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Abstract

Recently, the popularity of Millimeter Wave (mmWave) wireless networks has increased

due to their capability to cope with the escalation of mobile data demands caused by the

unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high fre-

quency or mmWave band is a fundamental pillar in the provision of the expected gigabit data

rates. Hence, according to both academic and industrial communities, mmWave technology,

e.g., 5G New Radio (NR) and WiGig (60GHz), is considered as one of the main components

of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP)

provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks,

whereas IEEE actively explores the unlicensed band at 60GHz for the next-generation wire-

less local area networks. In this regard, mmWave has been envisaged as a new technology

layout for real-time heavy-traffic and wearable applications.

This very work is devoted to solving the problem of mmWave band communication system

while enhancing its vantages through utilizing the direct communication radio interface for

NR multicasting, cooperative positioning, and mission-critical applications. The main contri-

butions presented in this work include: (i) a set of mathematical frameworks and simulation

tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink

relaying concept exploitation to deal with the channel condition deterioration of dynamic

multicast systems and to ensure mission-critical and ultra-reliable low-latency communi-

cations; (iii) cooperative positioning techniques analysis for enhancing cellular positioning

accuracy for 5G+ emerging applications that require not only improved communication

characteristics but also precise localization.

Our study indicates the need for additional mechanisms/research that can be utilized:

(i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sidelink

aspects, including, but not limited to, standardization perspective and the next relay selection

strategies; and (iii) to design cooperative positioning systems based on Device-to-Device

(D2D) technology.

Index terms: 5G, New Radio, millimeter Wave, sidelink, device-to-device (D2D), multi-

hop, public safety, factory automation, collaborative localization, cooperative localization,

wearables.
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Sommario

Di recente, la popolarità delle reti wireless Millimeter Wave (mmWave) è aumentata

grazie alla loro capacità di far fronte all’aumento della richiesta di dati mobili causata dalla

proliferazione senza precedenti di dispositivi intelligenti nelle reti di quinta generazione (5G).

La banda ad altissima frequenza, o mmWave, è un pilastro fondamentale per consentire di

fornire la velocità di trasmissione dati dell’ordine dei gigabit prevista. Pertanto, secondo

le comunità accademiche e industriali, la tecnologia mmWave, come 5G New Radio (NR)

e WiGig (60 GHz), è considerata uno dei componenti principali delle reti 5G e oltre. In

particolare, all’interno del 3rd Generation Partnership Project (3GPP) si prevede l’uso di

sottobande mmWave con licenza per le reti cellulari 5G mmWave, mentre la IEEE valuta

la possibilità di sfruttare la banda senza licenza a 60 GHz per le reti locali wireless di

prossima generazione. A questo proposito, mmWave è stato concepito come un nuovo layout

tecnologico per applicazioni wearable e real-time ad alto carico.

Questo lavoro di tesi si focalizza sui sistemi di comunicazione in banda mmWave, allo

scopo di migliorare al contempo i vantaggi derivanti dall’utilizzo dell’interfaccia radio di

comunicazione diretta per il multicasting in sistemi NR, dal posizionamento cooperativo

e dalle applicazioni mission-critical. I principali contributi presentati in questo lavoro in-

cludono: (i) un insieme di modelli matematici e strumenti di simulazione per caratterizzare

la fornitura di traffico multicast in sistemi direzionali mmWave; (ii) l’utilizzo della possibil-

ità di inoltrare dati mediante comunicazioni sidelink per far fronte al deterioramento delle

condizioni del canale dei sistemi multicast dinamici e per garantire comunicazioni mission-

critical e ultra-affidabili a bassa latenza; (iii) l’analisi di tecniche di posizionamento cooper-

ativo per migliorare l’accuratezza del posizionamento cellulare per le emergenti applicazioni

5G+ che richiedono non solo migliori caratteristiche in termini di comunicazione ma anche

una localizzazione precisa.

Lo studio condotto fa emergere la necessità di ulteriori meccanismi/ricerche che possano

essere utilizzati per: (i) migliorare ulteriormente le prestazioni del multicasting nei sistemi

5G/6G; (ii) studiare aspetti secondari come, ad esempio, prospettive di standardizzazione

e strategie per la selezione dei nodi che operano come relay, e (iii) progettare sistemi di

posizionamento cooperativo basati sulla tecnologia Device-to-Device (D2D).

Parole chiave: 5G, New Radio, onde millimetriche, sidelink, device-to-device (D2D),

multi-hop, sicurezza pubblica, automazione industriale, localizzazione collaborativa, localiz-

zazione cooperativa, wearable.
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Resumen

Recientemente, se ha incrementado la popularidad de las redes inalámbricas mmWave

debido a su capacidad para hacer frente a la creciente demanda de datos móviles provocada

por la proliferación sin precedentes de dispositivos inteligentes de 5G. La banda de frecuencias

extremadamente altas o mmWave representa uno de los pilares fundamentales en la provisión

de las esperadas velocidades de datos gigabit. Por tanto, según las comunidades académicas

e industriales, la tecnología mmWave, por ejemplo, 5G NR y WiGig (60GHz), se considera

uno de los principales componentes de las redes 5G y posteriores. En particular, el 3GPP

contempla el uso de sub-bandas mmWave con licencia para las redes de telefonía móvil

mmWave de 5G, mientras que el IEEE explora activamente la banda sin licencia de los

60GHz para las redes inalámbricas de área local de próxima generación. En este sentido,

se ha planteado la mmWave como una nueva disposición tecnológica para aplicaciones de

tráfico pesado y wearables en tiempo real.

Este trabajo tiene como objetivo resolver el problema del sistema de comunicación en la

banda mmWave, mejorando sus ventajas mediante la utilización de la interfaz de radio de

comunicación directa para la multidifusión NR, el posicionamiento cooperativo y las aplica-

ciones de misión crítica. Las principales contribuciones presentadas en este trabajo incluyen:

(i) un conjunto de marcos matemáticos y herramientas de simulación para caracterizar la

entrega de tráfico de multidifusión en sistemas direccionales mmWave; (ii) la explotación del

concepto de retransmisión de enlace lateral para hacer frente al deterioro de las condiciones

del canal de los sistemas de multidifusión dinámicos y para garantizar comunicaciones de mis-

ión crítica y ultra fiables de baja latencia; (iii) el análisis de las técnicas de posicionamiento

cooperativo para mejorar la precisión del posicionamiento celular en aplicaciones emergentes

5G+ que requieren no solo mejores características de comunicación, sino también una local-

ización precisa.

Nuestro estudio pone de manifiesto la necesidad de mecanismos o investigaciones adi-

cionales que puedan utilizarse: (i) para mejorar aún más el rendimiento de la multidifusión

en los sistemas 5G/6G; (ii) para investigar los aspectos de los enlaces laterales, incluyendo,

entre otros, la perspectiva de la estandarización y las próximas estrategias de selección de

relés; (iii) para ser considerados mientras se diseñan los sistemas de posición cooperativa

basados en la tecnología D2D.

Palabras clave: 5G, New Radio, onda milimétrica, enlace lateral, dispositivo a dis-

positivo (D2D), saltos múltiples, seguridad pública, automatización de fábricas, localización

colaborativa, localización cooperativa, dispositivos portátiles.
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Introduction

In this chapter, we explain the motivation of this research and its aim. We define central

research objectives and summarize our contributions. The chapter also covers our research

methodology and the structure of the thesis.

1.1 Motivation

mmWave band transmissions allow wireless technologies to meet the high data rate require-

ments of bandwidth-hungry applications, such as Extended Reality (XR) and multimedia

services. This is one of the main advantages of 5G NR mmWave small cells, which are con-

sidered as one of the main components of future 5G+ networks [9]. Using multicast via

Point-to-Multipoint (PTM) communications in these small cells may help to improve fur-

ther the spectrum efficiency. Multicasting, which is under consideration by the 3GPP for

Release 17 [10] of 5G systems, can provide substantial improvements in terms of system

efficiency, user experience, and total network throughput [11], which is a critical feature for

ultra-high-speed data transmissions.

Although multicasting has been widely investigated in traditional omnidirectional com-

munications (i.e., at sub-6 GHz bands), the design of efficient directional mmWave multicas-

ting techniques has to account for the limited coverage of directional mmWave communica-

tions [12]. Since mmWave is prone to blockages and suffers from high propagation loss, it can

severely affect the performance of the multicast link. In case one user in a multicast group

suffers from blockage, two options are possible: (i) all users experience this poor channel

condition (human blockage takes 15-25 dB [13–15] from the signal-to-noise ratio), or (ii) the

blocked user is served by the base station through unicast communication. In the thesis,

we take heed of the mentioned gap in supporting multicast traffic delivery in

directional systems by offering novel optimal and heuristic multicast delivery

and group formation strategies.

Moreover, in practical scenarios, the problem of multicasting with directional beams calls

for new strategies that are simpler to compute, compared to the non-polynomial optimal

ones, while still guaranteeing near-to-optimal performance [16]. For this purpose, we also use

machine learning approaches to provide close-to-optimal solutions very fast.

Furthermore, multi-hop relaying schemes are considered as one of the key interest areas

in future 5G+ systems. With D2D communications enabled, users close to the base station
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can serve as relays towards cell-edge users in their proximity, interested in the same mul-

ticast content, by using more robust D2D links [17, 18]. Hence, several non-adjacent links

may be active at the same time, thus enabling concurrent transmissions to achieve better

system performance. It has been demonstrated that mmWave and D2D symbiosis can bring

throughput performance improvement up to 2.3 times [19]. Furthermore, concurrent trans-

missions and D2D-enabled communications in directional multicast systems help to reduce

energy consumption, as required by battery-constrained wearable devices [20,21].

To this end, D2D-aided multicasting in mmWave directional systems has been investi-

gated in several recent studies. In [22], an efficient heuristic is designed for multicast data

delivery, where D2D multi-hop and concurrent transmissions are jointly exploited to achieve

lower energy consumption compared to a series of unicast transmissions. More recently,

in [23] and [20], an optimal multicast scheduling problem is formulated, with D2D links

and concurrent transmissions, through a mixed-integer non-linear program, which is known

to be NP-hard. Heuristic solutions with cubic complexity are also designed. A similar ap-

proach is proposed in [24], where multicast scheduling jointly exploits relaying and spatial

sharing properties of mmWave networks to minimize the overall data delivery time. In [21],

an optimal D2D-enabled multicast scheduling policy is proposed by constructing an integer

linear program problem with the goal of minimizing energy consumption in mmWave cellular

networks.

Here we claim that in a single-beam system, D2D links can improve performance com-

pared to unicast communications in terms of transmission delay, energy consumption, and

overall network throughput. Hence, due to the nature of multicast transmissions where the

users with the worst channel conditions define the data rate of the whole group (that be-

comes more critical in dynamic scenarios), one may need to exploit relaying functionality

to maintain the link quality of multicast transmissions or/and improve it employing D2D.

This thesis solves this problem through the mix of optimal and machine learning

methods. In addition, existing studies only investigate the special case of one relay node

(two-hop) sidelink operation [25–28], we investigate the case of an arbitrary number of hops

considering mission-critical scenarios.

While all mentioned before research gaps were connected to the communication perspec-

tive, the thesis also addresses the research gap in improving 5G localization accu-

racy demanded by emerging applications. The Non-Line-of-Sight (NLoS) problem that

may appear in high-frequency bands, such as mmWave, is one of the most challenging prob-

lems for sixth-generation (6G), which can drastically reduce localization accuracy [29–31]. To

this end, the cooperative positioning technique can be used. In this thesis, we exploit the two

technologies to implement cooperative localization and provide a performance comparison

from communication and localization views.
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1.2 Objectives and Methodology

Based on the challenges and research gaps identified in Section 1.1, three research ob-

jectives (ROx) have been formulated and subsequently addressed to answer the central

research question of this thesis how to schedule the resources for highly directional mul-

ticast and sidelink-assisted multicast communications efficiently, and whether D2D and RIS

technology can help positioning by increasing its accuracy.

• RO1. Support multicast traffic in mmWave networks with single- and multi-

beam directional antennas.

Transmissions at mmWave use highly directional antennas to guarantee the gigabit ca-

pabilities and overcome the short propagation range, thereby suffering from the limited

coverage caused by the oxygen absorption and severe path loss and making the multicast

fashion more complex. The former drawback makes it unfeasible to serve users spread

over large regions at a time with one beam due to the decrease in antenna gain. The

latter is an effect of the directionality of mmWave systems, which complicates multicast

deployment by posing additional challenges (e.g., beam steering and proper selection

of beamwidth). Hence, the proper beamwidth and data rate setting is one of the most

challenging issues in multicast with directional antennas. This calls for new optimal so-

lutions, heuristic strategies, and statistical learning methods to properly schedule the

transmissions of multicast traffic.

• RO2. Improve the performance of mmWave multicast directional systems for

dynamic scenarios and for mission-critical services.

An additional challenge emerges in directional multicast systems in the case of a non-

static scenario. In mmWave multicast systems, beams are steered in between users to

cover multiple receivers at a time, leading to signal deterioration or even connection

disruption between the Base Station (BS) and mobile receiver if the latter resides close

to the beam edge. Therefore, guaranteeing coverage in the presence of moving users is

becoming increasingly challenging. Even though research efforts have also been put on

issues related to unicast mobility and beam tracking, group mobility has received low

interest from the community. To this end, this objective studies the use of sidelink to

assist mmWave multicasting, thereby improving performance. Moreover, this objective

reviews the NR sidelink applicability for public safety and factory automation appli-

cations, thereby covering mission-critical and ultra-Reliable Low-Latency Communica-

tions (URLLC) scenarios.

• RO3. Improve the performance of cellular positioning and analyze coopera-

tive positioning methods and their impact on accuracy and coverage.

Acquiring accurate location information from Mobile Terminals (MTs) is becoming in-

creasingly crucial for achieving 5G and 6G applications requirements. And this is not

only true for location-based services but also for improving wireless communication per-

formance in various ways, including channel estimation, beam alignment, medium access
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control, routing, and network optimization. In this vein, inter-agent measurements and

indirect Reconfigurable Intelligent Surface (RIS) links appear to provide additional po-

sition information and virtual Line-of-Sight (LoS), hence boosting localization accuracy.

Although much effort has been devoted to evaluating the performance of D2D and RIS

assisted localization systems separately, a comparison of these technologies from a lo-

calization perspective and the synergies resulting from their rendezvous have not been

sufficiently investigated despite the fact that they may produce a new perspective for

research and industrial communities. This objective aims to analyze cooperative posi-

tioning methods utilizing D2D and RIS technologies and their impact on accuracy and

coverage.

1.3 Contributions

The main contributions of the thesis can be summarised as follows:

1. Chapter 2:

• optimal solution for multi-beam mmWave BS operation minimizing the amount of

resources required to serve User Equipments (UEs) based on multi-period variable

cost and size bin packing problem;

• heuristic algorithms characterized by polynomial complexity and allowing to

achieve close approximations of the optimal solution;

• problem formalization and computation of the exact (globally optimal) and ap-

proximate simulated annealing solution for multicast optimization in dual-mode

mmWave/µWave BS deployments;

• implementation and comparison of the set of machine learning algorithms;

2. Chapter 3:

• design of a multicast services delivery framework, composed of two steps, that

considers a multi-mode approach (sidelink, mmWave unicasting, and multicasting);

• formulation of the transmission scheduling problem solved by an optimization

problem that aims at maximizing the network throughput;

• exploitation of a machine learning technique for clustering users, working

as a pre-optimization step able to reduce the complexity of the optimal solution.

• provision of a low-complexity heuristic solution, which offers results comparable

to the optimal scheduling.

• analysis of complexity vs. performance trade-off while accounting for the

user’s mobility and provision of practical hints to reach the trade-off.

• presentation of numerical results demonstrating that transmit power together

with transmission bandwidth can be adjusted to reduce the total power

consumption.

• an overview of the main functionalities and features of NR sidelink;
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• possibility of using NR sidelink communication for public safety and fac-

tory automation scenarios, demonstrating noticeable end-to-end latency and en-

ergy efficiency performance improvement;

• investigation of multi-hop sidelink operation;

3. Chapter 4:

• detailed state-of-the-art of D2D-aided cooperative positioning, which can

be determined as the information exchange among MTs intending to increase their

localization accuracy;

• system-level modeling for D2D- and RIS-based positioning systems for Received

Signal Strength (RSS) based localization. RSS readings observed at the MT can be

employed to estimate the corresponding distances from surrounding BSs through

mathematical models (known as path loss models) that describe signal attenuation

as a function of distance;

• novel approach to integrate D2D and RIS communication model into positioning

algorithms by using the statistical mean and median for sensor fusion at the location-

level;

• identification of relevant use cases for RIS-aided localization and RIS commu-

nications in general.

1.3.1 Research outputs

The detailed contributions and relevant publications are organized in three blocks, each

corresponding to a research objective from the list presented in Section 1.2. Contributions

C1 are included in chapter 2, chapter 3 contains our contributions C2, and chapter 4 describes

contributions C3.

C1. Contributions in supporting multicast traffic in mmWave networks with

single- and multi-beam directional antennas by proposing optimal, heuristic, and

statistical methods solutions.

Multicasting is becoming more and more important in the Internet of Things (IoT) and

wearable applications (e.g., high-definition video streaming, virtual reality gaming, and pub-

lic safety, among others) that require high bandwidth efficiency and low energy consumption.

In this regard, mmWave communications can play a crucial role in efficiently disseminating

large volumes of data as well as enhancing the throughput gain in 5G and beyond networks.

There are, however, challenges to face in view of providing multicast services with high data

rates under the conditions of short propagation range caused by high path loss at mmWave

frequencies. Indeed, the strong directionality required at extremely high frequency bands

excludes the possibility of serving all multicast users via a single transmission. Therefore,

multicasting in directional systems consists of a sequence of beamformed transmissions to

serve all multicast group members, subgroup by subgroup. We address the challenge of op-

timal multicasting in 5G mmWave systems by presenting a globally optimal solution for



6 1 Introduction

multi-beam antenna operation. The optimization problem is formulated as a special case

of multi-period variable cost and size bin packing problem that allows not imposing any

constraints on the number of the beams and their configurations. We also propose heuristic

solutions having polynomial time complexity.

On top of this, new deployment options, such as dual mmWave and microwave (µWave)

deployments and new antenna design solutions, add to the complexity of the problem. To this

end, the resource allocation task for multicast services in dual mmWave/µWave deployments

with multi-beam directional antennas is addressed as a multi-period variable cost and size

bin packing problem is studied. This latter is solved, and the globally optimal solution is

characterized. To decrease complexity, we also propose and test the simulated annealing

approximation as well as two relaxation techniques.

However, the bin packing problem is known to be NP-hard, and the solution time is

practically unacceptable for large multicast group sizes. To this aim, we further develop

and test several machine learning alternatives to address this issue. The numerical analysis

shows that there is a trade-off between accuracy and computational complexity for multicast

grouping when using decision tree-based algorithms. A higher number of splits offers better

performance (i.e., prediction accuracy) at the cost of an increased computational time.

These contributions have been included in the following publications:

• Chukhno, N, Chukhno, O., Moltchanov, D., Molinaro, A., Gaidamaka, Yu., Samouylov,

K., Koucheryavy, Ye., and Araniti, G. “Optimal Multicasting in Millimeter Wave 5G NR

with Multi-beam Directional Antennas.” IEEE Transactions on Mobile Computing, 2021.

• Chukhno, N., Chukhno, O., Moltchanov, D., Gaydamaka, A., Samuylov, A., Kouch-

eryavy, Y., Molinaro, A., Iera, A. and Araniti, G. “Optimal Multicasting in Dual

mmWave/µWave 5G NR Deployments with Multi-Beam Directional Antennas.” IEEE

Transactions on Vehicular Technology, 2022, (submitted).

• Chukhno, N., Chukhno, O., Moltchanov, D., Gaydamaka, A., Samuylov, A., Kouch-

eryavy, Y., Molinaro, A., Iera, A. and Araniti, G. “The Use of Machine Learning Tech-

niques for Optimal Multicasting in 5G NR Systems.” IEEE Transactions on Broadcasting,

2022, (Early Access).

C2. Contributions in improving performance of mmWave multicast direc-

tional systems in the presence of dynamic users/blockers by designing a multicast

services delivery framework enhanced by D2D links and further elaboration on

the concept of multi-hop D2D ProSe communications while referring to public

safety and factory automation sample use cases.

Recent years’ technological developments in the field of telecommunications have brought

revolutionary modifications and enhancements also in wireless communications systems.

Among these, the exploitation of the mmWave spectrum stands out for its capability to

provide ultra-high transmission data rates. However, its full adoption beyond the fifth gen-

eration (5G+/6G) multicast-capable systems remains hindered, mainly due to mobility ro-
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bustness issues. We address this issue by proposing an optimal “sidelink-assisted” multicast

scheduling in a mobile multi-mode system, including sidelink/D2D, unicast, and multicast

transmissions. As a pre-optimization step of the optimal solution for the sidelink-assisted

multiple modes mmWave scheduling, we introduce a clustering technique based on machine

learning and perform a detailed analysis of the effects of various system parameters on perfor-

mances. Particularly, we numerically show the trade-off between complexity and performance

depending on the mobility pattern and users’ distribution. Our results also demonstrate that

energy consumption/latency trade-off can be reached via proper transmit power and band-

width adjustments.

Further, we study the deployment of D2D communications (also known as ProSe or

sidelink transmissions) in cellular networks, taking advantage of proximity, multi-hop, and

spatial reuse gains. We describe the main advancements of NR sidelink compared to Long-

Term Evolution - Advanced (LTE-A) sidelink. Then, we run a simulation campaign to test

D2D-based ProSe for public safety and factory automation scenarios with their mission-

critical requirements and ultra-reliable low-latency communications, respectively. A prelim-

inary study on NR sidelink usage for both considered use cases is performed, aiming to

identify the main advantages and disadvantages thereof.

Our research on sidelink relaying functionalities has been published in the following

papers:

• Chukhno, N., Chukhno, O., Pizzi, S., Molinaro, A., Iera, A., Araniti, G. “Optimal

Scheduling for Highly Directional Sidelink-assisted Multicast Communications”. IEEE

Transactions on Vehicular Technology Journal, 2022, (submitted).

• Chukhno, N., Orsino, A., Torsner, J., Iera, A., Araniti, G. “5G NR Sidelink Multi-Hop

Transmission in Public Safety and Factory Automation Scenarios”. IEEE Network, 2023.

C3. Contributions in analyzing cooperative positioning methods by means of

D2D and RIS technologies and their impact on accuracy and coverage, as well

as in proposing a loose-coupling sensor fusion based on a statistical metric.

The next generation of high-accuracy positioning services are required to satisfy the sub-

meter accuracy level for more than 95% of the network area, including indoor, outdoor,

and urban deployments. For this purpose, 5G NR technology is designed to facilitate high-

accuracy continuous localization. In 5G systems, the existence of high-density small cells

and the possibility of the D2D communication between mobile terminals paves the way for

cooperative positioning applications. From the standardization perspective, 5G technology

is already under consideration (5G NR Release 16) for ultra-dense networks enabling coop-

erative positioning and is expected to achieve the ubiquitous positioning of below one-meter

accuracy, thereby fulfilling the 5G requirements. We analyze the strengths and weaknesses

of D2D as an enabling technology for cooperative cellular positioning (including two D2D

approaches to perform cooperative positioning).
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Further, we research cooperative positioning techniques by means of D2D and RIS tech-

nologies (to ensure virtual LoS transmissions) leveraging RSS-based ranging. In particular,

the theoretical models for D2D- and RIS-aided positioning are provided, and the pros and

cons of each of the two methods are discussed from both a communication and a localization

perspective. Numerical results reveal the use cases advantageous for RIS and D2D usage.

Then, based on the results, useful guidelines are derived on the optimal sensor fusion metric

– median – that minimizes the mean absolute error of the cooperative localization.

Reproducible Research: The open-source code is available from https://github.

com/NadezhdaChukhno/Cooperative-RSSI-based-Localization-using-cellular-data-D2D-and-RIS.

These contributions have been published in the following papers.

• Chukhno, N., Trilles, S., Torres-Sospedra, J., Iera, A., and Araniti, G. “D2D-based co-

operative positioning paradigm for future wireless systems: A survey.” IEEE Sensors

Journal 22, no. 6 (2021): 5101-5112.

• Chukhno, N., Trilles, S., Torres-Sospedra, J., Iera, A., and Araniti, G. “D2D-aided ver-

sus RIS-aided Cooperative Positioning: Theoretical Model for RSSI-based Ranging and

Performance Comparison.” IEEE Transactions on Vehicular Technology Journal, 2022,

(submitted).

1.3.2 Publications

The complete list of the author’s publications produced during the Ph.D. period includes 7

papers related to the subject of the thesis and mentioned in Section 1.3.1, and 10 papers not

included in the thesis.

1. Chukhno, N, Chukhno, O., Moltchanov, D., Molinaro, A., Gaidamaka, Yu., Samouylov,

K., Koucheryavy, Ye., and Araniti, G. Optimal Multicasting in Millimeter Wave 5G

NR with Multi-beam Directional Antennas. IEEE Transactions on Mobile Computing

(2021).

2. Chukhno, N., Chukhno, O., Moltchanov, D., Gaydamaka, A., Samuylov, A., Kouch-

eryavy, Y., Molinaro, A., Iera, A. and Araniti, G. “Optimal Multicasting in Dual

mmWave/µWave 5G NR Deployments with Multi-Beam Directional Antennas.” IEEE

Transactions on Vehicular Technology, 2022, (submitted).

3. Chukhno, N., Chukhno, O., Moltchanov, D., Gaydamaka, A., Samuylov, A., Kouch-

eryavy, Y., Molinaro, A., Iera, A. and Araniti, G. “The Use of Machine Learning Tech-

niques for Optimal Multicasting in 5G NR Systems”. IEEE Transactions on Broadcast-

ing, 2022, (Early Access).

4. Chukhno, N., Chukhno, O., Pizzi, S., Molinaro, A., Iera, A., Araniti, G. “Optimal

Scheduling for Highly Directional Sidelink-assisted Multicast Communications”. IEEE

Transactions on Vehicular Technology Journal, 2022, (submitted).

5. Chukhno, N., Orsino, A., Torsner, J., Iera, A., Araniti, G. “5G NR Sidelink Multi-Hop

Transmission in Public Safety and Factory Automation Scenarios”. IEEE Network, 2023.

https://github.com/NadezhdaChukhno/Cooperative-RSSI-based-Localization-using-cellular-data-D2D-and-RIS
https://github.com/NadezhdaChukhno/Cooperative-RSSI-based-Localization-using-cellular-data-D2D-and-RIS
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6. Chukhno, N., Trilles, S., Torres-Sospedra, J., Iera, A., and Araniti, G. “D2D-based co-

operative positioning paradigm for future wireless systems: A survey”. IEEE Sensors
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1.4 Thesis outline

The thesis is organized into 4 chapters, their content is briefly described below.

• Chapter 1. Introduction contains the motivation, structure, and contributions of this

work.

• Chapter 2. Delivering Multicast Traffic in mmWave Systems presents methods

for multicast traffic delivery in directional mmWave systems.

• Chapter 3. 5G NR Sidelink Multi-Hop Transmission is dedicated to the analysis

of the potential benefits coming from D2D technology in the case of mobile multicast

systems and public safety and factory automation applications.

• Chapter 4. Cooperative Positioning covers the state-of-the-art collaborative local-

ization methods using D2D technology and integrating the transmission and localization

components of wireless systems and introduces a theoretical model based on RSS ranging

for D2D- and RIS-aided cooperative positioning.

• Chapter 5. Conclusions includes the summary of research outcomes and a discussion

of future research avenues.

The final part of the document includes the bibliography.
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Delivering Multicast Traffic in mmWave Systems

This chapter overviews multicasting in mmWave directional systems. We first provide an

optimal multicast scheduling in 5G mmWave systems by implementing a globally optimal

solution for a single- and multi-beam antenna operation. Then, we offer optimal multicast-

ing in dual-mode mmWave sub-6 GHz hybrid deployments when both types of Radio Access

Technology (RAT) can be utilized to serve multicast UE. Finally, we show how to utilize

low-complexity heuristics and Machine Learning (ML) techniques to reduce the complexity of

an optimal solution.

2.1 Optimal Multicasting in 5G/6G mmWave Systems

2.1.1 Motivation

The growth in demand for mobile multimedia services poses considerable challenges in pro-

viding reliable service quality, with the support of a large number of users competing for

limited radio resources in cellular networks [32]. The NR technology is expected to be the

primary enabler of the 5G cellular system’s air interface. While the basic functionality of NR

has already been specified in 3GPP Rel-15 [33] and Rel-16 [34], several advanced functional-

ities are still not defined. One of these critical functionalities is multicasting, which has been

planned for 3GPP Rel-17 onwards [10,35].

Multicasting is a prominent technique applied to improve bandwidth efficiency compared

to unicast transmission [36]. In the multicast regime, BS can transmit the packet to many

users simultaneously using the same band and Modulation and Coding Scheme (MCS). In

the microwave spectrum with typically omnidirectional transmissions, multicast is a natural

scheme to implement. However, in highly directional systems, i.e., mmWave band commu-

nications considered for NR, the use of extremely directional radiation patterns at the BS’s

antennas poses some challenges to the multicast operation design, which still remain unsolved

or even unaddressed [12,37].

In exchange for the promised extraordinary rates at the air interface, mmWave NR sys-

tems bring the following hurdles [38]. First of all, the use of highly directional antenna radi-

ation patterns does not allow to serve simultaneously, in a single transmission, all the UE,

which belong to the same multicast session and are located in very large regions [39]. Indeed,

the Signal-to-Noise Ratio (SNR) decreases with larger beams. Secondly, NR is expected to

work with considerably larger antenna arrays, hence increasing the design complexity with
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respect to relatively simple microwave antenna configurations [40]. These issues are further

exacerbated by the adverse properties of mmWave propagation, including severe free-space

attenuation [41] and vulnerability to blockage [42]. Finally, the capability of modern an-

tenna arrays to utilize multiple beams at the same time with potentially varying Half Power

Beamwidth (HPBW) adds further degrees of freedom to multicast group formation and

scheduling, significantly complicating their design. However, when multiple beams are avail-

able, the width of numerous beams to be swept simultaneously has to be properly selected,

under the total transmission power constraint per antenna. This means that compared to

single-beam systems, power has to be split among beams in a sophisticated manner.

The question of efficient multicasting in wireless systems has been addressed recently.

Particularly, optimal solutions for single-beam antenna design have been proposed so far

in [43]. Furthermore, there are a number of heuristic solutions for single-beam antennas [44,

45]. While several heuristics for multi-beam NR antenna designs have also been proposed [46,

47], no globally optimal solution is available. Without a globally optimal solution, it is

impossible to fully benchmark existing solutions and develop enhancements.

This section fills the above-mentioned gaps by presenting a globally optimal solution for

multi-beam antenna operation by explicitly considering mmWave specifics, including direc-

tional multi-beam antennas, signal propagation, and blockage. The optimization problem is

first reduced to the special case of multi-period variable cost and size Bin Packing Prob-

lem (BPP) having well-known numerical solution algorithms, such that one may not place

any constraints on the number of the beams and their HPBW. To account for multi-beam

specifics, we select the optimization criterion to be the ratio of the amount of occupied

resources to the overall resources in the system. We then proceed to formulate heuristic

algorithms capable of approaching the globally optimal solution and extend the problem to

multi-RAT case. We then use ML algorithms, including decision trees, random forests, and

several types of neural networks for multicast grouping. Here, the exact solution, which is

only feasible for a limited number of UEs in the multicast group, is utilized to obtain a

training dataset for ML algorithms. The performance of the algorithms is finally compared

based on the minimum amount of used resources as a metric of interest.

2.1.2 System Model

In this subsection, antenna, propagation, and blockage models. The main notations used

throughout this chapter are gathered in Table 4.5.

Antenna Model

The main feature of antenna arrays in the context of multicasting is their directivity and gain

in transmit/receive directions. The former parameter is often captured by utilizing HPBW,

i.e., the angle, where the emitted power decreases by a factor of two. Detailed antenna

radiation pattern model capturing not only the main lobe but side and back lobes is defined
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in [48] as the superposition of individual elements. However, as the model is algorithmic in

nature, it can only be utilized in simulation-based system-level performance evaluation.

