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ABSTRACT 

Wireless sensor networks (WSNs) can be partitioned into component sensor nodes (SNs) who 

are meant to sense information arriving from multiple spectra in their environment. Determining 

where to place SNs such that the amount of information gained is maximized while the number 

of SNs used to gain that information is minimized is an instance of solving the art gallery 

problem (AGP). In order to provide approximate solutions to the AGP, we present the Sensor 

Placement Optimization via Queries (SPOQ) algorithm that uses level sets populated by queries 

to a photon map in order to find observation points that sense as many photons as possible. Since 

we are using photon mapping as our means of modeling how information is conveyed, SPOQ 

can then take into account static or dynamic environmental conditions and can use exploratory or 

precomputed sensing. 

Unmanned vehicles can be designated more generally as UxVs where “x” indicates the 

environment they are expected to operate – either in the air, on the ground, underwater or on the 

water’s surface. Determining how to plan an optimal route by a single UxV or multiple UxVs 

operating in their environment such that the amount of information gained is maximized while 

the cost of gaining that information is minimized is an instance of solving the watchman route 

problem (WRP). In order to provide approximate solutions to the WRP, we present the Photon-

mapping-Informed active-Contour Route Designator (PICRD) algorithm. PICRD heuristically 

solves the WRP by utilizing SPOQ’s approximately optimal AGP-solving vertices and 

connecting them with the high visibility vertices provided by a photon-mapping-informed Chan-

Vese or k-means segmentation mesh using a shortest-route path-finding algorithm. Since we are 

using photon-mapping as our foundation for determining sensor coverage by the PICRD 
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algorithm, we can then take into account the behavior of photons as they propagate through the 

various environmental conditions that might be encountered by a single or multiple UxVs.  
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CHAPTER 1  
 
 
 

INTRODUCTION 
 

 

Quantifying the ability to see (or visibility) arises in many scientific fields such as rendering, 

visualization, surveillance, and navigation. One of the fundamental research problems 

confronting designers of wireless sensor networks (WSNs) and unmanned vehicles (UVs) 

concerns the attempt to assure that every portion of the WSN's or UV’s operational environment 

is sensed. Providing knowledge of an environment by a WSN or UV enhances the ability of 

those operating the WSN or UV to more fully understand what events are taking place in that 

environment and the subsequent actions that should be taken in response to those events. Lack of 

information (i.e. inadequate sensing) could conceal vital information that would compromise the 

ability of the WSN or UV operator to make an intelligent assessment of their environment. 

Therefore, the importance of quantifying and then optimizing visibility cannot be understated.   

1.1     Motivation behind Solving the Art Gallery Problem 

Wireless sensor networks applied to 3D spaces are gaining in importance for WSN researchers 

seeking to understand how to perform sensing in (typically) non-terrestrial environments. 

Applications are being created that assume that the WSN is deployed in the air or underwater 

where the constituent sensor nodes may occupy different heights or depths respectively. For 

example, small aerial wireless sensor nodes have been developed that are meant to perform fire 

monitoring [1]; underwater sensor nodes have been developed for the purpose of performing 

pollution monitoring [2]; another possible terrestrial 3D WSN application example would be the 
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placement of sensor nodes at varying heights in a forest in order to monitor and prevent the 

spread of forest fires [3]. 

Quantifying the ability of a WSN to sense the environment it is deployed in is known as 

the coverage problem [4]. This problem seeks to answer the question: “How well do the sensors 

monitor the space they occupy?” This question can be expressed as k-coverage [4] which asks 

“Given an integer k and a sensed region R, can it be assured that each point in R is monitored by 

k sensors?”  

The coverage problem has been considered by the mathematics community in the subject 

area known as visibility optimization [5]. One such visibility optimization problem is the art 

gallery problem (AGP) that derives its name from the hypothetical situation wherein an art 

gallery owner seeks to have every painting covered with as few sensors as possible. The AGP is 

similar to k-coverage except that it seeks to use the smallest k sensors necessary to assure that 

every point in R is covered by at least one sensor.  

Let D be a set of points which comprise a surface and let it be a member of the compact 

subset Ω of 
d
 where 

d
 is a d-dimensional subset of the real numbers. The AGP is posited as 

the following question:  

 What is the minimum number of sensors necessary to assure that every point in Ω is 

sensed [5]?  

The hidden assumption behind the formulation of the AGP is that all points in R that fall 

within the sensing range of the sensor are equally capable of being monitored from a given 

observation point. While this level of mathematical abstraction of an ideal environment and its 

sensor is useful, it does not take into account mitigating factors that can disrupt the ability of a 

sensor to obtain optimal coverage. Furthermore, works concerned with the AGP [5], [6] and [7] 
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presume that the monitored space is known prior to the placement of the sensors – an assumption 

that cannot hold valid in changing environments. This leads us to pose the following questions: 

1. How does the WSN researcher determine how to solve the AGP in an online manner in 

3D environments that have not been explored yet or have been altered after the passage 

of a unit of time? 

2. How does a WSN researcher determine how to solve the AGP in 3D environments that 

are less than ideal (such as those prone to fog, dust, rain and so forth)? 

3. How does a WSN researcher determine how to solve the AGP in 3D environments 

wherein the ability of a given sensor to sense its surroundings changes with time (such as 

a monitored space transitioning from day to nighttime)? 

Consideration of these questions is becoming more important as higher-quality 

simulations are demanded by WSN researchers. Enhancing the realism of the expected 

environmental circumstances in which the WSN will operate can save deployment and 

infrastructure costs when attempting to understand the WSN's operational outcome. Furthermore, 

the ability of the researcher to optimize the placement of a WSN under realistic scenarios leads 

to greater quality of service and efficiency. For example, if a certain sensor node is useful only 

during the day due to its location but becomes useless at night, it can conserve its battery life by 

waiting to activate during the day in order to best cover its space to be monitored. 

In order to be able to address these questions, we examine the nature of the photon. The 

photon is the fundamental quantum constituent of electromagnetic (EM) radiation. Since sensors 

are meant to detect some member of the EM spectrum, the photon may also be regarded as being 

responsible for transferring information from a point in the monitored space to the sensor that 

detects them. Such a notion of photons being the enablers of sensing is intuitively and 
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scientifically confirmed by the fact that our eyes’ ability to see is a consequence of visible-light-

photons reflecting off of surfaces and triggering the biochemical reactions necessary to allow 

sight [8]. 

When a sensor node is regarded as being responsible for detecting the energy transmitted 

by the photons that reflect off of a surface in an environment, the AGP can be recast by asking 

the following question:  

 What is the minimum number of sensors necessary to assure that every photon available 

to convey information about Ω is sensed?  

Computing approximate solutions to this formulation of the AGP relies upon the creation 

of a model describing how a set of photons will be propagated through a 3D virtual environment. 

Having this photon propagation model allows us to address the three questions posed above in 

the following manner: 

 The first question can be addressed by containing the result of applying a 3D photon 

propagation model in a low-memory data structure that returns the number of photons 

sensed in a particular area quickly. Such a data structure enables fast exploration of an 

unknown or changing environment in order to determine the best location to place a 

sensor so that it may sense as many photons as possible.  

 The second question can be addressed by an understanding of how the 3D photon 

propagation model gets altered by the less-than-ideal environmental circumstances the 

photons encounter. The best location to place a sensor may then take into consideration 

the photon’s behavior after it has been affected by these less-than-ideal circumstances.  
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 The third question can be addressed by altering the number of photons used in the 3D 

photon propagation model. A photon-rich environment simulates a daytime circumstance 

whereas a photon-poor environment simulates a nighttime circumstance. 

Modeling the behavior of photons is a well-established area of study in the graphics community 

and one such algorithm that produces a photon model and data structure that meets our 

requirements is photon mapping [9]. The photon mapping algorithm provides us with the 

following:  

 The presumption that virtual photons are propagated in a 3D virtual environment,  

 The use of a balanced k-d tree data structure [10] (known as a photon map) requiring 

O(log p) query time and O(p) memory to store the results propagating p photons, 

 

 The ability to take into account how participating media affects the behavior of photons 

that propagate within the 3D virtual environment, and 

 The ability to alter the number of photons that will propagate through the virtual 

environment. 

1.2     Motivation behind Solving the Watchman Route Problem 

Unmanned vehicles are gaining wider use and applicability as their operating environments 

continue to expand. These unmanned vehicles can be designated more generally as UxVs where 

“x” indicates the environment they are expected to operate – either in the Air, on the Ground, 

Underwater or on the water’s Surface. In order to maximize the UxV’s utility within these 

operating environments, it is necessary to understand how to plan an optimal route within the 

context of the UxV’s operating environment such that the amount of information gained by the 
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UxV is maximized and the cost of gaining that information is minimized. Furthermore, when 

simulating the operation of the UxV in a 3D virtual environment, it is necessary to have a set of 

possible waypoints that may be selected or discarded when portions of the 3D virtual 

environment become forbidden or impassable.  

Determining an optimal route which maximizes the amount of information obtained 

while minimizing the consumption of resources is a matter of solving a visibility optimization 

problem known as the watchman route problem (WRP). The algorithm we will present in this 

dissertation is meant to provide a set of candidate waypoints in a 3D simulated environment to 

allow for greater adaptation in choosing a route to solve the WRP while maintaining cognizance 

of environmental variability.  

The WRP derives its name from a hypothetical situation wherein an art gallery owner 

uses a watchman to monitor every painting in the gallery by using the minimum distance route 

through the gallery for the watchman to walk. The WRP is an optimization problem that seeks to 

find the minimum distance for an observer to trace through some environment such that every 

point in that environment is monitored. The WRP is considered to be an NP-hard problem. 

Let D be a set of points which comprise a surface and let it be a member of the compact 

subset Ω of 
d
 where 

d
 is a d-dimensional subset of the real numbers. The WRP is posited as 

the following question: 

 What is the shortest UxV route available such that the maximum number of points found 

in Ω are sensed [5]? 

The typical assumption made about the environment the UxV is supposed to operate 

within while solving the WRP is that it is both unchanging and a vacuum. These assumptions do 

not hold up in the real world where various events which may prevent a UxV from obtaining the 
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information required to solve the WRP. The questions that were asked and the answers provided 

by the photon mapping algorithm in Section 1.1 with regard to the AGP may be applied with 

equal relevance to the WRP.  Thus, in our UxV path-planning context, the WRP is posed as the 

following question: 

 What is the shortest UxV route available such that the maximum number of points in the 

environment are sensed? 

 A photon map, being ultimately a 3D query-able k-d tree, may be queried at some point 

in space in the virtual environment to yield a subset of the photons contained within it. The 

number of photons returned by the photon map at a point in space represents the amount of 

illumination-energy present at that point and may be regarded as its photon volume. (Conversely, 

if a point is not illuminated, it may be regarded as being shadowed.)  

In order to incorporate photon mapping into our watchman’s route designator, we use the 

Chan-Vese segmentation algorithm [11] on a set of candidate waypoints that have associated 

with them a photon volume. Having a measurement of a point's photon volume provides us with 

the ability to create a gradient distinguishing between those points in a 3D virtual environment 

which are shadowed from those that are illuminated. Establishing this sort of distinction is a 

prerequisite to being able to perform our photon-mapping-informed Chan-Vese segmentation 

method. When we say that we are using the Chan-Vese segmentation method, we are producing 

a 3D mesh within a 3D virtual environment, minimized with respect to the Mumford-Shah [12] 

energy functional, such that those vertices comprising the mesh may serve as UxV-path 

waypoints providing a greater photon volume than those waypoints which are not elements of the 

mesh. Furthermore, using photon-mapping as a means of informing the evolution of the Chan-

Vese segmentation algorithm’s segmentation boundary allows for the accommodation of 
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dynamic scenes which may also be affected by information-attenuating events per the four 

benefits provided by the photon mapping algorithm explained in the previous section.  

In order to assure that we will select the vertices with the highest photon volume, we 

choose initializing waypoints for our Chan-Vese segmentation algorithm that solve the art 

gallery problem (AGP). The AGP is closely related to the WRP in the sense that it is an NP-hard 

visibility optimization problem concerned with selecting the minimum number of points in space 

that offer complete visibility. The difference between the WRP and AGP is that the AGP is 

concerned only with selecting fixed points in space but it is not concerned with finding the 

shortest path connecting them. As we will show, making the effort to solve the AGP in order to 

generate the initial vertices for the Chan-Vese segmentation algorithm provides us with the 

maximum probability of segmentation occurring and also assures us that the vertices comprising 

the segmentation mesh have greater  photon volume than those vertices not within the mesh. 

Once this segmentation mesh is created, a conventional shortest-path-finding algorithm 

can then be applied to connect the vertices contained within the segmentation mesh to solve the 

AGP. These connected vertices lead to the production of a shortest path which senses more 

photons than a path that does not utilize the vertices provided by the mesh. The WRP is then 

solved immediately in a heuristic manner since the WRP route will be designated by choosing 

the shortest route from elements comprising a minimum-energy mesh encompassing the 

(approximately optimal) AGP-solving vertices. Furthermore, since our approximately optimal 

AGP-solver (described in Chapter 4) does not require foreknowledge of the 3D environment it is 

placed within, we can then (randomly) discard or add vertices prior to generating approximate 

solutions to the AGP (and subsequently the WRP) in order to simulate forbidden zones or 

moving obstacles within our virtual environment. 
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1.3     Dissertation Outline 

This dissertation is organized thusly: Chapter 2 provides a literature review of works concerning 

the AGP, Chan-Vese segmentation algorithm and the WRP. Chapter 3 provides an in-depth 

discussion regarding the photon mapping algorithm and how it may be used to measure 

coverage. Chapter 4 provides a description of our approximately optimal AGP-solver. Chapter 5 

provides a discussion of our version of the Chan-Vese segmentation algorithm. Chapter 6 shows 

how the efforts described in Chapters 5 and 6 produce our WPR-solver. Chapter 7 discusses what 

future work we expect to emanate from this research. 

1.4     Contributions from This Work 

The contributions arriving from this work are three-fold: 

1. We show how the use of the photon mapping algorithm, in combination with a modified 

prevailing approximately optimal AGP-solving algorithm, allows us to create an online 

approximate solution to the AGP that answers the three AGP-related questions given in 

Section 1.1.  

2. We have produced a 3D Chan-Vese segmentation method informed by the (multispectral) 

photon mapping algorithm and our approximately optimal AGP-solver that produces a 

mesh leading us to answer the questions given in Section 1.2.  

3. We have established an approximately optimal WRP-solver utilizing the Chan-Vese 

algorithm mentioned above to find the shortest path through a virtual environment while 

maximizing the number of photons sensed and taking into account dynamic, less-than-

perfect environments.  

