speed of response may be considered for some ‘typical* motion 

trajectories in the region of operation. For some classes of systems, appropriate 

controller design can actually guarantee consistent tracking accuracy 

independently of the desired trajectory.

Considering general non-linear systems, stability does not imply the ability to 

withstand persistent disturbances of even small magnitude, because the stability of a 

non-linear system is defined with respect to initial conditions, and only temporary 

disturbances may be translated as initial conditions. This situation is different from
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that of linear system control, where stability always implies the ability to withstand 

bounded disturbances (assuming of course that the system does not leave its linear 

range). The effects of persistent disturbances on non-linear system behaviour are 

addressed by the concept of robustness. It should be noted, that the qualities of 

stability and robustness can conflict to some extent, and a good control system can 

often only be obtained via a compromise between stability and robustness.

A 1.2  Manipulator  Dynamic E quation

In this section a dynamic model of the manipulator is generated using the 

Lagrange equation. This model is used for control system design and furthermore it 

provides the basis for the simulation work presented in Sections A 1.3 and A 1.4.

For the use of the Lagrange equation it is required to calculate the total 

kinetic energy T  and the total potential energy U of the system. These energies 

together with the known externally applied forces and torques can then be used to 

generate the dynamic model of the manipulator in a fairly straightforward manner. 

Lagrange’s equation is

d { T -U )d_
dt dq.t

- Q i  > (i* = (A l.l)
dq,

where the qi are the generalised co-ordinates of each degree of freedom and Qi are 

generalised forces applied externally at each co-ordinate

The manipulator is modelled as a set of 2 moving rigid bodies connected in a 

serial chain with one end fixed to the ground and the other end free as can be seen in 

Figure A l.l. The bodies are joined together with rigid revolute joints. A torque 

actuator and viscous friction are acting at each joint. Here qi will be the transducer 

co-ordinate (relative angle of displacement) for each link, and Qi will be the 

difference %;• - ki between actuator torque and the linear viscous friction torque 

applied to each link. The vector equation of motion of such a manipulator can be 

written in the form:

T = M (0 )0  + v (e , ©) + F(q ) + G(0) + Td (A1.2)

where M (0 ): position dependent inertia matrix
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v(@ ,0): vector representing torques caused by centrifugal and Coriolis

effects

: vector representing friction torques

G(@): vector representing gravity induced torques

Td: vector of unknown signals due to unmodelled dynamics and

external disturbances

The parameters of the above matrices and vectors are detailed in Appendix A2.L

Another way of formulating the dynamics of a non-linear system is by using a 

set of non-linear differential equations in the form:

where / i s  a n  x 1 non-linear vector function, and x  is the n x 1 state vector. The 

number of states n is called order of the system. Equation (A1.3) does not explicitly 

contain the control input as a variable. Nevertheless, the equation is directly 

applicable to feedback control systems in the case where the control input is a 

function of system state x  and time t.

Linear systems can be considered as a special class of non-linear systems. 

The equation of motion of a linear system can be written as the so called canonical 

state-space representation

where x  represents the system’s states, y the system’s output and u an external input.

The system response has a number of interesting properties. First, it satisfies 

the principle o f superposition. Second, the asymptotic stability of the system implies 

bounded-input bounded-output stability in the presence of u. Third, a sinusoidal 

input leads to a sinusoidal output of the same frequency.

The behaviour of non-linear systems is much more complex. Due to the non- 

linearities the superposition principle is not applicable and so non-linear systems 

respond to external inputs quite differently from linear systems. However, one will 

always be able to separate out the linear and non-linear terms in the equations of 

motion and obtain

x  = f(x ,t ) (A 1.3)

x  — Ax(t) + Bu(t) 

y = Cx(t)
(A1.4)
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x  = Ax(t) + Bu(t) + f ( t )  + g(t) (A 1.5)

where the vector f(t) contains all the transient non-linear components of the system 

dynamics and gg(t) all the steady-state non-linearities. The specific state matrices and 

vectors for a 2 DOF manipulator can be found in Appendix A l.l .

