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Abstract 

Grasslands are one of the most important ecosystems on Earth, covering approximately one-

third of the Earth’s surface. Grassland biodiversity is important as many services provided by such 

ecosystems are crucial for the human economy and well-being. Given the importance of grasslands 

ecosystems, in recent years research has been carried out on the potential to monitor them with 

novel remote sensing techniques. Improved detectors technology and novel sensors providing fine-

scale hyperspectral imagery have been enabling new methods to monitor plant traits (PTs) and 

biodiversity. 

The aims of the work were to study different approaches to monitor key grassland PTs such 

as Leaf Area Index (LAI) and biodiversity-related traits. The thesis consists of 3 parts: 1) 

Evaluating the performance of remote sensing methods to estimate LAI in grassland ecosystems, 2) 

Estimating plant biodiversity by using the optical diversity approach in grassland ecosystems, and 

3) Investigating the relationship between PTs variability with alpha and beta diversity for the 

applicability of the optical diversity approach in a subalpine grassland of the Italian Alps  

To evaluate the performance of remote sensing methods to estimate LAI, temporal and 

spatial observations of hyperspectral reflectance and LAI were analyzed at a grassland site in Monte 

Bondone, Italy (IT-MBo). In 2018, ground temporal observations of hyperspectral reflectance and 

LAI were carried out at a grassland site in Neustift, Austria (AT-NEU). To estimate biodiversity, in 

2018 and 2019 a floristics survey was conducted to determine species composition and 

hyperspectral data were acquired at two grassland sites: IT-MBo and University of Padova’s 

Experimental Farm, Legnaro, Padua, Italy (IT-PD) respectively. Furthermore, in 2018, 

biochemistry analysis of the biomass samples collected from the grassland site IT-MBo was carried 

out to determine the foliar biochemical PTs variability.   

The results of the thesis demonstrated that the grassland spectral response across different 

spectral regions (Visible: VIS, red-edge: RE, Near-infrared: NIR) showed to be both site-specific 

and scale-dependent. In the first part of the thesis, the performance of spectral vegetation indices 

(SVIs) based on visible, red-edge (RE), and NIR bands alongside SVIs solely based or NIR-

shoulder bands (wavelengths 750 - 900 nm) was evaluated. A strong correlation (R2 > 0.8) was 

observed between grassland LAI and both RE and NIR-shoulder SVIs on a temporal basis, but not 

on a spatial basis. Using the PROSAIL Radiative Transfer Model (RTM), it was demonstrated that 

grassland structural heterogeneity strongly affects the ability to retrieve LAI, with high uncertainties 

due to structural and biochemical PTs co-variation. 

In the second part, the applicability of the spectral variability hypothesis (SVH) was 

questioned and highlighted the challenges to use high-resolution hyperspectral images to estimate 

biodiversity in complex grassland ecosystems. It was reported that the relationship between 

biodiversity (Shannon, Richness, Simpson, and Evenness) and optical diversity metrics (Coefficient 

of variation (CV) and Standard deviation (SD)) is not consistent across plant communities. The 

results of the second part suggested that biodiversity in terms of species richness could be estimated 

by optical diversity metrics with an R2 = 0.4 at the IT-PD site where the grassland plots were 

artificially established and are showing a lower structure and complexity from the natural grassland 

plant communities. On the other hand, in the natural ecosystems at IT-MBo, it was more difficult to 

estimate biodiversity indices, probably due to structural and biochemical PTs co-variation. The 



18 

effects of canopy non-vegetative elements (flowers and dead material), shadow pixels, and 

overexposed pixels on the relationship between optical diversity metrics and biodiversity indices 

were highlighted.  

In the third part, we examined the relationship between PTs variability (at both local and 

community scales, measured by standard deviation and by the Euclidean distances of the 

biochemical and biophysical PTs respectively) and taxonomic diversity (both α-diversity and β-

diversity, measured by Shannon’s index and by Jaccard dissimilarity index of the species, families, 

and functional groups percent cover respectively) in Monte Bondone, Trentino province, Italy. The 

results of the study showed that the PTs variability metrics at alpha scale were not correlated with 

α-diversity. However, the results at the community scale (β-diversity) showed that some of the 

investigated biochemical and biophysical PTs variations metrics were associated with β-diversity. 

The SVH approach was also tested to estimate β-diversity and we found that spectral diversity 

calculated by spectral angular mapper (SAM) showed to be a better proxy of biodiversity in the 

same ecosystem where the spectral diversity failed to estimate alpha diversity, this leading to the 

conclusion that the link between functional and species diversity may be an indicator of the 

applicability of optical sampling methods to estimate biodiversity. 

The findings of the thesis highlighted that grassland structural heterogeneity strongly affects 

the ability to retrieve both LAI and biodiversity, with high uncertainties due to structural and 

biochemical PTs co-variation at complex grassland ecosystems. In this context, the uncertainties of 

satellite-based products (e.g., LAI) in monitoring grassland canopies characterized by either 

spatially or temporally varying structure need to be carefully taken into account. The results of the 

study highlighted that the poor performance of optical diversity proxies in estimating biodiversity in 

structurally heterogeneous grasslands might be due to the complex relationships between functional 

diversity and biodiversity, rather than the impossibility to detect functional diversity with spectral 

proxies.  

Keywords: grasslands; optical diversity metrics; plant traits (PTs); leaf area index (LAI); NIR-

shoulder indices; radiative transfer models (RTM); spectral diversity hypothesis; biodiversity 

indices; α-diversity; β-diversity; biochemical and biophysical PTs variability; functional diversity; 

spectral distances.  
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Chapter 1 

1.1. Introduction 

1.1.1 Grassland Ecosystems 

Grassland ecosystems are one of the most important ecosystems on earth’s terrestrial 

surface, covering approximately one-third of the Earth’s surface (Latham et al., 2014). Grasslands 

are considered the second largest terrestrial carbon sinks (Anderson, 1991; Derner and Schuman, 

2007) and play an important role in agriculture and economy as well as provision of many 

ecosystem services crucial for the human economy and well-being. Grasslands on the Alps include 

ecosystems that are located both above and below the timberline (Lüth et al., 2011). While alpine 

grasslands are located above the timberline and are mainly used as summer pastures (Ellenberg, 

2010), mountain grasslands were created and have been maintained as a result of hundreds of years 

of extensive agricultural activity, and they are among the most species-rich ecosystems outside the 

tropics. The most important function of grasslands is to provide fodder for domestic grazing 

animals, biodiversity, support erosion control on steep slopes as well as increase the nutrient 

absorption capacity and thus improving the water purification service (Philip Robertson et al., 

2014). However, in the last decades, changes in human activities have modified the landscape in 

many different regions of the planet. In the Alps, for example, such modifications have accelerated 

biodiversity loss at unprecedented rates as in the last decades changes in society, tourism, and 

agricultural production have led to substantial land-use changes and a loss of landscape diversity, 

particularly for grassland ecosystems (Chemini and Rizzoli, 2014). Due to this continuous decline 

in landscape diversity and associated loss of biodiversity, the monitoring of grasslands is a need for 

developing sustainable management and conservation practices. To monitor complex and diverse 

ecosystems (e.g., Natural grasslands) by conventional field-based methods might not be possible 

due to high costs, challenges to access to some sampling sites (Marzialetti et al., 2021). In contrast 

to the field traditional field camping methods, in recent years research has been carried out on the 

potential to monitor them with novel hyperspectral remote sensing techniques. In recent years, 

improved detectors technology and novel sensors providing fine-scale hyperspectral imagery are 

enabling new methods to monitor and estimation of plant traits (PTs) and biodiversity across spatial 

scales from the leaf level to the canopy, ecosystem, and global scales.  

1.1.2. Plant traits 

PTs can be defined as morphological, physiological, biochemical, and phonological features 

(such as e.g., leaf area index (LAI), aboveground biomass (AGB), chlorophyll a and b (cab), 

carotenoids (car), leaf water content (LWC), Nitrogen (N) etc.) of plants and their organs, which are 

being commonly adopted in ecological, biogeochemical, and agricultural studies (Homolova et al., 

2013; Kattge et al., 201). Such features are measurable at the individual plant or canopy level and 

can be used in various studies related to ecosystem functioning, community ecology, and 

assessment of ecosystem services (Homolova et al., 2013; Matheny et al., 2017; Reichstein et al., 

2013). With the development of high spatial and spectral resolution imaging spectroradiometer 

facilitated the quantitative estimation of PTs related to both physiology and biochemistry. In 

herbaceous plants, LAI is a spatially- and temporally-dynamic key structural PT related to 

ecosystem functions (e.g., productivity and evapotranspiration), and remote sensing data have been 
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widely used to capture its variability at various scales. However, the structural and biochemistry 

variability among leaves, plants, and ecosystems, particularly in natural grasslands, characterized by 

extreme heterogeneity is strongly affecting the ability to link spectral variation and PTs (Imran et 

al., 2020).  In the last decades, many studies have been carried out, which demonstrated the ability 

of spectral reflectance to estimate leaf and canopy structural traits with non-destructive methods 

(Adams and Arkin 1977; Aoki et al., 1986; Blackburn 1998; Curran et al. 1990; Datt, 1998; Gamon 

and Surfus 1999; Gitelson et al., 2003; Gitelson et al. 1996; Markwell et al. 1995; Peñuelas and 

Inoue, 1999; Richardson et al. 2002;). To estimate structural and biochemical traits non-

destructively canopy structure is one of the main challenges when interpreting the whole canopy 

reflectance (Knyazikhin et al., 2013) and the impact of vegetation structural heterogeneity on the 

ability of different optical-based models to retrieve LAI has not been sufficiently described in the 

literature, and new knowledge is needed to quantify the uncertainties of such models and 

disentangle the impact of structural and biochemical heterogeneity on LAI estimations. 

1.1.3. Biodiversity  

Biodiversity refers to the variation of all forms of life at all levels of biological scale, from 

genes to ecosystems (Wilson, 1988). According to Whittaker, (1960), the biodiversity is 

distinguished mainly on three scales of species diversity local diversity (α-diversity), species 

turnover (β-diversity), and the combination of the two diversity metrics leading to an estimate of 

ecosystem diversity (gamma diversity). To assess biodiversity a large number of indices (Shannon’s 

index (Shannon, 1948), species richness (Colwell, 2009), Simpson’s index (Simpson, 1949), 

Pielou’s index (Pielou, 1966), Berger-Parker’ index (Berger and Parker, 1970), Mclntosh’s index 

(Mclntosh, 1967), etc. have been developed and used to estimate α-diversity. The α-diversity is 

commonly measured by species richness (number of species in the sampling area) or can be 

quantified with other heterogeneity measures, such as e.g., Shannon’s index, Simpson’s index, and 

species evenness (calculated as Pielou’s index), which measure the even abundance between 

species and dominance of the species. 

β-diversity (species turnover) is usually assessed by using the information about the species 

compositional distance among sampling plots and measured as pairwise dissimilarity between the 

site pairs and the resulting matrix called the dissimilarity index (Gholizadeh et al., 2020). To assess 

the β-diversity several indices have been developed, for example, Jaccard index (Jaccard, 1912), 

Bray–Curtis index (Bray and Curtis, 1957), Sørensen index (Sørensen, 1948), Wilson and Shmida 

index (Wilson and Shmida, 1984), Colwell and Coddington index (Colwell and Coddington, 1994), 

and Lennon index (Lennon et al., 2001). Jaccard and Bray-Curtis are commonly used to measure 

the species turnover in population and community ecology (Baselga, 2013). Jaccard dissimilarity 

index is calculated using plant occurrence (presence/absence data), and it quantifies the pairwise 

dissimilarity between the vegetation in sampling units as the ratio between the common number of 

species and the unique number of species in each plot. The value of index ranges from 0 to 1 and 0 

indicates total inequality among plots, while the value 1 indicates total equality is identified 

(Marzialetti et al., 2021). While the Bray–Curtis dissimilarity index is calculated using quantitative 

species cover data, and it is defined as a ratio between the difference of abundance values and the 

sum of abundance values for each species. The value of the index ranges from 0 to 1 and 0 refers to 

when the sampling units are completely different and value 1 indicates that the species composition 

of the two plots is identical (Marzialetti et al., 2021). Monitoring plant diversity in relatively large 
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areas has always been considered a challenging task because it requires extensive field surveys, 

which are limited in their ability to sample over large regions. In recent years, improved remote 

sensing technology and novel sensors providing fine-scale hyperspectral imagery have enabled new 

methods to monitor ecosystem biodiversity based on varying plant optical properties of different 

species or functional groups (Gamon et al., 2020; Ustin et al., 2020). This provides a powerful 

opportunity for ecologists to investigate the links between optical diversity and plant diversity 

across spatial scales from the leaf level to the canopy, ecosystem, and global scales (Rocchini et al., 

2016). 

1.1.4. Remote sensing 

Remote sensing can provide fundamental spatial and temporal information and can be 

efficiently used in monitoring plant traits related to plant biochemistry, photosynthetic processes, 

and canopy structure. Such plant and canopy information can be obtained on both qualitative and 

quantitative basis, and during the last years, innovative remote sensing tools have been introduced 

to fill the measurements gaps at scales from centimeters to a few meters, to provide a more 

fundamental understanding of the complex processes which link vegetation characteristics and 

spectral responses at increasing pixel sizes (Homolova et al., 2013). The interaction between 

incoming solar radiation and the canopy elements are very complex and are based on three 

fundamental physical mechanisms: absorption, reflection, and transmittance. The variation in the 

visible (400 – 700 nm, VIS) part of the spectrum is mainly due to the variation in the leaf pigment 

and the nutrient content, while variation in the near-infrared (700 – 1300 nm, NIR) spectral region 

is due to leaf structure and the leaf water content (Aneece and Epstein 2015). The mechanisms 

behind the variation in the leaf spectra are well understood (Kumar et al., 2002), but the 

interpretation of the canopy level reflectance remains challenging due to multiple light interactions 

between canopy elements and background (Disney et al., 2006; Ross, 1981; Widlowski et al., 

2004). The reflectance signal is not only affected by the leaf biochemical variations, but the spectral 

signal is also influenced by different photosynthetic (shaded and sunlit leaves) and not-

photosynthetic elements (flowers, dead material) of the canopy. Further, the canopy level 

reflectance is also influencing due to the other leaf traits (e.g., ratio of the mesophyll cell surface to 

intercellular air spaces, leaf thickness) and canopy structural properties (e.g., leaves orientation in a 

canopy characterized by leaf angle distribution, leaves aggregation characterized by clumping 

index). Canopy structural organization describes the three-dimensional geometric distribution of the 

aboveground photosynthetic and non-photosynthetic vegetation components (Martens et al., 1991). 

Canopy structure is one of the main challenges when interpreting the whole canopy reflectance and 

novel approaches have been suggested to decouple structural and biochemical traits (Homolova et 

al., 2013; Knyazikhin et al., 2013) and to determine canopy structure and ecosystem function with 

greenness-independent methods (Delegido et al., 2015; Ollinger, 2011; Vescovo et al., 2012). For 

the estimation of PTs, mainly two approaches have been adopted: i) empirical relationships between 

variables and optical data or spectral vegetation indices (SVIs), and ii) inversion of canopy radiative 

transfer models (RTMs, Fang et al., 2003; Li et al., 2014; Meroni et al., 2004; Schlerf and 

Atzberger, 2006).  
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1.1.5. The empirical approach to estimate PTs 

The empirical approach is based on the statistical relationship between PTs and spectral data 

and is used to quantify the strength of the relationship. SVIs are mathematical combinations of 

vegetation surface reflectance at two or more wavelengths (Jackson and Huete, 1991) and due to 

their ease of computation, SVIs-based empirical models are more widely used (Vińa et al., 2011). 

Over the last decades, the SVIs-based methods traditionally used combinations between VIS and 

NIR bands to estimate LAI. However, several authors demonstrated that SVIs (Figure 1) based on 

the NIR and red-edge (RE) spectral domains (from 690 to 740 nm; Curran et al., 1990) can 

significantly improve LAI estimations (Delegido et al., 2013; Kira et a., 2017; Nguy-Robertson et 

al., 2014). The RE spectral domain is located between the red and the NIR wavelengths (Figure 1), 

in a portion of the spectrum where reflectance strongly increases, being on the borderline between 

chlorophyll absorption (in the red wavelengths) and leaf and canopy scattering in the NIR 

wavelengths. Concurring variations in both the chlorophyll content and the leaf structure can be 

detected in this domain. Frampton et al. (2013) and Clevers et al. (2013, 2017) analyzed the 

performance of red-edge chlorophyll-related indices in estimating canopy traits. Band combinations 

investigated by these authors included at least one band < 740 nm, in an area of the spectrum which 

is still sensitive to chlorophyll absorption. On another hand, indices calculated with NIR band 

combinations (>740 nm) are expected to be mainly influenced, with greenness-independent 

mechanisms, by canopy structure (as demonstrated by Delegido et al., 2015) and not directly by 

chlorophyll content as suggested by Peng et al., (2017). The SVIs nomenclature regarding the RE 

and NIR spectral region is often not consistent, in some studies, S-2 bands 5, 6, and 7 (respectively, 

at 705, 740, and 783 nm) are considered to be part of the RE region (Cogato et al., 2019; Delegido 

et al., 2015) although band 7 is well beyond the threshold between RE and NIR and is in the NIR-

shoulder region (750–900 nm, Filella et al., 1994; Horler et al., 1983; Xie et al., 2018). The 

definition of two bands RE and normalized difference indices used in this study is presented in 

Section 2.2.4. 

 

Figure 1. Vegetation spectrum and sentinel-2 bands in different parts of the spectrum (visible, red-edge, and Near-

infrared shoulder) are highlighted. The formulas of the normalized difference spectral vegetation indices (SVIs) are 

added which are calculated using the highlighted bands.  
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1.1.6. Physical-based radiative transfer models 

The Radiative Transfer Models (RTMs) based on physical principles are capable of 

simulating the interaction of light with vegetation at leaf and canopy levels and provide an explicit 

method for estimating the vegetation biophysical variables from canopy reflectance (Atzberger et 

al., 2013; Darvishzadeh et al., 2019; Houborg et al., 2007). To simulate the canopy reflectance 

RTM (e.g., PROSAIL) has been used in forward mode using different input parameters (Input 

parameter used in this study described in Table 3 in Section 2.2.6). The RTM models when used in 

forward mode when the aim is to examine the sensitivity of canopy reflectance to different factors, 

for instance, the effect of parameters on the RE and NIR slopes (Berger et al., 2018). Another 

approach to retrieve LAI is based on the inversion of RTM which simulates the interactions of 

radiation with vegetation elements and the soil (Atzberger et al., 2015). Such inversion approaches 

are demonstrated to be challenging when the model is not well-suited for the complex vegetation 

type (Atzberger et al., 2015) and when suitable ancillary data and regularization methods to 

optimize the inversions for an efficient parameterization are lacking (Verrelst et al., 2019). 

However, in some cases when in-situ data is impaired for example the large-scale regional and 

global studies, inversion of physical models is preferably used to estimate PTs. Regardless of the 

methods (statistical and RTM-based approaches) to estimate PTs, the selection of leaf structural and 

canopy architectural settings is key to achieve an accurate LAI retrieval and can be challenging 

when complex plant canopies are modeled (Van der Tol et al., 2020; Darvishzadeh et al., 2008a).  

1.1.7. Spectral diversity hypothesis 

The complex canopy structure can affect the patterns of when incoming solar radiation 

encounters in the canopy, capturing these complex patterns is quite challenging until a clear 

understanding of the interdependencies of PTs and canopy structure (Ollinger, 2011). Canopy 

structure is one of the main challenges when interpreting the whole canopy reflectance, canopy 

structural organization describes the three-dimensional geometric distribution of the aboveground 

photosynthetic and non-photosynthetic vegetation components (Martens et al., 1991). The 

measurements from the optical sensors are the result of the complex physical interaction between 

incoming solar radiation and canopy surfaces at different spectra regions that encodes essential 

information on vegetation states, function, and structure and is called “spectral signature” (Ma et al., 

2020). The reflectance from the visible (VIS) to near-infrared (NIR) spectral region is related to the 

biophysical and biochemical properties of leaves and canopy structure (Homolova et al., 2013; Ma 

et al., 2020). The spectral variation (also called optical diversity) is “variation in remote sensing 

measurements, typically spectral reflectance, across sets of pixels and has been proposed to relate to 

conventional metrics of biodiversity” (Wang et al., 2018a; Rocchini et al., 2010). Each plant species 

has unique biochemical, structural, and functional properties which, at the canopy level, determine 

optical diversity (Heumann et al., 2015, Rocchini et al., 2004). Plant species are characterized by 

species-specific biochemical, structural, and functional properties which determine spectral 

diversity in the visible and NIR. Many studies (Ustin and Gamon, 2010; Clark et al., 2012; Wang et 

al., 2016) indicated the potential of high-resolution tools to analyze across-scale complex dynamics 

regulating ecosystem diversity and function. Using very high spatial and spectral resolution imagery 

spectrometers, it is possible to capture spectral information of single leaf or single individuals. 

When observations are carried out at the canopy level, imagery spectrometers data provide 

information to detect the spatial variation of ecosystem properties, and thus to characterize 
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ecosystem diversity patterns related to biochemistry, structure, and species populations. Using 

image spectrometers, spectral heterogeneity can be used as an indicator of relative diversity which 

incorporates species richness, biochemical properties, and canopy structure (Rocchini et al., 2010). 

Several studies (Gholizadeh et al., 2019; Sakowska et al., 2019; Wang et al., 2018a; Wang et al., 

2018b; Wang et al., 2016) recently adopted a statistical approach to assess vegetation spectral 

variability and proposed an objective method to relate hyperspectral remote sensing (RS) and plant 

diversity. These authors demonstrated the correlation between ecosystem diversity (expressed with 

conventional biodiversity indices such as Shannon’s index, species richness, species evenness, and 

Simpson’s index) and “optical diversity”, an optically-derived metric of biodiversity based on the 

coefficient of variation (CV) in spectral reflectance across space. The average coefficient of 

variation in spectral reflectance across space (CV) can be calculated as follows: 

CVimage =

∑ (
std (ρλ)

mean (ρλ)
)

930

λ=411

number of bands
 

(1) 

where ρλ represents the reflectance value at wavelength λ and std (ρλ) and mean (ρλ) indicate the 

standard deviation and mean value of the reflectance at wavelength λ, respectively. 

To access the species turnover diversity (β-diversity) among vegetation plots, many authors 

(Gholizadeh et al., 2020; Marzialetti et al., 2021; Rocchini et al., 2016) used the pairwise 

dissimilarity methods (i.e., dissimilarity between site pairs) and then analyzed the relationship 

between floristics β-diversity (Jaccard dissimilarities index, Bray–Curtis dissimilarities index) and 

Euclidean distances or other methods (i.e. spectral angular mapper - SAM, Kruse et al. (1993)) 

calculated from the spectral data. The SAM is actually the spectral classification which is measured 

by the angle between two spectral profiles and the spectra account as vectors. Similar spectra have 

low SAM values and high spectral diversity have high SAM values. 

𝑆𝐴𝑀 =  cos−1(
∑ 𝑡𝑖𝑟𝑖

𝑠𝑏
𝑖=1

√∑ 𝑡𝑖
2𝑠𝑏

𝑖=1 √∑ 𝑟𝑖
2𝑠𝑏

𝑖=1

) 
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sb is the number of bands in Speclib. ti and ri are the reflectance of target and reference spectrum in 

band i, respectively. 

1.1.8. Biochemical and biophysical plant traits variability 

Plant species are characterized by species-specific biochemical, structural, and functional 

properties which determine spectral diversity in the visible and NIR. Each plant species has unique 

biochemical, structural, and functional properties which, at the canopy level, determine optical 

diversity. Many studies (Ustin and Gamon, 2010; Clark and Roberts, 2012; Wang et al., 2016) 

indicated the potential of high-resolution optical tools to analyze across-scale complex dynamics 

regulating ecosystem diversity and function. Using very high spatial and spectral resolution imagery 

spectrometers, it is possible to capture spectral information of single leaf or single individuals. 

When observations are carried out at the canopy level, imagery spectrometers data provide 

information to detect the spatial variation of ecosystem properties, and thus to characterize 
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ecosystem diversity patterns related to biochemistry, structure, and species populations. Using 

image spectrometers, spectral heterogeneity can be used as an indicator of relative diversity which 

incorporates species richness, biochemical properties, and canopy structure (Rocchini et al., 2010). 

Wang and Gamon (2019) highlighted the advantage of the PTs diversity approach to link with 

biodiversity as it focuses on capturing the range and variation in traits that can be linked with the 

diversity of species without identifying every single species in the sampling unit. Schweiger et al, 

(2017) used statistical methods like partial least squares regression (PLSR) to predict the plant 

functional types by linking the plant functional traits and the canopy spectral response and reported 

that biochemical and structural traits can be used as a proxy of plant functional diversity. In another 

study Asner and Martin, (2009) highlighted the importance of nutrient variation in tropical forest 

canopies and emphasized that biochemical diversity is tightly linked to species diversity. In this 

context, understanding biochemical diversity is crucial to understand the ecosystem’s functional 

diversity. In recent years, improved remote sensing technology and novel sensors provide an 

opportunity to measure the reflectance in hundreds of narrow spectral bands, from which the 

spectral feature is associated with plant biochemical and biophysical PTs which further can be 

linked with plant diversity (Asner and Martin, 2009; Petchey and Gaston, 2006 Torresani et al., 

2021). Until recent remote sensing applications focused on the relationships between spectral 

diversity and plant diversity; however, the link between foliar biochemical diversity and taxonomic 

diversity remains to be established (Schweiger et al., 2017).  

1.2. Study aims 

Given the importance of grasslands as they regulate many ecosystem services (for example, 

fodder for domestic grazing animals, biodiversity, maintenance of the soil fertility etc.) and the 

current decline in biodiversity, novel and efficient methods are required to monitor grassland 

ecosystems across spatial scales from the leaf level to the canopy, ecosystem, and global scales.  

The aim of the PhD was to explore the potential of different proximal sensing data for monitoring 

key grassland PTs such as Leaf Area Index (LAI) and biodiversity-related metrics (α-diversity and 

β-diversity). The thesis consists of three parts: 1) Evaluate the performance of remote sensing 

methods to estimate LAI in grassland ecosystems (publication 1), 2) Estimate species diversity by 

using optical diversity approach in grassland ecosystems (publication 2), and 3) Investigate the 

relationship between PTs variability with α and β diversity for the applicability of the optical 

diversity approach in a subalpine grassland of the Italian Alps (publication 3). 

In the first part of the study, evaluating the performance of remote sensing methods to 

estimate LAI, temporal and spatial observations of hyperspectral reflectance and LAI were analyzed 

at two different grassland sites (contrasting structure) of the Italian and Austrian Alps (Monte 

Bondone, Italy - IT-MBo, and Neustift, Austria - NEU-AT), situated on the subalpine and montane 

vegetation belts respectively. Further, in order to study the impact of grassland structural and 

biochemical heterogeneity on LAI estimations by analyzing the spectral reflectance response to co-

varying biochemical and structural leaf and canopy traits across the VIS-NIR spectral domain using 

an RTM approach. 

In the second part, the focus was to use the spectral diversity hypothesis (SVH) approach to 

estimate plant diversity in artificially established plant communities (IT-PD) and in a semi-natural 

subalpine grassland ecosystem (IT-MBo). The effect of image post-processing techniques to fully 



26 

disentangle the optical diversity due to plant diversity from the optical diversity due to illumination 

artifacts, or due to the presence of pixels of non-photosynthetic material, such as dead material or 

flowers were also highlighted.  

Finally, the third part investigated the relationship between PTs variability (which is an 

indicator of functional diversity and can be measured by standard deviation of the biochemical and 

biophysical PTs) and α-diversity (measured by Shannon’s index) at different taxonomic ranks 

(species, families, and functional groups). The relationship between the PTs variability (measured 

by the Euclidean distances of the biochemical and biophysical PTs) and the β-diversity (measured 

by Jaccard dissimilarity index of the species, families, and functional groups percent cover) was 

also investigated. Finally, analyze the performance of spectral diversity proxies to estimate β-

diversity using the measured pairwise distances. 

More detailed information on the specific objectives of the individual publications can be 

found in the full text attached to the thesis. 

1.3. Thesis outline 

This PhD dissertation is structured as a collection of scientific papers which I published during 

my doctoral research. In the thesis document, each chapter is based on an article with its own 

introduction, material and methods, results, discussion, and conclusion. The PhD research project 

was mainly conducted by using the data collected from 3 different sites: Monte Bondone, Trentino, 

Italy (IT-MBo, Italy), Neustift, Tyrol, Austria (AT-Neu), and experimental farm of the University 

of Padova, Legnaro, Padua, Italy (IT-PD) and the information about each study site added in the 

respective articles.  

In chapter 2, I present the different SVIs responses to co-varying the leaf and structural PTs in 

the heterogeneous grassland ecosystems (IT-MBo and AT-Neu). The potential of different SVIs 

based on different spectral regions (VIS, RE, and NIR-shoulder) was evaluated at temporal and 

spatial scales. The results highlighted the impact of grassland structural and biochemical 

heterogeneity on LAI estimations. The impact of grassland structural and biochemical heterogeneity 

on LAI estimations was demonstrated to be strong and no reliable field LAI estimation was possible 

at the spatial scale with any investigated SVI. The results of the empirical approach were compared 

with the physical-based RTM model and highlighted how the co-varying PTs affect the 

performance of SVIs to estimate LAI. Despite the use of SVIs methods to estimate PTs is very 

common but this approach is not straightforward especially when spatially heterogeneous canopy 

are focused. The reflectance measurement from structurally heterogeneous (high diversity) 

vegetation canopies are more complex compared to the homogenous canopies (low diversity). This 

leads to the spectral variability hypothesis (SVH): as the number of plant species increases for a 

given area, the spectral diversity observed from that area should also increase. In chapter 3 examine 

the SVH approach was adopted to check the potential of using high-resolution hyperspectral images 

to estimate α plant diversity in grassland ecosystems (IT-PD; artificially established grassland plots 

with species-poor mixture and IT-MBo; species-rich semi-natural grasslands). The result of the 

study highlighted the challenges to use high-resolution hyperspectral images to estimate plant 

diversity in complex grassland ecosystems. It was reported that the relationship between 

biodiversity (Shannon’s index, species richness, species evenness, and Simpson’s index) and optical 
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diversity metrics (Coefficient of variation (CV) and Standard deviation (SD)) is not consistent 

across plant communities. Despite the fact that we used several different processing techniques to 

enhance the optical diversity signal, for the subalpine grassland site of IT-MBo, we were not able to 

match the performance of optical-based methods to estimate the biodiversity reported in other 

studies. However, some evidence was reported predicting plant diversity when optical diversity 

metrics were calculated from post-processed hyperspectral images. The visible part of the spectrum 

(in particular the red domain), characterized by a strong absorbance, showed to be one of the key 

spectral areas for biodiversity detection. In chapter 4, I used the biochemical and biophysical PTs 

variability metrics to link with the taxonomic diversity at both α and β diversity scales and we 

observed that due to the complex nature of the plant communities in the investigated ecosystem we 

are not able to relate the PTs variability with taxonomic α-diversity. Conversely, we observed a 

moderate correlation reported between taxonomic β-diversity and Euclidean distances of the 

biochemical and PTs. Further, in this part, I also tested the correlation between spectral diversity 

measured as spectral angular mapper of the average reflectance from each plot and taxonomic β-

diversity and the results gave evidence of estimating β-diversity with spectral diversity approach.  