Figure 1.1 below summarizes how these contributions link together.  
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Art Gallery 
Problem Solver 

(SPOQ) 

•Input: Photon 
map, 3D 
environment 

 

•Output: 
Approximate 
AGP-solving 
points 

Chan-Vese 
Segmentation 

•Input: Photon 
map, 3D 
environment, 
SPOQ-generated 
points from 
SPOQ 

 

•Output: A mesh 
containing 
vertices with 
high photon 
count 

Watchman 
Route Problem 
Solver (PICRD) 

•Input: Photon map, 
3D environment, 
AGP-solving points 
from SPOQ, C-V 
Mesh 

 

•Output: WRP-
solving route with 
higher visibility than 
would be 
obtainable 
otherwise 

Figure 1.1. Depiction of how the contributions described in this dissertation link together. 
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CHAPTER 2  
 
 
 

LITERATURE REVIEW 
 

 

2.1     Work Related to the Art Gallery Problem 

Consideration of how to solve the coverage problem has been the subject of much research. 

These efforts can be generally divided into two categories. The first category is dedicated to 

producing an algorithm meant to establish and maintaining coverage and the second category is 

dedicated to a theoretical analysis of coverage performance.  

Algorithms have been developed to maintain sensor coverage while using the minimum 

number of sensors [13] and [14]. These efforts presume that the sensing range is a circle and can 

sense something within their sensing range with certainty. Other efforts to maintain sensing 

coverage make the same circular sensing range assumption but have a probabilistic sensing 

ability [15] and [16]. Theoretical studies regarding how to solve the k-coverage problem have 

been formulated for different sensor deployment strategies [17]. These studies presume that the 

sensing range is circular and can sense whatever is within their sensing range with certainty. 

Another study [18] continues to presume that sensor has a disc-shaped sensing range, but inject 

some probability-based uncertainty in the sensor’s ability to provide coverage. 

Most articles published about obtaining sensor coverage presume that the virtual 

environment to be sensed is 2D. There have been a few works [19] and [20] published which 

presume that the environment to be sensed is 3D. These works presume that the sensor is 

surrounded by some space-filling volume which represents the limits of their omnidirectional 
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sensor’s range. Their aim is to place the sensors in the 3D virtual environment in such a way that 

fills up as much space as possible while using as few sensors as possible.  

A key feature of the previous efforts is the construction of a sensor grid where the virtual 

sensors will be placed. In the 2D and 3D cases, the sensor grid is created by placing a tessellated 

set of points or a space filling volume filled with points, respectively, on the environment to be 

sensed such that a sensor positioned at point x is displaced from its neighboring by some 

distance. In both the 2D and 3D cases, there exists the possibility of having an object (whose 

dimensions are defined by surfaces) occupying the environment to be sensed such that no sensor 

grid point may be placed inside the boundaries of these objects. 

In the mathematics community, sensor coverage is given the name visibility coverage [5].  

Whatever is covered within the sensing range of a sensor is regarded as being visible. The sensor 

is regarded as an observer and the position the observer resides is an observer station. The sensor 

grid mentioned above is thus called an observer grid. Determining what is visible by an observer 

is accomplished by tracing a ray from the observer station until it intersects with an object. The 

point of intersection on the object is thus regarded as being visible and is thus observed. 

Let O be a set of points that comprise a surface and let it be a member of the compact 

subset Ω of 
d
 where 

d
 is a d-dimensional subset of the real numbers. The set O is an occluder 

residing in environment Ω. The set X = Ω \ O is the set of points in which an omnidirectional 

observer may be stationed and xo  X is some observer station. An observer grid G X 

comprises of a sequence of points g0, g1, … gn wherein element gi is separated by its neighboring 

elements by some distance such that the distance does not exceed the boundaries of G. This 

distance assumption ensures that at least one observer station is found within the confines of G. 

The AGP is posited by the mathematics community as the following question: 
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 What is the minimal number of observers necessary to ensure that the maximum number 

of points in Ω are observed? 

In [5], Tsai et al formulated a method for achieving visibility in a 3D virtual environment 

without considering optimal observer placement. Building upon this work, Cheng and Tsai [7] 

solved the AGP by dismissing global optimality and considered only local maxima as a suitable 

solution. This is due to the fact that the AGP is known to be non-convex and thus gradient ascent 

methods are incapable of determining globally optimized visibility coverage [6]. Goroshin, et al 

[6] expanded upon the work of Cheng and Tsai by providing a greedy iterative algorithm within 

the level set framework in order to solve the AGP. 

The efforts made by Cheng, Tsai, et al and Goroshin et al have centered on using the so-

called “fast visibility sweeping” algorithm as a means of performing “implicit ray tracing” [6] in 

order to provide the information necessary for providing approximate solutions to the AGP in 

both 2D and 3D environments. 

Given environment Ω, a known environment allows the observers to have already sensed 

Ω prior to computing approximate solutions to the AGP. An unknown environment means that 

observers cannot have sensed Ω prior to computing approximate solutions to the AGP and 

further implies that they will have to explore X or G in order to solve the AGP. 

The level set methods advanced in [5, 6, 7] are useful in a known environment. The 

computational cost of the AGP-related algorithms presented in [5, 6, 7] is O(lm) steps where l is 

the number of sensors and m is the number of observation points in the virtual environment. 

Furthermore, in order to perform the visibility calculation in [6], the visibility of every single 

observer point must be precomputed and stored in memory at a cost of O(m
2d

) memory where m 
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is the number of elements contained in the environment in consideration and d is the dimension 

of the environment. 

2.2     Work Related to the Chan-Vese Segmentation Algorithm 

The level set method of segmentation is a means of modeling how a segmenting curve’s 

boundary will propagate with time without the need to worry about the movement of an 

individual point on that segmenting curve’s boundary. The initial condition for the level set 

method of image segmentation is a closed curve introduced at some region of interest to be 

segmented within the image. The basic idea is to advance the segmenting curve’s boundary as a 

so-called active contour or snake [21] where the boundary is expected to eventually wrap around 

the perimeter of an area of interest in the image to be segmented. The level set method of image 

segmentation is particularly useful when one desires to segment an image with complex topology 

or faces the possibility that the evolving curve’s boundary will split during the segmentation 

[22].  

Chan and Vese [11] introduced a method for advancing the segmenting curve’s boundary 

that utilized the well-posed case of the Mumford-Shah functional [12] that is minimized when 

the segmenting curve’s boundary reaches the perimeter of the area of interest to be segmented 

within the image. Hence, their energy function, or “fitting term”, established a search criterion 

for the segmenting boundary’s advancement and halting.  

The topic of segmentation of 3D volumes without using the Chan-Vese method has been 

considered in [23], [24] and [25]. In [23] they perform segmentation using multiple discretization 

equations for solving the curvature term. In [24] they perform segmentation without the need to 

solve a PDE. In [25] they use multiple “smoothing terms” in order to control the evolution of the 

segmenting boundary.  
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2.3   Work Related to Path Planning and the Watchman Route Problem 

UxV path planning is a broad field of study. It may be roughly divided into two categories: 

quantitative navigation and topological navigation [26]. Topological navigation is concerned 

strictly with finding a particular path from a starting point to an end goal. Topological navigation 

is different from quantitative navigation in the sense that it is not concerned with a quantitative 

measure of optimality in order to achieve a goal [27]. Quantitative and topological path planning 

depend on creating a representation of the space the UxV is expected to navigate within, 

accommodating dynamic environments and computational tractability.  

 The representation of the environment in which the UxV is expected to navigate is its 

configuration space [26]. A configuration space may be three dimensional on the x-, y- and z-

axes. Three further dimensions may be added if the UxV can exhibit yaw, pitch or roll in the , 

,  angles,  respectively. A graph data structure can be used to represent the configuration space. 

The most popular configuration space graph representation is a two-dimensional set of 

tessellated grid points [26]. However, the representation could be that of a Voronoi graph or 

octree [28]. Quantitative path planning algorithms usually divide the path into a set of sub-goals - 

known as waypoints - which are fixed points found in the space the UxV is expected to navigate 

within. These waypoints are then sequentially navigated to until all waypoint sub-goals have 

been accomplished in a manner that is optimal.  

 The optimality of the path obtained is a matter of measurement by some metric. This 

metric may be the shortest amount of time taken, smallest energy consumption, the shortest 

distance traveled or safety [27]. One possible means of obtaining a shortest-path-length metric 

may be assigning a numerical weight to an edge connecting two vertices in the configuration 

space’s representative graph. The path-planner would then find the optimal path when it 
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designates a route with the smallest total edge weight [29]. A possible WRP solver would obtain 

optimality if it found the smallest total edge weight that allows it to traverse between its path 

waypoints while maximizing how much of the environment is sensed while taking that path.  

 The use of PDE-based level set and fast marching techniques for shortest path planning 

have been discussed in [30] and [31]. In [30] and [31] Kimmel and Sethian developed a means of 

creating a set of evolving curves for the purpose of determining the shortest path length 

necessary to reach a goal. Given a starting point xo and destination point xd, fast marching 

methods were used to create a level set curve originating at xo that rippled iteratively outward 

until a level set curve intersected point xd. A path was then traced from xd back to xo such that 

each path waypoint intersected orthogonally with a previous smaller-perimeter iteration of the 

evolving curve. Each waypoint is separated by a minimum arc length. The advantage of their fast 

marching method was the ability of the evolving front to “flow around” obstacles and thus 

provide an easy rejection of paths that might be blocked.  

 Consideration of how to solve the WRP using PDE-based variational techniques has been 

considered previously in [6], [5] and [7]. In [5], [6] and [7] the authors approached the WRP by 

representing the WRP objectives as energy functionals and the watchman’s route was 

represented as an implicit curve based upon the use of level sets. The authors in [5] evolved 

curves representing the watchman’s route according to gradient descent on the Euler-Lagrange 

equation of a visibility functional. In [6] Goroshin et al. devised a visibility functional that was 

locally maximized by using gradient ascent on the level set curve. In [7] the authors presented a 

3D variational path-planner that had applicability to visibility calculation (although this was not 

explicitly calculated). This involved adapting a preexisting level set framework for 

accommodating movement of curves in 3D space. Note that in a manner similar to the AGP, the 
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solution space for the WRP is non-convex and is only guaranteed to attain maximum visibility 

coverage within the configuration space while attaining a local minimum path length.  

Consideration of how to provide a solution to the WRP in a 3D virtual environment 

without using PDE to inform path- planning has been the subject of research previously by [32],   

[33], and [34]. The methods considered previously relied upon computing approximate solutions 

to the AGP and then using a traveling salesman problem (TSP) solver to connect the subsequent 

approximately optimal AGP-solving waypoints within the environment. The work of [32] 

applied their WRP-solution to the inspection of a ship’s hull. The work of [33] further refined the 

efforts made in [32] by offering a shorter, smoother WRP solution which took into account 

differential environmental changes in the TSP route edges. The efforts made by [34] built upon 

the work of [35] but with the application of a k-d tree to make fast approximately optimal AGP-

solving sensor coverage queries on the way towards obtaining an approximate solution to the 

WRP using a TSP solver.  

Dynamic environments can experience effects which may alter the ability of the UxV to 

maneuver in their environment. In [27] Lolla et al. constructed a fast marching method similar in 

concept to that found in [31] which provides a shortest path length solution to Unmanned 

Underwater Vehicle (UUV) path planning. Their path-planner is distinguished by the fact that it 

takes into account environmental effects arriving from simulated variable ocean current flow in a 

2D configuration space. 

 It is important to note that the previously-considered 3D WRP-related algorithms assume 

a static configuration space that is known prior to their algorithm’s execution and are thus not 

meant to accommodate dynamic environments. We will show that since our approximately 

optimal AGP-solving algorithm does not assume a known environment prior to deployment, we 
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may then take into account dynamic environments. Furthermore, we will show that a naïvely-

generated shortest route is not unique. It is possible to create a short route that provides better 

visibility coverage by first utilizing a segmentation algorithm to generate shortest-path waypoints 

with greater visibility. Having this ability to alter a watchman’s route using an online 

approximately optimal AGP-solving method enhances UxV autonomy by promoting 

adaptability. We will provide scenarios in our Results section that demonstrate how to alter the 

watchman's route (which are ultimately applicable to UxV routes) under changing environmental 

circumstances. 

 It is also important to note that each AGP and WRP solution assumes that the 

configuration space in which the solution is determined remains static and is not subject to 

varying environmental conditions. Our goal is to combine the ability to represent environmental 

attenuating effects on visibility by means of photon mapping with AGP and WRP solutions in 

order to provide more physically-accurate results. 

2.4     Chapter Summary 

The AGP and WRP are important problems in the fields of surveillance and UxV path-planning. 

Previous AGP solutions did not use a structured photon transport model to measure how the 

sensors would behave in different environmental conditions. Previous WRP solutions did not 

treat path development as a segmentation problem. We will show how the inclusion of photon-

mapping and segmentation algorithms lead to more robust solutions to the AGP and WRP. 
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CHAPTER 3  
 
 
 

PHOTON MAPPING  
 

 
This work proposes a new coverage formulation that utilizes the modeling of photons through 

the photon mapping algorithm. We show how this algorithm provides us with the means to 

answer the three questions posed in Section 1.1. Photon mapping is a global illumination 

algorithm that is typically associated with graphics rendering software and is known for its 

ability to provide high-quality physics-accurate representations of a given 3D virtual 

environment [9]. Photon mapping is a two-pass algorithm comprised of constructing a photon 

map in the first pass and performing rendering in the second. 

3.1     Constructing the Photon Map 

The first pass is composed of three actions: emitting photons, propagating photons and then 

storing photons [9]. The first action entails allocating p virtual photons and then launching them 

into the 3D virtual environment from an arbitrarily-located photon source. The second action 

entails tracing the photons' movements - or bounces - through the 3D virtual environment until 

each photon has either been absorbed, has left the confines of the 3D virtual environment or has 

made a predefined number of bounces. The third action entails storing the photon's power, final 

point of intersection, and direction of entry with a surface in the 3D environment in a photon 

map (whose data structure is that of a balanced  k-d tree) [10]. 

A virtual photon's initial direction is randomly selected based upon whether the photon 

source is spherical, rectangular or directional. Each photon is assumed to be of equal intensity 

and has a fragment of the total energy contained in the emitter. This energy for an individual 
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photon is given by the equation 𝑒 = (ℎ ∙ 𝑐) ⁄  where h is Planck’s constant, c is the speed of 

light in a vacuum and  is the photon’s wavelength. Note that a photon to be emitted by a photon 

source need not be confined to the visible light spectrum; it may in fact represent any member of 

the EM spectrum since a given photon's energy is a function of its wavelength. Usually, the 

power variable in a virtual photon's data structure is a triple representing the power scale in the 

red, green and blue wavelengths [9]. However, multiple wavelengths could be used [36] and 

[37]. 

After a photon propagates through the 3D environment and then impinges upon a surface, 

the photon may be absorbed, reflected or transmitted depending upon the material properties of 

the surface it strikes. The determination as to whether a photon is absorbed, transmitted or 

reflected is accomplished by means of the Russian roulette Monte Carlo technique [9] and [38]. 

