17 research outputs found

    Radio resource allocation algorithms for multicast OFDM systems

    Get PDF
    Mención Internacional en el título de doctorVideo services have become highly demanded in mobile networks leading to an unprecedented traffic growth. It is expected that traffic from wireless and mobile devices will account for nearly 70 percent of total IP traffic by the year 2020, and the video services will account for nearly 75 percent of mobile data traffic by 2022. Multicast transmission is one of the key enablers towards a more spectral and energy efficient distribution of multimedia content in current and envisaged mobile networks. It is worth noting that multicast is a mechanism that efficiently delivers the same content to many users, not only focusing on video broadcasting, but also distributing many other media, such as software updates, weather forecast or breaking news. Although multicast services are available in Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, new improvements are needed in some areas to handle the demands expected in the near future. Resource allocation techniques for multicast services are one of the main challenging issues, since it is required the development of novel schemes to meet the demands of their evolution towards the next generation. Most multicast techniques adopt rather conservative strategies that select a very robust modulation and coding scheme (MCS), whose characteristics are determined by the propagation conditions experienced by the worst user in the group in order to ensure that all users in a multicast group are able to correctly decode the received data. Obviously, this robustness comes at the prize of a low spectral efficiency. This thesis presents an exhaustive study of broadcast/multicast technology for current mobile networks, especially focusing on the scheduling and resource allocation (SRA) strategies to maximize the potential benefits that multicast transmissions imply on the spectral efficiency. Based on that issue, some contributions have been made to the state of the art in the radio resource management (RRM) for current and beyond mobile multicast services. • In the frame of LTE/LTE-A, the evolved multimedia broadcast and multicast service (eMBMS) shares the physical layer resources with the unicast transmission mode (at least up to Release 12). Consequently, the time allocation to multicast transmission is limited to a maximum of a 60 percent, and the remaining subframes (at least 40 percent) are reserved for unicast transmissions. With the aim of achieving the maximum aggregated data rate (ADR) among the multicast users, we have implemented several innovative SRA schemes that combine the allocation of multicast and unicast resources in the LTE/LTE-A frame, guaranteeing the prescribed quality of service (QoS) requirements for every user. • In the specific context of wideband communication systems, the selection of the multicast MCS has often relied on the use of wideband channel quality indicators (CQIs), providing rather imprecise information regarding the potential capacity of the multicast channel. Only recently has the per-subband CQI been used to improve the spectral efficiency of the system without compromising the link robustness. We have proposed novel subband CQI-based multicast SRA strategies that, relying on the selection of more spectrally efficient transmission modes, lead to increased data rates while still being able to fulfill prescribed QoS metrics. • Mobile broadcast/multicast video services require effective and low complexity SRA strategies. We have proposed an SRA strategy based on multicast subgrouping and the scalable video coding (SVC) technique for multicast video delivery. This scheme focuses on reducing the search space of solutions and optimizes the ADR. The results in terms of ADR, spectral efficiency, and fairness among multicast users, along with the low complexity of the algorithm, show that this new scheme is adequate for real systems. These contributions are intended to serve as a reference that motivate ongoing and future investigation in the challenging field of RRM for broadcast/ multicast services in next generation mobile networks.La demanda de servicios de vídeo en las redes móviles ha sufrido un incremento exponencial en los últimos años, lo que a su vez ha desembocado en un aumento sin precedentes del tráfico de datos. Se espera que antes del año 2020, el trafico debido a dispositivos móviles alcance cerca del 70 por