238 research outputs found

    (1) time Parallel Agorithm for Finding 2D Convex Hull on a Reconfigurable Mesh Computer Architecture

    Get PDF
    In this paper we propose a parallel algorithm in image processing in (1) time, intended for a parallel machine '' Reconfigurable Mesh Computer (RMC), of size n x n Elementary Processors (PE). The algorithm consists in determining the convex envelope of a two-level 2D image with a complexity in (1) time. The approach used is purely geometric. It is based solely on the projection of the coordinates of PEs retained in specific quadrants and on the application of the algorithm that determines the Min / Max in (1) time. This has reduced the complexity of the algorithm for determining the convex hull at (1) time

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination

    Computing Approximate Solutions to the Art Gallery Problem and Watchman Route Problem by Means of Photon Mapping

    Get PDF
    Wireless sensor networks (WSNs) can be partitioned component sensor nodes (SNs) who are meant to operate and sense information arriving from multiple spectra in their environment. Determining where to place a single SN or multiple SNs such that the amount of information gained is maximized while the number of SNs used to gain that information is minimized is an instance of solving the art gallery problem (AGP). In order to solve the AGP, we present the Sensor Placement Optimization via Queries (SPOQ) algorithm that uses level sets populated by queries to a photon map in order to find observation points that sense as many photons as possible. Since we are using photon mapping as our means of modeling how information is conveyed, SPOQ can then take into account static or dynamic environmental conditions and can use exploratory or precomputed sensing. Unmanned vehicles can be designated more generally as UxVs where “x” indicates the environment they are expected to operate – either in the air, on the ground, underwater or on the water’s surface. Determining how to plan an optimal route by a single UxV or multiple UxVs operating in their environment such that the amount of information gained is maximized while the cost of gaining that information is minimized is an instance of solving the watchman route problem (WRP). In order to solve the WRP, we present the Photon-mapping-Informed active-Contour Route Designator (PICRD) algorithm. PICRD heuristically solves the WRP by utilizing SPOQ’s AGP-solving vertices and connecting them with the high visibility vertices provided by a photon-mapping informed Chan-Vese segmentation mesh using a shortest-route path-finding algorithm. Since we are using photon-mapping as our foundation for determining sensor coverage by the PICRD algorithm, we can then take into account the behavior of photons as they propagate through the various environmental conditions that might be encountered by a single or multiple UxVs

    Tangible Scalar Fields

    Get PDF
    Data Visualization is a field that explores how to most efficiently convey information to the user, most often via visual representations like plots, graphs or glyphs. While this field of research has had great growth within the last couple of years, most of the work has been focused on the visual part of the human visual and auditory system - much less visualization work has been done in regards to the visually impaired. In this thesis, we will look at some previous methods and techniques for visualizing scalar fields via the sense of touch, and additionally provide two novel approaches to visualize a two-dimensional scalar field. Our first approach creates passive physicalizations from a scalar field in a semi-automatic pipeline by encoding the scalar value and field coordinates as positions in 3D space, which we use to construct a triangular mesh built from hexagonal pillars that can be printed on a 3D printer. We further enhance our mesh by encoding a directional attribute on the pillars, creating a visual encoding of the model orientation and improving upon a readability issue by mirroring the mesh. Our second approach uses a haptic force-feedback device to simulate the feeling of moving across a surface based on the scalar field by replicating three physical forces: the normal force, the friction force and the gravity force. We also further extend our approach by introducing a local encoding of global information about the scalar field via a volume representation build from the scalar field.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Mixed initiative planning and control of UAV teams for persistent surveillance

    Get PDF
    Tese de mestrado. Mestrado Integrado em Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    AUTOMATED TREE-LEVEL FOREST QUANTIFICATION USING AIRBORNE LIDAR