If the photon is absorbed by a surface, no further action will be taken. If the photon is reflected, it 

will either be reflected by a specular-reflective surface (such as polished metal) or a diffusely-

reflective surface (such as a wooden desk). When a photon strikes a specular-reflective surface, 

the reflected direction is determined by the mirror's reflection angle [39]. Should the photon 

strike a diffusely-reflective surface, the photon is stored in the photon map and then reflected but 

in a direction determined by the bidirectional reflectance distribution function (BRDF) [40].  If 

the photon is transmitted, the photon is not stored in the photon map and Snell's law is used to 

determine its outgoing direction. These concepts are illustrated in Figure 3.1. 
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The Russian Roulette Monte Carlo technique was first introduced in the context of 

particle physics and is used to eliminate unimportant photons.  If a photon is absorbed, for 

example, then no further action need be taken and thus computational resources can be expended 

only on those photons that are either transmitted or reflected and thus contribute to the observer's 

understanding of the scene monitored. Let   [0, 1] be a uniformly distributed random variable. 

The probabilities for a photon to be absorbed, reflected or transmitted is decided thusly: 

 𝜖 [0, 𝑑] → diffuse reflection
 𝜖 (𝑑, 𝑠 + 𝑑] → specular reflection

 𝜖 (𝑠 + 𝑑, 𝑠 + 𝑑 + 𝑡]
 𝜖 (𝑠 + 𝑑 + 𝑡, 1]

→
→

transmission
absorption

 

Figure 3.1: Here is a stylized version of a photon map in a simple box scene. Photon a is 

diffusely reflected until it is absorbed, photon b is specularly reflected and photon c is 

diffusely reflected until it leaves the environment. Note the presence of the photon source in 

the upper center of the environment.  
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where d, s are the material’s diffuse and specular reflection coeffients, respectively and t is its 

transmission coeffient. The accommodation of photons that lie outside the bandwidth of visible 

light may be accomplished by adjusting the probabilities of absorption, reflection and 

transmission. 

Multiple photon maps may be used to store photons that manifest different types of 

behavior [9]. One such photon map is the caustic photon map which stores photons that are 

purely transmissive before hitting a diffuse surface. For the purposes of this work, we will use 

only one photon map known as the global photon map. 

3.1.1     Participating Media 

When we want to take into account the effects of participating media such as fog, rain, smoke 

and so forth, Jensen advocates the use of a volume photon map which stores the photons' 

interaction with the media [9]. Adjustments to the propagation of the photons through the media 

are made based upon the media's density, whether it is hetero- or homogeneous and whether or 

not the photon's scattering by the media is anisotropic. The photons which escape interaction 

with the participating media are stored in a global photon map per the rules explained above. The 

concept of participating media as it applies to photon mapping is illustrated in Figure 3.2. 

3.2     Using the Photon Map 

The photons contained in the photon map have conventionally been used in the second pass of 

the photon mapping algorithm by a ray-tracer in order to provide a rendering of a 3D virtual 

environment. Rendering is achieved by determining the total amount of energy radiated from 

every surface in the virtual environment which has been intersected by a ray cast by a ray-tracer 

at some observation point. A query to the photon map yields those photons that contribute to the 

radiant energy - expressed as a color - found at that point of intersection. A query takes the shape 
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of a sphere (or query-sphere) of radius r centered at point xo (or query-point). For our purposes, 

the query-sphere and the query-point are analogous to a sensor node's (or UxV’s) sensing range 

and location, respectively. Since the photon map utilized by the photon mapping algorithm is 

guaranteed to be balanced, the computational cost of getting the photons that populate the query 

sphere is O(log p) where p is the total number of photons launched in the virtual environment. 

The memory requirement is O(p).The query-point and point of intersection on the radiating 

surface are traditionally regarded as equivalent. But we claim that we are not limited by this 

presupposition.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Photon scattering in the participating media in the center of the figure is stored 

in a volume photon map whereas those photons which strike the diffusely-reflective 

surface on the left are stored in the global photon map. Photons in both maps can be 

perceived by the sensor on the right. 
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The query-sphere can also be regarded as a means of gathering the ambient energy and 

therefore information emanating from surfaces in the environment to be sensed. If a photon 

stored within the photon map is located a distance which is less than or equal to r, that virtual 

photon is returned by the photon map. In Section 3.2 we will discuss how we decide if the 

returned photon is indeed visible to the sensor. By making a sensor’s sensing range to be the 

equivalent in dimension of a query-sphere, we presume that sensors are omnidirectional. This 

presumption limits the types of sensors that we can model. We will discuss how to overcome this 

limitation in Chapter 5, Section 5.1  

3.3     Using the Photon Map to Measure Coverage 

The photon map stores the photon's power, final point of intersection on a surface and direction 

of entry. In our application, the stored photons are modified in their data structure in that they 

store the surface's normal vector translated to point of the photon's intersection. We will show 

how this variable aids in the determination of the coverage of a monitored space. 

A query-point may be placed near a thin wall and the volume of query-sphere may 

contain visible-light-photons from both sides of the thin wall which are invisible to the query 

point but may still falsely contribute to the visible surface’s covered photons. This concept of 

having both visible and invisible photons in the query sphere is illustrated in Figure 3.3. 
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Distinguishing between those photons that are responsible for contributing to the sensor’s 

ability to sense and those that don't is a well-established problem in photon mapping and has 

been subject to consideration previously [9, 41]. We use the name photon culling to describe the 

act of testing and removing those photons found within the query-sphere which do not contribute 

to sensor coverage. Those photons which are occluded by an intervening obstacle are said to be 

shadowed.  The idea of distinguishing between photons which contribute to the radiant energy of 

a surface and those that don't was first mentioned in [42] with the introduction of so-called 

shadow photons who reside on surfaces that are oriented away from the direct illumination of the 

photon source. This was done as a means of establishing where shadows will lie when the scene 

is rendered from a prescribed observation point. Another attempt at establishing whether a 

Figure 3.3: The query sphere can encompass photons on surfaces that are visible (white) 

and shadowed (black). 
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photon is relevant was done in [43] with the introduction of importance maps containing 

important photons or “importons” which concentrate photons in those areas which are most 

likely to be visible to an observer at a prescribed observation point. Since it cannot be known a 

priori where our sensors will be placed in order to optimally obtain the most information, we 

cannot know in advance what photons will be shadowed and what photons will be important. We 

must focus our attention strictly to culling those shadowed photons which are within the volume 

of the query-sphere. That is to say, we must focus on keeping those photons which contribute to 

the ability of the sensor to cover the area monitored at that sensors observation point. 

A means of culling non-contributing photons is to perform a dot product test on the 

normal vector emanating from point of intersection of the photon and the query-point. If the dot 

product performed on the query-point and the normal emanating from the point upon which the 

photon resides is greater than 0, then the query-point and the point of intersection are connected 

to one another and thus visible to one another. This technique for photon culling is similar to 

what was proposed by Jensen in [9]. 

The dot product test has a computation time of O(q) and is thus fast but it cannot decide if 

there is an intervening polygon between the query-point and tested photon. The dot product test 

can yield photons that have a positive visibility dot product but are in fact occluded. This concept 

is illustrated in Figure 3.4.  

The photons for which the dot product test has been applied are thus called invisible 

(have a negative dot product test), falsely-visible (have a positive dot product test but are 

occluded by a thin  
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wall) or truly-visible (have a positive dot product test and have no intervening obstacle between 

them and the query-point). Those photons which may be either invisible or visible are regarded 

as potentially-visible. The dot product test can be avoided if the surfaces in the 3D environment  

are known to be convex and of sufficient thickness such that no query sphere's volume will also 

accommodate potentially non-contributing photons. 

When no such assumption can be made, a means of distinguishing between falsely- and 

truly-visible photons from the set of potentially-visible photons is the hidden point removal 

(HPR) algorithm [44]. This algorithm has been applied to point clouds on object surfaces as a 

means of distinguishing between those surface points which are visible. In our case, this 

algorithm can be applied to the “cloud” of photons surrounding the query-point to cull useless 

photons. 

Figure 3.4: The dot product test can determine if a photon is visible (a) or invisible (b) but 

allows for false positives (c). 
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Given a query-sphere of radius r centered at the query-point xo and containing the 

photons  Q = {pi |1≤ i ≤ q} sampling a surface S, the goal of HPR is to determine whether photon 

pi is visible from point xo. The algorithm consists of first performing spherical inversion on the 

points in Q and then performing convex hull construction on the inverted points. Those points 

which reside on the convex hull are considered visible. The algorithm does not assume that the 

topology of the surface upon which the photons reside is known nor does it assume the 

availability of the normal vectors emanating from the photons. The HPR algorithm has a 

computational complexity of O(q ∙ logq). 

Since the point cloud necessary for HPR’s operation is the result of performing a query 

on a balanced k-d tree, the computational cost of getting the photons that populate Q is O(log p) 

where p is the total number of photons launched in the virtual environment. Hence, a photon map 

query augmented by the HPR photon culling algorithm has a computational complexity of O(q 

logq logp) where q < p. However, if HPR is not used, the dot product test can be substituted for 

a computational cost of O(q logp). Of course if the surfaces are thick enough to accommodate 

the query sphere without the possibility of including falsely-visible photons, all photon culling 

tests can be ignored resulting in a computational cost of O(logp). 

3.4     Chapter Summary 

Photon mapping is a well-established algorithm that is typically associated with graphics 

rendering software and is known for its ability to provide high quality, physically-accurate 

representations of a given virtual environment while also considering the effects of participating 

media [9]. Photon mapping is a two-pass algorithm comprised of constructing a photon map in 

the first pass and performing rendering in the second. 
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The first pass entails sending photons from a photon source out into a 3D virtual 

environment and then storing the photons in a photon map. When a photon impinges upon a 

surface, the photon's point of intersection, color and exiting direction are stored in memory in the 

photon map. After intersecting with a surface, the photon's probability of reflecting, absorbing or 

transmitting/refracting is provided by the material's properties and is chosen using the Russian 

roulette Monte Carlo method [38]. If the photon is absorbed, no further action is performed. If 

reflected, a new direction for the photon is determined using the bidirectional reflectance 

distribution function [40]. If the photon is transmitted, Snell’s Law is used as a means of 

determining its exiting direction. Note that as the photon map is being constructed, the effects of 

the participating media that the photons must traverse through may also be accounted for [9]. 

Those photons which escape interaction with the participating media are stored in a global 

photon map whereas those photons which interact with the participating media are stored in a 

volume photon map. Furthermore, the type of photon considered by the photon map construction 

pass need not be confined to the visible light portion of the EM spectrum and may, in fact, 

represent any member of the EM spectrum [36, 37]. Accommodating photons that lie outside the 

visible light portion of the EM spectrum is a matter of adjusting the probabilities of interaction 

with the materials comprising the models within the virtual environment.  

The photons contained in the photon map have conventionally been used in the second 

pass of the photon mapping algorithm by a ray-tracer in order to provide a rendering of the 3D 

virtual environment. Photon mapping provides a means of evaluating what can be sensed at a 

particular juncture in space by using the queries that would have been used to enhance ray 

tracing for the purpose of determining what can be sensed in the form of a photon count or 

photon volume. 
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CHAPTER 4  
 
 
 

A NEW APPROACH TO COMPUTING APPROXIMATE 

SOLUTIONS TO THE ART GALLERY PROBLEM 
 

 
By using the photon mapping algorithm, we are now enabled with the ability to provide 

approximate solutions to the AGP while taking into consideration the three questions we have 

posed in Section 1.1. The photons are all assumed to be propagating in a 3D environment. The 

photon map’s data structure has information that may be accessed quickly, and whose memory 

requirements are scalable. By using a volumetric photon map, we may take into account 

participating media and by controlling the number of photons launched into a virtual 

environment we can simulate a photon-rich or photon-poor environment.  For the purposes of 

our work, we are not advocating the utilization of the photon map algorithm in the traditional 

manner. What we are proposing is the use of the second pass of the photon mapping algorithm as 

a means of providing an assessment of the ability to cover a 3D surface, not as a means of 

helping to render that surface.  

4.1     Establishing Conditions for Our Approximate AGP-solver 

Our approximately optimal AGP-solver relies upon the creation of a three-dimensional grid of 

points surrounding the virtual environment’s 3D models. Successful generation of approximately 

optimal AGP-solving observation posts depends upon two things: 

1. The construction of a sensor-position grid G, and 

2. The correct determination of the number of photons (or photon volume) capable of being                                                                                        

sensed by the sensor occupying a grid point. 
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Once these conditions are met, we may then provide an approximate solution to the AGP 

in a 3D virtual environment.  

4.1.1     Construction of a sensor-position grid 

Let O be a set of points which comprise a surface and let it be a member of the compact subset  

Ω  
3
. The set O is an occluder residing in environment Ω. The set X = Ω\O is the set of points 

in which a (possibly) omnidirectional sensor node may be stationed and xo  X is some sensor 

station. A sensor-position grid G X is comprised of a sequence of points g0, g1, … gn wherein 

element gi is separated by its neighboring elements by some distance such that the distance does 

not exceed the boundaries of G. (This distance assumption ensures that at least one sensor station 

is found within the confines of G.) 

4.1.2     Establishing visibility for a sensor at an observation point 

Understanding which photons are responsible for contributing to a sensor’s ability to perceive 

their surroundings and those that do not is a well-established problem in photon mapping and has 

been discussed previously in Chapter 3.3.  

4.2     Combining Concepts 

Given x  O representing a point on the occluder’s surface that has been illuminated by the 

photon mapping algorithm and a sensor residing at point go  G in the virtual environment, a 

photon map query supplemented with a photon culling method described in Chapter 3.3 produces 

the following function  f : R→D such that range R = {(x, go) | x, go  
3
 and go  x} and domain 

D = {
+
 if x has a photon visible to go; 0 if a photon has been completely absorbed at x; 

-
 if x 

has a photon not visible to go} where 
+ 

 and 
- 

are the sets of positive and negative real 

numbers, respectively.  
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Having this function available leads to the production of the following level set function 

[6]: 

𝛷(𝑥; 𝑔𝑜) = 𝑚𝑖𝑛
𝑧∈𝐿(𝑥,𝑔𝑜)

𝛹(𝑧) (1) 

 

where Φ is non-positive at x when x is invisible to the sensor at go and positive otherwise,       

L(x, go) is a line segment connecting the sensor at the grid point xo to the point x and Ψ > 0 when 

z is an unobstructed line segment connecting x and go. This function permits the distinction 

between the surfaces which are and are not visible to a sensor. In our terminology, the function 

distinguishes between those photons (and the surfaces they illuminate) which are (in)visible to a 

sensor. 

