1,163 research outputs found

    Biomass retrieval based on genetic algorithm feature selection and support vector regression in Alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data

    Get PDF
    A general framework for the integration of multi-sensor data for dry and fresh biomass retrieval is proposed and tested in Alpine meadows and pastures. To this purpose, hyperspectral spectroradiometer (as simulation of hyperspectral imagery) and biomass samples were collected in field campaigns and Copernicus Sentinel-1 Interferometric Wide (IW) swath SAR backscattering coefficients were used. First, a genetic algorithm feature selection was performed on hyperspectral data, and afterwards the resulting most sensitive bands where combined with SAR data within a support vector regression (SVR) model. The most sensitive hyperspectral bands were mainly located in different regions of the SWIR range for both fresh and dry biomass, and in the red and near-infrared regions mainly for dry biomass, but with less influence for fresh biomass. The R (2) correlation values between the sampled and the estimated biomass range from 0.24 to 0.71. The relatively low performances are mainly related to the saturation effect in the optical bands, as well as to the paucity of points for high values of biomass. The methodology allows a better understanding of the interaction between grassland systems and the electromagnetic spectrum by offering a model with a reduced number of narrow bands in the context of a multi-sensor integration

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Get PDF
    In mountain areas, the phenology and productivity of grassland are closely related to snow dynamics. However, the influence that snow melt timing has on grassland growing still needs further attention for a full understanding, particularly at high spatial resolution. Aiming to reduce this knowledge gap, this work exploits 1 m resolution snow depth and Normalized Difference Vegetation Index observations acquired with an Unmanned Aerial Vehicle at a sub-alpine site in the Pyrenees. During two snow seasons (2019–2020 and 2020–2021), 14 NDVI and 17 snow depth distributions were acquired over 48 ha. Despite the snow dynamics being different in the two seasons, the response of grasslands greening to snow melt-out exhibited a very similar pattern in both. The NDVI temporal evolution in areas with distinct melt-out dates reveals that sectors where the melt-out date occurs in late April or early May (optimum melt-out) reach the maximum vegetation productivity. Zones with an earlier or a later melt-out rarely reach peak NDVI values. The results obtained in this study area, suggest that knowledge about snow depth distribution is not needed to understand NDVI grassland dynamics. The analysis did not reveal a clear link between the spatial variability in snow duration and the diversity and richness of grassland communities within the study area