When designing a controller on the basis of the plant model presented in 

Equation (A 1.5) the non-linear components are treated as external disturbances to be 

cancelled by the control action.

A 1.3  C onventional  C o n tr o l  S tr a teg ies  R evisited

In this section several conventional control strategies are presented and 

compared. The control strategies use either a linear plant model for control design 

purposes (single axis proportional and differential control, state-feedback control) or 

a non-linear plant model (computed torque control).

To illustrate the system’s behaviour with different controllers simulation 

results are shown which were produced using the simulation package Bath#? (Lo and 

Tilley (1993)). The results of Bath#? simulations provide both steady-state and 

transient performance data. This is achieved using the sophisticated numerical 

integration algorithm LSODA, which monitors the characteristics of the differential 

equations during the course of the simulation and selects the most appropriate 

integration method from a range of variable time step algorithms. These algorithms 

are able to deal with any system discontinuities.

As mentioned earlier, for convenience of presentation and discussion only a 

2DOF manipulator (joint 1 shoulder, joint 2 elbow) is considered as shown in 

Figure A l.l, although an extensive study has been carried out using 3DOF and 

4DOF manipulator models. The manipulator is modelled as described in 

Section A 1.2. For simulation purposes the manipulator properties detailed in 

Table A l.l are assumed. The numerical values are idealised to a certain extent, but 

nevertheless represent those of a realistic industrial robot. Although the masses and 

moments of inertia of the investigated animated figure are significantly smaller, the 

large values above have been chosen because they emphasise the dynamic non
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linearities and hence allow an easy comparison of the different control strategies and 

their ability to cope with these non-linearities. Furthermore as mentioned above, it is 

assumed that the bandwidth of the actuators is much higher than the bandwidth of 

the mechanical structure so that the actuator dynamics can be neglected.

As path tracking is more demanding than set-point positioning the following 

investigation concentrates on this problem when synthesising the controller. 

Generally to enable a manipulator to follow a prescribed path, not only the desired 

displacement of the actuators but also the desired actuator velocities and 

accelerations are required. One way of providing this information is a second-order 

reference signal filter, which not only smoothes the input demand signal but also 

computes the demanded velocities and accelerations. The filter is tuned to have a 

critically damped response.

Furthermore, in all control systems mentioned below position dependent 

parameter changes due to gravity which causes steady-state errors are dealt with by 

means of a gravity compensator which feeds-forward the necessary torques to 

counteract these gravity effects. To enable a compensator like this to work 

satisfactorily the gravity influence on the manipulator must be well known since 

modelling uncertainties in the compensator can make the system behaviour worse. 

Another possibility to overcome errors due to steady-state non-linearities is the use 

of integral action. An integrator may slow down the system response and tend to 

reduce transient robustness in face of modelling errors and this may lead to 

instability.

A1.3.1 In d e p e n d e n t  J o int  P r o po r t io n a l  a nd  D iffe r e n t ia l  F e e d b a c k  

C o n t r o l  W ith S tea d y -S t a t e  No n -L inearity  C o m p e n sa t io n

Most present commercial industrial robots use simple PD (proportional and 

differential) or PID (proportional, integral and differential) feedback controllers 

where each joint is controlled as a separate control system. Since no decoupling is 

being done, the coupling reaction forces are treated as external disturbances and 

hence the motion of each joint affects the motion of the other joints. These 

interactions have to be minimised by the control law of each axis.
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For controller design purposes the highly non-linear plant is assumed to be 

linear. The non-linear dynamic behaviour is hence treated as an additional external 

disturbance. Due to the position dependence of the plant parameters (e.g. the inertia 

coefficients) it is impossible to select fixed gains which will critically damp the 

response to a demanded input for all configurations of the manipulator. A local 

linearisation in the neighbourhood of an operating point has to be carried out and 

gains have to be chosen which approximate critical damping around this operating 

point of the manipulator's workspace. Generally, the further away from this 

linearisation point that the manipulator operates the worse the system behaviour 

becomes. In various extreme configurations of the arm, the system can become 

significantly under- or overdamped.