In chapter 5, concludes this thesis with the discussion and conclusions of the results of previous 

chapters. This chapter includes the main findings of this thesis and recommendations for future 

work are provided.  
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Abstract 

Red-edge (RE) spectral vegetation indices (SVIs)—combining bands on the sharp change 

region between near-infrared (NIR) and visible (VIS) bands—alongside with SVIs solely based on 

NIR-shoulder bands (wavelengths 750–900 nm) have been shown to perform well in estimating leaf 

area index (LAI) from proximal and remote sensors. In this work, we used RE and NIR-shoulder 

SVIs to assess the full potential of bands provided by Sentinel-2 (S-2) and Sentinel-3 (S-3) sensors 

at both temporal and spatial scales for grassland LAI estimations. Ground temporal and spatial 

observations of hyperspectral reflectance and LAI were carried out at two grassland sites (Monte 

Bondone, Italy, and Neustift, Austria). A strong correlation (R2 > 0.8) was observed between 

grassland LAI and both RE and NIR-shoulder SVIs on a temporal basis, but not on a spatial basis. 

Using the PROSAIL Radiative Transfer Model (RTM), we demonstrated that grassland structural 

heterogeneity strongly affects the ability to retrieve LAI, with high uncertainties due to structural 

and biochemical PTs co-variation. The RENDVI783.740 SVI was the least affected by traits co-

variation, and more studies are needed to confirm its potential for heterogeneous grasslands leaf 

area index (LAI) monitoring using S-2, S-3, or Gaofen-5 (GF-5) and PRISMA bands. 

Keywords: leaf area index; grassland; NIR-shoulder indices; Sentinel-2 and Sentinel-3 

bands; radiative transfer models 

2.1. Introduction 

Canopy structural organization describes the three-dimensional geometric distribution of the 

aboveground photosynthetic and non-photosynthetic vegetation components (Martens et al., 1991). 

https://www.mdpi.com/search?q=leaf%20area%20index
https://www.mdpi.com/search?q=grassland
https://www.mdpi.com/search?q=NIR-shoulder%20indices
https://www.mdpi.com/search?q=Sentinel-2%20and%20Sentinel-3%20bands
https://www.mdpi.com/search?q=Sentinel-2%20and%20Sentinel-3%20bands
https://www.mdpi.com/search?q=radiative%20transfer%20models
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Canopy structure is described by plant traits (PTs) such as leaf area index (LAI), aboveground 

biomass (AGB), and other canopy and leaf structural traits such as leaf angle distribution (LAD), 

gap fraction, leaf clumping, the proportion of photosynthetic and non-photosynthetic elements 

(Gianelle & Vescovo, 2007; Müller-Linow et al., 2015; Serrano et al., 2000) specific leaf area 

(SLA) and leaf dry matter, which can influence absorption and scattering light dynamics (Ollinger, 

2011; Roelofsen et al., 2014). 

Remote sensing can provide fundamental spatial and temporal information, which can be used 

in monitoring PTs related to plant biochemistry, photosynthetic processes and canopy structure. 

During the last years, the proximal sensing approach was used to fill the scaling gap between leaf 

and satellite measurements, linking vegetation characteristics and spectral responses from the leaf 

level to increasing pixel sizes (Homolová et al., 2013; Sakowska et al., 2019; Wang et al., 2018a). 

While the visible (VIS) and shortwave infrared (SWIR, 1100–2500 nm) parts of the reflectance 

spectrum are mainly determined by pigments and water content absorption, respectively, in the 

near-infrared (NIR, 750–1400), reflectance is high compared to the VIS domain because individual 

leaves and whole plant canopies strongly scatter NIR, and the degree of NIR scattering is driven by 

the internal leaf structure alongside with canopy structure and the ratio between green and non-

photosynthetic components (Ollinger, 2011). 

In herbaceous plants, LAI is a spatially- and temporally-dynamic key trait related to ecosystem 

functions (e.g., productivity and evapotranspiration), and remote sensing data have been widely 

used to capture its variability at various scales (Kumar & Mutanga, 2017; Vescovo & Gianelle, 

2008). However, the structural and biochemistry variability among leaves, plants, and ecosystems—

particularly in natural grasslands, characterized by extreme heterogeneity (Sakowska et al., 2019)—

is strongly affecting our ability to link spectral variation and LAI. Simultaneously with LAI, factors 

such as leaf anatomy and LAD are also varying in space and time (e.g., across heterogeneous 

canopies or due to phenological changes), and this has a significant and often unpredictable impact 

on scattering across the spectrum. When more structural traits co-vary, LAI estimation based on 

spectral data may be challenging (Ollinger, 2011), as reflectance is sensitive to multiple leaf and 

canopy traits and disentangling LAI from structural and biochemical drivers is difficult (Zarco-

Tejada et al., 2018). The impact of vegetation structural heterogeneity on the ability of different 

optical-based models to retrieve LAI has not been sufficiently described in the literature, and new 

knowledge is needed to quantify the uncertainties of such models and disentangle the impact of 

structural and biochemical heterogeneity on LAI estimations. 

One of the main remote sensing approaches to estimate PTs focuses on empirical models, 

which are used to quantify relationships between PTs and canopy reflectance or spectral vegetation 

indices (SVIs) (Kira et al., 2017; Li et al., 2014). Over the last decades, the SVIs-based methods 

traditionally used combinations between NIR and VIS bands (Fava et al., 2009; Hansen & 

Schjoerring, 2003; Rouse et al., 1974) to estimate LAI. However, several authors demonstrated that 

SVIs based on the NIR, and red-edge (RE) spectral domains can significantly improve LAI 

estimations (Delegido et al., 2013; Kira et al., 2017; Nguy-Robertson et al., 2014). The RE is 

defined as the spectral region between 680 and 750 nm where a sharp change in the vegetation 

reflectance can be observed (Filella & Peñuelas, 1994; Horler et al., 1983; Xie et al., 2018). Such 

spectral domain is on the transition between chlorophyll absorption in the red wavelengths and 

leaf/canopy scattering in the NIR wavelengths (Frampton et al., 2013; Horler et al., 1983). The use 
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of narrow-band SVIs is becoming extremely important in the context of the recently launched 

satellite missions such as Sentinel-2 (S-2) and Sentinel-3 (S-3), as well as within the context of new 

hyperspectral missions such as Gaofen-5 (GF-5) and PRISMA. 

The Radiative Transfer Models (RTMs) based on physical principles (Houborg, 2007) can 

simulate the interaction of light with vegetation at leaf and canopy levels and provide an explicit 

method for estimating the vegetation biophysical variables from canopy reflectance (Atzberger et 

al., 2013). Another approach to retrieve LAI is based on the inversion of RTM which simulate the 

interactions of radiation with vegetation elements and the soil (Atzberger et al., 2015). Such 

inversion approaches are demonstrated to be challenging when the model is not well-suited for the 

observed vegetation type (Atzberger et al., 2015) and when suitable ancillary data and 

regularization methods to optimize the inversions for an efficient parameterization are lacking 

(Verrelst et al., 2019). In addition, RTMs are mainly focused on chlorophyll and not on other 

pigments such as brown pigment content (polyphenols; Cbrown) which play an important role in 

shaping the spectral response of grasslands at varying phenological stages. This trait is rather poorly 

analyzed in the literature and the RTM parameter itself lacks a proper physically meaning, and it is 

thus not measurable with field observations (Danner et al., 2019). 

2.1.1. Red-Edge and NIR-Shoulder SVIs 

Considering the aforementioned RTM limitations and the fact that the new satellite missions 

are providing several bands across the RE and the NIR shoulder regions, further research is 

expected on the ability of SVIs based on such regions to retrieve LAI and on the spectral response 

mechanisms at the canopy level in different vegetation types (Rossi et al., 2019), which are not yet 

fully explored (Pettai et al., 2005; Zhen & van Iersel, 2017). RE SVIs (which make use of the RE 

spectral region) include the RE-based normalized difference vegetation index (RENDVI, Gitelson 

& Merzlyak, 1994) and the chlorophyll index (CIre, Gitelson et al., 2003). These SVIs were found 

to be very effective in estimating not only canopy chlorophyll content but also LAI (Delegido et al., 

2013; Sakowska et al., 2015; Shang et al., 2015). 

In recent years, a number of studies have used SVIs combining bands starting from around 750 

nm and beyond (750–770 nm) with the NIR bands (“NIR-shoulder SVIs”) for the estimation of LAI 

and phytomass (Liu et al., 2014; Vescovo et al., 2012). Vescovo et al. (2012) analyzed the 

performance of normalized infrared difference index (NIDI), calculated using simulated Chris 

Proba H25 and H18 bands, to estimate phytomass. H25, centered at 872 nm, is a NIR band, while 

the band H18, centered at 748 nm, lies on the borderline between the RE and the NIR shoulder (750 

nm). The NIDI index (Vescovo et al., 2012) has been shown to perform well in determining 

phytomass even for a Mediterranean grassland characterized by a significant presence of brown 

canopy elements, which suggested a possible chlorophyll-independent nature of the phytomass-

index relationship due to wavelength-dependent scattering dynamics. NIR-shoulder SVIs were also 

used by Liu et al. (2014), who demonstrated how the simple ratio of reflectance at 780 and 890 nm 

can be used for assessing leaf structure features, confirming the ability of NIR-based SVIs to detect 

the effect of leaf deterioration and senescence. 

The SVIs nomenclature regarding the RE and NIR spectral region, unfortunately, is often not 

consistent. S-2 bands 5, 6, and 7 (respectively, at 705, 740, and 783 nm) are considered to be part of 

the RE region (Cogato et al., 2019; Delegido et al., 2011) although band 7 is well beyond the 
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threshold between RE and NIR and is in the NIR-shoulder region (750–900 nm (Filella & Peñuelas, 

1994; Horler et al., 1983; Xie et al., 2018). In addition, a few authors (Fernández-Manso et al., 

2016; Peng et al., 2017; Sakowska et al., 2019) using normalized difference indices (NDIs) based 

on S-2 bands 7 and 8 (or 8a) refer to such SVIs as RENDVI indices, although they only make use of 

NIR-shoulder bands. The definition of two bands NDIs used in this study is presented in Section 

2.2.4. 

2.1.2. SVIs and LAI Empirical Models: Does Trait-Covariation Matter? 

SVIs combining NIR and RE bands have been used in the last years to estimate both structural 

and biochemistry-related traits. The impact of structural traits on reflectance in RE spectral regions 

and on RE SVIs, however, is arousing controversy. According to some authors, RE SVIs are able to 

reduce structure-related artifacts in retrieved biochemical-related traits, as the RE is thought to be 

sensitive to chlorophyll content and largely unaffected by structural properties (Zarco-Tejada et al., 

2018). More recently, Peng et al. (2017) showed that SVIs based on NIR band and RE band of 740 

nm (RE740) demonstrated to be good predictors of canopy chlorophyll in crop types with 

contrasting canopy structure. The authors concluded that using NIR and RE740 band combinations 

provided good chlorophyll estimation due to the “reduced sensitivity of the RE to hysteresis driven 

by different canopy and leaf structures”. Conversely, many authors agree on the fact that both 

biochemistry and structure contribute in determining the spectral response also within the RE 

domain (Curran et al., 1990; Jacquemoud & Baret, 1990; Zarco-Tejada et al., 2001; Zarco-Tejada et 

al., 2018). At the same time, Ollinger (2011) pointed out that the variation in SVIs involving VIS 

and NIR bands is often driven to a greater extent by the variation in NIR reflectance than by 

variation in the VIS reflectance. In this context, the impact of canopy structure on SVIs still needs 

to be clarified. 

The aforementioned controversies highlight that the response of structural traits, in 

combination with biochemical ones, on reflectance and on the SVIs models accuracy has not been 

fully characterized for different canopy types. To this regard, more efforts are needed to 

characterize the spectral response in the RE reflectance domain—in heterogeneous canopies—at 

varying biochemistry and structure, and more specifically to analyze the impact of canopy structural 

and leaf traits co-variation on SVIs-LAI relationships (Inoue et al., 2016) Such characterization is 

particularly important for multi-species natural grassland canopies, characterized by high spatial 

heterogeneity and temporal phenological changes, as presented in Section 2.3.4. Darvishzadeh et al. 

(2008a) concluded that LAI estimation in grasslands with mixed species and heterogeneous 

architecture is challenging and that detailed investigations are needed to assess the suitability of 

different remote sensing models when many combinations of several species are observed. 

In this framework, the objectives of the present study were: 

• To compare the ability of different SVIs including information from the RE and the NIR-

shoulder spectral regions to estimate LAI at both temporal and spatial scales using ground 

hyperspectral data 

• To analyze the potential of Sentinel band combinations across the RE and the NIR-shoulder 

spectral regions using S-2 and S-3 simulated bands to estimate LAI in two grassland 

ecosystems of the Alps with contrasting structures 

https://www.mdpi.com/2072-4292/12/14/2254/htm#sec2dot3dot4-remotesensing-12-02254
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• To determine the impact of grassland structural and biochemical heterogeneity on LAI 

estimations by analyzing the spectral reflectance response to co-varying biochemical and 

structural leaf and canopy traits across the RE and NIR-shoulder spectral domain using an 

RTM approach 

• To identify the best performing S-2 and S-3 SVIs for monitoring grasslands with 

heterogeneous structure by describing the impact of co-varying leaf and canopy structural 

traits on the relationships between LAI and SVIs calculated from S-2 and S-3 bands, as well 

as comparing RTM and empirical approaches. 

2.2. Materials and Methods 

2.2.1. Study Sites 

This study was conducted in two different grassland sites of the Italian and Austrian Alps 

(Figure 2), situated in the subalpine and montane vegetation belts, respectively, and characterized 

by contrasting management types. 

 

Figure 2. Location of the study sites (A); RGB Google Earth image of the AT-Neu site, where the yellow square 

represents the plot for temporal observations (B); and RGB Google Earth image of the IT-MBo site, where the red 

square represents the plot for temporal observations, while the blue squares represent the plots for spatial observations 

(C). 

The first site is a permanent meadow at the Viote del Monte Bondone plateau (46.0147N–

11.0458E, Italian Alps). The plateau meadow is managed mostly extensively, with low mineral 

fertilization and one cut annually around mid-July. In its central part, the meadow hosts a Fluxnet 

Eddy Covariance (EC) tower (IT-MBo, Italy). Due to its heterogeneous management and 

orography, the plateau is characterized by the presence of different grassland types characterized by 

extremely varying LAI and biomass (Sakowska et al., 2019). Such heterogeneous meadows include 

several different vegetation types (two most abundant associations, one of them including two 

variants (Sakowska et al., 2019)). The Sieverso-Nardetum strictae association (average 

aboveground biomass: 236 g·m−2 Sakowska et al., 2019) coves a high portion of the plateau, 

including the EC footprint, and is characterized by short canopies and not intensively managed. 
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The Scorzonero Aristatae-Agrostidetum tenuis (average aboveground biomass: 384 g·m−2) 

association is also very common on the plateau; it grows on calcareous soils and includes very 

productive species, which, although typical of much lower altitudes, can be frequent in some of the 

most fertile and well-exposed areas of the plateau (e.g., Arrenatherum elatius and Dactylis 

glomerata). The plateau, in its Eastern part, consists of small peatland associations of Caricion 

fuscae and Caricion davallianae characterized by very high productivity (Sakowska et al., 2019). 

At the IT-MBo, several different ecosystems with extremely contrasting structures and 

productivity can be found within a few hundred of meters distance (Figure S1). The vegetation in 

sampling Plots 4 - 7 was very tall (maximum height reached 120 cm) and their structure was more 

erectophile, which is representative of the Arrenatherion alliance considered one of the most 

common vegetation types of Central Europe, at medium-lower altitudes. Vegetation in Plots 1–3 

was very short with small dense Nardus tussocks and a limited number of scattered Festuca spikes 

(maximum height 50 cm). These plots represent, in their physiognomy, a typical grassland 

(meadow or pasture) on lime-deficient or acidified soils from the lower mountains of Europe, up to 

the lower alpine belt above the timberline. Vegetation in Plots 8–10 showed an intermediate height 

(maximum 90 cm) and was characterized by the presence of medium-productive grasses (such 

as Agrostis Tenuis and Trisetum flavescens) and forbs. This vegetation type is representative of a 

typical Centro-European species-rich mesophile grasslands at intermediate altitudes (between 

the Arrenatherion and Nardus types) of the montane and sub-alpine levels. The IT-MBo meadow 

soil can be classified as a Typic Hapludalfs, lyme loamy, mixed, mesic with the following 

characteristics in the 0–30 cm horizon: total soil organic content (SOC) = 9.4 ± 0.4 kg C m−2; total 

N = 0.29 ± 0.02 kg N m−2; and soil bulk density = 0.79 ± 0.29 g cm−3 (Papale et al., 2014). 

The second site (AT-Neu, Fluxnet site) is a meadow located in Neustift (47.1162 N, 11.3204 

E, Tyrol, Austria) classified as a Pastinaco-Arrhenatheretum (Wohlfahrt et al., 2008). The meadow 

shows very high productivity (with aboveground biomass values of up to 700 g·m−2 (Vescovo et al., 

2012) and is intensively managed with three cuts in mid-June, at the beginning of August, and at the 

end of September. The vegetation type includes a few dominant graminoids (Dactylis 

glomerata, Festuca pratensis, Phleum pratense and Trisetum flavescens) and forbs which are 

abundant in terms of biomass and are characterized by wider leaves such as Ranunculus 

acris, Taraxacum officinale, Trifolium repens, Trifolium pratense, and Carum carvi (Figure 

S2, Wohlfahrt et al., 2008). The 1-m deep soil profile in AT-Neu meadow soil has been classified as 

a Fluvisol (FAO classification) with a very thin organic layer (up to 2 cm) and beyond which it is 

described as a sandy loam. The vegetation roots reach down to 50 cm, but 80% of them are 

concentrated in the upper 13 cm of the soil (Wohlfahrt et al., 2008). 

2.2.2. Ground Biophysical Measurements 

In the growing season of 2013, the fraction of absorbed photosynthetically active radiation 

(fAPAR) in IT-MBo was quantified at different vegetation development stages by periodic 

measurements (8 measurements in the period between May and July 2013) of incoming, reflected, 

and transmitted (2 repetitions) PAR using the SunScan Canopy Analysis System (Delta T Devices 

Ltd., Cambridge, UK). In 2014, the fAPAR in IT-MBo was estimated using continuous 

measurements in the period between June and July 2014 by means of the Li-COR PAR sensors (Li-

COR Inc., Lincoln, Nebraska, USA). Two Li-190 Quantum sensors were installed above the canopy 

https://www.mdpi.com/2072-4292/12/14/2254/htm#app1-remotesensing-12-02254
https://www.mdpi.com/2072-4292/12/14/2254/htm#app1-remotesensing-12-02254
https://www.mdpi.com/2072-4292/12/14/2254/htm#app1-remotesensing-12-02254
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level, measuring both incoming and reflected PAR, while the third sensor (Li-191 Line Quantum) 

was placed at the ground level, measuring PAR transmitted through the vegetation canopy. 

The temporal patterns of fAPAR in AT-Neu in the growing season of 2018 were computed 

using continuous measurements in the period between April and May 2018 carried out with BF2H 

(Delta T Devices Ltd., Cambridge, UK) and QSO-Sun (Apogee Instruments, Inc., Logan, UT, 

USA) sensors measuring incoming and reflected PAR, respectively, and two SQ-316 Line Quantum 

sensors (Apogee Instruments, Inc., Logan, UT, USA) measuring transmitted PAR. In both 

ecosystems (IT-MBo, AT-Neu), the temporal scale measurements of transmitted PAR with line 

sensors were performed within the footprint of the ASD-WhiteRef hyperspectral system. All the 

PAR data were recorded by a data logger (CR3000 in IT-MBo 2014, CR1000 in AT-Neu 2018; 

Campbell Scientific Inc., Logan, Utah, USA) at 1-min intervals and averaged over solar noon 

(11:00–13:00 local solar time) to match the time period used for vegetation spectral properties 

calculations. The spatial patterns of fAPAR in the biomass peak season of 2017 in IT-MBo were 

quantified at 10 different grassland plots using the SunScan Canopy Analysis System (Delta T 

Devices Ltd., Cambridge, UK). Two fAPAR measurements were conducted along the transect of 

the sampling plots with the SunScan instruments, which consist of 64 PAR sensors embedded in a 

1-m-long portable probe positioned underneath the grass canopy. In each plot, the probe was 

positioned along 2 diameter axes (one orthogonal to the other), thus providing 64 × 2 = 128 

individual measurements, which were averaged prior to fAPAR calculation. Additionally, two 

measurements of reflected and incoming light were performed with the probe right above the 

canopy. The summary of biophysical measurements acquired in the study is presented in Table 1. 

Table 1. Summary of spectral and biophysical measurements acquired in the study. 

The fAPAR was calculated as: 

fAPAR = (PARi - PARr - PARt) × PARi -1 (3) 

where PARi, PARr, and PARt are incident, reflected, and transmitted PAR, respectively. 

LAI was estimated non-destructively by an indirect method based on canopy PAR 

transmission using PAR sensors data and a physical model of radiative transfer “INVERSION” 

Study 

Site 

Year Observation 

Period 

No. of 

Observations 

Measurement Time 

Window 

Observation 

Scale 

Measurements 

IT-MBo 2013 May 2013 -

July 2013 

8 Averaged over solar 

noon (11:00 - 13:00 of 

local solar time) 

Temporal Spectral 

fAPAR 

2014 June 2014 - 

July 2014 

14 

 

Averaged over solar 

noon (11:00 - 13:00 of 

local solar time) 

Temporal Spectral 

fAPAR 

2017 July 2017 10 Acquisition around 

solar noon (12:00 - 

14:00 of local solar 

time) 

Spatial Spectral 

fAPAR 

AT-Neu 2018 April 2018 -

May 2018 

49 Averaged over solar 

noon (11:00 - 13:00 of 

local solar time) 

Temporal Spectral 

fAPAR 
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(Wohlfahrt et al., 2001). The model of radiative transfer considers the canopy as a turbid medium in 

which multiple scattering occurs due to elements of turbidity (phytoelements). The model uses four 

adjustable parameters: (1) phytoelement dispersion factor; (2) phytoelement reflection; (3) 

transmission coefficients; and (4) soil reflection. The LAD function for the investigated vegetation 

type was assumed as erectophile (Migliavacca et al., 2017), and it was used in “INVERSION” 

parameter settings. None of the other parameters (dispersion, reflectivity, transmissivity, and soil 

reflectivity) were determined for the investigated canopies, thus default values (Wohlfahrt et al., 

2001) were used in the model to estimate the LAI. 

2.2.3. Hyperspectral Reflectance Measurements 

Hyperspectral reflectance data at both sites (in IT-MBo in the growing season of 2013 and 

2014 and in AT-Neu in the growing season of 2018) were acquired (Table 1) on a continuous basis 

by means of the ASD-WhiteRef system (Sakowska et al., 2015), allowing measurements in the 

wavelength range between 350 and 2500 nm. The installation height (6 m in IT-MBo and 2.6 m in 

AT-Neu) and the system FOV (25 deg) resulted in an optical canopy footprint diameter of about 2.7 

and 1.1 m in IT-MBo and AT-Neu, respectively. Both the ASD-WhiteRef narrow-band reflectance 

spectra were averaged over 2 h close to the solar noon (11:00–13:00 local solar time) to minimize 

the solar angle effects and then used for computing the SVIs. 

In addition, in 2017, spectral observations were performed in the spatial domain in IT-MBo 

plateau by deploying the ASD FieldSpec Pro spectroradiometer (Analytical Spectral Devices, Inc., 

Boulder, CO, USA) equipped with a fiber optic with the field of view of 25 deg and a white 

reference panel on a custom-made aluminum portable system (of a height of 2 m and the resulting 

FOV of ca. 0.9 m, Figure S3) designed for periodic nadir observations. The portable system 

consisted of a vertical pole equipped with two horizontal arms (installed one above another; the 

upper one was fixed and served the fiber optic assembly; the second arm—placed 20 cm below—

was rotatable and allowed the installation of the white reference panel) enabling alternating 

observations of the reference and the vegetation target and a ground structure ensuring system 

stability. 

The spatial observations were carried out in July 2017 in 10 different grassland plots covering 

the aforementioned vegetation types and characterized by quite diverse canopy structure (Figure S1) 

and productivity (Sakowska et al., 2019). The canopy structure of the investigated grasslands was 

ranging from very short and dense canopies with Nardus Stricta (typical of high altitudes: V1–

V3; Figure S1) to very productive grasslands with tall species such as Dactylis 

Glomerata and Arrenatherum elatius (V4–V7; Figure S1). For the spatial observations, the field 

campaign was conducted at the biomass peak to explore as many plots as possible within a short 

period (3 days) to avoid grass phenological changes (browning of the vegetation) and to ensure 

clear-sky conditions. The number of spatial scale observations was in general lower than that of 

temporal observations, as the latter were carried out on a more continuous basis. 

2.2.4. Best Band Combination and Hyperspectral NDIs 

To identify the band combinations most sensitive to LAI, the normalized difference index 

(NDI = (B1 − B2)/(B1 + B2), where B1 and B2 refer to reflectance values at specific ASD-

WhiteRef bands) was calculated with all possible two-band combinations based on ASD ground 

https://www.mdpi.com/2072-4292/12/14/2254/htm#table_body_display_remotesensing-12-02254-t001
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hyperspectral data within the VIS and NIR spectral range (350–1000 nm) at 1- nm resolution. The 

definition of the two-band NDIs used in this study is presented in Figure 3. The 2D correlograms 

for B1 (350–1000 nm) versus B2 (350–1000 nm) highlight the performance of SVIs in the different 

spectral regions: the VIS region (400–680 nm), the RE region (680–750 nm), and the NIR-shoulder 

region (750–900 nm). The correlograms were generated using the “Spectral Indices (SI) assessment 

toolbox” from a modular software package ARTMO (Automated Radiative Transfer Models 

Operator) (Verrelst et al., 2015a). The SI ARTMO toolbox facilitates the assessment of spectral-

domain prediction efficiency based on the adopted SI formulation and generates the correlation (R2) 

matrices with all possible two-band combinations between measured and estimated values for any 

biophysical parameter (Verrelst et al., 2015b). The 2D correlograms illustrate the performance of all 

two-bands normalized difference combinations in retrieving LAI. 

 

Figure 3. VIS-NIR, RE, and NIR-shoulder (yellow, green, and blue boxes, respectively) band combinations used to 

calculate normalized difference indices (NDIs). “NDI = (B1-B2)/(B1+B2)” represents the general formula for 

calculating NDIs, where B1 and B2 refer to reflectance at two different bands. 

2.2.5. Multispectral Sentinel 2 and 3 SVIs 

To obtain the reflectance values in the S-2 and S-3 bands, a simulation approach considering 

the average reflectance over the bandwidth of the respective S-2 and S-3 bands was adopted 

following Peng et al. (2017). SVIs based on S-2 and S-3 simulated bands (Table S1) in the VIS-

NIR, RE, and NIR-shoulder spectral regions were calculated, and their potential for estimation of 

grasslands LAI was tested. Two SVIs (NDVI865.665 and MTCI) were based on VIS and NIR 

reflectance (referred to as VIS-NIR SVIs), three SVIs (RENDVI783.740, RENDVI783.705, and 
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RENDVI865.740) were based on RE and NIR reflectance (referred to as RE SVIs) and the other two 

SVIs (NSDI779.754 and NSDI865.783) were based on the NIR-shoulder reflectance (≥ 750 nm; referred 

to as NIR-shoulder SVIs). We chose to compare the performance of two VIS-NIR SVIs (as a 

reference), alongside the performance of three RE making use of a RE band and two NIR-shoulder 

indices (Table 2). 

Table 2. SVIs based on S-2 and S-3 bands. 

SVIs Group SVIs Other Names Formula References 

VIS-NIR NDVI865.665  (8a−B4)/(8a+B4) (Rouse et al., 1974) 

MTCI  (8a−B5)/(B5−B4) (Sakowska et al., 2016) 

Red-Edge RENDVI783.740  (B7−B6)/(B7+B6) (Peng et al., 2017) 

RENDVI783.705 NDre2 (B7−B5)/(B7+B5) (Fernández-Manso et al., 2016; 

Peng et al., 2017) 

RENDVI865.740 NDVIre2n (8a−B6)/(8a+b6) (Fernández-Manso et al., 2016; 

Sakowska et al., 2019) 

NIR-Shoulder NSDI779.754
1  (O16−O12)/(O12+O16) Proposed in this study 

NSDI865.783
 NDVIre3n (8a−B7)/(8a+B7) (Fernández-Manso et al., 2016) 

1 S-3, simulated index. Fernández-Manso et al. (2016) referred to RENDVI783.705 as Normalized Difference RE 2 

(NDre2), RENDVI865.740 as Normalized Difference Vegetation Index RE 2 narrow (NDVIre2n), and NSDI865.783 as 

Normalized Difference Vegetation Index RE 3 narrow (NDVIre3n). 

2.2.6. Global Sensitivity Analysis 

Different factors (e.g., background soil and Solar-object-sensor geometry parameters) besides 

the biochemical and structural traits affect the canopy reflectance. To investigate the impact of 

structural PTs on reflectance, the ARTMO Global Sensitivity Analysis (GSA) toolbox was used 

(Inoue et al., 2016). The Variance-based GSA enables evaluating the relative importance of the 

spectral bands by identifying relative contribution (SI) of the key input variables that drive RTM 

spectral outputs (Wohlfahrt et al., 2001). The PROSAIL model input parameters used in this study 

for the GSA analysis are summarized in Table 3. The biochemical and structural input variables of 

the PROSAIL RTM model co-varied between the minimum and maximum value and for the 

geometrical parameters used the fixed averaged value.  

https://www.mdpi.com/2072-4292/12/14/2254/htm#table_body_display_remotesensing-12-02254-t003
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Table 3. Input parameters used in the global sensitivity analysis (GSA). LAI was estimated from the canopy fAPAR 

measurements at IT-MBo. The ranges of other input parameters (N, Cab, Car, Cw, Cm, Cbrown, soil and LAD) were 

selected based on existing literature (Verrelst et al., 2016; Darvishzadeh et al., 2008a; Pasolli et al., 2015; Zhang et al., 

2018; Melendo-Vega et al., 2018). 

PROSAIL Parameters Symbol Unit 
Minimum 

Value 

Maximum 

Value 

Avg/Fixed 

Value 

Leaf structural parameter N - 1.5  1.9 1.7 

Leaf chlorophyll content Cab µg cm−2 40 70 55 

Carotenoid content Car µg cm−2 3.75 12.65 8.2 

Brown pigment Cbrown - 0 0.2 0.1 

Leaf water content Cw mg cm−2 0.01 0.05 0.03 

Leaf dry matter Cm mg cm−2 0.005 0.01 0.007 
1 Leaf area index LAI m2·m−2 0.3 3.7 2 

Leaf angle distribution LAD (deg) 0  90 45 

Hotspot H -   0.01 

Soil Reflectance soil  - 0 1 0 

Solar zenith angle θS (deg)   25 

Observation zenith angle θv (deg)   0 

Relative Azimuth Angle φ (deg)   0 

1 Estimated from fAPAR field measurements. 

2.2.7. SVIs Performance Using Simulated Spectra Under Different Temporal and Spatial Scenarios 

RTMs are used to understand light interception by plant canopies and for the interpretation of 

vegetation reflectance in terms of biophysical characteristics (Verrelst et al., 2016). In this study, 

the PROSAIL RTM (Verrelst et al., 2015a) was used to assess the influence of leaf and canopy PTs 

on the SVIs calculated based on VIS, RE and NIR-shoulder spectral regions. PROSAIL couples 

two separate models: (a) the PROSPECT leaf optical model; and (b) the SAIL canopy reflectance 

model (Danner et al., 2019). PROSAIL can simulate the canopy bidirectional reflectance in the 

spectral range between 400 and 2500 nm as a function of up to 16 input parameters. In this study, 

the input parameters were constrained according to the ranges of biophysical parameters measured 

in the field and literature-based values (Table 3). A look-up table (LUT) generated using the Latin 

hypercube sampling (LHS) method (Liu et al., 2015) was adopted to achieve a uniform distribution 

of the model inputs within the given boundaries for each scenario. The LHS method divides the 

cumulative density function into n bins of the same size from which data are randomly selected. 