    Get PDF
    Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree canopy layers. Using the stratification method, we modeled the occlusion of higher canopy layers with respect to point density. We also present a distributed computing approach that enables processing the massive data of an arbitrarily large forest. Lastly, we investigated using deep learning for coniferous/deciduous classification of point cloud segments representing individual tree crowns. We applied the developed methods to the University of Kentucky Robinson Forest, a natural, majorly deciduous, closed-canopy forest. 90% of overstory and 47% of understory trees were detected with false positive rates of 14% and 2% respectively. Vertical stratification improved the detection rate of understory trees to 67% at the cost of increasing their false positive rate to 12%. According to our occlusion model, a point density of about 170 pt/m² is needed to segment understory trees located in the third layer as accurately as overstory trees. Using our distributed processing method, we segmented about two million trees within a 7400-ha forest in 2.5 hours using 192 processing cores, showing a speedup of ~170. Our deep learning experiments showed high classification accuracies (~82% coniferous and ~90% deciduous) without the need to manually assemble the features. In conclusion, the methods developed are steps forward to remote, accurate quantification of large natural forests at the individual tree level

    민감한 정보를 보호할 수 있는 프라이버시 보존 기계학습 기술 개발

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 산업공학과, 2022. 8. 이재욱.최근 인공지능의 성공에는 여러 가지 요인이 있으나, 새로운 알고리즘의 개발과 정제된 데이터 양의 기하급수적인 증가로 인한 영향이 크다. 따라서 기계학습 모델과 데이터는 실재적 가치를 가지게 되며, 현실 세계에서 개인 또는 기업은 학습된 모델 또는 학습에 사용할 데이터를 제공함으로써 이익을 얻을 수 있다. 그러나, 데이터 또는 모델의 공유는 개인의 민감 정보를 유출함으로써 프라이버시의 침해로 이어질 수 있다는 사실이 밝혀지고 있다. 본 논문의 목표는 민감 정보를 보호할 수 있는 프라이버시 보존 기계학습 방법론을 개발하는 것이다. 이를 위해 최근 활발히 연구되고 있는 두 가지 프라이버시 보존 기술, 즉 동형 암호와 차분 프라이버시를 사용한다. 먼저, 동형 암호는 암호화된 데이터에 대해 기계학습 알고리즘을 적용 가능하게 함으로써 데이터의 프라이버시를 보호할 수 있다. 그러나 동형 암호를 활용한 연산은 기존의 연산에 비해 매우 큰 연산 시간을 요구하므로 효율적인 알고리즘을 구성하는 것이 중요하다. 효율적인 연산을 위해 우리는 두 가지 접근법을 사용한다. 첫 번째는 학습 단계에서의 연산량을 줄이는 것이다. 학습 단계에서부터 동형 암호를 적용하면 학습 데이터의 프라이버시를 함께 보호할 수 있으므로 추론 단계에서만 동형 암호를 적용하는 것에 비해 프라이버시의 범위가 넓어지지만, 그만큼 연산량이 늘어난다. 본 논문에서는 일부 가장 중요한 정보만을 암호화함으로써 학습 단계를 효율적으로 하는 방법론을 제안한다. 구체적으로, 일부 민감 변수가 암호화되어 있을 때 연산량을 매우 줄일 수 있는 릿지 회귀 알고리즘을 개발한다. 또한 개발된 알고리즘을 확장시켜 동형 암호 친화적이지 않은 파라미터 탐색 과정을 최대한 제거할 수 있는 새로운 로지스틱 회귀 알고리즘을 함께 제안한다. 효율적인 연산을 위한 두 번째 접근법은 동형 암호를 기계학습의 추론 단계에서만 사용하는 것이다. 이를 통해 시험 데이터의 직접적인 노출을 막을 수 있다. 본 논문에서는 서포트 벡터 군집화 모델에 대한 동형 암호 친화적 추론 방법을 제안한다. 동형 암호는 여러 가지 위협에 대해서 데이터와 모델 정보를 보호할 수 있으나, 학습된 모델을 통해 새로운 데이터에 대한 추론 서비스를 제공할 때 추론 결과로부터 모델과 학습 데이터를 보호하지 못한다. 