In the case of an indirectly driven manipulator, as commonly used in industry, 

the changes in the plant parameters and the coupling effects are reduced for high gear 

ratios so that the plant behaviour under simple PD or PID feedback control is 

generally sufficient. Nevertheless, it should be noted that even with gear reduction 

the inertia may vary over a large range, perhaps an order of magnitude (Spong and 

Vidyasagar (1989)).

In the following a PD controller with reference acceleration feedforward is 

synthesised where each link will be in a closed-loop system as shown in Figure A 1.2. 

A PD controller is the better alternative when compared to a PID controller where a 

steady-state error is allowed in the system response as already mentioned above 

(Stoten (1990)). For the animated figure under consideration, a small steady-state 

error caused by parameter uncertainties in the gravity compensator is acceptable, 

since accurate positioning is normally not one of the requirements of this figure. 

Hence, an integrator is not an advantage.

The dynamics of link i (i = 1, 2) are taken as the linear terms A/ and 2?, from 

the state Equation (A 1.4) to give the transfer function:

G ^ C X s I - A f B ^ - ^  (A1.6)

Hence

3.077 8.205
pl ~ s(s+ 5.769) ’ p2~ 5(5 + 4.103) 1 '
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so that each link has its own integrator. Considering an ideal critically damped step 

response of each closed-loop link with a settling time of about 1 s, the desired 

closed-loop characteristic equation is:

s2 + 2%CQns +coI = 0 , where a tt = 4 rad"1 and § = 1 (A1.8)

Comparing this with the actual PD control closed-loop characteristic equation

s2+(bi +aikDi)s + aikpi = 0 (A1.9)

yields the controller gains listed in Table A 1.2.

Figure A 1.3 shows the Bath#? simulation circuit. The simulation results of the 

full non-linear closed-loop system, following the reference input r\ = 1.0 rad and 

r2 = 0.5 rad can be seen in Figure A 1.4.

Obviously, the transient terms are far from being satisfactory, although the 

steady-state values are as required due to the gravity compensator. Overshoots and 

coupling effects are present because the non-linear dynamic behaviour of the 

manipulator (Coriolis and centrifugal effects) and reaction torques are treated as 

external disturbances.

Since a controller is synthesised using a set of estimated plant parameters, in 

general the system behaviour becomes worse, if these estimated parameters do not 

compare with the real plant parameters. In the following it is assumed that all plant 

parameters are only known within a band of +/- 30% of their nominal values. It is not 

realistic to assume that all parameters have the same uncertainties, because it is 

easier to measure lengths and masses than it is to measure friction coefficients or 

moments of inertia. Nevertheless, the blanket approach is useful when comparing 

different controllers and makes their problems with parameter uncertainties obvious. 

It must be noted that some parameter variations might counteract each other e.g. an 

increase of the mass or the length of a member has a similar effect on the system's 

behaviour as a decrease of the friction coefficient. In order to account for this 

counteracting effects of parameter changes, the system parameters listed in 

Table A1.1 are assumed to examine the worst case.

The system behaviour shown in Figure A 1.5 is observed. Coupling effects 

and overshoots are amplified as expected but also a steady-state error occurs since 

the gravity compensator is unable to remove the steady-state non-linearities
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completely. Yet it must be mentioned, that the system behaviour is still stable, even 

though the controller is significantly detuned.

A1.3.2 S t a t e -F e e d b a c k  C o n t r o l

A state-feedback controller is an attempt to take account of coupling effects, 

at least on the basis of the linearised dynamic model of the manipulator. It is 

assumed that all elements of the state vector are measurable, which implies that both 

position and velocity of each link are measured. To avoid the application of 

additional velocity transducers, the displacement signal is differentiated numerically 

in the simulated system. This does not cause problems in absence of transducer 

noise.