A simplified model utilized for mmWave performance optimization and evaluation pur-

poses is a cone-type model, see, e.g., [49], where the radiation pattern is represented as a

conical zone with an angle of α coinciding with the HPBW of the antenna array. By fol-

lowing [50], the HPBW is proportional to the number of elements in the appropriate plane.

Specifically,

α = 2|θm − θ3db|, (2.1)

where θ3db is the angle at which the value of the radiated power is 3 dB below the maximum,

and θm is the location of the array maximum. The latter is given by θm = arccos(−β/π),

where β is the phase excitation difference affecting the physical orientation of the array. We

assume θm = π/2 for β = 0. The 3 dB point is provided by

θ±3db = arccos[−β ± 2.782/(Nπ)], (2.2)

and N is the number of antenna elements.

The gain over the HPBW can be found as [50]

GA(θ
±
3db) =

1

θ+3db − θ−3db

∫ θ+
3db

θ−
3db

sin(Nπ cos(θ)/2)

sin(π cos(θ)/2)
dθ. (2.3)

Note that a reliable approximation for HPBW of the main lobe can be obtained by

utilizing 102◦/N [50]. Antenna gain over the main lobe in the appropriate plane can be

approximated by the number of antenna elements, see Table 2.2 providing the comparison

between gain calculated by utilizing (2.3) and approximation.

The described baseline model can be further extended or simplified according to the

modeling needs.1 Specifically, when there is no notable difference between BS and UE heights,

a triangle model from [51] can be utilized. Alternatively, one may add a spherical component

around the transmitter and appropriately divide the power between the main lobe and side

and back lobes to represent parasite power. Throughout this chapter, we use the model as

per Equation (2.3). Note that for multi-beam operation, the power budget has to be properly

split among the beams.

Propagation Model

The SNR at the receiver located at the distance of y from the NR BS along the propagation

path is

S(y) =
PAGAGU

(N0W +MI)L(y)
, (2.4)

1 The source code that generates planar antenna arrays, HPBWs, and gains is available at

https://github.com/NadezhdaChukhno/planar-antenna-array

https://github.com/NadezhdaChukhno/planar-antenna-array
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Table 2.1. Notation and parameters used in this chapter.

Fixed parameters with default values

Parameter Definition Value

fc Carrier frequency, GHz 28GHz

W Available bandwidth, MHz 50MHz

hA Height of NR BS, m 10m

hU Height of UEs, m 1.5m

hB Height of blockers, m 1.7m

µ 5G NR numerology 3

M Number of time slots in 1ms subframe 8

L Number of beams in the system 1,3,5

Pmax Total available power, W 33 dBm

GA, GU Antenna array gains at NR BS and UE ends, dBi var/5.57 dBi

N0 Power spectral density of noise, dBm/Hz -174 dBm/Hz

NA, NU Number of antenna elements at NR BS and UE var/4 el

MI Interference margin 3 dB [52]

K Number of multicast users 2-30

C Bitrate of multicast session, Mbps 25Mbps

wPRB Size of PRB, MHz 1.44MHz

∆ Subcarrier spacing, MHz 0.12MHz

Sth SINR threshold, dB -9.47 dB

Rb Number of available PRBs 32

R Service (cell) area radius, m 250m

Intermediate parameters

L(y) Path loss in linear scale

LdB(y) Path loss in decibel scale

XA, YA Coordinates of NR BS

XU , YU Coordinates of UEs

D BSs intersite distance, m

y Three-dimensional distance between UE and NR BS, m

y2D Two-dimensional distance between UE and NR BS, m

θ±
3db Upper and lower 3-dB points of antenna array, ◦

θm Location of array maximum, ◦

β Antenna array orientation, ◦

Ai, ζ Propagation coefficients

α HPBW of a linear antenna array, rad

pB(y) Distance-dependent blockage probability

S(y) Signal-to-interference-plus-noise ratio, SINR, dB

PA Transmit power, W

sj Spectral efficiency of the worst user in group Gj , bit/s/Hz

Q Number of carriers in a time slot

cj Channel gain-to-noise ratio for beam j

hj Channel gain for beam j

σj Standard deviation of the noise for beam j

where PA is the NR BS transmit power, GA and GU are the antenna array gains at the NR BS

and the UE ends, respectively, N0 is the power spectral density of noise, W is the operating

bandwidth, L(y) is the linear path loss. We capture the interference from the adjacent NR
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Table 2.2. Parameters induced by 5G NR BS antenna arrays.

Array HPBW,◦ [53] Gain, dBi Gain, linear

64x4 1.59 17.59 57.51

32x4 3.18 14.58 28.76

16x4 6.37 11.57 14.38

8x4 12.75 8.57 7.20

4x4 25.5 5.57 3.61

2x4 51 2.643 1.84

1x4 102 2.58 1

BSs via interference margin MI in (2.4). For a given NR BS deployment density, one may

estimate it by employing stochastic geometry-based models [49].

Following [54], the path loss measured in dB is

LdB(y) = 32.4 + 21 log10 y + 20 log10 fc, (2.5)

where fc is the carrier frequency in GHz and y is the three-dimensional (3D) distance between

the NR BS and the UE. By concentrating on the averaged traffic load and channel conditions,

we omit the consideration of small-scale fading. Nevertheless, the framework provided in what

follows allows utilizing more complex models to capture propagation conditions. For example,

the small-scale fading can be added to the model by assuming certain fading phenomena,

such as Rayleigh [55], Rician [56], Nakagami-m [57], Noyt [58], or Weibull phenomena [59,60].

Those fading channels include multipath scattering effects, time dispersion, and Doppler

shifts that arise from relative motion between the transmitter and receiver. Note that the

introduction of an additional random variable to the considered propagation model, i.e.,

PR = FAyγ , where F follows the desired distribution, will affect the results quantitatively

while preserving the same qualitative trend.

Blockage Model

We assume that blockers might temporarily block the LoS path between the UE and the

NR BS. Depending on the current link state (LoS non-blocked or blocked) and the distance

between the NR BS and the UE, the session employs an appropriate MCS to maintain

reliable data transmission. The attenuation due to the human body blockage is assumed to

be 15dB [14].

The path loss in the form of (2.5) can be represented in the linear scale by utilizing the

model in the form of Ayζ , where A and ζ are the propagation coefficients. Introducing the

coefficients (A1, ζ) and (A2, ζ) that correspond to LoS non-blocked and blocked conditions,

we have

A1 = 102 log10 fc+3.24, A2 = 102 log10 fc+4.74, ζ = 2.1. (2.6)

We note that the considered model can be extended to a model with building blockages

and corresponding LoS/NLoS states. To this purpose, one may introduce the coefficients
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(A1, ζ1), (A1, ζ2), (A2, ζ1), and (A2, ζ2) that correspond to LoS non-blocked, NLoS non-

blocked, LoS blocked, and NLoS blocked conditions, respectively with ζ1 = 2.1, ζ2 = 3.19.

The value of SNR at the UE can then be written as

S(y) =
PAGAGU

N0W +MI

[
y−ζ

A1
[1− pB(y)] +

y−ζ

A2
pB(y)

]
, (2.7)

where pB(y) is the blockage probability at the 3D distance y [42], which is calculated as

y =
√

(XA −XU )2 + (YA − YU )2 + (hA − hU )2, (2.8)

where (XA, YA, hA) and (XU , YU , hU ) are the coordinates of the NR BS and the multicast

user, respectively.

We note that blockage impairments in sub-6 GHz bands are in the range of 2−4 dB and

thus often neglected in performance models [61].

2.1.3 Analysis

Due to the highly directional nature of 5G mmWave systems, the usage of directional radi-

ation patterns at the BS’s antennas poses new challenges to the multicast operation design,

which remain unsolved [12, 37]. For instance, in a single-beam system, all the UE devices,

which belong to the same multicast session and are located in different cell regions, cannot

be served within a single transmission. Differently, operation over larger beams limits the

communications distances and also leads to inefficient use of radio resources due to lower

MCSs. When multi-beam antennas are utilized, the total transmission power constraint per

antenna introduces a similar effect and should be considered when selecting the width of

beams to be swept simultaneously. We solve the optimization problem for a certain time

interval, during which we assume that the radio channel conditions and the multicast group

composition remain unchanged.

In this subsection, we describe the general framework for optimal multicast scheduling in

5G mmWave systems by implementing a globally optimal solution for single- and multi-beam

antenna designs. This framework can further be extended to capture various operational

specifics of 5G deployments. As an example, we demonstrate how to adapt it to the case

of optimal multicasting in dual-mode mmWave sub-6 GHz hybrid deployments when both

types of RATs can be utilized to serve multicast UEs. Finally, we show how to utilize low-

complexity heuristics and ML techniques to reduce the complexity of an optimal solution.

Single-RAT Operation

The multicast multi-beam operation optimization problem can be formalized as a subclass of

BPP [62], one of the most studied combinatorial problems. In BPP, a collection of items of

various sizes must be either packed into a minimum number of identical bins, packed so that

the items are evenly distributed, or filled in the most time-efficient manner. The variable-

sized BPP [63] represents a new variant of BPP that attempts to reduce the cost of assigning
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items to particular bins. The authors offer BPP settings, in which the item allocation cost to

a bin is explicitly accounted for and may or may not be primarily determined by the item’s

volume. In our formulation, UEs represent items, whereas a beam is a bin for a subgroup of

UEs. The goal is to minimize the cost in terms of the ratio of occupied resources to the total

available resources for assigning multicast group’s UEs to subgroups, with each subgroup

served by a directional beam [1].

Consider the tri-sector cellular architecture, wherein each BS covers a 120◦ sector and

operates with a directional antenna array that contains L ≥ 1 beams. The set of K UEs that

make up a multicast group is denoted as K = {1, . . . ,K}. We assume an OFDMA-based

system, where M designates the time horizon’s length, i.e., the number of time slots in the

time horizon (one subframe of 1ms), with the index t ∈ T , T = {1, . . . ,M}, of each time

slot. The number of time slots M depends on the chosen NR numerology µ. The maximum

number of Primary Resource Blocks (PRBs) available in the system is restricted by MLRb,

where Rb is the available number of resource blocks in the system for a beam at time slot

t for given numerology µ and operating frequency fc. The potential maximum number of

subgroups served within the time horizon is restricted by ML.

The number of possible subgroups when considering all combinations of K UEs of the

multicast group scales as 2K − 1 [43]. Hence, we introduce Kj , which denotes the set of

UEs forming subgroup j, j ∈ J ,J = {1, . . . , 2K − 1}, and |Kj | is the number of UEs in

subgroup j. For instance, for K = 3 UEs, the number of subgroups’ options is 7 and these

feasible options are

K1={1}, K2={2}, K3={3}, K4={1, 2},

K5={1, 3}, K6={2, 3}, K7={1, 2, 3}. (2.9)

To proceed, we need to define a suit Gk as the collection of subgroup’s indices, Gk ⊂ J ,

corresponding to the combination of subgroups Kj , j ∈ J , that covers all the UEs of the

multicast group without their repetition, k = 1, 2, ..., |Ω|, where Ω is the set of all such

combinations.2

In the case of K = 3, the set Ω contains G1∼K1 ∪K2 ∪K3, G2∼K3 ∪K4, G3∼K2 ∪K5,

G4∼K1 ∪ K6, G5∼K7 with |Ω| being 5. Therefore, the following condition should be held:⋃
j∈Gk

Kj = K, k = 1, 2, ..., |Ω|, (2.10)

as well as

Kj1

⋂
Kj2 = ∅, j1 ̸= j2, ∀j1, j2 ∈ Gk, (2.11)

meaning that each multicast UE has to be included in one subgroup only. Note that the set

Kj of UEs forming subgroup j determines the directionality of the beam θm,j , HPBW αj

required to cover all UEs in subgroup j and distance Lj from the BS to the farthest UE.

2 Note that a suit is actually set of subsets. We utilize this term suit for clarity of further

exposure.
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For a single-beam system, L = 1, all the subgroups with indices included in suit Gk are

served sequentially by one beam. For a multi-beam system, L > 1, we define the subset of

subgroups’ indices Glk ⊆ Gk, l = 1, 2, ..., L, which are scheduled for beam l. Hence, suits Glk
should satisfy the following conditions:

Gk =

L⋃
l=1

Glk,

Gl1k
⋂
Gl2k = ∅, l1 ̸= l2, ∀l1, l2 ∈ {1, 2, . . . , L}. (2.12)

We introduce a binary indicator gtj ∈ {0, 1} to designate the subgroup assignment decision

variable at time slot t. More precisely, gtj = 1 if subgroup j is served at time slot t, and gtj = 0

otherwise. Then, a vector-indicator gt = (gt1, . . . , g
t
|J |) represents subgroups that are served

at time slot t.

We assume that at time slot t at most L beams can be simultaneously swept, or, equally,

L subgroups can be served, that is, ∑
j∈Gk

gtj ≤ L, ∀t ∈ T . (2.13)

The model does not limit the scheduler’s beam assignment; however, a suit service time

should not exceed the scheduling time horizon that may depend on implementation, i.e.,∑
j∈Gl

k

∑
t∈T

gtj ≤M, ∀l = 1, ..., L,∀k = 1, ..., |Ω|. (2.14)

Furthermore, we have to take into account the total transmit power budget per antenna

that serves subgroup j when dealing with a multi-beam system∑
j∈Gk

gtjPj ≤ Pmax, ∀t ∈ T , (2.15)

where Pj can be calculated as

Pj =
A1A2Sth(N0W +MI)

GAGUL
ζ1
j [A2(1− pB(Lj)) +A1pB(Lj)]

, (2.16)

where Pmax corresponds to the overall emitted antenna power to be split between beams,

Sth is the SNR threshold corresponding to a chosen NR MCS [3], N0 is the thermal noise at

1 Hz, W is the operational bandwidth, MI is the interference margin, whereas the transmit

antenna gain GA depends on HPBW αj , αj = 102/Nj [53], GA, GU are in linear scale, Lj is

the distance between the BS and the farthest UE in the subgroup j.

The SNR of subgroup j is defined according to (2.7) by substituting Lj for y. Consider

that a multicast session requires a constant bit rate of C bps. Then, to calculate the number

of resources required from BS to provide a multicast service with bit rate C, one needs to

know the Channel Quality Indicator (CQI) and MCS values, and SNR to spectral efficiency

mapping. In our analysis, we use MCS mappings from [64], but these parameters are typically

vendor-specific.

The cost of the multicast service delivered to subgroup j is the function aj = f(Pj , Nj , C),

where Pj is the transmit power of the corresponding beam, Nj is the number of antenna
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elements used to form the radiation pattern of the beam, and C is the required session bit

rate, i.e.,

aj = C/sjwPRB, (2.17)

where sj is a spectral efficiency in bps/Hz of the farthest UE in subgroup j and wPRB is a

PRB size.

We emphasize that the scheduler’s time slot assignment is written in vector gj =

(g1j , . . . , g
M
j ) with ∑

t∈T

gtj =

⌈
aj

Rb

⌉
, j ∈ J . (2.18)

The following condition on the number of resources allocated to subgroup j served by a

beam should also be held

aj ≤MRb, j ∈ J . (2.19)

Finally, in (2.14) and (2.19), the constraint on the maximum number of available resources

in the system should hold, i.e.,∑
j∈Gk

aj ≤MLRb, j ∈ J , k = 1, ..., |Ω|. (2.20)

The proposed BPP formalism can be utilized to formulate single- and multi-beam mul-

ticast optimization problems. It also allows for extensions to the case of multiple RATs as

discussed below.

Multi-Beam Antennas Optimization

In the case L ≥ 1, the goal is to find an optimal grouping of multicast UEs that minimizes

the total multicast service cost in terms of ρ - the ratio of occupied PRBs to the total available

number of PRBs for the entire time horizon. Thus, the optimization problem can be written

in the following form:

min
k∈1,...,|Ω|

∑
j∈Gk

aj

MLRb
, (2.21)

s.t. (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), (2.19), (2.20),

with ρ as the objective function.

Single-Beam Antennas Optimization

In the case L = 1, the entire transmit power budget at BS is allocated to a single beam,

Pj = P1 = PA. Hence, we can use either the optimization problem defined above in (2.21)

or the conventional resource minimization task [45]. That is,

min
k∈1,...,|Ω|

∑
j∈Gk

aj , (2.22)

s.t. (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), (2.19), (2.20).

Multi-RAT Operation

We now proceed with extending an optimal multicast scheduling formalism to multi-RAT 5G

mmWave systems. The goal of the model remains the same. The scheduler aims to minimize
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total service cost in terms of the ratio of occupied PRBs to the total number of available

PRBs, ρ, for the entire time horizon, thereby finding the optimal grouping of multicast UEs

while considering the possibility of transmission over two technologies, e.g., mmWave/µWave.

No Service Priorities

Considering the case of no external priorities, the problem formulation can be written in

a similar way as described above for single-RAT with multi-beam antennas by introducing

the variables with indices m and µ for mmWave and µWave technologies, respectively,

min
k∈1,...,|Ω|

∑
j∈Gk

[
aj,m

MmLmRb,m
+

aj,µ

MµLµRb,µ

]
, (2.23)

s.t. (2.11), (2.12)

where

Gk =

(
Lm⋃

lm=1

Glmk

)⋃ Lµ⋃
lµ=1

Glµk

 , (2.24)

Glm1
k

⋂
Glm2
k = ∅, lm1 ̸= lm2 , ∀lm1 , lm2 ∈ {1, ..., Lm},

Glµ1
k

⋂
Glµ2
k = ∅, lµ1 ̸= lµ2 , ∀lµ1 , lµ2 ∈ {1, ..., Lµ},

Glmk
⋂
Glµk = ∅, ∀lm ∈ {1, ..., Lm}, lµ ∈ {1, ..., Lµ}, (2.25)∑

j∈Glm
k

gtmj,m≤Lm, ∀tm∈Tm,
∑

j∈Glµ
k

g
tµ
j,µ≤Lµ, ∀tµ∈Tµ, (2.26)

∑
j∈Glm

k

∑
tm∈Tm

gtmj,m ≤Mm,
∑

j∈Glµ
k

∑
tµ∈Tµ

g
tµ
j,µ ≤Mµ, (2.27)

∑
j∈Glm

k

gtmj,mPj,m≤Pmax,m,∀tm∈Tm,
∑

j∈Glµ
k

g
tµ
j,µPj,µ ≤ Pmax,µ, ∀tµ∈Tµ, (2.28)

aj,m ≤MmRb,m, aj,µ ≤MµRb,µ, (2.29)∑
j∈Glm

k

aj,m≤LmMmRb,m,
∑

j∈Glµ
k

aj,µ ≤LµMµRb,µ. (2.30)

The constraints (2.11) and (2.12) are responsible for suits’ formation. Constraints (2.24)

and (2.25) ensure that the scheduling satisfies the constraints of serving multicast UEs by

utilizing a single technology only. With constraint (2.26), we require that the system should

comply with the constraint on the maximum number of subgroups to be served at each

time slot tm and tµ. This implies that at a time slot at most Lm and Lµ, beams can be

simultaneously swept. The constraint (2.27) guarantees that the suit service time does not

exceed the subframe duration for all considered numerologies for any lm = 1, . . . , Lm and

lµ = 1, . . . , Lµ. The constraint (2.28) ensures that the transmit power budget per antenna

that serves subgroup j ∈ Glmk , j ∈ Glµk , k = 1, . . . , |Ω|, over mmWave/µWave bands is

satisfied at any tm∈Tm and tµ∈Tµ. Finally, the constraint (2.29) and (2.30) impose resource

constraints assigning a beam to the subgroup for all the service time for any j ∈ J .

We emphasize that (2.23) reflects the implicit mmWave or µWave priorities. In the first

case, the system selects mmWave band to serve a set of UEs Kj , j ∈ J , if Pj,m ≤ Pmax,m.
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This means that the mmWave BS is utilized until it fails to perform successful data delivery,

and µWave technology is only used when some multicast UEs reside outside of the coverage

of mmWave BS. By analogy, µWave priory ensures that the set Kj is served by µWave BS,

if Pj,µ ≤ Pmax,µ.

Weighted Priority Service

An operator’s technology selection may be influenced by the available spectrum, deploy-

ment area, traffic conditions, and other factors. We offer the following weighted optimization

function to fulfill these specific requirements:

min
k∈1,...,|Ω|

∑
j∈Gk

[
w

aj,m

MmLmRb,m
+ (1− w)

aj,µ

MµLµRb,µ

]
, (2.31)

s.t. (2.11), (2.24), (2.25), (2.26), (2.27), (2.28), (2.29), (2.30),

where w is the weight factor.

The weight parameter w in (2.31) can be introduced to provide weighted priority in

technology selection. When considering the coexistence of unicast and multicast traffic, one

may set w = min(1, R2/R2
m) with R and Rm being the service area and mmWave cell radii,

respectively, making w proportional to the coverage distance. The motivation is that the

objective function in (2.31) maximizes the resources available for a new session when the

geometric locations of unicast sessions are uniformly distributed throughout the dual-mode

BS coverage region. Alternatively, the weight w can be set proportionally to the operator’s

utility, depending on these factors.

More Than Two RATs

Different from the single-RAT networks, multicast user grouping that minimizes total

service cost and mapping these subgroups onto multiple RATs for parallel transmission in

the multi-RAT networks can be determined. In our framework, we consider minimization

of the ratio of utilized to available resources, ρ, while satisfying the service requirements.

Thus, similarly to the two-RAT scheme, the scheduler aims to minimize total delivery cost

in terms of ρ during the entire time horizon considering the possibility of transmission over

all available technologies. For more than two RATs, one may use the formulation described

in subsection 2.1.3 by adding more components associated with all available technologies.

Alternatively, the optimization criteria can be latency minimization, data rate maximization,

etc. In general, for more than two RATs considered, the optimization function takes the

following form

min
k∈1,...,|Ω|

∑
j∈Gk

∑
η∈H

wη
aj,η

MηLηRb,η
, (2.32)

where η represents the RAT index, η ∈ H, H is a set of RATs.

By combining multiple technologies, the effective service area of a multi-RAT solution

will be extended to the coverage of all technologies onboard. Moreover, the reliability can be

significantly improved compared to any single-RAT connectivity. Note that, in general, the

choice of technology depends on the used application.
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Algorithm 1: Single-RAT Optimal BPP formalism, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K

2 Output: Optimally global solution for multicast grouping

3 Create 2K − 1 multicast subgroups of UEs

4 for each subgroup Kj do

5 find the farthest UE i and the distance from BS to this UE: y ← max
i∈Kj

yi as (2.8);

6 find HPBW needed to cover subgroup Kj

αj = arccos
(

(XU (i)XU (i′)+YU (i)YU (i′)+h2
U

y(i)y(i′)

)
{αj is chosen according to the angle

between two edge UEs i and i′}

7 find Pj from (2.16) using Lj = y;{Pj = PA is fixed for L = 1}

8 find the cost aj from (2.17);

9 end

10 Solve the problem by using (2.21) with exhaustive search for L ≥ 1 or (2.22) for

L = 1.

Solutions to Optimal Multicasting

General BPPs, wherein a given set of items of various sizes has to be packed into the fewest

number of unit capacity bins, belong to the NP-complete decision problem [63]. In this subsec-

tion, we provide solutions to previously introduced multicast problems, including those based

on exact branch-and-cut and branch-and-bound methods, various relaxation approaches,

meta-heuristics, and ML methods.

Single-RAT Optimal Solution

The pseudo-code in Algorithm 8 describes the exact globally optimal solution for single-

RAT multicasting formulated as (2.21) for L ≥ 1 and (2.22) for L = 1. The algorithm

employs our analytical framework described above to obtain optimal subgroup formation for

UEs making a multicast group and corresponding resource allocation. Note that for the case

L = 1, the power of a beam is Pj = P1 = PA. To reduce the complexity of the solution

(which might be important for some applications working in real-time), we propose practical

heuristic algorithms to solve the problem at hand.

Single-RAT Heuristic Solution

The proposed heuristic algorithm is suitable for the case L ≥ 1 and consists of two

stages: stage 1 - subgroups formation and stage 2 - beam assignment and power allocation.

The second stage is also logically divided as follows: (i) selection of the subgroups, which

have to be served at a time slot simultaneously, (ii) water-filling for detecting the maximum

power allocation that can be assigned to all of the beams simultaneously, and (iii) the

subsequent refinement of the allocations for selected beams. We underline that we consider

multi-beam transmissions starting from the second stage, which implies that the power-

budged constraints (2.15) per antenna have to be guaranteed. In other words, for the single-
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beam antennas, L = 1, only the first stage is required (see Algorithm 2), whereas, in the

case of L ≥ 1, additional steps have to be performed (we refer to Algorithm 4).

Subgroups Formation. At this stage, we create subgroups to serve all UEs making a

multicast group within a time horizon. This procedure can be completed in two ways, as

detailed below.

Subgroup Formation Option 1.1. To implement beam assignment, we adapt the

incremental multicast grouping algorithm for directional mmWave networks initially pro-

posed in [45] to the multi-beam case, i.e., L > 1. It is worth mentioning that for L = 1, we

utilize the approach described in [45] with the only modification of the objective function.

Specifically, we determine the number and width of the beams required to optimize the mul-

ticast transmission performance by employing the resource utilization minimization criteria.

The pseudo-code is shown in Algorithm 2, wherein the output of the algorithm contains

the number of subgroups, n, required to serve set K of multicast UEs, 1 ≤ n ≤ |J |; the

set of subgroups, SM
1 , . . . ,SM

n , that covers all UEs K from a multicast group without their

repetition; and required beam transmit power for each subgroup, PM
1 , . . . , PM

n .

The list of UEs to be allocated into subgroups is referred to as A. Initially, we include all

UEs of the multicast group, i.e., set K, to list A (line 3). We also introduce the 3D distance-

vector y = (y1, y2, ..., yi, ..., yK), each element of thereof represents the distance between the

BS antenna and UE i as per (2.8), where i is the index of the UE. Vector Φ = (ϕ1, ..., ϕK)

takes into account UEs’ reference angles in the azimuth plane (lines 4-5). The amount of

utilized resources is initially set to 0 in line 7. The algorithm iteratively partitions the UEs

from list A into multiple subgroups, as seen in line 9. Particularly, the minimization function

is set to infinity on line 10. Here, the minimization function reflects the occupied per UE

resources for each multicast subgroup. The algorithm begins by selecting the furthest UE

from list A with a distance y and its reference angle in the azimuth plane of ϕy (lines 12-13).

Then, adaptive beamforming is used based on the UE’s location, wherein one beam

pattern can be selected to transmit with a chosen MCS. Line 15 collects all UEs covered by

a beam with width α directed toward the UE with reference angle ϕy and with distance y in

the multicast subgroup Sα. We underline that the transmit power for each beam with width

α is computed according to (2.16) substituting Lj with y for L ≥ 1. The maximum available

power PA is used for the transmission when L = 1. Recall that for a single-beam operation,

i.e., L > 1, unlike the approach described in [45], we consider the minimization of the ratio

of occupied to available resources as the objective function (line 18). Here, sα is a spectral

efficiency for a beam with width α and corresponds to sj in (2.17). As a result, the algorithm

selects the best α for the chosen in line 12 UE and removes all the UEs served by the beam

with width α UEs from the list A (line 29). Algorithm 2 comes to a stop either when all

UEs have been serviced (i.e., list A is empty) or when there are no resources available in the

system.

Subgroup Formation Option 1.2. Another approach for subgroup formation is pre-

sented in Algorithm 3. First, this algorithm chooses the farthest UE i from the BS and
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Algorithm 2: Single-RAT Heuristic Stage 1 Option 1.1, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K

2 Output: n; SM
1 , ...,SM

n ; PM
1 , ..., PM

n ;

3 A ← K, K = {1, . . . ,K};

4 y = (y1, ..., yK) as (2.8);

5 Φ = (ϕ1, ..., ϕK); {reference angles}

6 n← 0; {subgroups counter}

7 asum ← 0;{occupied resources collector}

8 SM
n ← ∅;

9 while A ≠ ∅ or asum < MLRb or n < ML do

10 MINQ ←∞;

11 n← n+ 1;

12 y ← max
i∈A

yi;

13 ϕy ← ϕ(y);

14 for α ∈ Ωα = {αmin, ..., αmax} do

15 Sα = {i ∈ A : ϕy − α/2 ≤ ϕi ≤ ϕy + α/2};

16 calculate Pα from (2.16);

17 if Pα ≤ Pmax then

18 Qα = C
sαwPRB|Sα| ;

19 if MINQ > Qα then

20 MINQ ← Qα;

21 SM
n ← Sα;

22 PM
n ← Pα;

23 an ← C
sαwPRB

;

24 end

25 else

26 go to line 29;

27 end

28 end

29 A ← A \ SM
n ;

30 asum ← asum + an;

31 end

32 return n, SM
1 , ...,SM

n , PM
1 , ..., PM

n .

identifies the subgroup Kj , such that i ∈ Kj , to serve at the smallest value aj/|Kj |,

j ∈ J = {1, ..., 2K − 1} (lines 8-10). The motivation behind this approach is that the algo-

rithm can cover more UEs when sweeping the beam by choosing the farthest UE from the

multicast group. Further, to provide a less complex solution while preserving the intention to
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Algorithm 3: Single-RAT Heuristic Stage 1 Option 1.2, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K

2 Output: n, SM
1 , ...,SM

n , PM
1 , ..., PM

n ;

3 Create 2K − 1 multicast subgroups of UEs, J = {1, ..., 2K − 1};

4 A ← K, K = {1, . . . ,K};

5 n← 0; {subgroups counter}

6 while A ≠ ∅ do

7 n← n+ 1;

8 find the farthest UE i ∈ A and the distance from BS to this UE: y ← max
i∈A

yi as

(2.8);

9 find all subgroups Kj , j ∈ J , such as i ∈ Kj ;

10 find subgroup SM
n such as i ∈ Kj , with the smallest utilized resources per UE:

SM
n ← min

j∈J ,i∈Kj

aj/|Kj |;

11 A ← A \ SM
n ;

12 remove from J all subgroups that contain UEs from SM
n ;

13 end

14 return: n, SM
1 , ...,SM

n , PM
1 , ..., PM

n .

minimize the ratio ρ of occupied to available resources, the algorithm selects the beam with

the smallest value of utilized resources per UE, aj/|Kj |. Then, the algorithm erases selected

UEs from the list A (line 11) and repeats the process for the remaining UEs (lines 6-12).

We emphasize that all subgroups Kj from J = {1, ..., 2K − 1} that contain the served UEs

are also excluded (line 12). By doing this, Algorithm 3 significantly reduces the complexity

while keeping comparable performance with the optimal solution obtained by Algorithm 8.

Beam Assignment and Power Allocation. The pseudo-code of stage 2, where beam

assignment and power allocation is performed, is presented in Algorithm 4. Let SM denote

the set of subgroups being selected at stage 1 of the proposed heuristics. For the time horizon,

the algorithm’s objective is to find the subgroups that will be served simultaneously in each

time slot and the transmit power for corresponding beams to minimize the total ratio ρ

of occupied to available resources. Accordingly, the algorithm works until all subgroups are

deleted from SM (lines 5-22) and outputs the number of time slots m to serve all subgroups.

We also introduce the D(m) to denote a set of subgroups to be served at the current time

slot m. The algorithm selects the worst in terms of the needed power as per (2.16) subgroup

from SM and adds this subgroup to the set D(m) (lines 7-9). If the power budget constraint

Pmax allows adding more subgroups to the set D(m), the algorithm selects the best subgroup

in terms of the required transmission power and adds it to the set D(m) (lines 10-19). The

number of subgroups in D(m) is restricted by L. When the set D(m) is determined, the power
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Algorithm 4: Single-RAT Heuristic Stage 2, L > 1

1 Input: SM
1 , ...,SM

n ; PM
1 , ..., PM

n ;

2 Output: m, D(k), P ∗(k)
j , j = 1, ...n, k = 1, ...m;

3 SM ← {SM
1 , ...,SM

n };

4 m← 0; {time slot counter}

5 while SM ̸= ∅ do

6 m← m+ 1;

7 kmax ← argmax
j∈SM

Pj ;

8 Psum ← PM
kmax

;

9 D(m) ← SM
kmax

;

10 if SM \ D(m) ̸= 0 then

11 for j = 2 : L do

12 kmin ← argmin
j∈SM\D(m)

Pj ;

13 if Psum + PM
kmin

≤ Pmax then

14 D(m) ← D(m) ∪ SM
kmin

;

15 else

16 go to line 20;

17 end

18 end

19 end

20 Perform water-filling for D(m) and obtain P
∗(m)
j from (2.33)-(2.35);

21 SM ← SM \ D(m);

22 end

23 return: m, D(k), P ∗(k)
j , j = 1, ...n, k = 1, ...m.

water-filling algorithm (the two options described below) chooses the power such that the

utilized resources are minimized (line 20).

