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Pedro J. Gómez-Giráldez, Marı́a J. Pérez-Palazón, Marı́a J. Polo and Marı́a P. González-Dugo
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Preface to ”Remote Sensing of Savannas and

Woodlands”

Savannas and woodlands are one of the most challenging targets for remote sensing. However,

they require increased attention, especially in Africa and South America since they are prime

candidates for agricultural conversion, important resources for livestock production and subsistence

of indigenous communities, and could play a significant role in signalling vegetation shifts driven by

the interaction of climate change and rising atmospheric CO2 concentrations. The sub-Saharan region

of Africa played a key role in exemplifying the value of early low resolution polar orbiting satellites

and introducing the public to large scale regional dynamics of climate driven vegetation growth

via time series of the Normalised Difference Vegetation Index. The 21st century has produced a

revolution in remote sensing with both public and private initiatives rapidly addressing the historical

trade-offs associated with spatial resolution, temporal frequency and spectral resolution that includes

the active LiDAR and Radar domains. These trade-offs are particularly important in savanna

and woodland systems where over-story, mid-story and under-story vegetation strata have equal

importance in structure, function and dynamics. The suite of papers provides a current snapshot of

the geographical focus and application of the latest sensors and sensor combinations in savannas and

woodlands.

Michael J. Hill

Editor
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1. Background

Savannas and woodlands represent one of the most challenging targets for remote
sensing. They provide a complex gradient of woody and herbaceous plant species that
varies widely in spatial arrangement, plant density and height, and canopy persistence
(evergreen to deciduous) of the woody plant component. The understory component also
varies from annual to perennial grassland, and pure grassland to a complex mix of grasses,
forbs, palms, cycads and small shrubs. Savannas and woodlands are geographically
associated with grasslands, shrublands and dry forests at their dry margins, and temperate
and tropical forests at the wet margins. Savannas are generally regarded as an intermediate
state between grassland and forest maintained by herbivory and wildfire and influenced
by climatic and edaphic characteristics.

The grasslands, savannas and woodlands of sub-Saharan Africa played a key role
in development of the remote sensing of vegetation cover and dynamics [1–7]. This
vegetation provided a fertile target for the earliest applications of the Normalized Difference
Vegetation Index (NDVI) and introduced the public to large-scale regional dynamics of
climate-driven vegetation growth. Although there is wide geographical variation in the
density and seasonality of woody canopies, savannas and woodlands are associated with
highly seasonal climates, and the pattern of vegetation greening and browning detected by
space-borne sensors is largely driven by the behavior of the understory. Despite this, much
of the attention on remote sensing of savannas and woodlands has historically focused on
the woody component.

Since the 1980s, savannas and woodlands have continued to be at the forefront of
developments in remote sensing. Savannas and woodlands were the target for international
projects aimed at understanding ecosystem behavior such as the Hydrological Atmospheric
Pilot Experiment (HAPEX) Sahel [8], the Southern Africa Regional Science Initiative (SA-
FARI 2000) [9] and continued studies along the Northern Australian Tropical Transect [10],
all of which have included major remote sensing components especially utilizing the Ad-
vanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Imaging
Spectroradiometer (MODIS). African savannas have played an important role in assessing
the potential of radar backscatter for retrieval of, for example, herbaceous biomass with
the European Remote sensing Satellite (ERS) wind scatterometer [11] and woody biomass
with the Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture
Radar (ALOS PALSAR) [12]. Since wildfire is such an important feature of savannas,
these ecosystems have been, and continue to be, at the forefront of the development of
fire products such as hotspots and burned areas [13]. In the absence of a satellite-based
imaging spectrometer with a high signal-to-noise ratio, especially in the short-wave in-
frared range, airborne spectrometers alone and in association with full-waveform lidar
have been used to characterize the biochemistry [14], floristics [15], structure [16,17] and
species composition [18] of savannas at the landscape scale.

Savannas and woodlands, especially in Africa and South America, deserve increased
attention for remote sensing studies since they are prime candidates for agricultural con-
version, important resources for livestock production and subsistence of indigenous com-
munities, and could play a significant role in signaling vegetation shifts driven by the

Remote Sens. 2021, 13, 1490. https://doi.org/10.3390/rs13081490 https://www.mdpi.com/journal/remotesensing
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interaction of climate change and rising atmospheric CO2 concentrations. This Special
Issue sought to provide an overview of the application of the latest sensors and sensor
combinations to retrieval of quantitative properties of savannas and woodlands. It was
hoped that contributions would illustrate improvements in retrievals of attributes of cover
components and component dynamics and relate these attributes to the wide diversity of
issues faced by savanna and woodland systems globally.

2. The Papers

The papers provide a very current perspective on remote sensing of savannas and
woodlands and reflect both methodological trends, and geographical imperatives driven
by threats. An analysis of word frequency in the abstracts from the 12 papers, using
Wordclouds.com, revealed several specific points of focus (Figure 1). The word cloud is
presented with six types of words. The most common “ecosystem” words were tree, soil
and water. Grassland, forest and species were present but less common in keeping with
a continued emphasis on the woody component of savannas and woodlands. Among
“climate-related” words, season and dry were most common matching the broad climatic
characteristics of savannas and woodlands involving distinct periods of growth, senes-
cence and dormancy. Among the “process” words, spatial, trends, phenology, distribution,
change and time were most common reflecting interest in the arrangement of vegetation,
the interaction of climate and growth pattern and the driving forces affecting savannas
and woodlands. The “method” words were dominated by terrestrial laser scanning (TLS)
and related acronyms (ULS—unmanned aerial vehicle laser scanning; MLS—mobile laser
scanning), and by NDVI and indices, indicating the legacy of those initial remote sensing
studies discussed above and the enduring value of the NDVI. More generic words such
as sensor, images, mapping, analysis, area, difference, scale and monitoring were also common.
The papers also used an array of space-borne sensor systems including Landsat, MODIS
(various products), Sentinel 1, Sentinel 2, ALOS PALSAR and Compact High Resolution
Imaging Spectrometer (CHRIS). Several studies used combinations of sensor types includ-
ing optical, SAR and LiDAR. The “geography” words were dominated by cerrado and
Brazil with biome and global next most common. However, the 11 research papers provide a
relatively balanced coverage of savanna and woodland geography, with four articles on
South America, two articles on Africa, two articles on Australia, one each on North America
and Europe, and one article with global coverage. Finally, the “attribute’ words included
types, structure, AGB, biomass, woody, and density reflecting the fundamental characteristics
of savannas and woodlands that need to be measured and that make them a complex target
for remote sensing.

The Special Issue is nicely balanced in terms of geography and technology. It has
two feature topics: the Cerrado and bordering ecosystems; and laser scanning as the
technology of the moment for characterizing savanna vegetation structure. The Special
Issue is conceptually organized in the first instance by geography. The lead article [19]
covers the global extent of grasslands and savannas using the MODIS sensor and provides
global geographical context. This is followed by the feature review on TLS in savannas [20].
The articles then follow global geography starting in the southern hemisphere dealing
with TLS in the Australian tropical savanna [21,22]. Next come four articles on various
aspects of savanna and woodland vegetation in Brazil [23–26]. These are followed by
two articles on African environments that include a mix of savannas and woodlands
and other vegetation [27,28]. The final two articles address functional ecological aspects
of two different types of northern hemisphere oak savannas in North America [29] and
Europe [30].