As shown in Section A 1.2 the state equation of motion for the manipulator is

x - A x ( t )  + Bu(t) + f ( t )  + gg(t) (A1.10)

This equation is used as a basis for synthesising the state-feedback controller

depicted in Figure A1.6. K  is the 2 x 4 state-feedback gain matrix . The closed-loop

dynamics are

x = ( A -  BK)x(t) + BKr(t) + f( t)  (A l.ll)

The steady-state non-linearities gg(t) are again removed by the gravity compensator 

described in the previous section. To maximise the robustness of the closed-loop 

system, the feedback gain matrix K  is synthesised using the MATLAB place 

algorithm (Moler et al (1987)). This algorithm is based on eigenstructure assignment 

(Kautsky and Nichols (1983)), and calculates the K  matrix coefficients for a chosen 

set of eigenvalues of the matrix (A-BK ). Choosing all eigenvalues at s = -4 to obtain 

a natural frequency for each link of con = 4 rads'1, the place algorithm yields:

( 6.4 1.3 1.2 0.6^
K  =

2.4 1.2 2.4 0.7
(A1.12)

The Bath#? simulation circuit is shown in Figure A1.7. Using the same input 

signal as for the PD controlled system results in the system response shown in 

Figure A 1.8. For comparison the response of the PD controlled manipulator is 

plotted again.
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Accounting for the linear coupling effects when synthesising the controller 

obviously improves the transient behaviour of the manipulator significantly, but still 

the non-linearities in the plant dynamics cause overshoots and coupling. The same 

can be said when comparing the plant behaviour under state-feedback control and 

under PD control in presence of parameter uncertainties. Again assuming the 

parameters of the manipulator are only known within a tolerance band of +/- 30% of 

their nominal values results in a closed-loop system response shown in Figure A 1.9. 

Even with the existence of parameter uncertainties the state-feedback controller is 

able to reduce overshoots and coupling compared with the PD controller. Again, the 

system is still stable although detuned.

It can be concluded that multivariable controllers like the state-feedback 

controller result in better closed-loop response of the manipulator to be controlled 

because by using the whole plant state as an input they are synthesised with the linear 

open-loop coupling as a design feature. Still the non-linear coupling which occurs in 

plants like robot manipulators can cause unsatisfactory closed-loop behaviour.

Another shortcoming of a multivariable controller is the fact that the joints of 

a manipulator are not treated independently so that the controller structure in itself 

becomes more complex. Furthermore, a change in the manipulator structure leads to 

a change in the controller structure and cannot be accounted for by simply retuning 

the controller parameters.

A 1 .3 .3  C o m p u t e d  T o r q u e  C o n t r o l

In general, the knowledge of the system structure and its parameters can be 

used to feedforward the required control signals to cancel out non-linearities. Like 

this the order of the system is reduced and only the remaining uncertainties and 

disturbances have to be controlled by a feedback controller. The burden of this 

feedback controller is much lighter and it is easier to assure stability. In order to 

feedforward control signals, the plant has to be well known because the controller 

can generate signals which will cause additional disturbances on top of the external 

disturbances and those caused by modelling errors.
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Assuming a dynamic manipulator equation as derived in Section A1.2 

T  = M (0 )0  + V(©,©) + f(© ) + G(0) + t d (A1.13)

a similarly structured control law, which is sometimes referred to as the computed 

torque method (Craig (1986)) of manipulator control is used

t  = M (0 )0 ‘ + v(© ,© )+ f(© )+ G (0) (A1.14)

where

0* = e d + KVE +KpE  (A1.15)

is the feedback servo part of the control law. The n x n constant, diagonal gain 

matrices Kv and Kp define the systems natural frequency and damping. The servo 

error E  is defined as

£  = 0 , - 0  (A1.16)

The control law is chosen because in the favourable situation of perfect knowledge of 

parameter values and no disturbances, the closed-loop error dynamics are given by

E + K vE + K pE = M ~\G)Td (A1.17)

Hence in this ideal situation, the feedback gain coefficients may be chosen to place 

closed-loop poles of each joint separately, and disturbance rejection will be uniform 

over the entire workspace of the manipulator.