Option 2.1. Traditional power water-filling. We now introduce cj = |hj |/σ2
j as

a channel Gain-to-Noise Ratio (GNR), where hj is a channel gain, and σj is a standard

deviation of the noise for the beam corresponding to the subgroup j. In a traditional water-

filling algorithm, the channel with high cj receives more power, which leads to a higher

system capacity. Note that GNR is related to the SNR as Sj = PM
j cj . Then at time slot k

the SNR S
(k)
j = min

i∈D(k)
S(yi), j ∈ D(k), k = 1, ...,m.

The beam’s power allocation of the water-filling approach is the solution of the following

optimization task for the optimal power P
∗(k)
j for subgroup j at time slot k:
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(
P

∗(k)
1 , ..., P

∗(k)
|D(k)|

)
← max(

P1,...,P|D(k)|

)
|D(k)|∑
j=1

log(1 + Pjcj),

s.t. Pj ≥ 0, ∀j ∈ D(k),

|D(k)|∑
j=1

Pj = Pmax, ∀k = 1, ...,m, (2.33)

where |D(k)| is the number of subgroups that have to be served simultaneously at time slot k,

|D(k)| ≤ L. Note that the first constraint implies that the power allocation is non-negative,

while the second constraint limits the power budget of the system. The sought optimal

transmit power P
∗(k)
j is

P
∗(k)
j = (1/ξ∗ − 1/cj)

+, (2.34)

where 1/ξ∗ is the maximum power that can be allocated for each subgroup, x+ = max (x, 0).

The problem in (2.33) is convex in nature. Since the maximization of concave func-

tion (2.33) is equivalent to the minimization of a convex function, we have

ξ∗ ← min
ξ

|D(k)|∑
j=1

log
(
1 + P

∗(k)
j cj

)
− ξ

|D(k)|∑
j=1

P
∗(k)
j − Pmax

 , ∀k = 1, ...,m,

s.t. (2.34). (2.35)

Option 2.2. Resource-Based Power Water-Filling. Alternatively, one may employ

resource information to execute water-filing. This option allocates additional power to those

subgroups, resulting in the most significant reduction in the amount of utilized resources.

Machine Learning Solution Algorithms

Another approach to solving the multicast grouping problem is to utilize ML techniques.

Below, we consider three classes of algorithms depending on their complexity, including:

(i) regression models, (ii) decision trees and forests, and (iii) neural networks.

One may utilize the obtained data from the direct solution for the limited number of

UEs in a multicast group to design an algorithm capable of solving the multicast grouping

problem for more UEs in a multicast group. Thus, the suitable class of ML algorithms is

supervised algorithms. In a supervised learning model, the algorithm learns on a labeled

dataset (e.g., data from the direct solution) and provides the results that the algorithm can

evaluate in terms of accuracy based on the training set. The algorithm can be implemented

as an offline or online learning tool within the recently standardized ML framework for 5G

systems, see [65–67].

The exploited ML algorithm has to be as simple as possible to run in real-time on

the BS side when a new UE joins the multicast group or some UE leaves it. Therefore,

the execution time and the training phase (preferably) have to be short. Since we aim at

practical implementation, low-complexity ML tools receive priority in what follows. For this

reason, one may include into consideration simple algorithms such as supervised classification

and decision trees. We further consider random forests and neural networks to evaluate

whether advanced techniques may provide more accurate results. Note that the decision tree

is computationally faster than the random forest because of the ease of generating rules.
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Several factors must be considered in a random forest classifier to interpret the patterns

among the data points.

One may utilize two types of similarity metrics to evaluate the accuracy of ML algorithms.

The first metric of interest, σ, is based on the exact matching of the number of subgroups

and UEs assigned to these subgroups. More precisely, the following criterion can be utilized

σ =
number of correctly classified data

number of test data
× 100%. (2.36)

Observe that if the match between ML and optimization results is perfect, the ratio

of occupied to available resources, ρ, for both metrics coincide, i.e., ρopt = ρML. However,

due to the discrete nature of resource allocation and mapping between MCSs and spectral

efficiency, the considered metrics ρopt and ρML might be close even when the different number

of subgroups and UEs assignment to these subgroups is observed. Since resource utilization

is the main metric of interest, in addition to perfect matching between UEs assignments, one

may also consider the second metric, i.e.

γ =
ρML

ρopt
× 100%, (2.37)

that measures the closeness of resource allocation produced by the considered ML algorithm

and optimization framework.

Due to the availability of the training datasets, supervised learning algorithms, whose

most common learning task is classification, can be utilized. For the problem at hand, one

may consider the following supervised learning algorithms:

• Decision Trees are supervised algorithms used both for classification and regression. Their

main advantage is the building of an interpretable model. Thus, they are also known as

white-box algorithms [68].

• Logistic Regression is used for classification problems to assign observations to a discrete

set of classes. This technique transforms the output by using the logistic sigmoid function

to return a probability value class mapping.

• Naive Bayes is a simple but powerful classification algorithm, “probabilistic classifier”,

based on Bayes’ theorem with the assumption of conditional independence among con-

sidered features of objects.

• Support Vector Machine (SVM) is an algorithm that can distinguish between two or more

classes by defining a hyperplane that separates those classes. The support vectors are the

closest points to the hyperplane. A change in the support vector results in a modification

of the hyperplane [69]. SVM can be used for solving classification and regression problems.

• K-Nearest Neighbors (kNN) is a famous algorithm used both for solving classification and

regression problems. The output of the algorithm is obtained by comparing the input

with known data [69].

• Neural Network (NN) classifiers are used for multiclass classifications. These models

typically outpace other algorithms in prediction accuracy. The flexibility of NN models

increases with the number and size of connected layers.
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Table 2.3. Interpretability characteristics of main classifier types.

Algorithm (Classifier) Interpretability

Decision Trees Easy

Ensemble Classifiers Hard

Logistic Regression Easy

Naive Bayes Classifiers Easy

Support Vector Machine Easy for linear kernel, hard for others

Nearest Neighbor Classifiers Hard

Neural Network Classifiers Hard

Table 2.3 provides the characteristics of considered algorithms in terms of interpretability,

which allows for a better understanding of obtained solutions. This feature makes it easy to

avoid solution mistakes or errors and compensate for them. With higher interpretability, one

can understand how ML model makes its decision.

All the abovementioned algorithms can solve the required classification problem, namely,

assigning an observation (UE) to one of the classes (multicast subgroups). In general, the

following model’s features can be considered as parameters that form the dataset for the

training of supervised algorithms: (i) UE’s coordinates XU , YU , (ii) number of UEs K,

(iii) service area radius R, (iv) bandwidth W , (v) session data rate C, and (vi) number of

subgroups (clusters). Model’s features form predictor’s set P. We choose these parameters

since they all may affect the results of the classification. Later, we explore which of those

parameters have a higher importance level. The algorithms learn from the training dataset

of size H1 (provided by the optimization presented in subection 2.1.3) by predicting the data

and adjusting it for the correct answer of multicast subgroups formation 5G NR systems.

To prepare the data for training ML algorithms, one may first use the exact solution

to obtain optimal multicast grouping and beam selection and then train the ML models

using these data. To evaluate the accuracy of models, the following metrics can be utilized:

(i) σ based on the correct classification of UEs and (ii) γ based on the resulting resource

utilization matching. Finally, since the optimal solution is feasible only for a limited number

of UEs, one needs to test the extrapolation capabilities of ML models by training them on

the reduced number of UEs and then assessing the accuracy for a larger number of UEs.

Multi-RAT Optimal Solutions

Similarly to a single-RAT optimal solution, the formalized optimization problem for

the case of multi-RAT operation can be classified as a special class of BPP, where items

of various sizes are packed into a finite number of bins, each of a fixed capacity with the

goal of minimizing the cost of assigning the items to the particular bins. The pseudo-code

in Algorithm 5 defines the globally optimal solution according to (2.23), i,e., suit G∗k of

subgroup’s indices in the form of (2.24). Algorithm 5 belongs to the class of NP-hard problems

with exponential complexity.

For a limited number of UEs in the coverage area of BS, the direct solution of the

problems in (2.23) and (2.31) can be adopted by using, e.g., branch-and-cut or branch-and-
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Algorithm 5: Multi-RAT Optimal BPP formalism, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K

2 Output: Optimal solution G∗k for multicast grouping in form of (2.24)

3 Create 2K − 1 multicast subgroups of UEs

4 for each subgroup Kj do

5 find the farthest UE i and the distance from BS to this UE: y ← max
i∈Kj

yi;

6 find HPBW needed to cover the subgroup Kj

αj = arccos
(

(XU (i)XU (i′)+YU (i)YU (i′)+h2
U

y(i)y(i′)

)
; {αj as the angle between two edge

UEs i and i′}

7 calculate Pj as (2.16);{Pj = Pmax is fixed for L = 1}

8 find the cost aj,m, aj,µ from (2.17);

9 end

10 Solve by exerting (2.23) with the exhaustive search.

bound techniques. Some of these solutions allow controlling heuristic behavior focusing on the

solution’s integrity rather than its optimality. In general, the following solutions have been

shown to significantly improve the heuristic behavior of Mixed-Integer Programming (MIP):

• Metaheuristics. These are general frameworks to build heuristics, often using combina-

torial formulations. Metaheuristic rules and principles can be used to create heuristics for

resolving mathematical programming problems. For example, Local Branching (LB)

is based on the idea of altering neighborhoods throughout the search to obtain the best

feasible solution [70]. LB is a technique created based on the exact method. The differ-

ence is that the LB is limited in time to solve a problem. If this period elapses without

the optimal solution being determined, LB stops and returns the best-known solution.

• Neighbourhood Search Methods. Relaxation-Induced Neighborhood Search Heuris-

tic (RINS) is a heuristic that explores the neighborhood of a valid solution to discover an

improved one [71]. Continuous relaxation of the MIP model is used to build a promising

neighborhood, which is formulated as another MIP (known as the sub-MIP). Limiting

the number of nodes in the search tree truncates the sub-MIP optimization.

• Randomization Methods. Since the formulated problem is NP-hard, one may adopt

a heuristic simulated annealing solution, which is a stochastic global search optimization

algorithm and is known to be efficient for BPPs [72]. We specify the initialization and

implementation parts as well as parameterize the technique below.

Multi-RAT Heuristic – Simulated Annealing

Simulated annealing is based on the principle of randomizing the local search strategy

and accepting changes that, with some probability, make the result better. The approach

imitates the annealing of metals in thermodynamics, which involves exposing the metal to a

very high temperature and then allowing it to cool down slowly to create the required shape
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with a defect-free structure. As a result, using an appropriate temperature cooling schedule

is a critical idea in simulated annealing. Several variations of the simulated annealing method

differ in the distribution and temperature reduction rule, resulting in specific disadvantages

and benefits such as speed, the assurance of reaching the global minimum, and execution

complexity.

A critical part of the simulated annealing algorithm is the temperature control rule.

Each control rule reduces the temperature at a different rate, and each method is better

at optimizing a certain type of model. The main types of temperature control rules are as

follows:

• Linear rule: T = T − ωc;

• Geometric rule: T = Tωc (frequently used);

• Slow-reduction rule: T = T/(1 + ωcT ), ωc is a constant;

• Fast annealing: T = T/k [73];

• Very fast annealing: T = T exp(−cik1/D), i = 1, ..., D, where D is dimension of the

search space (number of variables in the cost function), i denotes i-th variable of the

cost function and, as understood from this equation, various annealing processes can be

considered for different variables, ci is a constant that can have different values depending

on the problem [73];

• Boltzmann annealing: T = T/ ln k [74].

To solve the multi-RAT multicast problem, one may utilize the standard simulated an-

nealing methodology [75], presented in Algorithm 6 to obtain heuristic solution denoted as

G̃k. First, we define problem-specific choices, including the form of the objective function

c(S) and the strategy for obtaining solution S. Theoretically, the initial solution does not

affect the final result. However, several experiments have shown that using a good heuris-

tic to obtain an initial solution occasionally results in a faster convergence to the optimal

solution [76, 77]. To achieve the global minimum, the number of steps, MaxIt, in the inner

loop of Algorithm 6 must be larger than the number of points in the solution space, i.e.,

MaxIt > |Q|, leading to the futility of the approach [75].

The following heuristic described in detail in [12] is used to acquire a good initial solution

and, hence, minimize the number of steps in the simulated annealing approach. First, the

farthest UE from the BS is chosen. Then, by altering the set of predefined beamwidths,

one that demands the lowest number of utilized resources per UE is selected to serve the

corresponding UEs. Note that all UEs covered by the beam are included in the corresponding

subgroup. All the selected UEs are then removed from the set of all multicast group’s UEs,

and the algorithm again selects the farthest UE from the remaining set of UEs. The algorithm

operates until there are no UEs left.

We now describe the general logic that handles the operation of the Algorithm 6 itself.

Here, the initial temperature is set in the temperature parameter, while the temperature

reduction is a cooling function ωc, 0 < ωc < 1. At each iteration k, the temperature is cooled
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Algorithm 6: Multi-RAT Simulated Annealing

1 Input: (XU (i), YU (i), hU ), i ∈ K

2 Output: Heuristic solution G̃k for multicast grouping in form of (2.24)

3 Generate a feasible initial solution S;

4 Setup initial temperature T > 0;

5 Setup the cooling rate ωc;

6 while T = 1 do

7 k ← 0;{ number of iterations}

8 while k < MaxIt do

9 Select a neighbor S′ of S;

10 ∆c = c(S′)− c(S);

11 if ∆c ≤ 0 then

12 S ← S′;

13 else

14 S ← S′ if random(0, 1) < exp(−∆c
T

);

15 end

16 k ← k + 1;

17 end

18 T = Tωc;

19 end

down by ωc. We denote the number of neighbors to visit at each iteration as MaxIt. A

stopping criterion can be either the condition T = 1 or the lack of significant improvement

in two consecutive executions of the objective function of the outer loop. Also, to stop

the algorithm, one may utilize the criterion of reaching a solution that does not exceed a

predefined cost. We use condition T = 1 to stop the algorithm. The objective function c(S)

represents the ratio of occupied to available resources, ρ, required by solution S, where S is

a set that includes all the UEs once.

After defining the initial solution S and setting up the general execution parameters,

such as initial temperature and cooling rate, the algorithm performs the outer “while” loop

with fixed temperature (lines 4-17 of Algorithm 6). In the inner “while” loop, which executes

MaxIt times, the algorithm selects a random neighbor S′ and performs the Metropolis

test (see below) to accept the move from S to S′ or not (lines 6-15). In the algorithm,

the procedure of the random neighbor selection is as follows: (i) randomly generate set S′

such that it covers all the UEs, (ii) calculate the required transmit power for S′ based on

the most robust SNR, (iii) perform water-filling for those subgroups that can be served

simultaneously in a slot considering the power budget per antenna, Pmax, and (iv) compute

c(S′) = ρ. Note that if the cost fiction ∆c = c(S′)− c(S) is non-positive, the move is always

accepted. Otherwise, the change of solution is accepted with probability P = e−∆c/T . Once
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MaxIt steps are completed, the temperature decreases (line 18), and the inner loop starts

again. The algorithm works until the stop criterion is met.

For fixed T , the acceptance probability P is an exponentially decreasing function of ∆c.

Hence, as ∆c increases, the acceptance probability quickly becomes very small. The Metropo-

lis test [78] allows for leaving the local minimum encountered while wandering around the

solution space within the inner loop. After performing MaxIt steps, the temperature de-

clines according to the temperature reduction law, and the inner loop starts again. For fixed

∆c, the acceptance probability decreases with T , so the accepted moves are rarer in the

consecutive execution of the inner loop.

Algorithm 6 is relatively simple to implement, but its efficient implementation requires

tinkering with parameters and figuring out ways to reduce the run-time associated with com-

puting the solution for values in the search space. The initial temperature typically is a large

number. Then the inner while-end loop is executed MaxtIt times, which is another param-

eter of the algorithm. As simulated annealing is a heuristic solution, in the next subsection,

we explore the optimality and complexity of the simulated annealing algorithm when the

number of neighbors to be explored, MaxIt, is 15, and the initial temperature is T = 10.

2.1.4 Performance Assessment

In this subsection, we provide the performance comparison of discussed in this chapter opti-

mal algorithms, heuristics, and statistical methods. To this end, by analogy with the previous

subsection, we start with single-RAT solutions. We then proceed with a dual connectivity

case.

Single-RAT

Execution Times

We start with the comparison of the computation complexity of the algorithms, as shown

in Table 2.4. First, one can see that in the category of single-RAT multicast solutions, the

heuristic solution offers a low-complexity scheduling scheme but at the expense of optimally

(described below). Note that the run time of the heuristic solution for a single-RAT depends

on the UE locations and the resulting configuration (see single-RAT heuristic stage 1 option

1.1). Moreover, Table 2.4 illustrates that the optimal solution is impractical when the number

of UEs is high (more than 12 in single-RAT and more than 10 in dual-RAT).

Regarding the multi-RAT solutions, one may deduce that involving more than two tech-

nologies will result in an even higher execution time. One may use relaxation techniques

(LB, RINS) to reduce the complexity of the optimal solution. However, the improvement is

not significant. Instead, simulated annealing noticeably reduces the computational time. We

emphasize that simulated annealing with the initial configuration obtained through heuristic

(SA-H) and random initial configuration (SA) offer the same complexity since the heuristic

solution is extremely low-complex.
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Table 2.4. Algorithms’ execution time.

Time/K 2 5 7 10 12 15 17 20 22 25 27 30

Single RAT (in minutes)

Optimal 0.008 0.01 0.06 10.03 54.35 60

(lim-

ited)

- - - - - -

Heuristic∗ 0.0021 0.0046 0.005 0.0043 0.0073 0.008 0.008 0.0085 0.0096 0.012 0.0115 0.017
∗Note that the run time of the heuristic for single RAT depends on the UEs locations and the resulted

configuration. In general, the complexity increases with the number of UEs.

Dual Connectivity (in minutes)

Optimal 0.15 0.89 14.37 29.50 60 (lim-

ited)

- - - - - - -

LB 0.13 0.88 14.2 28.70 60 (lim-

ited)

- - - - - - -

RINS 0.13 0.88 14.25 29.20 60 (lim-

ited)

- - - - - - -

SA-H 1 2.29 3.12 11.01 13.19 17.49 21.51 25.58 29.65 33.70 37.75 41.79

SA 1 2.29 3.12 11.01 13.19 17.49 21.51 25.58 29.65 33.70 37.75 41.79

Machine Learning, R = 250 m, H2 = 5000 (in seconds)

Log. Regres-

sion

2.223 1.863 2.307 2.21 1.93 1.877 2.532 2.109 2.115 1.959 4.344 1.87

Kernel Naive

Bayes

14.82 14.033 13.649 14.31 13.94 13.779 16.136 13.917 14.057 13.88 16.646 14.14

Random For-

est

2.888 2.555 2.602 2.56 2.54 2.463 2.481 2.475 2.494 2.515 3.258 2.97

Narrow NN 0.184 0.137 0.1253 0.11 0.12 0.134 0.126 0.148 0.163 0.156 0.142 0.15

Weighted

KNN

0.758 0.649 0.646 0.37 0.38 0.734 0.691 0.624 0.684 0.652 0.836 0.75

Cubic SVM 8.291 4.02 3.6771 5.6 7.36 5.093 7.097 5.547 10.934 10.698 4.956 8.31

Fine Tree 0.373 0.342 0.361 0.49 0.39 0.335 0.335 0.355 0.374 0.351 0.393 0.44

Coarse Tree 0.194 0.128 0.1297 0.15 0.19 0.1297 0.1345 0.129 0.133 0.133 0.131 0.16
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Fig. 2.1. Ratio of occupied to available resources as function of cell radius, K = 10, C = 25

Mbps, W = 50 MHz [1].
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Finally, we comment on the complexity of ML solutions. Here, we note that the run time

depends on the size of the testing dataset, H2, and is not affected by the number of UEs.

This proves that ML algorithms represent a good tool to work with a high number of UEs

in the case of optimal multicast grouping.

Solutions’ Performance and Water-Filling Comparison

To provide a comparison of the solutions designed for single-RAT systems, we start with

Fig. 3.7 presenting the ratio of occupied to available resources, ρ, for the maximum number

of beams L = 3 and L = 5 as a function of the cell area radius R. From these illustrations, we

observe that the curves for L = 3, see Fig. 2.1(a), grow much slower with the increase in the

cell radius than for L = 5, see Fig. 2.1(b). It is important to highlight that at smaller values

of BS coverage radius R (e.g., approximately 50 − 100m), heuristic (O.1.2) and optimal

solutions combine all UEs of the multicast group into a single subgroup. This explains the

fact that the curves for L = 5 first show better performance and then demonstrate higher

ρ values for all schemes. We also note that the reason behind the gap between the optimal

solution and (O.1.2) for (O.2.1) and (O.2.2) heuristic options for L = 5 lies in the selected

number of beams per time slot. More precisely, at R of approximately 150−250m the optimal

solution utilizes one beam and several time slots, whereas heuristic solutions serve UEs with

more than one beam within one time slot. Hence, we may deduce that at large distances,

such as 150 − 240m, it is crucial to utilize one beam at a time to minimize ρ. Note that

all the considered strategies utilize unicast mode to serve multicast UEs, i.e., use individual

beam for each multicast UE, starting from around R = 250m.

Analyzing the presented data further, one may also observe no significant difference

between the types of power water-filling schemes, i.e., options (O.2.1) and (O.2.2), with the

latter slightly outperforming the former. This modest superiority is intuitive and stems from

the fact that water-filling (O.2.2) is based on the resource information feature. Similarly to

L = 1, the heuristic option with exhaustive search (O.1.2) provides the best approximation

of the optimal solution. However, as the maximum number of beams, L, increases, even this

approximation starts to deviate from the optimal solution.

Optimal Number of Beams

The abovementioned conclusions on the utilized number of beams are further comple-

mented by Fig. 2.2, which demonstrates the optimal number of beams, Lopt, as a function

of the cell area radius. One may observe that the optimal solution selects only one beam per

time slot until R reaches 230m and 250m for L = 5 and L = 3 beams. Further, as one may

learn from the curves for L = 3, the optimal solution chooses one beam and several time

slots when R is in the range of 240 − 250m, whereas the proposed heuristics (O.1.2) and

(O.1.1) sweep two and three beams per time slot, respectively. Analyzing both Fig. 3.7 and

Fig. 2.2, we can conclude that for the practical ranges of cell size and the considered number

of UEs, the optimal solution always utilizes no more than 2− 3 beams.

Optimal Multicast Subgroup Size
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Fig. 2.2. Optimal number of beams in multi-beam system as function of cell radius, K = 10

UEs, C = 25 Mbps, W = 50 MHz [1].

We proceed with Fig. 2.3, which displays the average number of UEs served by a beam per

time slot. The rationale for considering this metric is to assess the number of transmissions

exploited to serve multiple UEs for various radii. The presented results confirm the statement

derived from Fig. 3.7 that starting from 250m, almost all the schemes use the unicast mode

for L = 5 beams. Hence, Fig. 2.3 provides an insight into the efficiency of the multicast

transmissions in mmWave networks. More precisely, it reflects situations where the system

utilizes a lower resource ratio than that required by the unicast service, where UEs are

serviced by individual beams (one UE per beam). One may observe that the system with

L = 3 beams works better in terms of serving more UEs within a beam, which can be

explained by the fact that, in general, the increase in the number of beams leads to a

decrease in the number of UEs per beam. For small cell radii, a single beam (all UEs in one

subgroup) is almost always utilized, while unicast service is only feasible for higher ones.

Extrapolation and Machine Learning

We now proceed with the assessment of the effect of the number of UEs, K, shown in

Fig. 2.4 for cell radius of R = 250 m, requested rate of C = 25 Mbps, and three bandwidths,

W = 50 MHz, W = 100 MHz, and W = 200 MHz. Note that for values of K higher than 20,

we utilize quadratic extrapolation to construct the curves for the optimal solution. Analyzing

the presented data, one may notice that the increase in the number of UEs leads to a rise in

the ρ ratio for all the considered solutions. Indeed, higher values of K theoretically lead to

either a higher number of subgroups or a higher number of UEs in a subgroup (which may

negatively affect the multicast subgroup channel condition), thus increasing the ratio ρ of
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Fig. 2.4. Ratio of occupied to available resources as function of number of UEs, R = 250

m, C = 25 Mbps, W = 50, 100, 200 MHz, L = 1 beam [1].

utilized to available resources. Further, with the increase in K, the gap between the optimal

and heuristic (O.1.2) solutions becomes larger. The impact of the increase in the available

bandwidth W is also evident from Fig. 2.4. One may learn that for larger bandwidth of

W = 200 MHz, the gap between the optimal and heuristic solutions is lower compared to

W = 100 MHz and W = 50 MHz. The rationale is that the data transmission is much
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faster with a larger bandwidth. This, in turn, leads to a lower ratio of occupied to available

resources. Therefore, this is an inherently quantitative effect as the difference between smaller

values of ρ for a larger bandwidth is lower compared to the difference for a smaller bandwidth.

Regarding the ML algorithms implementation, the accuracy of UEs allocations to sub-

groups and resource matching is shown in Fig. 2.5. Here, we see that UE allocation to

subgroups accuracy, σ, increases with the size of the training data set H1 as expected. How-

ever, starting from approximately H1 = 1000, the accuracy basically plateaus and does not

increase any further. At the same time, note that perfect resource matching with optimal

solution approach is observed for this considered distance even for very small values of H1.

Furthermore, the accuracy of all the considered algorithms (except for Random Forest) re-

mains virtually unchanged when increasing the training sample size from H1 = 1000 to

higher values. This allows considering the latter as the lower bound on the training set size

in practical implementations.

We now proceed with analyzing the extrapolation capabilities of the ML algorithms. To

this aim, we train these algorithms by utilizing the training sample of length H1 = 1000 for

10 UEs and then applying the trained algorithms to the system with 13 UEs. The accuracy

metrics are calculated for the system with 13 UEs solved by applying the optimal solution.

Fig. 2.6 shows the accuracy of the multicast subgroups formation for H1 = H2 = 5000 and

K = 13 UEs. As one may observe, the match is perfect up until approximately R = 250 m and

then drops abruptly for R = 275 m and beyond. The rationale is that the considered metric

accounts for specific UEs classified into subgroups. Up until R = 275m, only one subgroup

is utilized, explaining the perfect match between solutions. We also note that for the cell

radius higher than R = 300 m, UEs are served individually using unicast transmissions.
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Fig. 2.6. Subgroup assignment accuracy, σ, for H1 = H2 = 5000, K = 13 [2].

Table 2.5. Subgroup and resource matching accuracy, H1 = 5000, H2 = 5000, K = 13.

Radius 100m 150-225m 250m 275m 300m

Fine Tree

UE assignment, σ 100% 100% 99.02% 29.35% 29.58%

Resources, γ 100% 100% 100% 98.51 96.97%

Logistic Regression

UE assignment, σ 100% 100% 99.96% 29.41% 31.30%

Resources, γ 100% 100% 100% 100% 98.53%

Kernel Naive Bayes

UE assignment, σ 100% 100% 99.17% 28.88% 30.19%

Resources, γ 100% 100% 100% 98.44% 95.39%

Cubic SVM∗∗

UE assignment, σ 99.98% NaN/100% 99.92% 20.74% 20.66%

Resources, γ 100% NaN/100% 100% 85.00% 96.88%

Weighted KNN

UE assignment, σ 100% 100% 99.67% 24.72% 26.91%

Resources, γ 100% 100% 100% 96.92% 98.53%

Random Forest

UE assignment, σ 100% 100% 99.21% 29.86% 29.13%

Resources, γ 100% 100% 100% 96.92% 100%

Narrow NN

UE assignment, σ 100% 100% 99.96% 30.67% 30.84%

Resources, γ 100% 100% 100% 98.53% 100%

Coarse Tree

UE assignment, σ 100% 100% 99.55% 26.65% 26.83%

Resources, γ 100% 100% 100% 59.42%∗ 90.2%∗

∗the algorithm defines 5 clusters (on average) instead of 13
∗∗ no solution for 150, 200m, accuracy is 100% is for 225m
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(b) Fixed radius R = 300m

Fig. 2.7. Variables’ importance estimates [2].

Being incapable of learning specific UE allocations to individual subgroups shown by

σ does not indicate that the considered ML algorithms cannot learn other specifics of UE

classification. To demonstrate it, we provide resource matching accuracy, γ, for various BS

service area distances, R, in Table 2.5. As one may observe, several algorithms show excel-

lent performance. Specifically, of interest are tree algorithms showing excellent extrapolation

capabilities as well. As one may notice, Random Forest and Fine Trees provide almost 100%

accuracy in terms of resource utilization, γ, over all the considered distances. Surprisingly,

simple logistic regression with minimal computational complexity also shows excellent per-

formance. By recalling that rather small computational efforts characterize trees, one may

consider them as the best candidates for subgroups formation.

ML Predictors’ Importance

Recall that to construct a dataset, we selected many variables of interest. However, these

variables may or may not be utilized by the algorithms for classifications. Now, we proceed

by exploring the question of what the dominant variables mostly affect the performance of

the algorithms. To this aim, in Fig. 2.7, we provide predictor importance for the classification

ensemble of decision trees. It computes the estimates of predictor importance for the dataset

by summing these estimates over all weak learners in the ensemble. Note that a high value

indicates that this predictor is important for the model.

First, Fig. 2.7(a) illustrates the importance of the complete dataset, where we analyze

the model’s behavior as a function of the service area radius, R. Hence, it is predictable

that R variable has high importance. However, we expected UEs’ coordinates to be the most

important model features. In contrast, the number of clusters obtained from the solution of

the exact optimization problem and cell radius are two key predictors that affect the learning

process, followed by UEs’ coordinates.

Further, by studying Fig. 2.7(b), one can deduce that the importance of the predictors

is dataset-specific. Here, fixing the radius R leads to the UEs’ coordinates domination. This

behavior can be explained by the fact that in directional multicast systems, the radius of the

service area impacts the type of transmission utilized for service (i.e., multicast for multiple

UEs or unicast for each multicast UE). Our numerical results confirm that the solution
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Fig. 2.8. Performance metrics when mmWave resources are utilized whenever possible

(mmWave RAT priority): mmWave – µm = 3, µWave – µµ = 0.
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Fig. 2.9. Performance metrics for weighted optimization function: mmWave – µm = 3,

µWave – µµ = 0.

mainly depends on the cell radius. For example, we can observe that a single subgroup is

selected for the radius range 100 − 225m when we vary the number of UEs in the system.

Then, for the range 275m and further, unicast transmissions are exclusively utilized to serve

multicast UEs, whereas the considered multicast group formation solutions can be utilized

for the radii around 250m.

Multi-RAT

mmWave Priority. Regime Switching

The results of the performance analysis when mmWave resources are utilized whenever

possible are shown in Fig. 2.8 for mmWave numerology µm = 3, µWave numerology µµ = 0,

K = 10 UEs, C = 5Mbps, Wm = 100MHz, Wµ = 50MHz, Lm = Lµ = 5 beams. Here, we

start by analyzing the ratio of occupied to available resources, ρ, as a function of cell radius,

R, illustrated in Fig. 2.8(a). As a general trend, one may notice that ρ grows with the increase

in the cell radius until it reaches the distance at which no mmWave coverage is available due

to propagation and blockage conditions. At this point, the system starts selecting µWave as

a transmission technology. For example, in the case of the optimal solution, R = 300m can

be considered as a threshold that defines the change in the utilized transmission technology.
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Once this threshold is exceeded, the optimal solution always chooses the subgroup containing

all K UEs for µWave transmission.

We emphasize that the relaxation techniques (LB, RINS) show a perfect match with the

globally optimal solution. On the other hand, the simulated annealing algorithms demon-

strate slightly worse results but with better optimality vs. complexity trade-off than optimal

solutions. By comparing the simulated annealing algorithms, we may learn that starting with

a good solution (compared to the random one) at some points brings us a better value of ρ.

This can be explained by the fact that heuristic-based simulated annealing can find a better

solution by the time the stopping criterion is met. As our additional observation, we note

that the fewer the number of subgroups chosen, the fewer resources they demand.