2
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Figure 1. Word cloud based on the article abstracts (two occurrences or more). The terms savanna, woodland, remote and
sensing are excluded since they are the topic of the Special Issue. Words represent all versions of the term or concept,
e.g., season includes seasonal and seasonality. Only place names and acronyms are capitalized. Color scheme: light
green—ecosystem words; blue—climate -related words; red—process words; black—method words; purple—geography
words; and dark green—vegetation attribute words. Word cloud produced on http://wordclouds.com (accessed on 6 April
2021).

The group of four papers on South America span the ecotone from the heavily altered
Mato Grosso forests in Amazonia through the savanna of the Cerrado to the dry forests of
the Caatinga. These papers explore the mapping of vegetation types [23], the measurement
of woody above-ground biomass (AGB) [24], the long-term change in savanna vegeta-
tion [25] and water use [26]. The emphasis on this continuum from tropical rainforest
through savanna to dry forest is timely and important as this environment is subject to
massive anthropogenic change and complex political forces within Brazil that influence
the balance between conservation and exploitation of these ecosystems. The paper by de
Souza Mendes [23] uses multiple satellite sources of SAR imagery with Sentinel 2 data
to distinguish among forest and woody savanna types in the Cerrado. The paper by
Bispo et al. [24] combines airborne LiDAR with Landsat 8 and ALOS PALSAR to map AGB
for a catchment-scale study region of the Cerrado. The paper by Paloschi et al. [26] reports
on the strong dependence of water use on soil moisture, and the variation in phenology,
and physiology of individual species in this dry, fragile Caatinga environment. The paper
by Alencar et al. [25] is a new and significant documenting of long-term change in natural
native vegetation in the Cerrado using 33 years of Landsat imagery in the Google Earth
Engine. This is already the most viewed and cited article in this Special Issue.

The review of the application of TLS with a focus on savannas [20] and the two papers
focused on the application of TLS in savannas and woodlands of Northern Australia [21,22]
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form the second feature topic. The review [20] and the article by Levick et al. [22] are com-
plementary in that the former identifies both the value of TLS in savannas, and the limited
application and potential issues, whilst the latter explicitly answers issues surrounding
the spatial extent and structural complexity by demonstrating the value of combining
TLS, ULS and MLS. Both articles are important contributions to the literature and to the
application of laser scanning in savannas and woodlands. The paper by Luck et al. [21]
provides an example of retrieval of savanna structure using TLS and an explicit description
of a northern Australian savanna in the wet tropical zone.

The article by Hill and Guerschman [19] describes the MODIS Global Vegetation
Cover Product and characterizes trends in vegetation cover fractions between 2001 and
2018 across global savannas and woodlands as well as associated grasslands. The study
documents trends in non-photosynthetic (dry or brown) vegetation for the first time and
identifies grasslands and savannas with concerning positive trends in the bare soil fraction.
The two articles based in Africa explore aspects of savanna and woodland vegetation
structure and temporal persistence using MODIS data. Kumar et al. [27] examine apparent
differences in spatial structure of woody vegetation across sub-Saharan Africa retrieved
from different MODIS products. They suggest that multimodal spatial structure is region-
ally disaggregated, and that apparent spatial structure retrieved may be dependent upon
the remote sensing product and spatial scale of retrievals. Herrero et al. [28] provide a
temporal study of the Gorongosa National Park in Mozambique which explores the persis-
tence of the MODIS NDVI signal in relation to changes in precipitation in the period since
the year 2000. The study reveals a decline in vegetation as measured by NDVI persistence
especially in grassland and rainforests potentially associated with declining precipitation.

Oak savannas were once much more common in temperate ecosystems forming an
ecotone between grassland and forests. The two articles published here represent two major
types: the perennial grass/oak savannas that stretched from southern Canada to northern
Mexico between the grasslands and forests of North America; and the annual grass/oak
savannas found, for example, in California and Spain. The paper by Hill et al. [29] describes
the use of a rare time series from the CHRIS hyperspectral sensor to explore functional
phenology of the woody canopy in a conserved but degraded post oak savanna in Texas
invaded with evergreen shrubs. The results of this study hint at the value of hyperspectral
data in characterization of differences in canopy properties and species mixtures that
are important in the evolution of disturbed remnant landscapes. However, they also
emphasis the limitations of 20-year-old low signal-to-noise imaging spectrometer data, and
the gaping chasm in the capability of satellite remote sensing for quantitative retrievals
of vegetation canopy biochemistry waiting to be occupied by a state-of-the-art imaging
spectrometer. By contrast, Gómez-Giráldez et al. [30], examine the phenology of the tree
and understory layers in relation to soil water dynamics in an annual grass/oak savanna in
Spain using a Sentinel 2 time series. The study showed a high degree of synchrony between
NDVI and soil moisture. However, some vegetation indices were potentially sensitive to
subtle variations in chlorophyll content of the understory grassland.

The featured emphasis on TLS [20–22] and the Cerrado [23–26] points to the technol-
ogy currently at the cutting edge for remote measurement, and to the focus of concern for
the fate of carbon stocks and biodiversity in one of the largest savannas in the world. The
adoption of Sentinel 2 [23,30], the application of big-data processing [25] and the combina-
tion of SAR, LiDAR and optical data [23,24] signal the future direction of remote sensing of
savannas from space. Multi-sensor imaging and multi-scale laser scanning are necessary to
truly capture the three-dimensional properties of savannas and woodlands. It notable that
only two papers were focused on the understory grassland [19,30]. Nevertheless, there is
still a role for polar orbiting medium resolution sensors [19,27,28] and a pressing need for
a for a modern imaging spectrometer in orbit.

Funding: This research received no external funding.
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Abstract: Vegetation Fractional Cover (VFC) is an important global indicator of land cover change,
land use practice and landscape, and ecosystem function. In this study, we present the Global
Vegetation Fractional Cover Product (GVFCP) and explore the levels and trends in VFC across
World Grassland Type (WGT) Ecoregions considering variation associated with Global Livestock
Production Systems (GLPS). Long-term average levels and trends in fractional cover of photosynthetic
vegetation (FPV), non-photosynthetic vegetation (FNPV), and bare soil (FBS) are mapped, and variation
among GLPS types within WGT Divisions and Ecoregions is explored. Analysis also focused on the
savanna-woodland WGT Formations. Many WGT Divisions showed wide variation in long-term
average VFC and trends in VFC across GLPS types. Results showed large areas of many ecoregions
experiencing significant positive and negative trends in VFC. East Africa, Patagonia, and the Mitchell
Grasslands of Australia exhibited large areas of negative trends in FNPV and positive trends FBS.
These trends may reflect interactions between extended drought, heavy livestock utilization, expanded
agriculture, and other land use changes. Compared to previous studies, explicit measurement of FNPV

revealed interesting additional information about vegetation cover and trends in many ecoregions.
The Australian and Global products are available via the GEOGLAM RAPP (Group on Earth
Observations Global Agricultural Monitoring Rangeland and Pasture Productivity) website, and the
scientific community is encouraged to utilize the data and contribute to improved validation.