The Bath/p simulation circuit can be seen in Figure A 1.10. The closed-loop 

system response to the step input signal r\ = 1.0 rad and r2 = 0.5 rad can be seen in 

Figure A 1.11. The system response is perfect and this can be said for the whole 

workspace. No overshoot or coupling can be observed since the non-linear control 

algorithm exactly calculates the torques necessary to overcome coupling reactions 

and non-linearities in the system dynamics. The control algorithm reduces the system 

to a decoupled second-order system of n masses, compliances and dampers. By 

choosing the feedback gains for each member separately the natural frequencies and 

damping ratios can be set individually for each of the members. Yet, because the 

feedback part of the computed torque controller is only designed to control a simple 

second-order dynamic system the closed-loop system response can easily become 

unstable in the case of parameter uncertainties as can be seen in Figure A 1.12. 

Considering a parameter uncertainty of +/- 30% of the nominal values of all 

parameters, the feedforward part of the controller produces torques which result in
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the depicted unstable response. For parameter uncertainties of less than +/- 20% the 

system response is stable. Yet, even in this case the response of the computed torque 

control system is worse than the response of the state-feedback control system.

A 1.4  Mo d el-B a se d  Variable-S tr u ctu re  Adaptive C o n tr o l

As seen in Section Al.3.3, it is possible to design a non-linear control 

algorithm assuming the dynamics of the manipulator can be described 

mathematically. This control algorithm (computed torque control) can provide 

perfect model following properties in case of perfect plant parameter knowledge. 

With degrading parameter knowledge the controller can easily lead the system to 

instability as demonstrated in Figure A 1.12.

Many adaptive control schemes have been described in literature that deal 

specifically with high-performance robot-tracking applications (e. g. Middleton and 

Goodwin (1988), Slotine and Li (1988), Craig (1986), Tso et al (1991)) in the case of 

poor parameter knowledge. In general, a convenient linear dynamic model is selected 

in the model-following approach (Stoten (1990), Dubowsky and DesForges (1979), 

Kim and Shin (1983), Balestrino et al (1983), Craig et al (1987)) and the difference 

in performance between the physical manipulator and the chosen model representing 

the desired system behaviour is used to adjust on-line the controller parameters or 

control signals in order to minimise this difference. This approach is called model- 

reference adaptive control (MRAC). The choice of the reference model is part of the 

adaptive control system design. It has to satisfy two requirements. On one hand, it 

should reflect the performance specifications in the control task, such as rise time, 

settling time, overshoot or frequency domain characteristics. On the other hand, this 

demanded behaviour should be achievable for the adaptive control system, i.e., there 

are some inherent constraints on the structure of the reference model (for example, 

its relative degree and order) given the assumed structure of the plant. The choice of 

a linear reference model causes the adaptation algorithm to counteract not only 

reaction torques but also non-linearities in the system dynamics by changing the 

controller parameters. Therefore the adaptation algorithm is responsible for the 

system’s stability which in general is very difficult to prove (Craig et al (1987)).
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As shown in Section Al.3.3, however, the non-linear, coupled and time- 

varying features of the actual manipulator are fully represented in the computed 

torque method, and this has prompted the application of more realistic models in 

model-reference adaptive control (MRAC) schemes in recent years (Tso et al (1991), 

Tso et al (1992)). The uncertain parameters in the full dynamic model of the 

manipulator are subject to a continuous adjustment according to a theoretically 

convergent adaptation process, so that the tracking errors are driven towards zero. 

The intention is that, by matching model and plant as far as possible, the 

compensation brought about by the computed torque techniques becomes more 

complete, and independent PD joint control can be applied more effectively for a 

wider range of operating conditions.