Optimal Number of Beams

We further comment on the optimal number of beams utilized in the multi-beam dual

system as a function of the cell radius illustrated in Fig. 2.8(b). The optimal number of

mmWave beams, Lm, starts with one beam (when all UEs form a single subgroup) and then

increases up to 3 beams. On the contrary, up to one µWave beam can be swept at a time

(and up to 2 µWave beams for random simulated annealing). As one may notice, µWave

transmissions are utilized when mmWave fails to provide the service due to propagation

conditions and blockage. We emphasize that µWave BS sweeps one beam as, first, it is

possible to provide services to all UEs by using the wide beam (small propagation losses)

and, second, it ensures the best ratio of occupied to available resources, ρ. We also note

that the utilized HPBWs for µWave antennas are larger than those of mmWave technology

as the former is employed for subgroups having UEs located farther away from each other.

In contrast, mmWave technology typically serves individual UEs in the unicast way or very

clustered subgroups of UEs.

RAT Priority Selection

Observe that µWave priority completely excludes mmWave resources, thereby fully load-

ing µWave technology. A network operator may want to avoid it as µWave technology needs

to be utilized in those areas not accessible for mmWave. On the other hand, the mmWave

priority scheme exclusively utilizes mmWave resources up to a certain distance and then

switches to µWave technology. In practice, an operator might have different preferences for

balancing resource utilization between considered RATs. To this end, we continue by inves-

tigating the impact of the weighted optimization function on the system performance. The

corresponding results are shown in Fig. 2.9 for mmWave numerology µm = 3, µWave nu-

merology µµ = 2, K = 10 UEs, C = 5Mbps, Wm = 100MHz, Wµ = 50MHz, Lm = Lµ = 5

beams.

By analyzing the data presented in Fig. 2.9, we emphasize that increasing w in (2.31) leads

to the shift in the priority from mmWave to µWave. One may learn that at lower distances

R, weights w = 0.2, 0.5, 0.8, do not affect the performance and provide results similar to the

mmWave priority scheme. This can be explained by the fact that mmWave ensures more

efficient resource utilization at smaller distances. Further, note that the choice of w = 0.5
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produces a similar effect to mmWave priority; thereby utilizing µWave band resources only

when mmWave service is infeasible due to propagation and blockage conditions. Alternatively,

w = 0.2 increases the range of mmWave technology up to 280m (compared to 240m in the

case of mmWave priority), whereas w = 0.8 shortens R to 200m, thereby allowing µWave

band usage. We can conclude that depending on the operator’s preferences, weights can be

properly adjusted to achieve a particular goal with respect to resource usage in dual-mode

mmWave/µWave systems.

Our numerical results illustrate that properties of the optimal solution, such as resource

utilization and the type of technology, heavily depend on the density of dual-mode BS de-

ployments and RAT priority. Further, the utilized numerology may quantitatively affect the

abovementioned conclusions, but the overall qualitative trends remain unchanged. The in-

vestigated RAT selection priorities reveal that when µWave RAT is prioritized for multicast

service, mmWave resources are not utilized at all. However, by using weights for mmWave

and µWave resources, the operator might achieve the desired balance by fitting its needs

in a particular deployment. Finally, we note that the efficiency of resource utilization for

multicast service may also be affected by the number of UEs and utilized numerologies.

2.2 Conclusions

This chapter introduced the concept of optimal multicasting in mmWave 5G systems. The

capability of modern antenna arrays to utilize multiple beams simultaneously with poten-

tially varying half-power beamwidth and asymmetric power allocation makes the problem of

efficient multicast transmission in mmWave NR systems an extremely complex one. In this

chapter, we solve this problem by developing an optimal multicast grouping and resource

allocation solution. The approach is based on a variable-sized bin packing problem and is

thus NP-hard. We have developed several heuristics with different complexities and approxi-

mation accuracies to provide practical algorithms with reduced computational requirements.

In our numerical results in the case of single-RAT, we utilize the developed optimal

approach for benchmarking heuristic solutions. We show that a widely used group forma-

tion algorithm originally proposed in [44, 45] may drastically overestimate the amount of

resources. The proposed exhaustive search group formation is nearly optimal but computa-

tionally intensive for large values of the number of users. The difference between the optimal

and heuristic solutions increases with the number of users and the maximum number of sup-

ported beams by the antenna array and decreases with the amount of available bandwidth.

The type of power allocation among the identified number of beams does not drastically

affect the performance of the heuristic algorithms. Finally, for practical ranges of cell sizes

and ranges of the number of users (10-50), the optimal amount of beams is always in the

range of 2-3. For small cell radii, a single beam is almost always utilized, while unicast service

is only feasible for higher ones. This makes the development of heuristic algorithms easier

and levels down the requirements for practical antenna array implementations.



44 2 Delivering Multicast Traffic in mmWave Systems

Further, by applying the discrimination procedure via comparing modeling and exact

optimal solution to the considered set of ML approaches, we revealed that tree algorithms

show the best performance for the multicast problem. The number of splits of the trees also

matters as Fine and Bagged Trees outperform the Coarse Tree, which has a much smaller

amount of splits. The factors mainly responsible for the accuracy of ML approximations are

the cell service area and UE coordinates, in addition to “external" knowledge of the number of

multicast subgroups provided during the training process. We also discovered a narrow range

of the cell area radius R where one has to solve multicasting problems in 5G NR systems

with directional systems. Specifically, multicasting with one wide beam for small cell radii

leads to the optimal solution. For large cells, unicast transmissions represent the optimal

solutions to the multicast problem. There is a narrow range between these two extremes,

reported to be 225−275m for the considered system parameters, where the optimal solution

is non-trivial.

Also, inspired by the prospective 5G NR integrated mmWave/µWave deployments and

advanced antenna systems designs capable of simultaneously supporting multiple directional

beams, we have provided a globally optimal solution for multicast grouping. Accounting for

the NP-hard nature of the problem, we have then proposed and characterized the approxi-

mate simulated annealing approach as an efficient solution methodology.

Our numerical results illustrate that properties of the optimal solution, such as resource

utilization and the type of utilized technology, heavily depend on the density of dual-mode BS

deployments, RAT priority, and considered system parameters. There is a clear turning point

for small dual-mode BS densities when the system switches from the regime when mmWave

resources are utilized for service to the case when µWave technology is exclusively utilized.

This point is dictated by the mmWave blockage and propagation conditions. The number

of beams associated with optimal solution is upper limited by 3 for mmWave and by 2 for

µWave technologies across all the considered densities of dual BS deployment. Moreover, in

most cases, only one beam is utilized at µWave technology. Further, the utilized numerology

may quantitatively affect the abovementioned conclusions, but the overall qualitative trends

remain unchanged. The investigated RAT selection priorities reveal that when µWave RAT

is prioritized for multicast service, mmWave resources are not utilized at all. However, by

utilizing weights for mmWave and µWave resources, the operator might achieve the desired

balance by fitting its needs in a particular deployment. Finally, we note that the efficiency

of resource utilization for multicast service may also be affected by the number of UEs and

utilized numerologies.

Concluding, we also note that the exact solution is feasible for up to 10-15 UEs in a

multicast group, while relaxation techniques, such as LB and RINS heuristics, although

producing a perfect match with the exact solution, do not reduce the solution time. The

approximate simulated annealing techniques decrease the complexity leading to a linear

increase in the solution time with the number of UEs. However, this happens at the expense

of allocating 10-40% of more resources to serve the multicast group.
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The materials of this chapter were published in [1] and [2].
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5G NR Sidelink Multi-Hop Transmission

This chapter is dedicated to the deployment of D2D communications (also known as ProSe

or sidelink transmissions) in cellular networks. Specifically, first, we exploit D2D commu-

nications to mitigate the limitations of mmWave multicast systems and provide an optimal

solution to highly directional sidelink-assisted multicast communications scheduling consider-

ing dynamic systems (moving users). Further, we discuss the benefits of NR sidelink in the

case of public safety and factory automation use cases and offer the simulation campaign.

At the end of Section 3.2, important future directions for the NR sidelink development from

a standardization perspective are highlighted.

3.1 Optimal Scheduling for Highly Directional

Sidelink-assisted Multicasting

3.1.1 Motivation

Future wireless networks are anticipated to deliver a wide range of services requiring improved

performance compared to the 5G in terms of delivered data rate, tolerated latency, mobility

support, and massive access. Such services make use of different kinds of wearable devices, in-

cluding head-mounted displays, motion-tracked controllers, haptic gloves, and body-tracking

sensors [79].

Various future mobile applications, such as camera-assisted automotive driving, virtual

reality with rich sensory information, and holographic communications, call for extra-high-

demanding service delivery requirements that current communication technologies, operating

in the low- and middle-frequency bands, are unable to meet. mmWave communication is

considered as a viable way to break through this challenge, enabling multi-Gigabit/s data

rates and ultra-low latencies for a high number of devices, due to its wide bandwidth and

the compact antenna size allowed by short wavelength communications [39].

Nonetheless, in the case of group-oriented service delivery, mmWave technology alone is

not sufficient to run future applications while assuring adequate spectral efficiency. Multicast

can further enhance the superiority of mmWave communications by serving multiple users

with a single transmission. This results in improved network utility achieved by saving spec-

trum resources. Coupling mmWave technology with multicast transmissions is becoming an

important research trend toward increasing energy efficiency and network throughput [12].
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However, in the case of sparse user deployments, serving the whole group with either one

wide beam or a set of directional beams may significantly reduce the benefits of exploiting

extremely high frequencies.

A technology that can be effectively exploited in such a scenario is D2D. Mainly, D2D in-

volves two devices in close proximity communicating directly without a BS and is performed

in 5G over the sidelink, which is defined as the interface between UEs for direct communi-

cations. Due to the capability of sidelink-aided communications to achieve ultra-low latency

connectivity, high data rates, and ultra-high reliability [11], this technology is forecasted to

play in 6G the same key role it actually has in 5G. The main reason why D2D can bring

assistance in highly directional multicast communications is that beam narrowing may be

achieved by excluding sparse users from the multicast transmission and replacing the trans-

mission from the BS with the establishment of D2D links with nodes interacting in the local

range. Moreover, sidelink communications, along with a wide range of technologies, such as

sleeping and cell zooming, Massive Multiple-Input–Multiple-Output (MIMO), mmWave, and

dense heterogeneous networks, can guarantee energy-efficient resource management [80].

Differently from existing works that focus solely on unicasting/multicasting in mmWave

networks or provide heuristic solutions to the complex multicasting problem in directional

systems (see, e.g., [43]), we focus on optimal multicast scheduling assisted by sidelink and uni-

cast transmissions. In particular, we take a cue from our previous investigations on multicast

data transmission optimization [12] and consider scenarios that include multicast users mov-

ing at low speeds, such as pedestrians equipped with wearable devices. Differently from [12],

where we proposed a framework for mmWave beam coverage estimation, the idea is to split

users into groups by leveraging fast algorithms (e.g., unsupervised hierarchical clustering [81],

which has received much attention in the literature in this field), and then enable the system

to adjust (optimize) the transmission mode to define the best option for users by accounting

for distance and channel conditions as they move. Considered options are (i) unicasting,

(ii) sidelink unicasting/multicasting, and (iii) mmWave multicasting, and, for each user’s

group and each occurring condition, the designed optimal policy makes the decision whether

to widen the beam or use different beams.

The choice of the transmission mode selection for mobile users can be made with the

help of either Reinforcement Learning (RL) algorithms, supervised learning, or optimization

techniques. First, RL can outperform the optimization only if we have rapidly changing

channels, coverage, and topology, i.e., a large state space [82, 83]. In this case, the problem

can be written as Multi-Agent Reinforcement Learning (MARL) with centralized rewards

where privacy is an issue [84,85]. For this purpose, one needs to consider the protocols based

on which users communicate when taking actions. Hence, it complicates the system with no

particular effect. In [86], authors use multi-agent reinforcement learning for a static scenario.

However, no multicast transmissions are considered wherein multiple users are served with

the same beam, which makes the users’ actions dependent on each other since the data rate

of the group is limited by the user with the worst channel conditions and depends on the
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users’ mobility. Moreover, in our scenario, users do not communicate with each other while

moving and are not aware of the other users’ actions. Regarding supervised ML, we note

that offline learning is not suitable since it is configuration-specific. Namely, the change in

transmission power, number of users, area of interest, and other transmission parameters

affect the final result. This means that for every configuration, we have to provide offline

training. Therefore, our choice turns to an optimization tool.

Our objectives are two-fold: (i) throughput maximization required for bandwidth-hungry

applications, such as Virtual Reality (VR), and(ii) mobility management in directional net-

works since we focus on a dynamic multicast scenario.

3.1.2 System Model

In this subsection, we introduce the reference scenario and describe traffic, antenna, prop-

agation, blockage, and mobility models. The reference system is depicted in Fig. 3.1. The

main notations used throughout this chapter are collected in Table 4.5.

Deployment and Traffic Model

We examine a 5G NR outdoor deployment, wherein all UE devices, such as XR glasses and

wearable headsets, are provisioned with mmWave modules to be served by an NR BS that

operates in the 28GHz band. The height of the NR BS is set to hA, and its coverage radius

is Rd, within which all UEs can successfully receive data. The geometric locations of UEs

are assumed to be scattered across a plane according to an independent homogeneous point

process with a predefined density. In our system, all UEs, N = {1, ..., N}, are assumed to be

dynamic.

Assumption 1: Traffic Model. We assume that all UEs from N , located and moving

within a certain area of interest, require the same multicast service. In practical deployment,

both multicast and unicast sessions may coexist. We do not consider unicast sessions and

focus on a single multicast transmission, mainly to analyze the performance of the proposed

framework in case of no “external disturbances” in the system. The problem of the joint

management of unicast and multicast traffic is by itself a research problem that deserves

particular attention [37,87].

Note. We point out that the concepts of session type and delivery mode are different. In

this study, one multicast session (i.e., data flow/content) only is considered, whereas both

multicast and unicast transmission modes can be used to serve multicast UEs.

Antenna Model

We assume that devices transmit directionally with an antenna pattern that is akin to a

conical shape, i.e., beamwidths are symmetric in both the vertical and horizontal planes. To
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Fig. 3.1. Sidelink-assisted multicast system illustration.

this end, we approximate the beamforming pattern with the following transmit antenna gain

as in [88,89]:

Gtx = D0ρ(αi), (3.1)

where D0 is the maximum antenna directivity along the antenna boresight, αi is the angular

deviation of the transmit/receive direction from the boresight of a directional antenna for

receiver i, i ∈ N , and ρ(αi) ∈ [0; 1] is a piecewise-defined linear function that scales the

directivity D0 with respect to the angular deviation [88,89].

Table 3.1. System modeling notation

Parameter Definition

fc Carrier frequency

W Available bandwidth

Rd Radius of area of interest

hA Height of NR BS

hU Height of UE

hB Height of blocker

rB Radius of blocker

yi Distance between UE i and NR BS

pB(yi) Blockage probability of UE i

λB Density of blockers

N Number of multicast UEs

N Set of multicast UEs

D0 Antenna directivity

αi Angular deviation from antenna boresight of UE i

Gtx, Grx,i Antenna array gains at NR BS and UE i ends

PT Transmit power

MS,nB , MS,B Fading margins

LdB Path loss in linear and decibel scales

A, ς Propagation coefficients

S Signal-to-noise ratio

N0 Power spectral density of noise

v UE’s velocity

θ Half-power beamwidth
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Propagation and Blockage Model

Following 3GPP standard [6], we exploit the 3GPP Urban Microcell (UMi) street canyon

path-loss model:

LdB = 32.4 +21 log10 yi + 20 log10 fc, (3.2)

where fc is the carrier frequency in GHz and yi is the 3D distance between the BS and the

UE i.

5G NR systems that operate in a high-frequency band suffer from the presence of moving

obstacles (called “blockers”), including humans and vehicles. Here, pedestrians are assumed

to temporarily block the LoS path between the UE and the NR BS, i.e., causing blockage

by the human body. This blockage attenuation B is considered to be 15 decibels. We also

introduce shadow fading margins that are represented by MS,B and MS,nB for the blocked

and non-blocked states, respectively. Then, the path loss in (3.2) may be written in a linear

scale using Ayς
i , with A and ς being propagation coefficients:

ALoS,nB = 102 log10 f+3.24MS,nB , ςLoS = 2.1,

ALoS,B = 102 log10 f+4.74MS,B , ςLoS = 2.1.
(3.3)

The blockers are modeled as cylinders with height hB and radius rB [42]. The number

of blockers follows a Poisson distribution with density λB per square meter.

Then, the SNR in the propagation model can be represented as

S=
PTD0ρ(αi)

N0W

(
y−ζLoS
i

ALoS,nB
[1− pB(yi)] +

y−ζLoS
i

ALoS,B
pB(yi)

)
, (3.4)

where pB(yi) is the blockage probability at the 3D distance yi [42], N0 is the noise power

spectral density, and W is the operating bandwidth.

Mobility Model

We assume that UEs follow the social force-based mobility model that captures the realism

of crowd behaviors [90]. More specifically, we apply the Headed Social Force Model (HSFM)

proposed in [91], which can reproduce pedestrians moving together. The HSFM allows us to

test the real-life scenario composed of several groups of moving UEs (with speed v) and is

relevant to our system as we consider the multicast content delivery for a set of UEs.

3.1.3 Analysis

Framework Description at a Glance

The main goal of the proposed framework is to maximize the system throughput in the

delivery of one multicast session to multiple UEs by dynamically selecting the transmission

mode (i.e., unicast, multicast, or sidelink) towards each multicast group member according

to UEs’ mobility. In this subsection, we describe in detail our proposed solution to the
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Fig. 3.2. Flow diagram of proposal.

dynamic sidelink-assisted mmWave scheduling problem. The framework consists of two steps,

namely, the multicast group formation (MGF) and the Sidelink-Assisted Multiple Modes

mmWave (SA3M) scheduling. The general flow diagram relevant to our proposal is presented

in Fig. 3.2. After detailing how MGF works, we discuss the functioning of SA3M, where we

also introduce the optimization objective and offer a low-complexity heuristic solution.

First, we perform the MGF step by applying a hierarchical clustering algorithm, which is

an unsupervised ML technique that aims to find natural grouping based on the characteristics

of the input data. We accomplish this task based on the information about the location of

the UEs. We emphasize that an initial clustering of multicast UEs is performed to reduce the

complexity of the optimal solution in the second step, as detailed below. Note that different

clustering methods can be used at this stage. Among these, we chose hierarchical clustering

because it is characterized by low complexity and considers the positions of UEs, which is

essential for directional transmissions.

After clustering, starting from the obtained multicast groups configuration generated by

MGF, as the UEs are moving with speed v, the system may proceed with SA3M and change

the transmission mode either to (i) sidelink transmission, (ii) unicast mode, or (iii) recalcu-

lating transmission parameters for a multicast group (beamwidth adjustment). Specifically,

starting from the configuration generated by MGF, the optimal SA3M algorithm exhaus-

tively searches for all possible switching options, that is 1,2,..., or all N UEs can be served
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via unicast while the rest UEs belong to multicast groups. Similarly, 1,2,..., or N−1 UEs can

receive the data through sidelink (N−1 since at least one UE has to be a relay node towards

the sidelink receivers). Note that, in case a UE needs to join another multicast cluster, we

run MGF again, which serves as a means to build multicast clusters. Were MGF not imple-

mented as an initial step, the algorithm should check all possible multicast clusters, that is

2N − 1 possible multicast groups (rather than the configuration that contains n groups se-

lected by MGF). Then, the procedure described above should be run for sidelink and unicast

options for each multicast configuration, which significantly complicates the model. Thus,

the main mission of MGF is to reduce the complexity of the SA3M step. As an alternative to

SA3M, we propose a heuristic solution requiring low run-time to be used for adjusting the

transmission modes in order to improve the system performance.

Step I – Multicast Group Formation

Hierarchical clustering, applied for MGF, builds a binary merge tree. It starts from the data

elements stored at the leaves (interpreted as singleton sets) and proceeds by merging two by

two the closest subsets (stored at nodes) until the root of the tree contains all the elements of

X. Specifically, in the beginning, each data point is assumed to be a separate cluster. Then,

similar clusters are iteratively combined. We denote by ∆(Xk, Xj) the distance between any

two subsets of X, called the linkage distance. This technique is also called agglomerative

hierarchical clustering [92]. In our case, X represents an array with the observations, with at

least one column and N strings (each string corresponds to a UE). The reference angle from

the X-axis and the distance between the BS and every UE are used as the observations.

Let D(xk, xj) denote the elementary distance between any two elements of X (e.g.,

Euclidean, Minkowski, Chebyshes, etc.). In order to select the closest pair of subsets at

each stage of the hierarchical clustering, we define a subset distance ∆(Xk, Xj) between any

two subsets of elements. When both subsets are singletons Xk = xk and Xj = xj , then

∆(Xk, Xj) = D(xk, xj). There are four different methods implemented in scikit-learn to

measure the similarity between clusters, i.e., four common linkage functions (also known as

cluster-level scoring functions) that calculate the distance between clusters:

• Single linkage (SL) represents the shortest distance among all data points in two clusters:

∆(Xk, Xj) = min
xk∈Xk,xj∈Xj

D(xk, xj).

• Complete linkage (CL) represents the farthest distance among all data points in two

clusters:

∆(Xk, Xj) = max
xk∈Xk,xj∈Xj

D(xk, xj).

• Average linkage uses the average distance between all pairs of objects in any two clusters:

∆(Xk, Xj) =
1

|Xk|
1

|Xj |
∑

xk∈Xk

∑
xj∈Xj

D(xk, xj).
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Algorithm 7: MGF

1 Input: X;

2 Output: Multicast clusters;

3 Initialize Gk = {xk}, k = 1, ..., N , L = {{x1}, {x2}, ..., {xN}}, distance threshold;

4 counter ← N ;

5 while counter ̸= 2 do

6 Select Gk and Gj from L such as ∆(Xk, Xj) is minimized along all pairs;

7 if ∆(Xk, Xj) < distance threshold then

8 Merge Gk ∪ Gj ;

9 L ← L \ Gk;

10 L ← L \ Gj ;

11 L ← L ∪ (Gk ∪ Gj);

12 counter ← N − 1;

13 else

14 go to line 5;

15 end

16 end

17 return L;

18 end

• Ward linkage (appropriate for Euclidean distances only) uses inner squared distance, i.e.,

minimum variance algorithm:

∆(Xk, Xj) =

√
2|Xk|Xj |
|Xk|+ |Xj |

∥xk − xj∥2,

where ∥∥2 is the Euclidean distance, xk, xj are the centroids of clusters Xk and Xj ,

respectively.

We note that, in the case of hierarchical clustering, the number of clusters may not be

determined in advance as, for example, in the case of the k-means algorithm. Here, either a

cutoff distance or a maximum number of clusters must be specified. In this study, we exploit

a cutoff distance, which is the linkage distance threshold above which clusters will not be

merged. The pseudo-code of the hierarchical clustering adapted for MGF is presented in

Algorithm 7.

The algorithm assigns each observation in X to a single-object cluster (line 3). Then, the

algorithm computes similarity information between every pair of objects Gk and Gj in the

data set and uses a linkage function to group objects into a hierarchical cluster tree (line 6).

Therefore, objects/clusters in close proximity are linked together if the result of the linkage

function does not exceed the cutoff distance distance threshold (lines 7-14). This determines

where to cut the hierarchical tree into clusters, thereby partitioning the data.
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Table 3.2. 5G NR numerology and subcarrier spacing [3].

µ Df= 2µ · 15 [kHz] Bandwidth per

RB [kHz]

TTI [ms] Slots / ms

0 15 180 1 1

1 30 360 0.5 2

2 60 720 0.25 4

3 120 1440 0.125 8

4 240 2880 0.0625 16

Since we start from counter = |X| = N leaves to finish with a root containing the full set

X, the algorithm performs exactly N−1 merge-operations. A straightforward implementation

of this algorithm yields a cubic time complexity, in O(N3), since, in the k-th iteration of

N−1 in total, all
(
N−1−k

2

)
pairwise distances between the N−k nodes in L are searched [93].

Step II – Optimization

Assumption 2: Transmission modes. Unicast, sidelink unicast, and multicast are the

transmission modes that can co-exist in a cell for the transmission of the same content. The

UE tunes into the corresponding channel for data reception according to the optimization

problem described in the following.

In our study, we consider a dynamic scenario where time is divided into discrete time

slots t of constant duration. 5G NR utilizes the scalable numerology that determines the

subcarrier spacing, the number of slots in a subframe, and the slot duration (see Table 3.2).

At each time slot t, UEs can be associated with different transmission modes depending on

the channel conditions, i.e., as per (3.5), (3.8), (3.10), and the results of the optimization.

The SA3M optimization deals with choosing the best network configuration in terms of

the considered metric of interest (see Algorithm 8). To create the network configurations,

we assume the following rules: (i) UEs can not join a multicast group different from the

one defined using Algorithm 7 (we rerun MGF to form distinct multicast groups at a given

rerunning interval, see subsection 3.1.4 for consideration on how to set it); (ii) the predefined

multicast transmission mode can be switched into unicast or sidelink for each UE following

the SA3M algorithm to improve the network throughput.

As a preliminary step, the algorithm creates all possible network configurations that

determine the transmission modes for all UEs (lines 4-5). Among them, the BS will choose

(through exhaustive search) the one that optimizes the network performance. The number

of possible network configurations is 2 · 2N − 1 since there are 2N possible combinations of 0

and 1, where 1 means that the UE remains in the multicast group determined by MGF and

0 represents a switch of the transmission mode to unicast. In the case of sidelink mode, we

have 2N − 1 options as one of the devices should always be considered as a relay. Hence, all

network configurations are in 2 · 2N − 1.

Then, depending on the network configuration, UEs can be associated with different

transmission modes, and SNR thereof is determined as follows.
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Multicasting. Multicast services are multi-user specific, and the quality of the channel is

determined by the UE experiencing the worst channel conditions, i.e.,

Sm(t)= min
i∈Gj(

PTD0ρ(αi(t))

N0W

[
yi(t)

−ζLoS

ALoS,nB(t)
[1−pB(yi(t))]+

yi(t)
−ζLoS

ALoS,B(t)
pB(yi(t))

])
, (3.5)

where Gj is the set of UEs in a multicast group covered by the same beam j, |Gj | ≤ N,Gj ⊆ N .

The time required for the transmission of a packet of size B to a multicast subgroup

when experiencing the channel condition Sm(t) can be calculated as

Tm(t) =
B

Wm log2(1 + Sm(t))
. (3.6)

Hereinafter, we omit the slot notation (t) for the sake of space.

The HPBW θ required to serve subgroup Gj is given by:

θGj=arccos

(
X(i)X(i′)+Y (i)Y (i′)+Z(i)Z(i′)

y(i)y(i′)

)
, (3.7)

where multicast UEs i and i′ are the two edge UEs in the group, i.e., the two farthest in

term of angle between them.

Unicasting. mmWave unicast transmission facilitates expanding the coverage area by

sweeping narrow beams (e.g., HPBW of 2◦). Then, the UE that fails to be served as a

part of multicast transmission can prefer unicasting with the following link quality and data

transmission duration:

Su=
PTD0

N0W

(
y−ζLoS
i

ALoS,nB
[1− pB(yi)] +

y−ζLoS
i

ALoS,B
pB(yi)

)
, (3.8)

Tu =
B

Wu log2(1 + Su)
. (3.9)

D2D Unicasting. We assume in-band D2D, wherein UEs share the licensed uplink fre-

quency resources with cellular communications. The channel link for UEs who choose to

access the D2D multicast network can be determined as

Sd=
PT,dD0

N0W

(
y−ζLoS
i,d

ALoS,nB
[1− pB(yi,d)] +

y−ζLoS
i,d

ALoS,B
pB(yi,d)

)
, (3.10)

where yi,d is the distance between UE i and D2D transmitter, and the data transmission

delay can be calculated as

Td =
B

Wd log2(1 + Sd)
. (3.11)

Assumption 3: D2D Relay Selection. The BS selects the possible D2D transmitter

(relay device) based on the following rules: (i) distance between a relay and a UE has to be

within D2Dthr (i.e, yi,d < D2Dthr), (ii) we choose the closest relay among those that satisfy

the previous condition, and (iii) a relay can transmit data to one or more UEs (more details

are given in the following). We assume that a relay can simultaneously receive and transmit

data to the UE (i.e., Full-Duplex (FD) relaying). If no relay satisfies the described conditions,
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Algorithm 8: Optimal SA3M

1 Input: Multicast clusters L;

2 Coordinates of N multicast UEs (X(i), Y (i), Z(i)), i ∈ N

3 Output: Optimal network configuration;

4 Create all 2N possible network configurations considering unicasting;

5 Create all 2N − 1 possible network configurations considering D2D transmissions;

6 for each network configuration do

7 TNC
total =

∑
m∈G Tm +

∑
u∈U Tu.

8 end

9 Solve optimization as per (3.12).

a D2D transmission link cannot be established with a particular UE. In this case, unicast

transmission shall be performed instead.

We consider two relay selection options for the purpose of accounting for different hard-

ware on the devices. In the case referred to as “D2D communication without restrictions”,

a relay device can convey the traffic to more than one UE at a time. Differently, a simple

device works in the category of “D2D with restrictions”, wherein a relay can transmit data

to only one UE at a time.

Assumption 4: Interference. In our system, we assume that the power transmitted by

the relay node is lower than the power emitted by the BS, that is PT,d < PT , which helps to

avoid that D2D communication causes exceeding interference [94]. Recall that in-band D2D

UEs reuse the same uplink resources of the mmWave cell that can cause interference.

Optimization Objective. A multicast UE can receive data at different rates depend-

ing on its current location and blockage conditions. The optimization objective consists in

maximizing the Network Throughput (NT) (i.e., aggregated throughput optimization). NT

is calculated as the sum of data rates that are delivered to all UEs in the network.

Here, the problem consists in solving the overall maximum throughput optimization

problem that is formulated as follows:

max
BN∑

m∈G Tm +
∑

u∈U Tu
, (3.12)

s.t. Sm ≥ Sthr, Su ≥ Sthr, Sd ≥ Sthr, yi,d < ythr.

Proposed Heuristic

The proposed heuristic, detailed in Algorithm 9, works as follows. It starts to check if the

SNR of each multicast group from L satisfies Sthr,h (line 6). If the SNR of the group (i.e., the

worst SNR value among the group members as per (3.5)) is lower than the Sthr,h value, then

the algorithm proceeds with checking every UE i in this group (lines 7-8). In this case, UE

i is removed from the group and added to a separate one, Gg, if its SNR value is below the
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Algorithm 9: Heuristic Solution

1 Input: Multicast clusters L;

2 Coordinates of N multicast UEs (X(i), Y (i), Z(i)), i ∈ N

3 Output: Network configuration;

4 g ← N ;

5 for each Gj ∈ L do

6 if SGj < Sthr,h then

7 for each UE i ∈ Gj do

8 if Si < Sthr,h then

9 g ← g + 1;

10 L ← L \ Gj ;

11 Gj ← Gj \ {xi};

12 L ← L ∪ Gj ;

13 Gg ← {xi};

14 L ← L ∪ Gg;

15 end

16 end

17 end

18 end

19 for each Gj ∈ L do

20 if |Gj | > 1 then

21 calculate θ as per (3.7);

22 calculate Sm, Tm as per (3.5),(3.6);

23 else

24 find max
m∈M∗

{S(yi,m)|yi,m < D2Dthr}; {yi,m is the distance between UEs i and

m, M∗ is a set of UEs served via multicast}

25 calculate Td as per (3.11);

26 calculate Su, Tu as per (3.8),(3.9);

27 choose best option as min(Td, Tu);

28 end

29 end

30 return L;

31 end

threshold (lines 6-14). That is, the algorithm detects the UEs that deteriorate the multicast

group performance. The second for cycle of the algorithm is responsible for the calculation

of the beamwidth θ of the group (lines 16-19) and for the selection between sidelink and
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unicast modes for single UEs (lines 19-23). All groups are already reformed at this stage,

and the algorithm needs to adjust the beamwidth to be swept as per (3.7).

The computational complexity of the proposed algorithm is given by

O((|L| ·N) + |L|) = O(|L| ·N) = O(N2),

where each summons (on the left side of the expression) determines the complexity of each

for cycle. Then, as each cycle is called in turn (sequential execution), the complexity of the

algorithm is O(|L| ·N). We note that |L| = N in the worst case when we have only unicast

UEs. Hence, the algorithm’s complexity is polynomial and can be rewritten as O(N2). Note

that our algorithm has embedded for cycle (lines 7-14). We highlight that this execution helps

reduce the complexity when not all multicast groups contain a “bad” UE that deteriorates

the group’s performance. These two cycles could be substituted by one for cycle among all

N UEs. That is, we could check all UEs without exclusion.