To investigate the impact of structural (LAI, LAD, leaf structural parameter (N) and leaf dry 

matter (Cm) and biochemical (leaf chlorophyll content (Cab), carotenoid content (Car), brown 

pigment content (Cbrown), and leaf water content (Cw)) input parameters of PROSAIL on canopy 

spectral reflectance, various scenarios were assumed. 

Using co-variation between input variables to constrain the model, we adopted parameters 

ranges observed in the literature (Table 3). With this approach, we aimed at exploring the impact of 

traits co-variation at both the spatial scale (due to vegetation heterogeneity) and the temporal scale 

(due to grassland phenological changes). Hence, running PROSAIL with a 100-iteration step, we 

analyzed four scenarios (1t–4t) based on the LAI range observed at the temporal scale at IT-MBo 

(during the growing period), as follows: 

https://www.mdpi.com/2072-4292/12/14/2254/htm#table_body_display_remotesensing-12-02254-t003
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(1t) LAI was set to vary between the minimum (at the beginning of the season) and the 

maximum value (at the biomass peak) and other PROSAIL parameters were kept constant (average 

value). This corresponds to a theoretical scenario where only grassland canopy LAI changes during 

the growth period, and no change is assumed in both other canopy structural parameters and 

biochemistry. 

(2t) LAI and LAD values were co-varying between the minimum and the maximum value 

(Table 4) during the growth period and the rest of the PROSAIL parameters were kept constant 

(average value). This scenario can be considered representative of grasslands with slight canopy 

architectural and leaf structural dynamics at different growth stages. 

Table 4. Different scenarios analyzed with the PROSAIL simulation at the temporal (1t–4t) and spatial (1s–4s) scales. 

PROSAIL 

Simulation 

Scenarios 

1t/1s 2t/2s 3t/3s 4t/4s 

Scenarios at the 

Temporal Scale 

(1t–4t) 

LAI varying between 

minimum and 

maximum values 

(temporal scale field 

observations)  

LAI co-varying 

between minimum 

and maximum 

values (temporal 

scale field 

observations) 

LAI co-varying 

between minimum and 

maximum values 

(temporal scale field 

observations) 

All PROSAIL 

parameters co-

varied. 

 LAD: 0–90 LAD: 0—90  

  N: 1.5—1.9  

  Cm: 0.005—0.01  

Scenarios at the 

Spatial Scale  

(1s–4s) 

 

LAI varying between 

minimum and 

maximum values 

(spatial scale field 

observations)  

LAI co-varying 

between minimum 

and maximum 

values (spatial scale 

field observations) 

LAI co-varying 

between minimum and 

maximum values 

(spatial scale field 

observations)  

All PROSAIL 

parameters co-

varied. 

 LAD: 0—90 LAD: 0—90  

  N: 1.5—1.9  

  Cm: 0.005—0.01  

(3t) LAI, LAD, N and Cm values were co-varying between the minimum and the maximum 

value (Table 4) and the rest of the PROSAIL parameters (Table 3) were kept constant at the average 

value. This corresponds to a scenario where all canopy and leaf structural traits change during the 

growing season (due to, e.g., ecological factors such as temperature, soil moisture and light 

competition), but biochemical traits remain constant. This scenario can be associated with 

grasslands where phenology, species composition and management practices (e.g., architectural 

changes due to variation of species composition after mowing and leaf biochemical changes due to 

fertilization) are determining more evident both canopy architectural and leaf structural traits 

dynamics at the temporal scale. 

(4t) All the PROSAIL input variables (Table 4) were allowed to co-vary from the minimum to 

the maximum value. This corresponds to a scenario where there is a relevant temporal co-variation 

of both canopy structural and biochemical traits. Such scenario can be considered representative of 

grasslands with more extreme phenology dynamics, due to: (i) stronger changes of ecological 

https://www.mdpi.com/2072-4292/12/14/2254/htm#table_body_display_remotesensing-12-02254-t004
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factors related to climate dynamics and water availability (e.g., in Mediterranean grasslands with 

strong seasonal variations of leaf water content, leaf chlorophyll content, and proportion of brown 

dead leaves); or (ii) management practices (e.g., architectural changes due to variation of species 

composition after mowing and leaf biochemical changes due to fertilization). 

The PROSAIL model was also run with a 100-iteration step for four scenarios (1s–4s) using 

the range of LAI measured during spatial observations (minimum and maximum values measured 

in the field at the biomass peak) as an input parameter (Table 4) as follows: 

(1s) LAI was set to vary between the minimum (in the less productive grassland) and the 

maximum value (in the most productive grassland) and other PROSAIL parameters were kept 

constant at their average value. This corresponds to a theoretical scenario where the grassland is 

spatially homogeneous in terms of both structure and biochemistry. 

(2s) LAI and LAD values were set to vary between the minimum and the maximum value and 

other PROSAIL parameters (Table 4) were kept constant (average value). This scenario can be 

considered representative of grasslands with slightly spatially-heterogeneous species composition 

and functional types. 

(3s) LAI, LAD, N and, Cm values were co-varying between the minimum and the maximum 

value and, other biochemical parameters were kept constant. This scenario corresponds to a 

grassland with strong structural spatial heterogeneity, while biochemistry is homogeneous. It can be 

associated with grasslands with heterogeneous species composition and functional types, associated 

with spatial variation of ecological factors (e.g., soil moisture and pH, topographic aspect, etc.). 

(4s) All the PROSAIL parameters were co-varying. This scenario corresponds to a grassland 

with strong structural and biochemistry spatial heterogeneity and can be considered representative 

of grasslands with extreme variations of species composition, plant functional types, ecological 

factors, and management regimes. 

All PROSAIL simulations were performed using the MATLAB environment (The MathWorks 

Inc. 2019a). 

2.2.8. Statistical Analysis 

To compare the performance of the investigated NDIs in LAI estimation, the following linear 

and second-order polynomial regression statistics were computed: R2, coefficient of determination; 

Adj. R2, adjusted coefficient of determination; and RMSE, root mean square error. All statistical 

analyses were performed by means of the R software (version 3.6.0, https://www.r-project.org/). 

2.3. Results 

2.3.1. Relationship between the Measured Spectra and LAI 

Temporal trends of LAI in IT-MBo (2013 and 2014) and in AT-Neu (2018) are shown 

in Figure 4A–C, respectively. Figure 4D presents LAI corresponding to spatial observations. For 

temporal scale observations, the values of LAI at IT-MBo ranged from 0.3 to 3.7, while, at AT-

Neu, LAI ranged from 0.2 to 8.8 and showed a smoother LAI increase compared to IT-MBo. At the 

spatial scale in IT-MBo, as the measurements were carried out at the biomass peak, the variability 

was lower and the LAI ranged from 2.0 to 4.5. 

https://www.mdpi.com/2072-4292/12/14/2254/htm#table_body_display_remotesensing-12-02254-t004
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Figure 4. Reflectance spectra at different growth stages measured in the field at: IT-MBo 2013 (A); IT-MBo 2014 (B); 

and AT-Neu 2018 (C); and spectra from spatial observations at IT-MBo 2017 (D). 

The canopy reflectance obtained from field measurements performed at different vegetation 

growth stages is plotted in Figure 4A–C (IT-MBo 2013, IT-MBo 2014 and AT-Neu 2018, 

respectively), while reflectance spectra obtained from spatial scale measurements (IT-MBo 2017) 

are displayed in Figure 4D. In the case of temporal observations, canopy reflectance showed a 

typical response to LAI increase, mostly characterized by a gradually decreasing reflectance in the 

VIS region, a gradually increasing reflectance in the NIR-shoulder region and increasing NIR-

shoulder slope as observed by Vescovo et al. (2012). On the contrary, the reflectance values of 

spatial scale observations at IT-MBo 2017 showed a much more complex pattern (Figure 4D), 

where increasing values of LAI did not always result in higher NIR and lower visible reflectance. 

As an example, the grassland plot highlighted in yellow (with a relatively high LAI value of 3.4) 

had a very low NIR reflectance, while the grassland plot highlighted in red (LAI 4.5, corresponding 

to the highest LAI value) showed the highest reflectance in the visible wavelengths. 

The reflectance values at 740 nm appeared to be relatively closer to the ones of the NIR 

shoulder plateau at AT-Neu 2018 compared to IT-MBo 2013, IT-MBo 2014 and IT-MBo 2017, 

suggesting a lower chlorophyll absorption at this wavelength in this ecosystem. The NIR-shoulder 

slope, between 760 and 900 nm, observed in AT-Neu 2018 was generally slightly less steep 

compared to the slope observed in IT-MBo in both temporal and spatial scale observations. 

2.3.2. Best Band Combination and Hyperspectral NDIs 

Figure 5 shows the R2 resulting from the linear regression between LAI and two-band 

combinations of reflectance values from 350 to 1000 nm using hyperspectral data. The 

correlograms based on temporal observations from IT-MBo (2013 and 2014) and AT-Neu (2018) 

provided a clear overview of the optimal band combinations for retrieving LAI. In the case of IT-

MBo temporal observations (Figure 5A,B), the R2 values displayed very consistent patterns across 

VIS-NIR band combinations, but with slightly different R2 ranges for both investigated years: the 
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maximum R2 was around 0.8 for IT-MBo 2013 and 0.9 for IT-MBo 2014 and the minimum R2 was 

slightly higher for IT-MBo 2013 compared to IT-MBo 2014. At the AT-Neu study site, generally 

lower R2 values were observed compared to the IT-MBo temporal observations. In the VIS spectral 

region, a slightly different pattern of the R2 values was observed for both study sites (Figure 5C). 

The R2 patterns were more different across the RE and NIR-shoulder regions. In particular, an 

evident shift of the well-correlated areas towards the lower wavelengths (from around 750 nm to 

740 nm) was observed for AT-Neu (Figure 5C) compared to IT-MBo temporal observations (Figure 

5A,B). 

All the two bands NDIs (Table 2) showed high R2 values for temporal scale observations at IT-

MBo (R2 > 0.75, NDVI865.665, RENDVI783.740, RENDVI783.705, RENDVI865.740 and 

NSDI779.754 in Figure 5A,B), except for the NSDI865.783 index (R2 < 0.3, Figure 5A,B). For AT-Neu, 

a slightly different pattern of R2 values was observed, where RENDVI865.740 and NSDI779.754 showed 

very low correlations compared to IT-MBo (R2 > 0.2, Figure 5C). The best correlations at the AT-

Neu site were observed for the RENDVI NDIs (RENDVI783.740 and RENDVI783.705) with R2 values 

exceeding 0.6 (Figure 5A–C). Therefore, the RENDVI783.740, which is still not very commonly used 

in the literature, performed well at both sites. Although the NIR-shoulder NSDI779.754 showed a 

significant correlation with high R2 values (R2 > 0.85 Figure 5A,B) at the IT-MBo site, much lower 

R2 values were observed for the same band combinations at At-Neu (R2 < 0.2, Figure 5C). 

Other than the aforementioned SVIs, there is a wide range of band combinations that showed a 

strong correlation with LAI. For both sites, an area of high R2 values (R2 > 0.7) was observed for 

combinations within the NIR part of the spectrum (B2 around 950–970 nm and B1 of 900–950 

nm: Figure 5A–C). Such band combinations are commonly used to calculate water band SVIs 

which are indicators of water status (Babar et al., 2006; Claudio et al., 2006; Gutierrez et al., 2010; 

Peñuelas et al., 1994; Prasad et al., 2007). On the other hand, water band SVIs demonstrated to be 

good proxies of structure-related parameters such as LAI and phytomass (Vescovo & Gianelle, 

2008; Ustin et al., 2004). A strong correlation between Normalized Water Index (NWI; calculated 

with PRISMA bands B2 of 962 nm and B1 of 897 nm, Gutierrez et al., 2010; Peñuelas et al., 1994; 

Sims & Gamon, 2003) and LAI was observed (R2 value for IT-MBo 2013 = 0.77, for IT-MBo 2014 

= 0.83 and for AT-Neu 2018 = 0.85). 

The correlogram based on S-2 (Figure 5D–F) and S-3 (Figure 5G–I) bands provides an 

overview of the performance of band combinations obtained with the average reflectance over the 

bandwidth of the respective S-2 and S-3 bands. For both study sites, the S-2 graph indicated that the 

RENDVI based on wavelength 740 and 783 nm is among the best correlated with LAI (R2 > 

0.65, Figure 5D–F). For S-3 simulated data, NSDI779.754 showed very high correlations for IT-MBo 

(R2 > 0.75, Figure 5G, H) but very low correlations at AT-Neu. Moreover, we also analyzed the 

correlograms of RMSE based on temporal observations (Figure S4), showing that the RMSE 

patterns were mostly similar but inverse, as high R2 values corresponded with low RMSE values 

and vice versa. 
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Figure 5. R2 values based on linear regression between the normalized difference of all two-band combinations and 

LAI for both study sites (IT-MBo 2013 (A); IT-MBo 2014 (B); and AT-Neu 2018 (C)) considering the temporal scale 

hyperspectral observations. R2 obtained using: (A–C) the hyperspectral data; (D–F) S-2 simulated bands; (G–I) S-3 

simulated bands. Black/white circles refer to the position of the indices in the correlogram and arrows are indicating the 

name of the respective indices. 

Results from the observations at the spatial scale at IT-MBo 2017 showed poorer correlations 

(Figure 6A) than those obtained with the multi temporal data. Only band combinations from the 

spectral range within 350–400 nm showed slightly higher R2 values compared to the rest of the 

band combinations. The correlograms of RMSE based on spatial observations presented in Figure 

S5 showed overall high RMSE for most of the two band combinations. 
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Figure 6. R2 values based on linear regression between the normalized difference of all two-band combinations and 

LAI for IT-MBo 2017 considering the spatial scale observations: (A) R2 obtained using the hyperspectral data; and 

(B,C) R2 obtained using S-2 and S-3 simulated bands, respectively. White circles refer to the position of the indices in 

the correlogram and arrows are indicating the name of the respective indices. 

2.3.3. The Performance of Multispectral Sentinel 2 and 3 SVIs 

Scatterplots between VIS-NIR SVIs (calculated with data resampled to S-2 bands) and LAI 

for both sites are presented in Figure 7. Both investigated VIS-NIR SVIs (NDVI865.665 and MTCI) 

showed a high correlation with an R2 > 0.75 and RMSE < 0.5 m2·m−2 (Figure 7 A, B and Table 5) 

for observations on a temporal basis at IT-MBo. For the AT-Neu study site (which has very high 

productivity and LAI values up to 8.8), NDVI865.665 showed a strong saturation effect (Figure 7A) 

compared to MTCI, resulting in a lower R2 value (R2 = 0.55 and R2 = 0.81 for NDVI865.665 and 

MTCI, respectively) and RMSE (RMSE = 1.71 m2·m−2 and RMSE = 1.11 m2·m−2, respectively). 

Conversely, when considering the observations at the spatial scale performed at IT-MBo, no 

significant correlation was found between the investigated VIS-NIR SVIs and LAI (Figure 7C,D 

and Table 5). 

 

Figure 7. Relationship between VIS-NIR indices and LAI: for temporal observations at IT-MBo (2013 and 2014) and 

AT-Neu 2018 (A,B); and for spatial observations at IT-MBo 2017 (C,D). In all panels, solid lines represent a linear fit 

to the data. 



45 

Table 5. Summary of the statistics (N, Number of observations; R2, coefficient of determination; Adj. R2, adjusted coefficient of determination; RMSE, root mean square 

error) of the linear regression between leaf area index (LAI, m2·m−2) estimated from fraction of absorbed photosynthetically active radiation (fAPAR) and the spectral 

vegetation indices (SVIs) calculated from measured spectra for IT-MBo 2013, IT-MBo 2014 and AT-Neu 2018 at temporal scale observations and for IT-MBo 2017 at spatial 

scale observations. The three best-fitting models are highlighted in bold. Asterisk indicates significance of correlation: *** p < 0.001; ** p < 0.01; * p < 0.05. n.s., not 

significant (Pearson’s correlation test). 

SVIs Temporal Scale Observation Spatial Scale Observations 

 IT-MBo 2013 (N=8) IT-MBo 2014 (N=14) AT-Neu 2018 (N=49) IT-MBo 2017 (N=10) 

 R2 Adj. R2 RMSE 

(m2·m−2) 

R2 Adj. R2 RMSE 

(m2·m−2) 

R2 Adj. R2 RMSE 

(m2·m−2) 

R2 Adj. R2 RMSE 

(m2·m−2) 

VIS-NIR             

NDVI865.665 0.79** 0.76 0.48 0.90 

*** 

0.90 0.27 0.55*** 0.54 1.71 0.00n.s -0.12 0.77 

MTCI 0.83** 0.81 0.43 0.87*** 0.86 0.32 0.81*** 0.81 1.11 0.01n.s -0.12 0.77 

Red-Edge (RE)  

RENDVI783.740 0.85** 0.83 0.40 0.93*** 0.93 0.23 0.79*** 0.78 1.18 0.03n.s -0.09 0.76 

RENDVI783.705 0.82** 0.79 0.44 0.89*** 0.88 0.30 0.67*** 0.66 1.47 0.00n.s -0.12 0.77 

RENDVI 865.740 0.86** 0.83 0.39 0.96*** 0.96 0.17 0.20** 0.18 2.28 0.05n.s -0.06 0.75 

NIR-Shoulder  

NSDI779.754 0.88** 0.86 0.37 0.95*** 0.95 0.20 0.09* 0.07 2.44 0.04n.s -0.08 0.75 

NSDI865.783 0.28n.s 0.16 0.89 0.15n.s 0.07 0.82 0.58*** 0.57 1.66 0.06n.s -0.06 0.75 
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Scatterplots between RE-based SVIs (calculated with data resampled to S-2 bands) and LAI 

for both sites are presented in Figure 8. The R2 values of the linear relationship between RE SVIs 

and LAI in IT-MBo were high with R2 > 0.8 (up to 0.96 and RMSE < 0.45 m2·m−2) for the temporal 

observations at IT-MBo, but at the AT-Neu site the RE SVIs showed slightly lower R2 (< 0.8 with 

RMSE > 1 m2·m−2) values, as a result of the saturation effect (Table 5). The saturation effect was 

particularly strong for NDVI865.665 and for AT-Neu site, where a polynomial regression model 

showed to increase the R2 from 0.55 to 0.71 and decrease RMSE from 1.71 to 1.37 m2·m−2. For all 

other SVIs, polynomial relationships showed only a slight increase of the performance of the model 

(Table S2). The RE SVIs including RENDVI783.740 and RENDVI783.705 from temporal scale 

observations showed a strong correlation with an R2 > 0.65 for both study sites, but 

RENDVI865.740 lost its predictive power at AT-Neu (R2 = 0.2 and RMSE = 2.28 m2·m−2). As for 

VIS-NIR SVIs, the observations at the spatial scale showed very low R2 (< 0.06) values. 

 

Figure 8. Relationship between RE indices and LAI: for temporal observations at IT-MBo (2013 and 2014) and AT-

Neu 2018, respectively (A–C); and for spatial observations at IT-MBo 2017 (D–F). In all panels, solid lines represent a 

linear fit to the data. 

Concerning the NIR shoulder SVIs, the NSDI779.754 showed a strong positive correlation 

with an R2 > 0.8 (up to 0.95 and RMSE < 0.40 m2·m−2) for the temporal observations at IT-MBo, 

but at the AT-Neu study site the correlation was much weaker (R2 < 0.1, Figure 9A; RMSE = 2.44 

m2·m−2, Table 5). The index based on 865 and 783 nm showed an inverse relationship with LAI for 

both ecosystems, with weaker correlation at IT-MBo (R2 < 0.3) compared to AT-Neu (R2 of 

0.58, Figure 9B). No significant correlations were observed on the spatial basis (Figure 9C,D). 

Considering all the VIS-NIR, RE and, NIR shoulder SVIs, RENDVI783.740 was always 

among the three best-performing SVIs, for observations carried out at the temporal scale at the two 
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investigated sites (Table 5). The other SVIs with good performance at the temporal scale were 

RENDVI 865.740, MTCI, and NSDI779.75. 

 

 

Figure 9. Relationship between NIR-shoulder indices and LAI: for temporal observations at IT-MBo (2013 and 2014) 

and AT-Neu 2018, respectively (A,B); and for spatial observations at IT-MBo 2017 (C,D). In all panels, solid lines 

represent a linear fit to the data. 

2.3.4. Global Sensitivity Analysis of the Spectral Bands 

The results concerning the impact of leaf and canopy parameters on the different spectral 

regions through the GSA are illustrated in Figure 10. Background (soil) demonstrated to have a 

rather homogeneous impact on canopy reflectance across all wavelengths. LAI and Cab 

demonstrated a major influence on reflectance in the VIS part of the spectrum and Cab showed two 

SI peaks (around 560 and 705 nm) and an impact on the reflectance response was observed up to 

760 nm. Within the RE (680–750 nm) part of the spectrum, the influence of LAD was significantly 

increasing at longer wavelengths, with SI reaching about 40% at 740 nm, while at 705 nm the SI 

was less than 10%. For spectral bands in the RE region, a slight effect of Cbrown and Cm was also 

observed, while the impact of LAI was significantly increasing from RE to NIR-Shoulder spectral 

bands. LAI and LAD were the main drivers of reflectance also in the far RE region (740–750 nm) 

of the spectrum. Within the NIR-shoulder region (750–900 nm), reflectance showed to be driven 

mostly by LAI and LAD, while Cm showed an average SI value of less than 5%. In the spectral 

range 740–820 nm, Cbrown also showed SI values up to 5%. Leaf water content (Cw) response 

only started beyond 930 nm (Figure 10). 
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Figure 10. Global Sensitivity Analysis of the PROSAIL input parameters. The dimension of the sensitivity refers to the 

relative contribution (SI) of each input variable and the vertical bars represent the positions of the bands (solid lines, S-

2; dotted lines, S-3) used to calculate the investigated SVIs. Input parameter ranges, full names of the variables and 

units are presented in Table 3. 

2.3.5. SVIs Calculated from Modeled PROSAIL Reflectance Simulations vs. LAI 

To analyze the impacts of co-variation of structural and biochemical traits for LAI monitoring 

using the PROSAIL modeled reflectance output, a series of scatterplots between the SVIs and LAI 

is presented in this section. The modeled reflectance was obtained from PROSAIL simulations 

constraining the input parameters according to the eight scenarios presented in Section 2.3.4. 

For the investigated grasslands at IT-MBo, the LAI range observed at the temporal scale also 

included low LAI values (0.3), while the minimum LAI value for spatial scale observations was 2.0. 

In general, when LAI values were restricted to the spatial range, the lack of low LAI had a strong 

effect on the predictive power of VIS-NIR SVIs with a noticeable decrease in correlation 

coefficients when two or more traits were co-varying (Figure 11B–D F for NDVI865.665 and Figure 

11F–H for MTCI) and increase in RSME (Table 6 and Table 7). 

https://www.mdpi.com/2072-4292/12/14/2254/htm#sec2dot3dot4-remotesensing-12-02254
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https://www.mdpi.com/2072-4292/12/14/2254/htm#fig_body_display_remotesensing-12-02254-f010
https://www.mdpi.com/2072-4292/12/14/2254/htm#table_body_display_remotesensing-12-02254-t006
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Figure 11. Relationships between VIS-NIR indices and LAI for all eight scenarios for both temporal ((A,E) 1t; (B,F) 

2t; (C,G) 3t; and (D,H) 4t) and spatial scale observations ((A,E) 1s; (B,F) 2s; (C,G) 3s; and (D,H) 4s). The horizontal 

dashed line represents the minimum value of LAI when PROSAIL was run using spatial observation LAI ranges as 

input parameter. In all panels, solid lines represent a linear fit to the data. 
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Table 6. Summary of the statistics (N, number of observations; R2, coefficient of determination; Adj. R2, adjusted coefficient of determination; RMSE, root mean square 

error) of the linear regression between leaf area index (LAI, m2·m−2) of 100 iteration steps between minimum and maximum range of temporal scale measurements and the 

spectral vegetation indices (SVIs) calculated from PROSAIL simulated spectra by scenarios considering spatial scale LAI ranges (1t–4t) described in Section 2.3.4. The three 

best-fitting models are highlighted in bold. Asterisk indicates significance of correlation: *** p < 0.001; ** p < 0.01; * p < 0.05. n.s., not significant (Pearson’s correlation 

test). 

SVIs 
Scenario 1t, 2t, 3t, 4t 

 

 1t (N=100) 2t (N=100) 3t (N=100) 4t (N=100) 

 R2 Adj. R2 
RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 

VIS-NIR             

NDVI865.665 0.73*** 0.72 0.65 0.56*** 0.56 0.82 0.52*** 0.51 0.86 0.57*** 0.57 0.81 

MTCI 0.98*** 0.97 0.20 0.95*** 0.95 0.26 0.85*** 0.84 0.49 0.39*** 0.38 0.97 

Red-Edge (RE)  

RENDVI783.740 0.95*** 0.95 0.27 0.93*** 0.93 0.34 0.90*** 0.90 0.40 0.64*** 0.63 0.75 

RENDVI783.705 0.81*** 0.81 0.54 0.65*** 0.65 0.73 0.60*** 0.60 0.78 0.62*** 0.62 0.76 

RENDVI 865.740 0.98*** 0.98 0.18 0.87*** 0.87 0.45 0.77*** 0.77 0.59 0.44*** 0.43 0.93 

NIR-Shoulder  

NSDI779.754 0.99*** 0.99 0.15 0.93*** 0.93 0.32 0.86*** 0.86 0.46 0.56*** 0.55 0.83 

NSDI865.783 0.79*** 0.79 0.56 0.20*** 0.19 1.11 0.10** 0.09 1.18 0.20*** 0.19 1.11 
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Table 7. Summary of the statistics (N, number of observations; R2, coefficient of determination; Adj. R2, adjusted coefficient of determination; RMSE, root mean square 

error) of the linear regression between leaf area index (LAI, m2·m−2) of 100 iteration step between minimum and maximum range of temporal scale measurements and the 

spectral vegetation indices (SVIs) calculated from PROSAIL simulated spectra by scenarios considering spatial scale LAI ranges (1t–4t) described in Section 2.3.4. The three 

best-fitting models are highlighted in bold. Asterisk indicates significance of correlation: *** p < 0.001; ** p < 0.01; * p < 0.05. n.s., not significant (Pearson’s correlation 

test). 

SVIs 
Scenario 1s, 2s, 3s, 4s 

 

 1s (N=100) 2s (N=100) 3s (N=100) 4s (N=100) 

 R2 Adj. R2 
RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 

VIS-NIR             

NDVI865.665 0.86*** 0.86 0.27 0.18*** 0.17 0.65 0.13*** 0.12 0.67 0.19*** 0.18 0.65 

MTCI 0.97*** 0.97 0.12 0.85*** 0.85 0.28 0.43*** 0.42 0.55 0.11*** 0.10 0.68 

Red-Edge (RE)  

RENDVI783.740 0.98*** 0.98 0.09 0.82*** 0.82 0.31 0.62*** 0.61 0.45 0.22*** 0.21 0.64 

RENDVI783.705 0.92*** 0.92 0.21 0.27*** 0.26 0.62 0.24*** 0.23 0.63 0.21*** 0.21 0.64 

RENDVI 865.740 0.99*** 0.99 0.07 0.38*** 0.38 0.57 0.15*** 0.14 0.67 0.10** 0.09 0.68 

NIR-Shoulder  

NSDI779.754 0.99*** 0.99 0.06 0.65*** 0.65 0.42 0.33*** 0.32 0.59 0.18*** 0.17 0.65 

NSDI865.783 0.80*** 0.80 0.32 0.08** 0.07 0.69 0.10** 0.09 0.69 0.05** 0.04 0.70 
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When only LAI was varying (Scenarios 1t and 1s; Figure 11A,E), a high correlation between 

LAI and VIS-NIR SVIs (NDVI865.665 and MTCI) was observed; however, NDVI865.665 (R
2 = 0.73 

and R2 = 0.86 for Scenarios 1t and 1s, respectively) showed a strong saturation effect compared to 

MTCI (R2 = 0.98 and R2 = 0.97 for Scenario 1t and 1s respectively). When it was assumed that LAI 

and LAD were co-varying, the R2 values of both NDVI865.665 and MTCI decreased, but at different 

rates. In case of NDVI865.665, the R2 decreased to 0.56 (Scenario 2t) and 0.18 (Scenario 2s), while 

for MTCI the R2 dropped to 0.95 (Scenario 2t) and 0.85 (Scenario 2s). Similarly, in Scenario 3t, 

MTCI performed significantly better (Figure 11G, R2 = 0.85, Table 6) than NDVI865.665 (Figure 

11C, R2 = 0.52, Table 6); however, a noticeable decrease of R2 was observed in the correspondent 

spatial scenario for MTCI (R2 = 0.43, Table 7). Scenario 4t (all PROSAIL input parameters co-

varied) resulted in a slight increase—compared to Scenario 3t—in R2 values between 

NDVI865.665 and LAI (Figure 11D, R2 = 0.57, RSME = 0.81 m2·m−2 (Scenario 4t), Table 6; and R2 = 

0.19, RSME = 0.65 m2·m−2 (Scenario 4s), Table 7). On the other hand, MTCI showed very low 

R2 values (Figure 11H, R2 = 0.39, RMSE = 0.97 m2·m−2 (Scenario 4t), Table 6; and R2 = 0.11, 

RSME = 0.68 m2·m−2 (Scenario 4s), Table 7). 

In Figure 12, scatterplots between RE SVIs (RENDVI783.740, RENDVI783.705, and 

RENDVI865.740) and LAI are presented. In general, RE SVIs showed a better performance compared 

to VIS-NIR SVIs for both temporal and spatial scenarios. In Scenarios, 1t and 1s, a high correlation 

between LAI and RE SVIs (RENDVI783.740 and RENDVI865.740) was observed (Figure 12A and 12I, 

R2 > 0.9; RSME < 0.3 m2·m−2, Table 6 and Table 7). RENDVI783.740 showed to be less sensitive to 

structural traits co-variation and showed a strong correlation (Figure 12C, R2 = 0.90, RSME = 0.40 

m2·m−2 and R2 = 0.62, RSME = 0.45 m2·m−2 for Scenarios 3t and 3s, respectively). 

RENDVI783.740 and RENDVI783.705 SVIs showed the highest correlation with LAI in Scenario 4t 

(Figure 12D,H, R2 = 0.64, RSME = 0.75 m2·m−2 and R2 = 0.62, RSME = 0.76 m2·m−2, Table 6). 

However, even if they were among the best performing indices in Scenario 4t, they lost most of 

their predictive power in Scenario 4s (Figure 12D,H, R2 = 0.22, RSME = 0.64 and R2 = 0.21, 

RSME = 0.64, Table 7). 
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Figure 12. Relationships between RE indices and LAI for all eight scenarios for both temporal ((A,E,I) 1t; (B,F,J) 2t; 

(C,G,K) 3t; and (D,H,L) 4t) and spatial scale observations ((A,E,I) 1s; (B,F,J) 2s; (C,G,K) 3s; and (D,H,L) 4s). The 

horizontal dashed line represents the minimum value of LAI when PROSAIL was run using spatial observation LAI 

ranges as input parameter. In all panels, solid lines represent a linear fit to the data. 