Keywords: vegetation; grassland; savanna; fractional cover; trend; ecoregion; bare soil; livestock;
production systems

1. Introduction

Vegetation Fractional Cover (VFC) is an important global indicator of land cover change, land
use practice, and landscape and ecosystem function [1,2]. Seasonal dynamics and long-term trends
in the fractional cover of photosynthetic vegetation (FPV), non-photosynthetic vegetation (FNPV),
and bare soil (FBS) may identify changes in cropping cycles, impacts of livestock grazing, clearing or
planting of woody vegetation, and ecosystem responses to climate shifts. The Australian Vegetation
Fractional Cover Product (AVFCP) is derived from the 500 m MODIS (MODerate Resolution Imaging
Spectroradiometer) NBAR (Nadir BRDF-adjusted Reflectance) product (MCD43A4) and has been
comprehensively documented, validated, and improved over several versions [3–6]. In this study,
we present the Global Vegetation Fractional Cover Product (GVFCP) based on the same methodology.
Both the Australian and Global products are available through the GEOGLAM RAPP (Group on
Earth Observations Global Agricultural Monitoring Rangeland and Pasture Productivity) website
(https://map.geo-rapp.org). A list of abbreviations appears in Table A1.
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A key feature of the GVFCP is the explicit sensitivity to FNPV enabling better discrimination of
dry cellulosic vegetation and bare soil fractions than is possible with the family of greenness indices.
For this reason, the GVFCP is particularly important for monitoring of the non-forested and non-desert
global biomes, woodlands, savannas, grassland and shrublands, where the overstory canopy is open,
and understory dynamics involve the relationships between cellulosic herbaceous vegetation and/or
senescent arboreal leaf litter and bare soil. The first version of the AVFCP [3] used the relationship
between the Normalised Difference Vegetation Index (NDVI) and the Short Wave Infrared Ratio
(SWIR32; a ratio of the MODIS 2130 nm and MODIS 1640 nm bands) in a linear unmixing method to
approximate the relationship between NDVI and the Cellulose Absorption Index (CAI) developed
and demonstrated by [7–11]. An improved version of the AVFCP utilizes all seven MODIS NBAR
bands plus band transformations and interaction terms in a sophisticated unmixing algorithm [4].
Recent recalibration of the AVFCP with MODIS Collection 6 inputs and an updated validation data set
established improvements in the accuracy of the retrieved fractions of photosynthetic vegetation (FPV

RMSE 0.112), non-photosynthetic vegetation (FNPV RMSE 0.162), and bare soil (FBS RMSE 0.130) [5].
Based on Australian studies [12–14], the AVFCP provides a consistent and verifiable estimate

of the cover fractions for green canopy, senescent vegetation and surface litter, and the visible soil
surface. Given the diversity of natural ecosystems across Australia that include tropical rainforest,
tropical and temperate savanna, temperate grasslands, semi-arid and arid shrublands and grasslands,
temperate eucalypt forests, and temperate rainforest, and the extent of agricultural and pastoral lands
across Australia, it is reasonable to propose that the GVFCP should perform with similar levels of
uncertainty across the diversity of global land covers and land uses, especially in the non-forested and
non-desert biomes.

Many global analyses have focused on tree cover change [15–17] and land cover change [18].
The recent comprehensive study of [19] partitions cover into tall vegetation, short vegetation, and bare
soil, and the greening analysis of [20] looks at trends in the annual values of the MODIS leaf area index
product [21]. In addition, other studies have focused on the total cover and soil or bare fractions [22,23].
There are several global tree cover [24,25] and tree cover change [15] products at multiple resolutions
and many FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) [26,27] and green canopy
cover or leaf area index products [28–30]. The global cover change study by [19] identifies changes in
short vegetation (which includes shrubs under 5 m in height) and bare ground. The cover fractions are
mapped from peak growing season canopy [19] meaning that deciduous savanna trees and shrubs are
probably fully foliated, and understory grasses are actively growing. By contrast, the GVFCP at full
temporal and spatial resolution follows the phenology of overstory and understory throughout the
seasons and explicitly retrieves FNPV representing senescent understory.

Studies focusing on global scale cover, dynamics, and change in savanna landscapes are less
common (e.g., [31,32]), but a study based on persistence of GIMMS (Global Inventory Modeling
and Mapping Studies) NDVI signals indicated larger areas of increased than decreased vegetation
persistence [33]. However, there has been considerable discussion on the nature of stable states,
methods of detection, and drivers of change in savannas (e.g., [34–37]). Due to the specific methodology
used to derive it, the GVFCP provides a unique measure of global changes in vegetation fractional
cover especially important for woodlands, savannas, grasslands and shrublands which are subject to
heavy utilization and conversion for human food production and where cellulosic herbaceous cover
is important.

It is instructive to provide context for the behaviour of remote sensing products using global
datasets that are wholly or partially independent of remote sensing, and describe global vegetation in
terms relevant to conservation, ecosystem function, and productivity. The Terrestrial Ecoregions of the
World (TEoW; [38]) and the subset of these used to define World Grassland Types (WGT [39]) provides
an effective framework within which to view the patterns of VFC for the grassy ecoregions of the world.
Since these grassy ecoregions are subject to major utilization by humans for extensive and intensive
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agriculture, the Global Livestock Production Systems (GLPS) classification [40] provides a means to
sample variation within WGT Ecoregions due to differences in utilisation between production systems.

In this study we have three objectives:

(1) To present the GVFCP (using a resampled 5 km2 resolution version) and illustrate the long-term
global geographical patterns of FPV, FNPV, and FBS using the TEoW [38].

(2) To document and benchmark the levels and trends in FPV, FNPV, and FB within the WGT
Ecoregions at Formation and Division levels [39] using GLPS [40] to provide a measure of internal
land use differences.

(3) To examine the levels and trends in FPV, FNPV, and FB in savanna, woodland and scrub grassland
(SWSG) Ecoregions of the WGT and explore VFC trajectories in selected example ecoregions
where major changes are occurring.

2. Materials and Methods

The analysis undertaken here provides an overview of global VFC in map form; records benchmark
average levels of VFC across production systems for Formation, Division, and Ecoregion areas of
the grassy biomes of the world; and documents long-term trends in VFC from 2001–2018 for these
areas. The analysis is designed to provide an overview framework and baseline for more detailed
future studies.

2.1. Data

2.1.1. Global Vegetation Fractional Cover Product

The GVFCP estimates the fractions of photosynthetic (green) vegetation (PV), non-photosynthetic
(non-green) vegetation (NPV), and bare soil (BS) within the pixel using a spectral linear unmixing
method [4,5]. The base version of the GVFCP, available on the GEOGLAM RAPP-MAPP website
(https://map.geo-rapp.org) is calculated using reflectance values from the MODIS MCD43A4 product
which is a rolling daily 16-day composite weighted to retrieve the value on the ninth day of the 16-day
period [41]. The GVFCP utilizes every eighth day from the MCD43A4 product starting with day one
of each year with an adjustment for leap years proving 46 dates in each calendar year. The data are
stored in a geographic latitude-longitude raster with a WGS84 spheroid. A second monthly composite
product (also available on the website) is created by aggregating all values falling within each calendar
month using a medoid function (a multidimensional median) following [42]. Pixels flagged as water,
snow, or low quality in the MCD43A4 product are ignored in the calculation of the GVFCP. The current
product is the result of a decade of development and the most recent version derived from MODIS
Collection 6 NBAR data was calculated and validated using an updated and expanded database of
3022 ground measurements of fractional cover across Australia [5] and had a Root Mean Square Error
(RMSE) of 11.3%, 16.1%, and 14.7% in the PV, NPV, and BS fractions, respectively. The GVFCP is
derived from spectral unmixing of all seven MODIS optical bands from the 500 m MODIS Nadir
BRDF-adjusted Reflectance Product (NBAR, MCD43A4 Collection 6; see Appendix A Table A1 for
abbreviations) using previously described methods [4]. The product consists of four derived layers
corresponding to the decimal values of cover fractions FPV, FNPV, FBS, and the residual from the spectral
unmixing in reflectance values (RNORM). The GVFCP is calculated from the daily NBAR data product
producing a phased 16-day composite every eight days. For this overview study, the monthly version
of the product was used and resampled to 0.05◦ resolution (approximately 5 km2) by averaging.