3.1.4 Performance Assessment

This subsection evaluates the performance of proposed MGF and SA3M algorithms, as well

as the proposed heuristic solution. To this aim, we developed a simulation environment in

MATLAB that accepts the default parameters summarized in Table 3.3. We first select the

linkage function that works better for MGF. We then proceed with a numerical analysis of

the introduced optimal SA3M algorithm and discuss the effects of mobility, complexity, and

UEs’ distribution on the system performance. Finally, we report on the performance of the

proposed low-complexity heuristic and analyze the trade-off between transmit power and

energy consumption.

Without losing generality, we adopt the following parameters for the performance eval-

uation. We distribute N = 10 UEs within a sector of radius 100m according to a Poisson

Point Process (PPP) and Matérn cluster point process with 2 clusters. The transmission

parameters are modeled as indicated in the previous subsection 3.1.3 with the operating fre-

quency of 28 GHz and transmit power of 46 dBm. The bandwidth is 1 GHz [95] and the noise

figure is 7.6 dB. The beam parameters are adjusted depending on the position of UEs in the

multicast groups, whereas unicast and sidelink UEs utilize the antenna with beamwidth of

3.18◦. The mobility pattern of UEs is simulated as HSFM.

The metrics of interest we analyze in the following are: (i) energy consumption, measured

in joules (J), computed as the number of power units consumed over transmission time,

(ii) network throughput representing the sum of data rates delivered to all UEs in the

network, and (iii) energy efficiency calculated as network throughput divided by consumed

energy. Note that all three metrics are linked, and maximization of throughput leads to

optimizing all of them. Therefore, for the sake of space, we plot only one of the metrics

depending on the investigated scenario. We emphasize that metrics are calculated for the

resulted configuration after (i) all the two algorithms (MGF+SA3M) for optimization are

performed, and the results are obtained, (ii) heuristic provided the solution.
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Table 3.3. Default parameters for numerical evaluation.

Parameter Value

Carrier frequency, fc 28GHz

Available bandwidth, W 1GHz

Height of NR BS, hA 10m

Height of UE, hU 1.5m

Height of blocker, hB 1.7m

Radius of blocker, rB 0.4m

Density of blockers, λB 0.3 bl./m2

SNR threshold, Sthr -9.47 dB

SNR threshold for heuristic, Sthr,h 6.367 dB (CQI 8)

Transmit power, PT 46 dBm

D2D transmit power, PT,d 10 dBm

Power spectral density of noise, N0 -174 dBm/Hz

UE planar antenna elements, NU 4 el

Velocity, v (pedestian/segway) 0.69m/sec, 11m/sec

Service area radius, R 100m [1,43]

Number of multicast UEs, N 10 [1, 43]

Fading margins, MS,nB ,MS,B 4/8.2 dB

Packet size, B 1Gb

Linkage function ward
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Fig. 3.3. Impact of linkage functions on energy consumption for hierarchical clustering: (a)

over 200 time slots, (b) mean value. Uniform user distribution.

In our model, we test four general linkage functions for clustering under MGF that may

affect performance at the NR BS. We first analyze their impact on energy consumption, which

is one of the metrics of interest, as illustrated in Fig. 3.3. By observing Fig. 3.3(a), one can

notice the decreasing trend of the curves, i.e., an improvement in energy consumption due to

the capability of better tracking UE mobility by rerunning the MGF algorithm at every time

slot. It is worth noting that single and average linkages show better performance in terms
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of the minimal value of energy consumption while at times failing to maintain minimum

allowable service quality (i.e., CQI 1). Then, as indicated in Fig. 3.3(b), ward function

provides slightly better performance in terms of mean energy consumption compared to

complete and much better than the other two, meaning that ward and complete functions can

capture directional multicast transmission features. Hence, in the remainder of the study, we

consider ward linkage as a default parameter for the MGF Algorithm. However, we highlight

that linkage functions can perform differently depending on input parameters for clustering.

Effect of Mobility

We start our primary evaluation campaign with the analysis of the MGF and SA3M algo-

rithms’ performance over time, as shown in Fig. 3.4. To this aim, we run MGF and SA3M

with and without restrictions for sidelink relaying in two different modes: (i) MGF together

with SA3M launched at every time slot and (ii) MGF launched at time slot 1 only (no

rerunning) and SA3M run every time slot for the two considered user distributions with

pedestrian mobility. We note that no rerunning of MGF (see colored curves compared to

black ones) affects the performance over time even though the speed and users’ mobility are

the same. In particular, for uniform distribution, we can see the most noticeable difference

between the two running modes of the algorithms. In contrast, the rerunning produces al-

most no improvement for the 2 cluster distribution as seen in Fig. 3.4(b). This effect can be

explained by the fact that, in the case of PPP, UEs are spread around the area of interest. In

general, the distance between every two uniformly distributed UEs in the network is higher

than in the case of the cluster distribution, which impacts the performance since, in this

case, D2D transmissions have to be performed over longer distances and wider beam should

be swept to cover multicast groups.

Analyzing further the effect of mobility for segway with v = 11m/sec and pedestrians

v = 0.69m/sec in Fig. 3.5, we learn that for faster speeds, MGF rerunning plays a cru-

cial role in maintaining the performance level in dynamic scenarios. As expected, the gap

between rerunning vs. no rerunning of MGF is higher for segway mobility. The average per-

formance improves by 11% and 7% for segway and walking UEs, respectively. Hence, it is

highly recommended to rerun MGF to maintain the required performance level. In the fol-

lowing subsection, we comment on the rerunning interval of the MGF algorithm and on the

complexity of the algorithms.

Complexity vs. Energy Performance Trade-off

We run the simulations via MATLAB R2021a on an Intel(R) Core(TM) i5-7200U CPU

@2.50GHz at 2.71GHz with 8.00 GB RAM. The observed complexity of the proposed algo-

rithms is summarized in Table 3.4.

We now analyze the complexity/energy performance trade-off (please refer to Fig. 3.6).

For this reason, we run additional simulations to compare the performance of SA3M with
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Fig. 3.4. Energy consumption over time for pedestrian mobility when considering: (a) uni-

form and (b) 2 clusters. Black lines are drawn in case MGF is rerun at every time slot.
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Fig. 3.5. Energy consumption for multicast users moving with different speeds in case of

uniform distribution (each second bar is when we rerun MGF at every time slot).

Table 3.4. Algorithms’ Complexity, seconds.

MGF SA3M with restrictions SA3M without restrictions Heuristic

0.027602 4.4580, of which:

- 3.870358 to create unicast groups

- 0.002252 to create sidelink groups

- 0.585398 to run algorithm

5.5605, of which:

- 3.870358 to create unicast groups

- 0.002252 to create sidelink groups

- 1.687939 to run algorithm

0.031314

or without MGF rerunning in terms of (i) energy consumption gain on the right y-axis and

(ii) complexity gap on the left y-axis as a function of the MGF rerunning interval. First,

let us analyze how MGF behaves when considering rerunning interval values ranging from 1

(i.e., the algorithm runs every single slot) to 40 (i.e., the algorithm runs every 40th slot). By
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Fig. 3.6. Complexity gap vs. energy performance gain compared to no MGF rerunning

for uniform distribution of users: (a) MGF, (b) SA3M without restrictions (c) SA3M with

restrictions.

observing Fig. 3.6(a), it emerges a high increase in complexity (up to 20000%) for MGF when

the rerunning interval is every slot compared to the “no rerunning” case. Moreover, one may

observe a noticeable drop in complexity for rerunning interval values ranging from 1 to 10.

By further increasing the rerunning interval, the performance gap between “no rerunning”

and “rerunning” slowly decreases, as confirmed by Fig. 3.5.

Similar trends are observed in Fig. 3.6(b) and Fig. 3.6(c), in which, however, the observed

quantitative increase in complexity is not so significant. This can be explained by the fact that

the total complexity of SA3M is vastly greater than that of MGF. Hence, we may conclude

that MGF complexity does not contribute to the overall complexity of SA3M. On the other

hand, shortening the rerunning interval might be crucial for fast UE speeds depending on

the mobility pattern. Thus, taking into account both above-mentioned considerations, our

recommendation is to keep the rerunning interval in the range of 10-20 slots, which represents

a good trade-off between complexity level and achievable energy performance.

Effect of Users’ Distribution

This subsection illustrates the results of our evaluation campaign in terms of three sys-

tem metrics, namely energy consumption, network throughput, and energy efficiency, as a

function of users’ distribution. We consider PPP and Matérn cluster point process with 2

clusters. As shown in Fig. 3.7, for all considered metrics, the Matérn cluster distribution of

UEs within the sector provides better results compared to the uniform one. The reason is

that in the case of Matérn cluster distribution, its randomly located points tend to form

random clusters, which is beneficial for multicasting, rather than UEs scattered around the

area of interest.

Heuristic Evaluation

To evaluate the performance of the heuristic algorithm, let us examine the impact of two

parameters: (i) SNR threshold, Sthr,h, for removing a multicast UE from the group (as
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Fig. 3.7. Effect of different distributions of multicast users on (a) energy consumption, (b)

network throughput, and (c) energy efficiency. MGPF is executed at every time slot.
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Fig. 3.8. Energy consumption for heuristic solution varying Sthr,h and D2Dthr thresholds.

for lines 6-14 of the Heuristic Algorithm) and assigning unicast/sidelink transmissions, and

(ii) distance threshold at which sidelink communication can be established, D2Dthr. For SNR

thresholds, we use MCS mappings from [64] provided in Table 3.5.
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Fig. 3.9. Heuristic compared to MGF and SA3M algorithms for (a) CQI 6, (b) CQI 7, and

(c) CQI 8. D2Dthr=50m. Effect of different distributions of multicast users on (a) energy

consumption, (b) network throughput, and (c) energy efficiency. MGPF is executed at every

time slot.

The impact of D2Dthr is evaluated in Fig. 3.8. Here, it is shown how a less stringent

threshold (i.e., D2Dthr=50m) for distances within which devices can establish sidelink com-

munication outperforms all other thresholds. The reason is that our proposed low-complexity

heuristic, rather than implementing an exhaustive search for all possible configurations, works
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Table 3.5. CQI, MCS, spectral efficiency, and SNR mapping for 3GPP NR.

CQI MCS, code rate x 1024 Spectral efficiency

(bits/symbol)

SNR

threshold (dB)

0 Out of range

1 QPSK, 78 0.1523 -9.478

2 QPSK, 120 0.2344 -6.658

3 QPSK, 193 0.3770 -4.098

4 QPSK, 308 0.6010 -1.798

5 QPSK, 449 0.8770 0.399

6 QPSK, 602 1.1758 2.424

7 16QAM, 378 1.4766 4.489

8 16QAM, 490 1.9141 6.367

9 16QAM, 616 2.4063 8.456

10 64QAM, 466 2.7305 10.266

11 64QAM, 567 3.3223 12.218

12 64QAM, 666 3.9023 14.122

13 64QAM, 772 4.5234 15.849

14 64QAM, 873 5.1152 17.786

15 64QAM, 948 5.5547 19.809

by creating configurations according to the channel conditions of UEs. In particular, in the

case of D2Dthr equal to 30m, 40m, and 45m, uniformly distributed UEs are too far from

each other but, along with it, cannot satisfy SNR requirements of the multicast group. In

such a scenario, bad UEs have to be deleted from a multicast group and served via unicast

links that may deteriorate the performance due to the sequential transmissions. Recall that

we consider a single beam system and that higher CQI puts more strict requirements for

multicast group channels. Hence, more sidelink communications can be established out of

multicast ones. This general trend, while varying the SNR threshold, can be tracked only for

D2Dthr=50m, where UEs can freely establish sidelink connections.

In Fig. 3.9, we further investigate the performance of the proposed Heuristic compared

to MGF and both SA3M algorithms. In particular, we show the mismatch between the

energy consumption required by the Heuristic with respect to the analyzed solutions. It can

be noticed that the SNR threshold that corresponds to CQI 8 provides the best Heuristic

performance. The reason is that in this case, more multicast groups will be unclustered, and

sidelink transmissions will be in priority, whereas chosen D2Dthr=50m allows UEs to launch

sidelink transmissions. Furthermore, regarding the performance vs. complexity trade-off, it is

essential to highlight that Heuristic has lower complexity (by orders of magnitude) compared

to SA3M while demonstrating comparable performance, given proper setting adjustments.

Effect of Transmit Power

As a final step, we investigate the impact of transmission power on energy consumption,

latency, and network throughput. Obviously, by lowering the transmit power, a decrease

in energy consumption is achieved. The same decreasing trend is experimented in terms of
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SNR, leading to a throughput degradation which, in turn, causes a delay increase. The raised

delay affects energy consumption. Therefore, there is a trade-off between transmit power,

PT , and delay. Moreover, packet size and available bandwidth at a transmission link also

impact energy consumption.
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Fig. 3.10. Effect of transmit power on (a) energy consumption, (b) latency, and (c) network

throughput. Heuristic with D2Dthr=50m, MCS 8, and W = 1GHz.

To this aim, we vary PT as shown in Fig. 3.10. Observe that the rise in transmit power

increases energy consumption up to 73% comparing the two extreme cases of 46 dBm and

33 dBm. Conversely, PT reduction results in higher latency, as demonstrated in Fig. 3.10(b).

Depending on the service requirements and hardware on the devices (battery life is im-

portant), the choice of the transmit power can be shifted to one of the extreme cases or,

differently, to a middle value. By analyzing Fig. 3.10 further, one can notice that packet size

does not influence the trend of the curves for W = 1GHz since the available bandwidth

in the system allows data delivery. Recall that bandwidth represents the highest reliable

transmission rate and is necessary for understanding the amount of traffic a connection can

support.
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Fig. 3.11. Effect of transmit power on (a) energy consumption, (b) latency, and (c) network

throughput. Heuristic with D2Dthr=50m, MCS 8, and W = 400MHz.

To further analyze the energy consumption/latency trade-off, we now discuss results

in Fig. 3.11 in which the transmission bandwidth is set to W = 400MHz. We can see

that the latency increases under decreasing transmission power values, independently of the

bandwidth and the packet size. However, a different trend from Fig. 3.10 can be noticed in
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the case of energy consumption and network throughput. Here, we can observe a nonlinear

trend under increasing transmit power for both considered packet sizes (see PT = 35 dBm

compared to PT = 33dBm and PT = 37dBm), revealing the existence of the trade-off

between the energy consumption and energy efficiency (or, equally, latency).

As a result, one can deduce that bandwidth together with the transmit power can be

adjusted by means of scalable numerology to reduce the total power consumption in the

network.

3.2 5G NR Sidelink Multi-Hoping in Public Safety and

Factory Automation Scenarios

3.2.1 Motivation

3GPP sidelink transmissions in LTE-A systems have already proven to play a crucial role

in supporting public safety and Vehicle-to-Everything (V2X) services, among others, by

featuring direct communications between two user devices without any BS involvement [96].

Fostered by the successful evolution in LTE-A, the 3GPP sidelink developments are going

on in NR based systems, wherein sidelink transmissions become an essential component

complementing the Uu communication between UE and BS. 5G wireless communication

systems utilize NR sidelink for D2D based proximity service (ProSe) communications [97]

that can operate in both lower (up to 7.125GHz) and higher (up to 52.6 GHz) frequency

ranges. Focusing on providing low-latency, high-reliability, and high-throughput services, NR

supports a number of new sidelink communication features not provided in LTE-A. These

include, among others, support for unicast and groupcast in the radio layers (Long Term

Evolution (LTE) only supported broadcast) and Hybrid Automatic Repeat Request (HARQ)

operation at the MAC level.

On the application side, we observe that public safety organizations have already begun to

shift from traditional land mobile radio to cellular communications systems, leveraging a new

set of deployed devices to meet mission-critical requirements and target new public-safety

broadband applications. Accordingly, 3GPP Rel-16 targets defining the common architecture

for public safety and commercial ProSe services [98]. In the case of public safety, maintaining

ProSe discovery and communication is especially critical when the UE resides outside the

coverage area of the cellular network, e.g., in the case of disaster management in remote

areas. Hence, the support for both direct discovery (discovery is integrated into the initial

sidelink connection establishment message) and unicast and groupcast communication (one-

to-one and one-to-many communication) was introduced. Moreover, out-of-network-coverage

discovery is already feasible in Rel-16.
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Note that public safety service reliability can be achieved by using either multi-hop1 D2D

communications (e.g., in out-of-coverage scenarios) or through the flexible use of radio re-

sources provided by the multi-connectivity and multi-radio access technologies (multi-RAT).

Technologies such as Mobile Edge Computing (MEC) and Software-Defined Networks (SDN)

can improve latency and security in public safety services [99]. Also, Network Function Virtu-

alization (NFV) and network slicing can manage various use cases with varying priorities in

cellular networks [100]. In this study, we investigate the main advantages and disadvantages

of D2D ProSe transmissions.

ProSe support can be also beneficial to commercial use cases and services. In the realm

of factory automation, for example, it can provide new possibilities for discrete manufac-

turing and help producers accomplish efficient operations. Nowadays, as mentioned above,

factory automation is based mainly on wired connectivity, which bounds the degree of free-

dom for functionalities, especially for mobile terminals. Hence, robust wireless connectivity

can improve the location flexibility of a large number of machines, such as sensors, actu-

ators, and programmable logic micro-controllers. Furthermore, as factory automation use

cases usually (but not always) belong to the class of URLLC and the existing technologies

operating over the unlicensed spectrum are not capable of guaranteeing the required Quality

of Service (QoS) in the considered scenario, NR sidelink has the potential to offer interesting

opportunities.

Note that the NR sidelink can be easily deployed on the licensed spectrum. Suppose

the mobile network operators spectrum is to be used for the Industrial Internet of Things

(IIoT). In that case, the NR sidelink may have an advantage over other D2D technologies

(because the operator presumably uses NR cellular). Otherwise, in case the spectrum is

unlicensed for industrial use, other D2D technologies can be utilized. However, in terms

of power consumption, devices should only maintain the cellular interface active to save

power [101].

In summary, as proven by several research works focused on direct links between UEs, de-

ploying D2D communications in cellular networks benefits from proximity and spatial reuse

gains. However, two main NR sidelink aspects have not been sufficiently investigated

and standardized yet: (i) multi-hop transmission (relaying) and (ii) mobility. In this arti-

cle, we focus on the first feature – multi-hop transmission – by considering a static scenario.

More precisely, while other existing studies only investigate the special case of one relay node

(two-hop) sidelink operation, we investigate the case of an arbitrary number of hops. Thus,

our article aims to partially fill the mentioned research gap by elaborating on the concept of

D2D ProSe communications while referring to public safety and factory automation sample

use cases. We first discuss the pros of NR sidelink, including the comparison with LTE ProSe

communications. We then review the NR sidelink applicability for public safety and factory

1 Note that the NR sidelink (Rel-16 and Rel-17) does not support multi-hop (i.e., UE1-

UE2-UE3) at radio layers.



3.2 5G NR Sidelink Multi-Hoping in Public Safety and Factory Automation Scenarios 69

automation applications and conduct a preliminary simulation study. Finally, we offer future

directions for the NR sidelink development from a standardization perspective.

3.2.2 NR Sidelink in a Nutshell: Why NR Sidelink?

LTE sidelink (or D2D) was introduced for the first time as a part of 3GPP Release 12,

aiming at covering public safety scenarios and supporting two operation modes. In mode 1,

eNB2 assists UEs and allocates dedicated transmission resources, whereas, in mode 2, UEs

randomly select the radio resources from the pool that was previously sent by eNB. Both

modes have the same pool of resources, wherein the transmission is scheduled during the so-

called Physical Sidelink Control Channel (PSCCH) [102]. Later, in LTE sidelink Release 14,

3GPP added several enhancements to the Mission-Critical Push-to-Talk (MCPTT) standard

and upgraded the functionalities of public safety applications by introducing Mission-Critical

Data (MCData) and Mission-Critical Video (MCVideo) [103].

At the radio level, in terms of backward compatibility the following aspects define new

and old specifications: LTE sidelink Rel-13 is compatible with LTE sidelink Rel-12; LTE

sidelink Rel-14 is not compatible with earlier LTE sidelink; LTE sidelink Rel-15 is compatible

with LTE sidelink Rel-14; NR sidelink is not compatible with any LTE sidelink; NR sidelink

Rel-17 will be compatible with NR sidelink Rel-16. Here, a new model was introduced, where

each set of services is mapped onto a single release of the specification (e.g., safety services

are mapped onto Rel-14, whereas advanced driving services are mapped onto Rel-15). That

is, each release is aimed at supporting a certain set of services [104].

NR sidelink (Rel-16) operates more efficiently and is designed so as to utilize both li-

censed and unlicensed frequency bands. More specifically, both LTE and NR sidelink support

communications in the licensed spectrum as well as in the unlicensed ITS spectrum (essen-

tially the 5.9GHz band). However, neither LTE nor NR sidelink support communications in

different unlicensed spectra such as the 2.4 and 5GHz bands. In view of this, various NR

protocols facilitate the coordination and control of the sidelink transmissions within the net-

work coverage, which ensures that the D2D communications effectively coexist with cellular

data traffic in shared frequency bands.

The direct mode interface (PC5 or sidelink), which complements the cellular interface by

introducing new flexibility to the NR technology, has been presented in Rel-16 [105]. PC5

or sidelink operates in in-, out-of-, and partial-coverage scenarios3, leveraging NR frequency

bands and supporting unicast, multicast, and broadcast communication, where members

interact via groupcast transmissions. This option is useful in the transmitter-receiver close

proximity scenarios and in the intermittent network coverage ones. Release 16 sidelink trans-

missions solely involve V2X scenarios though, the 3GPP is planning further sidelink-related

2 E-UTRAN Node B, also known as Evolved Node B (abbreviated as eNodeB or eNB), is

an LTE BS.
3 The LTE sidelink could also operate in-coverage, partial-coverage and out-of-coverage.
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features in Rel-17 that are expected to play a decisive role in expanding the applicability

of 5G NR to a wide variety of new use cases in both industry and public services, such as

public safety, factory automation, enhanced V2X, advanced relay, and XR interactive games,

among others.

However, energy efficiency - a crucial feature for pedestrian/drone UE in terrestrial/aerial

V2X, wearable UEs in interactive games, or mobile UEs in public safety - is not the primary

concern in the Rel-16 sidelink transmission design. In this regard, a high degree of energy

efficiency at both the network and device sides must be ensured. In Release 16, the blind

decoding of the PSCCH appears to be one of the significant causes of energy consumption

in Modes 1 and 2. The transmission and reception procedures of PSCCH and Physical

Sidelink Shared Channel (PSSCH) may be further advanced to save power at the UE side.

Thus, within NR sidelink Rel-17, a work item on sidelink enhancements is targeting energy

efficiency improvements.

To summarize, four new features are introduced in NR sidelink to meet the service re-

quirements of the use cases that demand high reliability, low-latency, high-throughput trans-

missions, and high connection density. First, point-to-multi-point and point-to-point trans-

missions are supported in addition to broadcasting. Second, ultra-reliable and low-latency

NR uplink communications are achieved thanks to grant-free transmission, a promising mul-

tiple access protocol. Finally, the channel sensing and resource allocation procedures are

improved to facilitate collision mitigation among different sidelink transmissions initiated by

various UEs.

LTE, LTE sidelink, and NR transmissions can also be used for public safety and factory

automation scenarios. However, these are still less efficient in supporting mission-critical

services. In the case of LTE, even though there are solutions, such as portable eNB on trucks,

to address disaster and emergency situations, most of the time, the coverage and robustness

of such solutions are somewhat limited and may not guarantee the requirements requested

by modern applications. LTE sidelink has a public safety focus, but its main drawback is

that it operates only in broadcast mode and only in unlicensed spectrum, thus meaning that

there is no support for public safety bands in LTE. Moreover, LTE sidelink has very little

support from chipset vendors, implying that there are no real UEs on the field so far. When

touching NR, the initial focus of NR was Enhanced Mobile Broadband (eMBB) (Rel-15),

then IoT and URLLC (Rel-16 and Rel-17). This means that there is slight support for public

safety features, but the technology is not mature yet since more work is expected to be done

in the following Rel-18 and Rel-19.

3.2.3 NR Sidelink as a Tool to Support Public Safety and Factory

Automation Use Cases

Several new use cases are still expected to be supported in Rel-17. These use cases are related

to V2X and public safety. Then, the Rel-17 NR sidelink can also be used for industrial



3.2 5G NR Sidelink Multi-Hoping in Public Safety and Factory Automation Scenarios 71

communication, such as sidelink between robots, machines, and industrial sensors (even

though IIoT is out of the scope of Rel-17). To fully cover new and already existing use cases,

we consider public safety and factory automation applications that differ in requirements.

Public Safety

Office

5G NR gNB

R

UMI+O2I 
penetration

InH -office

R

Fig. 3.12. Public safety use case illustration. “R” stand for a relay. “R” can transmit data

via unicast and groupcast. In this work, we use only unicast. Note that broadcast is only

used for LTE.

Public safety organizations are responsible for providing services that ensure the people’s

and properties’ safety thanks to first responders, such as firefighters, emergency medical

service staff, etc., equipped with devices exchanging time-sensitive and critical information

via typically wireless communication links. To support the mission-critical requirements of

public safety services, these organizations have begun to move from traditional land mobile

radio to cellular communications systems with a new set of terminals.

Reliability in public safety services can be achieved via multi-hop relaying, which is

considered to be one of the key technologies facilitating enhanced system performance in

future 5G+ systems. For example, it allows establishing direct connections between devices

in scenarios outside the coverage area, thus ensuring first responders with the connectivity

they need, especially in hazardous situations. For instance, in [106], the fire brigade use case

is already under consideration to enhance indoor coverage.

Furthermore, public safety use case introduces potential new requirements [106], such as,

among others, the following ones: (i) the 5G system shall support the relaying of MCPTT,

MCVideo, and MCData services between remote UEs and a network using multi-hop relay

UEs; (ii) the 5G system shall support service continuity when a remote UE moves into an

area within the coverage of a different multi-hop relay UE; (iii) the 5G system shall allow

the user to decide when to deploy additional multi-hop relay UEs to maintain a reliable

communication path, etc. We emphasize that new public safety services with their mission-
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critical requirements call for cellular communication systems that support a D2D ProSe (see,

e.g., Fig. 3.12).

Factory Automation

5G NR gNB

Fig. 3.13. Factory automation use case illustration.

The scenario that is expected to be investigated in Rel-18 is multi-hop sidelink for fac-

tory automation scenarios (see, e.g., Fig. 3.13). Here, complementary to deploying multiple

gNBs4, the factory owner may leverage UEs with multi-hop relay capabilities to relay mes-

sages between, e.g., remote UEs and gNBs [106].

IIoT scenarios, such as factory automation use cases, usually demand URLLC and in-

clude communication between automation devices, such as industrial robots, controllers, and

sensors. Even though different technologies are designed to support industrial communica-

tion, e.g., IWLAN, WISA, WirelessHART, these standards do not satisfy the flexibility and

real-time-response requirements of control loops. Moreover, 3GPP defined the target packet

error rate at 10−6 (known as “six nines” reliability) [107].

To this end, factory automation services can benefit from D2D ProSe since direct com-

munication between industrial terminals helps reduce communication latency. Further, it

results in reduced resource usage compared to the legacy centralized traffic stream through

the BS or, equally, gNB.

Performance Indicators

In factory automation and public safety scenarios, strict requirements5 on the following

concepts have to be considered:

4 Next Generation Node Bases (gNBs) is the NR term for a BS).
5 Note that not all requirements have to be satisfied at the same time.
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• Latency. NR sidelink mitigates the end-to-end latency determined as the time taken

for devices to respond to each other over the wireless network and is crucial for remote

controlling, URLLC applications, etc.

• Power consumption. The terminals that operate in D2D fashion experience a reduced

energy consumption primarily due to the mutual proximity and reduced latency, since

the total energy consumption of transmissions in the network is calculated by multiplying

power in watts by time.

• Service continuity. When a link is broken, the terminal should be able to select another

link as soon as possible not to lose too many packets, which can be achieved, e.g., through

multi-hop D2D communication.

• Reliability. D2D technology can improve reliability, expressed as the fraction of sent

network layer data units that are successfully delivered to a given node within the time

constraint required by the targeted service.

• Service availability. A further metric that can benefit from the deployment of multi-

hop D2D (among other technologies, such as MEC, multi-RAT, Integrated Access and

Backhaul (IAB)) is the communication service availability. It is defined as the time

interval during which the end-to-end communication service is delivered in compliance

with an agreed QoS, divided by the total time interval the system is expected to provide

the end-to-end service in a given area [108].

• Energy efficiency. Efficient energy use aims at a reduction in the consumed energy

while providing the service; it is defined as the achieved network throughput divided by

the consumed energy.

• Network throughput. Network (or aggregate) throughput is the total data transfer

rate delivered to all devices in the network.

A more detailed description of public safety or factory automation-related requirements

from the communication and other perspectives is available in 3GPP specifications [106,

108]. For example, 30 ms end-to-end latency (all hops are included) should be ensured for

public safety scenarios from the communication vision, whereas an example of functional

requirements associated with public safety can be that the maximum operating range of

a UE-to-network relay UE in an indoor scenario with unobstructed view shall exceed 50

meters. For industrial settings, end-to-end latency in the range between 5 ms and 1 s might

be enough, while the 5G system shall support the relaying of UE traffic through multi-hop

relay UEs in a manner that minimizes the impact of the relaying on system performance.

Otherwise, we refer readers to Table 6.7.4-1 for public safety and Table 8.3-1 for detailing

the factory automation use case [106,108].

3.2.4 Performance Assessment

To analyze the gains and downsides deriving from NR sidelink multi-hop relaying in the use

cases described above, we developed a MATLAB simulation environment (considering trans-
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Table 3.6. Simulation parameters factory automation scenario

Scenarios Factory Automation Public Safety

Area 100m x 70m 500m x 1000m

NR carrier frequency 28GHz (FR 2) 700MHz (FR 1)

LTE carrier frequency 2.1GHz 2.1GHz

Total NR bandwidth 100MHz 100MHz

Total LTE bandwidth 100MHz 100MHz

Height of BS 3m [110] 10m (UMi) [110]

NR subcarrier spacing 120 kHz 60 kHz

LTE subcarrier spacing 15 kHz 15 kHz

NR transmitter processing delay 0.0357ms 0.0179ms

LTE transmitter processing delay 1ms 1ms

NR transmitter processing delay 0.0357ms 0.017ms

LTE transmitter processing delay 1ms 1ms

NR frame alignment time 0.0179ms 0.0089ms

LTE frame alignment time 0.5ms 0.5ms

NR transmission time 0.0357ms 0.0179ms

LTE transmission time 1ms 1ms

NR receiver processing delay 0.0536ms 0.0268ms

LTE receiver processing delay 1.5ms 1.5ms

NR one way latency 0.1429ms 0.0715ms

LTE one way latency 4ms 4ms

NR HARD RTT 0.2143ms 0.1074ms

LTE HARD RTT 8ms 8ms

Height of UE 1.5m [110] 1.5m [110]

Number of BSs 2 BSs 1 BS

Number of UEs 10 UEs 6 UEs

SNR threshold -9.478 dB -9.478 dB

Transmit power 20 dBm [111] for both BS and UE 46 dBm [BS]/ 23 dBm [UE] [112]

Fading margin 4 dB 4 dB

Interference margin 3 dB 3 dB

Path loss model Heavy industry [111] UMI+O2I penetration loss (low-

loss model) [110] / InH - office

Antenna array 32x4 URA 16x4 URA

Packet size 10-300 byte 10-300 byte

mission part only) dimensioned according to the parameters’ values listed in Table 3.6. We

emphasize that the NR sidelink frequency of operation can be FR1 that contains frequencies

from 410MHz to 7.125GHz and FR2 (mmWave) that covers the range between 24.25GHz

and 52.6 GHz [109]. This subsection compares the performance of the NR and LTE sidelink-

enabled systems with NR and LTE. Note that LTE and NR benchmarks exploit sequential

BS-UE transmissions scheduled one by one, whereas multi-hop transmissions are used only

for NR sidelink use cases.