In general, a successful application of conventional model reference adaptive 

control schemes depends on persistent excitation (Tso et al (1991)) especially in the 

case of unmodelled dynamics, and the convergence rate cannot in practice be 

prescribed by design.

A method to overcome these shortcomings has been proposed by 

Utkin (1977) and experimentally studied by Young (1978) and others. It is based on 

the application of a variable-structure control (VSC) law for the parameter 

adaptation, rather than a continuous adaptation law, thereby providing a high degree 

of robustness irrespective of parameter variations and input disturbances. This 

technique avoids the on-line parameter identification and hence guarantees stability 

even in the case of insufficient excitation of the control system. VSC provides non

linear switching control, which ensures that the tracking errors and their derivatives 

will always be driven to the sliding surface (see also Continuous Sliding Mode 

Control in Chapter 6) and will slide along the surface towards the origin. The 

combination of VSC with MRAC, called model-based VSAC, results in greater 

control flexibility and enables the convergence properties to be more readily 

influenced by design. The application of VSC control to the problem of manipulator 

control has been intensively studied which is reflected by a large number of 

publications e. g. Slotine and Sastry (1983), Slotine (1985), Bailey and Arapostathis 

(1987), Yeung and Chen (1988), Miyasato and Oshima (1989), Shoureshi et al

(1990), Richards and Reay (1992), Tso and Law (1992).
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Following the derivation of Tso et al (1990, 1991) one possible MRAC 

scheme maintaining the structure of the computed torque control method introduced 

in Section A 1.3.3 is based on the ability to represent the manipulator torque equation 

in a linearly parameterised form

where T  is the n x 1 vector of generalised joint torques supplied by the n actuators, 

is the n x 1 vector of joint variables, M  is the n x n inertia matrix, N  is the combined 

n x 1 vector of the Coriolis, centrifugal, gravitational and frictional torque 

components, F  is the r x 1 vector of unknown parameters and W  is the coefficient 

matrix corresponding to the choice of F.

It is desired to drive the manipulator along the trajectory described by 

{&d, &d, $d}- By applying the control according to

Kv and Kp are n x n  diagonal gain matrices. With the introduction of a filtered error 

vector (sliding surface) E\ according to

where W is a positive n x n  diagonal matrix, it is possible to establish (Tso et al 

(1991), Tso et al (1992)) that the following switching adaptation algorithm

where/nun and yjmax are the parameter bounds will lead tracking errors to zero and is 

acceptable from the stability point of view. Unlike conventional MRAC schemes

(A1.18)

(A1.19)

where

0* = e d +KvE + K pE (A 1.20)

and

E=ed- e (A1.21)

it follows that the tracking error E  is governed by the dynamic relationship

A A A

In the above, F, M  and N  are the estimates of the respective vectors or matrices, and

E, = E  + tFE (A 1.23)

imax
(A 1.24)
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(Middleton and Goodwin (1988)), the adaptation does not require the estimated 

parameters to converge to their true model values. By using the proposed algorithm, 

exponential stability is achieved irrespective of the nature of the excitation (Tso et al 

(1991), Tso et al (1992)). E\ goes to zero in a finite time and thereafter remains zero 

on the sliding surface E\ = 0.

For practical realisation of the VSAC algorithm, it is necessary to introduce a 

boundary layer (Utkin (1977), Miyasato and Oshima (1989), Shoureshi et al (1990)) 

to minimise switching once the tracking error E, and E\, becomes small. So 

whenever eij < 8j (/=1,...,«), the switching law is modified according to

- f  + f .  _>  _  J i max ^imin _|_ 1 1 V_____________ h —________________ /A  1 2 5 }

Ji 2 2et

Figure A1.13 shows the stmcture of the system circuit within Bath/p used to 

simulate the behaviour of a 2DOF manipulator with negligible actuator dynamics 

under variable-structure adaptive control. The system response to a step input can be 

seen in Figure A 1.14. The controller has to overcome a parameter uncertainty of +/- 

30% of the nominal plant parameter values on all parameters. To assure stability, it is 

essential that the plant parameters lie within the parameter bounds set in the 

controller. Hence parameter bounds listed in Table A 1.3 are chosen.