2.1.2. Terrestrial Ecoregions of the World

The Terrestrial Ecoregions of the World (TEoW) provide a biogeographic realization of terrestrial
biodiversity [38] (Figure 1a). They represent land areas that share species, ecosystems, seasonal
dynamics, and environmental conditions, and therefore, in part, indicate boundaries for intrinsic
capability or risk for human uses. This dataset is used to meet the first objective of this study by
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providing general context for the description of the GVFCP at TEoW Realm level. Since an important
attribute of the GVFCP is the derivation of FNPV and FBS, additional datasets that focus on the
characteristics and human utilization of the subset of ecoregions either partially or totally dominated
by herbaceous vegetation were employed to examine behaviour in the grassy regions of the world.

2.1.3. World Grassland Types

The World Grassland Types (WGT; [39]) represent a subset of terrestrial ecoregions that were
combined with the International Vegetation Classification (IVC; [43]) to spatially define the major
grassy vegetation systems of the world (Figure 1b; see Table A1 for abbreviations). They describe 75%
of the IVC grasslands using ecoregions. The remaining IVC grasslands were absent from the mapping
due to their fine scale distribution [39]. The WGT Ecoregions cover an area of 35.5 M km2. The Tropical
Lowland Shrubland, Grassland and Savannas (TLSGS), Tropical Montane Shrubland, Grassland and
Savanna (TMSGS), and the Warm Semi-Desert Scrub and Grassland (WSDSG) WGT Formations were
selected to represent the savanna, woodland and scrub grasslands (SWSG) which are the focus of this
Special Issue. These SWSGs occupy 46.9% of the WGT area (16.7 M km2) of which 9.5 M km2 are in the
northern hemisphere in Africa and neo-tropical South America, and 7.16 M km2 are in the southern
hemisphere in Africa, Australia, and South America. The northern hemisphere contains 7.0 M km2 of
TLSGS, 0.3 M km2 of TMSGS, and 2.2 M km2 of WSDSG. The southern hemisphere contains 6.1 M km2

of TLSGS, 0.25 M km2 of TMSGS, and 0.82 M km2 of WSDSG.

2.1.4. Global Livestock Production Systems

The Global Livestock Production Systems (GLPS) data describes the terrestrial land surface using
livestock density maps, crop type maps, land cover, and information on management practices [40]
(Figure 1c). The classification describes 12 production systems combining rangelands (L—grazing only),
mixed rainfed and mixed irrigated production (M—grazing and cropping) with hyper-arid (Y), arid (A),
humid (H), and temperate (T) environments at a spatial resolution of 0.00833◦ (approximately 1 km2;
Figure 1c). These are: Rangelands Hyper-arid (LGY); Rangelands Arid (LGA); Rangelands Humid
(LGH); Rangelands Temperate (LGT); Mixed Rainfed Hyper-arid (MRY); Mixed Rainfed Arid (MRA);
Mixed Rainfed Humid (MRH); Mixed Rainfed Temperate (MRT); Mixed Irrigated Hyper-arid (MIY);
Mixed Irrigated Arid (MIA); Mixed Irrigated Humid (MIH); and Mixed Irrigated Temperate (MIT).
The remaining land areas are classified as Urban or Other (such as forest, ice, rock, etc.). These classes
describe land use with each WGT Ecoregion. The WGT Ecoregions are dominated by seven GLPS
types with the six major production systems being: LGA (36.8%); LGT (17.6%); MRA (8.4%); MRT
(14.5%); LGH (4.7%); and MRH (5.6%) and the remaining area being Other.

2.2. Analysis Method

2.2.1. Trend Analysis for World Grassland Types

The long-term trend from 2001–2018 in the monthly FPV, FNPV, and FBS was evaluated for the WGT
Ecoregions using the Mann–Kendall test [44,45] with a custom-built function in IDL. This non-parametric
test detects monotonic trends in time series data where the least squares regression approach is invalid
due the autocorrelation in time series data derived from remote sensing. We used the Mann–Kendall
approach for trend analysis on the full monthly data set since these data provided more observations than
annual means by a factor of 12. The time series was smoothed by the medoid procedure, spatially averaged
from 500 m to 5 km pixels by the pixel aggregation, and completely continuous in the WGT Ecoregions.
As a result, we did not consider it necessary to apply the seasonal Kendall method [46]. The significance
(p-value) of the slope in each pixel was recorded. Global maps of pixels within the WGT Ecoregions where
trends were significant at p < 0.1 were produced. The same spatial patterns and trends were evident at p <
0.05 but patterns were clearer and more contiguous at p < 0.1 similar to [20].
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Figure 1. (a) Terrestrial Ecoregions of the World (TEoW) at Realm level. (b) World Grassland
Type Ecoregions (WGT; legend shows formations). (c) Global Livestock Production Systems (GLPS).
System codes as follows: Rangelands Hyper-arid (LGY); Rangelands Arid (LGA); Rangelands Humid
(LGH); Rangelands Temperate (LGT); Mixed Rainfed Hyper-arid (MRY); Mixed Rainfed Arid (MRA);
Mixed Rainfed Humid (MRH); Mixed Rainfed Temperate (MRT); Mixed Irrigated Hyper-arid (MIY);
Mixed Irrigated Arid (MIA); Mixed Irrigated Humid (MIH); Mixed Irrigated Temperate (MIT).
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2.2.2. Summarizing Levels and Trends across World Grassland Types and Savanna-Woodlands

The levels and trends in VFC were examined at increasing levels of detail across the WGT.
The WGT and GLPS layers were combined to create a composite layer with individual classes for
each GLPS-ecoregion combination. Class mean and standard deviation values for long-term average
and trend in FPV, FNPV, and FBS were extracted using ArcGIS®zonalstats. For trends, zonal statistics
were collected only for slope values > 0.1 or < −0.1 using a mask that restricted extractions to only
those pixels with significance at p < 0.1. The areas of significant trend by Division and Ecoregion
were calculated on geographic grids using a weighted area algorithm to correct for pixel distortion
with latitude away from the equator. The variation across GLPS types within WGT Divisions was
displayed using the fence box plot. The fence box analysis plots the median and divides the observed
values into quartiles with first and third quartiles defining the hinges, and the upper and lower fences
being defined by multiplying the interquartile range by 1.5. The whiskers represent the minimum
and maximum observations falling inside the fences and points falling outside this range represent
outliers. The fence-box plots at Division level therefore show the range in mean values among GLPS
types within that Division (whether it contains one or many Ecoregions) and the range in the standard
deviation values from each GLPS type within that Division. Examination of the SWSG was carried out
by the same methods at individual ecoregion level, and GLPS class behaviour was explored within
selected ecoregions exhibiting large areas of significant trends.