Given the grid points, g0, g1, … gn and the set of photon-illuminated points y0, y1 … yp 

residing on the surfaces of the occluders O, the establishment of visibility is a consequence of 

determining the amount of non-occluded space encompassed within the viewing area sensed by n 

sensors. This concept is expressed in the following equation inspired by [6] 

 

𝑉(𝑔0, 𝑔1, … 𝑔𝑛) =  ∑𝐻(∑𝐻(𝛷(𝑦𝑘; 𝑔𝑖))

𝑛

𝑖=0

)

𝑝

𝑘=0

  

 

 

(2) 

where H(•) is the one-dimensional Heaviside step function, with H(0) = 0. The entire possible 

visible volume is 

∑𝐻(𝛹(𝑦𝑘))

𝑝

𝑘=0

 

 

 

(3) 
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The normalized visible volume, 𝑉𝑛𝑜𝑟𝑚, describes the fraction of coverage proved by the sensors 

and is provided by the following equation 

𝑉𝑛𝑜𝑟𝑚 =
∑ (∑ 𝐻(𝛷(𝑦𝑘; 𝑥𝑖))

𝑛
𝑖=0 )𝑝

𝑘=0

∑ 𝐻(𝛹(𝑦𝑘))
𝑝
𝑘=0

 
 

(4) 

and 0 ≤ 𝑉𝑛𝑜𝑟𝑚 ≤ 1. 

The method for establishing sensor placement in order to achieve maximum coverage is 

provided by the following equation 

𝑎𝑟𝑔𝑚𝑎𝑥
𝑔𝑗∈𝐺

∑𝐻

(

 
 
𝐻 (𝛷(𝑦𝑘; 𝑔𝑗)) − 𝐻(∑𝐻(𝛷(𝑦𝑘; 𝑔𝑖))

𝑛

𝑖=0
𝑖≠𝑗

)

)

 
 

𝑝

𝑘=0

 

 

 

(5) 

 

 

 

The first term gives the visible region provided by the jth sensor. The second term is the visible 

volume of photons provided by all other sensors. 

The equation provides an exhaustive search of the optimal location for one sensor at a 

time. The process is repeated for each sensor in a manner similar to simulated annealing. 

According to [6] “the optimal sensor positions may not be unique; therefore an optimal position 

is chosen at random in order to avoid limit cycles. Observers are updated in random order for the 

same reason.” 

The pseudocode for the Sensor Placement Optimization via Queries (SPOQ) algorithm 

responsible for computing approximate solutions to the AGP in a known environment Ω is 

inspired by [6] and is given below. 
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Algorithm 1 SPOQ 

1. Construct a photon map 

2. for gi  G do 

3. Store the p photons observed by gi 

4.  end for 

5. Initialize using Equation (4) 

6. Initialize = 0 

7. while > do 

8.          for all n sensors do 

9.               choose a sensor j at random without replacement 

10.             find a globally optimal solution to Eq. (5) for sensor j 

11.        end for 

12.       

13.      Recompute using new sensor positions 

14. end while 

 

 

What distinguishes this version of SPOQ from [6] is that at each grid point gi  G, the 

number of photons obtained at that grid point are stored prior to executing the while loop. In an 

unexplored environment, then steps 1 – 4 would be omitted and step 10 would entail making a 

query to the photon map rather than doing a look up of what had been stored previously at grid 

point gi.  

We use the following algorithm detailing the steps taken in step 10 of SPOQ: 
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Algorithm 2 SPOQ: Photon query step 

1. Set sensor j’s visibility to 0 

2. Get the current visibility volume for all sensors other than j 

3. for all gi  G do 

4.    Search the photon map to get photons who contribute to the visibility of sensor j using   

photon culling 

5.       Set the visible volume equal to the summation of all previously seen visible volumes 

6. end for 

7. Select maximum visible volume 

 

 

 

Recall that distinguishing between those photons that contribute to visibility and those that do 

not is a matter of culling those photons which do not contribute to visibility via the dot-product 

test or some other means described in Section 3.3. 

The significance of this effort is that it allows for the realization of an online 

approximately optimal AGP-solver. This property is achieved by the fact that once a sensor-

position grid or photon map has been altered, fast photon map queries allow for SPOQ to adapt 

the selection of approximately optimal AGP-solving points in reaction to the grid’s alteration. As 

we shall see in Chapter 6, having this online ability to provide approximately optimal solutions 

to the AGP can enhance UxV autonomy by promoting route-adaptability.  

4.2.1      Algorithm Analysis 

By using queries to the photon mapping algorithm's photon map as input to SPOQ, it then 

becomes possible to solve the AGP problems while taking into account participating media in 

complex 3D virtual environments illuminated by different types of EM radiation. The 



 

36 

 

computation and memory requirements depend on the number of photon sources used and 

whether the environment is known or unknown. When dealing with an unknown environment, 

for each of the l sensors who will occupy the m observation points, queries to the photon map 

with photon culling have a computational cost of O(q logq logp)  where p is the number of 

photons launched into the virtual environment, q is the number of photons returned by a query 

and q < p.  The visibility optimization in an unknown environment requires O((lm)  q logq  

logp) operations whereas a known environment requires O(lm) operations where l << m. The 

difference stems from the fact that in an unknown environment a new photon map query with 

photon culling must be performed at each sensor position in order to update the information 

obtained as the sensor explores the 3D virtual environment whereas in a known environment the 

photon map query result may be precomputed at each observation point and then utilized by each 

respective sensor. The memory requirement is O(rp) for r photon sources where r is is an integer 

greater than or equal to 1 for an unknown environment and O(lmq) for a known environment. 

4.2.2     Addressing the Three Questions Posed In Section 1.1 

When addressing the questions posed in Section 1.1, the prospect of providing coverage in a 3D 

environment arrives immediately as a result of the very nature of the use of photon mapping. 

Every photon used to solve the AGP is presumed to propagate in a 3D environment.  

The first question is addressed by the fact that our SPOQ method is capable of handling 

either known or unknown environments. The second question is addressed by SPOQ by 

introducing the concept of a volumetric photon map; we can simulate the behavior of 

participating media [9, 45]. The third question is addressed by SPOQ by considering that in 

photon-rich or photon-poor environments such as that encountered during day or night time 

respectively; SPOQ can determine where to put sensors in order to capture as much information 
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as possible. All gradations of light availability can be modeled by simply varying the number of 

photons and photon sources used in the simulated environment. 

4.2.3     Steps Taken to Solve the AGP Using SPOQ 

The SPOQ method may be used by following the steps given below:  

1. Create the virtual environment’s model  

2. Construct the sensor-position grid. 

3. Apply photon mapping to the virtual environment. 

4. Apply SPOQ 

5. Collect results. 

6. Alter the grid or model in some way 

7. Repeat steps 3 through 6. 

Step 1 entails using some modeling program. This program may be something similar to 

Google’s Sketchup [46] which offers many free well-crafted models through its 3D Warehouse 

[47]. Constructing the sensor-position grid in step 3 is a matter of determining the dimensions of 

the sensor-position grid and then populating it with points separated by some regular 

predetermined distance such that they do not exceed the dimensions of the sensor-position grid.  

Applying photon mapping in step 4 is a matter of deciding how many photons will be 

used. This choice can be used to simulate a photon rich (daytime) or photon poor (nighttime) 

environment. This step can also be a point where a volumetric photon map may be introduced.  

Application of SPOQ requires the user to set the dimensions of the sensor node’s sensing 

range (or the radius of the query-sphere). After application of SPOQ, the results are collected and 

the user now knows the positions that k sensors must occupy in order to sense as many photons 

as possible given their sensing range and environmental circumstances. 

4.3     Problem Statement 

To demonstrate the efficacy of our algorithm, we applied it to the following scenarios:  
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1. Using 1188 observer grid points and 2500, 5000 and 7500 photons cast on the Cityscape 

model; using 15000, 20000 and 25000 photons cast on the Canyon and Arena models 

with 990 and 2520 grid points, respectively.  

2. Using the same respective number of photons cast with a 6897-points observer grid for 

the Cityscape model; using a 1152- and 4550-point observer grid for the Canyon and 

Arena models, respectively. 

3. Repeating the first scenario but using randomly-generated forbidden zones constituting 

10%, 15% and 20% of the grid points available, and 

4. Repeating the first scenario but using a set of forbidden zones representing a moving 

obstacle constituting 10% of the grid points available moving gradually over 3 time steps. 

The first scenario may be regarded as a means of testing SPOQ with gradually increasing 

“brightness” in terms of photons launched, the second scenario represents the scalability of the 

SPOQ algorithm when applied to larger sensor-position grids and the last two scenarios represent 

an environment with increasing difficulty placing sensors. In each scenario, our goal is to show 

that we can sense as many photons as possible. In each case, we applied our algorithm to 2, 3, 4 

and 5 sensors. In all cases, the radius of the query sphere was set at the length of the arbitrary 

model depicted. Furthermore, in all cases, SPOQ was applied to an initially unknown 

environment. 

4.4     Results 

The first step mentioned above is shown below in Figure 4.1 with the city, Canyon and 

Arena models rendered using Sketchup. The construction of the accompanying sensor-position 

grid, application of photon mapping and the results of applying SPOQ for the three models are 

depicted respectively in Figures 4.2, 4.3, and 4.4. 
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Figure 4.1: This sequence of images depicts three 3D models rendered using Sketchup.  
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Figure 4.2: The yellow spheres represent the result of constructing a sensor grid to our 

three models  
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Figure 4.3: Here we see the result (white dots) of applying of photon mapping to our three 

models. 
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Figure 4.4: This sequence of images depicts the result of applying SPOQ to our three 

models. These points sense the maximum number of unique photons available. 
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The following tables represent the coverage obtained by the SPOQ simulation algorithm 

on the models depicted in the figures above using successively greater numbers of photons. The 

successively greater number of photons represents an environment that transitions from a photon 

poor or “dark” environment to a photon rich or “bright” environment. The environment was 

unknown prior to using SPOQ. 

 

 

 

 

 

 

 

Table 4.1: Coverage Obtained Under Circumstances Described by Scenario 1 

Observers % Photons Covered Time (seconds) 

Low Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.4 88.7 84.7 0.47 0.46 0.82 

3 92.9 90.7 87.4 0.33 0.55 0.93 

4 94.5 92.1 88.3 0.44 0.71 0.97 

5 93.4 92.4 89.1 0.73 0.88 1.1 

Medium Photon Count 

 City Canyon Arena City Canyon Arena 

2 90.2 89.7 85.3 0.7 0.61 3.5 

3 93.3 91.8 87.1 0.9 0.67 3.4 

4 93.5 92.1 87.9 1.1 1.2 4.2 

5 93.9 92.0 89.9 1.4 0.98 6.9 

High Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.6 91.9 85.4 0.89 0.9 1.0 

3 93.6 92.0 86.6 1.3 1.3 2.4 

4 93.2 92.2 87.9 1.2 1.8 3.5 

5 94.1 93.1 86.2 1.5 5.2 6.4 
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Table 4.2: Coverage Obtained Under Circumstances Described by Scenario 2 

Observers % Photons Covered Time (seconds) 

Low Photon Count 

 City Canyon Arena City Canyon Arena 

2 90.7 89.6 86.1 2.1 1.2 2.8 

3 94.2 91.3 87.5 3.1 1.9 3.6 

4 93.6 92.1 87.9 6.8 3.3 4.8 

5 94.2 92.3 88.3 8.4 4.2 7.5 

Medium Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.6 91.2 85.6 4.3 1.5 4.8 

3 93.6 92.1 87.4 6.1 1.8 5.6 

4 93.5 92.0 88.0 8.1 2.8 5.9 

5 94.1 92.3 88.9 6.8 3.1 7.2 

High Photon Count 

 City Canyon Arena City Canyon Arena 

2 90.2 91.4 85.6 6.1 1.6 4.1 

3 93.7 92.1 87.1 8.7 2.2 5.4 

4 95.1 92.3 88.2 9.1 3.3 7.2 

5 95.2 92.5 89.0 9.7 6.7 7.6 

 

 

 

 

 

Table 4.3: Coverage Obtained Under Circumstances Described by Scenario 3 

Observers % Photons Covered Time (seconds) 

Low Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.6 89.7 85.7 0.8 0.51 0.91 

3 92.9 90.4 86.4 0.86 0.54 1.1 

4 93.4 91.6 88.1 1.6 0.63 1.3 

5 93.6 92.2 88.7 1.9 0.91 1.4 

Medium Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.7 88.4 86.1 0.56 0.71 3.4 

3 92.7 91.5 86.2 0.83 0.77 4.0 

4 93.6 92.1 88.1 1.6 1.2 4.2 

5 93.1 92.6 89.9 1.4 1.3 7.2 

High Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.7 91.4 85.6 0.7 1.1 1.6 

3 93.4 92.5 86.8 1.0 1.5 3.5 

4 93.2 92.7 87.6 1.2 4.9 4.2 

5 92.1 93.1 87.9 1.3 6.2 5.9 
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Table 4.4: Coverage Obtained Under Circumstances Described by Scenario 4 

Observers % Photons Covered Time (seconds) 

Low Photon Count 

 City Canyon Arena City Canyon Arena 

2 88.9 87.4 85.6 0.8 0.50 1.2 

3 91.4 91.6 87.6 0.92 0.64 1.6 

4 93.6 92.4 88.2 1.1 0.74 2.3 

5 94.0 93.1 88.5 1.4 0.88 3.5 

Medium Photon Count 

 City Canyon Arena City Canyon Arena 

2 89.5 89.4 86.1 0.76 0.76 3.4 

3 92.4 90.5 86.5 1.1 0.82 4.5 

4 93.7 91.1 88.1 1.3 1.6 5.3 

5 92.2 92.2 89.7 1.4 2.1 7.6 

High Photon Count 

 City Canyon Arena City Canyon Arena 

2 90.7 91.1 86.3 0.91 2.1 2.3 

3 91.4 92.6 86.6 1.1 2.6 3.7 

4 92.5 92.8 87.5 1.3 5.9 5.2 

5 92.0 93.3 88.9 1.5 7.1 6.6 

 

 

 

 

 

 

4.5     Summary and Conclusions 

Determining optimal WSN coverage is an instance of the art gallery problem (AGP) which asks 

“What is the minimum number of sensors necessary to assure that every point in the monitored 

space is sensed?” We recast the AGP by asking the question “What is the minimum number of 

sensors necessary to assure that every photon available to convey information about the 

monitored space is sensed?” When the AGP is posited in this manner, we have a means of 

determining WSN coverage optimization that uses the modeled behavior of photons to be sensed. 