Similar to RE-based SVIs, the NIR-shoulder (NSDI779.754) showed to mitigate the saturation 

effect for higher LAI values as observed in Figure 13A–D. In Scenarios 1t and 1s, 

NSDI779.754 exhibited a strong correlation (R2 = 0.99; Figure 13A) and RMSE < 0.2 m2·m−2 (Table 

6 and Table 7). In Scenarios 2t and 3t, NSDI779.754 showed a slight decrease in R2 value (Figure 

13B,C, R2 = 0.93 and 0.86 for Scenarios 2t and 3t respectively) and a noticeable decrease for 

Scenarios 2s and 3s was observed (Figure 13B,C, R2 = 0.65 (Scenario 2s) and R2 = 0.33 (Scenario 

2s)). The NSDI865.783 showed an inverse relationship with LAI and showed a low R2 = 0.2 and 0.05 

(Figure 13H) for Scenarios 4t and 4s, respectively. 
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Figure 13. Relationships between NIR-shoulder indices and LAI for all eight scenarios for both temporal ((A,E) 1t; 

(B,F) 2t; (C,G) 3t; and (D,H) 4t) and spatial scale observations ((A,E) 1s; (B,F) 2s; (C,G) 3s; and (D,H) 4s). The 

horizontal dashed line represents the minimum value of LAI when PROSAIL was run using spatial observation LAI 

ranges as input parameter. In all panels, solid lines represent a linear fit to the data. 

Across the temporal scenarios, RENDVI783.740 was among the three best-performing SVIs 

when two or more traits were co-varying, while at the spatial scale scenarios, RENDVI783.740 was 

always among the three best-performing SVIs (Table 6 and Table 7, respectively). The other SVIs 

with good performance across temporal and spatial scenarios were NSDI779.75 and MTCI. 

2.4. Discussion 

The grassland spectral response across different spectral regions (VIS, RE and NIR-shoulder) 

showed to be both site-specific and scale-dependent. The NIR-shoulder slope showed different 

trends at two sites confirming the results of Vescovo et al. (2012) on the site-specificity of NIR-

shoulder indices. Moreover, the NIR-shoulder slope response at the spatial scale appeared to be 

more complex than the one at the temporal scale and did not strictly follow the typical temporal 

response at increasing LAI, characterized by an increase of NIR-shoulder slope corresponding to an 

increase of LAI. 
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The importance of using hyperspectral and superspectral sensors adopting SVIs with bands in 

the RE and NIR shoulder spectral region (Delegido et al., 2013; Vescovo et al., 2012) to estimate 

canopy structure was highlighted in this study for montane temperate grassland ecosystems, and 

novel band combinations were explored. RTM observations demonstrated that chlorophyll 

absorption can determine the spectral response well beyond 700 nm, and thus the optimal band 

combinations to estimate LAI often included far red bands (as shown also in Gitelson et al., 1993; 

Gitelson & Merzlyak, 1994; Gitelson et al., 2003). Ollinger’s paradox (2011) stating that (as 

chlorophyll absorption range was assumed by this author to be 400–700 nm) “the physiological 

activity of vegetation is often more strongly related to reflectance at wavelengths that are not used 

in photosynthesis than to those that are” has been—at least partially—explained during the last 

years as many studies have been highlighting that photosynthetic pigments’ absorption is active in 

the far-red domain. In our study, the RTM models indicate that chlorophyll absorption can be 

observed up to 760 nm (Figure 10), while in vivo observations previously indicated 740 nm as an 

upper limit (Gitelson et al., 1993). For both sites, high R2 values were detected for band 

combinations used in water indices. Such result is opening interesting perspectives as these indices 

can be calculated using both PRISMA and GF-5 satellite data. 

The GSA showed that the VIS part of the spectrum is mainly influenced by LAI and Cab, in 

the RE spectral region reflectance is determined by LAI, Cab, LAD, Cm and, Cbrown. In previous 

studies, the RE spectral region showed optimal performances in retrieving LAI and canopy 

chlorophyll content. The RE part of the spectrum is characterized by lower absorption by 

chlorophyll, but remains sensitive to changes in its content, reducing the saturation effect and 

enhancing the sensitivity of these SVIs to moderate-high vegetation densities reducing the typical 

SVI saturation effect (Gitelson & Merzlyak, 1994; Peng et al., 2017). The evident shift of the well-

correlated areas towards the lower wavelengths at the AT-Neu site suggests that the performance of 

some of the RE SVIs is site-specific, probably partly due to different absorption thresholds (Rossi et 

al., 2019; Vescovo et al., 2012). It is interesting to notice that, despite such shift, the area 

corresponding to RENDVI783.740 was well correlated at both sites, and for both the two years of 

observations at IT-MBo. 

Very contrasting results were achieved at the temporal and spatial scales. At IT-MBo temporal 

scale strong correlations (R2 > 0.8) were observed between LAI and both traditional RE and NIR-

shoulder (NSDI779.754) SVIs. Differently from previous studies (Liu et al., 2014; Vescovo et al., 

2012; Xie et al., 2018), the performance of such indices at the spatial scale was particularly poor 

with an R2 < 0.1. Such poor performance could be partially explained by the different LAI ranges at 

the temporal and spatial scales. At the spatial scale, saturation of some SVIs may be observed above 

certain LAI values, and this can constrain the ability to retrieve LAI when only full-canopy cover 

ecosystems are observed (Vescovo & Gianelle, 2008). The poor performance of the SVIs in 

retrieving LAI at the spatial scale observations is noteworthy and confirming the observations of 

Dong et al. (2019) on the strong response of canopy reflectance to canopy structural traits. 

Darvishzadeh et al. (2008b and 2008c) showed that LAI, in heterogeneous grasslands, could be 

estimated at the spatial scale using the SVIs approach with intermediate accuracy (R2cv values from 

0.49 to 0.69). Atzberger et al. (2013) evaluated the PROSAIL RTM suitability for grasslands and 

demonstrated that PROSAIL is well suited for LAI estimations. However, in their study, the 

PROSAIL-generated and the in-situ hyperspectral-derived correlation plots, across the RE and NIR-

https://www.mdpi.com/2072-4292/12/14/2254/htm#fig_body_display_remotesensing-12-02254-f009
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shoulder ranges, demonstrated different R2 patterns between observed and modeled LAI, indicating 

that RTM parameterization for LAI retrieval is challenging in these spectral domains. The selection 

of leaf structural and canopy architectural settings is key to achieve an accurate LAI retrieval, and 

can be complex when heterogeneous canopies are modeled. Following the indications of 

Darvishzadeh et al. (2008b) on the impact of grassland species composition and canopy architecture 

on remote sensing models, we hypothesized that the structural heterogeneity of the investigated 

montane temperate grasslands at the spatial scale might play a crucial role on LAI retrieval. Our 

results confirm that: (i) the co-variation of all structural traits (such as LAI, LAD, Cm and N, at the 

spatial scale) could explain the poor performance of most SVIs; and (ii) due the co-variation of both 

structural and biochemistry traits, no SVI is able to provide reliable LAI spatial estimations. In our 

study, we used the PROSAIL RTM in forward mode to study the impact of co-variation of PTs on 

LAI estimation. The PROSAIL results confirmed that trait-covariation resulting from extreme 

grassland heterogeneity has a strong impact on LAI estimation accuracy. Such findings agree with 

the observations of Ollinger (2011) on “the difficulty of assessing the relative importance of 

individual traits that co-vary with a suite of plant properties”. For the investigated montane 

temperate grassland types—characterized by extreme spatial heterogeneity—structural and 

biochemical intraspecific drivers linked to heterogeneous canopy species composition seem to have 

a stronger impact on traits estimation than interspecific drivers related to phenology. In other 

ecosystem types (e.g., arid and Mediterranean grasslands characterized by strong seasonality and 

extreme phenology dynamics due to changes of ecological factors related to climate and water 

availability) observations at the temporal scale are more challenging and significant limitations for 

remote sensing analysis are posed. In such grasslands, senescence can take place at varying rates 

and periods, increasing the variability of surface biophysical and optical properties (Van der Tol et 

al., 2020). 

RENDVI783.740 showed a good performance and it is not very commonly used in the literature, 

as it was introduced relatively recently. Peng et al. (2017) demonstrated that RENDVI783.740 was 

accurate in estimating canopy chlorophyll in crops with contrasting architectures (maize and 

soybean). Our results show how RENDVI783.740 can be used to monitor grassland LAI. 

RENDVI783.740 demonstrated to be the most insensitive to grassland structural traits co-variation. 

For this reason, considering the increasing availability of hyperspectral and superspectral sensors 

such as S-2, GF-5 and PRISMA, more studies are needed to investigate its full potential for 

monitoring grasslands and other spatially-heterogeneous ecosystems. 

The impact of structural PTs on the relationships between SVIs and LAI, although is well 

known in the literature, should be taken more carefully into account (Darvishzadeh et al., 2008b). 

Structural traits directly determine the interactions between light and both leaf and canopy elements. 

In particular, LAD (which is a key canopy trait whose effect has usually not been considered when 

applying common vegetation SVIs for mapping LAI) showed to have a strong influence for 

wavelengths > 705 nm. The impact of LAD has been determined for crops (Zou & Mõttus, 2017), 

but limited research was carried out for grasslands (Vescovo et al., 2012). 

Grassland canopy structure heterogeneity may impact the applicability of algorithms to detect 

vegetation changes due to phenology also at the temporal scale (Balzarolo et al., 2019; Zhao et al., 

2012), and this could be the case of temperate grasslands where species composition and coverage 

is varying due to, e.g., light competition dynamics. As the co-variation of biochemical traits was 
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included in the PROSAIL RTM simulations, a significant impact on the models accuracy was 

observed, indicating that both structural and biochemical factors play a major role in models’ 

performance. Biochemical heterogeneity can be determined not only by different vegetation types at 

the spatial scale, but also by phenological changes. In Mediterranean grasslands, where severe 

droughts and grassland curing are taking place during the summer months, both biochemical and 

structural changes are expected (Aldakheel & Danson, 1997; Wen-long et al., 2013). 

Using a combination of two NIR bands (both beyond 750 nm), the NIR-shoulder SVI 

NSDI779.75 (calculated from S-3 simulated bands) performed very well at IT-MBo, but not at the 

AT-Neu. This is probably due to the fact that chlorophyll absorption threshold is different at the two 

grassland ecosystems, and absorption is still present at 754 nm only in the IT-MBo grassland. This 

result is defining the green-dependency of NIR shoulder SVIs investigated in Vescovo et al. (2012), 

which were thought to be related to scattering mechanisms and not chlorophyll absorption. Our 

study highlighted that this spectral region, which has been poorly investigated in the literature, is 

largely affected, in addition to chlorophyll until 760 nm, by LAI, LAD, Cbrown and Cw. 

The suitability of well-known and widely adopted SVIs for retrieving LAI in grasslands with 

heterogeneous structure was also questioned in this paper. Many widely-adopted SVIs, e.g., 

NDVI865.665 and MTCI, exhibited a strong correlation with LAI when only a few traits were co-

varying, while a much weaker correlation was observed when more traits were co-varied. This 

agrees with the findings of Peng et al. (2017) and Horler et al. (1983) and advises to carefully 

evaluate potential uncertainties of satellite-based vegetation products such as LAI, fAPAR in 

spatially-heterogeneous canopies. In our work, we demonstrated that SVIs such as 

RENDVI783.740 seem to be less influenced by canopy architecture, leaf structure and biochemical 

traits co-variation, and need further testing. 

In this work, some constraints were highlighted on the use of statistical approaches based on 

SVIs. However, strong limitations of RTM inversion are also implied, and a reliable LAI 

spatialization in heterogeneous canopies needs to be based, in the future, on more detailed 

parameterization of the traits which are co-varying with LAI. RTM models show evident intrinsic 

limitations in their capacity to simulate heterogeneous canopies (Casas et al., 2014; Miraglio et al., 

2020), and do not take fully into account some parameters, e.g., the presence of non-photosynthetic 

material in the canopy (Melendo-Vega et al., 2018). Furthermore, the GSA showed the impact of 

many different input parameters on LAI retrieval, and only very preliminary information on the 

spectral impact of some RTM parameters (e.g., canopy brown pigments and anthocyanins) is 

available in the literature (Casas et al., 2014; Gitelson et al., 2009). 

2.5. Conclusions 

The potential of Sentinel bands combinations across the RE and the NIR-shoulder spectral 

region such as RENDVI783.740 and NSDI779.754 (which are novel or not commonly used in the 

literature) was highlighted. Such SVIs are worth more attention to ascertain their performance on 

other canopy types. Moreover, the hyperspectral analysis highlighted the suitability of the spectral 

regions related to water absorption features for LAI estimations (Ustin et al., 2004; Vescovo & 

Gianelle, 2008). 
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The impact of grassland structural and biochemical heterogeneity on LAI estimations was 

demonstrated to be strong and, for this reason, no reliable field LAI estimation was possible at the 

spatial scale with any SVI. The results of the empirical approach were confirmed by the simulations 

performed with the RTM PROSAIL, when both structural and biochemical traits were co-varied. In 

this context, the uncertainties of satellite-based LAI products (in grassland canopies with either 

spatially or temporally-heterogeneous structure) need to be carefully taken into account adopting a 

modeling approach which is minimizing the impact of canopy structural heterogeneity. Despite the 

fact that the sensitivity analysis demonstrated that LAD impact is quite strong starting from 705 nm, 

RENDVI783.740 proved to be the best performing S-2-based SVIs for monitoring grasslands with 

heterogeneous structure. Given the fact that our study was carried out in two sites in the Alps, and 

that spatial observations were carried out only in a limited number of plots, more studies are needed 

in other grassland ecosystems and/or in other geographic areas to confirm the potential of SVIs 

using this spectral domain (alongside with the water absorption features) for vegetation monitoring, 

in the context of the Sentinel, GF-5 and PRISMA missions. 

2.6. Supplementary Materials 

 

      Figure S1. RGB images of the different plots at the IT-MBo study site used for spatial analysis. 
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Figure S2. RGB images of the plot at the AT-Neu study site used for temporal analysis. 

 

Figure S3. The portable system used for spectral measurements at the IT-MBo for spatial scale observations. 
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Figure S4. RMSE values based on linear regression between the normalized difference of all two-band combinations 

and LAI for both study sites (IT-MBo 2013 (a); IT-MBo 2014 (b); and AT-Neu 2018 (c)) considering the temporal 

scale hyperspectral observations. RMSE obtained using: (a–c) the hyperspectral data; (d–f) S-2 simulated bands; (g–i) 

S-3 simulated bands. Black/white circles refer to the position of the indices in the correlogram and arrows are indicating 

the name of the respective indices. 

 

Figure S5. RMSE values based on linear regression between the normalized difference of all two-band combinations 

and LAI for IT-MBo 2017 considering the spatial scale observations: (a) RMSE obtained using the hyperspectral data; 

and (b,c) RMSE  obtained using S-2 and S-3 simulated bands, respectively. Black circles refer to the position of the 

indices in the correlogram and arrows are indicating the name of the respective indices. 
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Table S1. Specifications of the multispectral instrument (MSI) and ocean and land color instrument (OLCI) on the S-2 

and S-3 satellite system respectively, The NIR-shoulder bands investigated in this study shown in bold. 

S-2 Spectral 

Bands 

Central wavelength 

(nm) 

Spectral 

region 

S-3 Spectral 

Bands 

Central wavelength 

(nm) 

Spectral 

region 

B1 443 Blue-1 O1 400  

B2 490 Blue-2 O2 412.5  

B3 560 Green O3 443  

B4 665 Red O4 490  

B5 705 RE-1 O5 510  

B6 740 RE-2 O6 560  

B7 783 
NIR-

shoulder 
O7 620  

B8 842 NIR-shoulder O8 665  

B8a 865 
NIR-

shoulder 
O9 673.75  

B9 945 NIR O10 681  

B10 1375 SWIR-1 O11 709  

B11 1610 SWIR-2 O12 754 
NIR-

shoulder 

B12 2190 SWIR-3 O13 761  

   O14 764.375  

   O15 767.5  

   O16 779 
NIR-

shoulder 

   O17 865  

   O18 885  

   O19 900  

   O20 940  

   O21 1020  
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Table S2. Summary of the statistics (N: Number of observations; 𝑅2: Coefficient of determination; Adj. 𝑅2: adjusted coefficient of determination;  RMSE: Root mean square 

error) of the second order polynomial regression between leaf area index (LAI, m2·m−2) estimated from fraction of absorbed photosynthetically active radiation (fAPAR) and 

the spectral vegetation indices (SVIs) calculated from measured spectra for IT-MBo 2013, IT-MBo 2014, AT-Neu 2018 at temporal scale observations and for IT-MBo 2017 

at spatial scale observations. The three best-fitting models are highlighted in bold. Asterisk indicates significance of correlation: ∗∗∗ 𝑝 < 0.001; ∗∗ 𝑝 < 0.01; ∗ 𝑝 < 0.05; n.s.:not 

significant (Pearson’s correlation test). 

SVIs Temporal scale observation Spatial scale observations 

 IT-MBo 2013 (N=8) IT-MBo 2014 (N=14) AT-Neu 2018 (N=49) IT-MBo 2017 (N=10) 

 R2 Adj. R2 
RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 
R2 Adj. R2 

RMSE 

(m2·m−2) 

VIS-NIR             

NDVI865.665 0.83* 0.77 0.43 0.97 *** 0.97 0.14 0.71*** 0.70 1.37 0.15 n.s -0.10 0.71 

MTCI 0.86** 0.80 0.40 0.91*** 0.90 0.26 0.84*** 0.83 1.03 0.05n.s -0.23 0.75 

Red-edge (RE)  

RENDVI783.740 0.87** 0.82 0.37 0.98*** 0.97 0.13 0.80*** 0.79 1.15 0.11n.s -0.15 0.73 

RENDVI783.705 0.84** 0.78 0.41 0.96*** 0.96 0.17 0.82*** 0.81 1.08 0.00 n.s -0.28 0.77 

RENDVI 865.740 0.88** 0.84 0.36 0.98*** 0.97 0.14 0.20** 0.16 2.28 0.16 n.s -0.07 0.70 

NIR-shoulder  

NSDI779.754 0.89** 0.85 0.35 0.97*** 0.97 0.15 0.13** 0.09 2.38 0.07 n.s -0.19 0.74 

NSDI865.783 0.37 n.s 0.12 0.83 0.15 n.s 0.00 0.82 0.67*** 0.66 1.47 0.39n.s  0.22 0.60 
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Abstract 

Plant biodiversity is an important feature of grassland ecosystems, as it is related to the 

provision of many ecosystem services crucial for the human economy and well-being. Given the 

importance of grasslands, research has been carried out in recent years on the potential to monitor 

them with novel remote sensing techniques. In this study, the optical diversity (also called spectral 

diversity) approach was adopted to check the potential of using high-resolution hyperspectral 

images to estimate α-diversity in grassland ecosystems. In 2018 and 2019, grassland species 

composition was surveyed, and canopy hyperspectral data were acquired at two grassland sites: 

Monte Bondone (IT-MBo; species-rich semi-natural grasslands) and an experimental farm of the 

University of Padova, Legnaro, Padua, Italy (IT-PD; artificially established grassland plots with a 

species-poor mixture). The relationship between biodiversity (species richness, Shannon’s, species 

evenness, and Simpson’s indices) and optical diversity metrics (coefficient of variation-CV and 

standard deviation-SD) was not consistent across the investigated grassland plant communities. 

Species richness could be estimated by optical diversity metrics with an R = 0.87 at the IT-PD 

species-poor site. In the more complex and species-rich grasslands at IT-MBo, the estimation of 

biodiversity indices was more difficult and the optical diversity metrics failed to estimate 

biodiversity as accurately as in IT-PD probably due to the higher number of species and the strong 

canopy spatial heterogeneity. Therefore, the results of the study confirmed the ability of spectral 

proxies to detect grassland α-diversity in man-made grassland ecosystems but highlighted the 

limitations of the spectral diversity approach to estimate biodiversity when natural grasslands are 

observed. Nevertheless, at IT-MBo, the optical diversity metric SD calculated from post-processed 

hyperspectral images and transformed spectra showed, in the red part of the spectrum, a significant 

mailto:duccio.rocchini@unibo.it
mailto:karolina.sakowska@ibe.cnr.it
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correlation (up to R = 0.56, p = 0.004) with biodiversity indices. Spatial resampling highlighted that 

for the IT-PD sward the optimal optical pixel size was 1 cm, while for the IT-MBo natural 

grassland it was 1 mm. The random pixel extraction did not improve the performance of the optical 

diversity metrics at both study sites. Further research is needed to fully understand the links 

between α-diversity and spectral and biochemical heterogeneity in complex heterogeneous 

ecosystems, and to assess whether the optical diversity approach can be adopted at the spatial scale 

to detect β-diversity. Such insights will provide more robust information on the mechanisms linking 

grassland diversity and optical heterogeneity. 

Keywords: biodiversity indices; coefficient of variation (CV); man-made grasslands; natural 

grasslands; optical diversity; standard deviation (SD) 

3.1. Introduction 

Biodiversity and ecosystem functions are crucial in many different ways and provide several 

ecosystem services related to human well-being (Cavender-Bares et al., 2020; Naeem et al., 2016). 

A minimum level of biodiversity is needed for sustainable preservation to maintain ecosystem 

functions (Laurila-Pant et al., 2015). However, in the last decades, changes in human activities have 

modified the landscape in many different regions of the planet. In the Alps, for example, such 

modifications have accelerated biodiversity loss at unprecedented rates as in the last decades 

modifications in society, tourism, and agricultural production have led to substantial land use 

changes and a loss of landscape diversity, particularly for grassland ecosystems (Chemini and 

Rizzoli, 2014). In this context, to address the current decline in biodiversity, novel and efficient 

methods and tools are required to monitor biodiversity across spatial scales from the leaf level to 

the canopy, ecosystem, and global scales (Gamon et al., 2020; Schrodt et al., 2020; Schweiger, 

2020). 

In recent years, improved detector technology and novel sensors providing fine-scale 

hyperspectral imagery have enabled new methods to monitor ecosystem biodiversity based on 

varying plant optical properties of different species or functional groups (Bolch et al., 2020; Gamon 

et al., 2020; Ustin et al., 2020). Novel imaging sensors for in-situ observations that are now 

commercially available (Behmann et al., 2018) have spectral and spatial resolution sufficient to 

identify plant species from their leaf spectra (Pornaro et al., 2019; Wang et al., 2020). Such sensors 

can also be used to investigate the links between optical diversity and plant diversity across a range 

of different grassland ecosystems, from artificial to natural. Optical diversity (also called spectral 

diversity) refers to the “variation in remote sensing measurements, typically spectral reflectance, 

across sets of pixels and has been proposed to relate to conventional metrics of biodiversity” (Wang 

& Gamon, 2018). Different plant species respond in their own way to incoming solar radiation 

according to their pigment, water, and biochemical content, as well as leaf and canopy structure. 

Thus, the variability in the remotely sensed spectra might enable detection of plant species diversity 

(Wang & Gamon, 2018; Peng et al., 2019; Rocchini et al., 2010; Schweiger et al., 2018; Serbin and 

Townsend, 2020). This concept represents the basis of the spectral variability hypothesis (SVH): as 

the number of plant species increases for a given area, the spectral diversity observed from that area 

should also increase (Heumann et al., 2015; Rocchini et al., 2004). In the literature, there are 

different methods developed by the remote sensing community to quantify the spectral diversity and 
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to relate it to α-diversity. α-diversity is commonly measured by species richness (number of species 

in the sampling area) or can be quantified with other heterogeneity measures, such as e.g., the 

Shannon’s index (Shannon, 1948), Simpson’s index (Simpson, 1949), and species evenness (Pielou, 

1966), which measure the even abundance between species and dominance of the species. 

Several studies have tested the SVH in various ecosystems and at various spatial scales 

(grasslands: (Aneece et al., 2017; Möckel, 2016; Wang et al., 2016; Wang & Gamon, 2018); 

forests: (Schäfer et al., 2016; Torresani et al., 2019); wetlands: (Heumann et al., 2015) and reported 

that spectral diversity metrics can be used as a proxy of α-diversity. Spectral diversity metrics 

include the coefficient of variation (CV) (Gholizadeh et al., 2018; Gholizadeh et al., 2019; Wang & 

Gamon, 2018) and the standard deviation (SD) across the wavelengths (Aneece et al., 2017), the 

mean distance of pixels from the spectral centroid (Rocchini et al., 2010), the convex hull area of 

pixels in spectral feature space (Gholizadeh et al., 2018) and the spectral variance (Laliberté et al., 

2020). Schweiger et al. (2018) used spectral diversity based on the dissimilarity of 1000 randomly 

extracted vegetation pixels per plant community from high-resolution proximal data to test the 

relationship between spectral diversity and productivity. Many studies, however, were mostly 

focused on artificially established (sown) plant communities with relatively low diversity, which are 

very different in terms of structure from natural plant communities. Man-made ecosystems cannot 

be considered as fully representative of the complexity of natural field ecological conditions 

(Schweiger et al., 2018). A review of the results achieved in previous studies with respect to 

herbaceous canopies and grassland types is summarized in Table 8. These studies reported a 

positive correlation (up to R2 = 0.58) between spectral diversity metrics and α-diversity in grassland 

ecosystems (Aneece et al., 2017; Peng et al., 2019; Wang & Gamon, 2018). Aneece et al. (2017) 

related spectral diversity (expressed as SD) with species diversity (Shannon–Weiner index) and 

evaluated correlations (R2 = 0.43) across different spectral regions from visible (VIS) and near-

infrared (NIR). In another study, Wang et al. (2018) used the average CV of spectral reflectance 

calculated over the 430–925 nm wavelength as an indicator of optical diversity and then compared 

the CV values obtained at different spatial scales ranging from 1 mm to 1 m with α-diversity 

metrics. Peng et al. (2019) investigated a natural temperate grassland (with a maximum species 

richness of 12 in a 0.8 m diameter plot) and reported that the maximum R2 value of the correlation 

between optical diversity and α-diversity was 0.40. 
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Table 8. Summary of some of the previous studies using the optical diversity approach to estimate biodiversity. 

Study Type of grasslands 
Range of 

species per Plot 
Plot size Sensor used 

Optical diversity  

metrics 

Biodiversity 

indices 

Correlation between optical 

diversity and biodiversity metrics 

Aneece 

et al., 

2017 

Abandoned areas, 

early successional 

stages with exotic 

species (US) 

1 to 5 

1 m2 

(Footprint 

diameter 

1.15 m) 

ASD Field 

spectrometer 

SD1 of reflectance (average 

across590 to 674 nm) 
Shannon’s R2 (0.37) 

SD of CR1 (average 

across590 to 674 nm) 
Shannon’s R2 (0.43) 

SDof FD1 of original 

reflectance (average 

across925 to 1025 nm) 

Shannon’s R2 (0.43) 

Wang et 

al., 

2018a 

Artificial grassland 

with native species 

planted in Prairie 

Ecosystem (US) 

1 to 16 1 m2 

Imaging 

spectrometer 

(mounted on a tram) 

CV1 (average across430 to 

925nm) 

species richness R2 (0.47) 

Shannon’s R2 (0.43) 

Simpson’s R2 (0.58) 

species evenness R2 (0.42) 

PSV1 R2 (0.00) 

PSE1 R2 (0.27) 

Peng et 

al., 2017 
Natural temperate 

grasslands (China) 
1 to 12 

0.5 m2 

(Footprint 

diameter 

0.8 m) 

ASD FieldSpec2  

spectrometer 
SVIs1(FD583) species richness R2 (0.40) 

Present 

study 

Experimental golf turf  

grassland plots 
1 to 9 

0.0625 m2 

0.25 m2 

Imaging 

spectrometer 

(mounted on a 

tripod) 

CV, SD (average at different 

spectral regions, across the 

spectrum, and at each 

spectral band) 

species richness In discussion 

Present 

study 
Subalpine grasslands 2 to 17 0.0625 m2 

Imaging 

spectrometer 

(mounted on a 

tripod) 

CV, SD (average at different 

spectral regions, across the 

spectrum, and at each 

spectral band) 

species richness, 

Shannon’s, 

species evenness, 

Simpson’s 

In discussion 

1 SD: standard deviation, CR: continuum removed, FD: first derivative, CV: coefficient of variation, PSV: phylogenetic species variability, PSE: phylogenetic species 

evenness, SVIs: spectral vegetation indices. 
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The relationship between spectral diversity and biodiversity demonstrated to be not consistent 

across plant communities. For example, Lucas and Carter (2008) investigated the link between 

spectral diversity metrics (expressed in terms of CV) and species richness and revealed 

contradictory relationships between spectral α-diversity and species richness in meadows of Horn 

Island (Mississippi, USA). The accuracy of the species diversity estimation varied with the spectral 

data acquisition and with the level of complexity of the community. Spatially heterogeneous canopy 

structure has a greater possibility to create heterogeneous shadow patterns. Heterogeneous canopy 

shadow patterns modify optical diversity patterns, which are influenced not only by plant diversity 

but also by shadow rates. Additionally, phenology status shifts among different species may lead to 

major structural differences in terms of different rates and different spatial distribution of non-

photosynthetic elements (e.g., flowers, dead material, Hall et al., 2012; Vrieling et al., 2018). This 

heterogeneity may create a further shift between optical diversity metrics and the measured 

biodiversity metrics; as a result, the accuracy of the estimation of biodiversity metrics can be 

reduced (Peng et al., 2019). 

Uncertainties in the remote estimation of canopy biodiversity also exists because species 

richness is an aggregated measure of diversity that does not take explicitly into account either 

canopy structure or composition, the two main vegetation properties that are more easily captured 

by remotely sensed data (Nagendra, 2001). With the advancement of proximal sensors technology 

and the use of very-high spatial resolution (up to 1 mm) imagery (Behmann et al., 2018), new 

opportunities arise, although some new challenges need to be considered. Ideally, the pixel size 

should be smaller than the sampling unit, especially when estimating α-diversity by using the 

spectral diversity approach (Rocchini et al., 2016). However, at the same time, a few authors 

highlighted the drawback of very-high spatial resolution imagery and state that a finer scale 

increases the spectral variability caused by canopy non-photosynthetic elements (flowers and dead 

material), shadowed pixels, and overexposed pixels, which often hamper the separability of the 

individual plant species in pixel-based studies (Gholizadeh et al., 2018; Lopatin et al., 2017; Wang 

& Gamon, 2018). Similarly, Nagendra (2001) stressed the downside of very-high spatial resolution, 

which can be excessive in respect to the objects being represented, contributing to the variability in 

optical patterns, and a reduction in the accuracy in classification studies (Rocchini, 2007). In the 

optical diversity context, Rocchini et al. (2016) stated that when very-high spatial resolution is used 

to monitor the species diversity, the shadowed pixels may create a higher spatial heterogeneity 

among the spectra, which leads to noise rather than enhancing the information content. 

The aforementioned studies on grasslands (Aneece et al., 2017; Peng et al., 2019; Wang & 

Gamon, 2018) were focused on relatively low-diversity or artificially established plant communities 

which are very different in terms of structure and complexity from the natural grassland plant 

communities. The studies on grassland biodiversity are often carried out at small scale using a 

“within-site” approach to keep environmental conditions among treatments as much constant as 

possible (Roscher et al., 2005) and are often based on manipulation of species richness. In this 

regard, Grace et al. (2007) highlighted the limits of manipulation experiments in ecological studies 

and the need for more analyses focused on mature natural ecosystems. 