Facing a similar parameter uncertainty that leads the computed torque control 

system to instability as discussed in Section Al.3.3 the VSAC controller provides 

perfect system control independent of the operation point of the manipulator as can 

be seen in Figure A 1.14. No overshoot or coupling occurs. Figure A 1.15 shows the 

switching of the control parameters which are on-line adapted by the VSAC 

algorithm. It should be noted that parameter drift after reaching a steady-state 

condition, which is likely to occur with continuously adapting algorithms (Tso et al

(1991), Tso et al (1992)), is not experienced, because all control parameters are 

bounded within the algorithm.
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A1.5 Conclusions

The above investigation leads to the following conclusions for the further 

investigation into the problem of controlling a riDOF pneumatically animated figure:

• Conventional PD-feedback and state-feedback control are not capable of dealing 

with coupling effects and the influence of dynamic parameter changes. Yet, 

despite a significant deterioration of the dynamic response of the closed-loop 

system in the case of system parameter changes both linear control algorithms 

provide stability.

• The non-linear computed torque control algorithm based on the full non-linear 

model of the plant provided an ideal response of the nominal model but resulted 

in instability unlike the linear control methods tested. It was found that this 

computed torque control algorithm is very sensitive to changes in the system 

parameters. Considering the application of a comparable non-linear algorithm on 

the complex animated figure would not only result in an excessive modeling and 

computation effort but would also not guarantee stability of the closed-loop 

system since system parameters like masses or moments of inertia are very likely 

to change due to varying system configurations.

• The VS control algorithm based on the non-linear structure of the computed 

torque controller provides excellent closed-loop performance as long as the 

system parameters stay within predefined bounds. The disturbance rejection 

capability and the robustness to parameter changes are far superior to the other 

control algorithms tested. Furthermore, the computational burden of the VS 

algorithm is extremely low when compared to other adaptation methods because 

no parameter estimation techniques are used. Yet, one main requirement on the 

computer is a high operating frequency to allow for a high control structure 

switching frequency.

As a result of the above study the investigation presented in the main part of the 

thesis will concentrate on variable-stmcture control as a means of compensating for 

coupling effects and dealing with unknown and changing system parameters. The aim 

will be to develop a single-axis VS controller based on a simple but sufficient linear 

model of the axis including the dynamics of the pneumatic actuation system which will
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not only provide an excellent response of the highly non-linear coupled plant but will 

also minimise the controller hardware costs.
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T a b l e s

Table A l . l  - Dynamic parameters used for manipulator model
system parameter nominal value 30% variation
mass of member 1: mi 10 kg 13 kg
mass of member 2: m2 10 kg 13 kg
moment of inertia 1: J\ 0.5 kgm2 0.65 kgm2
moment of inertia 2: J2 0.5 kgm2 0.65 kgm2
distance centre of gravity 1 - joint 1: Zci 500 mm 650 mm
distance centre of gravity 2 - joint 2: Zc 2 500 mm 650 mm
length of member 1: l\ 1000 mm 1300 mm
friction coefficient 1: k\ 75 Nms 52.5 Nms
friction coefficient 2: ki lONms 7 Nms
actuator gain 1: k\ 40 NmV-1 -

actuator gain 2: 20 NmV-1 -

Table A 1.2 - PD-feedback controller gains
member 1 member 2

proportional gain kpi 5.2 1.95
velocity gain kpi 0.7228 0.4758

Table A 1.3 - Upper and lower parameter bounds used in VSAC algorithm
lo w e r  b o u n d system  p a ra m e te r u p p e r  b o u n d