연구를 통해 공격자가 자신이 가진 데이터와 그 데이터에 대한 추론 결과만을 이용하여 이용하여 모델과 학습 데이터에 대한 정보를 추출할 수 있음이 밝혀지고 있다. 예를 들어, 공격자는 특정 데이터가 학습 데이터에 포함되어 있는지 아닌지를 추론할 수 있다. 차분 프라이버시는 학습된 모델에 대한 특정 데이터 샘플의 영향을 줄임으로써 이러한 공격에 대한 방어를 보장하는 프라이버시 기술이다. 차분 프라이버시는 프라이버시의 수준을 정량적으로 표현함으로써 원하는 만큼의 프라이버시를 충족시킬 수 있지만, 프라이버시를 충족시키기 위해서는 알고리즘에 그만큼의 무작위성을 더해야 하므로 모델의 성능을 떨어뜨린다. 따라서, 본문에서는 모스 이론을 이용하여 차분 프라이버시 군집화 방법론의 프라이버시를 유지하면서도 그 성능을 끌어올리는 새로운 방법론을 제안한다. 본 논문에서 개발하는 프라이버시 보존 기계학습 방법론은 각기 다른 수준에서 프라이버시를 보호하며, 따라서 상호 보완적이다. 제안된 방법론들은 하나의 통합 시스템을 구축하여 기계학습이 개인의 민감 정보롤 보호해야 하는 여러 분야에서 더욱 널리 사용될 수 있도록 하는 기대 효과를 가진다.Recent development of artificial intelligence systems has been driven by various factors such as the development of new algorithms and the the explosive increase in the amount of available data. In the real-world scenarios, individuals or corporations benefit by providing data for training a machine learning model or the trained model. However, it has been revealed that sharing of data or the model can lead to invasion of personal privacy by leaking personal sensitive information. In this dissertation, we focus on developing privacy-preserving machine learning methods which can protect sensitive information. Homomorphic encryption can protect the privacy of data and the models because machine learning algorithms can be applied to encrypted data, but requires much larger computation time than conventional operations. For efficient computation, we take two approaches. The first is to reduce the amount of computation in the training phase. We present an efficient training algorithm by encrypting only few important information. In specific, we develop a ridge regression algorithm that greatly reduces the amount of computation when one or two sensitive variables are encrypted. Furthermore, we extend the method to apply it to classification problems by developing a new logistic regression algorithm that can maximally exclude searching of hyper-parameters that are not suitable for machine learning with homomorphic encryption. Another approach is to apply homomorphic encryption only when the trained model is used for inference, which prevents direct exposure of the test data and the model information. We propose a homomorphic-encryption-friendly algorithm for inference of support based clustering. Though homomorphic encryption can prevent various threats to data and the model information, it cannot defend against secondary attacks through inference APIs. It has been reported that an adversary can extract information about the training data only with his or her input and the corresponding output of the model. For instance, the adversary can determine whether specific data is included in the training data or not. Differential privacy is