The present study examined the possibility to use variability in vegetation optical properties to 

assess species diversity in grassland ecosystems using very high spatial resolution hyperspectral 

data. Spectral diversity has been quantified through the analysis of the CV (Wang et al., 2016; 
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Wang & Gamon, 2018; Wang et al., 2018a) and the SD (Aneece et al., 2017; Blanco-Sacristán et 

al., 2019; Peng et al., 2019) of the original and transformed hyperspectral reflectance. We 

conducted two sets of experiments in two different grasslands with different origin and different 

diversity levels. The first ecosystem was a turfgrass established artificially by seeding a limited 

number of species (1–9 species in 2 × 2 m plots), while the second was a subalpine semi-natural 

grassland characterized by high diversity (up to 17 species in a 0.25 × 0.25 m plot). 

Specific field campaigns were carried out to test the following research questions: 

(1) Is there a relationship between plant α-diversity and spectral diversity proxies obtained using 

high spatial and spectral resolution imagery? Can this relationship be observed both in the species-

poor turf grassland and in the subalpine semi-natural grassland characterized by high biodiversity 

and heterogeneous canopy structure? 

(2) What is the impact of processing methods, such as filtering and spectral transformations, on the 

correlations between grassland spectral diversity and biodiversity metrics? 

(3) What is the impact of the spatial sampling scale and random pixel extraction on the relationship 

between grassland optical diversity and biodiversity metrics? 

3.2. Materials and Methods 

3.2.1. Study Area 

The dataset used in this study was collected at two grassland sites characterized by different 

structure, species composition, and origin (Supplementary Materials, Figure S6). The first site was a 

turf grassland (Figure 14) located on the Experimental Farm of the University of Padova, in 

Legnaro, Italy (45°21′ N, 11°58′ E; 6 m a.s.al., IT-PD), where plots of varying species richness 

(ranging from 1 to 9) were established in September 2018 by seeding. The established plots were 

arranged in a square (2 × 2 m) design and were managed by removing weeds and mowed with a 

rotary mower machine at approximately 4.7 mm every other week. Subplots with dimensions of 

0.25 × 0.25 m and 0.5 × 0.5 m were chosen within the 2 × 2 m square plots for the spectral and 

biodiversity analysis. The species composition of the investigated plots at IT-PD is summarized 

in Table S3 in Supplementary Materials. 

The second site was a permanent semi-natural grassland (Figure 14) situated in the Italian 

subalpine vegetation belt at Viote del Monte Bondone, Trentino province, Italy (46°00′ N, 11°01′ E; 

1480–1550 m a.s.al., IT-MBo). The grassland area lies on a plateau, and it is managed extensively 

as a meadow with low mineral fertilization. It is cut once a year around mid-July at the green 

biomass peak time, and it is characterized by very high plant diversity (Donita et al., 2003). Several 

different vegetation types can be found in the area with extremely varying canopy structure and 

biomass (Sakowska et al., 2019; Imran et al., 2020). The Sieverso-Nardetum strictae association 

covers a high portion of the plateau characterized by short canopies. The Scorzonero Aristatae-

Agrostidetum tenuis association canopy is generally taller, and it grows on calcareous soils. The 

latter association includes more productive species, and it can be found in the most fertile and well-

exposed areas of the plateau (Sakowska et al., 2019). The species composition of the 25 

investigated plots (0.25 × 0.25 m) of the IT-MBo plateau is summarized in Table 

S4 in Supplementary Materials. 
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Figure 14. (A) Location of the sample plots in both study areas (IT-PD and IT-MBo). (B) The IT-PD plots (n = 9) are 

located at the experimental farm of the University of Padova (Legnaro, Italy). (C) IT-MBo plots (n = 25) are located in 

the natural grassland ecosystem in the Italian Alps (Monte Bondone, Trento, Italy). RGB images of selected plots of 

both study sites are shown on the right. 

The methodological flowchart of the study is shown in Figure 15. In the following sections, 

each step is described in detail. 

 

Figure 15. Flowchart representing the data processing approach used in this study. See Section 2.4 for details on the 

different levels of processing. 



70 

3.2.2. Biodiversity 

To collect the floristic information, vegetation surveys were carried out by a trained person 

within the study areas. At the IT-PD site, the species number was counted after identification of all 

species within the ROI (0.25 × 0.25 m and 0.5 × 0.5 m). At the IT-MBo site, the species 

composition was determined by listing all plant species within the ROI (0.25 × 0.25 m) and visually 

estimating their percent cover (Kent & Coker, 1992). Species percent cover information was used to 

calculate the following biodiversity indices: species richness (S), Shannon’s index (H’), Simpson’s 

index (D), and species evenness (J, calculated as Pielou’s index). The details regarding the 

biodiversity indices are reported in Table 9. All biodiversity indices were calculated using the 

‘vegan’ R package (Oksanen et al., 2020). 

Table 9. Biodiversity metrics used in this study. pi is the proportion of the species i. 

3.2.3. Spectral Data Acquisition 

At the IT-PD site, the hyperspectral data of the nine plots were collected in the summer of 

2019 by means of a SPECIM IQ hyperspectral camera (SPECIM Ltd., Finland). The spatial 

sampling of the camera is 512 pixels per line and the spectral resolution is 7 nm, with 204 bands 

across the VIS (397 nm–700 nm) and NIR (700 nm–1003 nm) spectral range. The hyperspectral 

camera was mounted on a tripod and two nadir images were collected at approximately 1 and 2 m 

from the ground (with an image footprint of approximately 0.55 × 0.55 m and 1.1 × 1.1 m, 

respectively). The images were acquired using the simultaneous mode (the white reference panel 

was recorded simultaneously with the targeted vegetation). For both study sites, the spectral data 

were acquired between 11:00 and 14:00 local time under clear sky conditions. To record the 

images, an integration time of 1 ms was used, which provided a weak signal, but ensured non-

saturated images. The SPECIM IQ did not allow the acquisition of non-saturated images with 

higher integration time under clear sky conditions. The ROIs (0.25 × 0.25 m and 0.5 × 0.5 m) of the 

IT-PD images were extracted and used for post-processing and spectral diversity metrics 

calculations. The distance from the canopy was approximately 1 m for IT-PD and 0.7 m for IT-

MBo site. Although the distance between the canopy and the camera was kept as constant as 

possible, the number of pixels within the ROIs was not exactly the same due to slight variation in 

canopy height. In the IT-PD plots, the average number of pixels per ROI was 64,260 pixels, with an 

average pixel size of 1 mm (pixel size: min, 0.95 mm and max, 1.02 mm) and 10,8240 pixels with 

Biodiversity Metrics Formula Reference 

species richness (S) S = number of species Colwell, 2009) 

Shannon’s index (H’) H′ =  − ∑ pi ln(pi)

S

i=1

 Shannon, 1948 

Species evenness (J) J =  H′/ ln (S) Pielou, 1966 

Simpson’s index (D) D = 1 −  ∑ pi
2

S

i=1

 Simpson, 1949 
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an average pixel size of 1.5 mm (pixel size: min. 1.48 mm and max. 1.56 mm) within the ROIs of 

0.25 × 0.25 m and 0.5 × 0.5 m, respectively. 

At the IT-MBo site, we selected 30 randomly distributed plots with species richness ranging 

from 2 to 17. In the summer of 2018, at the biomass peak time, we collected canopy level spectral 

data using the same SPECIM IQ camera. The canopy height at IT-MBo was not consistent between 

the plots (varied from 0.3 to 1.2 m); therefore, the hyperspectral images were collected 

approximately 0.7 m from the canopy level to capture a squared footprint of approximately 0.55 × 

0.55 m. A 0.25 × 0.25 m frame was placed within each image footprint to define the ROIs used for 

post-processing and spectral diversity metrics calculations. The average number of pixels within the 

IT-MBo ROIs was 84,100 with an average pixel size of 0.9 mm (pixel size: min, 0.70 mm and max, 

1.48 mm). All the 30 plots images were visually evaluated to remove any blurred (because of 

moving leaves due to windy conditions) and out of focus images. Finally, 5 plots were discarded 

after the quality check of the hyperspectral images and 25 plots were kept for further analysis. 

3.2.4. Pre- and Post-Processing 

ROIs were extracted from the image using the ENVI (version 4.8) software. For further 

processing, we used the open-source statistical software R (R Core Team, 2019). The pre- and post-

processing of the hyperspectral data were categorized into four processing levels. In Level0, 

corresponding to processing of the raw spectral data, the bands 397–411 and 930–1003 nm were 

removed to avoid the use of noisy data which were detected in these spectral regions (Behmann et 

al., 2018). To further reduce the noise in the spectral signature, a Savitzky–Golay smoothing filter 

(Savitzky & Golay, 1964) was applied using a 25-band window width. 

The brightness of the spectra may be affected by heterogeneous illumination, leaf volume, or 

subpixel shade (Feilhauer et al., 2010). For Level1 processing, we applied brightness normalization 

(Feilhauer et al., 2010) to all the images and then calculated the optical diversity metrics from the 

brightness normalized images. 

For Level2 processing, we applied specific filters to remove bright pixels from the images, 

alongside pixels containing flowers, shadows, and soil background, as they are not linked to plant 

biodiversity. We used the red band (680 nm) to remove shadowed pixels (Han et al., 2018), and the 

thresholds were defined by visual interpretation. Pixels with red band reflectance below the first 

quartile were found to be suitable for obtaining a reliable separation between shaded and sunlit 

pixels for the investigated plots. To filter the flower pixels, we used the red-green normalized 

difference vegetation index (NDVIrg) based on the red and green bands (640 and 551 nm, 

respectively). Pixels with an NDVIrg value higher or equal to the visually selected threshold of 0.1 

were excluded (Wan et al., 2018). Furthermore, to remove the bright pixels in the images due to hot 

spots at the leaf level, we used the NIR band (865 nm) and selected a threshold value (>third 

quartile) to filter out the over-illuminated pixels. To remove dead leaves pixels, we used a 

normalized difference vegetation index (NDVI) mask (≤0.7) for all of the images. For 

Level2 processing, about 46% for IT-PD and 54% for IT-MBo of the pixels from the total number 

of pixels within the ROIs were classified as shadows, flowers, dead leaves, and bright pixels and 

were filtered out. 
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To normalize the spectral features and reduce noise, spectral vegetation indices are commonly 

used to remotely evaluate vegetation covers both quantitatively and qualitatively (Fang et al., 2016). 

In some cases, transformed (continuum-removed—CR) spectra is used to normalize reflectance data 

(Aneece et al., 2017). To further improve the quality of the images for Level3 processing, we, 

therefore, calculated the CR spectra from the Level2-processed data. 

3.2.5. Calculation of Optical Diversity Metrics 

As an indicator of the optical diversity of each plot, we used two spectral diversity metrics: 

the CV (i.e., ratio of the standard deviation to the mean, (Blanco-Sacristán et al., 2019; Wang & 

Gamon, 2018) and the SD calculated as the average across the spectrum (Wang & Gamon, 2018) 

from the Level0-processed data using the following equations: 

CVimage =

∑ (
std (ρλ)

mean (ρλ)
)

930

λ=411

number of bands
 

(4) 

where ρλ represents the reflectance value at wavelength λ and std (ρλ) and mean (ρλ) 

indicate the standard deviation and mean value of the reflectance at wavelength λ, respectively. The 

average CV and SD were also calculated considering different spectral regions (408–499 nm, 500–

589 nm, 590–674 nm, 675–754 nm, and 755–930 nm) as in Aneece et al. (2017) from the Level0-

processed data. We also calculated the CV and SD for each spectral band using Equations (3) and 

(4) from the original images and for each of the post-processing levels (Level0 processing, 

Level1 processing, Level2 processing, and Level3 processing) described in Section 2.4: 

𝐶𝑉𝑖𝑚𝑎𝑔𝑒 (𝜆) =  
𝑠𝑡𝑑 (𝜌𝜆)

𝑚𝑒𝑎𝑛 (𝜌𝜆)
 (5) 

𝑆𝐷𝑖𝑚𝑎𝑔𝑒 (𝜆) =  𝑠𝑡𝑑 (𝜌𝜆) (6) 

where ρλ represents the reflectance value at the wavelength λ and std (ρλ) and mean (ρλ) 

indicate the standard deviation and mean value of the reflectance at the wavelength λ, respectively. 

The CV and SD calculated from the fully transformed Level3 reflectance (brightness normalized, 

filtered, and CR) are shown in Figure 16 (IT-PD CV: E and IT-PD SD: F) and Figure 17 (IT-MBo 

CV: E and IT-MBo SD: F). 
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Figure 16. Mean reflectance spectra of nine plots located at the IT-PD site: (A) Original reflectance; (B) Brightness 

normalized reflectance; (C) Brightness normalized and filtered reflectance; (D) Brightness normalized, filtered, and 

continuum removed spectra; (E) Coefficient of variation; (F) Standard deviation. In panels (A–F), a solid line 

represents the mean reflectance obtained from 0.25 × 0.25 m ROIs with a pixel size of 1 mm and a dashed line 

represents reflectance from 0.25 × 0.25 m ROIs with a pixel size of 1.5 mm. 

 

Figure 17. Mean reflectance spectra of 25 plots located at the IT-MBo site obtained from 0.25 × 0.25 m ROIs: (A) 

Original reflectance; (B) Brightness normalized reflectance; (C) Brightness normalized and filtered reflectance; (D) 

Brightness normalized, filtered, and continuum removed spectra; (E) Coefficient of variation; (F) Standard deviation. 

The effects of pixel resolution and random pixel extraction on the relationship between optical 

diversity and biodiversity indices were tested at both sites. To study the impact of spatial resolution, 
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the original data were resampled using the nearest neighbor algorithm to different spatial 

resolutions (1 mm, 2.5 mm, 5 mm, 1 cm, 2.5 cm, 5 cm, and 8.3 cm), processed with 

Level3 processing, and then the obtained pixels (approximately 54% of the pixels for IT-PD and 

46% for IT-MBo) were used to calculate the optical diversity metrics at each resolution. Finally, to 

evaluate the sample size effects on the relationships between optical diversity and biodiversity 

indices, a varying number of pixels (50, 100, 150, 250, 300, and 500) were randomly extracted from 

the Level3-processed data. Pixel random extraction was re-iterated 10 times and the optical diversity 

metrics were calculated at each extraction, and the 10 R values of the correlations between 

biodiversity and optical diversity metrics were averaged. 

3.2.6. Statistical Analysis 

The Pearson correlation coefficient (R) and the corresponding p values between the optical 

diversity metrics (CV and SD) and the biodiversity indices (species richness, Shannon’s index, 

Simpson’s index, and species evenness) of the surveyed plots were calculated with the “cor.test” 

function in the “stats” package separately for the two grassland sites. Calculations were done for 

both the original and transformed reflectance data. Normality of the data and residuals of the 

correlation between the best correlated optical diversity metrics and the field-measured species 

richness was checked with a Shapiro–Wilk test using the “shapiro.test” function in the “stats” 

package. The analyses were performed with the statistical software R (version 3.6.1) (R Core Team, 

2019). 

3.3. Results 

In Figure 16 and Figure 17, the mean original reflectance (panel A), mean transformed 

reflectance (panels B–D), and the spectral diversity metrics (CV and SD, panels E and F, 

respectively) from each plot are presented with respect to the plot species richness at both study 

sites. 

The original mean reflectance values of the different plots showed some variability, especially 

in the NIR domain, at both study sites (Figure 16A and Figure 17A). Reflectance values and 

spectral variability among the plots was reduced when brightness normalization was applied to the 

hyperspectral image (Figure 16B and Figure 17B). Additionally, the variability was slightly reduced 

when a filter was used to remove flowers, shadows, and bright pixels from the images C and Figure 

4C). The CR spectra calculated from the brightness normalized and filtered images also showed low 

variability in the spectra, at both study sites (Figure 16D and Figure 17D). 

At the IT-PD site, the mean original reflectance obtained from the 1 mm pixel size data (solid 

line, Figure 16A) was higher compared to the mean reflectance from the 1.5 mm pixel size data 

(dashed line, Figure 16A). There was not much difference observed between the mean spectra from 

the two different spatial resolutions (1 and 1.5 mm) at different processing stages (Figure 16B–D). 

In general, the reflectance increased with the increase of species richness from 1 to 4 and then it 

started to decrease (Figure 16A). On the other hand, at the IT-MBo, a clear link of the reflectance 

values with species richness was not noted (Figure 17A). 

The optical diversity measured by the CV from the Level3-processed data showed that the 

spectral variability in the reflectance within plots was particularly high in the VIS part of the 

spectrum, while the variability in the NIR spectral region was low (Figure 16E). In general, the 

https://www.mdpi.com/2072-4292/13/14/2649/htm#fig_body_display_remotesensing-13-02649-f003
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highest CV values were observed in the plots where four species were observed, while the lowest 

CV values in the plots with three species (Figure 16E). Therefore, no manifest association with 

plant biodiversity was observed. The SD showed three peaks in the blue, green, and red-edge 

spectral domains, and the lowest SD was detected around 680 nm (Figure 16F). 

The lack of relationship between the spectral diversity across the spectrum (CV and SD) and 

species richness was particularly pronounced at the IT-MBo site (Figure 17). Similarly to the IT-PD 

site, the CV at the IT-MBo site showed that variability was observed mainly in the VIS part of the 

spectrum, while the NIR spectral region was characterized by low variability (Figure 17E). The SD 

at IT-MBo showed three peaks across the spectrum (Figure 17F). As in the IT-PD dataset, the 

highest values of SD were found around the blue, green, and red-edge part of the spectrum, while 

the lowest SD was detected around 680 nm at the IT-MBo site (Figure 17F). 

In this study, the performance of spectral diversity to estimate plant diversity was not 

consistent across the spatial scale, over different grassland ecosystems, and across different spectral 

regions. For the IT-PD site, the Pearson correlation analysis revealed positive correlations between 

optical diversity metrics (calculated from the Level0 data and averaged across the spectrum) and 

species diversity except for the SD metric calculated from 1.5 mm pixel size data, which showed 

almost no correlation in the NIR part of the spectrum (Appendix A, Figure A1). For both datasets, 

the CV in different spectral regions showed higher R values compared to the SD metric in the VIS 

and red-edge part of the spectrum. On the other hand, in the NIR spectral region, both metrics 

showed weak correlations (1 mm: CV: R = 0.23, p = 0.56, SD: R = 0.25, p = 0.51; 1.5 mm: CV: R = 

0.13, p = 0.73, SD: R = −0.01, p = 0.98). At the IT-PD site, generally weak correlations were 

observed between the CV calculated across the spectrum and species richness (1 mm: R = 0.52, p = 

0.15; 1.5 mm: R = 0.62, p = 0.08), while the SD metric showed lower R values (1 mm: R = 

0.31, p = 0.41; 1.5 mm: R = 0.21, p = 0.59) for both datasets. For the IT-MBo site, the spectral 

diversity metrics showed contrasting results with pervious work (Aneece et al., 2017; Wang & 

Gamon, 2018), highlighting a weak correlation between optical diversity and biodiversity indices. 

The correlations obtained between optical diversity metrics calculated from the Level0 data 

averaged across the spectral regions and within different spectral regions showed almost no 

correlation with species richness, although a weak positive correlation for CV and SD averaged in 

the 408–499 nm spectral region was recorded (Appendix A, Figure A2, panel A). For other 

biodiversity indices (Shannon’s index, species evenness, and Simpson’s index) both optical 

diversity metrics (calculated from the Level0-processed data) mostly showed an inverse correlation 

both when the CV and SD were averaged within different spectral regions and when it was 

averaged across the VIS-NIR spectral region (Appendix A, Figure A2, panels B,D). 

In a further step, to check the impact of image processing on the metrics performance, we 

calculated the CV and the SD for each spectral band from both untransformed (Level0) and 

transformed (Level1, Level2, and Level3) reflectance. We examined the correlations across the 

spectrum between species richness and both the CV and SD optical diversity metrics and we found 

high R values for both spatial scales: up to R = 0.83 (CV) and R = 0.84 (SD) and R = 0.87 (CV) and 

R = 0.86 (SD) for 1 and 1.5 mm pixel size, respectively (Figure 18). We observed that the CV and 

SD calculated from transformed reflectance showed, in general, higher R values compared to 

untransformed reflectance. For the 1 mm pixel size image, the correlations between species richness 

and the CV and SD metrics calculated from the transformed reflectance were mostly positive in the 
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VIS and negative in the NIR (Figure 18). The maximum R values and their respective wavelengths 

for both datasets (1 mm and 1.5 mm) and various processing levels are reported in Table S5. 

 

Figure 18. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV 

and SD for each wavelength from 411 to 930 nm and species richness at the IT-PD site: (A): 1 mm pixel size; (B): 1.5 

mm pixel size), considering different processing levels. 

At the IT-MBo site, the shape of the R values curve was very different compared to the IT-PD 

site (Figure 19). Additionally, lower R values were occurring across the spectrum, with a small 

spike in the wavelengths around 680 nm for the SD calculated from Level2 and Level3 transformed 

reflectance. Similar trends were noted for R curves for all the investigated biodiversity indices 

(Figure 19A–D). The maximum R values and their respective wavelengths and various processing 

levels at IT-MBo are reported in Table S6. 

https://www.mdpi.com/2072-4292/13/14/2649/htm#fig_body_display_remotesensing-13-02649-f005
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Figure 19. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV 

and SD for each wavelength from 411 to 930 nm and biodiversity indices at the IT-MBo site: (A) species richness; (B) 

Shannon’s index; (C) species evenness index; (D) Simpson’s index, considering different processing levels. 

3.3.1. The Impact of Spatial Resolution on the Spectral Diversity–Biodiversity Relationships 

To study the scale effects, we investigated the relationships between optical diversity and 

biodiversity metrics at decreasing spatial resolutions (1 mm, 2.5 mm, 5 mm, 1 cm, 2.5 cm, 5 cm, 

and 8.3 cm) by resampling the original spectral data (Figure 20). For the IT-PD site, in the VIS part 

of the spectrum a strong relationship between optical diversity metrics and species richness with an 

R value (R > 0.5) was recorded when pixel size was reduced up to 1 cm, while with a larger pixel 

size (>2.5 cm), the R values started to decrease, reaching a value of −0.15 when the pixel size 

increased up to 8.3 cm (Figure 20). In the NIR part of the spectrum, a strong inverse correlation was 

obtained when the CV and the SD were calculated from 1 cm resampled data. The strength of the 

inverse correlation started to weaken when pixel size increased, and the weakest correlation was 

noted with 8.3 cm pixel size data (R = −0.3). The maximum R values and their respective 

wavelengths across different spatial resolutions for the IT-PD site are summarized in Table S7. 
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Figure 20. Correlation coefficient from the Pearson correlation analysis (R) at the IT-PD site between optical diversity 

expressed as CV and SD for each wavelength from 411 to 930 nm at different spatial scales and species richness. 

In Figure 21, we considered the effect of pixel downsampling at the IT-MBo site. A clear 

difference in R values was observed between the two optical diversity metrics: around 680 nm, the 

SD showed a stronger correlation compared to the CV when the spatial resolution was reduced up 

to 5 cm, while for 8.3 cm, both metrics showed a weak inverse correlation with biodiversity indices 

around the same wavelengths. For the SD metric, the effect of pixel downsampling was noticeable 

when the pixel size went beyond 2.5 mm, as the maximum R value around 680 nm dropped from 

0.48 to 0.12, 0.55 to 0.02, 0.54 to 0.01, and 0.39 to −0.16 for the species richness, Shannon’s index, 

species evenness, and Simpson’s index, respectively. In general, a similar pattern of R values was 

observed for all biodiversity indices, where the CV mostly showed an inverse correlation 

particularly around 550 nm, and the strength of the correlation increased with increasing pixel sizes 

up to 2.5 cm. On the other hand, for lower spatial resolutions (>2.5 cm), the strength of the 

correlation weakened, and for 8.3 cm, the weakest correlation was observed at the same 

wavelength. Similarly, at RE spectral bands (around 720 nm), the effect of decreasing spatial 

resolution could be noticed as the inverse correlation became stronger at increasing pixel sizes up to 

5 cm. 
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Figure 21. Correlation coefficient from the Pearson correlation analysis (R) between the optical diversity expressed as 

CV and SD for each wavelength from 411 to 930 nm at different spatial scales and biodiversity indices at the IT-MBo 

site: (A) species richness; (B) Shannon’s index; (C) species evenness; (D) Simpson’s index. 

3.3.2. The Impact of Pixel Subsampling on the Spectral Diversity–Biodiversity Relationships 

In Figure 22, we present the results achieved by using the subsampling approach presented by 

Schweiger et al. (2018) to calculate the optical diversity. For the IT-PD plots, subsampling by 

random pixel extraction generally did not cause any major changes in the R patterns across the 

spectrum, except for the NIR region, in which subsampling based on 50, 100, 250, and 300 pixels 

resulted in a noticeable reduction in the R values (Figure 22). Nevertheless, positive R values were 

observed in the VIS part of the spectrum, while mostly negative R values were observed in the NIR 

spectral bands. 
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Figure 22. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV 

and SD for each wavelength from 411 to 930 nm and species richness at the IT-PD site considering different numbers 

of pixels. 

Similarly, for the IT-MBo site, there were generally no considerable improvements in the 

correlation coefficient between the optical diversity metrics calculated using randomly extracted 

subsample pixels and biodiversity indices compared to the results found between the same metrics 

when considering all pixels (Figure 23). In general, the SD metric showed stronger relationships 

with biodiversity indices compared to the CV metric. The highest R value (R ≥ 0.5) was observed 

around 680 nm when 250 pixels were used to calculate the SD for all biodiversity indices, while for 

the CV around the same wavelength, very low R values (R ≤ 0.09) were obtained (Figure 23A–D). 

For the IT-MBo site, the strongest relationship was observed between the Simpson’s index and the 

SD metric calculated with 250 pixels at 685 nm (R = 0.62, p = 0.001, Figure 23D). 
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Figure 23. Correlation coefficient from the Pearson correlation analysis (R) between optical diversity expressed as CV 

and SD for each wavelength from 411 to 930 nm and biodiversity indices at the IT-MBo site: (A) species richness 

index; (B) Shannon’s index; (C) species evenness; (D) Simpson’s index, considering different number of pixels. 

3.4. Discussion 

Similarly, to other authors (Aneece et al., 2017; Peng et al., 2019; Wang & Gamon, 2018), our 

study found a significant relationship between spectral diversity (expressed as CV and SD) and 

species diversity in the lower-diversity artificial grassland site. However, the data acquired at the 

semi-natural subalpine grassland at IT-MBo with the same methodology and analyzed with the 

same approach provided much weaker correlations. Such results may be due to the very high level 

of biodiversity (up to 17 species in a 0.25 × 0.25 m plot) and to the rather complex structure of the 

IT-MBo grasslands (Imran et al., 2020) compared to the low-diversity turf canopy at the IT-PD site. 

Our main findings questioned the applicability of the optical diversity method to estimate 

biodiversity in highly diverse grasslands, such as the ones at the IT-MBo site. Despite the fact that 

we used several different processing techniques to enhance the optical diversity signal, for the 

subalpine grassland site of IT-MBo, we were not able to match the performance of optical-based 
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methods to estimate the biodiversity reported in other studies (Aneece et al., 2017; Peng et al., 

2019; Wang & Gamon, 2018). In Aneece et al. (2017), an artificial ecosystem (with max. 5 

species/m2) was investigated, and the maximum R2 value of the correlation between the optical 

diversity and α-diversity was 0.43. Wang et al. (2018) carried out on an artificial grassland (max. 16 

species/m2), in which the maximum R2 value reached 0.58, while in the study of Peng et al. (2019), 

which focused on natural grasslands (with a maximum species richness of 12 in a 0.8 m diameter 

plot), the maximum R2 value reached 0.40. 

In our study, when optical diversity metrics were averaged across different spectral regions as 

in Aneece et al. (2017) and across the spectrum as in Wang et al. (2018), we found contradictory 

results at the two sites. At the IT-PD site, a positive correlation between optical diversity metrics 

and biodiversity indices was mostly observed, while at the IT-MBo site, the correlation was mostly 

negative (IT-PD and IT-MBo; Appendix A, Figure A1, panels A, B and Figure A2, panels A–D, 

respectively). When the CV and the SD were calculated for each spectral band on a separate basis, 

the R reached much higher values: 0.84 (SD metric at 927 nm) and 0.87 (CV metric at 412 nm) in 

the artificial turfgrass (maximum number of species was 9 in a 0.25 × 0.25 m and 0.5 × 0.5 m area). 

The maximum R value in the species-rich subalpine grassland was only 0.56 for the SD metric at 

688 nm (maximum number of species was 17 in a 0.25 × 0.25 m area, Figure 19, panel C). 

Considering these results, we may conclude that the optical diversity approach appears more 

suitable for lower-diversity or artificial systems, and its application may be more challenging in 

highly diverse grasslands. 

The applicability of the methods to estimate species diversity using hyperspectral data was also 

questioned by other authors (Gholizadeh et al., 2018; Lucas and Carter, 2008). In these studies, the 

relationships between species diversity and optical diversity metrics were not consistent across 

plant communities. Lucas and Carter (2008) evaluated the prediction of species diversity (species 

richness) in Horn Island, Mississippi by using ground transect data and remotely sensed data. 

However, they failed to find a significant relationship between spectral diversity metrics and species 

richness, which may be due to the fact that their study considered highly diverse habitat types. 

Gholizadeh et al. (2018) investigated the SVH-based approaches to access the α-diversity in Cedar 

Creek Ecosystem Science Reserve in Central Minnesota, USA and highlighted the effect of soil 

background on the performance of optical diversity metrics. The authors achieved significant 

correlations between spectral diversity metrics and the species richness when they applied an NDVI 

filter to remove the soil background from the hyperspectral image. In our study, however, the 

impact of soil was minimal, as the fractional cover of the vast majority of the plots was 100% (it 

was lower than 100% in only eight plots, but always higher than 99.5%). Wang et al. (2018) 

provided significant and detailed insights on the possible factors affecting the optical diversity and 

biodiversity relationships, highlighting the fact that canopy structure effects can determine 

substantial illumination and scattering differences and both leaf traits and canopy structure strongly 

influence optical diversity metrics. As a consequence of the fact that canopy structure can influence 

the optical diversity and modify the optical diversity–plant diversity relationships, we can expect 

that in heterogeneous grasslands characterized by complex structural patterns and by a very high 

number of species, biodiversity estimations based on optical diversity are not always reliable. 

In this work, we adopted a range of techniques to fully disentangle the optical diversity due to 

plant diversity from the optical diversity due to illumination artifacts, or due to the presence of 
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pixels of non-photosynthetic material, such as dead material or flowers. The results of this paper 

highlight the impact of image processing techniques on the relationships between optical data and 

grassland diversity. The developed processing flow proved, in general, to slightly improve the 

remote estimations of plant diversity, by limiting the influence of the factors determining optical 

diversity but not related to plant diversity. As shown by other authors, spectral diversity is affected 

by canopy non-photosynthetic elements, such as flowers and, dead material, as well as by shaded 

pixels, overexposed pixels, and the soil background (Gholizadeh et al., 2018; Lopatin et al., 2017; 

Peng et al., 2019; Wang & Gamon, 2018). To normalize the effect of shadows, Feilhauer et al. 

(2010) proposed the brightness normalization approach to minimize the spectral differences 

between the sunlit and shaded areas. In the present study, we observed that after applying brightness 

normalization to the hyperspectral images, the reflectance variability in the NIR was strongly 

reduced. In our case, the performance of the models to estimate grassland biodiversity did not 

significantly improve compared to the original dataset when this transformation method was used 

alone. However, the filtering of flowers, shadows, and bright pixels and then the transformation of 

the reflectance to CR minimized the spectral differences, which were not linked to species diversity 

and improved the diversity estimations. Heumann et al. (2015) studied the impact that flowers have 

on spectral diversity and investigated how this may influence the applicability of the spectral 

diversity hypothesis. These authors reported that the inclusion of flower spectra increased the 

normalized root mean square error (nRMSE) by 30% for Shannon’s diversity index, because there 

would be more inherent spectral diversity for each given species due to the spectral response 

difference between leaves and flowers. 