3. Results

3.1. Global Patterns of Average VFC

Global geographical distribution of long-term average FPV and FBS exhibit the typical associations
with forests and deserts and the gradients in between (Figure 2). The distribution of long-term average
FNPV tends to highlight the large grasslands of North America, South America, central Eurasia, Tibet,
Mongolia, and the savannas of southern Africa and Australia (Figure 2). Based on TEoW definitions,
there are 19.5 M km2 of tropical and subtropical grasslands, shrubland, and savannas representing
13.26% of the terrestrial land surface (Table 1). In addition, the global coverage of Temperate Grasslands
and Shrublands, Montane Grasslands and Shrublands, and Flooded Grassland and Savannas brings
the total area of grassy biomes to 35.439 M km2 representing 24.05% of the terrestrial land surface.
Across these grassy biomes, the Montane Grasslands and Shrublands have lower average FPV and
higher average FBS than the other grassy biomes (Table 1). Temperate and Montane Grasslands and
Shrublands have higher average FNPV than the Tropical and Subtropical Grasslands, Savannas and
Shrublands and the Flooded Grassland and Savannas. The global latitudinal variation in average FPV,
FNPV, and FBS exhibits typical peaks in FPV for tropical forests between 20◦ S and 20◦ N and boreal
forests above 50◦ N and in FBS in northern and southern hemisphere arid lands between latitudes
20 and 30◦ (Figure 3). However, there is a notable rise in FNPV between 20 and 40◦ N which may
reflect the large expanses of steppe environments either limited by precipitation or converted to cereal
cropping. With much less land at mid- to low-latitudes, the dynamics between the cover fractions
in the southern hemisphere exhibit distinct narrow latitude zones of oscillation between higher and
lower levels of FPV and FNPV between 30 and 45◦.
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Figure 2. Global average fractional cover from 2001–2018. The ternary plot shows the correspondence
between colour and the values fractions of photosynthetic vegetation (FPV), non-photosynthetic
vegetation (FNPV) and bare soil (FBS). Each ternary axis represents colours corresponding to two-factor
mixtures, the greater colour intensity indicates more dominance of a single cover type.
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Table 1. Mean and standard deviation of fractional cover (%) from 2001–2018 across the Realms of the
Terrestrial Ecoregions of the World (TEoW). Note that overall means do not sum to exactly 100% due to
temporal and spatial averaging effects.

TEoW Realms
Area (M

km2)
Area
(%)

FPV
FPV

StD
FNPV

FNPV

StD
FBS

FBS

StD

Tropical and Subtropical Moist Broadleaf Forests 19.845 13.47 77.1 16.3 13.9 11.6 10.0 6.3
Tropical and Subtropical Dry Broadleaf Forests 3.805 2.58 53.8 18.5 29.0 11.1 16.9 10.1

Temperate Broadleaf and Mixed Forests 12.859 8.73 55.3 16.3 28.7 8.8 15.5 11.0
Tropical and Subtropical Grasslands, Savannas and Shrublands 19.531 13.26 42.3 23.4 32.1 11.8 24.9 22.0

Temperate Grasslands, Savannas and Shrublands 9.624 6.53 31.2 16.3 43.7 9.5 24.8 13.3
Montane Grasslands and Shrublands 5.189 3.52 18.3 21.1 43.0 11.7 39.0 21.5

Tundra 11.234 7.63 38.0 20.2 49.7 13.7 12.5 14.8
Mangroves 0.348 0.24 58.2 19.8 29.5 15.5 12.2 9.2

Flooded Grasslands and Savannas 1.095 0.74 43.1 22.7 31.9 11.9 24.3 21.1
Mediterranean Forests, Woodlands and Scrub 3.267 2.22 29.7 18.5 38.8 10.1 30.9 18.8

Deserts and Xeric Shrublands 27.948 18.97 6.8 12.0 27.2 18.3 66.2 25.7
Tropical and Subtropical Coniferous Forests 0.644 0.44 57.3 17.4 30.6 12.8 11.9 6.6

Temperate Conifer Forests 4.365 2.96 51.6 20.3 32.5 12.2 15.4 13.1
Inland Water 0.685 0.46 21.4 23.0 46.9 17.6 27.5 16.2
Rock and Ice 10.840 7.36 2.7 8.4 44.4 23.1 45.9 26.4

Boreal Forests/Taiga 16.042 10.89 59.0 9.2 31.6 9.0 8.2 4.7

Figure 3. Global latitudinal variation in average fractional cover of FPV, FNPV, and FBS.

3.2. Variation in Vegetation Fractional Cover within Global Livestock Production Systems

The GLPS types exhibit wide variation in mean FPV across ecoregions with large ranges between
upper and lower hinges and fences. There was less variation in mean FNPV and FBS, although the latter
exhibited wide variation in the upper and lower fence values and more extreme (outlier) ecoregions
than FPV and FNPV (Figure 4). Median and hinge values for FPV increase from hyper-arid (Y) to arid
(A) to humid (H) for both grazing (L) and mixed (M) land uses, while median and hinge values for
temperate (T) systems were similar to arid systems for grazing and mixed land uses. The average FBS

also exhibits a wide range of values across ecoregions within a GLPS type with values > 70% and ≤ 5%
for LGA and LGT suggesting differences in interactions between the vegetation and livestock type and
management. Average FBS is notably low across ecoregions for both LGH and MRH. Average FNPV

exhibits a lower range across ecoregions within a GLPS type, and between GLPS types than FPV, with
median values of ecoregion means across all GLPS types lying between 25%–45%. A gross indication
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of the impact of the GLPS on vegetation cover can be gained from comparing the medians and ranges
of the Other class with those of the production systems. For FPV, the median value is higher and the
range is wider than all GLPS types except for the LGH, MRH, and MIH types where tropical pasture
and cropland conversion results in higher productivity. Similarly, FBS for the Other class is lower than
all GLPS types except for the LGH, MRH, and MIH types.

Figure 4. Fence box plots showing the medians, upper and lower hinges and upper and lower fences of mean
long-term fractional cover of ecoregions over within Global Livestock Production System (GLPS) classes.

3.3. Variation in Average Vegetation Fractional Cover in World Grassland Type Divisions

The WGT Ecoregions are organized by Formations and Divisions (Table A2) with the Formations
representing a broad structural type, and the Divisions representing the regional geographical
representations of these Formations. The WGT Divisions exhibit a wide range of long-term average levels
of FPV, FNPV, and FBS and substantial variation in the levels of the upper and lower hinges and fences
(Figure 5) There is also major variation in the standard deviations of VFC among GLPS classes with a WGT
Division. Across the WGT, FPV exhibits greater variation in upper and lower hinge values than FNPV and
FBS. The Divisions within the TLSGS and TMSGS Formations (lowland and montane savanna woodlands)
exhibit relatively high average FPV and low average FBS except for the NSSDSG Division which covers
the Sahelian region of northern Africa. Among the other Divisions, the MBDG, MSACSDSG, PCSDSG,
TACSDSG, and AWSDSG within the CSDSG (semi-desert) and MSGFM (Mediterranean) Formations are
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notable for very low average FPV, median levels of FNPV close to 50%, and relatively high levels of FBS.
The WEGS Division in western Eurasia, and the montane AMGS, and the alpine CAASFMG Divisions
exhibit wide variation in average FPV but WEGS exhibits a lower median and much lower range between
hinge values for standard deviation than AMGS and CAASFMG.

Figure 5. Fence box plots showing the medians, hinges, and inner and outer fences of average long-term
vegetation fractional cover of ecoregions within World Grassland Type Divisions (listed in Table A2.
(a) FPV; (b) FNPV; and (c) FBS.