a mathematical concept which guarantees defense against those attacks by reducing the impact of specific data samples on the trained model. Differential privacy has the advantage of being able to quantitatively express the degree of privacy, but it reduces the utility of the model by adding randomness to the algorithm. Therefore, we propose a novel method which can improve the utility while maintaining the privacy of differentially private clustering algorithms by utilizing Morse theory. The privacy-preserving machine learning methods proposed in this paper can complement each other to prevent different levels of attacks. We expect that our methods can construct an integrated system and be applied to various domains where machine learning involves sensitive personal information.Chapter 1 Introduction 1 1.1 Motivation of the Dissertation 1 1.2 Aims of the Dissertation 7 1.3 Organization of the Dissertation 10 Chapter 2 Preliminaries 11 2.1 Homomorphic Encryption 11 2.2 Differential Privacy 14 Chapter 3 Efficient Homomorphic Encryption Framework for Ridge Regression 18 3.1 Problem Statement 18 3.2 Framework 22 3.3 Proposed Method 25 3.3.1 Regression with one Encrypted Sensitive Variable 25 3.3.2 Regression with two Encrypted Sensitive Variables 30 3.3.3 Adversarial Perturbation Against Attribute Inference Attack 35 3.3.4 Algorithm for Ridge Regression 36 3.3.5 Algorithm for Adversarial Perturbation 37 3.4 Experiments 40 3.4.1 Experimental Setting 40 3.4.2 Experimental Results 42 3.5 Chapter Summary 47 Chapter 4 Parameter-free Homomorphic-encryption-friendly Logistic Regression 53 4.1 Problem Statement 53 4.2 Proposed Method 56 4.2.1 Motivation 56 4.2.2 Framework 58 4.3 Theoretical Results 63 4.4 Experiments 68 4.4.1 Experimental Setting 68 4.4.2 Experimental Results 70 4.5 Chapter Summary 75 Chapter 5 Homomorphic-encryption-friendly Evaluation for Support Vector Clustering 76 5.1 Problem Statement 76 5.2 Background 78 5.2.1 CKKS scheme 78 5.2.2 SVC 80 5.3 Proposed Method 82 5.4 Experiments 86 5.4.1 Experimental Setting 86 5.4.2 Experimental Results 87 5.5 Chapter Summary 89 Chapter 6 Differentially Private Mixture of Gaussians Clustering with Morse Theory 95 6.1 Problem Statement 95 6.2 Background 98 6.2.1 Mixture of Gaussians 98 6.2.2 Morse Theory 99 6.2.3 Dynamical System Perspective 101 6.3 Proposed Method 104 6.3.1 Differentially private clustering 105 6.3.2 Transition equilibrium vectors and the weighted graph 108 6.3.3 Hierarchical merging of sub-clusters 111 6.4 Theoretical Results 112 6.5 Experiments 117 6.5.1 Experimental Setting 117 6.5.2 Experimental Results 119 6.6 Chapter Summary 122 Chapter 7 Conclusion 124 7.1 Conclusion 124 7.2 Future Direction 126 Bibliography 128 국문초록 154박