The optical diversity–plant diversity relationships appeared to be both ecosystem-dependent 

and scale-dependent. Spatial scale was shown to strongly affect the spectral diversity–biodiversity 

relationships. In the study of Wang et al. (2018), with decreasing spatial resolution, the variability 

in reflectance and, therefore, CV and SD decreased, and the optical detectability of biodiversity was 

reduced. In our study, however, the correlation between optical diversity metrics and species 

richness initially increased and was only reduced when the pixel size was beyond 2.5 cm in IT-PD, 

even if for most of the species the average leaf size was much lower than this value. For IT-MBo, 

the optimal pixel size (at 680 nm) was 1 mm. Conversely, according to Wang et al. (2018) the 

optimal pixel size to detect species diversity using spectral diversity should match the size of the 

objects within the sampling unit. 

Another key finding of this paper concerns the impact of processing methods on the 

performance of the optical diversity approach. When we compared the performances of the CV and 

SD metrics, we demonstrated that Level3 data generally showed higher correlations with 

biodiversity indices, and that the use of CR spectra generally improved the R values of the 

correlation between SD and species diversity. Similarly, to Blanco-Sacristán et al. (2019), we found 

that the spectral bands in the red part of the spectrum (around 680 nm) showed to be best for 

estimating biodiversity in both grasslands. In our study, a random extraction of pixels did not 

improve our results as in Schweiger et al. (2018), who achieved successful results based on links 

between spectral, functional, and phylogenetic diversity. 

Man-made grasslands, obtained by sowing, are simplified ecosystems which may not be 

representative of the complexity of natural field ecological conditions, where leaf and canopy traits 

can contribute to optical diversity in several ways, adding complexity to the optical and plant 
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diversity relationships in natural grasslands (Wang et al., 2019). This can explain the poor 

performance of the optical sampling methods in complex grassland canopies. In this respect, Wang 

et al. (2018a), adopting a modeling approach, observed that grassland biodiversity estimations are 

strongly affected by species intra-variations, which can be relevant even when caused by a single 

species. In natural grasslands located in heterogeneous landscapes such as the environment of the 

Alps, where (i) different associations and sub-associations can be found within a few meters 

distance, and transition zones are very frequent, (ii) geomorphology, soil characteristics and origin, 

and grassland vertical structure profile can strongly vary on the spatial basis, and (iii) the number of 

species is particularly high, estimating grassland α-diversity using optical methods can be extremely 

challenging. From an ecological point of view, Grace et al. (2007) highlighted the limits of 

manipulation experiments and the need for more analyses focused on mature natural ecosystems. In 

this regard, these authors stated that the ecological mechanisms cannot be extrapolated from studies 

of synthesized assemblages to mature natural ecosystems. Analogously, the optical diversity 

approach—based on grassland functional diversity dynamics determining spectra variability—may 

not be always transferable to mature and very complex natural grassland ecosystems. 

The VIS part of the spectrum (and in particular the red domain), characterized by a strong 

absorbance, showed to be one of the key spectral areas for biodiversity detection. This highlights 

the importance for further studies to investigate canopy biochemistry variability and its link with 

both biodiversity and optical diversity. To detect α-biodiversity using optical methods, we should 

be able to detect biochemistry content and its variability within the canopy. However, this may not 

be possible when grasslands with heterogeneous structure are observed. Previous studies on the IT-

MBo grasslands (Imran et al., 2020) determined how, due to structural complexity and 

heterogeneity, plant trait co-variation can strongly affect the ability to retrieve grassland traits using 

spectral data. More work is needed to determine how, in different grassland ecosystems, the optical 

dissimilarity of canopy spectra captures grassland functional differences and biochemical content 

variability (at the plot and at the spatial scale) determined by plant diversity. Additionally, further 

research will be able to clarify if in complex heterogeneous ecosystems, such as the grasslands of 

the Alps, the optical diversity approach can be adopted at the spatial scale to detect β-diversity. 

Such insights will provide more robust information on the mechanisms linking the optical diversity 

and the overall plant diversity. 

3.5. Conclusions 

Our study provided important observations on the performance of high spatial resolution 

imagery for grassland plant diversity estimations. The relationship between optical diversity and 

biodiversity proved to be ecosystem dependent. The spectral diversity approach to estimate 

biodiversity showed a similar performance to previous studies when artificially established 

grasslands were observed. On the other hand, in the natural subalpine grasslands of IT-MBo, this 

approach did not achieve satisfactory results, even if specific processing techniques were adopted to 

disentangle the optical diversity due to plant diversity from the optical diversity related to shadows, 

flowers, and brown material. The SD metric calculated from the Level3 data in the red spectral 

domain (around 680 nm) showed the best optical diversity metric to estimate biodiversity in both 

study sites. The results of our study showed that the use of the optical diversity approach as a proxy 
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of plant diversity has some limitations, particularly when high-biodiversity natural landscapes are 

observed. 

Spectral variation drivers include not only species richness but other important factors, e.g., 

intra-specific optical, biophysical, and biochemical variability. Other important factors include, e.g., 

vegetation structure, shadows, and phenology. Several post-processing methods (including 

brightness normalization, filtering of shadowed and bright pixels, non-photosynthetic element 

pixels filtering, and continuum removal) were tested successfully, which generally improved the 

performance of the optical diversity models. On the other hand, the pixel subsampling approach 

was not shown to be effective in our study. Interesting insights were provided by the scale effect 

study, such as that the optimum pixel size (1 cm) for biodiversity estimations—at the turf grass 

site—was generally higher than expected, according to previous studies. However, more advanced 

post-processing image methods or the adoption of higher resolution imagery (pixel size < 1 mm, 

which was not tested in this study) may improve the performance of the optical diversity metrics to 

estimate biodiversity even in heterogeneous grassland ecosystems. More studies are needed to fully 

investigate the mechanisms at the basis of the optical diversity, to highlight the pigment content 

variability and α-diversity relationships in high biodiversity grasslands, and to provide novel 

insights on the reliability of β-diversity estimations at the spatial scale. 

3.6. Appendix A 

 

Figure A1. Correlation coefficient from the Pearson correlation analysis (R) between the species richness and optical 

diversity expressed as CV and SD, averaged across different spectral regions (black lines) and averaged across the 

spectrum (red lines) computed from the Level0-processed data at the IT-PD site (panel (A): 1 mm pixel size; panel (B): 

1.5 mm pixel size). 
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Figure A2. Correlation coefficient from the Pearson correlation analysis (R) between the optical diversity expressed as 

CV and SD, averaged across different spectral regions (black lines) and averaged across the spectrum (red lines) 

computed from the Level0-processed data at the IT-MBo site (panel A–D: approximately 0.9 mm pixel size) and 

biodiversity indices: (A) species richness; (B) Shannon’s index; (C) species evenness; (D) Simpson’s index. 

3.7. Supplementary Materials 
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Figure S6. RGB images of the different plots at the IT-PD and the IT-MBo study sites. 

Table S3. Species richness and composition of each plot investigated at the IT-PD study site. 

Plot Species richness Species 

1 1 Trifolium repens nano 

2 2 Festuca rubra, Trifolium repens nano 

3 3 Achillea millefolium, Festuca rubra, Trifolium repens nano 

4 4 Lolium perenne, Trifolium repens nano, Cicoria selvatica, Poa pratensis 

5 5 Lolium perenne, Trifolium repens nano, Cicoria selvatica, Poa pratensis,  

Medicago lupulina 

6 6 Lolium perenne, Trifolium repens nano, Cicoria selvatica, Poa pratensis,  

Medicago lupulina, Poa annua 

7 7 Lolium perenne, Trifolium repens nano, Cicoria selvatica, Poa pratensis,  

Medicago lupulina, Poa annua, Festuca arundinacea  

8 8 Lolium perenne, Trifolium repens nano, Cicoria selvatica, Poa pratensis,  

Medicago lupulina, Poa annua, Festuca arundinacea, Taraxacum 

officinale 

9 9 Lolium perenne, Trifolium repens nano, Cicoria selvatica, Poa pratensis,  

Medicago lupulina, Poa annua, Festuca arundinacea, Taraxacum 

officinale, Lotus corniculatus 
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Table S4. Species richness and composition of each of the 25 plots investigated at the IT-MBo study site. 

Plot Species richness Species 

01_2 16 Agrostis tenuis, Brachypodium pinnatum (rup), Briza media 

Chamaecytisus hirsutus, Euphrasia rostkoviana, Festuca nigrescens, 

Galium pumilum, Lotus corniculatus, Nardus stricta, Phleum alpinum, 

Polygonum viviparum, Potentilla crantzii, Potentilla erecta, Ranunculus 

montanus, Trifolium pratense, Trifolium repens 

02_2 13 Achillea millefolium, Agrostis tenuis, Crocus albiflorus, Euphrasia 

rostkoviana, Galium pumilum, Hieracium cymosum, Nardus stricta, 

Pimpinella major, Polygonum viviparum, Potentilla erecta, Ranunculus 

montanus, Trifolium pratense, Trifolium repens 

04_1_R 14 Achillea millefolium, Anthoxanthum odoratum, Brachypodium pinnatum 

(rup), Chaerophyllum hirsutum, Galium pumilum, Helianthemum numm. 

grandifl., Laserpitium krapfii ssp. Gaudinii, Lathyrus pratensis, Nardus 

stricta, Paradisea liliastrum, Phyteuma betonicifolium, Polygonum 

viviparum, Potentilla erecta, Trifolium pratense 

05_2 12 Achillea millefolium, Agrostis tenuis, Festuca nigrescens, Hypericum 

maculatum, Lathyrus pratensis, Lotus corniculatus, Nardus stricta, 

Plantago atrata, Polygonum viviparum, Potentilla erecta, Ranunculus 

montanus, Trifolium repens 

06_2 13 Alchemilla vulgaris, Festuca nigrescens, Gentianella germanica, 

Leucanthemum vulgare, Lotus corniculatus, Nardus stricta, Plantago 

atrata, Poa violacea, Polygonum viviparum, Potentilla erecta, Rhinanthus 

alectorolophus, Trifolium montanum, Trifolium repens 

07_2 12 Carex montana, Cerastium caespitosum, Festuca nigrescens, 

Helianthemum numm. grandifl., Lathyrus pratensis, Phyteuma orbiculare, 

Plantago atrata, Pulsatilla alpina ssp. Alpina, Rumex alpestris, Stachys 

alopecuros, Trifolium pratense, Vicia cracca 

08_2 9 Agrostis tenuis, Chamaecytisus hirsutus, Festuca nigrescens,  

Genista germanica, Luzula campestris, Nardus stricta, Plantago atrata, 

Polygonum viviparum, Potentilla erecta 

09_2 12 Achillea millefolium, Agrostis tenuis, Chamaecytisus hirsutus, Festuca 

nigrescens, Helianthemum numm. grandifl., Hieracium cymosum, Lotus 

corniculatus, Plantago atrata, Polygonum viviparum, Ranunculus 

montanus, Stachys alopecuros, Trifolium montanum 

10_2 17 Agrostis tenuis, Alchemilla vulgaris, Crocus albiflorus, Festuca 

nigrescens, Galium pumilum, Hieracium pilosella, Laserpitium krapfii ssp. 

Gaudinii, Lathyrus pratensis, Leontodon hispidus, Polygonum viviparum, 

Potentilla erecta, Ranunculus montanus, Scorzonera aristata, Trifolium 

montanum, Trifolium pratense, Trifolium repens, Trollius europaeus 

11_2 9 Achillea millefolium, Brachypodium pinnatum (rup), Briza media, Genista 

tinctoria, Lilium martagon, Phyteuma betonicifolium, Pulsatilla alpina 

ssp. Alpina, Ranunculus montanus, Trifolium pratense 
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12_2 15 Agrostis tenuis, Cerastium caespitosum, Chamaecytisus hirsutus, Crocus 

albiflorus, Festuca nigrescens, Galium pumilum, Galium rubrum, Genista 

tinctoria, Geum montanum, Nardus stricta, Paradisea liliastrum, 

Polygonum viviparum, Pulsatilla alpina ssp. Alpina, Vaccinium myrtillus, 

Viola canina 

13_2 16 Arnica montana, Chaerophyllum hirsutum, Crocus albiflorus, Euphrasia 

rostkoviana, Galium pumilum, Geum montanum, Nardus stricta, Phleum 

alpinum, Phyteuma betonicifolium, Plantago atrata, Polygonum 

viviparum, Potentilla erecta, Ranunculus montanus, Stellaria graminea, 

Trifolium pratense, Trifolium repens 

14_2 14 Achillea millefolium, Agrostis tenuis, Cerastium caespitosum, 

Chaerophyllum hirsutum, Dactylis glomerata, Festuca nigrescens,  

Hypericum maculatum, Phleum alpinum, Poa violacea, Polygonum 

viviparum, Ranunculus montanus, Rumex alpestris, Stellaria graminea, 

Trifolium repens 

16_2 15 Agrostis tenuis, Chaerophyllum hirsutum, Chamaecytisus hirsutus, Galium 

pumilum, Nardus stricta, Paradisea liliastrum, Phleum alpinum, Phyteuma 

betonicifolium, Polygonum viviparum, Potentilla erecta, Pulsatilla alpina 

ssp. Alpina, Ranunculus montanus, Stellaria graminea, Trifolium repens, 

Trollius europaeus 

17_2 15 Agrostis tenuis, Alchemilla vulgaris, Campanula scheuchzeri, 

Chaerophyllum hirsutum, Dactylis glomerata, Festuca nigrescens, Nardus 

stricta, Poa pratensis, Polygonum viviparum, Potentilla crantzii, 

Ranunculus montanus, Trifolium pratense, Trifolium repens, Valeriana 

wallrothii, Veronica chamaedrys 

18_2 11 Achillea millefolium, Agrostis tenuis, Brachypodium pinnatum (rup), Briza 

media, Chamaecytisus hirsutus, Crocus albiflorus, Dactylis glomerata, 

Hypericum maculatum, Phleum alpinum, Polygonum viviparum, Trifolium 

repens 

19_2 15 Agrostis tenuis, Campanula scheuchzeri, Cerastium caespitosum, 

Chaerophyllum hirsutum, Crocus albiflorus, Euphrasia rostkoviana, 

Festuca nigrescens, Geum montanum, Plantago atrata, Polygonum 

viviparum, Potentilla crantzii, Potentilla erecta, Ranunculus montanus, 

Stellaria graminea, Trifolium repens 

20_2 16 Agrostis tenuis, Brachypodium pinnatum (rup), Centaurea triumfettii, 

Festuca nigrescens, Helianthemum numm. grandifl., Heracleum 

sphondylium L., Koeleria pyramidata, Phyteuma orbiculare, Plantago 

atrata, Poa violacea, Polygonum viviparum, Potentilla erecta, Ranunculus 

montanus, Trifolium montanum, Trifolium repens, Viola canina 

T_02 9 Achillea millefolium, Alchemilla vulgaris, Brachypodium pinnatum (rup), 

Briza media, Chamaecytisus hirsutus, Festuca nigrescens, Koeleria 

pyramidata, Poa chaixii, Veratrum album 

T_03 4 Agrostis tenuis, Carex sp., Epilobium angustifolium, Fragaria sp. 
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T_05 11 Agrostis tenuis, Chamaecytisus hirsutus, Crocus albiflorus, Festuca 

nigrescens, Galium pumilum, Helianthemum numm. grandifl., Nardus 

stricta, Polygonum viviparum, Trifolium montanum, Trifolium pratense, 

Trifolium repens 

T_10_B 2 Agrostis tenuis, Chaerophyllum hirsutum 

T_14 16 Achillea millefolium, Agrostis tenuis, Festuca nigrescens, Festuca 

pratensis, Galium spp., Leontodon hispidus, Leucanthemum vulgare, 

Phyteuma betonicifolium, Plantago atrata, Ranunculus montanus, 

Rhinanthus alectorolophus, Stellaria graminea, Trifolium pratense, 

Trifolium repens, Trisetum flavescens, Veronica chamaedrys 

T_15 14 Achillea millefolium, Agrostis tenuis, Dactylis glomerata, Festuca 

nigrescens, Festuca pratensis, Galium spp., Gentiana kochiana, Gentiana 

lutea, Leontodon hispidus, Plantago atrata, Trifolium pratense, Trifolium 

repens, Trisetum flavescens, Veronica chamaedrys 

T_20 10 Agropyron repens, Alchemilla vulgaris, Alopecurus pratensis, Dactylis 

glomerata, Festuca pratensis, Ranunculus acris, Rumex obtusifolius, 

Taraxacum officinale, Trisetum flavescens, Vicia sepium 
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Table S5. The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between 

species richness and two optical diversity metrics (CV and SD) for different processing levels at the IT-PD study site. 

The highest R values for each processing level are highlighted in bold.  

Processing levels 

IT-PD 1 mm IT-PD 1.5 mm 

WL1 CV1 WL SD1 WL CV WL SD 

Level0 560 
0.60 

(0.086) 
703 

0.42 

(0.265) 
435 

0.71 

(0.031) 
685 

0.74 

(0.023) 

Level1 563 
0.58 

(0.102) 
733 

0.49 

(0.179) 
432 

0.78 

(0.014) 
927 

0.78 

(0.013) 

Level2 927 
0.83 

(0.006) 
927 

0.84 

(0.005) 
435 

0.84 

(0.005) 
927 

0.80 

(0.011) 

Level3 452 
0.67 

(0.048) 
455 

0.67 

(0.049) 
412 

0.87 

(0.003) 
412 

0.86 

(0.003) 

1 WL: wavelength, CV: coefficient of variation, SD: standard deviation.
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Table S6. The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between biodiversity indices (species richness, Shannon’s index, species 

evenness, and Simpson’s index) and the two optical diversity metrics (CV and SD) for different processing levels at the IT-MBo study site. The highest R values for each processing 

level are highlighted in bold. 

Processing levels 
Richness Shannon Evenness Simpson 

WL1 CV1 WL SD1 WL CV WL SD WL CV WL SD WL CV WL SD 

Level0 420 
0.25 

(0.236) 
499 

0.25 

(0.224) 
429 

-0.06 

(0.772) 
499 

0.06 

(0.79) 
409  

-0.11 

(0.594) 
499 

0.03 

(0.898) 
446 

-0.12 

(0.576) 
499 

-0.04 

(0.847) 

Level1 423 
0.29 

(0.154) 
429 

0.34 

(0.096) 
415 

0.24 

(0.24) 
418 

0.32 

(0.118) 
415 

0.24 

(0.24) 
418 

0.35 

(0.091) 
409 

0.16 

(0.459) 
409 

0.21 

(0.308) 

Level2 409 
0.25 

(0.236) 
682 

0.43 

(0.03) 
409 

0.24 

(0.248) 
685 

0.48 

(0.018) 
409 

0.22 

(0.294) 
685 

0.47 

(0.019) 
409 

0.20 

(0.344) 
409 

0.35 

(0.084) 

Level3 930 
0.04 

(0.852) 
679 

0.5 

(0.011) 
911 

0.10 

(0.652) 
688 

0.55 

(0.004) 
911 

0.05 

(0.816) 
688 

0.56 

(0.004) 
920 

0.15 

(0.479) 
691 

0.4 

(0.047) 

1 WL: wavelength, CV: coefficient of variation, SD: standard deviation.
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Table S7. The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between 

species richness and the two optical diversity metrics (CV and SD) calculated from Level3 processed data at different 

spatial scales for the IT-PD study site. The highest R values for each spatial scale are highlighted in bold. 

Spatial scale 
IT-PD 1 mm 

WL1 CV1 WL SD1 

1 mm 452 0.67 (0.05) 455 0.67 (0.05) 

2.5 mm 452 0.67 (0.05) 455 0.67 (0.05) 

5 mm 554 0.68 (0.05) 455 0.66 (0.054) 

1 cm 452 0.73 (0.027) 452 0.74 (0.023) 

2.5 cm 412 0.65 (0.059) 688 0.79 (0.011) 

5 cm 412 0.42 (0.257) 694 0.73 (0.027) 

8.3 cm 412 0.11 (0.769) 412 0.12 (0.762) 

1 WL: wavelength, CV: coefficient of variation, SD: standard deviation.
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Table S8. The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between biodiversity indices (species  richness, Shannon’s index, species 

evenness, and Simpson’s index) and two optical diversity metrics (CV and SD) calculated from Level3 processed data at different spatial scales for the IT-MBo study site. The 

highest R values for each spatial scale are highlighted in bold. 

Spatial 

scale 

Richness Shannon Evenness Simpson 

WL1 CV1 WL SD1 WL CV WL SD WL CV WL SD WL CV WL SD 

1 mm 930 
0.05 

(0.833) 
679 

0.50 

(0.012) 
914 

0.10 

(0.643) 
685 

0.55 

(0.005) 
911 

0.05 

(0.807) 
688 

0.55 

(0.004) 
921 

0.15 

(0.482) 
691 

0.39 

(0.054) 

2.5 mm 930 
0.03 

(0.875) 
679 

0.48 

(0.016) 
921 

0.08 

(0.715) 
688 

0.54 

(0.005) 
914 

0.03 

(0.881) 
688 

0.54 

(0.005) 
921 

0.13 

(0.549) 
688 

0.38 

(0.062) 

5 mm 930 
0.05 

(0.828) 
682 

0.42 

(0.035) 
914 

0.07 

(0.737) 
685 

0.48 

(0.016) 
911 

0.02 

(0.913) 
685 

0.48 

(0.016) 
930 

0.10 

(0.628) 
688 

0.33 

(0.105) 

1 cm 412 
0.00 

(0.996) 
682 

0.33 

(0.108) 
908 

0.03 

(0.877) 
682 

0.35 

(0.085) 
908 

-0.01 

(0.955) 
685 

0.35 

(0.088) 
908 

0.03 

(0.894) 
688 

0.23 

(0.274) 

2.5 cm 412 
0.09 

(0.653) 
685 

0.38 

(0.063) 
917 

0.02 

(0.934) 
685 

0.33 

(0.11) 
917 

0.02 

(0.919) 
688 

0.29 

(0.154) 
685 

-0.04 

(0.84) 
688 

0.22 

(0.3) 

5 cm 682 
-0.02 

(0.942) 
685 

0.15 

(0.466) 
911 

-0.07 

(0.729) 
685 

0.03 

(0.907) 
911 

-0.04 

(0.852) 
685 

0.01 

(0.953) 
914 

-0.19 

(0.37) 
552 

-0.13 

(0.523) 

8.3 cm 911 
0.25 

(0.23) 
911 

0.25 

(0.23) 
911 

0.19 

(0.352) 
911 

0. 2 

(0.338) 
911 

 0.18 

(0.396) 
911 

0.19 

(0.375) 
426 

0.11 

(0.604) 
426 

0.10 

(0.644) 

1 WL: wavelength, CV: coefficient of variation, SD: standard deviation.
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Table S9. The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between 

species richness and the two optical diversity metrics (CV and SD) calculated from Level3 processed data at different 

sample size for the IT-PD study site. The highest R values are highlighted in bold. 

Sub-sample (No. of pixels) 
IT-PD 1 mm 

WL1 CV1 WL SD1 

All pixels 452 0.67 (0.042) 455 0.67 (0.048) 

500 pixels 554 0.71 (0.034) 452 0.66 (0.054) 

300 pixels 452 0.68 (0.046) 452 0.70 (0.036) 

250 pixels 473 0.63 (0.071) 490 0.61 (0.079) 

200 pixels 452 0.64 (0.065) 452 0.67 (0.048) 

150 pixels 679 0.62 (0.078) 691 0.71 (0.033) 

100 pixels 546 0.69 (0.042) 706 0.66 (0.054) 

50 pixels 412 0.77 (0.015) 412 0.77 (0.016) 

1 WL: wavelength, CV: coefficient of variation, SD: standard deviation
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Table S10. The highest Pearson correlation coefficient (R) and p-values (in brackets) for the relationship between biodiversity indices (species richness, Shannon’s index, species 

evenness, and Simpson’s) and the two optical diversity metrics (CV and SD) calculated from Level3 processed data at different sample size for the IT-MBo study site. The highest R 

values are highlighted in bold. 

Sub-sample 

(No. of pixels) 

Richness Shannon Evenness Simpson 

WL1 CV1 WL SD1 WL CV WL SD WL CV WL SD WL CV WL SD 

All pixels 930 
0.04 

(0.852) 
679 

0.50 

(0.011) 
911 

0.10 

(0.652) 
688 

0.55 

(0.004) 
911 

0.05 

(0.816) 
688 

0.56 

(0.004) 
920 

0.15 

(0.479) 
691 

0.40 

(0.047) 

500 pixels 927 
0.03 

(0.883) 
679 

0.35 

(0.086) 
920 

0.13 

(0.549) 
685 

0.42 

(0.035) 
911 

0.09 

(0.671) 
688 

0.43 

(0.032) 
911 

0.07 

(0.736) 
688 

0.44 

(0.029) 

300 pixels 920 
0.06 

(0.776) 
679 

0.37 

(0.068) 
908 

0.10 

(0.624) 
682 

0.45 

(0.025) 
908 

0.05 

(0.803) 
682 

0.46 

(0.022) 
908 

0.06 

(0.768) 
688 

0.47 

(0.018) 

250 pixels 412 
0.11 

(0.614) 
679 

0.50 

(0.012) 
679 

0.03 

(0.899) 
685 

0.56 

(0.003) 
679 

0.04 

(0.861) 
685 

0.59 

(0.002) 
679 

0.09 

(0.684) 
685 

0.62 

(0.001) 

200 pixels 426 
0.16 

(0.441) 
682 

0.48 

(0.015) 
420 

-0.01 

(0.948) 
685 

0.55 

(0.005) 
415 

-0.03 

(0.905) 
685 

0.53 

(0.006) 
415 

0.03 

(0.892) 
685 

0.52 

(0.007) 

150 pixels 418 
0.14 

(0.507) 
682 

0.45 

(0.024) 
914 

0.17 

(0.429) 
682 

0.54 

(0.006) 
911 

0.13 

(0.552) 
682 

0.53 

(0.006) 
914 

0.12 

(0.57) 
685 

0.53 

(0.006) 

100 pixels 930 
0.03 

(0.881) 
676 

0.36 

(0.082) 
911 

0.09 

(0.687) 
679 

0.41 

(0.04) 
911 

0.07 

(0.726) 
679 

0.43 

(0.034) 
911 

0.05 

(0.829) 
679 

0.43 

(0.034) 

50 pixels 429 
0.15 

(0.461) 
688 

0.32 

(0.123) 
930 

0.15 

(0.487) 
691 

0.40 

(0.048) 
930 

0.14 

(0.52) 
691 

0.42 

(0.039) 
412 

0.11 

(0.593) 
688 

0.40 

(0.045) 

1 WL: wavelength, CV: coefficient of variation, SD: standard deviation 
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Abstract 

As the need for ecosystem biodiversity assessment increases within the climate crisis 

framework, more and more studies are proposed using remote sensing tools based on the 

Spectral Variability Hypothesis (SVH) approach to assess biodiversity at various scales. The 

reflectance measured from the plant canopy encodes fundamental information in different 

spectral regions about the variability of canopy and leaf structure and other biochemical and 

biophysical properties of canopy leaves. The SVH implies optical diversity is driven by light 

absorption dynamics associated with plant traits (PTs) variability (biophysical and 

biochemical) which is, in turn, determined by species diversity. Based on the SVH hypothesis 

which links optical, functional, and taxonomic diversity, in this study we examined the 

relationship between PTs variability (which is an indicator of functional diversity and can be 

measured by the standard deviation of the biochemical and biophysical PTs) and α-diversity 

(measured by Shannon’s index) at different taxonomic ranks (species, families, and 

functional groups) at the Monte Bondone grasslands, located in the Trentino province, Italy. 

Also, the relationship between β-diversity (measured by Jaccard dissimilarity index of the 

species, families, and functional groups percent cover) and the PTs variability (measured by 

the Euclidean distances of the biochemical and biophysical PTs) was also investigated. The 

results of the study showed that the PTs variability, at the α scale, was not correlated with 

biodiversity. The linear regression analysis showed weak and non-significant correlations 

between PTs variability and α-diversity for all taxonomic ranks. On the other hand, the 
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results from the community scale (β-diversity) showed that the variation of some of the 

investigated biochemical and biophysical PTs was associated with the β-diversity. We used 

the Mantel test to analyze the relationship between the PTs variability and species β-diversity 

and the results showed a moderate correlation up to r = 0.50, p = 0.0005 while for the higher 

taxonomic ranks (family and functional groups) with dry biomass slightly strong correlation 

up to r = 0.64, p = 0.0001 and r = 0.61, p = 0.0001 was observed. The SVH approach was 

also tested to estimate β-diversity and we found that spectral diversity calculated by spectral 

angular mapper (SAM) showed to be a better proxy of biodiversity in the same ecosystem 

where the spectral diversity failed to estimate α-diversity, this leading to the conclusion that 

the link between functional and species diversity may be an indicator of the applicability of 

optical sampling methods to estimate biodiversity.  

Keywords: α-diversity; β-diversity; biochemical diversity; distance matrix; Mantel test. 

4.1. Introduction 

Biodiversity is an essential component to estimate ecosystem functioning and 

ecosystem services (Record et al., 2020), particularly important within the accelerated climate 

change context (Schweiger et al., 2018). In the last decades, changes in agricultural practices 

involving large-scale modification of biogeochemistry by large-scale irrigation, fertilization, 

and pesticide application, as well as changes in human activities have altered biodiversity 

patterns, directly affecting the individual species abundances and distributions (Gholizadeh et 

al., 2020; Record et al., 2020). Such modifications have accelerated biodiversity loss at 

unprecedented rates and caused a considerable loss of landscape diversity, particularly for 

grassland ecosystems (Bolch et al., 2020; Gholizadeh et al., 2020; Record et al., 2020; 

Stevens, 2018). Monitoring plant diversity is always considered challenging because it 

requires extensive field surveys, which are limited in their ability to sample over large 

regions. In this context, the effective monitoring and management of the grassland 

biodiversity can be carried out using its optical properties acquired by remote optical sensors 

(Reinermann et al., 2020). 

Reflectance of the vegetation is the result of the complex physical interactions 

between incoming solar radiation and canopy surfaces at different spectral regions that 

encode essential information on vegetation status, function, and structure and is called 

“spectral signature” (Ma et al., 2020). The reflectance from the visible (VIS) to near-infrared 

(NIR) spectral region is related to the biophysical and biochemical properties of leaves and 

canopy structure (Homolova et al., 2013; Ma et al., 2020). Individual plant species respond in 

their own way to incoming solar radiation according to their pigment, water, biochemical 

content, and leaf and canopy structure. Based on this, variability in the canopy reflectance 

might provide information about the presence of different plant species within the 

measurement footprint. In the literature, this concept is defined as the Spectral Variability 

Hypothesis (SVH): as the number of plant species increases for a given area, the spectral 

diversity observed from that area is also expected to increase (Imran et al., 2021; Heumann et 

al., 2015; Palmer et al., 2002; Rocchini et al., 2004). Different parts of the spectrum 

characterized by a strong absorbance due to the leaf chlorophyll pigment (particularly the red 
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domain) showed to be one of the key spectral areas for biodiversity detection (Blanco-

Sacristán et al., 2019; Imran et al., 2021). 