16



Remote Sens. 2020, 12, 406

3.4. Trends in Vegetation Fractional Cover

3.4.1. World Grassland Types

The spatial distribution of pixels exhibiting significant trends at p < 0.1 is shown in Figure 6.
Across the WGT Ecoregions, the extent of significant trends was greater for FBS than for the vegetation
fractions since vegetation cover trends were split between change in FPV and change in FNPV and
these vary in different ways for different geographies. There are significant positive and negative
long-term trends in FPV, FNPV, and across the WGT Ecoregions (Figure 7). The WGT Ecoregions are
displayed over the global map of countries, showing that the significant trends affect many African
and Eurasian countries whilst the USA, Brazil, Argentina, and Australia with their large areas of
grassland and savanna experience change over very large areas. There are positive trends in FPV in
the northern great plains of North America, parts of China, and parts of eastern and southern Africa
(Figure 7a). There are notable negative trends in FNPV in Patagonia, across Sahelian and Sudanian
Africa, in Mongolia and on the Tibetan Plateau, and in the Mitchell Grasslands of Northern Australia
(Figure 7b). However, the largest areas of significant trends occur for FBS with negative trends across
the Great Plains of North America, across central China, across northern and southern Australia,
and areas of positive trends in Sahelian, Sudanian and East Africa, western Mongolia, Ukraine and
southern Russia, and the Mitchell Grasslands of Northern Australia (Figure 7c).

Examination of the variation due to GLPS in trends for WGT Divisions show that although the
median values within Divisions seldom exceed ± 0.2%, the lower hinge values are as low as −0.5%
and the upper hinge values are as high as 0.4% for FPV, as low as −0.4%, as high as 0.4% for FNPV,
and as high as 0.4% for FBS and as low as −0.5% for FBS (Figure 8). It is particularly notable that
certain Divisions (CAASMG, EECSDSG, WECSDSG, EEGS, NAGS, and WEGS) contain individual
GLPS-Ecoregion combinations with positive and negative trends in FNPV as great as ± 0.5% and in
FBS as low as −1.0% and as high as 0.5% that sit well beyond the upper and lower fences (outliers).
These Divisions are in the northern hemisphere and are in the alpine ASFMG, semi-desert CSDSG,
Mediterranean MSGFM, and temperate TGMS Formations suggesting major land use effects between
GLPS types. Among the Divisions in the TLSGS and TMSGS Formations (savanna woodlands), most
northern hemisphere Divisions show small increasing trends in FPV and relatively insignificant changes
in FNPV and FBS. However, in the southern hemisphere the lower hinge and fence values for FPV, upper
and lower hinge and fence values for FNPV, and upper hinge and fence values for FBS in the mopane
and bushveld savannas (MS), and the montane WCAMWS, AMGS, and BPMSG identify GLPS classes
with negative trends in FPV and positive trends in FNPV and FBS (Figure 8).

The fence box analysis describes the range in variation in VFC trends across GLPS types within
WGT Divisions, however the Divisions vary in size and this may mask localised strong trends in
large Divisions (such as the Sahelian Acacia Savanna which is a single enormous Ecoregion) and
emphasize trends in small Divisions with more uniform climate, terrain, and edaphic features (such as
the Ethiopian Montane Grasslands and Woodlands). Hence, it is important to define the area and area
percentages where significant positive and negative trends in VFC are occurring (Figure 9). The area
analysis identifies eight Divisions where areas in excess of 200,000 km2 show significant positive trends
in FPV (EBGS, EEGS, GPGS, WCAMWS, EAXSG, AMS, ATS, and BPLSGS) and seven Divisions where
areas in excess of 100,000 km2 show significant negative trends in FPV (EBGS, EEGS, GPGS, EAXSG,
PGS, BPLSGS, and AWSDSG; Figure 9a). Note that five Divisions have both large areas of positive
and negative trends. By contrast, some of the smallest Divisions in area, have significant positive or
negative trends in FPV over a large proportion of their area: greater than 60% of IMW and AAFSMG
and about 50% of NGMM have positive trends in FPV, while greater than 20% of CGM, CVFMWMS,
PGS, AMGS, and MMGS have significant negative trends in FPV.
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Figure 6. (a) The spatial distribution of pixels exhibiting significant long-term trends at p < 0.1 from
2001–2018 for FPV; (b) The spatial distribution of pixels exhibiting significant long-term trends at p <
0.1 from 2001–2018 for FNPV; and (c) The spatial distribution of pixels exhibiting significant long-term
trends at p < 0.1 from 2001–2018 for FBS.
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Figure 7. (a) Geographical pattern of significant (p < 0.1) positive or negative long-term trajectory
of vegetation fractional cover for: FPV; (b) Geographical pattern of significant (p < 0.1) positive or
negative long-term trajectory of vegetation fractional cover for FNPV; and (c) Geographical pattern of
significant (p < 0.1) positive or negative long-term trajectory of vegetation fractional cover for FBS.
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Figure 8. Fence box plots showing the median, upper and lower hinges and upper and lower fences
of the average slope of the regression trend line from 2001–2018 for fractional cover within WGT
vegetation divisions (listed in Table A2). (a) FPV; (b) FNPV; and (c) FBS.
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Figure 9. Cont.
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Figure 9. Area (km2) and percentage of area of WGT Divisions exhibiting significant positive or
negative trends in (a) FPV, (b) FNPV, and (c) FBS. Key to Formation and Division acronyms in Table A2.

There are also large areas of significant change in FNPV with 13 Divisions having areas in excess of
100,000 km2 showing significant positive trends in FNPV and seven Divisions having areas in excess
of 200,000 km2 show significant negative trends in FNPV (Figure 9b). As with FPV, there are several
Divisions with large areas of positive and negative trends. In addition, greater than 20% of the area
of MBDG, NAWDSG, PGS, and AWSDSG show positive trends and greater than 20% of the area of
MBDG, NSSDSG, EAXSG, AASFMG, PCSDSG, BPFMWMS, NZGS, and NGMM show a negative
trend in FNPV. Percentage areas of significant trends tended to be greater for FBS than for FNPV and
FPV, since FBS reflects combined changes in FPV and FNPV (Figure 9c). There were 15 Divisions with
greater than 200,000 km2 showing negative trends in FBS.

Only five Divisions had areas greater than 200,000 km2 showing positive trends in FBS.
However, 21 Divisions had greater than 20% of their area showing positive trends in FBS (WECSDSG,
CVFMWMS, CGM, MBDG, WEGS, NSSDSG, SSDS, EAXBG, MSACSDSG, PCSDSG, TACSGSG, AMS,
NZGS, PGS, SAMG, ATS, ESADSW, MS, AMGS, BPMSG, AWSDSG, MMGS). Large areas of both
positive and negative trends in FBS only occurred in three Divisions (NSSDSG, SSDS, AWSDSG).
There 19 Divisions with greater than 20% of their area showing negative trends in FBS.