ciento del tráfico IP total, mientras que se prevé que los servicios de vídeo sean prácticamente el 75 por ciento del tráfico de datos en las redes móviles hacia el 2022. Las transmisiones multicast son una de las tecnologías clave para conseguir una distribución más eficiente, tanto espectral como energéticamente, del contenido multimedia en las redes móviles actuales y futuras. Merece la pena reseñar que el multicast es un mecanismo de entrega del mismo contenido a muchos usuarios, que no se enfoca exclusivamente en la distribución de vídeo, sino que también permite la distribución de otros muchos contenidos, como actualizaciones software, información meteorológica o noticias de última hora. A pesar de que los servicios multicast ya se encuentran disponibles en las redes Long Term Evolution (LTE) y LTE-Advanced (LTE-A), la mejora en algunos ámbitos resulta necesaria para manejar las demandas que se prevén a corto plazo. Las técnicas de asignación de recursos para los servicios multicast suponen uno de los mayores desafíos, ya que es necesario el desarrollo de nuevos esquemas que nos permitan acometer las exigencias que supone su evolución hacia la próxima generación. La mayor parte de las técnicas multicast adoptan estrategias conservadoras, seleccionando esquemas de modulación y codificación (MCS) impuestos por las condiciones de propagación que experimenta el usuario del grupo con peor canal, para así asegurar que todos los usuarios pertenecientes al grupo multicast sean capaces de decodificar correctamente los datos recibidos. Como resulta obvio, la utilización de esquemas tan robustos conlleva el precio de sufrir una baja eficiencia espectral. Esta tesis presenta un exhaustivo estudio de la tecnología broadcast/ multicast para las redes móviles actuales, que se centra especialmente en las estrategias de asignación de recursos (SRA), cuyo objetivo es maximizar los beneficios que la utilización de transmisiones multicast potencialmente implica en términos de eficiencia espectral. A partir de dicho estudio, hemos realizado varias contribuciones al estado del arte en el ámbito de la gestión de recursos radio (RRM) para los servicios multicast, aplicables en las redes móviles actuales y futuras. • En el marco de LTE/LTE-A, el eMBMS comparte los recursos de la capa física con las transmisiones unicast (al menos hasta la revisión 12). Por lo tanto, la disponibilidad temporal de las transmisiones multicast está limitada a un máximo del 60 por ciento, reservándose las subtramas restantes (al menos el 40 por ciento) para las transmisiones unicast. Con el objetivo de alcanzar la máxima tasa total de datos (ADR) entre los usuarios multicast, hemos implementado varios esquemas innovadores de SRA que combinan la asignación de los recursos multicast y unicast de la trama LTE/LTE-A, garantizando los requisitos de QoS a cada usuario. • En los sistemas de comunicaciones de banda ancha, la selección del MCS para transmisiones multicast se basa habitualmente en la utilización de CQIs de banda ancha, lo que proporciona información bastante imprecisa acerca de la capacidad potencial del canal multicast. Recientemente se ha empezado a utilizar el CQI por subbanda para mejorar la eficiencia espectral del sistema sin comprometer la robustez de los enlaces. Hemos propuesto nuevas estrategias para SRA multicast basadas en el CQI por subbanda que, basándose en la selección de los modos de transmisión con mayor eficiencia espectral, conducen a mejores tasas de datos, a la vez que permiten cumplir los requisitos de QoS. • Los servicios móviles de vídeo broadcast/multicast precisan estrategias eficientes de SRA con baja complejidad. Hemos propuesto una estrategia de SRA basada en subgrupos multicast y la técnica de codificación de vídeo escalable (SVC) para la difusión de vídeo multicast, la cual se centra en reducir el espacio de búsqueda de soluciones y optimizar el ADR. Los resultados obtenidos en términos de ADR, eficiencia espectral y equidad entre los usuarios multicast, junto con la baja complejidad del algoritmo, ponen de manifiesto que el esquema propuesto es adecuado para su implantación en sistemas reales. Estas contribuciones pretenden servir de referencia que motive la investigación actual y futura en el interesante ámbito de RRM para los servicios broadcast/multicast en las redes móviles de próxima generación.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Atilio Manuel Da Silva Gameiro.- Secretario: Víctor Pedro Gil Jiménez.- Vocal: María de Diego Antó