In the last years, the SVH approach was tested to explore α and β diversity in different 

ecosystems, such as grasslands (Aneece et al., 2017; Aneece & Epstein 2015; Gholizadeh et 

al., 2019; Möckel et al., 2016; Wang et al., 2018a) and forests (Khare et al., 2019; Schäfer et 

al., 2016; Torresani et al., 2019; Zhao et al., 2016), however to our knowledge, no studies 

have investigated the links between PTs variability and biodiversity in semi-natural 

grasslands ecosystems. However, few recent studies (Durán et al., 2019; Torresani et al., 

2021) found in the literature focused on the relationship between PTs variability, spectral, 

and plant diversity in forest ecosystems. Durán et al., (2019) combined the imaging 

spectroscopy and in-situ foliar traits to estimate remotely sensed functional diversity in 

tropical forests while Torresani et al., (2021) explored the relationship between traits 

variability retrieved from physical based models and species diversity in a dense coniferous 

forest. In the later study authors retrieved different parameters of PROSPECT-5 and 

INFORM models from the canopy spectral data Sentinel-2 images) and used them as optical 

traits indicators (OTIs, Torresani et al., 2021). Concerning α-diversity, several studies have 

reported that the SVH can be used as a proxy of plant diversity in various ecosystems and at 

various spatial scales (Aneece et al., 2017; Aneece & Epstein 2015; Conti et al., 2021; 

Gholizadeh et al., 2019; Imran et al., 2021; Möckel et al., 2016; Wang et al., 2018a). But at 

the same time, few studies (Conti et al., 2021; Imran et al., 2021) found that the SVH 

approach is not straightforward, especially when focusing on the structurally heterogeneous 

grassland community. The spectral variability is not only due to the leaf and canopy structure, 

because reflectance is also influenced by biochemical processes, stress, and phenological 

processes (e.g., senescence, Aneece & Epstein, 2015). To understand if the non-

photosynthetic elements and vertical structure of the canopy hamper the optical detection of 

the species diversity, PTs variations could be used to determine species diversity (Conti et al., 

2021; Torresani et al., 2021). 

Regarding the β-diversity, the SVH approach is used to estimate species turnover by 

analyzing distance decay models disclosing floristic dissimilarities (Jaccard and Bray–Curtis) 

and spectral distances. Marzialetti et al., (2021) studied the relationship between pairwise 

(Jaccard dissimilarity index, Bray–Curtis dissimilarity index) and spectral pair wise 

(Euclidean distance) measures and reported the effectiveness of the distance decay model to 

describe coastal landscape β-diversity on natural as well as on invaded dunes. Similarly, 

Rocchini et al., (2010) examined the SVH approach to estimate both α and β diversity and 

reported that the spectral diversity can be used as a proxy to estimate diversity, highlighting 

some challenges and limitations of this approach. Moreover, in another study, Rocchini et al., 

(2009) examined the SVH approach to estimate β-diversity at different taxonomic ranks 

(plant species, genera, and families) at the regional scale and demonstrated that a lower 

taxonomic rank is important when changes in the taxonomic composition are examined 

spatially using remotely sensed data. In this study, the authors emphasized that the use of 

spectral distances for summarizing β-diversity patterns may be more reliable compared to the 

α-diversity due to this method explicitly taking environmental heterogeneity into account 

instead of mere spatial distances among sites. 
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 The spectral variability among plants “capture functional differences in chemical, 

anatomical and morphological traits”, and describes the extent and filling pattern of the 

spectral space occupied by a plant community and thus its functional complexity determined 

by biodiversity (Schweiger et al., 2018). The applicability of the optical diversity approach to 

estimate taxonomic diversity is based on the hypothesis (in this study called plant traits (PTs) 

variability hypothesis – PTVH, Figure 1) that, as optical diversity is determined by PTs 

(biochemical and biophysical) variability, PTs variability, in turn, should be an indicator of 

species diversity (Torresani et al., 2021). 

PTs variability (also called plant functional diversity, Ma et al., 2020) is defined as 

the range and dispersion of the biochemical and biophysical PTs including pigment content 

(e.g., chlorophyll, carotene, xanthophyll), leaf essential elements, and plant leaf traits. The 

optical diversity approach (Ustin and Gamon, 2010) is based on variation in spectral patterns 

retrieved by optical remote sensing, which can, in turn, be related to species diversity, genetic 

diversity, and functional diversity. Relatively few studies have explored the relationships 

among spectral diversity, PTs diversity, and taxonomic diversity in grassland ecosystems 

(Zhao et al., 2021) and PTs variability information has been often retrieved by using optical 

models, making use of OTI, and not by direct biochemical and biophysical PT laboratory 

measurements (e.g., pigments, element concentration, and PTs) carried out on field samples, 

in the laboratory (Torresani et al., 2021). 

In this study, we examined the relationship between PTs variability measured in-situ 

(expressed standard deviation (SD) at the α scale, and pairwise Euclidean distances between 

the sampling unit - referred as PTs variability at community scale) and both α-diversity (e.g., 

within the sampling unit - measured by Shannon’s index) and β-diversity (e.g., between 

samples/pixels variability - measured by Jaccard dissimilarity).  

 

Figure 24. Links between spectral diversity, plant traits (PTs) diversity, and biodiversity  

In principle, the aim of this study is to clarify the mechanisms at the basis of the 

optical diversity approach to estimate biodiversity, analyzing the links between PTs diversity 

and both α and β diversity. In this context, the specific research objectives of the study were: 
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(1) To investigate the links between α-diversity and both biochemical and biophysical PTs 

variability. (2) To explore the links between β-diversity and measured pairwise distances of 

the biochemical and biophysical PTs. (3) To analyze the performance of spectral diversity 

proxies to estimate β-diversity using the measured pairwise distances.   

4.2. Materials and Methods 

4.2.1. Study area  

The study area is situated in the Italian subalpine vegetation belt at the Viote del 

Monte Bondone, Trentino province, Italy (46°00′ N, 11°01′ E; 1480–1550 m a.s.l., IT-MBo, 

Figure 25). The site is located on a plateau and is managed as an extensive grassland, with 

low mineral fertilization and one cut per year around mid-July at the green biomass peak time 

(Sakowska et al., 2019). The vegetation of the area is very heterogeneous, in terms of species 

richness and canopy structure. The Sieverso-Nardetum strictae association covers a high 

portion of the plateau characterized by short canopies. The Scorzonero Aristatae-

Agrostidetum tenuis association canopy is generally taller, and it grows on calcareous soils. 

The latter association includes more productive species, and it can be found in the most fertile 

and well-exposed areas of the plateau (Sakowska et al., 2019). Initially, 27 randomly 

distributed vegetation plots were included in the study, but 5 plots were discarded after the 

quality check of the hyperspectral images. Eventually, in the 22 investigated plots of the IT-

MBo plateau, the species richness ranged from 2 to 17 and the species composition and the 

proportion of each species within the 0.25 × 0.25 m area is presented in Figure 25. 

 

Figure 25. (A) Location of the sample plots in study area (IT-MBo). (B) The plots (n = 22) are located in the 

natural grassland ecosystem in the Italian Alps (Monte Bondone, Trento, Italy).  

4.2.2. Field data collection 

The dataset used in this study includes the floristic data, leaf level biochemical and 

biophysical data, and the top-of-canopy (TOC) spectral data collected on the 22 randomly 
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distributed georeferenced vegetation plots at the IT-MBo site. To collect the floristic 

information, vegetation surveys within each region of interest (ROI, 0.25 × 0.25 m) were 

carried out by a trained person who listed all the species along with their percent cover within 

the ROIs based on visual estimation (Kent and Coker 1992). The information about the 

higher taxonomic ranks (species family and functional groups) was also recorded for the 

plant diversity analysis. In each of the investigated plots, biomass samples were collected at 

the peak of the growth season using a cutter machine, stored in sealed plastic bags, and kept 

at low temperatures (4 °C) until further processing. In the laboratory, the sampled biomass 

was well mixed and divided into two samples of equal weight. The first sample has been 

dedicated to analyzes beyond the scope of this publication, therefore it was not used in this 

study. The second sample was furtherly divided into two portions: one portion was used to 

measure the variability of the biophysical PTs, while the second portion was stored at -80 °C 

for further determination of the foliar biochemical PTs variability. To calculate the 

biophysical PTs variability, we divided the first portion into 8 subsamples which were 

separately weighted to obtain the fresh leaf mass (FLM, g), then scanned to obtain the leaf 

area (LA, cm2) and finally oven-dried at 60 °C for 48 h and weighted again to obtain the leaf 

dry mass (LDM, g). Specific leaf area (SLA) was calculated for each subsample as the ratio 

of leaf area to leaf dry mass. The variability of the leaf water content (LWC, %) was also 

determined for each subsample. The LWC was calculated as a difference between the FLM 

and LDM divided by FLM and multiplied by 100.  

The second portion which was stored at -80 °C was used to measure the biochemical 

PTs variability: the portion was divided into 10 subsamples (in total 220 samples from 22 

plots) and the PTs concentration (mg/g dry matter) was determined for each subsample, 

including chlorophyll-a (chla), chlorophyll-b (chlb), β-carotene (bcar), lutein (lut), 

neoxanthin (neox), violaxanthin (violax), and antheraxanthin (anther) by using high-

performance liquid chromatography (HPLC). The variability of the essential elements (% dry 

matter) including carbon (C), hydrogen (H), nitrogen (N), sulphur (S), and oxygen (O) was 

also assessed. The foliar biochemistry analysis were performed by an external laboratory, 

Celignis Analytical, Limerick, Ireland. PTs concentration was determined by means of the 

ICS-3000 Ion Chromatography System (Dionex, CA, USA). The analytical procedure is 

described on the Celignis Analytical website 

(https://www.celignis.com/package.php?value=78). PTs including elemental components (C, 

H, N, S, O) were determined using the Vario MACRO Cube elemental analyser (Elementar 

Analysensysteme GmbH, DE). Further details can be found at the Celignis Analytical website 

(https://www.celignis.com/package.php?value=19). 

We collected TOC level spectral data for the investigated plots (0.25 x 0.25 m) with 

an imaging spectrometer (SPECIM IQ, Specim Ltd., Oulu, Finland) mounted on a tripod. The 

canopy height was not consistent between the plots (varied from 0.3 to 1.2 m); therefore, the 

hyperspectral images were collected approximately 0.7 m from the canopy level to capture a 

squared footprint of approximately 0.55 × 0.55 m. A metallic or wood frame with dimension 

0.25 × 0.25 m was then placed within each image footprint to define the ROIs used for post-

processing and spectral diversity metrics calculations. 

https://www.celignis.com/package.php?value=78
https://www.celignis.com/package.php?value=19
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4.2.3. Measures of species diversity 

In this study, two biodiversity metrics - α and β diversity- were used to capture 

biological variation at different spatial extents. 

4.2.3.1. Species α-diversity 

α-diversity measures the diversity within sampling units, which are usually spatial 

subunits within a region or landscape (Shannon, 1948). To calculate the α-diversity 

(Shannon’s index) species percent cover information was used. The Shannon’s index was 

also calculated for the higher taxonomic ranks (species family and functional groups). It was 

calculated using the following equation: 

H′ =  − ∑ pi ln(pi)

S

i=1

 (7) 

where pi is the proportion of individuals that belong to species i and S is the number of 

species in the sample. 

4.2.3.2. Species β-diversity 

The β-diversity concept was introduced by Whittaker (1960), who defined it as the 

variation in biodiversity among local communities. In this study, β-diversity was calculated 

by generating the pairwise distance matrix based on pairwise dissimilarity methods (Li et al., 

2021). The β-diversity was measured for all taxonomic ranks from species to family and 

function group. β-diversity in field data was analyzed using the Jaccard dissimilarity matrix 

using plant occurrence (presence/absence data). Jaccard dissimilarity index (J) quantifies the 

pairwise dissimilarity between vegetation plots as the ratio between the number of species 

shared between the vegetation plots and the number of species that are unique to each plot 

(Marzialetti et al., 2021). The formula suggested by Jaccard (1912) implies relativization of 

the ratio between the number of species in common and the number of species that are unique 

to each plot. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑦 (𝑖, 𝑗) = 1 −  
𝑎𝑖𝑗

(𝑎𝑖𝑗 + 𝑏𝑖 + 𝑐𝑗)
 (8) 

Where a = number of species shared between i and j vegetation plots, b = number of unique 

species in the i vegetation plot, c = number of unique species in the j plot. 

All biodiversity indices were calculated in R 3.6.1 software (R Core Team, 2019) 

using the ‘vegan’ R package (Oksanen et al., 2020). The “vegdist” function was used to 

calculate species, families, and functional group β-diversity. 

 

4.2.4. Measures of biochemical and biophysical PTs variability 

The variability of biochemistry variables and biophysical PTs at α scale measured by 

using the standard deviation of the biochemical variables included chla, chlb, bcar, lut, neox, 
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violax, anther, C, H, N, S, O, while the PTs included SLA and LWC. The PTs β-diversity 

was calculated based on Euclidean distance obtained from the biochemical and biophysical 

PTs. Euclidean distance represents the geometric distance between two points in 

multidimensional space. Euclidean distance is bounded by zero when two objects have 

identical variable values. However, it is not well suited to data such as species abundances 

(without prior standardizations) due to its lack of a maximum and its high susceptibility to 

large differences (Hoffmann et al., 2019). Before calculating the pairwise Euclidean distances 

of biochemical and biophysical PTs, we standardized each of the variables to a mean of 0 and 

a standard deviation of 1 and then we used the following Euclidean distance matrix by using 

the “decostand” function of the “vegan” R package (Oksanen et al., 2020). 

𝑑𝑖,𝑗 =  √∑(𝑋𝑖𝑧 − 𝑋𝑗𝑧)2 (9) 

Where i and j are the plots being compared and z refers to the variables. 

4.2.5. Measures of α and β spectral diversity 

To measure the spectral α-diversity of each plot, we used the coefficient of variation - 

CV (i.e., the ratio of the standard deviation to the mean (Blanco-Sacristán et al., 2019; Wang 

et al., 2018a). In this study, the CV was calculated by averaging the CV for each wavelength 

from 411 to 930 nm. Higher CV values correspond to higher spectral diversity. The CV was 

calculated using the following equation: 

CVimage =

∑ (
std (ρλ)

mean (ρλ)
)

930

λ=411

number of bands
 

(10) 

where ρλ represents the reflectance value at wavelength λ and std (ρλ) and mean (ρλ) indicate 

the standard deviation and mean value of the reflectance at wavelength λ, respectively. 

To compare the spectral diversity to the taxonomic β-diversity index, spectral β-

diversity was calculated using the Spectral Angle Mapper (SAM, Kruse et al., 1993). The 

SAM is a spectral classification technique which measures the angle between two spectral 

signatures and treats them as vectors. Similar spectra have low SAM values, while more 

diverse spectra have higher SAM values. SAM was calculated by using the “dist.speclib” 

function of the “hsdar” R package (https://cran.r-project.org/web/packages/hsdar/hsdar.pdf) 

using the following equation: 

𝑆𝐴𝑀 =  cos−1(
∑ 𝑡𝑖𝑟𝑖

𝑠𝑏
𝑖=1

√∑ 𝑡𝑖
2𝑠𝑏

𝑖=1 √∑ 𝑟𝑖
2𝑠𝑏

𝑖=1

) 
(11) 

sb is the number of bands in Speclib. ti and ri are the reflectance of target and reference 

spectrum in band i, respectively. 
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4.2.6. Statistical analyses 

To analyze the species distribution within the plot, the percentage of the individual 

species within the plot was visualized as a stacked bar graph. The descriptive analysis of 

biochemical and biophysical PTs variability is summarized in Table S11-S13 in 

Supplementary Materials where the minimum, maximum, and SD of each biochemical and 

PTs are reported. To analyze the SVH performance for α-diversity, we analyzed the linear 

relationship between α-diversity (measured by Shannon’s index) for different taxonomic 

ranks (species, family, and functional groups) and biochemical and PTs variability (measured 

by SD) of each plot.  

To test the SVH approach for β-diversity, we used the Mantel permutation test 

(Mantel, 1967) to determine relationships between biochemical and biophysical β-diversity 

metrics calculated from the Euclidean distances of all the 12 biochemical PTs (including 2 

chlorophyll pigments: chla and chlb; 1 carotene: bcar; 4 xanthophyll pigments: lut, neox, 

violax, anther; 5 essential elements: C, H, N, S, and O), and 3 biophysical PTs (SLA, LWC, 

and dry biomass) and taxonomic β-diversity measured by Jaccard dissimilarity index. The 

relationship between spectral β-diversity measured as SAM and taxonomic β-diversity was 

also analyzed by using Mantel statistics. All statistical analyses were performed with the 

statistical software R (version 3.6.1) (R Core Team, 2019).  

4.3. Results 

The species distribution in the investigated plots expressed as a proportion (in 

percentage) is presented in Figure 26. The proportions of the species within the plots of the 

study area showed a high species diversity in the grassland ecosystem. The highest number of 

recorded species within the 0.25 x 0.25 m area was 17, it was observed in plot 09 where the 

dominating species were Festuca nigrescens Lam. and Leontodon hispidus L. with a 

contribution of approniximately 18% and 20%, respectively. In the plot 01, 12, and 18, 16 

species were observed, and Agrostis tenuis Sibth., Phleum alpinum L., and Festuca 

nigrescens Lam. accounted with the highest proportion of species composition of 

approximately 25%, 20%, and 35%, respectively. In general, a high number of species was 

observed -considering the relatively small area compared to the other studies (Aneece et al., 

2017; Peng et al., 2019; Wang et al., 2018a). Among the 22 investigated plots, only 2 plots 

(20 and 22) were showing less than 5 species. In plot 20 there were 4 species observed, where 

Epilobium angustifolium L. covered about 95% of the area, while Epilobium angustifolium L., 

Carex sp., Euphrasia rostkoviana., and Agrostis tenuis Sibth., covered 4%, 1%, and 0.1% of 

the area respectively. In plot 22 there were only 2 species, and Agrostis tenuis Sibth. covered 

almost the whole area (99% proportion), while Chaerophyllum hirsutum L. covered only 1% 

of the area. The distribution of the family and functional group taxonomy level is presented in 

Appendix B Figure B1 and Figure B2, respectively.   
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Figure 26. Species distribution (in %) within each plot. 

4.3.1. Biochemical and biophysical PTs variability across the study plots  

The variation of the biochemical and biophysical PTs among the 22 investigated plots 

in the grassland ecosystem expressed as SD measured from the average PTs value of each 

plot are presented in Figure 27. The chlorophyll PTs (chla and chlb) showed high variation 

compared to the carotene (bcar) and xanthophyll PTs (lut, neox, violax, and anther). Out of 

the chlorophyll pigments, chla showed the highest SD range and showed to be a highly 

heterogeneous metric (Figure xx, panel A). In the xanthophyll pigments, we observed some 

outlier values in the SD, but the median SD was always lower than the median SD of chla 

and bcar. Out of the biochemical elements, Nitrogen showed the highest variation within SD 

varying from 0.24 to 0.44 (Figure 27, panel A). The variation in the biophysical PTs 

including SLA and LWC is also presented in Figure 27, panel B, where the SLA showed a 

higher variation compared to the LWC in the study area.  
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Figure 27. Box plots of the biochemical (panel A) and biophysical (panel B) plant traits (PTs) standard 

deviation (SD) among the investigated plots measured from the 10 subsamples of PTs in each plot. The grey box 

represents the inter-quartile range, with a horizontal line showing the median. Each whisker extends to the 

highest value that is within 1.5 times the inter-quartile range. The black points indicate outliers values in the PTs 

measurement (Wickham, 2007). The abbreviations of the x axis labels are: chla (chlorophyll a); chlb 

(chlorophyll b); bcar (β-carotene); lut (lutein); neox (neoxanthin); violax (violaxanthin); anther 

(antheraxanthin); C (carbon); H (hydrogen); N (nitrogen); S (sulphur); O (oxygen); SLA (specific leaf area); 

LWC (leaf water content). 

4.3.2. α-diversity and PTs diversity  

A weak and non-significant linear relationship was observed between PTs variability 

(at local scale, measured as SD) and species α-diversity (measured as Shannon’s index) for 

all three taxonomy levels (Table 10). The results are very similar to the ones obtained with 

spectral diversity metrics at the local scale (which also failed to estimate α-diversity in the 

same ecosystem) which were presented previously in Imran et al., (2021). All the metrics 

based on biochemical PTs variability failed to estimate biodiversity and hardly any of the 

metrics was correlated with α-diversity with an R2 value greater than 0.10 (Table 10). The 

biophysical PTs (SLA and LWC) variability at the local scale was also not significantly 

correlated with α-diversity.   
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Table 10. Summary of linear regressions for α-diversity at three taxonomy levels (Shannon’s index) vs. 

biochemical and biophysical variability (measured as standard deviation). Values outside parentheses represent 

the R2 (coefficient of determination), while values inside parentheses indicate the p-value. 

4.3.3. Biochemical and biophysical PTs distances vs species turnover 

The correlation between Jaccard species dissimilarities vs. biochemical and 

biophysical PTs Euclidean distance showed that the taxonomic β-diversity is correlated with 

PTs variability among plots, at the spatial scale. For taxonomic β-diversity at the species 

level, the variation of the chlorophyll PTs (chla and chlb) showed a higher significant 

correlation with β-diversity (r = 0.5, p = 0.0002 and r = 0.46, p = 0.0014, Figure 28, panel A 

and B) compared to beta carotene and xanthophyll PTs (Figure 28, panel C and G). The 

strength of the correlation between the taxonomic β-diversity and biochemical PTs variability 

varied depending on the analyzed PT. Some PTs, such as chla and chlb, lut, neox, and violax, 

associated with the taxonomic β-diversity with an r => 0.3, while other PTs, such as bcar and 

anther, were not linked with the β-diversity. The correlations between the variation of leaf 

Biochemical and 

biophysical PTs 
Shannon’s index 

 species families functional group 

Biochemical PTs (mg/g dry mass) 

chlorophyll a 0.04 (0.39) 0.01 (0.73) 0.02 (0.57) 

chlorophyll b 0.00 (0.88) 0.02 (0.52) 0.00 (0.95) 

β-carotene 0.00 (0.95) 0.00 (0.89) 0.03 (0.43) 

lutein 0.10 (0.70) 0.00 (0.86) 0.00 (0.90) 

neoxanthin 0.01 (0.75) 0.00 (0.88) 0.02 (0.53) 

violaxanthin 0.01 (0.63) 0.00 (0.98) 0.02 (0.50) 

antheraxanthin 0.00 (0.83) 0.00 (0.92) 0.00 (0.98) 

carbon 0.10 (0.30) 0.04 (0.38) 0.02 (0.43) 

hydrogen 0.01 (0.63) 0.00 (0.81) 0.02 (0.58) 

nitrogen 0.03 (0.44) 0.01 (0.72) 0.10 (0.16) 

sulphur 0.00 (0.82) 0.02 (0.54) 0.00 (0.78) 

oxygen 0.03 (0.46) 0.00 (0.88) 0.00 (0.77) 

Biophysical PTs 

specific leaf area 0.01 (0.70) 0.00 (0.98) 0.10 (0.20) 

leaf water content 0.01 (0.68) 0.10 (0.28) 0.10 (0.18) 
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element content and Jaccard dissimilarity also gave some evidence of the connection between 

PTs diversity and taxonomic β-diversity. Among the investigated leaf elements, the strongest 

correlation with β-diversity was found for N and O (r = 0.48, p = 0.0002 and r = 0.38, p = 

0.004, respectively; Figure 28, panel J and L). In case of the other elements, the correlation 

with taxonomic β-diversity was weak or negligible: for example, C showed an r value of = 

0.21 (Figure 28, panel H) while H, and S showed values around zero (Figure 28 panel I and 

K). 

 

Figure 28. Mantel correlations between the biochemical PTs diversity (measured by Euclidean distance of 

various PTs) and species β-diversity (measured by Jaccard dissimilarity index). 
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The correlation between biophysical PTs diversity calculated from the Euclidean 

distances and the taxonomic β-diversity was moderate, (r = 0.42, p = 0.039) when the canopy 

dry biomass variability was related to β-diversity, while the variability of SLA showed a 

weaker correlation with an r = 0.29 (p = 0.0011; Figure 29, panel A). The biophysical LWC 

diversity, on the other hand, showed almost no correlation with taxonomic β-diversity with an 

r = -0.075, p = 0.70. 

 

Figure 29. Mantel correlations between the biophysical PTs diversity (measured by Euclidean distance of 

biophysical PTs) and species β-diversity (measured by Jaccard dissimilarity index). 

The correlations between β-diversity at different higher taxonomic levels (families 

and functional groups) and both biochemical and biophysical PTs variability are presented in 

Table 11. The Mantel r values between Jaccard species dissimilarities and biochemical and 

biophysical PTs Euclidean distance showed a similar correlation compared to the taxonomic 

β-diversity at the species level. A slight drop in r-values was observed for the dissimilarity 

matrices calculated from the species family-level data and a further decrease in r values was 

observed when considering dissimilarity matrices at higher taxonomy level (functional 

group). Among the investigated biochemical PTs, chla and lut showed the highest 

correlations with the taxonomic β-diversity at the family rank (r values of 0.33, p = 0.02 and r 

= 0.32, p= 0.02) compared to chlorophyll and other xanthophyll PTs which showed r values < 

0.30. At higher taxonomic levels (functional groups) a further decrease in r values was 

generally observed; for example, chla and lut showed r values of 0.19 (p = 0.09) and 0.27 (p 

= 0.04), respectively. 

Among the xanthophyll PTs, violax, and anther showed an overall weak and non-

significant correlation with taxonomic β-diversity at both taxonomic ranks (families and 

functional group). The nitrogen and oxygen biochemical elements variability showed a 

moderate correlation for the taxonomic β-diversity for species family rank with an r value r = 

0.44, p = 0.001 and r = 0.52, p = 0.0001 while a slight decrease in the r values was observed 

when the higher taxonomic rank (functional groups) was considered. The biophysical PTs 

diversity measured by PTs Euclidean distances between plots showed a weak correlation 

except the dry biomass which showed a strong significant correlation with an r value r = 0.64, 
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p = 0.0001 and r = 0.61, p = 0.0001 for both taxonomic ranks families, and functional groups 

respectively.  

Table 11. Summary of Mantel correlations for β-diversity at higher taxonomy levels (measured by Jaccard 

dissimilarity index) vs. biochemical and biophysical variability (measured as Euclidean distance). In the 

brackets the p-value is presented. 

4.3.4. Spectral distances vs species turnover 

The analysis of the correlation between spectral β-diversity measured by the SAM 

between the average reflectance of the study plots and taxonomic β-diversity measures at 

different taxonomic ranks is presented in Figure 30. The correlation between spectral 

diversity and taxonomic β-diversity showed a significant correlation with r value of 0.48, p = 

0.0018 for the species taxonomic rank while a slightly decrease in r values between two 

metrics were observed for the two other taxonomic ranks (families and functional groups) 

with r = 0.47, p = 0.002 and r = 0.41, p = 0.001, respectively. 

Biochemical and 

biophysical PTs 
Shannon’s index 

 families functional groups 

Biochemical PTs (mg/g dry mass) 

chlorophyll a 0.33 (0.02) 0.19 (0.09) 

chlorophyll b 0.29 (0.03) 0.24 (0.05) 

β-carotene 0.32 (0.02) 0.27 (0.04) 

lutein 0.28 (0.03) 0.30 (0.02) 

neoxanthin 0.28 (0.03) 0.17 (0.11) 

violaxanthin 0.16 (0.13) -0.05 (0.58) 

antheraxanthin 0.03 (0.36) -0.10 (0.83) 

carbon 0.14 (0.14) 0.12 (0.16) 

hydrogen 0.08 (0.25) 0.01 (0.44) 

nitrogen 0.44 (0.001) 0.29 (0.02) 

sulphur 0.26 (0.01) 0.30 (0.004) 

oxygen 0.52 (0.0001) 0.49 (0.0002) 

Biophysical PTs 

specific leaf area 0.17 (0.03) 0.14 (0.05) 

leaf water content -0.06 (0.64) 0.09 (0.22) 

dry biomass 0.64 (0.0001) 0.61 (0.0001) 
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Figure 30. Mantel correlations between the spectral diversity (measured by spectral angular mapper of average 

reflectance of each plot) and species β-diversity (measured by Jaccard dissimilarity index). 

4.4. Discussion  

The potential of the spectral diversity approach to estimate the taxonomic diversity at 

α and β diversity scales has been recently explored, and many authors (Aneece & Epstein, 

2015, Aneece et al., 2017, Wang et al., 2018a, Peng et al., 2019, Marzialetti et al., 2021) used 

the SVH approach to study either man-made simpler ecosystems or relatively low diverse 

plant communities. In such low-diverse plant communities, authors claimed the successful 

estimation of both α and β taxonomic diversity (Aneece et al., 2017; Aneece & Epstein, 2015; 

Marzialetti et al., 2021; Peng et al., 2019; Wang et al., 2018a). However, the SVH approach 

has also been criticized for being unstable and not reliable in every context, and this 

demonstrated to be potentially due to the differences in the level of heterogeneity of in the 

investigated ecosystems (Conti et al., 2021; Imran et al, 2021; Schmidtlein & Fassnacht, 

2017) although the diversity dynamics for complex and high-biodiversity ecosystems are still 

not completely clear. The structurally-heterogeneous canopy modifies optical diversity 

patterns because high structural diversity and complex vertical structure, in these canopies, 

may express high spectral diversity even when low species diversity, and vice versa (Conti et 

al., 2021; Imran et al., 2021). So, according to these studies, optical diversity may not be able 

to detect PTs variability (functional diversity), and thus biodiversity.  

In order to better understand the mechanisms behind the relationship between spectral 

diversity and biodiversity, in this study we used the PTs variability approach (PTVH) to 

bridge spectral diversity to biodiversity. To our knowledge, the present study is the first work 

exploring the links between in-situ PTs variability and species diversity at both the α and β 

scales. We found that the relationship between PTs variability (which expresses functional 

diversity) and species diversity strongly varies across the diversity scales. Presumably due to 

the complex nature of the canopies in the investigated ecosystem, we found weak correlations 

between PTs variability and taxonomic α-diversity. This result was unexpected, and it is 

suggesting that the lack of correlation between optical diversity and taxonomic α-diversity 

may be not only due to the fact that heterogeneous canopy modifies optical diversity patterns 

(as demonstrated by Conti et al., 2021 and Imran et al., 2021), but also to the fact that PTs 
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diversity (determining optical diversity) is not always associated with α-diversity. Based on 

this, variability in the canopy reflectance is expected to provide information about the 

presence of different plant species within the measurement footprint as each species is 

supposed to respond in a different way to incoming solar radiation according to their 

pigment, water, biochemical content, and leaf and canopy structure. According to our results, 

such biochemical and biophysical variability cannot always be associated with α-diversity. 

The overall weak relationship between PTs variability and species α-diversity 

suggested that the relationship between PTs and species diversity may be impaired by other 

sources of variability such as e.g., the presence of heterogeneous elements (e.g., flowers, 

stems, leaves, and dead material) in the biomass samples. The presence of the non-

photosynthetic elements is one of the canopy characteristics which might hamper not only the 

optical diversity approach to estimate diversity (as shown by Imran et al., 2021), but also the 

PTs variability link to the α-diversity. Another possible reason for the weak correlation 

between ecosystem functional diversity (estimated by PT variability) and α-diversity may be 

related to the PT variability sampling strategy adopted in this study. To this regard, more 

studies are needed to verify this hypothesis. 