    Remote sensing tools for monitoring grassland plant leaf traits and biodiversity

    Get PDF
    Rocchini, Duccio1This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant No. 721995 (project Trustee).openGrasslands are one of the most important ecosystems on Earth, covering approximately onethird of the Earth’s surface. Grassland biodiversity is important as many services provided by such ecosystems are crucial for the human economy and well-being. Given the importance of grasslands ecosystems, in recent years research has been carried out on the potential to monitor them with novel remote sensing techniques. Improved detectors technology and novel sensors providing finescale hyperspectral imagery have been enabling new methods to monitor plant traits (PTs) and biodiversity. The aims of the work were to study different approaches to monitor key grassland PTs such as Leaf Area Index (LAI) and biodiversity-related traits. The thesis consists of 3 parts: 1) Evaluating the performance of remote sensing methods to estimate LAI in grassland ecosystems, 2) Estimating plant biodiversity by using the optical diversity approach in grassland ecosystems, and 3) Investigating the relationship between PTs variability with alpha and beta diversity for the applicability of the optical diversity approach in a subalpine grassland of the Italian Alps To evaluate the performance of remote sensing methods to estimate LAI, temporal and spatial observations of hyperspectral reflectance and LAI were analyzed at a grassland site in Monte Bondone, Italy (IT-MBo). In 2018, ground temporal observations of hyperspectral reflectance and LAI were carried out at a grassland site in Neustift, Austria (AT-NEU). To estimate biodiversity, in 2018 and 2019 a floristics survey was conducted to determine species composition and hyperspectral data were acquired at two grassland sites: IT-MBo and University of Padova’s Experimental Farm, Legnaro, Padua, Italy (IT-PD) respectively. Furthermore, in 2018, biochemistry analysis of the biomass samples collected from the grassland site IT-MBo was carried out to determine the foliar biochemical PTs variability. The results of the thesis demonstrated that the grassland spectral response across different spectral regions (Visible: VIS, red-edge: RE, Near-infrared: NIR) showed to be both site-specific and scale-dependent. In the first part of the thesis, the performance of spectral vegetation indices (SVIs) based on visible, red-edge (RE), and NIR bands alongside SVIs solely based or NIRshoulder bands (wavelengths 750 - 900 nm) was evaluated. A strong correlation (R2 > 0.8) was observed between grassland LAI and both RE and NIR-shoulder SVIs on a temporal basis, but not on a spatial basis. Using the PROSAIL Radiative Transfer Model (RTM), it was demonstrated that grassland structural heterogeneity strongly affects the ability to retrieve LAI, with high uncertainties due to structural and biochemical PTs co-variation. In the second part, the applicability of the spectral variability hypothesis (SVH) was questioned and highlighted the challenges to use high-resolution hyperspectral images to estimate biodiversity in complex grassland ecosystems. It was reported that the relationship between biodiversity (Shannon, Richness, Simpson, and Evenness) and optical diversity metrics (Coefficient of variation (CV) and Standard deviation (SD)) is not consistent across plant communities. The results of the second part suggested that biodiversity in terms of species richness could be estimated by optical diversity metrics with an R2 = 0.4 at the IT-PD site where the grassland plots were artificially established and are showing a lower structure and complexity from the natural grassland plant communities. On the other hand, in the natural ecosystems at IT-MBo, it was more difficult to estimate biodiversity indices, probably due to structural and biochemical PTs co-variation. The 18 effects of canopy non-vegetative elements (flowers and dead material), shadow pixels, and overexposed pixels on the relationship between optical diversity metrics and biodiversity indices were highlighted. In the third part, we examined the relationship between PTs variability (at both local and community scales, measured by standard deviation and by the Euclidean distances of the biochemical and biophysical PTs respectively) and taxonomic diversity (both α-diversity and βdiversity, measured by Shannon’s index and by Jaccard dissimilarity index of the species, families, and functional groups percent cover respectively) in Monte Bondone, Trentino province, Italy. The results of the study showed that the PTs variability metrics at alpha scale were not correlated with α-diversity. However, the results at the community scale (β-diversity) showed that some of the investigated biochemical and biophysical PTs variations metrics were associated with β-diversity. The SVH approach was also tested to estimate β-diversity and we found that spectral diversity calculated by spectral angular mapper (SAM) showed to be a better proxy of biodiversity in the same ecosystem where the spectral diversity failed to estimate alpha diversity, this leading to the conclusion that the link between functional and species diversity may be an indicator of the applicability of optical sampling methods to estimate biodiversity. The findings of the thesis highlighted that grassland structural heterogeneity strongly affects the ability to retrieve both LAI and biodiversity, with high uncertainties due to structural and biochemical PTs co-variation at complex grassland ecosystems. In this context, the uncertainties of satellite-based products (e.g., LAI) in monitoring grassland canopies characterized by either spatially or temporally varying structure need to be carefully taken into account. The results of the study highlighted that the poor performance of optical diversity proxies in estimating biodiversity in structurally heterogeneous grasslands might be due to the complex relationships between functional diversity and biodiversity, rather than the impossibility to detect functional diversity with spectral proxiesopenImran, H.A

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Investigation into the bio-physical constraints on farmer turn-out-date decisions using remote sensing and meteorological data.