Modeling the propagation of a set of virtual photons through a virtual environment may be 

accomplished by the photon mapping algorithm. This algorithm produces a queryable data 

structure called a photon map containing the virtual photons’ contribution to the sensibility of the 
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virtual environment’s surfaces. In order to accomplish the goal of computing approximate 

solutions to the AGP in three dimensions, we present the Sensor Placement Optimization via 

Queries (SPOQ) algorithm that uses level sets populated by queries to a photon map in order to 

find observation points that sense as many photons as possible. Since we are using photon 

mapping as our means of modeling photons, SPOQ can take into account static or dynamic 

environmental conditions and can use exploratory or precomputed sensing. The SPOQ method is 

computationally efficient, requiring less memory than other approximately optimal AGP 

solutions. 

We have introduced a new means of computing approximately optimal solutions to the 

AGP that relies upon the modeling of a physical phenomenon. The introduction of photon 

mapping – which ultimately relies on stochastic means of determining the behavior of photons as 

the conveyors of information about an environment in order to solve the AGP – means that we 

cannot absolutely guarantee that every point lying on a 3D surface will be illuminated. Hence, 

we state that our solution is approximately optimal.  

An objection to our technique for achieving optimal visibility coverage is that by placing 

sensors at locations which are illuminated by photons, we are neglecting those areas which are 

not so illuminated. This objection is countered by simply using additional photon sources or by 

attaching a photon emitter to the photon sensor. The use of such a sensor/emitter sensor node 

configuration would necessarily entail longer photon map construction times and larger memory 

consumption, but would not affect the order of operation of the execution of SPOQ.  

Another objection to our method is that we have not stated exactly how many photons 

should be launched by a photon source in order to illuminate an environment. The question of 

exactly how many photons to use by a photon source is in fact an open topic of research that was 
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mentioned by Jensen [9]. More recently, the topic was considered in [48] wherein the authors 

discussed a progressive photon mapping method.  Their method starts with the launching of p 

photons and then increases the number of photons launched in the virtual environment until the 

correct radiance estimate for a surface is achieved. Understanding the optimal number of photons 

to launch from a photon source initially is a problem that is still under investigation. 

Another objection might be that we have assumed the use of an omnidirectional sensor. 

While such sensors do exist [49], a more realistic sensor would be a non-omnidirectional sensor 

which receives photons from a viewing frustum. This limitation is overcome by the fact that if 

we are given a query-sphere, we can carve it into a viewing frustum or any other shape. Once the 

query-sphere has been reshaped into a query-volume, we can make the query-volume directional 

by only allowing the inclusion of those photons that have arrived from a particular direction into 

the query-volume. For example, if we carve a query-sphere into a viewing frustum, we can make 

the viewing frustum only perceive those photons that have arrived from the front of the viewing 

frustum and exclude the rest. The SPOQ algorithm can then be applied as mentioned in Chapter 

4, Section 3.3 but we may limit its use to only the photons perceived at the viewing-frustum’s 

opening. 

  While we acknowledge these objections to the use of SPOQ, we believe that the 

advantages of SPOQ overwhelm these objections. We believe that SPOQ will prove useful for 

future research endeavors within the WSN community. 
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CHAPTER 5 
 
 
 

PHOTOM-MAPPING INFORMED MULTISPECTRAL CHAN-

VESE SEGMENTATION  
 

 

5.1     Motivation for Using the Chan-Vese Method of Segmentation 

As was discussed in Section 2.3, the variational watchman routes we presented were founded on 

minimizing an energy functional. In a similar manner, the motivation for using the Chan-Vese 

method of segmentation is to minimize the Mumford-Shah energy functional [12]. This 

functional – given below in section 5.3 - has typically been associated with image segmentation. 

Its purpose is to provide a minimum length curve in 2D space that defines the border of the 

region of interest in the image to be segmented. The key feature of the Chan-Vese method of 

segmentation is its ability to utilize the Mumford-Shah energy functional to evolve an initial 

segmentation curve such that it makes a distinction between pixels in an image [11]. The Chan-

Vese segmentation algorithm can thus be regarded as a search algorithm meant to establish such 

a distinction. “Energy minimization” for the Chan-Vese segmentation algorithm occurs when a 

smooth curve conforms to the boundary of the object to be segmented [11]. 

In order to understand and enable greater surveillance capabilities (for candidate 

waypoints that may solve the WRP) in arbitrary environments, it is necessary to take into 

account the influence of sensing spectra extending beyond the visible range as well as provide 

paths for the UxV responsible for performing surveillance to follow. Having a UxV capable of 

sensing its surroundings while it traverses to fixed points of visitation (or waypoints) leads us to 

ask the following questions:  
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1. How do we decide what areas are illuminated and which are not in order to best 

determine what is able to be sensed by a UxV? 

2. How do we inform the UxV’s waypoint path planner such that it will traverse through 

those areas which are more (or less) illuminated (and thus provide an approximately 

optimal solution to the WRP)? 

In order to answer these questions we will use photon mapping. Recall that the number of 

photons obtainable by a UxV at a point in space may be regarded as that point's photon volume. 

Conversely, if a point is not well-illuminated, it may be regarded as being shadowed. By using 

the photon mapping algorithm, we are enabled with the ability to distinguish between areas with 

greater and lesser photon volume in a 3D environment while taking into consideration the factors 

we considered in Chapter 1 namely: UxV-sensor attenuation due to environmental effects, 

multiple EM spectra, and UxV-sensing which has been altered after the passage of time. 

  When we say that we are performing segmentation, we mean that we are producing a 

connected 3D mesh within a 3D virtual environment such that those vertices comprising the 

mesh may serve as UxV waypoints affording a greater photon volume within the UxV's sensing 

range than waypoints who are not elements of the mesh.  This segmentation mesh allows us to 

answer the above questions in the following manner:  

1. The UxV’s sensing capabilities can be determined by a measurement of the photon 

volume  available within the UxV’s sensing range at a particular vertex on the mesh and  

2. Approximately optimal WRP-solving UxV routes can be confined to those vertices on the 

segmentation mesh that provide the greatest (or least) photon volume. 
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5.2     Utilizing the Chan-Vese Method of Segmentation 

Our segmentation method relies upon the creation of a connected three-dimensional grid of 

points (or vertices) surrounding the virtual environment’s 3D models such that these vertices 

sense more photons than would be sensed by elements not in the mesh. These points are 

waypoints contained in a UxV-position grid in which a UxV may move to or remain stationed. 

Successful segmentation results in the creation of a mesh encompassing those UxV-position 

points that possess greater photon volume within the UxV’s sensing range than those who do not. 

Successful segmentation depends upon three things: 

1. The construction of a UxV-position grid, 

2. The correct determination of the number of photons (or photon volume) capable of being 

sensed by the UxV occupying a grid point, and 

3. Initialization of the Chan-Vese segmentation algorithm.  

Once these three conditions are met, we may then segment the 3D virtual environment to 

obtain our desired results. 

5.2.1      Construction of a UxV-position grid 

Understanding how the UxV-position grid G is constructed is similar to how the sensor 

observation grid was constructed in Chapter 4.2 In our application; we assume an equal geodesic 

distance of one separating the grid points as well as full connectivity among the observer stations 

in G. 

5.2.2     Determining Which Photons are Perceptible 

Understanding which photons are responsible for contributing to a UxV’s ability to perceive 

their surroundings and those that do not has been considered previously in Chapter 3.3.  
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5.2.3     Establishing Initial Conditions for Chan-Vese Segmentation  

The establishment of the initial segmentation curve for the Chan-Vese segmentation method is of 

critical importance to the outcome of the segmentation. This topic has been considered 

previously in [50] and [51]. The essence of the initialization problem is expressed by the fact that 

if a local minimum is found at the beginning of the Chan-Vese segmentation method’s 

execution, then the segmenting curve will not advance.  

We propose a new means of establishing the Chan-Vese segmentation algorithm’s initial 

condition. Since our goal is to construct a mesh that maximizes the photon volume sensed at the 

vertices comprising the mesh, our initial condition will be a curve comprised of connected 

waypoints that have a high sensed photon volume. To establish the waypoints comprising this 

initial segmentation curve, we will solve the AGP using the SPOQ algorithm outlined in Chapter 

4.3.  

Recall that the AGP is posited by the mathematics community as the following question: 

 What is the minimal number of observers necessary to ensure that the maximum number 

of points in environment Ω are observed?  

In our case, we want to find the minimal number of observers necessary to ensure that the 

maximum number of uniquely-observable photon volume is obtained at a particular observation 

point. Having those UxV-position stations that provide maximum uniquely-observed photon 

volume allows us to establish an initial segmentation curve that provides the highest probability 

of performing segmentation. 

Given an environment  populated with a set of UxV-position grid points, G, illuminated 

by p photons, the SPOQ algorithm produces j grid points g0 … gj  G which have the greatest 

uniquely-observed photon volume sensed by a UxV stationed at a grid point g  g0 ... gj. The 
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initial segmentation curve is created by connecting the grid points comprising g0 ... gj by some 

means (such as Dijkstra’s path-finding algorithm [52]) such that they form a closed curve. Since 

the Chan-Vese segmentation algorithm relies upon region competition of energy gradients as a 

means of evolving the segmentation curve [11], the establishment of an initialization curve 

comprised of UxV-position grid points that are (highly) distinguished from neighboring grid 

point thus leads to a non-zero influence on the segmentation curve’s evolution. Hence, by taking 

the effort to solve the art gallery problem, we can ensure a high likelihood of segmentation 

occurring. 

5.3     Combining Concepts 

Given environment  containing UxV-position grid points G, let the function V:G{0}
+
 

represent the photon volume obtained by some means at an element of G. Our goal is to find a 

minimum to the functional F() below provided by Mumford and Shah [12] for some function 

:G. 
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(6) 

where µ, ,  1, 2 and b are arbitrarily defined parameters and H is the Heaviside function  

            𝐻(𝑥) =  
1

2
(1 + 

2

𝜋
tan−1 (

𝑥

𝜀
))                                

As the signed distance function  - or segmentation mesh - evolves, the values assumed for an 

input g  G are given below 
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{

 > 0, 𝑖𝑓 𝑔 is within the mesh                            
 = 0, 𝑖𝑓 𝑔 is on the perimeter of the mesh   
 < 0, 𝑖𝑓 𝑔 is outside the mesh                           

 

 

The Mumford-Shah functional [12] used by Chan and Vese [11] is obtained by setting µ = 0.5,   

 = 0, 1 = 1, 2 = 1and b = 1. (In our application, we do something similar.) The values of c1 

and c2 are the region averages of V in the respective regions where   0 and  < 0 and are given 

below. 

𝑐1 = 
∑ 𝑉 ∙ 𝐻(

𝑖
)𝑛

𝑖=1

∑ 𝐻(
𝑖
)𝑛

𝑖=1

 

𝑐2 = 
∑ 𝑉 ∙ (1 − 𝐻(

𝑖
))𝑛

𝑖=1

∑ (1 − 𝐻(
𝑖
))𝑛

𝑖=1

 

 In [11] Chan and Vese use Euler-Lagrange equations and the gradient descent method to 

produce the following discretized partial differential equation for the level set function  to 

minimize F() at a particular time step t.  

           
𝑡
= 𝛿ℎ()[µ ∙  −   −  1(𝑉 − 𝑐1)

2 + 2(𝑉 − 𝑐2)
2]       (7) 

where t is the level set representation of the evolving segmentation curve at some time step t,  

represents the segmentation curve’s curvature and 𝛿ℎ is the discrete delta function which ensures 

curve smoothness. In Chan and Vese’s original paper, the value of 𝛿ℎ was /((
2
 + 2

)) where  

is a (small) positive constant. In our application, the value of 𝛿ℎ is calculated by means of the 

algorithm provided by Smereka in [53].  

 We will now show how we discretize and solve the above PDE numerically in three 

dimensions. Let 
𝑖,𝑗,𝑘
𝑛

 denote the value of the evolving curve at grid point i,j,k at iterative step n. 

We use the following notation given by [54] for the spatial finite differences. We presume equal 

(i.e. geodesic) spacing h = 1 between grid points. 
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∆+
𝑥
𝑖,𝑗,𝑘
𝑛 = 

𝑖+1,𝑗,𝑘
𝑛 − 

𝑖,𝑗,𝑘
𝑛

  

∆−
𝑥
𝑖,𝑗,𝑘
𝑛 = 

𝑖,𝑗,𝑘
𝑛 − 

𝑖−1,𝑗,𝑘
𝑛

  

∆+
𝑦

𝑖,𝑗,𝑘
𝑛 = 

𝑖,𝑗+1,𝑘
𝑛 − 

𝑖,𝑗,𝑘
𝑛

  

∆−
𝑦
𝑖,𝑗,𝑘
𝑛 = 

𝑖,𝑗,𝑘
𝑛 − 

𝑖,𝑗−1,𝑘
𝑛

  

∆+
𝑧
𝑖,𝑗,𝑘
𝑛 = 

𝑖,𝑗,𝑘+1
𝑛 − 

𝑖,𝑗,𝑘
𝑛

  

∆−
𝑧
𝑖,𝑗,𝑘
𝑛 = 

𝑖,𝑗,𝑘
𝑛 − 

𝑖,𝑗,𝑘−1
𝑛

  

 In order to simplify the notation used in our equations for expressing the solution to the 

discretized version of equation (3), we use the following finite central differences which are 

inspired by [25]:  

∆𝑥
𝑖+1 2⁄ ,𝑗,𝑘
𝑛 = 

𝑖+1,𝑗+1,𝑘
𝑛 + 

𝑖,𝑗+1,𝑘
𝑛 − 

𝑖,𝑗−1,𝑘
𝑛  − 

𝑖+1,𝑗−1,𝑘
𝑛

 

∆𝑥
𝑖,𝑗,𝑘+1 2⁄
𝑛 = 

𝑖−1,𝑗+1,𝑘
𝑛 + 

𝑖,𝑗+1,𝑘
𝑛 − 

𝑖,𝑗−1,𝑘
𝑛 − 

𝑖−1,𝑗−1,𝑘
𝑛

 

∆𝑦
𝑖+1 2⁄ ,𝑗,𝑘
𝑛 = 

𝑖+1,𝑗+1,𝑘
𝑛 + 

𝑖+1,𝑗,𝑘
𝑛 − 

𝑖−1,𝑗+1,𝑘
𝑛 − 

𝑖−1,𝑗,𝑘
𝑛

 

∆𝑦
𝑖,𝑗,𝑘+1 2⁄
𝑛 = 

𝑖,𝑗−1,𝑘+1
𝑛 + 

𝑖,𝑗,𝑘+1
𝑛 − 

𝑖,𝑗−1,𝑘−1
𝑛 − 

𝑖,𝑗,𝑘−1
𝑛

 

∆𝑧
𝑖+1 2⁄ ,𝑗,𝑘
𝑛 = 

𝑖+1,𝑗,𝑘+1
𝑛 + 

𝑖+1,𝑗,𝑘
𝑛 − 

𝑖−1,𝑗,𝑘
𝑛 − 

𝑖−1,𝑗,𝑘+1
𝑛

 

∆𝑧
𝑖,𝑗,𝑘+1 2⁄
𝑛 = 

𝑖,𝑗+1,𝑘+1
𝑛 + 

𝑖,𝑗+1,𝑘
𝑛 − 

𝑖,𝑗−1,𝑘
𝑛 − 

𝑖,𝑗−1,𝑘+1
𝑛

 

The central difference formulations for∆𝑥
𝑖−1 2⁄ ,𝑗,𝑘
𝑛

 ∆𝑥
𝑖,𝑗,𝑘−1 2⁄
𝑛 , ∆𝑦

𝑖−1 2⁄ ,𝑗,𝑘
𝑛 , ∆𝑦

𝑖,𝑗,𝑘−1 2⁄
𝑛 ,

∆𝑧
𝑖−1 2⁄ ,𝑗,𝑘
𝑛

 and ∆𝑧
𝑖,𝑗,𝑘−1 2⁄
𝑛

 follow a pattern similar to that shown above.  
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Let mx, my and mz be the number of points of grid G in the x, y and z directions, respectively. The 

von Neumann boundary conditions apply namely: 


0,𝑗,𝑘
𝑛  =  

1,𝑗,𝑘
𝑛  , 

𝑚𝑥,𝑗,𝑘
𝑛 = 

𝑚𝑥−1,𝑗,𝑘
𝑛

 


𝑖,0,𝑘
𝑛  =  

𝑖,1,𝑘
𝑛  ,

𝑖,𝑚𝑦,𝑘
𝑛 = 

𝑖,𝑚𝑦−1,𝑘
𝑛

 


𝑖,𝑗,0
𝑛  =  

𝑖,𝑗,1
𝑛  , 

𝑖,𝑗,𝑚𝑧

𝑛 = 
𝑖,𝑗,𝑚𝑧−1
𝑛 . 