The results of the study showed that the relationship between PTs variability and 

biodiversity varied across the biodiversity spatial scales. The analysis of the Mantel test 

showed that a moderate correlation can be found between the PTs variability (measured by 

Euclidean distances of the biochemical variables among the sampling units) or spectral 

diversity (measured by SAM among the plots) with taxonomic β-diversity (measured by 

Jaccard dissimilarity among the plots) at IT-MBo grassland site. The PTs variability (chla, 

chlb, lut, neox, violax, N, O, and dry biomass) could be associated with species distance in 

structurally heterogeneous plant communities. Our analysis showed that the variability at the 

spatial scale of leaf N content (mg/g dry mass) among the plots (as measured by pairwise 

Euclidean distances) is correlated (r = 0.48) with β-diversity (calculated using species 

pairwise distance matrix). More specifically, N content (in this unfertilized grassland) was 

directly correlated with β-diversity, differently from what suggested by Humbert for fertilized 

grasslands (Humbert et al., 2016).  

The relationship between the variability of chlorophyll traits (chla and chlb) and β-

diversity are in line with a recent study of Torresani et al., (2021) where PTs variability links 

with biodiversity were analyzed in forest ecosystems.  The variation of Cbrown, Car and Cab 

was shown to be an accurate proxy of tree species diversity (Torresani et al., 2021) although 

uncertainties in the estimation of leaf chemistry were deducted from physical model inversion 

and not (like in our study) from direct observations. 

Our study confirmed the recent findings of Zhao et al., 2021 concerning the ability of 

estimating ecosystem productivity from the variation of grassland leaf traits. The optical 

diversity approach, investigating the spectral variation of the canopy reflectance, is able to 

provide significant information on productivity, functional diversity and, in turn, on grassland 

biodiversity (Imran et al., 2021 and Sakowska et al., 2019). However, our study confirmed 

that most assessments of diversity (from remote observations or from laboratory 
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measurements of in-situ samples) are rather uncertain and more studies need to be performed 

to quantify such uncertainties.  

Our study is significantly contributing to the analysis and explanations of the limits of 

the optical diversity approach that describes the extent and filling pattern of the spectral space 

occupied by a plant community. Such approach is expected to describe ecosystem functional 

complexity Schweiger et al., 2018) which stems from biodiversity. But why is the optical 

approach sometimes not showing satisfactory performances for biodiversity estimations in 

e.g., high biodiversity and highly heterogeneous ecosystems (as in Imran et al., 2021)? Our 

results are only preliminary -considering the small study area-, but they indicate that this 

might be partly due to the complex relationships between functional diversity and 

biodiversity. 

4.5. Conclusions 

In several studies (Rocchini et al., 2019; Rocchini et al., 2018; Rocchini et al., 2016; 

Wang et al. 2018a; Wang & Gamon, 2019) the relationship between spectral diversity and 

plant diversity has been studied, but it has also been demonstrated to be unstable and not 

reliable in every context (Schmidtlein & Fassnacht, 2017, Imran et al., 2021). These 

contradictory findings might be due to site-specificity and in particular to the differences in 

the level of heterogeneity of the investigated ecosystems, which may hamper the ability to 

detect PTs variability (functional diversity). On the other hand, it is not clear whether, in such 

heterogeneous ecosystems, functional diversity, expressed as PTs variability directly 

measured in-situ, is linked to biodiversity.  

In this paper, we demonstrated that: i) functional diversity (expressed as PTs 

variability) is not correlated with α-biodiversity in a species-rich semi-natural subalpine 

grassland site where, in previous studies, the optical diversity approach was not able to 

reliably detect α-biodiversity ii) functional diversity at the spatial scale (for chlorophyll, 

xanthophyll and nitrogen content) is linked with β-biodiversity iii) β-diversity has a 

statistically significant relationship with spectral variability since plant compositional 

turnover monotonically increases with increasing spectral distance among sites.  

Our preliminary results indicate that the poor performance of optical diversity proxies 

in estimating biodiversity in structurally heterogeneous grasslands might be partly due to the 

complex relationships between functional diversity and biodiversity, besides the impossibility 

to detect functional diversity (and then, in turn, species diversity) with spectral proxies. 

https://onlinelibrary.wiley.com/doi/10.1111/avsc.12586?af=R#avsc12586-bib-0056
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4.6. Appendix B 

 

Figure B1. Families distribution (in %) within each plot. 

 

Figure B2. Functional groups distribution (in %) within each plot. 

4.7. Supplementary material  
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Table S11. Descriptive statistics (Min: minimum, Max: maximum, SD: standard deviation) of the biochemical plant traits (chlorophyll, β-carotene, and xanthophyll 

pigments). 

Plots chlorophyll a  chlorophyll b  β-carotene  lutein  neoxanthin  violaxanthin  antheraxanthin  

 Min Max SD Min Max SD Min Max SD Min Max SD Min Max SD Min Max SD Min Max SD 

01_02 1.52 2.98 0.43 1.44 2.24 0.27 0.64 1.07 0.14 0.21 0.40 0.06 0.05 0.32 0.02 0.08 0.13 0.02 0.02 0.11 0.01 

02_02 1.05 3.28 0.62 1.21 2.57 0.42 0.54 1.15 0.19 0.26 0.43 0.04 0.03 0.11 0.02 0.00 0.16 0.05 0.00 0.03 0.01 

04_01_R 1.99 3.28 0.37 0.95 3.15 0.64 0.49 1.79 0.38 0.29 0.43 0.04 0.06 0.11 0.02 0.00 0.16 0.04 0.00 0.03 0.01 

05_02 1.85 3.31 0.50 0.73 3.15 0.20 0.18 1.79 0.05 0.24 0.42 0.06 0.06 0.11 0.02 0.08 0.16 0.02 0.01 0.03 0.00 

06_02 1.54 3.31 0.52 0.90 1.56 0.18 0.22 0.35 0.04 0.20 0.41 0.06 0.05 0.11 0.01 0.09 0.14 0.02 0.02 0.03 0.00 

07_02 1.91 3.18 0.22 0.91 1.56 0.17 0.23 0.35 0.04 0.23 0.40 0.03 0.06 0.09 0.01 0.08 0.13 0.01 0.02 0.03 0.00 

08_02 1.76 2.50 0.24 0.90 1.58 0.24 0.21 0.35 0.05 0.25 0.33 0.03 0.05 0.08 0.01 0.09 0.12 0.01 0.02 0.03 0.00 

09_02 0.57 2.73 0.92 0.68 1.58 0.24 0.18 0.35 0.04 0.07 0.35 0.11 0.01 0.08 0.03 0.02 0.11 0.03 0.01 0.05 0.01 

10_02 1.20 3.10 0.62 0.80 1.43 0.11 0.19 0.31 0.02 0.16 0.35 0.06 0.03 0.11 0.02 0.05 0.14 0.03 0.01 0.05 0.00 

11_02 1.59 3.43 0.67 0.77 1.16 0.10 0.19 0.27 0.02 0.20 0.39 0.07 0.05 0.13 0.03 0.08 0.16 0.03 0.02 0.03 0.01 

12_02 0.98 3.43 0.29 0.25 1.38 0.46 0.06 0.30 0.10 0.16 0.39 0.05 0.04 0.13 0.01 0.03 0.16 0.02 0.01 0.03 0.00 

13_02 1.21 2.40 0.35 0.60 1.50 0.28 0.14 0.33 0.06 0.15 0.32 0.05 0.04 0.09 0.01 0.04 0.10 0.02 0.01 0.02 0.00 

14_02 0.25 3.28 0.83 0.83 1.80 0.35 0.17 0.38 0.07 0.13 0.33 0.06 0.02 0.12 0.03 0.00 0.10 0.01 0.00 0.02 0.00 

16_02 1.35 3.28 0.64 0.45 1.80 0.12 0.14 0.38 0.03 0.18 0.40 0.07 0.04 0.12 0.02 0.01 0.12 0.03 0.01 0.03 0.01 

17_02 0.12 3.23 0.80 0.58 1.13 0.16 0.14 0.30 0.04 0.17 0.40 0.05 0.02 0.10 0.02 0.00 0.12 0.04 0.00 0.03 0.01 

18_02 1.19 2.33 0.41 0.67 1.84 0.36 0.16 0.40 0.07 0.16 0.34 0.05 0.04 0.08 0.01 0.05 0.11 0.02 0.01 0.03 0.01 

19_02 1.27 3.58 0.66 0.67 1.84 0.32 0.16 0.40 0.07 0.17 0.47 0.09 0.04 0.12 0.02 0.06 0.13 0.02 0.01 0.03 0.00 

20_02 1.54 3.58 0.37 0.64 1.62 0.21 0.15 0.36 0.05 0.22 0.47 0.06 0.05 0.12 0.01 0.07 0.17 0.03 0.02 0.03 0.01 

T_02 0.67 2.59 0.37 0.62 1.31 0.19 0.15 0.31 0.04 0.10 0.38 0.06 0.02 0.08 0.01 0.04 0.17 0.03 0.01 0.03 0.01 

T_03 2.47 7.14 1.18 0.62 1.66 0.31 0.14 0.39 0.07 0.17 0.60 0.15 0.09 0.29 0.05 0.02 0.26 0.07 0.00 0.03 0.01 

T_05 3.82 7.14 0.55 0.62 1.66 0.18 0.19 0.39 0.05 0.17 0.60 0.10 0.13 0.29 0.02 0.16 0.26 0.02 0.02 0.03 0.00 

T_10_B 1.15 5.78 0.18 0.31 1.13 0.17 0.09 0.31 0.06 0.10 0.45 0.02 0.03 0.19 0.01 0.03 0.24 0.01 0.01 0.03 0.01 
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Table S12. Descriptive statistics (Min: minimum, Max: maximum, SD: standard deviation) of the biochemical 

plant traits (carbon, hydrogen, nitrogen, sulphur, and oxygen elements). 

Plots           carbon hydrogen nitrogen sulphur oxygen 

 Min Max SD Min Max SD Min Max SD Min Max SD Min Max SD 

01_02 47.22 48.07 0.28 5.18 5.90 0.23 1.49 2.46 0.28 0.06 0.19 0.05 35.32 40.75 1.72 

02_02 40.11 47.96 2.73 4.38 5.81 0.44 1.46 2.02 0.16 0.09 0.41 0.09 32.33 40.77 2.51 

04_01_R 46.19 47.52 0.44 5.42 5.77 0.09 1.54 2.61 0.33 0.00 0.22 0.07 36.30 41.04 1.70 

05_02 47.16 48.78 0.50 5.50 5.84 0.11 1.15 2.28 0.40 0.05 0.22 0.07 36.33 44.42 2.43 

06_02 45.45 46.98 0.44 5.27 5.75 0.15 1.31 1.89 0.19 0.07 0.58 0.15 37.12 41.55 1.60 

07_02 47.49 48.53 0.35 5.79 6.05 0.09 0.90 1.57 0.17 0.08 0.18 0.03 38.94 42.25 1.08 

08_02 46.12 48.41 0.65 5.24 5.99 0.19 0.77 2.72 0.59 0.07 0.23 0.06 36.25 43.06 2.32 

09_02 45.38 47.71 0.62 5.09 5.95 0.29 1.14 2.37 0.38 0.01 0.23 0.07 36.73 42.23 2.18 

10_02 47.23 48.30 0.33 4.39 6.01 0.42 1.29 1.86 0.22 0.02 0.16 0.04 38.32 41.16 0.93 

11_02 47.63 49.26 0.52 5.33 6.00 0.24 1.04 2.02 0.26 0.02 0.27 0.07 37.02 42.30 1.57 

12_02 47.08 48.88 0.54 4.45 5.84 0.40 1.15 2.66 0.45 0.10 0.51 0.12 34.90 41.33 2.13 

13_02 46.41 47.87 0.42 5.38 5.90 0.17 1.11 2.59 0.45 0.04 0.26 0.07 35.07 42.11 2.12 

14_02 45.41 48.00 0.70 5.63 5.99 0.12 1.10 2.22 0.37 0.02 0.26 0.09 38.37 43.54 1.46 

16_02 46.46 47.89 0.51 4.44 5.92 0.43 1.22 2.54 0.52 0.02 0.20 0.06 35.80 42.27 2.10 

17_02 47.26 48.33 0.34 5.56 5.96 0.12 1.16 1.58 0.13 0.11 0.28 0.06 39.82 41.64 0.53 

18_02 46.58 47.80 0.42 5.32 5.96 0.17 1.12 2.25 0.40 0.02 0.22 0.08 37.32 42.30 1.54 

19_02 46.06 47.74 0.49 5.32 5.88 0.20 1.36 2.20 0.25 0.06 0.29 0.07 38.62 40.80 0.80 

20_02 45.81 48.02 0.63 5.70 6.01 0.12 1.33 2.16 0.23 0.02 0.37 0.10 37.91 42.29 1.17 

T_02 46.02 47.57 0.45 5.31 5.83 0.15 0.95 2.83 0.82 0.10 0.51 0.13 32.62 40.94 3.10 

T_03 48.11 49.15 0.42 5.18 5.91 0.28 1.80 2.70 0.35 0.10 0.49 0.12 36.34 39.02 1.06 

T_05 47.95 48.90 0.30 5.68 5.85 0.06 2.00 2.69 0.17 0.07 0.26 0.06 36.39 38.82 0.69 

T_10_B 47.16 47.97 0.24 4.98 5.67 0.21 0.95 1.60 0.18 0.01 0.21 0.08 40.28 44.39 1.07 
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Table S13. Descriptive statistics (Min: minimum, Max: maximum, SD: standard deviation) of the biophysical 

plant traits (specific leaf area and leaf water content). 

Plots Specific leaf area Leaf water content 

 Min Max SD Min Max SD 

01_02 140.66 203.59 20.55 62.35 71.08 2.78 

02_02 79.10 142.26 19.40 32.25 62.80 10.28 

04_01_R 119.36 156.67 10.81 64.63 72.61 3.02 

05_02 127.04 160.26 12.56 72.74 76.58 1.48 

06_02 126.54 154.01 9.43 64.05 71.54 2.58 

07_02 131.26 153.01 8.40 62.00 69.36 2.16 

08_02 93.04 126.36 10.49 54.57 68.81 4.37 

09_02 114.13 150.83 12.95 61.62 72.62 3.49 

10_02 156.30 198.24 14.28 69.60 75.89 2.27 

11_02 147.99 259.24 35.25 61.49 73.71 3.62 

12_02 114.57 150.51 11.18 57.44 70.99 3.86 

13_02 135.81 185.70 16.90 72.98 82.17 2.95 

14_02 161.48 206.54 15.75 62.62 78.02 5.55 

16_02 123.07 202.26 32.56 64.66 69.52 1.76 

17_02 165.81 339.00 57.45 65.27 78.56 4.00 

18_02 118.72 214.46 32.09 71.74 82.11 3.12 

19_02 108.64 161.91 18.54 68.87 74.03 1.68 

20_02 110.46 143.75 12.17 63.44 66.23 1.06 

T_02 172.95 272.05 37.22 76.42 81.08 1.50 

T_03 163.50 202.67 12.61 67.94 71.58 1.22 

T_05 196.17 235.98 14.94 64.65 72.90 3.15 

T_10_B 164.07 266.54 38.96 52.31 69.23 5.19 
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5. Conclusions of the thesis 

5.1. Summary of the key results 

5.1.1. Chapter 2. VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation 

Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous 

Grasslands 

The key results of chapter 2 highlighted the importance of using hyperspectral and 

super-spectral sensors adopting SVIs with band combinations in the VIS, RE, and NIR 

shoulder spectral region to estimate canopy structure traits in montane temperate grassland 

ecosystems (IT-MBo and AT-Neu). The results of the study showed that the spectral response 

across different spectral regions is both site-specific and scale-dependent. The performance of 

the SVIs based on different parts of the spectrum (VIS, red-edge, and NIR shoulder) in 

predicting LAI in grassland canopies were analyzed and both reflectance across the spectrum 

and band combinations showed to be strongly dependent on biochemistry and leaf and 

canopy structural traits. Very contrasting results were achieved at the temporal and spatial 

scales. At IT-MBo temporal scale strong correlations (R2 > 0.8) were observed between LAI 

and both traditional RE and NIR-shoulder SVIs. While, at the AT-Neu study site, generally 

lower R2 values were observed compared to the IT-MBo temporal observations. The R2 

patterns were more different across the RE and NIR-shoulder regions. In particular, an 

evident shift of the well-correlated areas towards the lower wavelengths (from around 750 

nm to 740 nm) was observed for AT-Neu compared to IT-MBo temporal observations 

(Figure 31). This is probably due to the fact that the chlorophyll absorption threshold is 

different at the two grassland ecosystems (Rossi et al., 2019; Vescovo et al., 2012), and 

absorption is still present at 754 nm only in the IT-MBo grassland. The evident shift of the 

well-correlated areas at the AT-Neu site suggests that the performance of some of the RE 

SVIs is site-specific, probably partly due to different absorption thresholds. 

 

Figure 31. R2 values based on linear regression between the normalized difference of all two-band 

combinations and LAI for both study sites (IT-MBo 2013 (A); IT-MBo 2014 (B); and AT-Neu 2018 (C)) 

considering the temporal scale hyperspectral observations. R2 obtained using: (A–C) the hyperspectral data. 
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Black circles refer to the position of the indices in the correlogram and arrows are indicating the name of the 

respective indices. 

On the other hand, very contrasting results were achieved at the spectral scale at IT-

MBo, with very low coefficients of determination values (R2 < 0.1) between band 

combinations and LAI along the VIS, red-edge, and the NIR shoulder region of the spectrum 

(Figure 32). Moreover, the NIR-shoulder slope response at the spatial scale appeared to be 

more complex compared to the temporal scale and did not strictly follow the typical temporal 

response at increasing LAI, characterized by an increase of NIR-shoulder slope 

corresponding to an increase of LAI. The poor performance of the SVIs in retrieving LAI at 

the spatial scale observations is noteworthy and confirms the observations of Dong et al., 

(2019) on the strong response of canopy reflectance to canopy structural traits. Darvishzadeh 

et al., (2008c) showed that LAI, in heterogeneous grasslands, could be estimated at the spatial 

scale using the SVIs approach with intermediate accuracy (R2cv values from 0.49 to 0.69). 

 

Figure 32. R2 values based on linear regression between the normalized difference of all two-band 

combinations and LAI for IT-MBo 2017 considering the spatial scale observations. White circles refer to the 

position of the indices in the correlogram and arrows are indicating the name of the respective indices. 

The SVIs solely based on NIR-shoulder bands (both beyond 750 nm), for example, 

NSDI779.75 (calculated from S-3 simulated bands) performed very well at IT-MBo, but not at 

the AT-Neu. This is probably due to the fact that the chlorophyll absorption threshold is 

different at the two grassland ecosystems, and absorption is still present at 754 nm only in the 

IT-MBo grassland. This result is defining the green-dependency of NIR shoulder SVIs 

investigated in Vescovo et al., (2012) which were thought to be related to scattering 

mechanisms and not chlorophyll absorption. The results of the empirical approach were 

confirmed by the simulations performed with the RTM PROSAIL when both structural and 

biochemical traits were co-varied. The results of the PROSAIL RTM demonstrated that 

grassland structural heterogeneity strongly affects the ability to retrieve LAI, with high 
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uncertainties due to structural and biochemical PTs co-variation. The PROSAIL RTM results 

confirmed that: (i) the co-variation of all structural traits (such as LAI, LAD, Cm, and N, at 

the spatial scale) could explain the poor performance of most SVIs; and (ii) due to the co-

variation of both structural and biochemistry traits, no SVI is able to provide reliable LAI 

spatial estimations. In this context, the uncertainties of satellite-based LAI products (in 

grassland canopies with either spatially or temporally varying structure) need to be carefully 

taken into account adopting a modeling approach which is minimizing the impact of canopy 

structural heterogeneity. 

5.1.2. Chapter 3. Potential and Limitations of Grasslands α-Diversity Prediction Using Fine-

Scale Hyperspectral Imagery 

The key results of chapter 3 highlighted the applicability of the optical diversity (also 

called spectral variability hypothesis, SVH) approach to estimate plant diversity in two 

different grassland ecosystems (IT-PD: artificially established grassland plots with a species-

poor mixture and IT-MBo: species-rich semi-natural grasslands). The results of the study 

demonstrated that the optical diversity – plant diversity relationships appeared to be not 

consistent across plant communities. The spectral diversity (expressed as CV and SD) metrics 

showed to be a proxy of plant diversity similarly to other studies (Aneece et al., 2017; Peng et 

al., 2019; Wang et al., 2018a), when this approach was used in lower diversity artificial 

grassland site. However, the data acquired at the semi-natural subalpine grassland at IT-MBo 

with the same methodology and analyzed with the same approach provided much weaker 

correlations. When the optical diversity metrics were averaged across different spectral 

regions as in Aneece et al., (2017) At the IT-PD site, a positive correlation between optical 

diversity metrics (Appendix A, Figure 1A) and biodiversity indices was mostly observed, 

while at the IT-MBo site, the correlation was mostly negative (Appendix A, Figure 2A). 

When the spectral diversity metrics were calculated for each spectral band on a 

separate basis, the R-value for some of the spectral bands reached up to R = 0.84 (SD metric 

at 927 nm) and R = 0.87 (CV metric at 412 nm) in the artificial turfgrass (IT-PD). On the 

other hand, the maximum R-value observed in the species-rich subalpine grassland (IT-MBo) 

was only 0.56 for the SD metric at 688 nm. These contradictory results may be due to the 

very high level of biodiversity (up to 17 species in a 0.25 x 0.25 m plot) and to the rather 

complex structure of the IT-MBo grasslands (maximum number of species was 17 in a 0.25 x 

0.25 m area) compared to the low-diversity turf canopy at the IT-PD site (maximum number 

of species was 9 in a 0.25 x 0.25 m and 0.5 x 0.5 m area). Further, the artificially established 

grassland plots, are simplified ecosystems that may not be representative of the complexity of 

natural field ecological conditions, where leaf and canopy traits can contribute to optical 

diversity in several ways, adding complexity to the optical and plant diversity relationships in 

natural grasslands. This can explain the poor performance of the optical sampling methods in 

complex grassland canopies. 

The accuracy of the species diversity estimation varied with the spectral data spatial 

resolution and with the level of complexity of the community. Spatially heterogeneous 

canopy structure has a greater possibility to create heterogeneous shadow patterns. 

Heterogeneous canopy shadow patterns modify optical diversity patterns, which are 
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influenced not only by plant diversity but also by shadow rates. On the one hand, the use of 

very high spatial resolution (up to 1 mm) imagery, provides new opportunities, but at the 

same time pixels of canopy non-photosynthetic elements (flowers and dead material) may 

create a higher spatial heterogeneity among the spectra, which leads to noise rather than 

enhancing the information content (Rocchini et al., 2016).  

Other studies (Gholizadeh et al., 2018; Lopatin et al., 2017; Peng et al., 2019; Wang 

et al., 2018a) also highlighted the effect of non-photosynthetic elements, shaded pixels, 

overexposed pixels, and the soil background on the performance of optical diversity metrics 

to estimate plant diversity. To improve the accuracy of spectral diversity metrics to predict 

the plant alpha diversity a range of image post-processing techniques (brightness 

normalization, filter flowering pixels, filter shaded pixels, and continuum removal) adopted 

to fully disentangle the optical diversity due to plant diversity from the optical diversity due 

to illumination artifacts, or due to the presence of pixels of non-photosynthetic material, such 

as dead material or flowers. The developed processing flow proved, in general, to slightly 

improve the estimations of plant diversity, by limiting the influence of the factors 

determining optical diversity but not related to plant diversity. When optical diversity metrics 

calculated from the post-processed (Level3) data showed higher correlations with biodiversity 

indices, and that the use of CR spectra generally improved the R values of the correlation 

between SD and species diversity. Similarly, Blanco-Sacristán et al., (2019) the results in this 

study, the spectral bands in the red part of the spectrum (around 680 nm) showed to be best 

for estimating biodiversity in both grasslands study sites.  

In this study, the pixel subsampling approach was also tested to check the optimal 

pixel size to estimate the plant diversity as, with decreasing spatial resolution, the variability 

in reflectance and, therefore, CV and SD decreased, so the optical detectability of 

biodiversity was reduced. The results of the pixel subsampling approach were not shown to 

be effective in this study. The correlation between optical diversity metrics and species 

richness initially increased and was only reduced when the pixel size was beyond 1 cm in IT-

PD, even if for most of the species the average leaf size was much lower than this value. For 

IT-MBo, the optimal pixel size (at 680 nm) was 1 mm. Conversely, according to Wang et al., 

(2018), the optimal pixel size to detect species diversity using spectral diversity should match 

the size of the objects within the sampling unit. Further studies are directed to fully 

investigate the mechanisms at the basis of the optical diversity, to highlight the biochemical 

variability and plant diversity relationships in high biodiversity grasslands, and to provide 

novel insights on the reliability of beta diversity estimations at the spatial scale. 

5.1.3. Chapter 4. On the importance of functional diversity links with α and β diversity for the 

applicability of the optical diversity approach in a subalpine grassland of the Italian Alps 

The results of chapter 4 revealed that the relationship between PTs variability (which 

expresses functional diversity) and species diversity strongly varies across the diversity 

scales. The complex dynamics of the structurally heterogeneous canopy might hamper the 

PTs variability link to the α-diversity in a semi-natural grassland ecosystem (IT-MBo). An 

overall weak relationship between PTs variability and species α-diversity was found and 

these results suggested that the relationship between PTs and species diversity may be 
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determined by the presence of heterogeneous elements (e.g., flowers, stems, leaves, and dead 

material) in the biomass samples. The presence of such non-photosynthetic elements might 

hamper the PTs variability link to α-diversity. Further the weak correlation between 

ecosystem functional diversity (estimated by PT variability) and α-diversity may be related to 

the PT variability sampling strategy adopted in this study, however more studies are needed 

to verify this hypothesis.  

Conversely, a moderate to high correlation is found between taxonomic β-diversity 

(measured by Jaccard dissimilarity index of the species, families, and functional groups 

percent cover) and the Euclidean distances of the biochemical and biophysical PTs. The 

variability of PTs (including chla, chlb, lut, neox, violax, N, O, and dry biomass) showed to 

be associated with species distance. More specifically, N content (in the IT-MBo unfertilized 

grassland) was directly correlated with β-diversity, differently from what suggested by 

Humbert et al., (2016). The relationship between chlorophyll traits (chla and chlb) and beta 

diversity are in line with a recent study of Torresani et al., (2021) where PTs variability links 

with biodiversity were analyzed in forest ecosystems. The variation of Cbrown, Car and Cab 

was shown to be an accurate proxy of tree species diversity (Torresani et al., 2021) although 

uncertainties in the estimation of leaf chemistry were deducted from physical model inversion 

and not from direct observations. However, the current study confirmed that most 

assessments of diversity (from remote observations or from laboratory measurements of in-

situ samples) are rather uncertain and more studies need to be performed to assess their 

suitability for biodiversity studies. 

Furtherly, the results of the study suggested the SVH approach can be a better proxy 

of biodiversity at community scale in the same ecosystem where the spectral diversity failed 

to estimate alpha diversity. The analysis of the Mantel test revealed that a moderate 

correlation can be found between the spectral diversity (measured by SAM among the plots) 

with taxonomic β-diversity (measured by Jaccard dissimilarity among the plots), this leading 

to the conclusion that the link between functional and species diversity may be an indicator of 

the applicability of optical sampling methods to estimate biodiversity.  

5.2. Conclusion and outlook 

This research shows that remote sensing provides efficient methods and tools which 

can effectively be used to monitor biodiversity and PTs in grasslands ecosystems. During the 

research, I was able to predict key ecological grassland PTs (i.e., LAI, species richness) 

which are crucial for biodiversity conservation and ecosystem health and highlighted some 

constraints to predict the PTs when structurally heterogeneous canopies are investigated. The 

findings of the study can give useful guidance for the selection of the most suitable methods 

and scale to estimate structural PTs and biodiversity in heterogeneous grassland ecosystems.  

The specific conclusions for the study and the main outcome of each chapter are 

summarized as follows: 

The results of the Paper I revealed that the spectral response across different spectral 

regions (VIS, RE, and NIR-shoulder) are to be both site-specific and scale-dependent. The 

Paper I highlighted the impact of canopy structural and biochemical PTs heterogeneity on the 
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LAI estimations by using different SVIs based on different spectral regions (VIS, RE, and 

NIR-shoulder) at temporal and spatial scales. The results demonstrated that the relationship 

between SVIs and LAI is strongly mediated by canopy structural heterogeneity, for this 

reason, no reliable estimation of LAI was possible at spatial scale. The unexpected weak 

correlation between SVIs and LAI at spatial scale were confirmed by modeling, through the 

physical-based RTM PROSAIL model: when both structural and biochemical traits were co-

varied, a similar performance of the SVIs to estimate LAI was achieved, as observed in the 

empirical approach. In this context, the uncertainties of satellite-based LAI products (in 

grassland canopies with either spatially or temporally varying structure) need to be carefully 

taken into account adopting a modelling approach which is minimizing the impact of canopy 

structural heterogeneity. 

The Paper II showed that the relationship between spectral diversity metrics and 

species diversity is strongly affected by canopy structural heterogeneity and complexity, and 

that relationships between species diversity and optical diversity metrics were not consistent 

across plant communities. In this study, I found a significant relationship between spectral 

diversity and species diversity in the lower diversity artificial grassland site. However, the 

same approach provided much weaker correlations in the species-rich semi-natural grassland 

ecosystem. The results of this study also highlighted the impact of post processing techniques 

on the relationships between optical data and grassland diversity. Finally, the results of the 

study revealed that the VIS part of the spectrum (and in particular the red domain), 

characterized by a strong absorbance, showed to be one of the key spectral areas for 

biodiversity detection. 

The Paper III demonstrated that PTs variability and spectral diversity can be 

associated with biodiversity at community scale while at local scale PTs variability and 

spectral diversity were not well-correlated. The structurally heterogeneous canopy modifies 

optical diversity patterns because high structural diversity and complex vertical structure, in 

these canopies, may express high spectral diversity even when low species diversity is 

observed, and vice versa. So, our first hypothesis was that the reason of the poor correlation 

between optical data and biodiversity may be due to the inability of the spectral data to detect 

PTs variability (functional diversity). The preliminary results of this study, conversely, 

indicate that the poor performance of optical diversity proxies in estimating biodiversity in 

structurally heterogeneous grasslands might be due to the complex relationships between 

functional diversity and biodiversity, rather than the impossibility to detect functional 

diversity with spectral proxies. Such first insights need to be confirmed by further studies 

focused on the spectral feedback of both functional and species diversity. 

Overall, the recommendations for further research arising from the following PhD thesis 

can be summarized as followed: 

 

1. Further research will be able to clarify if, in complex heterogeneous ecosystems such 

as the grasslands of the Alps, the optical diversity approach can be adopted to detect 

biodiversity (at local and community scale). Such insights will provide more robust 
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information on the mechanisms linking optical diversity, functional diversity, and 

biodiversity. 

2. This research was conducted by using a limited number of experimental plots (10 

spatial plots in Paper I, 25 plots in Paper II, and 22 plots in Paper III). This sample 

size was, in some cases, too small to draw robust conclusions. Further multi-year 

studies with larger sample sizes are required to fully understand and generalize the 

complex underlying mechanisms typical of natural plant communities. 

3. To test the applicability of the SVH approach in this study the hyperspectral sensor 

used for the field data collection had fine spectral resolution but covered only the 

VIS-NIR region of the spectrum. Therefore, the optical diversity analyses presented in 

(Paper II) study primarily reflected the influence of non-photosynthetic elements of 

the canopies. Future work may consider the full range of spectra (VIS-NIR-SWIR) 

because this may provide useful information related to water content which can be 

critical for accurate assignment of PTs both at leaf and canopy scales.  
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