    Get PDF
    ThesisDoctoral thesisAccepted versionGrass is the most common landcover in Ireland and covers a bigger percentage (52%) of the country than any other in Europe. Grass as fodder is Ireland’s most important crop and is the foundation of its most important indigenous industry, agriculture. Yet knowledge of its distribution, performance and yield is scant. How grass is nationally, on a farm by farm, year by year basis managed is not known. In this thesis the gaps in knowledge about grassland performance across Ireland are presented along with arguments on why these knowledge gaps should be closed. As an example the need for high spatial resolution animal stocking rate data in European temperate grassland systems is shown. The effect of high stocking density on grass management is most apparent early in the growing season, and a 250m scale characterization of early spring vegetation growth from 2003-2012, based on MODIS NDVI time series products, is constructed. The average rate of growth is determined as a simple linear model for each pixel, using only the highest quality data for the period. These decadal spring growth model coefficients, start of season cover and growth rate, are regressed against log of stocking rate (r2 19 = 0.75, p<0.001). This model stocking rate is used to create a map of grassland use intensity in Ireland, which, when tested against an independent set of stocking data, is shown to be successful with an RMSE of 0.13 Livestock Unit/ha for a range of stocking densities from 0.1 to 3.3 Livestock Unit/ha. This model provides the first validated high resolution approach to mapping stocking rates in intensively managed European grassland systems. There is a demonstrated a need for a system to estimate current growing conditions. Using the spring growth model constructed for estimating stocking density a new style of grass growth progress anomaly map in the time-domain was developed. Using the developed satellite dataset 1 and 12 years of ground climate station data in Ireland, NDVI was modelled against time as a proxy for grass growth This model is the reference for estimating current seasonal progress of grass growth against a ten year average. The model is developed to estimate Seasonal Progress Anomalies in the Time domain (SPAT), giving a result in terms of “days behind” and “days ahead” of the norm. SPAT estimates for 2012 and 2013 are compared to ground based estimates from 30 climate stations and have a correlation coefficient of 0.897 and RMSE of 15days. The method can successfully map current grass growth trends compared to the average and present this information to the farmer in simple everyday language. This is understood by the author to be the first validated growth anomaly service, and the first for intensive European grasslands. The decisions on when to turn out cattle (the turn out date (TOD)) from winter housing to spring grazing is an important one on Irish dairy farms which has significant impacts on operating costs on the farm. To examine the relationship of TOD to conditions, the National Farm Survey (NFS) of Ireland database was geocoded and the data on turn out dates from 199 farms across Ireland over five years was used. A fixed effects linear panel data model was employed to explore the association between TOD and conditions, as it allows for unobserved variation between farmers to be ignored in favour of modelling the variance year on year. The environmental variables used in the analysis account for 38% of the variance in the turn out dates on farms nationwide. National seasonal conditions dominate over local variation, and for every week earlier grass grows in spring, farmers gain 3.7 days in grazing season but ignore 3.3 days of growth that could have been used. Every 100mm extra rain in spring means TOD is a day later and every dry day leads to turn out being half a day earlier. A well-drained soil makes TOD 2.5 days earlier compared to a poorly drained soil and TOD gets a day later for every 16km north form the south coast. This work demonstrates that precision agriculture 1 driven by optical and radar satellite data is closer to being a reality in Europe driven by enormous amounts of free imagery from NASA and the ESA Sentinel programs coupled with open source meteorological data and models and new developments in data analytics

    Continental-scale land cover mapping at 10 m resolution over Europe (ELC10)

    Get PDF
    Widely used European land cover maps such as CORINE are produced at medium spatial resolutions (100 m) and rely on diverse data with complex workflows requiring significant institutional capacity. We present a high resolution (10 m) land cover map (ELC10) of Europe based on a satellite-driven machine learning workflow that is annually updatable. A Random Forest classification model was trained on 70K ground-truth points from the LUCAS (Land Use/Cover Area frame Survey) dataset. Within the Google Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB of Sentinel imagery within approx. 4 days from a single research user account. The map achieved an overall accuracy of 90% across 8 land cover classes and could account for statistical unit land cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that of CORINE (100 m) and other 10-m land cover maps including S2GLC and FROM-GLC10. We found that atmospheric correction of Sentinel-2 and speckle filtering of Sentinel-1 imagery had minimal effect on enhancing classification accuracy (< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone. The conversion of LUCAS points into homogenous polygons under the Copernicus module increased accuracy by <1%, revealing that Random Forests are robust against contaminated training data. Furthermore, the model requires very little training data to achieve moderate accuracies - the difference between 5K and 50K LUCAS points is only 3% (86 vs 89%). At 10-m resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, and therefore holds potential for aerial statistics at the city borough level and monitoring property-level environmental interventions (e.g. tree planting)

    Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series

    Get PDF
    Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of highresolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany
    corecore