  We use the following variables in order to streamline our notation of the iterative, 

numerical solution to n+1
: 

𝐶1 = ((∆+
𝑥
𝑖,𝑗,𝑘
𝑛 )

2

+
(∆𝑥

𝑖+1 2⁄ ,𝑗,𝑘
𝑛 )

2

4
+
(∆𝑥

𝑖,𝑗,𝑘+1 2⁄
𝑛 )

2

4
)

− 1
2

 

𝐶2 = ((∆−
𝑥
𝑖,𝑗,𝑘
𝑛 )

2

+
(∆𝑥

𝑖,𝑗+1 2⁄ ,𝑘
𝑛 )

2

4
+
(∆𝑥

𝑖,𝑗,𝑘+1 2⁄
𝑛 )

2

4
)

− 1
2

 

The variables C3, C4, C5 and C6 follow a similar pattern to that shown above in the sense that the 

first element in the summation is(∆+
𝑦

𝑖,𝑗,𝑘
𝑛 )

2

,(∆− 
𝑦 

𝑖,𝑗,𝑘
𝑛 )

2

, (∆+
𝑧 
𝑖,𝑗,𝑘
𝑛 )

2

, and  

(∆−
𝑧
𝑖,𝑗,𝑘
𝑛 )

2

respectively. The second and third elements in the summation conform to a similar 

pattern as that shown in C1 and C2.  

  The method advocated in [54] provides us with the following iterative solution to n+1
: 


𝑖,𝑗,𝑘
𝑛+1 = 𝐹1𝑖+1,𝑗,𝑘

𝑛+1 + 𝐹2𝑖−1,𝑗,𝑘
𝑛+1 + 𝐹3𝑖,𝑗+1,𝑘

𝑛+1 + 𝐹4𝑖,𝑗−1,𝑘
𝑛+1  + 𝐹5𝑖,𝑗,𝑘+1

𝑛+1   

+ 𝐹6𝑖,𝑗,𝑘−1
𝑛+1  + 𝐹𝑤𝑖,𝑗,𝑘 

 

(8) 
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 where  

𝐹𝑙 = 
∆𝑡𝛿ℎ (𝑖,𝑗,𝑘

𝑛 ) 𝜇(𝑝 ∙ 𝐿(𝑛)𝑝−1)𝐶𝑙

ℎ + ∆𝑡𝛿ℎ (𝑖,𝑗,𝑘
𝑛 ) 𝜇(𝑝 ∙ 𝐿(𝑛)𝑝−1)(∑ 𝐶𝑔

6
𝑔 = 1 )

 

for l = 1, 2, 3, 4, 5, 6,   

𝐹 =  
ℎ

ℎ + ∆𝑡𝛿ℎ (𝑖,𝑗,𝑘
𝑛 ) 𝜇(𝑝 ∙ 𝐿(𝑛)𝑝−1)(∑ 𝐶𝑔

6
𝑔 = 1 )

 

and the error factor wi,j,k is  

𝑤𝑖,𝑗,𝑘 = 𝑖,𝑗,𝑘
𝑛 − ∆𝑡𝛿ℎ (𝑖,𝑗,𝑘

𝑛 ) (1 (𝑉𝑖,𝑗,𝑘 − 𝑐1(
𝑛))

2

− 2 (𝑉𝑖,𝑗,𝑘 − 𝑐2(
𝑛))

2

) 

The variable 𝐿(𝑛) is the surface area of the segmentation mesh and the formula for its 

calculation is: 

𝐿(𝑛) =∑𝛿ℎ(𝑖
𝑛)|∇

𝑖
𝑛|

𝑛

𝑖=1

 . 

The delta function 𝛿ℎ serves to smooth the segmentation mesh as it evolves. For details regarding 

its calculation, please refer to [53]. 
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5.3.1     Steps Taken by the Chan-Vese Algorithm 

The steps for our photon mapping informed active contour Chan-Vese algorithm are given below: 

1.   Construct a 3D model of the virtual environment 

2.   Construct the UxV-position grid G 

3.  Apply the photon mapping algorithm to the virtual environment 

4.  Obtain the photon volume at every grid point giG  

5.  Utilize SPOQ in the manner described in Chapter 4, Section 4.3 in order to establish the 

initial  condition 
𝑖,𝑗,𝑘
0

to the Chan-Vese segmentation algorithm.  

6.  Apply the iterative solution to 
𝑖,𝑗,𝑘
𝑛+1

 given by Equation 8 using the initial conditions 

established in Step 5.  

5.3.2     Algorithm Analysis 

The construction of the UxV-position grid in step 2 has a O(n) complexity where n is the number 

of grid points in the virtual environment. The application of the photon mapping algorithm in step 

3 has a O(p) complexity where p is the total number of photons launched in the environment [9]. 

Obtaining the photon volume at every grid point prescribed in step 4, depending upon the method 

used as described in Chapter 3 Section 3.2, can have a O(nlogp), O(nqlogp), or O(nqlogqlogp) 

complexity where q is the number of photons returned by a photon query and q < p. The 

application of SPOQ wherein the photon volume is calculated for every grid point prior to its 

operation has a time complexity of O(ln) where l is the number of way points that obtain 

maximum visibility and l << n. The iterative Chan-Vese algorithm we have described has a 

complexity of O(n) [55]. 
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5.4     Problem Statement 

To demonstrate the efficacy of our algorithm, we applied it to the following scenarios:  

1.  Using 1188 observer grid points and 5000 photons cast on the Cityscape model; using 

25000 photons cast on Canyon and Arena models with 990 and 2520 grid points, 

respectively.  

2. Using 7500 photons cast with a 1188-points observer grid for the Cityscape model; using 

25000 photons cast on a 990 and 2520-point observer grid for the Canyon and Arena 

models, respectively. 

3. Repeating the first scenario but using 6872 grid points for the Cityscape, 2520 grid points 

for the Canyon and 4550 grid points for the Arena model, and 

4. Repeating the second scenario but using 6872 grid points for the Cityscape, 2520 grid 

points for the Canyon and 4550 grid points for the Arena model. 

The first scenario may be regarded as a “baseline”, the second scenario represents a low 

photon count (i.e. dim) environment and the last two scenarios demonstrate the scalability of the 

algorithm to more complicated grids.  

In each case, the Chan-Vese algorithm was compared to a k-means classifier arriving 

from the ITK toolkit [56] that clusters around “light” and “dark” grid points. The elements that k-

means operates on consists of an array of size |G| wherein the ith element corresponds to element 

gi  G and that element’s value is gi’s photon volume. The initial mean value of the cluster of 

“light” grid points arrives from the photon volume of those points used as the initial condition to 

the Chan-Vese algorithm. The resulting segmentation mesh provides a set of bright grid elements 

where the most photons may be sensed. This segmentation algorithm mesh is compared with our 

Chan-Vese algorithm in the Results section. 
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5.5     Results 

Figure 5.1 starts where the results visualized in Chapter 4.4 ended. Here we are showing the 

approximately optimal AGP-solving points after they have been connected in the Cityscape 

model. Figure 5.2 shows the output of the Chan-Vese segmentation algorithm operating in the 

circumstances described by scenario 1 and applied to our Cityscape model. 

 

 

 

 

 

  

 

Figure 5.1: The red lines indicate the utilization of Dijkstra’s algorithm to establish initial 

conditions for our Chan-Vese algorithm. 
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Now that we see how to initiate and apply the Chan-Vese segmentation algorithm, Figure 5.3 

depicts the results of applying the Chan-Vese segmentation algorithm to our Canyon and Arena 

models. 

 

Figure 5.2: The result of our Chan-Vese algorithm as applied to the city scape model. The 

green vertices are in the segmentation mesh, yellow vertices are not in the mesh and red 

vertices solve the AGP. 
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Figure 5.3: The result of our Chan-Vese algorithm as applied to the canyon and 

arena models. The green vertices are in the segmentation mesh, yellow vertices are 

not in the mesh. 
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Table 5.1: Coverage Obtained as the Chan-Vese Method Progresses 

Number of Chan-Vese 

Segmentation Applications 

Chan-Vese Mesh Photon 

Volume Coverage 

Non-Chan-Vese Photon 

Volume Mesh Coverage 

0 42817 467584 

3 221429 249598 

6 267712 203315 

 

 

 

Table 5.1 above demonstrates the photon volume obtained at different steps of the 

application of our algorithm to the Cityscape model. It indicates coverage obtained by vertices 

included and not included in the Chan-Vese segmentation mesh. 

The following tables show the performance of our algorithm as applied to the scenarios 

described above while using the Cityscape model. Table 5.2 shows the respective algorithms’ 

ability to perceive photons and timing. Table 5.3 shows the respective segmentation meshes’ 

“connectivity” which is the cardinality of the largest set of connected vertices provided by the 

connected_components() algorithm implemented in the boost graph library [57]. The 

connectivity number represents the number of candidate waypoints that may be traversed by a 

UxV in the respective segmentation meshes. Hence, a higher connectivity count is better as it 

indicates that a greater number of paths may be chosen by a UxV to realize multiple mission 

scenarios. 

 Table 5.2 indicates that while k-means is faster and produces a greater sensed photon 

volume per mesh vertex, the total number of photons available to be observed is similar to that 

provided by the Chan-Vese segmentation algorithm. (Note that an observation point within a 

mesh may have overlapping surveillance with a neighboring point.) The strength of the Chan-

Vese algorithm is demonstrated in Table 5.3 as it produces a larger set of candidate way points 
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that may be traversed by a UxV thus allowing for a greater number of possible mission 

applications while maintaining a high degree of surveillance capability as the UxV traverses 

these waypoints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Comparison Between Photon Mapping Informed Chan-Vese and k-means in 

Terms of Time and Photons per Vertex 

Segmentation 

Method 

Photon Volume 

per Vertex 

Percentage of all 

available photons 

viewed 

Timing (ms) Scenario 

Chan-Vese 1221.5 92.3 60 
1 

k-means 3770.3 91.4 1 

Chan-Vese 1170.7 91 50 
2 

k -means 3690.4 89 1 

Chan-Vese 1661.1 96 47 
3 

k -means 3655.1 94.5 4 

Chan-Vese 1658.1 95.3 45 
4 

k -means 3652.3 94.3 3 
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Table 5.3: Comparison Between Photon Mapping Informed Chan-Vese and k-means in 

Terms of Connectivity. 

Segmentation Method Connectivity 

Percentage 

Improvement of Chan-

Vese over k -Means 

Scenario 

Chan-Vese 435 
65 1 

k-means 151 

Chan-Vese 433 
65 2 

k-means 151 

Chan-Vese 3090 
40 3 

k-means 1846 

Chan-Vese 3084 
40 4 

k-means 1844 

 

 

5.6     Summary and Conclusion 

Understanding how to provide better surveillance in areas not viewable by visible light can arrive 

by modeling a virtual environment illuminated by photons in the non-visible spectrum and 

providing the UxVs populating these environments with the tools to maximize their sensing 

capabilities. In order to enhance UxV sensing ability as well as enable UxV route path-planning, 

we propose a 3D segmentation algorithm based upon the Chan-Vese method to create a 

connected 3D mesh within the UxVs’ photon-mapping-illuminated virtual environment. The 

resulting segmentation mesh’s vertices contain more photons to be sensed by a UxV traversing 

the mesh than could have been sensed if the UxV had traveled elsewhere. The connectedness of 

the segmentation mesh gives the UxV uninterrupted travel through these highly-illuminated 

areas and allows for a variety of mission-planning scenarios. The initialization problem inherent 

to the Chan-Vese segmentation algorithm is overcome in a novel way by using output from 

SPOQ to produce an initial segmentation curve comprised of vertices which are highly 

distinguished from their neighbors. The results of our segmentation algorithm enables a UxV to 
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focus its attention on areas in the 3D environment that maximize the (non-)visible spectrum 

photons obtainable by their sensors or conversely explore areas have not been well-illuminated. 

The significance of this effort is that it enables the realization applications answering the 

questions asked in the Introduction that solve the WRP in multi-spectral 3D environments which 

may then be affected by information-attenuating events such as simulated fog, rain, and so forth. 

We see that the k-means algorithm confines the UxV movement to a small subset of the 

UxV-position grid. However, the k-means algorithm can also serve as a method of performing 

pre-segmentation of a UxV-position grid so as to identify those portions of the UxV-position grid 

that possess greater and lesser amounts of multi-spectral photon volume. This pre-segmented 

mesh can then allow for multi-UxV path planning as the Chan-Vese segmentation algorithm can 

then be applied to the pre-segmented UxV-position sub-grids. This resulting set of candidate 

waypoints can then be assigned that sub-grid’s UxV. The concept of pre-segmentation by k-

means in order to inform Chan-Vese arrives from [58]. 
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CHAPTER 6 
 
 
 

A NEW APPROACH TO COMPUTING APPROXIMATE 

SOLUTIONS TO THE WATCHMAN ROUTE PROBLEM 
 

 

6.1    Utilizing the Chan-Vese Segmentation Mesh to Solve the WRP 

Once this segmentation mesh described in Chapter 5 is created, a conventional shortest-path-

finding algorithm can then be applied to connect the vertices contained within the segmentation 

mesh to approximately solve the AGP. These connected vertices lead to the production of a 

shortest path which senses more photons than a path that does not utilize the vertices provided by 

the mesh. The WRP is then solved immediately in a heuristic manner since the WRP route will 

be designated by choosing the shortest route from elements comprising a minimum-energy mesh 

encompassing the SPOQ-provided vertices. Furthermore, since SPOQ does not require 

foreknowledge of the 3D environment it is placed within, we can then (randomly) discard or add 

vertices prior to providing approximately optimal solutions to the AGP (and subsequent 

approximately optimal WRP-solving routes) in  order to simulate forbidden zones or moving 

obstacles within our virtual environment. 