3.4.2. Savanna Woodland and Scrub Grasslands

Within the SWSG (see Table A3 for a list of ecoregion names and associated Divisions), individual
ecoregions exhibit wide variation in the percentage of their area with significant positive and negative
trends in FPV, FNPV, and FBS (Figure 10). In the northern hemisphere parts of Africa, greater than
50% of the area of the Saharan flooded grasslands and the Kinabalu montane alpine meadows show
significant positive trends in FPV (Figure 10a). By contrast, more than 20% of the areas of the Masai
Xeric Grasslands and Shrublands and the Northern and Southern Acacia-Commiphora Bushlands
show significant negative trends in FPV. In North and South America, the Chihuahan desert, Llanos,
Guianian savanna, Rio Negro campinarana, and Pantepui have more than 20% of their areas exhibiting
significant positive trends in FPV. In the southern hemisphere, the Australian savannas and scrublands
and South American lowland and montane savannas exhibit significant positive trends in FPV, with 50%
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or more of the area of the Brigalow Tropical Savanna, Central Range Sub-Alpine Grasslands, Cordillera
de Merida píramo, and Northern Andean píramo exhibiting positive trends FPV. However, in southern
Africa, the Victoria Basin forest-savanna mosaic, Madagascan ericoid thicket, Angolan montane
forest-grassland mosaic, and the Rwenzori-Virunga montane moorlands all have greater than 20% of
their areas exhibiting negative trends in FPV.

 

Figure 10. Cont.
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Figure 10. Area (%) of savanna, woodland and shrubland WGT Ecoregions showing significant
monotonic trends in (a) FPV; (b) FNPV; and (c) FBS.

The Masai Xeric Grasslands and Shrublands and the Northern Acacia-Commiphora Bushlands
also had large areas of negative trends in FNPV, while the Saharan Flooded Grasslands, Victoria
Basin forest-savanna mosaic, Madagascan ericoid thicket, Angolan montane forest-grassland mosaic,
and the Rwenzori-Virunga montane moorlands had large areas of positive trends in FNPV (Figure 10b).
However, there are several ecoregions showing large areas of significant trends in FNPV not strongly
associated with area patterns for FPV. Large areas of positive trends in FNPV occur in the Chihuahan
desert or North America and the Great Sandy Desert of Australia, and large areas of negative trends
in FNPV occur in the Mitchell Grasslands and Central Range Sub-Alpine Grasslands of Australia
(Figure 10b).

There are very large areas of significant positive and negative trends in FBS in many savanna
ecoregions (Figure 10c). Across much of the Australian and South America savannas much larger
percentages (> 30%) of the ecoregion areas exhibit negative trends in FBS than exhibit positive trends;
the Brigalow savanna has a very large area of negative trends in FBS. However, the Mitchell Grasslands
are the exception with around 50% of the area of this very large ecoregion exhibiting a positive trend
in FBS. There are some sharp distinctions between African regions in the northern hemisphere, with
Masai Xeric Grasslands and Shrublands and the Northern, Southern and Somali Acacia-Commiphora
Bushlands having greater than 40% of their areas exhibiting significant positive trends in FBS while
West African and montane East African ecoregions show much smaller and balanced areas between
positive and negative trends. About 60% of the Chihuahan desert ecoregion exhibits a negative trend
in FBS that corresponds to the areas of positive trends in FNPV and FPV. Across the SWSG Formations,
3.13 M km2 exhibited significant positive trends in FBS and 2.79 M km2 exhibited negative trends
in FNPV (Table 2). These areas represented 18.1% and 16.8%, respectively of the total area of SWSG
Formations (Table 3). However, 2.31 M km2 exhibited significant positive trends in FPV, 3.89 M km2

exhibited negative trends in FBS, and 1.69 M km2 exhibited positive trends in FNPV representing 13.8%,
10.1%, and 23.3% of the total area of SWSG Formations. The TLSGS Formation contained large areas
where trends exceeded ± 0.1 FC units yr−1 but were not significant at p < 0.1.
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Table 2. Area of Savanna Woodland and Scrub Grassland (SWSG) Divisions exhibiting significant
trends in Vegetation Fractional Cover with magnitudes > 0.1 or < −0.1 % yr −1.

Form
Area
(M

km2)

Negative
Trend FBS

(M km2)

Positive
Trend FBS

(M km2)

Negative
Trend FNPV

(M km2)

Positive
Trend FNPV

(M km2)

Negative
Trend FPV

(M km2)

Positive
Trend FPV

(M km2)

North
TLSGS 7.002 1.435 1.045 1.186 0.527 0.211 0.688
TMSGS 0.307 0.014 0.058 0.044 0.008 0.026 0.022
WSDSG 2.194 0.574 0.791 0.557 0.264 0.306 0.386

South
TLSGS 6.095 1.569 1.034 0.855 0.595 0.506 1.073
TMSGS 0.254 0.042 0.038 0.030 0.019 0.022 0.044
WSDSG 0.816 0.256 0.161 0.120 0.274 0.137 0.096

Total 16.668 3.890 3.127 2.793 1.687 1.208 2.309

Table 3. Percentage of area of SWSG Divisions exhibiting significant trends in VFC > 0.1 or < −0.1 % yr −1.

Form
WGT %

Area

Negative
Trend FBS

(%)

Positive
Trend FBS

(%)

Negative
Trend

FNPV (%)

Positive
Trend

FNPV (%)

Negative
Trend FPV

(%)

Positive
Trend FPV

(%)

North
TLSGS 19.7 20.5 14.9 16.9 7.5 3.0 9.8
TMSGS 0.9 0.2 0.8 0.6 0.1 0.4 0.3
WSDSG 6.2 8.2 11.3 8.0 3.8 4.4 5.5

South
TLSGS 17.2 22.4 14.8 12.2 8.5 7.2 15.3
TMSGS 0.7 0.6 0.5 0.4 0.3 0.3 0.6
WSDSG 2.3 3.7 2.3 1.7 3.9 2.0 1.4

Total 46.9 23.3 18.8 16.8 10.1 7.2 13.8

3.5. Variation in Vegetation Fractional Cover in Example Ecoregions

While extensive examination of VFC behaviours within ecoregions is beyond the scope of this
study, it is worthwhile to examine several notable regional trends in FPV, FNPV, and FBS and compare
these across GLPS types. The east African Acacia-Commiphora Bushlands and Masai Xeric Grassland
and Shrublands contained large areas of significant trends, but relativities among GLPS types were
different (Figure 11a). In the Northern and Somali ecoregions, the LGH and MRH systems showed
positive trends in FPV, while the MRA system showed a positive trend in FBS. By contrast, all GLPS
systems across the Southern Acacia-Commiphora Bushland exhibited positive trends in FBS and
negative trends in FPV and FNPV. In the Masai Xeric Grassland and Shrubland, the main features are a
positive trend in FBS for LGA and a negative trend in FPV for the Other class.

The Chihuahan Desert exhibits small to moderate positive trends in FPV and FNPV across all GLPS
types and large negative trends in FBS especial for LGA, LGT, MRA, and MRT (Figure 11b). In the
Mitchell Grasslands, LGA and MRA systems dominate and both show positive trends in FBS and
negative trends in FNPV. In the Llanos, positive trends in FPV across LGA, LGH, MRA, and MRH types
are matched by small negative trends in both FNPV and FBS.
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Figure 11. Trends in vegetation fractional cover among Global Livestock Production Systems (GLPS)
areas within selected Ecoregions in (a) Africa; and (b) North America, South America, and Australia.
The histogram indicates the average and the whiskers indicate the standard deviation among GLPS
pixels within the Ecoregion.