Factory Automation Scenario

For the factory automation use case, we use 5G FR2 that has been allocated to 5G in

the mmWave region. We deploy a private network with two BSs within the factory that is
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separated from the global network. Nodes (10 UEs) are uniformly distributed in an area of

100m x 70m. From the application point of view, this scenario corresponds to URLLC IIoT.

In our performance evaluation, we use a bandwidth of 20MHz and 100MHz per single LTE

and NR carrier, respectively. Then, to fairly compare the performance of NR and LTE, we

use LTE carrier aggregation to 100 MHz. The path loss model is adopted from the heavy

industry [111], and the received rate is computed using the Shannon Theorem.

We consider the following traffic model: the number of users in the cell (or area of interest)

is constant, and each user is assigned a finite payload to receive. When a UE receives the

packet, it can transmit the data to the other UEs in the network by establishing multi-hop

communication. We assume that multi-hop communication can be established as follows:

• Case 1: multi-hop communication is established as a chain of sequential unicast trans-

missions (see Fig. 3.14(a)). For instance, the following chain of transmissions can be

determined: BS/AP → relay 1 → relay 2 → relay 3 → relay 4 → relay 5 ,

etc. Here, each next relay is selected based on the best channel quality (e.g., SNR,

RSS) between the last relay and the devices that have not received the data. We note

that thanks to the better channel conditions between hops, the latency can be reduced.

However, relaying may also add a delay (compared to Multimedia Broadcast Multicast

Services (MBMS)) due to the hops when one considers HARQ, etc.

• Case 2: multi-hop communications with concurrent unicast transmissions can be estab-

lished. For example, both pink links marked as 3 in Fig. 3.14(b), are concurrent links,

and transmissions 2 and 3 coming from the first relay are performed one after the

Fig. 3.14. Multi-hop establishment illustration: (a) chain, (b) concurrent transmissions.
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Fig. 3.15. Factory automation: latency as a function of packet size (blue); network through-

put as a function of packet size (red).

other. Here, similarly to case 1, each next relay is selected based on the best channel

quality, but at the same time, several relays (that already received packet) can forward

data to those who are still waiting to be served.

For the factory automation scenario, we consider two main metrics that are critical for

the use case: latency and network (aggregated) throughput (see Fig. 3.15). Note that latency

is calculated as the time required for the data packet dissemination to all the terminals in

the network, whereas throughput can be described as the total data rate delivered to all UEs

and is calculated as the product of the packet size times the number UEs UEs divided by

latency.

One may notice that in our simulation settings, NR sidelink improves the system pa-

rameters compared to other systems in terms of end-to-end transmission delay and network

throughput thanks to the gains obtained from reuse, relay, and proximity. We recall that

latency in the case of the URLLC scenario has to be minimized, whereas network through-

put (or, equally, the sum of data rates) benefits from the reduced end-to-end latency. Recall

that the sum of data rates varies with the channel variations. Then, an increase in packet

size may lead to a rise in latency to some extent. Note that the superior behavior of the

NR sidelink comes from more flexible scheduling and scalable numerology. Also, sidelink

can provide better energy efficiency and latency since transmissions generally occur over

short distances, leading to the fact that the modulation and coding scheme selected during

a sidelink transmission is generally high.

Most importantly, one may observe that the relay selection mechanism plays an impor-

tant role in improving the system performance. More precisely, the possibility of utilizing

concurrent transmissions and the sophisticated selection of the next-hop relay according to
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the channel quality between devices (case 2) reveals the best performance. Hence, we can

deduce that designing algorithms that are able to take fast and intelligent decisions on relay

discovery and selection is of particular interest.

Further, we emphasize that cooperation with several relays may introduce sufficient

macro-diversity and system reliability in conditions of a high probability of LoS paths being

blocked. Hence, without sidelink features (or IAB, among other technologies), the system

would experience difficulties guaranteeing reliable communication in factory automation se-

tups. Then, this problem worsens for the dynamic scenario.

Public Safety: Fire Brigade Scenario

To investigate the impact of NR sidelink on system performance considering the public safety

use case, we consider uniformly distributed points with coordinates (x, y) within an area of

500m x 1000m. Then, we deploy uniformly 6 UEs in a radius of 20m with (x, y) as a center.

The BS is located at the center of 500m x 1000m rectangular. The Head of the team is

assumed to be out of the building and is controlling the rescue operation. One of the UEs is

the first relay device from outdoor to indoor environments (the one with the best channel).

We use the UMi 3GPP path loss model for the link between the relay device and the BS

as well as consider Outdoor-to-Indoor (O2I) penetration loss. The path loss incorporating

O2I building penetration loss is modeled as described in [110]. Then, for indoor multi-hop

relaying, we use the indoor 3GPP model (InH - office).

Regarding the way of forwarding the data to each device from the relay, there are two

possible approaches: (i) relay UE forwards the data to each device independently, and (ii) re-

lay UE forwards the data to one device, and then this device forward the data to another

device and so on (i.e., a chain of transmissions). In our simulation, we exploit the second

option, wherein gNB is connected to the first relay device, and the relay device forwards this

information to the rescue team (according to the multi-hop case 2). To simulate antenna

arrays, we use MATLAB Antenna Toolbox. We consider FR1 envisaged to carry much of

the traditional cellular mobile communications traffic.

Differently from the previous use case, public safety focuses on wider coverage and power

saving for battery-based UEs. As one may learn, Fig. 3.16, presents the results for the fire

brigade scenario in terms of energy efficiency and power consumption as a function of the

packet size. We estimate the total power consumption in the system by multiplying transmit

power in watts by the time required for the packet delivery, whereas efficient energy use is

defined as a division of network throughput by the consumed energy. That is, energy efficiency

is defined as the obtained network throughput divided by the used energy in bit/s/J, which

assesses how effectively energy is utilized to get the network throughput.

We highlight that both transmit power and transmission delay impact on energy use.

Then, the energy consumption can be reduced by lowering the transmit power. Hence, in

our setup, the transmit power from the gNB and between relays are set to 46dBm and
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Fig. 3.16. Public safety (packet size ranges from 10 to 300 byte): energy efficiency as a

function of packet size (blue); power consumption as a function of packet size (red).

23dBm, respectively. However, there is a trade-off between lower transmit power (less energy

consumption) and delay (which also causes energy consumption).

From the obtained results, one may infer that NR sidelink brings its advantage in terms

of proximity and relaying, affecting propagation properties as we deal with mixed outdoor-

indoor environments. NR ProSe allows for high reliability, high bit rates, low power consump-

tion, and low latencies. Note that reliability in public safety services can be satisfied by using

different tools, such as multi-hop relaying, multi-connectivity, multi-RAT, etc. Relaying has

many advantages, including the possibility to ensure extended coverage and reliability in the

case of network failure. However, several challenges need to be addressed to provide a robust

solution. For example, the security of D2D communications has to be guaranteed. Then, the

question is when to do relaying, and on what parameters the source node decides to relay

via nearby nodes. Finally, latency constraints: relaying may also add a delay (compared to

MBMS) due to the hops.

3.3 Conclusions

This chapter introduced the concept of D2D communication. More precisely, we developed

a two-step framework for optimal sidelink-assisted multiple modes mmWave scheduling. Its

complexity is reduced by exploiting an existing unsupervised learning algorithm to form

multicast clusters. The resulting proposed solution leverages both optimization and machine

learning techniques to deal with different types of users’ mobility, user distribution, and

network-side parameters, such as transmit power and bandwidth. To face complexity issues,

a heuristic, which tracks channel conditions of multicast users, is also designed.
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A thorough analysis of the system behavior has revealed crucial quantitative trade-offs to

handle with. Specifically, we elaborated on the complexity/performance trade-off connected

with users’ mobility. In particular, we recommend rerunning the multicast group formation

algorithm, which allows for achieving better performance in mobile scenarios at the expense

of low computational complexity. We then evaluated the energy consumption reduction as

a consequence of a decreased transmit power and its impact on the total network latency.

We emphasize that in 5G NR, the network’s overall power consumption can be reduced by

adjusting both bandwidth and transmit power. By combining the achieved results, we may

conclude that multicast and D2D technologies are powerful tools to improve the performance

of mmWave directional systems in the presence of dynamic users.

Further, we provided an overview of the main functionalities and features of NR sidelink

compared to the LTE-A. NR sidelink is believed to become an essential technology to ensure

both mission-critical and ultra-reliable low-latency communications. Then, we elaborated on

NR sidelink as a solution for public safety and factory automation, outlining their principal

requirements and use case flow. Throughout the simulation study, we raised the possibility

of using NR sidelink communication for public safety and factory automation scenarios,

demonstrating noticeable end-to-end latency and energy efficiency performance improvement

compared to LTE, LTE sidelink, and NR transmissions.

Materials of this chapter were published in [113].
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Cooperative Positioning

This chapter addresses the problem of cooperative localization in wireless systems. In partic-

ular, we attempt to provide a holistic overview of the collaborative localization methods using

D2D technology and integrating the transmission and localization components of wireless sys-

tems. Further, by relying upon the path loss models, we offer a theoretical model based on

RSS ranging for D2D- and RIS-aided cooperative positioning to provide a comparison between

them in terms of positioning accuracy. We also analyze the performance of joint localization

integrating cellular, D2D, and RIS cooperative systems implemented by using statistical tools.

4.1 D2D-based Cooperative Positioning Paradigm for Future

Wireless Systems

4.1.1 Motivation

A wide variety of emerging 5G and beyond 5G (B5G) applications demand high positioning

accuracy, which, in turn, affects the performance of various location-based applications. The

recent advances in the Global Navigation Satellite System (GNSS) area, such as Precise Point

Positioning (PPP) or Real-Time Kinematic (RTK), are enabling positioning accuracies below

10 cm outdoors. Despite positioning is more or less solved outdoors, positioning accuracy

still requires an improvement indoors. For instance, for indoor localization or positioning in

dense urban settings, Wireless Local Area Network (WLAN) fingerprinting techniques can

provide the accuracy of 3m to 4m, while to achieve this result, one needs to maintain a large

fingerprint database. Meanwhile, next-generation high accuracy positioning will require the

accuracy of less than 1m in more than 95% of the service area, including urban, outdoor, and

indoor environments [114,115]. It is already shown in [116,117] that 5G NR technology can

facilitate high-accuracy continuous tracking and positioning and confirmed that it is possible

to achieve sub-meter localization accuracy over 99% of the time with 3GPP-specified 5G NR

parametrization.

Key prospects of 5G networks, such as increased bandwidth, small cells and high MT

density, D2D communication capability, and multiple radio access technologies, are favorable

for localization [118]. Specifically, 5G systems envisage scenarios, where MTs may cooperate

for achieving accurate positioning by directly exchanging necessary data through the D2D
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links. More technically, MTs transmit their physical layer estimates, thereby accelerating

local decisions. Then, higher layer information (e.g., position estimates between terminals

or mobility information about the neighboring nodes) is exchanged between MTs. This ap-

proach, for example, can be applied to use cases where the positioning accuracy is around

a few meters to lessen the accumulative positioning error via cooperative positioning and,

hence, improve the accuracy [119,120].

Notably, in 5G delay-sensitive networks, a distributed D2D cooperative localization helps

in reducing the delay to discover nearby nodes’ locations, which is crucial, e.g., to perform

specific intelligent control, such as self-driving [118]. A further feature paving the way for

cooperative positioning applications in 5G networks is the availability of high-density small

cells, favoring D2D communication between MTs. For example, in view of future V2X scenar-

ios, D2D communications are already considered in 5G NR Release 16 [4] as a valued means to

enable ultra-dense cooperative localization. Due to this, D2D-aided cooperative positioning

is expected to achieve the ubiquitous positioning of below one-meter accuracy [121], thereby

fulfilling the 5G requirements [114]. Motivated by the aforementioned emerging interest in

the subject, this section focuses on integrated D2D positioning systems.

Differently from the previous studies on D2D and/or 5G technologies that fall into com-

munication or multimedia sectors, this section is devoted to positioning aspects. In this

section, we attempt to provide a holistic overview of the collaborative localization methods

using D2D technology and the integration of the transmission and localization components

of wireless systems. The section investigates the state-of-the-art on D2D communication

capabilities used for localization, thus acting as a glue between these two promising tech-

nologies for satisfying the ever-growing requirements of 5G and B5G networks. Summarizing,

in this section of the thesis, we concentrate on answering the following questions: (i) can D2D

technology help positioning by increasing its accuracy?; (ii) can the cellular network provide

effective support to positioning?; and (iii) what are pros and cons of D2D-based cooperative

localization?

The section’s key takeaway points are: (i) there are two ways to exploit D2D for cooper-

ative localization. (ii) cooperative D2D positioning provides increased accuracy and extends

coverage compared to non-cooperative methods. (iii) Cooperative D2D positioning allows for

relative position estimation, even in the absence of reference stations. (iv) 5G mobile net-

works have enhanced positioning capabilities in comparison with previous generations. And

(v) cooperative D2D-aided cellular positioning can facilitate sub-meter localization accuracy

demanded by 5G applications.

4.1.2 5G Positioning Applications and Enabling Technologies

As specified in [5,115], 5G positioning services intend to support applications and verticals,

such as Intelligent Transportation Systems (ITSs), eHealth, Industry 4.0, with sub-meter

positioning accuracy. Thus, many 5G verticals and applications (including regulatory needs
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services) pose ambitious system requirements for positioning accuracy (see Table 4.1). For

instance, in Location-based Services (LBS) and ITS scenarios, high accuracy is critical to

new services and applications for both outdoors and indoors.

Regarding the Industry 4.0 use case, it is critical to locate assets and other moving

objects (e.g., forklifts) on the factory floor. Similarly, in the logistics and transport industry,

for example, in the use of drones, rail, and road transport, the need for object location

determination exists. Further, in use cases with guided vehicles, Unmanned Aerial Vehicle

(UAV), and objects involved in safety-related functions, also a high resilience in position

availability is a key issue [5].

A further category, which demands high precision positioning, is mission-critical services.

For instance, first responders may be located at all times during usual and critical opera-

tions, indoors as well as outdoors. Here, the level of positioning accuracy (and other Key

Performance Indicator (KPI)1 such as horizontal accuracy, vertical accuracy, positioning ser-

vice availability, heading [122], latency for UE position estimation, corresponding positioning

service level, UE speed, update rate, and Time to First Fix (TTFF)) required is much more

stringent than that demanded by local and regional regulatory requirements for commercial

5G users [5]. We summarize the main requirements for vertical use cases in Table 4.1, partial

information of which is extracted from [4] (Section 6) and [5] (Section 9, Annex B).

Moreover, in particular applications and services, the network operator has to provide

a customized localization service for various users requiring different performance levels.

Hence, the support of several localization services is considered as a separate use case, which

can be managed by relying on multiple technologies, for instance, 3GPP and non-3GPP

technologies, as well as a combination of both 3GPP with non-3GPP positioning technologies.

It is important to mention that different localization methods are capable of offering different

accuracy levels [123].

Non-3GPP Technologies

The exploitation of existing standards designed only for communications: currently, numer-

ous wireless communication technology standards are available for WLAN, Wireless Sensor

Network (WSN), and IoT applications. Examples can be Wireless Fidelity (Wi-Fi), ZigBee,

Radio Frequency Identification (RFID), and Bluetooth Low Energy (BLE). These technolo-

gies do not provide any particular positioning capabilities. Instead, their transmitted signals

are used and mixed to offer different levels of localization accuracy.

While RFID and BLE are typically used with proximity methods due to their limited

transmission range, Wi-Fi technology has been successfully adopted in several positioning

systems, usually leveraging fingerprinting techniques where accuracies at meter-level can be

1 For example, TS 22.104 Clause 5.7 provides positioning requirements for horizontal and

vertical accuracy, availability, heading, latency, and UE speed in an industrial use case

scenario.
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Table 4.1. Vertical Use Cases for Localization and Requirements [4, 5]

Vertical Regulatory

and mission-

critical

Location-based Industry eHealth Transport and

logistics

Use cases Public safety

First respon-

der

Emergency call

service

Augmented real-

ity

Wearables

(tracking, activ-

ity monitoring,

and emergency

messages)

Advertisement

push

Collaborative

activities (bike

sharing, guid-

ance, and flow

management)

Waste col-

lection and

management

Connected enter-

prises

Smart retail

Connected

healthcare

Patient track-

ing and surveil-

lance inside or

outside Hospitals

Location of

emergency

equipment out-

side Hospitals

(public spaces,

offices, etc.)

Traffic moni-

toring, man-

agement, and

control

Road-user charg-

ing (RUC)

Asset and

freights tracking

Drone tracking

Supply chain

visibility

Smart retail

Autonomous

driving, V2X

Environ-

ment of use

Both indoor and

outdoor

Both indoor and

outdoor in the

5G service area.

Outdoor Both indoor

(Hospitals, hous-

ing, offices, etc.)

and outdoor (5G

service area)

Outdoor

Accuracy <1m horizontal,

<2m vertical

(indoor for floor

detection) and

<0.3m vertical

(relative) out-

door

2m horizontal,

<3m vertical

3m horizontal 3m to 10m hori-

zontal, <3m ver-

tical

0.1m to 0.5m

horizontal, 0.1m

to 0.3m vertical

Availability > 95% (98% out-

door)

99% 99% from 90 to 99% 99 − 99.9%

Velocity - - - - velocity <

3m s−1

TTFF 10ms 10 s - - 10 s

Latency 1 s (5 s outdoor) 1 s 60ms - 150ms

Other KPI MCX confidence

event-triggered

report

Normal mode Very low energy

(15 years)

- Low energy, anti-

spoofing, antita-

mpering

achieved in many conditions [123]. Wi-Fi and BLE have already been considered as comple-

mentary technologies in LTE Release 13 to enhance positioning in indoor environments [124],

chiefly thanks to their wide diffusion.

The ad-hoc solutions: Ultra-Wide Band (UWB) is known to be the most promising ad-

hoc technology, which is able to achieve high-accuracy positioning in an indoor environment.

This is thanks to the fact that a larger signal bandwidth ensures a higher time measurement

resolution and, thereby, providing high-accuracy positioning estimations [123].
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3GPP Technologies

From a standardization perspective, positioning in 5G systems is discussed within the ded-

icated task in Release 16 [4]. Here, localization will be performed based on both (i) the

NR uplink and downlink signals characteristics and (ii) the new network configurations

and technologies such as sensors, Bluetooth, RFID, WLAN, GNSS, and Terrestrial Beacon

Systems (TBS) [123]. Further, the main 5G technology enhancement consists in the em-

ployment and use of massive MIMO, beamforming, and mmWave directional transmissions.

The mmWave frequency band exploitation yields a two-fold advantage, which is the large

available bandwidth and the possibility to pack a large number of antenna elements even

in small spaces (e.g., in a smartphone) [123]. Thanks to the wide bandwidth transmission,

the former advantage makes it possible to enhance multipath robustness and time resolu-

tion performance of, e.g., Observed/Uplink Time Difference of Arrival (OTDOA/UTDOA)

localization approaches [125,126].

Downlink OTDOA is assisted by UE, which means that UE receives downlink signals from

the serving cell and multiple neighbors. Then, the UE determines the time difference between

serving and neighbor cells to conclude on the position. Hence, it is a handset or UE-based

method, where UE is responsible for measuring time difference, and it requires a specific

implementation at the UE side. Alternatively, UTDOA is a network-based location estima-

tion method, and it does not require any UE interaction for position determination [127].

Here, the uplink transmissions from UE are received by highly sensitive receivers, which will

determine the time differences of arrival and, hence, UE position. The latter advantage facil-

itates single-anchor methods offering cm-level positioning accuracy, thereby addressing the

bottleneck in indoor localization, which is a redundant ad-hoc infrastructure deployment.

From the application perspective, cellular technologies have been utilized for rough

positioning for decades (e.g., second-generation mobile telecommunications (2G), third-

generation mobile telecommunications (3G), fourth-generation mobile telecommunications

(4G)) for those cases where accuracy is less important. Such a positioning relies on the

existing communication infrastructure and, hence, does not require dedicated deployments

and significant maintenance costs. However, none of these previous cellular generations can

meet future networks’ positioning requirements (see Table 4.1). Conversely, 5G NR systems

support several novel features, such as D2D communication and network densification, high

carrier frequencies and large antenna arrays, large bandwidths, that make them favorable

for the positioning of sub-meter accuracy. This means that 5G NR can provide positioning

services with accuracy exceeding GNSS with no additional cost [128,129].

4.1.3 Positioning methods

There are multiple dimensions to be considered when developing a positioning system. In

this subsection, we overview the existing localization method classifications. For example,

Global Positioning System (GPS) can be included in such categories as distributed, absolute,
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and non-cooperative localization, whereas passive RFID tags coupled with RFID readers

correspond to centralized, relative, and non-cooperative localization approaches.

Indoor Localization vs. Outdoor Localization

First and foremost, positioning can be divided into two types, depending on the positioning

environment: outdoor and indoor. To this end, we also specify infrastructure-based and

infrastructure-less indoor positioning systems as follows.

Indoor positioning is referred to as the last kilometer problem since the GNSS cannot

work indoors [130]. Infrastructure-based Indoor Positioning System (IIPS) is usually referred

to as those systems that need the environment to be sensed to have indoor positioning

(e.g., deploying BLE beacons, ultrasound receivers, etc.) Alternatively, Infrastructure-less

Indoor Positioning is known as device-based positioning, wherein no additional infrastructure

is required to operate, e.g., an indoor positioning system based on inertial measurements

or magnetic field [131]. Outdoor positioning capabilities require regional or even global

coverage compared to indoor environments, which are limited in size to rooms and buildings.

Indirect Localization vs. Direct Localization

Localization methods can be divided into two categories depending on the process of location

estimation. It can be performed without relying on any intermediate parameters, i.e., directly

from the received signal (direct) or relying on the first estimated intermediate parameters

(indirect).

Multiple channel intermediate parameters’ measurements of the multipath environment,

e.g., RSS, Angle Of Arrival (AOA), Time Of Arrival (TOA), Angle Of Departure (AOD),

Time Difference Of Arrival (TDOA), phase, or combinations of them, are used for the posi-

tioning algorithms depending on the radio technology [132,133]. These methods are referred

to as the indirect localization (also known as two-step localization) where first the interme-

diate parameters are estimated, and then the user’s position is obtained by using geometrical

or triangulation/multilateration manipulations [134]. The measurement phase is affected by

uncertainty due to environmental changes, such as channel noise, interference, multipath,

blockage, clock drifts, among others [135], that influence positioning estimates differently

depending on the chosen underlying technology [135]. For example, the low penetration ca-

pabilities of the GPS signal does not allow consumer-grade GPS receivers to make reliable

measurements, leading to inadequate position information [135]. Localization performance

also varies depending on the specific algorithm used in the localization-update phase. An ex-

ample of indirect localization is Uplink TDOA (UTDOA) used in LTE systems. Here, first,

sensors estimate TDOA (UTDOA) from all incoming signals. Second, they transmit such

estimates to a central node that determines the sources’ position by multilateration.

Multiple direct localization methods, where the user’s location is determined directly

from the received signal, have been developed to combat the uncertainty caused by the
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environmental changes [134,136]. Here, contrary to the traditional two-step localization, the

location of the source is estimated directly from the data, without estimating intermediate

parameters, such as the AOAs of the LoS paths. Thus, they avoid location information

loss and have higher location accuracy. Direct localization requires that the signals from

multiple BSs, or a function of them, have to be obtained by a fusion center to perform the

user location estimation. For example, in [134], instead of performing triangulation with the

strongest signals, all received multipath components are processed by a fusion center that

determines the LoS directions, leading to an estimated position through triangulation.

Active Localization vs. Passive Localization

Localization systems could be divided into active and passive systems depending on whether

the users have to carry the measurements on their devices such as smartphones, smart-

watches, etc. More specifically, for active localization systems (also known as device-based

active localization), users carry specific measuring devices [137]. It means that the entity

being detected and tracked carries the tag or any device attached. Alternatively, passive

localization (also known as device-free passive localization) aids the device to estimate its

location in the environment. This method provides the capability of tracking and localiz-

ing entities not carrying any devices nor participating actively in the localization process.

However, in real-life applications, the accuracy of passive localization is limited due to such

effects as the environmental noises, multipath, among others [138].

Centralized Localization vs. Distributed Localization vs. Decentralized

Localization schemes can be classified depending on the place where the computation is

performed [119]. According to this classification, distributed and decentralized localization

is sometimes referred to as self-localization, whereas centralized localization is also known as

remote localization. In centralized positioning, the central processor collects all location

and measurement data from the anchors to calculate unlocalized nodes’ positions jointly.

Moreover, centralized approaches are supposed to offer a more accurate location performance

since the information about the entire network is available in this case [139]. Inversely,

only local information exchange is required in distributed systems as the computation is

spread over the entire network [140]. The advantage of the distributed approach consists in

scalability and robustness to node failures. In decentralized positioning, there are different

devices connected to the network, and each device can perform positioning independent of

the other [141]. For example, scenarios such as a smartphone receiving signals from BSs,

from which it may infer a position estimate about its actual position fall in the decentralized

category.

The previous general classification leads to different computation paradigms for position-

ing that include Cloud Computing, Mobile Cloud Computing, Fog Computing, Mist/Things

Computing, and Edge Computing. However, the computation paradigm is not usually fully
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described when introducing a new regular positioning system. The main focus is the algo-

rithm description and assessment rather than its practical implementation, which can be

server-based or on-device. In contrast, for cooperative/collaborative systems, the trends sug-

gest that the decentralized approach is the most popular in the recent few years [131].

Absolute Localization vs. Relative Localization

Depending on the way the positioning systems provide location information, absolute and

relative localization methods can be defined. Absolute localization refers to localization

in a single predetermined coordinate system. The coordinate system is usually given by a

geographic coordinate system, such as latitude, longitude, and altitude in GPS localization

or implied in anchor locations [142]. Relative localization refers to the localization method

where the coordinate system may vary from node to node, e.g., in the case of one’s neighbors

or the local environment. Relative location without a given coordinate system is also known as

a relative map or a relative configuration [143]. An absolute or a relative position estimation

can be further specialized into a vertical and a horizontal position. The former term refers to

the position estimation on the vertical axis or altitude, whereas the letter means positioning

in a horizontal plane or two-dimensional (2D) reference [123].

Non-cooperative Localization vs. Cooperative Localization

The locations of uses can be determined either based on only the measurements between

MTs and BSs, i.e., without the internode measurements between MTs or by using the inter-

agent communication. In a non-cooperative approach, communication is established only

between agents and anchors (no inter-agent links). Thus, every agent has to communicate

with multiple anchors (BSs), demanding either long-range anchor transmissions or a high

density of anchors [144]. In cooperative localization, agents are no longer required to be

under the coverage of multiple anchors as inter-agent communication (though D2D) removes

the need for high anchor density and long-range anchor transmissions [135]. Here, long-range

BS transmissions are replaced with multi-hop communications among the densely located

MTs.

In cooperative localization, agents can obtain information from both anchors and other

agents within the communication range (see Fig. 4.1). Moreover, D2D links have higher

SNR and lower probability of the NLoS path. Hence, cooperative localization increases the

accuracy and extends the coverage compared to non-cooperative localization, which is the

focus of this section.

4.1.4 D2D-based Cooperative Positioning

In this subsection, we first provide a comparison of the technologies and standards used for

D2D communication. We then review the current trends in D2D-based cooperative position-

ing for both indoor and outdoor environments.
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Fig. 4.1. D2D-aided positioning illustration.

D2D Technologies Comparison

D2D communications help in disseminating users’ identification data, thereby facilitating di-

rect interaction between mutually close devices, which require respective discovery and iden-

tification. Further, collective content creation and exchange enable users located in proximity

to share and receive the desired content opportunistically. D2D-based interaction facilitates

nearby users to participate in collaborative activities and communicate with each other’s

devices, thus emphasizing socialization and leisure, among many other LBS [145].

D2D technologies may be classified into two general categories: sharing licensed cellular

spectrum or using dedicated resources. The former one tends to be limited by power and

spectrum management perspectives and by usage cost. In contrast, the latter one suffers from

uncontrolled interference and offers no QoS guarantees due to the random access behavior of,

e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.11 protocol stack. On the

contrary, Wi-Fi outperforms cellular technologies in data rates and energy efficiency and is

considered as the dominant solution for D2D connectivity, supporting wearable aggregation

nodes [145].

Hardware costs and power consumption profiles in WLAN and Bluetooth specifications

are more suitable for wearables. However, LTE and 5G road maps provide a gigabit-per-

second experience, although some wearable devices may not be able to entirely derive the

benefit of LTE and 5G due to potential cost and hardware complexity [146,147].

A practical protocol for supporting D2D communications in cellular networks by jointly

using Wi-Fi Direct and LTE is proposed in [148]. Here, the communication between the

cluster head and cluster clients is performed over Wi-Fi Direct. Proposed D2D architecture

shows good performance in terms of delay and traffic load to be supported by D2D connec-

tivity, and the scheduler minimizes LTE packet delays, which leaves room for relaxed Wi-Fi

operations at reasonable transmission rates.

Most recently, authors in [101] proved that the best option for cooperative data delivery

in terms of energy consumption is to select a relay and perform D2D transmission over LTE.

More specifically, the power consumption analysis from both the infrastructure and user

device perspectives conducted in [101] indicates that the minimization of active interfaces

and sending the data with the best possible data rate is required to save energy consumption.

Since Wi-Fi is a good option only for high data rate transmissions, if there is no need for that,
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communicating devices should keep only the LTE interface active to save power. Similarly,

in [149], authors advocate the use of LTE sidelink transmissions to address mission-critical

requirements and target new broadband public safety applications.

It is important to mention that, for example, for scenarios and applications such as

emergency management (i.e., rescue and critical applications), multiple standards are re-

quired [150]. For instance, low-power Wireless Personal Area Network (WPAN) standards

such as IEEE 802.15.6 are more suitable for on-body communication, they support a variety

of real-time health monitoring and consumer electronics applications. However, these stan-

dards are not designed for body-to-body communication. For that case, the use of low-power

WPAN IEEE 802.15.4 (Zigbee), Wi-Fi, 4G/LTE D2D is required, which can effectively ex-

tend the network connectivity and coverage. Further, for off-body communication, one of

the end-devices should communicate through cellular networks or infrastructure-based net-

works (e.g., 4G/LTE). To summarize, even if existing devices can already support multiple

standards, existing protocol stacks are not smart enough to provide connectivity or routing

between different network technologies, which poses one of the critical challenges for future

wireless networks [150].

5G wireless communication systems utilizes NR sidelink for D2D communication [97]. The

central scenario of Release 16 NR sidelink transmissions targets V2X, and NR services are

no longer limited to the Cooperative Awareness Message (CAM) and the Decentralized En-

vironmental Notification Message (DENM) compared to LTE. In addition, by using a wider

bandwidth, flexible massive antenna systems, and beamforming, NR-V2X will provide more

precise timing and accurate measurement of equivalent signal techniques in LTE-V2X [152].

The new NR sidelink use cases require low-latency, high-reliability, and high-throughput

transmissions, as well as a high connection density. To this end, four new designs are intro-

duced to NR sidelink: (i) in addition to broadcast, also unicast and multicast are supported;

(ii) the performance in terms of latency is improved by grant-free transmissions adopted in

NR Uplink (UL) transmissions; (iii) it improves the channel sensing and resource allocation

procedures to mitigate collisions among different sidelink transmissions initiated by various

MTs; (iv) high connection density is achieved by supporting congestion control and QoS

management. For more detail, interested readers are referred to [151]. We summarize our

main findings on D2D technology comparison in Table 4.2.