The name we give to our heuristic WRP-solving algorithm is the Photon-mapping-

Informed active-Contour Route Designator or PICRD. The name derives from the fact that we 

are using a photon-mapping-informed PDE-based active contour segmentation algorithm to 

allow us to designate a shortest-path route through the high-visibility vertices comprising the 3D 

mesh produced within our 3D virtual environment. 

 The contribution this dissertation makes as a result of using our PICRD algorithm is to 
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enable UxVs to concentrate their attention on areas in the 3D virtual environment that maximize 

the number of visibility-conveying multispectral photons obtainable by their sensors while 

minimizing the size of the route taken and also accounting for varying environmental 

circumstances. Since we are using photon mapping as our foundation for PICRD, we can take 

into account the behavior of photons as they propagate through the various environmental 

conditions that may be encountered by a UxV. Since we are using a segmentation algorithm’s 

determination of what waypoints have approximately maximum visibility, we may then guide 

the creation of the approximately optimal WRP-solving route to provide maximum coverage 

above that provided by a conventional shortest path finding algorithm. Since we are using the 

online SPOQ algorithm, we may allow PICRD to alter the watchman’s route after the passage of 

a unit of time in response to dynamic simulated environmental circumstances.  

6.2    The PICRD Algorithm 

Once our photon-mapping-informed Chan-Vese algorithm has been applied to G to produce the 

resulting segmentation mesh Gr, a route may then be chosen from the resultant visibility mesh by 

means of some graph search algorithm. The waypoints to be connected will include the SPOQ-

produced UxV-observer points established by the SPOQ algorithm. The use of these 

approximately optimal AGP-solving waypoints ensures that the maximum number of uniquely-

sensed photons will be observed. The shortest path found through the visibility mesh Gr will then 

also maximize the number of photons covered and thus solve the WRP. 

Combining the steps considered previously, the complete PICRD algorithm is given below. 
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Algorithm 3 PICRD 

1. Construct a 3D model of the virtual environment 

2. Construct the UxV-observer grid G 

3. Apply the photon mapping algorithm to the virtual environment 

4. Obtain the photon volume at every grid point giG  

5. Solve the AGP for grid G using the SPOQ algorithm 

6. Apply the 3D photon-mapping-informed Chan-Vese segmentation algorithm   

7. Connect the SPOQ-provided UxV-observer points established in Step 5 using shortest path-

finding algorithm while using the segmentation-mesh vertices produced by Step 6 as 

waypoints. 

8.  Alter the environment according to some criteria. 

9.  Repeat steps 2 – 8 for time steps t0 … tn. 

 
 

 

 

 

6.2.1 Algorithm Analysis 
 

The construction of the UxV-observer grid in step 2 has a O(n) complexity where n is the 

number of grid points in the virtual environment. The application of the photon mapping 

algorithm in step 3 has a O(p) complexity where p is the total number of photons launched in the 

environment [9]. Obtaining the photon volume at every grid point prescribed in step 4, 

depending upon the method used as described in Section III B, can have either a O(nlogp) or 

O(nqlogp) computational complexity where q is the number of photons returned by a photon 

query and q < p. The application of SPOQ wherein the photon volume is calculated for every 

grid point prior to its operation has a time complexity of O(ln) where l is the number of 

waypoints that obtain maximum visibility and l << n. The iterative Chan-Vese algorithm has an 
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O(n) complexity [55]. The application of Dijkstra’s algorithm [52] has a time complexity of  

O(|E| + |V|log|V|) [59] where E and V are the number of edges and vertices in the segmentation 

mesh Gr, respectively. 

6.3     Problem Statement 
 

6.3.1     Initial Assumptions  

When performing our experiments listed below, we make the following assumptions:  

1. The photons are confined to the visible light spectrum. 

2. There is no participating medium for the photons to interact with. 

3. The shortest-path-finding algorithm used to connect our SPOQ-provided points is a greedy 

version of Dijkstra’s algorithm [52]. 

4. The sensors used are omnidirectional with a range of one third the length of the model on the 

z-axis. 

5. Only 4 observers are used for SPOQ. 

6.3.2     Scenarios Considered  

We will apply PICRD to the following scenarios. 

1. Using 1188 observer grid points and 2500, 5000 and 7500 photons cast on the Cityscape 

model; using 15000, 20000 and 25000 photons cast on Canyon and Arena models with 990 

and 2520 grid points, respectively.  

2. Using the same respective number of photons cast with a 6897-points observer grid for the 

Cityscape model; using a 1152 and 4550-point observer grid for the Canyon and Arena 

models, respectively. 

3. Repeating the first scenario but using randomly-generated forbidden zones constituting 10%, 

15% and 20% of the grid points available, and 
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4. Repeating the first scenario but using a set of forbidden zones representing a moving obstacle 

constituting 10% of the grid points available moving gradually over 3 time steps. 

 The first scenario may be regarded as a means of testing PICRD with gradually 

increasing “brightness” in terms of photons launched, the second scenario represents the 

scalability of the PICRD algorithm when applied to larger grids and the last two scenarios 

represent an environment with increasing difficulty in maneuvering. In each scenario, our goal is 

to show that we can sense a greater number of photons using the PICRD algorithm than would 

be possible if we were to use a naïve Dijkstra’s algorithm with no additional information. 

As we have considered in Chapter 5, in each scenario the PICRD algorithm’s Chan-Vese 

segmentation algorithm was substituted with a k-means classifier arriving from the ITK toolkit 

[56]. The input to the k-means classifier consists of an array called Ga of size |G| whose ith 

element’s value is gi’s photon volume where gi  G. The initial mean (l) for the cluster of “light” 

grid points arrives from calculating the average photon volume of those grid points used to 

initialize the Chan-Vese algorithm. All grid points in Ga whose photon volume is greater than or 

equal to l are placed in the “light” cluster whereas all other grid points are placed in the “dark” 

cluster. The resulting segmentation mesh provides a set of bright grid elements where the most 

photons may be sensed and may serve as candidate waypoints for our WRP path-planner.  

6.4     Results 

Figures 6.1 and 6.2 depict scenarios that start where we ended in Chapter 5, namely we depict 

the results of comparing PICRD with Dijkstra’s algorithm. The PICRD route is designated in red 

whereas the Dijkstra route is designated in blue. Green vertices designate PICRD-usable 

waypoints whereas yellow vertices are not.  
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Figure 6.1: The PICRD algorithm (red route) compared to the naïve Dijkstra algorithm (blue 

route) in Scenario 1.



 

72 

 

 

 

 

 

 

 

Figure 6.2: The PICRD algorithm in comparison to the naïve Dijkstra algorithm in Scenario 3 

with 10% of the grid points removed. Note that the forbidden zones are designated in pink.
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Figure 6.3: The k-means-moderated PICRD algorithm (red route) compared to the naïve Dijkstra 

algorithm (blue route) operating in circumstances described by Scenario 1. 
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Figure 6.3 above depicts Scenario 1 showing the result of path planning using the k-

means algorithm rather than the Chan-Vese algorithm. Note that this mesh – depicted using 

orange vertices - is much smaller and closely confined than the Chan-Vese segmentation mesh. 

(As we shall see, the smaller mesh size diminishes the ability to support route-adaptability in 

changing environmental circumstances.) 

The tables below show the results of applying PICRD to scenarios 1, 2, 3 and 4. Note that 

the column indicating a percentage of uniquely sensed photons represents the coverage obtained 

as a percentage of the total number of photons available to be sensed. The subsequent column 

measures coverage in terms of the photon volume sensed as the shortest route is traversed. The 

path distance is the length of the edges connecting the vertices together. Recall that we assign a 

distance of one to each edge in the segmentation mesh. Since we are finding approximately 

optimal solutions to the WRP, short path distance routes with a high photon volume are desired. 
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Table 6.1: WRP Performance under Circumstances Described by Scenario 1 

Path Finding 

Algorithm 

% of Uniquely-

Sensed Photons 

Photon Volume 

Sensed 
Path Distance 

Time 

Required (ms) 

Cityscape Model 

Photons Launched: 2500 

PICRD 93.8 19832 29 61.7 

Dijkstra 93.9 15311 29 31.3 

k-means 92.7 18532 28 32.3 

Photons Launched: 5000 

PICRD 91.2 45853 20 60.4 

Dijkstra 90.6 38586 20 30.7 

k-means 90.7 46323 20 31.7 

Photons Launched: 7500 

PICRD 90.4 64640 26 60.2 

Dijkstra 90.2 52454 26 29.5 

k-means 90.3 60292 26 30.5 

Canyon Model 

Photons Launched: 15000 

PICRD 93.9 278004 32 48.7 

Dijkstra 93.8 264678 32 28.4 

k-means 93.6 277524 32 29.5 

Photons Launched: 20000 

PICRD 93.7 412732 33 52.1 

Dijkstra 93.6 398002 33 29.1 

k-means 94.0 427321 33 30.2 

Photons Launched: 25000 

PICRD 93.5 519675 32 48.8 

Dijkstra 93.1 516858 32 27.7 

k-means 93.2 517625 32 29.4 

Arena Model 

Photons Launched: 15000 

PICRD 89.4 166920 31 85.6 

Dijkstra 90.1 151482 30 43.1 

k-means 89.7 164723 30 44.5 

Photons Launched: 20000 

PICRD 90.4 190186 34 88.9 

Dijkstra 90.1 183697 32 45.6 

k-means 90.0 191293 32 46.1 

Photons Launched: 25000 

PICRD 88.1 247220 32 87.1 

Dijkstra 89.3 243347 29 40.1 

k-means 89.5 247832 29 42.3 
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Table 6.2: WRP Performance under Circumstances Described by Scenario 2  

Path Finding 

Algorithm 

% of Uniquely-

Sensed Photons 

Photon Volume 

Sensed 
Path Distance 

Time Required 

(ms) 

Cityscape Model 

Photons Launched: 2500 

PICRD 93.4 29478 42 577.4 

Dijkstra 93.2 25186 42 346.3 

k-means 93.2 27325 38 350.4 

Photons Launched: 5000 

PICRD 94.6 118567 61 561.6 

Dijkstra 94.7 104510 60 341.9 

k-means 94.5 115872 55 337.3 

Photons Launched: 7500 

PICRD 93.3 156021 57 574.9 

Dijkstra 91.3 142719 57 342.2 

k-means 92.8 152826 50 338.5 

Canyon Model 

Photons Launched: 15000 

PICRD 92.7 254946 34 58.7 

Dijkstra 93.0 252437 34 38.9 

k-means 93.4 255214 33 41.6 

Photons Launched: 20000 

PICRD 93.2 445592 34 62.1 

Dijkstra 92.8 430497 34 39.1 

k-means 93.0 454612 33 42.2 

Photons Launched: 25000 

PICRD 92.1 555002 36 48.8 

Dijkstra 92.4 552050 36 41.5 

k-means 91.9 553781 35 44.4 

Arena Model 

Photons Launched: 15000 

PICRD 90.9 177581 43 785.6 

Dijkstra 91.1 144848 42 441.6 

k-means 90.2 167249 42 445.9 

Photons Launched: 20000 

PICRD 91.3 418070 47 769.8 

Dijkstra 90.1 355320 45 447.0 

k-means 91.5 387256 45 454.3 

Photons Launched: 25000 

PICRD 90.1 361571 47 787.1 

Dijkstra 90.3 301959 46 444.1 

k-means 90.4 345715 46 439.3 
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Table 6.3: WRP Performance under Circumstances Described by Scenario 3 

Path Finding 

Algorithm 

% of Uniquely-

Sensed Photons 

Photon Volume 

Sensed 
Path Distance 

Time Required 

(ms) 

Cityscape Model 

% of Observer Grid Forbidden: 10 

PICRD 93.5 57784 25 60.7 

Dijkstra 94.1 48695 25 29.5 

k-means N/A N/A N/A N/A 

% of Observer Grid Forbidden: 15 

PICRD 93.1 54446 17 61.2 

Dijkstra 93.7 45113 16 32.1 

k-means N/A N/A N/A N/A 

% of Observer Grid Forbidden: 20 

PICRD 92.6 53278 18 61.1 

Dijkstra 91.2 44788 18 30.4 

k-means N/A N/A N/A N/A 

Canyon Model 

% of Observer Grid Forbidden: 10 

PICRD 92.9 526404 34 46.1 

Dijkstra 93.1 515378 33 27.2 

k-means 92.6 526513 32 29.2 

% of Observer Grid Forbidden: 15 

PICRD 92.6 512262 35 56.1 

Dijkstra 92.4 498452 35 30.3 

k-means 93.2 526211 35 32.5 

% of Observer Grid Forbidden: 20 

PICRD 93.2 517675 32 54.8 

Dijkstra 93.1 514858 32 32.5 

k-means 92.5 516513 32 35.1 

Arena Model 

% of Observer Grid Forbidden: 10 

PICRD 89.4 245654 32 87.6 

Dijkstra 90.1 236495 31 45.3 

k-means N/A N/A N/A N/A 

% of Observer Grid Forbidden: 15 

PICRD 90.4 242192 33 89.2 

Dijkstra 90.1 238622 33 46.6 

k-means N/A N/A N/A N/A 

% of Observer Grid Forbidden: 20 

PICRD 88.1 232361 31 88.1 

Dijkstra 89.3 231252 30 42.1 

k-means N/A N/A N/A N/A 
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Table 6.4: WRP Performance under Circumstances Described by Scenario 4 

Path Finding 

Algorithm 

% of Uniquely-

Sensed Photons 

Photon Volume 

Sensed 
Path Distance 

Time Required 

(ms) 

Cityscape Model 

Time Step 0 

PICRD 92.3 55438 24 60.8 

Dijkstra 93.4 49251 24 29.7 

k-means N/A N/A N/A N/A 

Time Step 1 

PICRD 93.3 56892 26 62.2 

Dijkstra 92.2 48598 26 30.9 

k-means N/A N/A N/A N/A 

Time Step 2 

PICRD 94.2 56287 24 59.9 

Dijkstra 93.7 47912 24 32.0 

k-means N/A N/A N/A N/A 

Canyon Model 

Time Step 0 

PICRD 91.7 527378 34 45.1 

Dijkstra 92.1 516587 33 23.6 

k-means 91.5 527724 32 26.4 

Time Step 1 

PICRD 92.6 526532 34 45.3 

Dijkstra 92.7 511384 33 28.2 

k-means 92.1 525527 32 30.2 

Time Step 2 

PICRD 92.9 526485 33 47.1 

Dijkstra 93.1 518178 33 28.2 

k-means 92.6 526149 32 31.2 

Arena Model 

Time Step 0 

PICRD 90.4 245654 32 88.4 

Dijkstra 90.1 234495 31 46.1 

k-means N/A N/A N/A N/A 

Time Step 1 

PICRD 89.6 245654 32 87.0 

Dijkstra 89.4 234495 31 44.2 

k-means N/A N/A N/A N/A 

Time Step 2 

PICRD 90.3 245654 31 86.8 

Dijkstra 90.2 234495 31 46.3 

k-means N/A N/A N/A N/A 
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To explain this difference in performance between the k-means-segmented PICRD and 

Chan-Vese-segmented PICRD consider Table 6.5 which shows the Cityscape model’s respective 

segmentation meshes’ “connectivity”. This connectivity value is the cardinality of the largest set 

of connected vertices provided by the connected_components() algorithm implemented 

in the boost graph library [57]. The connectivity number represents the number of candidate 

waypoints that may be traversed by a UxV in the respective segmentation meshes. Hence, a 

higher connectivity count is better as it indicates that a greater number of paths may be chosen 

by a UxV in order to adapt to different scenarios. The strength of the Chan-Vese algorithm - 

demonstrated in Table 6.5 - arrives from the fact that it produces a larger set of high-photon-

volume candidate way points that may be traversed by a UxV. This allows for a greater number 

of possible mission applications while maintaining a high degree of surveillance capability as the 

UxV traverses these waypoints. Similar results can apply to the Canyon and Arena models’ 

segmentation meshes. 