    From MFN to SFN: Performance Prediction Through Machine Learning

    Get PDF
    In the last decade, the transition of digital terrestrial television (DTT) systems from multi-frequency networks (MFNs) to single-frequency networks (SFNs) has become a reality. SFN offers multiple advantages concerning MFN, such as more efficient management of the radioelectric spectrum, homogenizing the network parameters, and a potential SFN gain. However, the transition process can be cumbersome for operators due to the multiple measurement campaigns and required finetuning of the final SFN system to ensure the desired quality of service. To avoid time-consuming field measurements and reduce the costs associated with the SFN implementation, this paper aims to predict the performance of an SFN system from the legacy MFN and position data through machine learning (ML) algorithms. It is proposed a ML concatenated structure based on classification and regression to predict SFN electric-field strength, modulation error ratio, and gain. The model's training and test process are performed with a dataset from an SFN/MFN trial in Ghent, Belgium. Multiple algorithms have been tuned and compared to extract the data patterns and select the most accurate algorithms. The best performance to predict the SFN electric-field strength is obtained with a coefficient of determination (R2) of 0.93, modulation error ratio of 0.98, and SFN gain of 0.89 starting from MFN parameters and position data. The proposed method allows classifying the data points according to positive or negative SFN gain with an accuracy of 0.97

    Nonorthogonal Multiple Access and Subgrouping for Improved Resource Allocation in Multicast 5G NR

    Get PDF
    The ever-increasing demand for applications with stringent constraints in device density, latency, user mobility, or peak data rate has led to the appearance of the last generation of mobile networks (i.e., 5G). However, there is still room for improvement in the network spectral efficiency, not only at the waveform level but also at the Radio Resource Management (RRM). Up to now, solutions based on multicast transmissions have presented considerable efficiency increments by successfully implementing subgrouping strategies. These techniques enable more efficient exploitation of channel time and frequency resources by splitting users into subgroups and applying independent and adaptive modulation and coding schemes. However, at the RRM, traditional multiplexing techniques pose a hard limit in exploiting the available resources, especially when users' QoS requests are unbalanced. Under these circumstances, this paper proposes jointly applying the subgrouping and Non-Orthogonal Multiple Access (NOMA) techniques in 5G to increase the network data rate. This study shows that NOMA is highly spectrum-efficient and could improve the system throughput performance in certain conditions. In the first part of this paper, an in-depth analysis of the implications of introducing NOMA techniques in 5G subgrouping at RRM is carried out. Afterward, the validation is accomplished by applying the proposed approach to different 5G use cases based on vehicular communications. After a comprehensive analysis of the results, a theoretical approach combining NOMA and time division is presented, which improves considerably the data rate offered in each use case.This work was supported in part by the Italian Ministry of University and Research (MIUR), within the Smart Cities framework, Project Cagliari2020 ID: PON04a2_00381; in part by the Basque Government under Grant IT1234-19; and in part by the Spanish Government [Project PHANTOM under Grant RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE)]

    Challenges and Performance Evaluation of Multicast Transmission in 60 GHz mmWave

    Get PDF
    Recently, millimeter-wave (mmWave) technology has attracted significant attention due to its ambitious promise to deal with the rapid growth in wireless data traffic. Moreover, mmWave is expected to constitute a foundation for the fifth-generation (5G) communication systems' services, claimed to efficiently and effectively support both unicast and multicast transmission modes. However, the use of highly directional antennas at both user and access point sides is required to compensate for the severe path loss, high attenuation, and atmospheric absorption at extremely high-frequency bands, e.g., mmWave. Hence, multicast transmission needs special attention in directional systems due to the nature of group-oriented services, wherein a single beam simultaneously feeds receivers located at different positions. Since the widest possible beams at 60\,GHz band are limited in terms of range and data rate and cannot serve all users, and, inversely, the use of only fine beams steered toward each user in unicast fashion requires long data transmission duration, the design of efficient directional multicast schemes is of utmost importance. Further, a slight beam misalignment due to mobility can generate a significant signal drop even between devices communicating in unicast fashions. The mission of this paper is to discuss the main challenges that must be faced to take advantage of mmWave communication for multicast data delivery. To this end, we investigate the performance of such systems in terms of data rate and data transmission duration via simulations considering both static and dynamic scenarios.acceptedVersionPeer reviewe