Review of D2D-based Cooperative Positioning

As discussed above, 5G supports D2D communication via sidelink which can be controlled

by the BS. The UL, Downlink (DL), and sidelink communications can operate over two fre-

quency bands: sub-6 GHz and above 24 GHz (known as mmWave band). Whereas much effort

has been done in the sub-6 GHz band [153], mmWave frequency spectrum is of special inter-

est for localization [128, 154] thanks to the large available bandwidth, sparse channels, and

large antenna arrays. In [155], authors investigate a real-time positioning based on mmWave
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Table 4.2. D2D Technologies Comparison

Work Technology Advantages / Features Device Type Application

[101,

145,

148]

Wi-Fi Wi-Fi provides higher data rates and energy

efficiency (due to lower transmission delay)

compared to cellular technologies. The devices

are recommended to reduce the number of ac-

tive radio interfaces and transmit with the

best possible rates to minimize total power

consumption. Thus, Wi-Fi is used only for

high data rate services and is suitable for

body-to-body communications

Wearables Collective activi-

ties, socialization

and leisure, vari-

ous LBS

[101,

149,

150]

LTE If high data rates are not required, devices

should keep only the LTE interface active to

save power. 4G/LTE D2D are required for

wearable off-body and body-to-body commu-

nication to extend the network connectivity

IoT, wearables Vary

[150] IEEE

802.15.6

Low-power WPAN standards such as IEEE

802.15.6 is more suitable for on-body commu-

nication

Wearables Public safety and

critical applica-

tions

[150] IEEE

802.15.4

For body-to-body communication, using IEEE

802.15.4 D2D is required, which can extend

the network connectivity in an effective man-

ner

Wearables Public safety and

critical applica-

tions

[146] Bluetooth Bluetooth (and Wi-Fi) technologies are more

suitable for wearables in terms of hardware

cost and power consumption. Depending on

the wearable device type, devices may not be

able to take full advantage of LTE and 5G due

to the cost and hardware complexity

Wearables Vary

[151] 5G NR NR sidelink ensures low-latency, high-

reliability, and high-throughput transmis-

sions, as well as high connection density

services

Mostly vehicles Advanced and

remote driving,

platooning, sen-

sors

D2D links, which will ensure reliable communication in 5G cellular networks. Authors state

that mmWave signals can provide up to centimeter-level accuracy. Similarly, in [156], authors

examine vehicle positioning using 5G D2D mmWave signals. Obviously, what clearly emerges

is that if all MTs’ positions are unknown, the absolute position will not be obtained, which

means that D2D itself can provide only relative measurements. Hence, the main interest shifts

towards integrated positioning systems.

Indoor Positioning

We first focus on the indoor environment. Recall that cooperative positioning is of ex-

treme importance for indoor scenarios where GPS signals are usually weak to provide suffi-

cient position information. In [157], a cooperative localization scheme for WLAN fingerprint-

ing is proposed to improve the accuracy of fingerprint-based location estimations affected by

random environmental changes. More precisely, instead of regenerating the radio map (typi-

cal for fingerprinting), users cooperate by exchanging both their real-time RSS measurements



92 4 Cooperative Positioning

Table 4.3. The State-of-the-art on D2D-based Indoor Positioning

Work Methods Approach D2D ap-

proach

Accuracy

[119] IoT and 5G localiza-

tion and D2D

In IoT and 5G localization, the value of

inter-device measurements helps to sur-

pass current accuracy and coverage lev-

els by at least an order of magnitude

Pseudo-range

estimates

sub-meter accu-

racy

[120] RF Fingerprinting

and D2D

Verification of the fingerprint position-

ing response by TOA-based distance

transmitted over D2D to nearby devices

to rectify the erroneous response of BS

Pseudo-range

estimates

5.34m (static)

5.59m (dynamic)

[135] UWB and D2D The cooperation between nodes is used

to increase the accuracy and robustness

of UWB systems

Pseudo-range

estimates

accy. improve-

ment against

non-coop.

[157] WLAN Fingerprint-

ing and D2D

Iterative update of the initial estimated

location information from WLAN finger-

printing by exchanging both real-time

RSS measurements and location estima-

tions between MTs

Location in-

formation

exchange

accy. improve-

ment against

non-coop.

[158] Dead reckoning and

D2D (Wi-Fi ranging

exchange)

Cooperative positioning information ex-

change among multiple pedestrians to

reduce the accumulative error of dead

reckoning carried out with only the sen-

sors and Wi-Fi in smartphones

Pseudo-range

estimates

less than 5m

[159] Wi-Fi Fingerprint-

ing and D2D

Collaborative D2D-based method is used

to eliminate redundant fingerprints from

a crowd-sourced database

Location in-

formation

exchange

less than 25m

and 50m

[160] RSS of Wi-Fi and

D2D over Bluetooth

RSS of Wi-Fi contains information

about users’ relative distances, and

Bluetooth signals are exchanged between

them to improve the performance of ex-

isting indoor positioning methods

Pseudo-range

estimates

1.34m (average),

6.68m (maxi-

mum)

[54,161] LTE (OTDOA) and

D2D

OTDOA positioning is enhanced with

D2D cooperative techniques

Pseudo-range

estimates

accy. improve-

ment against

non-coop.

and their location estimations and processing them with the aid of the Self-Organizing Map

structure. Allowing collaboration among users increases the accuracy of the non-cooperative

fingerprinting approach, and the performance enhancement is higher for denser user popu-

lations.

In [158], authors exploit cooperative positioning among multiple pedestrians to reduce

the accumulative error of dead reckoning carried out only by means of the smartphone low-

cost sensors (infrastructure-less system) and Wi-Fi interface by exchanging RSS measure-

ments. Here, the participants communicate and measure the range (Wi-Fi ranging) between

each other and then correct each of their positions to make them consistent with the range

information. The results demonstrate an accuracy comparable to GPS when a high num-

ber of pedestrians cooperate in collaborative positioning. The proposed cooperative scheme

solves the typical problem of the indoor positioning system, which is the cost (as positioning
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is performed on a device) and accuracy (improved by means of D2D technology). Similarly,

in [135], cooperation between nodes in UWB system results in high accuracy and robustness.

Table 4.4. The State-of-the-art on D2D-based Outdoor Positioning

Work Methods Approach D2D ap-

proach

Accuracy

[118] 5G and D2D The inter-MT communications provide

relative location information between

the MTs that serve as a supplement to

the BS–MT links

Pseudo-range

estimates

1m and below

(suggested)

[154] 5G and D2D The exchange of data between MTs and

the network or between the MTs in 5G

to increase the accuracy of, e.g., TDOA-

based method

Pseudo-range

estimates

sub-meter accu-

racy

[128,162] 5G mmWave and

D2D

D2D is used for disseminating and com-

puting location information between ve-

hicles

Pseudo-range

estimates

accy. improve-

ment against

non-coop.

[163]
Radio Fre-

quency (RF)

fingerprinting

and D2D

MTs communicates not only with BS to

capture a series of RF measurements but

also with other MTs by leveraging the

D2D communication protocol

Pseudo-range

estimates

accy. improve-

ment against

non-coop.

[164] GNSS and 5G D2D Any-time and any-where seamless posi-

tioning by using the integrated method-

ology of GNSS and D2D measurements

Pseudo-range

estimates

56.2% better

than for non-

cooperative

[165] Multi-Kalman

Filter (MKF) ap-

proach and D2D

The combination of the interacting mul-

tiple model estimations with the Multi-

Kalman Filter (MKF) approach based

on GPS and Geographic Information

System (GIS) big data

Pseudo-range

estimates

-

A collaborative method based on D2D communication to enhance the indoor positioning

accuracy using only direct communication to nearby devices and fingerprinting is introduced

in [120]. The main idea behind this approach consists in verifying the fingerprinting position-

ing by TOA-based distance passed through the D2D link to rectify the erroneous response

of BS. Communication with other devices is repeated several times within a short period

to increase the confidence level in the verification process. However, power consumption re-

strictions have not been considered, while there is a growing interest in developing more

energy-efficient algorithms and protocols to support Green Communications, thereby reduc-

ing the environmental and economic impact. Likewise, the benefits of direct interconnection

between nodes in terms of localization accuracy (sub-meter) and coverage improvement for

5G IoT applications are demonstrated in [119].

In [159], a collaborative D2D-based method is used to remove the redundancy from the

crowd-sourced Wi-Fi fingerprint database. Moreover, D2D is also used to provide privacy

to the users by breaking the links between them and the data. Similarly to [158], authors
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deploy a localization system on devices rather than on infrastructure, thereby solving the

problem of the infrastructure cost. Yet, as we see from Table 4.3, the accuracy of Wi-Fi

fingerprints localization still has room for improvement. In [160], a framework for improving

the performance of existing indoor positioning methods for smartphones with the help of

information exchange between users is designed. More precisely, the RSS of Wi-Fi contains

information about users’ relative distances, and Bluetooth signals are exchanged among them

for the purpose of assessing the probability distribution functions of users’ states. The average

error of the position estimates of the proposed system is 1.3357m, which can be considered

as good performance for indoor localization performed on the device. The accuracy of the

cooperative D2D-based localization scheme in [160] significantly outperforms the solutions

proposed in the literature for low-cost indoor infrastructure-less positioning [158,159].

As discussed in [54, 161], LTE cooperative localization technique, wherein the MT com-

municates with both eNodeBs2 (OTDOA positioning method supported by 3GPP) and other

MTs in proximity, can significantly improve the localizability in the network and enhance

the accuracy which is highly beneficial to some applications, e.g., E911. It is demonstrated

that cooperative localization is undoubtedly able to overcome problems of non-cooperative

positioning (e.g., bad geometry, etc.) and, by increasing the number of collaborators, signif-

icantly improve localization accuracy. Note that the synchronization problem between MTs

that may appear in distributed cooperative localization systems and cause high accuracy

error rate can be handled by inband D2D (that is, LTE sidelink) communication through

the primary sidelink synchronization signal (for those MTs that are under the eNodeBs

coverage). However, synchronization is a challenging problem when MTs are out-of-network

coverage.

Outdoor Positioning

Similarly to the indoor environment, D2D communications can enable performing coop-

erative localization in cellular networks, where the BS–MT links are supplemented with the

inter-MT links that provide relative location information between the MTs [118].

In [154], authors investigate D2D communication capabilities to empower cooperative

positioning in 5G for high-density scenarios, which have the potential to enable centimeter-

level accuracy positioning estimates. More specifically, MTs receive and exploit signals from

other MTs in proximity. The pseudo-range estimates (e.g., TDOA) between MTs are then

used to increase the positioning accuracy. Authors demonstrate that at densities greater than

1,100 MTs per square kilometer, sub-meter positioning accuracy can be provided with the

outage probability converging to zero.

In [163], a cooperative localization technique using RF Pattern Matching for LTE systems

is proposed, wherein, by leveraging the D2D communication protocol, the MTs communicate

with both the BS to capture a series of RF measurements and other MTs. Simulation results

2 E-UTRAN Node B, also known as Evolved Node B (abbreviated as eNodeB or eNB), is

an LTE BS.
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of the proposed cooperative algorithm testify to a significant improvement of the positioning

accuracy in cellular LTE networks.

In [164], authors focus on the integrated methodology of GNSS and D2D measurements

in 5G communication systems to achieve a high-level accuracy. In addition, authors state

that the high-dense property of 5G networks also eases the process of obtaining sufficient

D2D measurements to achieve any-time ubiquitous positioning as D2D benefits from the

high density of connected MT. The positioning accuracy of GNSS system is improved up to

56.2% compared to the non-cooperative approach.

The collaboration among the communication, signal processing, and control sub-systems

in ITS systems is considered in [162], while [128], with reference to ITS, discusses the key

characteristics of 5G mmWave positioning for vehicular networking that can benefit from

5G technologies, such as D2D. Moreover, even in the absence of reference stations, D2D

cooperative localization allows for relative positioning.

In [165], authors investigate content distribution problems in D2D-based cooperative

vehicular networks. The same authors propose the algorithm to achieve dependable content

distribution through highly dynamic and unreliable D2D-Vehicle-to-Vehicle (V2V) links by

combining big data-based vehicle trajectory prediction with coalition formation game-based

resource allocation.

By studying Table 4.3 and Table 4.4, one can learn that D2D-aided cooperative posi-

tioning provides increased accuracy compared to non-cooperative methods. It is important

to emphasize that D2D also helps extend the coverage since it allows for relative position

estimation, even in the absence of reference stations. Further, according to Table 4.3 and

Table 4.4, 5G mobile networks have enhanced positioning capabilities in comparison with

previous generations and, with the help of D2D-aided cellular positioning, can ensure sub-

meter accuracy needed by 5G applications and have the potential to enable centimeter-level

positioning accuracy.

We note that D2D provides two advantages for positioning accuracy improvement. First,

the direct exchange of necessary data between MTs can be performed. In this case, both

common physical layer estimates (to speed up the local decisions), as well as position in-

formation, are exchanged over D2D links to enhance the accuracy of the localization system.

Such information, including uncertainties of estimates, is relevant to improve the convergence

time of estimation processes in the MT. Second, with the implementation of D2D commu-

nication capabilities, MTs are inherently receiving signals from each other. These numerous

links contain the additional signal observations and, hence, can be used to determine the

pseudo-range estimates between MTs.

Analyzing Table 4.3 and Table 4.4, one can deduce that the cooperative positioning

approach, where additional pseudo-range observations from D2D links are available, is more

commonly used by the research community. With this principle, it is possible to estimate

distances between MTs in the form of pseudo ranges that come on top of MTs-BSs ranging

and are used in today’s mobile communications systems. Thereby, seamless positioning at
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a sufficient accuracy level can be achieved. In the case of location information exchange,

benefits are in terms of improvement in the location process convergence time. In any case,

cooperative D2D-aided positioning in 5G requires the exchange of data between the MT or

between MTs and the network, which can be achieved by an appropriate position information

exchange protocol.

4.1.5 Lessons Learned

This subsection summarizes the main lessons learned while exploring the existing research

on D2D-based cooperative positioning. In summary, we have learned that:

1. Ultra-dense network deployments may pave the way to provide accurate

collaborative positioning. D2D communication between mobile devices together with a

high density of small cells in 5G NR networks paves the way for cooperative positioning

applications. Moreover, sophisticated resource allocation between users can improve local-

ization performance, as in [166]. Thus, cooperative D2D-aided positioning in ultra-dense 5G

networks is foreseen to provide continuous high-level accuracy positioning estimations.

2. There is a lack of efficient protocols for cooperative positioning, which

needs to be improved. Compared to previous generations of mobile networks, in the up-

coming commercial 5G deployments, significantly higher positioning accuracy is anticipated.

This is especially due to, among others, the capability of D2D communication to enable

cooperative positioning. Cooperative positioning protocols could exploit the high density of

asynchronous and synchronous nodes in future heterogeneous networks independently of the

location method. Although preliminary studies have been launched within D2D communica-

tions, the exchange of location information among mobile devices, small cells, and BSs needs

to be improved to enable the deployment of cooperative positioning techniques within the

whole network. Thus, the standard should contain a cooperative protocol within the network

elements to improve location information sharing for both communication and positioning

purposes. Moreover, recent results in this research direction have already demonstrated the

potential for centimeter-level localization accuracy.

3. Cooperative positioning may become complex as the number of collabora-

tors/actors increases. While the positioning accuracy becomes higher when the number

of collaborators grows, the complexity also increases. For example, in a fully connected mesh

network, the number of links established among MTs is Nmt(Nmt − 1) that grows quadrati-

cally with a number of MTs Nmt. Therefore, the performance-complexity trade-off is a key

issue that still has to be investigated by the research community. Moreover, when the number

of possible collaborators exceeds the number of needed collaborators to perform the accu-

rate positioning, the procedure for collaborators selection has to be established. For example,

random selection can be determined.

4. There is a trade-off between energy consumption and high transmission rates/low la-

tency. From an energy consumption perspective, minimizing the active interfaces and sending
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data at the best possible data rate will bring the lowest energy usage on the MT side. Thus,

for D2D transmission, MTs should keep only the cellular interface active to save energy

unless there is a need for very high data rate transmissions, which depends on the applica-

tion. However, high transmission rates guarantee low latency services. Therefore, finding an

optimal power consumption vs. latency trade-off presents itself as an important research di-

rection, especially for high-accuracy positioning. In addition, different from previous cellular

technology generations, 5G NR is able to meet the future networks’ positioning requirements

of less than one-meter accuracy.

5. D2D technology reduces location estimation error under NLoS environ-

ments. The localization accuracy sharply declines once the receiver enters NLoS envi-

ronment. Cooperative localization also combats this problem, increases the accuracy, and

extends the coverage compared to non-cooperative localization. Moreover, it can provide

resilient relative localization estimates even when the network infrastructure is not available.

4.2 A Theoretical Model for Cooperative RSSI-based

Localization with D2D versus RIS

4.2.1 Motivation

While the 5G cellular system is spreading around the world, researchers are beginning to work

on the 6G mobile communication networks [167, 168]. 6G is expected to provide intelligent

and ubiquitous wireless connectivity over 3D network coverage at Terabits per second data

rates and sub-millisecond latency. Therefore, acquiring accurate location information from

MTs is becoming increasingly crucial for achieving the mentioned objectives. And this is

not only true for location-based services but also for improving wireless communication

performance in various ways, including channel estimation, beam alignment, medium access

control, routing, and network optimization [169,170]. In this regard, for accurate localization

and sensing systems, we can expect localization of end devices using 5G/6G technology to

exploit D2D [171] and RIS cooperative techniques [172].

As detailed in section 4.1, cooperative localization is a promising technology that offers

additional information for positioning by exploiting cooperative links between multiple MTs.

In D2D-aided cooperative localization, D2D links loose the requirements for all MTs to be

connected to any of the available BSs, allowing multi-hop communications among densely

located MTs to replace long-range BS-MT communications. Cooperative localization can

provide more accurate positioning and enhanced coverage than noncooperative localization,

thanks to the D2D links that have better SNR due to operation over short distances and a

lower probability of blocked LoS [118].

Indeed, the NLoS problem is one of the most challenging problems for 6G, which can

drastically reduce localization accuracy. While very high carrier frequency (e.g., mmWave

and Terahertz (THz)) and large antenna arrays aim at providing outstanding opportunities
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for accurate wireless localization, millimeter-scale wavelength usage results in severe path

loss, primarily in NLoS scenarios. Hence, the blockage is a major obstacle to the widespread

use of accurate wireless localization systems operating in the mmWave and THz ranges [173].

RIS, known as an energy- and cost-efficient technology, can be used to establish a LoS link

between the transmitter and the receiver even in the presence of obstructions or when the

received power from the direct path does not allow for a reliable connection [174]. Thus,

RISs are regarded as one of the foremost technologies capable of controlling the physical

propagation environment wherein they are embedded by passively reflecting radio waves

in desired directions and actively sensing this environment in both receive and transmit

directions [175].

RIS as a reflector can work in two ways: (i) as part of the passive environment, operating

like any other scatterer or reflector, and (ii) as part of the infrastructure, acting as a global

reference or anchor point [176]. The potential of RIS for localization has received only limited

coverage in the literature [176]. A multi-user RIS-enabled localization problem is studied

in [175], where the users’ position in 3D space is estimated by calculating the TOA of the

LoS and NLoS paths at multiple receivers. In [177], RIS-aided mmWave MIMO systems for

joint positioning and communication. Conversely, in [178], RIS is exploited as a means for

blockage mitigation and a channel state information acquisition for a RIS-aided mmWave

system is performed via 3D positioning.

In general, RIS technology provides many technological advantages over existing main-

stream technologies [179]. However, the central question that can stimulate the practical RIS

development of “what is a convincing use case for RIS?” remains unanswered [180]. Coverage

expansion is one possibility, but traditional half-duplex relaying is a viable alternative, and

full-duplex regenerative relays are emerging [181]. RIS technology has a competitive disad-

vantage over wideband channels since each RIS element must be programmed identically

over the entire frequency range. Another possible use case is improved spatial multiplexing

and interference reduction, but it must compete with cell-free massive MIMO. Perhaps the

RIS technology will be most effective in the THz regions, where the development of coherent

transceivers is challenging, and the sparse channels make additional propagation paths im-

portant even if they are poor. So far, there is no evidence, only guesses [180]. In this section,

we strive to fill this gap.

Radio positioning aims to solve a set of nonlinear equations given a collection of location-

related data, such as TOA and AOA. As a result, the precision of the measurements used

directly impacts the ultimate positioning performance. The overall number of available mea-

surements in the system is determined by the number of participating target nodes, the

deployed anchor nodes, and their geometry, whereas the measurement accuracy is deter-

mined by signal characteristics and specific estimation methods.

Several location estimation schemes have been investigated so far that are characterized

by particular benefits and shortcomings. For example, TOA and TDOA require strict syn-

chronization, while the AOA method needs complicated receivers [182, 183]. These systems
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all suffer from complex receiver structures. Many research works still focus on the simple

trilateration that uses RSS to address this issue and simplify the receiver structure [184–186].

RSS is one of the most popular outdoor and indoor localization techniques based on signal

propagation measurement that may be converted into distance measurements subject to

suitable path loss models.

In this section, we study cooperative RSS-based localization using D2D and RIS tech-

nologies to increase the localization accuracy in cellular systems by offering a high probability

of LoS links. Although much effort has been devoted to evaluating the performance of D2D

and RIS-assisted localization systems separately, a comparison of these technologies from a

localization perspective and the synergies resulting from their rendezvous have not been suf-

ficiently investigated despite the fact that they may produce a new perspective for research

and industrial communities. This serves as a motivation for this study.

4.2.2 Cellular BS-MT and Relay Model

In this subsection, we introduce D2D- and RIS-aided localization models based on RSS

ranging while considering a general path loss model. Notations used throughout this chapter

are summarized in Table 4.5.

Assumption 1. We consider an environment that is not friendly for localization pur-

poses (scattered deployment of beacons). Therefore, cooperation among peers can improve

accuracy.

Assumption 2. One user has no access to the localization system. Here, he can estimate

the position based on information received from peers/RIS as a part of the infrastructure.

D2D-aided Localization Using Power Measurements

The purpose of localization is to find the 3D coordinates of specific targets. However, a

necessary condition for positioning is that there exist at least four beacon nodes in wire-

less communication networks. The positioning algorithm typically depends on range mea-

surements [187]. Generally, four ranging techniques are utilized, such as RSS, TOA, AOA,

TDOA [188], frequency of arrival (FOA), and frequency difference of arrival (FDOA).

Most commonly, positioning-related measurements can be divided into four classes:

• Time-based (TOA, TDOA, round-trip time);

• Angle-based (AOA, angle of departure);

• Power-based (RSS, backscattered power) using path loss models;

• Frequency-based ( FOA, and FDOA).

Given that RSS decreases according to the path loss models, a general model to convert

power measurements m into the distance can be written as in [189]

m = f(d) + n, hence, d ≈ f−1(m), (4.1)
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Table 4.5. Main Notation for Cooperative RSSI-based Localization

Communication

hU Height of MTs, m

hA Height of NR BS, m

hB Height of blockers, m

rB Radius of blockers, m

W Available bandwidth, Hz

WGHz Operating bandwidth in GHz

fc Carrier frequency, GHz

d2d Two-dimensional distance between MT and NR BS, m

d Three-dimensional distance between MT and NR BS, m

γ Signal-to-noise ratio, SNR, W

PT , PR Transmit/received power, W

GT , GR Transmit/received antenna array gains, dBi

N0 Power spectral density of noise, dBi/Hz

L(d) Path loss in linear scale

LdB(d) Path loss in decibel scale

A, ζ Propagation exponents

pB(d) Distance-dependent blockage probability

w Shadow fading, dB

σSF Standard deviation of noise

abs, amt Flat fading coefficients

pL LoS probability

Localization-specific parameters

m Measurements

n Noise

αi Constant term which takes into account the transmission power of the

node to be localized (propagation coefficient)

L(d0) Path loss at the reference distance d0

d0 Reference distance, m

(x, y, z) Unknown coordinates

(xi, yi, zi) Position coordinates of anchor i

d̂i Calculated distance from anchor i

RIS-specific parameters

dSR Distance from BS to RIS, m

dRD Distance from RIS to MT, m

L(dSR) Path loss of sub-path from BS to RIS

L(dRD) Path loss of sub-path from RIS to MT

Γk Reflection coefficient of the k-th RIS element

LTOT Total path loss of a RIS

where f(.) is the model function, d is the distance, n is noise, and m are measurements.

Among several channel models proposed for outdoor and indoor environments (Nak-

agami, Rayleigh, Ricean, etc [190]), the most popular one for RSS-based localization is the

simple lognormal shadowing path loss model, which expresses the following relationship be-

tween the received power and the transmitter-receiver distance [189,191,192]:

RSSI(dBm) = αi(dBm)− 10ζ log(d) + w, (4.2)
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Table 4.6. Propagation Models [6–8]

Environment PLE, ζ SF, σSF Ldb(d0), non-blocked Ldb(d0), blocked

3GPP Indoor, InH - Office LoS 1.73 3 32.4 + 20 log10 fc 47.4 + 20 log10 fc

3GPP Indoor, InH - Office NLoS 3.19 8.29 32.4 + 20 log10 fc 47.4 + 20 log10 fc

mmMAGIC UMi Street Canyon LoS 1.92 2 32.9 + 20.8 log10 fc 47.9 + 20.8 log10 fc

mmMAGIC UMi Street Canyon NLoS 4.5 7.82 31 + 20 log10 fc 46 + 20 log10 fc

5GCM UMi Open Square LoS 1.85 4.2 32.4 + 20 log10 fc 47.4 + 20 log10 fc

5GCM UMi Open Square NLoS 2.89 7.1 32.4 + 20 log10 fc 47.4 + 20 log10 fc

3GPP UMi Street Canyon LoS 2.1 4 32.4 + 20 log10 fc 32.4 + 20 log10 fc

3GPP UMi Street Canyon NLoS 3.19 7.82 32.4 + 20 log10 fc 32.4 + 20 log10 fc

3GPP UMa LoS 2.2 4 28 + 20 log10 fc 43 + 20 log10 fc

3GPP UMa NLoS 3 7.8 32.4 + 20 log10 fc 47.4 + 20 log10 fc

where αi is a constant term that takes into account the transmission power of the node to be

localized (propagation coefficient), d is the distance between the transmitter and receiver, ζ

is the Path Loss Exponent (PLE), and w is a zero-mean Gaussian random variable.

w[dB] ∼ N (0, σSF), (4.3)

where standard deviation σSF is specified in Table 4.6 for different propagation environments.

Denote αi = Pr(d0):

αi = PT +GT +GR − L(d0), (4.4)

where PT is the transmit power, GT and GR are transmit/receive antenna gains, and L(d0)

is the path loss at the reference distance d0 (usually d0 = 1m).

By using expression (4.2), we get that the distance between that MT and the BS i (or

between the MT and relay i) can be read as

d̂ = 10
αi−RSSIi+w

10ζ . (4.5)

The quadratic equation for 3D trilateration localization algorithm is as follows

d̂1=
√

(x1 − x)2+(y1 − y)2+(z1 − z)2, (4.6)

d̂2=
√

(x2 − x)2+(y2 − y)2+(z2 − z)2, (4.7)

d̂3=
√

(x3 − x)2+(y3 − y)2+(z3 − z)2, (4.8)

d̂4=
√

(x4 − x)2+(y4 − y)2+(z4 − z)2. (4.9)

where (x, y, z) is the estimated target MT coordinate, (xi, yi, zi) is the position of the anchors

and d̂i is the calculated distance from target MT to anchor i, i = 1, ..., 4. Since the equations

contain three unknowns and four equations, any three equations from (4.6)-(4.9) can be

used to calculate unknowns. In practical scenarios, d̂i might not be correct, hence, to have

an accurate value, we utilize four reference points to estimate the estimated target MT

coordinate.

We consider the human body and building blockage with corresponding LoS/NLoS states,

which presumes outdoor scenarios, such as city streets, squares, stadiums, etc. For example,
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similarly to [193], one may consider the scenario where the MT can be in one of the four

states: (LoS,blocked), (LoS,non-blocked), (NLoS,blocked), (NLoS,non-blocked). Here, NLoS

state means that buildings can also block the path between the BS and the MT, whereas the

blocked state assumes the human blockage of 15 dBm. We consider both large-size structures,

e.g., buildings on the radio path, and small-scale ones, such as the human body and foliage.

Then, the associated path loss measured in dB for the four states (LoS nBl.; LoS Bl.;

NLoS nBl; NLoS, Bl.) is given by

LdB(d) = LdB(d0) + 10ζ log10 d, (4.10)

where d is the 3D distance between the mmWave BS and the MT (and between the two

MTs), fc is the carrier frequency in GHz, PLE ζ and LdB(d0) depend on the propagation

environment and are gathered in Table 4.6.

The LoS probability for the 2D distance d2D between the NR BS and the MT (and

between the two MTs), pL, can be obtained by using propagation models as in [6–8] (see

Fig. 4.2), whereas the human blockage probability at the 3D distance d is derived in [42].
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Fig. 4.2. LoS probability as a function of 2D distance between the BS and the MT according

to 3GPP UMi Street Canyon model.

The path loss (4.10) in the linear scale can be represented by utilizing the model in the

form of L(d) = Adζ , where A and ζ are the propagation coefficients, and A = 10
Ldb(d0)

10 .

Therefore, the flat fading coefficients are

abs = 10−
LdB(d)+w

20 . (4.11)

For D2D links between MTs, we assume free space path loss without shadow fading [154],

being the flat fading coefficients:
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amt = 10−
LdB(d)

20 . (4.12)

RIS-aided Localization Using Power Measurements

Here, we assume the concept of Reflection Unit Set (RUS) proposed in [178] and calculated

d̂i for each RUSi, i = 1, ...4. Here, given four specific RUSs as anchor nodes with known

locations with coordinates are p1 = (0, 0, 0), p2 = (0, a, 0), p3 = (0, a, b) and p4 = (0, 0, b)

(both a and b are real values), the unknown position of the MT is (x, y, z) and the measured

distances between each anchor and the MT are di, respectively. Then, the actual distances

are defined as

d̂1=
√

x2+y2+z2, (4.13)

d̂2=
√

x2+(y − a)2+z2, (4.14)

d̂3=
√

x2+(y − a)2+(z − b)2, (4.15)

d̂4=
√

x2+y2+(z − b)2. (4.16)

The three equations can be solved to determine the three unknowns (x, y, z). However,

as discussed above, whether in terms of clock synchronization or antenna array, the four

equations should be strictly solved for accurate estimation.

In the case of power measurements of the cascaded BS-RIS-MT channel, distance can be

calculated as per (4.5) with

αi = PT +GT +GR + |Γi| − LTOT (d0), (4.17)

where Γi and LTOT are calculated as described below in this section. Then, the distance

away of the MT from the BS i is

d = 10
αi−RSSIi+w

10ζ − dBS,RIS, (4.18)

where RSSI is calculated as (4.21), dBS,RIS is the known distance between the BS and RIS.

Assumption 3 [194]. The RIS is composed of M × N sub-wavelength elements, each

with the size of sM × sN . Assume that Dm,n and dm, n are the distance between the BS

and the (m,n)-th RIS element, and the distance between the (m,n)-th RIS element and the

MT, respectively. The distances from different RIS elements to the BS are approximately

the same, i.e., Dm,n = dSR, where dSR is the distance between the BS (or, the same, source

(S)) and the center of the RIS.

The path loss models from Table 4.6 are utilized to express the path loss of sub-paths,

which are defined from S to RIS (L(dSR)) and from RIS to destination (D) (L(dRD)). Total

received power in watts at the D through the k-th RIS element is calculated under the plate

scattering paradigm [195] as

Prx,k =
PT |Γk|GTGR

L(dSR)L(dSR)
, (4.19)

where L(dSR and L(dRD) are path losses at distances dSR and dRD, respectively, Γk is the

reflection coefficient of the k-th RIS element, which is given by
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Γk = e−jφkGe
tG

e
rϵb, (4.20)

where φk is the phase difference induced by k-th RIS element, Ge
t is the gain of the RIS in

the direction of an incoming wave, Ge
r is the gain of RIS in the direction of a received wave

and ϵb is the efficiency of RIS, which is described as a ratio of power transmit signal power

by RIS to received signal power by RIS. It is assumed that RIS consists of passive elements

and ϵb = 1.

The total received power at the receiver including all RIS elements is expressed as:

PT,k =

(∑
k

√
PT |Γk|GTGR

L(dSR)L(dRD)
ejϕk

)2

, (4.21)

where ϕi represents the phase delay of the signal received through k-th RIS element.

Assumption 4 [196]. For simplicity, we assume that RIS-elements reflect signal with

unit-gain reflection coefficients (|Γk| = 1) and in such a way that all the signals coming

through different RIS elements are aligned in phase at the receiver (ϕk = φk).

Then, expression (4.21) becomes

Prx,k =

(∑
k

√
PTGTGR

L(dSR)L(dRD)

)2

. (4.22)

Therefore, the total path loss is given by

LTOT =

(∑
k

√
1

L(dSR)L(dRD)

)−2

. (4.23)

The SNR in the presence of a RIS, in this case, can be derived as

γ =
PTGTGR

N0WLTOT
, (4.24)

where N0 is the power spectral density of noise in the channel, W is the operating bandwidth

in Hz.

The data rate in presence of a RIS can be calculated according to the Shannon-Hartley

theorem:

D[Gbps] = WGHz log2(1 + γ), (4.25)

where γ is the SNR in linear scale, WGHz is the operating bandwidth in GHz.