/lmin = 6 kg < mi < /lmax = 14 kg
flmm ~ 6 kg < m2 < flmax = 14 kg
/3min = 0.3 kgm2 < Ji < /3max = 0.7 kgm2
/4min = 0.3 kgm2 < h < /4max = 0.7 kgm2
/5min = 45 Nms < /cl < fsmax = 105 Nms
/>min = 6 Nms < fc2 < /> max = 14  Nms
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F ig u r e s

Figure A 1.1 - Schematic of 2D0F manipulator

gravity compensation 1  \cross coupling terms and external disturbances 
g js )  I  XM )+ fi(s)+ Tj

control
signal
u,<s) dynamics of link i

Gp(s)

measured displacement
6 /s )

Figure AL2  - Circuit diagram of individual link PD-feedback controller with 
reference velocity and acceleration feed-forward and gravity 
compensation
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A 2 D y n a m ic  E q u a t i o n s  o f  a  2 D O F  M a n i p u l a t o r

A2.1 Dynamic P a ram eters  o f  La g ra n g e  E quation

In the case of a 2DOF manipulator as depicted in Figure A l the following 

dynamics system matrices and vectors for the Lagrange equation (A 1.1) are obtained:

'M n J f B'

with

M(0) =
\ M 2j ^22 J

v(@,©)= -  sint>2 -  2m2Z1/c2$ 1$ 2 sin # 2

nhhhi&i sin ^ 2

F(0) =
r k A '

\ k 1 '&2 J

G(0) = g
-  mj,cj sin t?j -  sin ̂  2 s in ^  + &2)

-mJLa  sin(tf,+#2)

MY2 ~ ĥJ'cl ^2̂ c2 2̂̂ 1 ^^2^c2 COSt?2

^ 1 2  =  J 2 + ” h l c2 + m 2 l l lc2 C0S# 2

Af2i — M 12

^22 ~ *̂2 '̂hl'c2

(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)

(A2.6)

(A2.7)

(A2.8)

A 2.2  S tate-S pa c e  R epresen ta tio n  o f  th e  Dynamic E q u a tio n s  

o f  a 2D O F  Manipulator

Considering a 2DOF manipulator as depicted in Figure A l the following 

vectors represent the system state, its derivative and the applied control signal:

x  =

'A "
A
A

f u ^

# 2

II , U =
<u 2 ;

A , A ;

(A2.9)

The matrices and vectors in the dynamic state-space equation (Equation (A 1.5)) are:
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A =

0 1
C\

0 0
Co0 1 0 L

Ai 7,1
0 0 0 1
0 J i- <s1o r i“  h

Ai <Ai

B =

\

r 0 
K_
Ai 
0

k
V ^  2

0

J t\
0

f  l  _L  
7., + 7.

/(f) =
\J2J

with

8 AO = 8
f W - a )»/#1 »/ rO

sintfj

V Al

J  . =  J. +  m l .xi i i ci

7« =  7 „ +  m,l,

/ ,  = —— ( -  (i>, + # 2)cosi?2 +(i>,2 +t?2)sini?2 + 2t?,tj2 sin#2) 
*/ #1

 ̂ s (  1 1
f * ~  \  j  + jJ t\ J  x l  J

.62
COS 1 2̂ +  $ 2 — COS# 2  ~  # ! _L  + J _

V Al Jx2 J
sin A

-  #22 sin t?2 -  2 $ji>2 “7 " sin #2
Ai Ai

In general the matrices A  and B  are of the form:

A? 0 0 ••• Q y

A A*3 0 0

A - 0 a 32 A A t  - 0

,0 0 0 . . .  4J-1

(A2.10)

(A 2.ll)

(A2.12)

(A2.13)

(A2.14)

(A2.15)

(A2.16)

(A2.17)

(A2.18)
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( b , 0 0 ...  o '

Bl B l 0 ... 0

B  = 0 B l B t B l ...  0 (A2

0 0 ... B T 1 Bu

where n represents the number of links of the manipulator. Therefore, the 2DOF 

manipulator matrices can be written as:

A  =

B  =

A, A,2'

A2y

'B , B,2'

I»2

(A2.20)

(A2.21)
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