    Efficient Management of Multicast Traffic in Directional mmWave Networks

    Get PDF
    Multicasting is becoming more and more important in the Internet of Things (IoT) and wearable applications (e.g., high definition video streaming, virtual reality gaming, public safety, among others) that require high bandwidth efficiency and low energy consumption. In this regard, millimeter wave (mmWave) communications can play a crucial role to efficiently disseminate large volumes of data as well as to enhance the throughput gain in fifth-generation (5G) and beyond networks. There are, however, challenges to face in view of providing multicast services with high data rates under the conditions of short propagation range caused by high path loss at mmWave frequencies. Indeed, the strong directionality required at extremely high frequency bands excludes the possibility of serving all multicast users via a single transmission. Therefore, multicasting in directional systems consists of a sequence of beamformed transmissions to serve all multicast group members, subgroup by subgroup. This paper focuses on multicast data transmission optimization in terms of throughput and, hence, of the energy efficiency of resource-constrained devices such as wearables, running their resource-hungry applications. In particular, we provide a means to perform the beam switching and propose a radio resource management (RRM) policy that can determine the number and width of the beams required to deliver the multicast content to all interested users. Achieved simulation results show that the proposed RRM policy significantly improves network throughput with respect to benchmark approaches. It also achieves a high gain in energy efficiency over unicast and multicast with fixed predefined beams.acceptedVersionPeer reviewe

    Efficient Management of Multicast Traffic in Directional mmWave Networks

    Get PDF
    Multicasting is becoming more and more important in the Internet of Things (IoT) and wearable applications (e.g., high definition video streaming, virtual reality gaming, public safety, among others) that require high bandwidth efficiency and low energy consumption. In this regard, millimeter wave (mmWave) communications can play a crucial role to efficiently disseminate large volumes of data as well as to enhance the throughput gain in fifth-generation (5G) and beyond networks. There are, however, challenges to face in view of providing multicast services with high data rates under the conditions of short propagation range caused by high path loss at mmWave frequencies. Indeed, the strong directionality required at extremely high frequency bands excludes the possibility of serving all multicast users via a single transmission. Therefore, multicasting in directional systems consists of a sequence of beamformed transmissions to serve all multicast group members, subgroup by subgroup. This paper focuses on multicast data transmission optimization in terms of throughput and, hence, of the energy efficiency of resource-constrained devices such as wearables, running their resource-hungry applications. In particular, we provide a means to perform the beam switching and propose a radio resource management (RRM) policy that can determine the number and width of the beams required to deliver the multicast content to all interested users. Achieved simulation results show that the proposed RRM policy significantly improves network throughput with respect to benchmark approaches. It also achieves a high gain in energy efficiency over unicast and multicast with fixed predefined beams.acceptedVersionPeer reviewe

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    COCAM: a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning in multi-clouds environment

    Get PDF
    The evolution of the Internet of Things technology (IoT) has boosted the drastic increase in network traffic demand. Caching and multicasting in the multi-clouds scenario are effective approaches to alleviate the backhaul burden of networks and reduce service latency. However, existing works do not jointly exploit the advantages of these two approaches. In this paper, we propose COCAM, a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning to minimize the transmission number in the multi-clouds scenario with limited storage capacity in each edge cloud. Specifically, by integrating a cooperative transmission model with the caching model, we provide a concrete formulation of the joint problem. Then, we cast this decision-making problem as a multi-agent extension of the Markov decision process and propose a multi-agent actor-critic algorithm in which each agent learns a local caching strategy and further encompasses the observations of neighboring agents as constituents of the overall state. Finally, to validate the COCAM algorithm, we conduct extensive experiments on a real-world dataset. The results show that our proposed algorithm outperforms other baseline algorithms in terms of the number of video transmissions
    corecore