 

 

Table 6.5: Comparison Between Photon Mapping Informed Chan-Vese and k-means in 

Terms of Connectivity for Scenarios 3 and 4. 

Segmentation Method Connectivity 

Percentage of Vertices 

Removed from 

Consideration 

Scenario 

Chan-Vese 392 
10 3 

k-means 136 

Chan-Vese 370 
15 3 

k-means 128 

Chan-Vese 348 
20 3 

k-means 121 

Chan-Vese 392 
10 4 

k-means 136 
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6.5     Summary and Conclusion 

We have presented an algorithm providing a heuristic solution to the WRP within a 3D virtual 

environment populated by simulated unmanned vehicles UxVs. The contributions made by our 

algorithm are three-fold. First, we utilized photon mapping as our means of representing the 

information sensed by a UV. Second, we use the photon map to generate an online approximate 

solution to the closely-related NP-hard art gallery problem (AGP). Third, we use a 3D Chan-

Vese segmentation algorithm initialized by our SPOQ to produce a candidate set of path-

planning waypoints. The use of photon mapping by our online AGP solver allows us to simulate 

and adapt UV operation to accommodate variable, less-than-ideal environmental circumstances. 

The use of our 3D Chan-Vese segmentation algorithm creates a set of candidate waypoints that 

yield greater visibility coverage when computing approximately optimal solutions to the WRP 

than would be obtainable otherwise. Our efforts yield a set of shortest routes that provide greater 

sensed information than shortest routes chosen using a conventional approximately optimal 

WRP-solving technique while retaining route-adaptability under variable environmental 

conditions. 

The possible objections leveled against SPOQ can be equally leveled against PICRD. It 

could also be argued that performing the Chan-Vese segmentation algorithm as a means of 

informing the development of the watchman’s route is unnecessary since a shortest-path-finding 

algorithm connecting the SPOQ-provided waypoints ensures that the maximum number of 

uniquely-sensed photons will be detected by the watchman’s route. Note however that due to the 

non-convex nature of the WRP, this route does not ensure maximum visibility coverage as it is 

being travelled. Performing the Chan-Vese segmentation algorithm gives us a set of candidate 

waypoints for our shortest-path-finding algorithm with a higher photon volume. The selection of 
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candidate waypoints from within Gr by our shortest-path-finding algorithm assures us that as we 

traverse between SPOQ-provided waypoints, we will cover a greater total photon volume and 

thus ensure better coverage along the watchman’s route. 
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CHAPTER 7 
 
 
 

FUTURE RESEARCH 
 

 

7.1    Future Research on Computing Approximate Solutions to the Art 

Gallery Problem 

This work represents the first step in the development of a means of obtaining optimal sensor 

coverage in multiple types of 3D environments. There are three areas of development that we 

want to pursue, namely  

1. the accommodation of multiple heterogeneous sensing ranges, 

2. the accommodation of sensors which use sound rather than EM spectra, and 

3. the accommodation of real time updates to the photon map in order to represent a 

changing environment. 

The first effort may be accomplished by the use of an area of study in mathematics 

known as sphere packing [60]. This problem seeks to find an arrangement of spheres - that may 

have unequal radii - such that the spheres fill as much of the volume as possible. In the context of 

SPOQ, this sphere arrangement represents an observer grid containing sensors with 

heterogeneous sensing ranges. The application of SPOQ would proceed in the manner mentioned 

above except for the fact that it would be highly unlikely that a particular sensor occupying a 

given observation point would have a sensing range equal to that of its neighbor.  

The second effort has been considered before by the introduction of phonon mapping 

[61]. The photon mapping algorithm’s construction of the photon map need not be confined 

strictly to the EM spectrum. It has been shown that by extending the concept of the photon to be 
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any discrete packet of information-bearing energy propagating through a medium, the behavior 

of sound traversing through air can also be modeled. This packet of sound energy is known as a 

phonon rather than a photon. While the phonon’s operational characteristics in air have been 

considered previously, the transmission of a phonon through water has not. We expect that it 

would entail the use of the equivalent of a volumetric photon map except that it would be applied 

to water rather than air. Providing coverage for maritime environments using phonons is an 

“over the horizon” area of research that has not been fully developed.  

The third effort may be accomplished by means of performing parallel computation on a 

photon map in order to update it in real time. This topic has been subject to consideration 

previously [62, 63]. Essentially, what these efforts are aiming to achieve is the rapid updating to 

a k-d tree in response to the movement of objects within the virtual environment. Each photon 

can operate independently of every other photon and can be assigned its own thread on an n-core 

machine. Once the k-d tree is updated on some core in an n-core machine, SPOQ can be used on 

that particular core. Given an n-core processor, SPOQ could provide the optimal sensor 

placement of a dynamic scene operating n time steps into the future. It should be noted that while 

parallelizing the photon map algorithm is well established, parallelizing the phonon mapping 

algorithm has not been done. 

7.2 Future Research Regarding the Photon Mapping Informed                   

Multispectral Chan Vese Segmentation Algorithm 

The k-means algorithm confines the UxV movement to a small subset of the UxV-position grid. 

However, the k-means algorithm can also serve as a method of performing pre-segmentation of a     

UxV-position grid so as to identify those portions of the UxV-position grid that possess greater 

and lesser amounts of multi-spectral photon volume. This pre-segmented mesh can then allow 
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for multi-UxV path planning as the Chan-Vese segmentation algorithm can then be applied to the 

pre-segmented   UxV-position sub-grids. This resulting set of candidate waypoints can then be 

assigned that sub-grid’s UxV. The concept of pre-segmentation by k-means in order to inform 

Chan-Vese arrives from [58]. 

Because we have utilized the Chan-Vese segmentation method as the foundation of 

PICRD, we may now take advantage of the research that has been done to improve this 

segmentation algorithm. There are two possible avenues of improvement that we may take: the 

SPOQ algorithm or the Chan-Vese segmentation method. Improvements to the SPOQ algorithm 

have been covered in section 5.2. There are three possible improvements we can make to the 

Chan-Vese algorithm: parallelizing its operation and creating a convex search space. 

 As we discussed above in Section 7.2, SPOQ lends itself to parallelization. The 

parallelization of the Chan-Vese component of PICRD has been considered before in [23]. Their 

main idea is to partition the 2D image or 3D volume into non-overlapping regions and applying 

the Chan-Vese segmentation algorithm independently to the sub-regions. When a segmentation 

curve arrives upon the boundaries of the sub-region, the curve is exchanged with its neighboring 

curve.   

 As we have mentioned before, the Mumford-Shah energy functional is non-convex. 

However, in [64], Brown et al. introduced a means of modifying the Chan-Vese algorithm such 

that it avoids local minima. Recall that constants c1 and c2 were set to fixed values prescribed by 

Chan and Vese in [11]. The values of c1 and c2 describe the average pixel intensity inside and 

outside the evolving contour, respectively. It was shown in [65] by Chan et al that global 

optimality of the segmentation result can be achieved by fixing the values of c1 and c2. In [64], 

Brown et al. showed that by obeying certain conditions, the values of c1 and c2 can be treated as 
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functions v1 and v2 and can then be amenable to calculation in order to find global minimizers. 

They demonstrated that their technique approximates the true global minimizers to within 0.01–

1.8%. As a consequence of their efforts, we feel that modifying our photon-mapping informed 

version of the Chan-Vese segmentation algorithm in order to incorporate these new results can 

make the calculation of visibility even more accurate. 

 7.3    Future Research on Computing Approximate Solutions to the Watchman    

Route Problem 

There has been a research push towards removing the human operator from a vehicle completely 

and introducing vehicular autonomy. Three such pushes have been the Defense Advanced 

Research Projects Agency’s (DARPA) Grand Challenge [66], Urban Challenge [67] and the 

Robotics Challenge [68]. The first two Challenges were dedicated to addressing how an 

autonomous wheeled vehicle could complete a course in a desert or urban environment, 

respectively. The last such Challenge was dedicated to addressing how an autonomous legged-

robot could complete a course consisting of tasks dedicated to rescuing humans in an emergency 

scenario. 

With regard to the Grand and Urban Challenges, a single autonomous robot was 

responsible for navigating through the terrain. As we can see, the WRP emanates from the AGP 

which means that sensor networks can collaborate with UxVs in order to assist in surveillance 

and completion of a particular task. Furthermore, as we suggested in Section 7.2, we can 

partition an area to be observed into subsections using k-means that allows us dedicate resources 

to areas that have greater and lesser illumination. 

While the future research efforts related to the development of PICRD mirror that 

discussed in Sections 7.1 and 7.2, a further research effort would entail adding UxV dynamics to 
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the model such that the path traced by the simulated UxV is not merely traversing to a set of 

points, but is in fact following points in accordance to the capacities of the vehicle being 

simulated. Such capacities include fuel efficiency, aerodynamics, fluid mechanics, friction, and 

etcetera. The important thing to note is that a framework now exists for computing approximate 

solutions to the WRP. The inclusion of more sophisticated vehicular dynamics models would 

only serve to improve the usefulness of PICRD. 

7.4    Future Research Regarding Machine Learning 

Regarding human intelligence, the famed physicist Michio Kaku said “We run simulations into 

the future.  Animals apparently don’t do this.  They don’t plan to hibernate.  They don’t plan the 

next day’s agenda.  They have no conception of tomorrow to the best of our ability.  But that’s 

what our brain does.  Our brain is a prediction machine.” [69]. Prediction of the outcome of a 

given set of circumstances is the most fundamental component of intelligence [70]. The ability to 

predict outcomes can be narrowed in scope to the field of scene understanding. Having the 

ability to understand a scene implies the ability to predict a scene’s behavior. Such understanding 

leads to better and more efficient surveillance due to greater adaptability in executing a mission. 

What we propose for future research is the utilization of recent developments in 3D scene 

understanding in combination with the SPOQ and PICRD algorithms presented here to provide a 

means of providing optimal surveillance of entities residing in a changing 3D scene. We ask the 

question: “Given the video capture of a scene, how do we direct static sensors or UxVs to best 

surveil an item of interest (IOI) based upon their predicted behavior?” In order to answer this 

question, we must address the following challenges, namely  

1. How do we create a 3D representation of that IOI?  

2. How do we predict the behavior of the 3D IOI within the scene? 
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3. How do we integrate the knowledge gained from answering questions 1 and 2 such that 

we can solve the AGP/WRP? 

In order to address challenge posed by question 1, we look to the results produced by Zia, 

Stark and Schindler in their paper “Are Cars Just 3D Boxes? – Jointly Estimating the 3D Shape 

of Multiple Objects” [71]. In this paper, the authors matched a 3D model class (an SUV in their 

particular experimental case) to a 3D bounding box generated within a 2D image. In order to 

address the challenge posed by question 2, we look to the results generated by Walker, Gupta 

and Herbert in their paper “Patch to the Future: Unsupervised Visual Prediction” [72]. In this 

paper, the authors utilized a reward function on textures that are to be traversed by the IOI within 

the video frame and subsequently generated a set of high probability routes to be followed by the 

IOI. 

In [71], the authors present an algorithm that requires a binary occlusion determination 

for each vertex in the model as well as a 3D ground plane for 3D model placement. Note that the 

occlusion data required by their algorithm may serve as input to a k-d tree. Furthermore, once the 

scene’s 3D object class for the IOI is isolated and a ground-plane is known, an observation-grid 

may then be constructed. With the construction of the k-d tree and observation grid, the 

minimum requirements for the operation of SPOQ and PICRD are fulfilled.  

Once we have met the minimum requirements to use SPOQ/PICRD for a single frame of 

video, we want to then be able to predict future behavior and thus answer question 3. Such 

AGP/WRP-amenable prediction may be accomplished by using the algorithm in [72]. This 

paper’s algorithm operates over a sequence of video frames (which may arrive from frames used 

in [71]) in order to predict the IOI’s future behavior. Given such a prediction, we may then infer 

the best sensor placement using SPOQ at a frame generated at time t0. We may then generate a 
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PICRD-provided route that links frame t0 together with similarly SPOQ-moderated frames at 

times t1 … tn. Due to the fast queries provided by the k-d tree used by SPOQ, SPOQ-provided 

results may be computed in parallel for video frames captured at times t0 … tn. 

Using the algorithm provided in [71] has some limitations. The limitations considered in 

[71] are the fact that they limited themselves to only one model class and they must be sure that 

their bounding-box generator can reliably isolate the IOI. These limitations can be addressed by 

using a greater number of models and by a more robust classifier (such as that provided by [73]). 

A limitation of [72] (but not considered in their paper) is the fact that weather events were 

not included in the determination of what routes are traversable. Such weather events would of 

course limit the number of routes that may be taken by the IOI. However once these events are 

considered, and their effect on occlusion is determined, SPOQ has the ability to model their 

effect upon computing approximate solutions to the AGP. 

7.5    Summary and Conclusion 

There are many avenues of improvement available. The work presented in this dissertation can 

be regarded as an initial step towards creating a more robust and versatile AGP and WRP solver. 

We look forward to enhancing our algorithms’ capabilities in the manner described above. 
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