4.2.3 Passive Positioning with RISs vs Relays

When analyzing the current studies on the comparison between RIS and D2D performance,

we focus on spectral efficiency, complexity, and energy efficiency, among other relevant met-

rics (see Table 4.7). First, it is worth highlighting the spectral efficiency gains of RIS (com-

pared to relays) when their size is sufficiently large as compared with the wavelength of the

radio waves [180,197,198].

Furthermore, a RIS naturally operates in a full-duplex mode without self-interference

or introducing thermal and addictive noise since nearly passive RISs cannot amplify or
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Table 4.7. RIS vs Relay

Advantage RIS Relay

Spectral efficiency [?,

180,197,198]

✓ (with large surface

area)

✓ ✓ (full duplex)

Hardware complexi-

ty/cost [180,198]

✓ (lower complexity) ×

Noise [?, 197,198] ✓ (not affected by

addicted noise, no self-

interference)

× (affected)

Energy efficiency [199] × (except when very high

rates are required)

✓

Signal range [180] × (reduced signal range

due to the lack of ampli-

fication)

✓

SNR (Fig. 4.3) × ✓

Power budget [198] ✓ × (power sharing be-

tween BS & relay)

Power consump-

tion [180,198]

✓ (use of printed meta-

material requires no am-

plifiers)

×

regenerate the signals. Therefore, they might achieve higher spectral efficiency than active

half-duplex relays.

Then, the unique advantage of RIS is that it reduces the hardware complexity (with

analog beamforming, no extra RF chains are needed for demodulation and modulation) at

the price of requiring a larger surface [180].

Differently, a system that switches between the Single-Input Single-Output (SISO) and

decode-and-forward relaying modes is preferable both in terms of minimizing the transmit

power and maximizing the energy efficiency, except when very high rates are required [199]. In

this case, when data rate exceeds 8.48 bit s−1 Hz−1, RIS is the best option in therm of energy

efficiency. However, another drawback of RIS is the reduced signal range [180] (meaning also

reduced SNR) due to the nearly passive nature and, hence, lack of amplification.

Thus, in Fig. 4.3, we show SNR as a function of the proportion of dSR distance to the

total dSR + dRD distance of 100m. We also present the relay SNR with the distance of

100m between devices for both blockages by large- and small-scale constructions (i.e., NLoS

non-blocked and LoS blocked). As one may observe, only RISs of large size can perform

comparably to the relays (when they are placed either close to the source –S– or to destination

–D–). It is important to note further that distances between relays are usually smaller than

100m, which means that the SNR between relays will be even higher.

Regarding the power budget, in relay-aided systems, it is usually assumed that the total

RF power is allocated between the transmitter and the relay to ensure a total power con-

straint. Conversely, in the ideal case, the total power reflected by a RIS is the same as the

total power of the impinging radio waves [198]. In addition, the use of printed meta-materials

requires no amplifiers, which is favorable for energy consumption [180,198]. Finally, RISs are
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Fig. 4.3. SNR comparison of RIS and relays.

semi-passive devices with low cost, which make them ideal to be mounted on surfaces as well

as moving objects [175].

In the following subsection, we aim to provide the localization performance accuracy of

RIS- and D2D-assisted localization systems.

4.2.4 Performance Assessment

In this subsection, we compare the performance of D2D- and RIS-cooperative localization

systems in terms of positioning accuracy, considering different scenarios (i.e., 3GPP UMi

Street Canyon for LoS and NLoS conditions) and deployments of devices as described below.

Note that we have chosen one path loss model only for the following reasons. First, we use

the same propagation model for the two technologies for a fair comparison. Then, applying

more models will lead to the same conclusions in a qualitative matter but varying in terms of

quantity. Thus, for the sake of brevity and without losing generality, we focus on the 3GPP

UMi Street Canyon and alter anchors’ positions.

Simulation Setup

For the cellular positioning, we assume the service area 100m×100m, where the four BSs

are fixed at the corners of the square (see Fig. 4.4). That is, the coordinates of the BSs are

(0, 0), (0, 100), (100, 100), and (100, 0). Similarly, in the case of RIS-aided positioning,

RISs are positioned close to the BSs so that it works effectively (with a BS-RIS distance of

≈ 10m) [196]. Thus, the chosen RISs coordinates are known and are (7.1, 7.1), (17.10, 92.9),

(92.9, 92.9), and (92.9, 7.1). We vary the locations of relays depending on the considered
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scenario (the three use cases are drawn in Fig. 4.4). Namely, D2D anchors (i) have the

same coordinates as RIS ones, (ii) uniformly distributed within the area of interest, and

(iii) uniformly distributed within the circle with radius 20m.In relay-aided systems, it is

usually assumed that the total RF power is allocated between the transmitter and the relay

to ensure a total power constraint. Moreover, by employing a FD relaying protocol, one

pays the cost of introducing high loop-back self-interference IS at the relay because of the

concurrent transmission and reception of signals.

Fig. 4.4. Visualisation of devices deployments: considered use cases.

To quantify the positioning error, we calculate the euclidean distance between the ground

truth position and the estimated position as it corresponds to the shortest distance between

two points without considering obstacles. We report the mean, median, standard deviation

as well as minimum, 75th, and 95th percentile of the positioning errors over M evaluation

points and rep repetition times. In addition, we also provide the Mean Squared Error (MSE)

(4.26) and the Root Mean Squared Error (RMSE) (4.27), as they penalize outlier positioning

errors. These metrics have been selected according to the ISO18305 standard [200] and [201].

Recall that the mean is the same as the average value, whereas the median is the mid-value

in the ordered data set (for illustration, see Fig. 4.5).

MSE =
1

M

M∑
k=1

(xk − x̂k)
2 + (yk − ŷk)

2, (4.26)

RMSE =

√√√√ 1

M

M∑
k=1

(xk − x̂k)2 + (yk − ŷk)2. (4.27)

where k stands for the k-th evaluation point, M is the number of evaluation points, (xk, yk)

is the real position, (x̂k, ŷk) is the position estimate.

In the performed simulations, we randomly distribute unknown coordinates (x, y) for

M = 30 evaluation points and measure the location positioning accuracy 1000 times. i.e., we

have run rep = 1000 simulations to deal with different random initializations. We use a loose

coupling approach for cooperative positioning, which consists in fusing positions obtained
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Fig. 4.5. Visualisation of median and mean on skewed and normal distributions.

from different technologies. The D2D-aided cellular position estimate corresponds to the

centroid from cellular and D2D positioning. That is, their mean x̂ and mean ŷ.

The organization of this subsection is as follows. We begin with investigating a simple

LoS scenario for UMi Street Canyon with a known PLE of ζ = 2.1 and σ = 4 for equal

placement of RISs and relays, random placement of relays, and random placement of relays

within 20m radius, respectively. Then, we investigate the impact of NLoS conditions on

D2D and cellular positioning for UMi Street Canyon with ζ = 3.19 and σ = 7.82, while RIS

technology preserves an assumption of LoS operation only. Then, we analyze the impact of

the number of RIS elements on positioning accuracy. Finally, we summarize all the results.

Table 4.8 provides the parameters for the performed simulations.

Table 4.8. Default Parameters

Parameter Value

Carrier frequency, fc 28GHz

Transmit power (RIS/BS), PT 20 dBm [111]

Operating bandwidth, BHz 100MHz

Transmit power (relay), PT /2 10 dBm

Noise power (receiver), N0 −174 + 10 log(B) + 10

Self-Interference, IS 10N0PT /2

Height of AP, hA 3m

Height of blocker, hB 1.7m

Height of UE, hU 1.5m

Blocker radius, rB 0.4m

BS antenna array 32×32

Number RIS elements, NRIS 1024 el

Environment UMi Street Canyon [6]

Number of evaluation points, M 30

Number of repetition times, rep 1000
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Equal Placement of RISs and Relays

By way of example, Fig. 4.6 illustrates the triangulation method, where pink and blue circles

represent real and estimated positions, respectively. In Fig. 4.7(a) and Table 4.9(a), we show

the results of the first evaluation campaign when RISs and relay devices have the same

locations (i.e., placed equidistantly from the point with unknown coordinates [198]). In a

relay system, a total power constraint is assumed. Note that in this particular scenario, no

technology dominates over the others for all considered metrics. For example, in Table 4.9(a),

the best value of each metric does not belong to the same (almost the same) configuration

as in the scenarios below (see discussion in subsections 4.2.4, 4.2.4, and 4.2.4). This might be

explained by the fact that since the devices and RISs are deployed at the same positions, the

communication happens equidistantly, and the channel quality is similar. However, the noise

in the systems is not correlated, which explains why positioning errors are independent.

Fig. 4.6. Visualisation of triangulation. Pink and blue circles are real and estimated posi-

tions.

Random Placement of Relays

We randomly deploy four D2D relays within the considered area of interest to participate

in D2D-aided localization, as shown in Fig. 4.4 with the caption “random D2D”. Other

parameters remain the same. Under this deployment option, as shown in Fig. 4.7(b) and

Table 4.9(b), D2D localization by itself outperforms the cellular and RIS-based ones. We also

note that depending on the noise in the system (a normal distribution with σSF = 4, which

is independent for all the technologies), the accuracy may vary to some extent. For example,

see RIS and Cellular positioning accuracy in Fig. 4.7(a) and Fig. 4.7(b). In Fig. 4.7(b),

RIS outruns the cellular positioning in terms of mean and standard deviation. Also, we

again notice that the combination of all three technologies with FD relaying provides an

improvement of cellular positioning by 24.9% in terms of mean error.
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(c) LoS, random placement of relays

within circle of 20m radius
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Fig. 4.7. CDF of individual error.
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Fig. 4.8. CDF of individual error, SNR for RIS with different number of antenna elements,

LoS, PLE=2.1, SF=4.

Random Placement of Relays Within 20m Radius

We continue by studying the performance of different localization configurations when D2D

relays are randomly distributed around the device with unknown coordinates within an area

with radius of 20m. Analyzing Fig. 4.7(c) and Table 4.9(c), one may notice a substantial
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Table 4.9. Individual errors, [m]

(a) LOS, PLE=2.1, SF=4. RISs and relays have same locations

Configuration min max mean median std 75thprc 95thprc MSE RMSE

Cellular 0.0176 1024.0 34.68 5.80 55.56 52.73 148.69 4290.3 65.50

D2D FD 0.0072 597.89 28.98 7.30 44.50 41.24 121.79 2820.6 53.10

D2D HD 0.0124 895.01 28.97 7.27 44.78 40.90 122.29 2844.2 53.33

RIS 0.02 756.46 34.94 10.36 51.93 49.33 140.35 3917.4 62.58

Cellular+D2D FD 0.020 511.73 29.89 15.57 35.58 46.00 101.35 2159.0 46.46

Cellular+D2D HD 0.0387 553.51 29.85 15.56 35.49 46.18 100.86 2151.0 46.37

Cellular+RIS 0.011 512.31 32.80 18.83 37.88 50.07 107.70 2510.7 50.10

Cell.+D2D FD+RIS 0.018 341.37 29.91 22.18 29.68 44.08 88.93 1775.8 42.14

Cell.+D2D HD+RIS 0.026 369.23 29.87 22.19 29.63 44.01 88.76 1770.1 42.07

(b) LOS, PLE=2.1, SF=4. D2D relays are uniformly distributed within 100m×100m

Configuration min max mean median std 75thprc 95thprc MSE RMSE

Cellular 0.012 633.62 34.65 5.85 55.55 52.26 150.23 4286.1 65.47

D2D FD 0.018 582.55 29.21 18.45 33.86 37.86 94.65 1999.7 44.72

D2D HD 0.032 444.76 29.47 18.70 33.54 38.44 95.46 1993.4 44.65

RIS 0.039 730.56 34.29 10.39 51.44 47.79 137.38 3821.1 61.82

Cellular+D2D FD 0.054 328.85 26.77 16.08 29.09 38.19 84.65 1563.0 39.53

Cellular+D2D HD 0.035 319.29 26.93 16.41 29.12 38.03 85.99 1573.3 39.66

Cellular+RIS 0.010 401.76 32.47 18.04 37.58 49.38 106.38 2466.2 49.66

Cell.+D2D FD+RIS 0.035 264.09 26.02 18.36 25.18 37.14 75.20 1310.6 36.20

Cell.+D2D HD+RIS 0.041 270.54 26.18 18.47 25.28 37.24 76.11 1324.6 36.40

(c) LOS, PLE=2.1, SF=4. D2D relays are uniformly distributed within circle with radius of 20m

Configuration min max mean median std 75thprc 95thprc MSE RMSE

Cellular 0.027 959.19 34.74 5.88 55.92 52.55 149.77 4333.6 65.83

D2D FD 0.000025 250.32 15.91 7.15 19.35 24.80 54.57 627.47 25.05

D2D HD 0.00017 340.85 16.10 7.38 19.61 25.07 54.83 643.84 25.37

RIS 0.0159 666.71 34.34 10.43 51.12 47.85 138.66 3792.6 61.58

Cellular+D2D FD 0.0255 477.32 21.77 11.66 27.09 30.30 76.12 1207.3 34.75

Cellular+D2D HD 0.0327 466.58 21.81 11.86 27.04 30.29 75.81 1207.1 34.74

Cellular+RIS 0.039 487.98 32.52 18.36 37.65 49.74 106.23 2475.3 49.75

Cell.+D2D FD+RIS 0.0123 327.66 23.39 15.42 24.41 33.69 71.59 1142.9 33.81

Cell.+D2D HD+RIS 0.0223 325.10 23.40 15.40 24.41 33.80 71.31 1143.4 33.81

(d) NLOS, PLE=3.19, SF=7.82. D2D relays are uniformly distributed within 100m×100m square

Configuration min max mean median std 75thprc 95thprc MSE RMSE

Cellular 0.0174 1056.4 47.52 6.85 80.25 70.66 200.65 8698.8 93.27

D2D FD 0.0236 1095.6 35.77 21.24 46.90 44.34 118.14 3478.9 58.98

D2D HD 0.0225 1472.6 35.96 21.28 47.45 44.62 120.34 3545.0 59.54

RIS 0.0074 571.01 34.75 10.35 51.03 49.03 140.99 3811.7 61.74

Cellular+D2D FD 0.1104 550.16 35.87 20.29 43.10 48.96 116.42 3145.2 56.08

Cellular+D2D HD 0.0415 736.62 36.00 20.79 43.14 49.62 116.45 3156.5 56.18

Cellular+RIS 0.0091 598.68 39.11 22.75 47.19 58.42 1129.59 3756.8 61.29

Cell.+D2D FD+RIS 0.0653 413.50 32.18 22.17 33.04 45.01 95.71 2127.0 46.12

Cell.+D2D HD+RIS 0.0204 504.34 32.29 22.18 33.07 45.56 94.69 2136.5 46.22

Cell.+D2D FD+RIS∗ 0.0135 357.33 18.87 6.79 28.82 20.83 80.63 1186.8 34.45

Cell.+D2D HD+RIS∗ 0.0135 357.33 18.97 6.80 28.97 20.95 81.08 1198.7 34.62
∗ means that for this configuration we use the median for position-level sensor fusion among the three technologies
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improvement in D2D localization positioning accuracy, which is explained by the fact that

D2D devices are located much closer to the node with unknown coordinates, while positions

of BSs and RISs are fixed (for illustration, see left part of Fig. 4.4). Moreover, we should

emphasize that, differently from the first two scenarios, in this case, pure D2D localization

has the highest accuracy level, outperforming even all possible combinations of technologies.

The reason is that D2D by itself reports approximately twice as better results compared to

cellular and RIS positioning schemes. Hence, in this case, the errors of other technologies can

only deteriorate D2D positioning. Alternatively, when all schemes reveal similar performance,

their errors could be balanced via the integration of all technologies (first two scenarios). In

addition, there is no significant difference between the two D2D schemes (i.e., Half-Duplex

(HD) and FD) at variance with the first two deployments due to the shortened distances

between MTs.

NLoS: Random Placement of Relays

We proceed by investigating the positioning precision using different technologies in the case

of the UMi Street Canyon NLoS scenario with PLE ζ = 3.19 and σ = 7.82, as shown in

Fig. 4.7(d) and Table 4.9(d). We note that RISs are always in LOS conditions since they are

designed to provide a virtual LOS path when a direct BS-UE path is blocked [196]. Here,

compared to LoS scenario in Fig. 4.7(b), one can observe that RIS-aided positioning outper-

forms relays in terms of accuracy due to the obstacle on their paths. Then, the configuration

“Cellular+D2D FD+RIS” again can balance the errors and provide the highest accuracy

among all considered configurations.

Further, in this use case, we introduced the median value for sensor fusion when dealing

with the combination of the three technologies. Note that since we work with location-level

fusion, there is no sense in applying median value in the case of the two estimated positions.

However, using the median for “Cellular+D2D FD+RIS” configuration helps to reduce the

localization mean error by 41.36%. Hence, we might conclude that the optimal sensor fusion

metric that minimizes the mean absolute error is the median of a set of estimated locations.

Note that, in this case, the median fusion approach works better because one out of three

localization methods fails (cellular positioning), and the two others show a similar level of

accuracy. The median operates well in the presence of outliers (e.g., in the case of cellular

positioning). In the case of mean sensor fusion, cellular positioning accuracy penalizes the

combination of the three methods.

Effects of the Number of RIS Elements

Finally, Fig. 4.8 illustrates the influence of the number of RIS elements on the localization

(Fig. 4.8(a)) and communication (Fig. 4.8(b)) performance. One may observe that even

though the number of antenna elements impacts the communication channel, i.e., SNR of

the link, it does not influence the positioning accuracy. The reason might be that the positions
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and the channel propagation model of RISs are known and do not change when varying the

number of RIS elements. In addition, as we noticed from previous simulation results, the

factor which genuinely impacts the positioning accuracy is the anchors’ locations.

Summary

By analyzing the results for all considered scenarios, we highlight that when one of the

compared technologies (i.e., D2D or RIS) significantly outperforms either the second one or

cellular positioning, the technology by itself provides the best accuracy (see Fig. 4.7(c) and

Table 4.9(c)). Alternatively, when the difference between D2D and RIS or D2D/RIS and

cellular positioning is not substantial, the combination of all three technologies reveals the

best configuration in terms of accuracy.

Previous works have identified noise as a primary source of positioning errors. In our

simulations, the white noise injected into simulated D2D, RIS, and cellular data is completely

independent (not cross-correlated), making the positioning errors also wholly independent.

Therefore, combining those three positioning methods gives us this feeling of better results.

However, so far, no experimental studies have demonstrated that noise present in D2D, RIS,

and cellular measurements is cross-correlated. Intuitively, those are measurements obtained

using different technologies, which might lead to non-cross-correlated noise. Nevertheless,

future experimental studies are required to confirm the correctness of our assumption, and, in

case it is not validated, the feeling of better results when combining all the technologies should

be neglected. Moreover, the location of the anchors affects the positioning performance. For

example, the highest accuracy yields the case when D2D relays are located in close proximity

to the MT with unknown coordinates (see Fig. 4.7(c) and Table 4.9(c)).

We have selected the use cases in such a way as to show a detailed picture of the perfor-

mance of the positioning methods compared in this work. From the study emerges that there

is only a slight improvement of cellular positioning when applying RIS for LoS environment.

In the case of NLoS, RIS substantially contributes to improving the cellular localization

accuracy, although still the three methods together work better. Then, in the case of D2D,

the location of devices defines the positioning accuracy, in both LoS and NLoS propaga-

tion environments. Last, the median appears as a parameter that significantly improves the

positioning error when applied to sensor fusion.

4.3 Conclusions

This chapter introduced the concept of cooperative positioning. More precisely, we first pro-

vided a survey on the state-of-the-art of D2D-aided cooperative positioning, which can be

determined as the information exchange among MTs intending to increase their localization

accuracy. In summary, 5G system positioning capabilities have been enhanced compared to

previous generations of communication networks, especially thanks to the D2D technology
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allowing to perform cooperative positioning in cellular systems. It has already been demon-

strated that in such systems, the positioning accuracy of 1m and below can be reached,

thereby satisfying 5G application requirements. More importantly, it has the visible poten-

tial to offer centimeter-level accuracy. Nevertheless, there still remain plenty of challenges

to be solved by the research community. Among them, the need for efficient protocols, posi-

tioning complexity, and green communication issues, among others, have to be addressed.

In the second section of this chapter, we provided the model for D2D- and RIS-aided cellu-

lar positioning systems. Then, we drew comparisons between them regarding communication

aspects and, more importantly, in terms of positioning precision. Throughout the simulation

campaign, we identified the use cases where one technology outperforms the other, as well

as presented the localization performance of the D2D-, RIS-assisted cellular localization. In

addition, we discussed the role of mean and median metrics in localization systems.

The conclusions of this study are as follows. First, RIS-aided localization serves as a

reasonable means when the distribution of D2D anchors is scarce. Alternately, relaying works

significantly better than RIS positioning due to the short distances. Moreover, we highlight

that when the improvement of RIS and D2D over cellular positioning is mediocre (less than

50%), the combination of RIS, D2D, and cellular technologies contributes to the lowest

positioning errors. Further, when one of the technologies shows a significant improvement

over cellular positioning, this technology by itself shows the best performance among all

configurations.

Moreover, the use of the median for position-level sensor fusion in case of the combination

of the locations obtained from the three methods helps to reduce the positioning error by

41% and serves as a practical approach to minimize the mean absolute error. Finally, we

note that the number of RIS reflective elements does not affect the positioning accuracy.

The published materials from this chapter can be found in [202].



5

Conclusions

We conclude this thesis with a summary of the main research outcomes and present future

research avenues. For more concise summaries, see Conclusions in each chapter of this thesis.

5.1 Summary

In this thesis, a set of mathematical frameworks, including optimal solutions, heuristics,

machine learning algorithms, and simulation tools, has been developed to characterize and

support multicast traffic delivery in mmWave directional systems. Then, sidelink relaying

concept was introduced to deal with the channel condition deterioration of dynamic multicast

systems and to ensure both mission-critical and ultra-reliable low-latency communications.

It is shown that sidelink relaying helps (i) improve the performance of mmWave multicast

directional systems in the presence of dynamic users/blockers and (ii) satisfy the strict

requirements of public safety and factory automation use cases.

Furthermore, cooperative positioning techniques for enhancing cellular positioning accu-

racy for 5G+ emerging applications that require not only improved communication char-

acteristics but also precise localization have been presented and analyzed. As showed the

results, cooperative positioning methods by means of D2D and RIS technologies improve the

accuracy and coverage of cellular networks. Further, we proposed a loose-coupling sensor fu-

sion based on a statistical metric to fuse the location information obtained through different

methods.

The study of this thesis has led to the following important conclusions:

• The capabilities of modern antenna arrays to utilize multiple beams simultaneously with

potentially varying half-power beamwidth and asymmetric power allocation pose the

problem of efficient multicast transmission in mmWave NR systems.

• With the optimal multicast scheduling strategies, both the system resource utilization

(network side) and perceived user experience (user side) can be improved.

• Sidelink relaying serves as a means to improve the multicast users’ performance in a

dynamic system by relaying the data between peers in proximity and surpassing base

stations.
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• NR sidelink is anticipated to become an essential technology to ensure both mission-

critical and ultra-reliable low-latency communications.

• D2D-aided cooperative positioning has the visible potential to offer centimeter-level ac-

curacy.

• RIS-aided cooperative localization serves as a reasonable means when the distribution

of D2D anchors is scarce. Alternatively, sidelink relaying works significantly better than

RIS positioning due to the short distances.

5.2 Future Research

In this section, we discuss the topics that are reserved for future work regarding (i) multi-

casting in mmWave, (ii) sidelink relaying standardization, and (iii) D2D-based cooperative

positioning aspects that have to be further studied.

5.2.1 mmWave Multicasting

An in-depth review of additional mechanisms that can be utilized to further improve multi-

casting performance in 5G/6G mmWave/sub-THz systems are discussed below.

Fair Coexistence Between Unicast and Multicast Traffic. Although there has

been a sizable amount of research on the provision of multicast services in broadband wireless

access networks, very few of these studies offer solutions for the simultaneous management of

unicast and multicast traffic. Due to the fact that these two types of traffic will undoubtedly

coexist in future mobile communication systems, it is imperative to understand their unique

properties to ensure fair resource allocation, as discussed in the following.

The specifics of the multicast service operation indirectly introduce priority for the mul-

ticast sessions, thereby severely decreasing the unicast session loss probability. As the offered

load for the multicast sessions increases, the system fills up nearly entirely with them, leaving

the unicast sessions with minimal remaining resources. One must actively prioritize the uni-

cast traffic using bandwidth reservation and connection admission control techniques, among

others, to balance out the session drop possibilities. Note that some work on fair multicast

and unicast traffic management has been done for LTE systems in [87] and in a review of

related studies thereof. However, solutions designed for omnidirectional LTE systems are not

suitable for 5G/6G mmWave/sub-THz systems based on directional transmissions. Hence,

there is an urgent need to fill this gap.

Reliability Improvements via New Mechanisms. Being inherently prone to outage

events due to blockage and micromobility, 5G/6G mmWave/sub-THz bands pose extreme

challenges for the provisioning of reliable multicast service. As the main tool to improve

session service reliability, 3GPP offers inter- and intra-RAT multi-connectivity operations.

However, by utilizing even extremely density deployments on mmWave BS, no sufficient

service reliability can be achieved. On the other hand, the use of inter-RAT multi-connectivity
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with, e.g., LTE or µWave NR, leads to considerable performance degradation of single-

band µWave UEs. However, the observations above are extrapolated from those obtained

for unicast services, and there are still no in-depth mathematical frameworks benchmarking

performance improvements of these functionalities for multicast services.

There is an urgent need for new advanced mechanisms to improve service reliability

in 5G/6G mmWave/sub-THz systems, such as the use of IAB deployments, RISs, and NR

sidelink technologies. There are no full comprehensive frameworks allowing for comparing

performance of different solutions and algorithms.

5.2.2 Sidelink Relaying

Sidelink technology was standardized for the first time during LTE 3GPP Release 12. How-

ever, due to the uncertainty on whether such a technology would have been of interest to

the major mobile operators, the use cases that sidelink was supposed to handle were only

confined to public safety and V2X. Besides, only a simple set of features ended up in the LTE

specification, most of which actually needed to be pre-configured in the UE sim card. Note

that pre-configuration is for out-of-coverage operations only, whereas the usual SIB/RRC

mechanisms are used for operations in coverage.

However, with the multitude of use cases that 5G NR is expected to support, the sidelink

technology again gained momentum among industry and mobile operators and is now con-

sidered one of the killer technology to guarantee low delay, extended coverage, and improved

energy efficiency to the UEs. Most importantly, the use cases that sidelink is expected to

handle are not only confined to public safety and V2X (i.e., as for LTE), but they span

from unlicensed applications, IIoT, up to UAV. This is also becoming evident in view of the

coming 3GPP Release 18, where vertical technologies and applications are interacting with

each other in order to provide the connection to “anything”, “everywhere”, and “anytime”

(one of the bases of 5G technologies). We discuss the future sidelink directions that have to

be investigated.

Sidelink Relaying. One of the main goals of sidelink relaying is the coverage area

extension of both sidelink communication and cellular network. Moreover, energy efficiency

and enhanced QoS support are additional essential features. As defined in [203], there are

two types of relaying that can be studied: (i) UE-to-UE and (ii) network-to-UE. The former

aims to extend the coverage of the cell through a relay, thereby providing the service for

UEs located at the edge or out of the coverage of the cell. The latter means that not only a

single-hop relay (supported by Rel-17) can be performed. In this case, multiple relays (multi-

hop relaying is currently not supported) can extend the sidelink coverage, but more work

needs to be done. The main aspects that have to be studied regarding relaying are relay

(re-)selection, relay discovery, UE authorization, QoS provisioning, among others, which is

becoming more complex in the case of multi-hop relaying.
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Sidelink Positioning. One of the missing functionalities in Rel-17 is sidelink posi-

tioning, i.e., to satisfy the strict requirements for absolute positioning. Here, a study on

positioning in Rel-17 can be considered as an initial point, and it is expected that sidelink

positioning will be one of the main work items in Rel-18.

With the growing complexity of indoor and outdoor environments, the radio propagation

between transmitting and receiving devices becomes increasingly complex, especially with

dynamic blockers. Although the LoS paths between each pair of target and anchor nodes

typically exist in the considered industrial/public safety scenarios, different environmental

objects can block the LoS paths, turning them into challenging NLoS scenarios. Thus, novel

positioning, tracking, and mapping frameworks employing both the multipath components

and the relay paths from intelligent surfaces are seen to form an intriguing open research

space to synthesize the location and environmental awareness towards an intelligent posi-

tioning and mapping system.

Sidelink and Artificial Intelligence. Artificial Intelligence (AI) and ML can improve

sidelink further communication. For instance, ML algorithms can perform resource allocation

with the quality of the radio channel, road traffic conditions, among other input algorithm

parameters. This, in turn, will reduce the overall latency and the throughput for future

sidelink communications.

In conclusion, sidelink as a technology is continually evolving, and it is now evident that

it will be one of the pillars not only in the further development of the 5G system but will also

be at the center of the close-to-come 6G technology that will be the first standardization in

3GPP (hopefully) during 2023.

5.2.3 Cooperative Positioning

This subsection discusses further aspects related to D2D-based cooperative positioning that

still need future investigations by the research and industry communities.

Green Communications. There is a rising interest in developing more energy-efficient

protocols and algorithms for a D2D-based collaborative positioning, which can reduce the

economic and environmental impact and promote Green Communications. Since, in 5G com-

munication systems, the use of energy and spectrum resources plays a significant role, green

communications represent a very timely topic. Also, adaptive power control should be an-

alyzed in order to gain a more detailed understanding, e.g., on the effect of transmissions.

However, there are some implementation difficulties to cope with, e.g., green communica-

tions pose a notable challenge to sustainable network development in the case of industrial

applications.

Mobility. In many cases, due to the portability of the nodes, mobility becomes an

issue to be considered in the design of these communication protocols. Also, mobility makes

localization techniques increasingly less accurate, and these errors usually increase with node

speed. Moreover, the impact that anchors’ and agents’ mobility, needing frequent handovers
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in a Multi-RAT network, may have on energy consumption has still received limited attention

from the research community. On the other side, some studies prove that positioning accuracy

could be improved by leveraging the mobility capabilities of the nodes depending on the level

of mobility of the nodes within the network.

Utilization of the Beam Training Period for Positioning. Since highly directional

transmissions (e.g., by using mmWave and terahertz bands) are considered as one of the main

components of 5G and B5G systems, the feasibility of utilizing the beam training period for

positioning is of extreme interest.

Synchronization. Network synchronization is a critical aspect of cellular ranging-based

location methods, such as OTDOA/UTDOA in LTE, which should not exceed the order

of nanoseconds for accurate positioning. Thus, to support ranging-based methods, cellular

standards should take into account tight network synchronization requirements. Indoors,

e.g., the use of advanced network time protocols or accurate round-trip time should be

considered. Moreover, the chosen waveform will impact the synchronization requirements,

potentially gaining localization accuracy.

LTE sidelink communication can handle the synchronization problem between MTs in

distributed cooperative localization systems through the primary sidelink synchronization

signal. However, it can be managed only for those MTs that are under the eNodeBs coverage,

whereas synchronization is a challenging problem when MTs are out-of-network coverage.

Higher carrier frequencies increase the resolution of multipaths. Higher car-

rier frequencies, such as mmWave spectrum, increase the LoS reception probability since any

NLoS condition is likely to be blocked due to the severe penetration and propagation proper-

ties. Consequently, the channel becomes more sparse in the sense of few dominant multipath

components and very few reflected paths. A sparse channel means that it is easier to identify

individual specular multipath components that can be used for high-accurate positioning by

reducing the risk of positioning errors due to the NLoS bias.
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Recently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation 
of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency 
or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and
industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig  (60 GHz), is considered as one of the main 
components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed 
mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-
generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic 
and wearable applications.

This very work is devoted to solving the problem of mmWave band communication system while enhancing its vantages through utilizing 
the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main 
contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic 
delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of 
dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning 
techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved 
communication characteristics but also precise localization.

Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 
5G/6G systems; (ii) to investigate sidelink aspects, including, but not limited to, standardization perspective and the next relay selection 
strategies; and (iii) to design cooperative positioning ystems based on Device-to-Device (D2D) technology.
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