    Human shape modelling for carried object detection and segmentation

    Get PDF
    La détection des objets transportés est un des prérequis pour développer des systèmes qui cherchent à comprendre les activités impliquant des personnes et des objets. Cette thèse présente de nouvelles méthodes pour détecter et segmenter les objets transportés dans des vidéos de surveillance. Les contributions sont divisées en trois principaux chapitres. Dans le premier chapitre, nous introduisons notre détecteur d’objets transportés, qui nous permet de détecter un type générique d’objets. Nous formulons la détection d’objets transportés comme un problème de classification de contours. Nous classifions le contour des objets mobiles en deux classes : objets transportés et personnes. Un masque de probabilités est généré pour le contour d’une personne basé sur un ensemble d’exemplaires (ECE) de personnes qui marchent ou se tiennent debout de différents points de vue. Les contours qui ne correspondent pas au masque de probabilités généré sont considérés comme des candidats pour être des objets transportés. Ensuite, une région est assignée à chaque objet transporté en utilisant la Coupe Biaisée Normalisée (BNC) avec une probabilité obtenue par une fonction pondérée de son chevauchement avec l’hypothèse du masque de contours de la personne et du premier plan segmenté. Finalement, les objets transportés sont détectés en appliquant une Suppression des Non-Maxima (NMS) qui élimine les scores trop bas pour les objets candidats. Le deuxième chapitre de contribution présente une approche pour détecter des objets transportés avec une méthode innovatrice pour extraire des caractéristiques des régions d’avant-plan basée sur leurs contours locaux et l’information des super-pixels. Initiallement, un objet bougeant dans une séquence vidéo est segmente en super-pixels sous plusieurs échelles. Ensuite, les régions ressemblant à des personnes dans l’avant-plan sont identifiées en utilisant un ensemble de caractéristiques extraites de super-pixels dans un codebook de formes locales. Ici, les régions ressemblant à des humains sont équivalentes au masque de probabilités de la première méthode (ECE). Notre deuxième détecteur d’objets transportés bénéficie du nouveau descripteur de caractéristiques pour produire une carte de probabilité plus précise. Les compléments des super-pixels correspondants aux régions ressemblant à des personnes dans l’avant-plan sont considérés comme une carte de probabilité des objets transportés. Finalement, chaque groupe de super-pixels voisins avec une haute probabilité d’objets transportés et qui ont un fort support de bordure sont fusionnés pour former un objet transporté. Finalement, dans le troisième chapitre, nous présentons une méthode pour détecter et segmenter les objets transportés. La méthode proposée adopte le nouveau descripteur basé sur les super-pixels pour iii identifier les régions ressemblant à des objets transportés en utilisant la modélisation de la forme humaine. En utilisant l’information spatio-temporelle des régions candidates, la consistance des objets transportés récurrents, vus dans le temps, est obtenue et sert à détecter les objets transportés. Enfin, les régions d’objets transportés sont raffinées en intégrant de l’information sur leur apparence et leur position à travers le temps avec une extension spatio-temporelle de GrabCut. Cette étape finale sert à segmenter avec précision les objets transportés dans les séquences vidéo. Nos méthodes sont complètement automatiques, et font des suppositions minimales sur les personnes, les objets transportés, et les les séquences vidéo. Nous évaluons les méthodes décrites en utilisant deux ensembles de données, PETS 2006 et i-Lids AVSS. Nous évaluons notre détecteur et nos méthodes de segmentation en les comparant avec l’état de l’art. L’évaluation expérimentale sur les deux ensembles de données démontre que notre détecteur d’objets transportés et nos méthodes de segmentation surpassent de façon significative les algorithmes compétiteurs.Detecting carried objects is one of the requirements for developing systems that reason about activities involving people and objects. This thesis presents novel methods to detect and segment carried objects in surveillance videos. The contributions are divided into three main chapters. In the first, we introduce our carried object detector which allows to detect a generic class of objects. We formulate carried object detection in terms of a contour classification problem. We classify moving object contours into two classes: carried object and person. A probability mask for person’s contours is generated based on an ensemble of contour exemplars (ECE) of walking/standing humans in different viewing directions. Contours that are not falling in the generated hypothesis mask are considered as candidates for carried object contours. Then, a region is assigned to each carried object candidate contour using Biased Normalized Cut (BNC) with a probability obtained by a weighted function of its overlap with the person’s contour hypothesis mask and segmented foreground. Finally, carried objects are detected by applying a Non-Maximum Suppression (NMS) method which eliminates the low score carried object candidates. The second contribution presents an approach to detect carried objects with an innovative method for extracting features from foreground regions based on their local contours and superpixel information. Initially, a moving object in a video frame is segmented into multi-scale superpixels. Then human-like regions in the foreground area are identified by matching a set of extracted features from superpixels against a codebook of local shapes. Here the definition of human like regions is equivalent to a person’s probability map in our first proposed method (ECE). Our second carried object detector benefits from the novel feature descriptor to produce a more accurate probability map. Complement of the matching probabilities of superpixels to human-like regions in the foreground are considered as a carried object probability map. At the end, each group of neighboring superpixels with a high carried object probability which has strong edge support is merged to form a carried object. Finally, in the third contribution we present a method to detect and segment carried objects. The proposed method adopts the new superpixel-based descriptor to identify carried object-like candidate regions using human shape modeling. Using spatio-temporal information of the candidate regions, consistency of recurring carried object candidates viewed over time is obtained and serves to detect carried objects. Last, the detected carried object regions are refined by integrating information of their appearances and their locations over time with a spatio-temporal extension of GrabCut. This final stage is used to accurately segment carried objects in frames. Our methods are fully automatic, and make minimal assumptions about a person, carried objects and videos. We evaluate the aforementioned methods using two available datasets PETS 2006 and i-Lids AVSS. We compare our detector and segmentation methods against a state-of-the-art detector. Experimental evaluation on the two datasets demonstrates that both our carried object detection and segmentation methods significantly outperform competing algorithms
    corecore