4. Discussion

This study has introduced a unique remotely-sensed global vegetation product derived from
MODIS reflectance data, the GVFCP, which is available as both an eight day and monthly 500 m
resolution product. We have mapped global averages for FPV, FNPV, and FBS for data derived from
MODIS for 2001-2018. The study then explored the behaviour of FPV, FNPV, and FBS across GLPS types
within the WGT Divisions and Ecoregions including analysis of long-term trends in vegetation fractional
cover with a focus on the SWSG Formations. The analysis illustrated the variation in average long-term
levels and long-term trends of VFC associated with different GLPS types, with vegetation Formations
and with geographically separate Divisions within the same Formation. The variation observed
emphasized the strong interaction between land use management and vegetation characteristics.
Although other products have previously provided global quantitative retrievals of FPV and FBS,
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the GVFCP is new and important since it provides an explicit, spectrally functional measure of FNPV.
This provides effective discrimination of both global regions with high average levels of FNPV and high
seasonal fluctuations in FNPV, such as in the grassy understorey or tropical savannas, and the massive
leaf litter associated with the deciduous forests of the eastern USA. It also highlights global regions
where certain GLPS types or cropland expansion produce large amounts of stubble and crop residue
such as southern and central China, south-eastern and south-western Australia, and the US corn belt.

The study has focused more detailed evaluation of levels and trends in FPV, FNPV, and FBS on
the grassy biomes of the world represented by WGT Ecoregions, and for this Special Issue on the
SWSG Formations within the WGT. There are large differences between average levels and long-term
trends in FPV, FNPV, and FBS across the WGT. Fence box graphical analysis identified specific Divisions
where average FBS was low, where average FPV was high, and where the upper and lower hinges,
fences, and outlier points indicated massive variation in average levels within regional Formations (i.e.,
in different hemispheres and continents) indicative of possible climate or land use effects. Recent studies
have identified global “greening” with an increase in the FPV attributable to developments in India
and China [20]. Our analysis agrees with [20] in terms of the “greening” of north-eastern China,
the US Great Plains, and eastern Australia. It also shows that the SWSG Formations, much of which
experience an LGH production system, and contain all the major grassy savanna, woodland and scrub
ecoregions, tend to exhibit more areas of positive to neutral trends in FPV than negative trends in
FNPV or positive trends in FBS. Although it is difficult to make direct comparisons with the study
of [19], there is broad agreement on the magnitude of areas (SWSG here, tropical dry forest and tropical
shrubland in [19] experiencing negative trends in bare ground, and a positive trend in short vegetation
(SV) in that study, most of the FPV and FNPV in SWSG in this study). These tropical humid systems
either have reliable seasonal rainfall to support land cover changes (e.g., South American tropical
savannas), or no conversion potential (e.g., Australian tropical savannas). However, our analysis also
identifies specific Divisions and individual Ecoregions in the WGT where “browning” is occurring in
Argentina, Australia, East Africa, Southern Africa, and Eurasia, some of which were also identified
by [19,20]. Here, the GVFCP is able to associate the “browning” with explicit trends in both FBS and
FNPV providing more insight into the changes that are occurring.

The analysis at WGT Divisional level identifies “hot spots” of change in VFC based on both area
and percentage area of significant positive or negative trends. The total area is important because of the
implications for the productivity of the ecosystem, the implications for livelihoods and food supplies,
and the impacts on human and wildlife populations. The percentage areas are important because
they identify levels of stress on regional and unique representatives of global vegetation Formations
with consequences for biodiversity, endangered species, and extinction risks. When WGT Divisions
are ranked by percentage of their area with significant positive trends in FBS, the first five Divisions
are the Patagonian Cool Semi-Desert Scrub and Grassland, the Pampean Grassland and Shrubland,
the East African Xeric Scrub and Grassland, the Californian Grassland Meadow, and the Madagascan
Montane Grassland and Shrubland with between 38% and 50% of their area affected. Potential for
land degradation arising from increasing FBS is occurring in large regions such as Patagonia, where
aridity and grazing pressure are reducing the cover of palatable grasses [47] and the pampas of South
America where conversion from woodland and pasture to cropland has occurred [48]. It can also arise
in smaller regions such as the Central Valley Grasslands of California with recent land use change [49],
and the very small Madagascan ericoid thicket ecoregion subject to the same pressures on land cover
more widely evident across the island [50,51].

However, some of the largest areas of positive trends in FBS and negative trends in FPV and FNPV

occur in the largest WGT Divisions such as the North Sahel Semi-Desert Scrub and Grassland which is
so large that it crosses many national boundaries and contains a patchwork of areas with both positive
and negative trends in FPV, FNPV, and FBS. Analysis found that although there was about 200,000 km2

of positive trends in FPV, there were massive areas of almost 800,000 km2 showing a negative trend
in FNPV and about 600,000 km2 showing a positive trend in FBS. The drivers and manifestations of
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environmental change in the Sahel have been scientifically contested for some time [52]. The mixed
trends in VFC across the NSSDSG tend to reinforce the contested debate and emphasize that both
“greening” and “browning” are occurring at the same time in different locations [53,54]. For example,
agricultural practices that reduce vegetation cover, i.e., produce a positive trend in FBS, increase potential
for wind erosion, dune migration, and soil loss [55]. Hence, negative trends in FNPV may indicate
removal of both dry grass from rangelands, and residue from croplands. However, relationships with
precipitation support areas of greening (positive trends in FPV) which may be due to agroforestry [56]
and recovery of woody vegetation [54], and promotion of tree cover around Sahelian farms contrasts
with reduced woody cover on farmlands in the sub-humid zone such as the WCAMWS [57].

For the SWSG Formations (TLSGS, TMSGS, and WSFDSG), the trend analysis revealed a mosaic
of significant positive and negative trends in FBS, FNPV, and FPV covering 42.1%, 26.9%, and 21% of
the area, respectively. This represents a massive change in vegetation fractional cover in the grassy
savanna, woodland, and scrub biomes of the world over the past 20 years. When the analysis is
focused on the individual Ecoregions, trends in VFC can be associated with particular factors unique
to specific Ecoregions. In East Africa, in the Acacia-Commiphora Woodlands (EAXSG), positive trends
in FBS may be associated with increased logging of woodlands for charcoal production [58–60], recent
high frequency of droughts [61] due to a decline in long-season rains [62,63], and long-term impacts of
expansion of populations, cropland and pastoralism ([64–66]. Land use changes from forest cover to
cultivation, pastoralism, and plantations has led to increased surface run-off but variability exists due
to site-specific factors [67]. In the Chihuahan Desert ecoregion, invasive grasses and shrubs may be
changing the ecosystem dynamics leading to the observed negative trends in FBS and positive trends
in FNPV with consequent increase in fire risk [68–70]. Since 2000, there has been a major expansion
of cropping, exotic pastures, and oil palm plantations especially in the western Llanos of Colombia
leading to the moderate positive trends in FPV [71], with recent potential for acceleration post the Peace
Agreement [72,73]. The Mitchell Grasslands of Northern Australia and especially the western Barkly
Tableland exhibit a strong positive trend in FBS that may relate to long term interactions between cycles
of precipitation and grazing pressure [74].

The GVFCP has explicit quantitative uncertainty estimates for the eight-day 500 m product based
on the multiple comprehensive cycles of calibration and validation undertaken for Australia [4,5].
In this study we used the aggregated monthly 5 km2 resolution product which has values that represent
the medoid of the eight-day values for each month averaged across a hundred 500 m pixels. The global
scale for comparison of WGT Formations, Divisions, and Ecoregions and the size of even the small
Ecoregions leads to the values presented in the fence box plots being derived from hundreds to
hundreds of thousands of pixels with variation within and between Ecoregions well in excess of the
published RMSE values of between 11% and 16% for FPV, FNPV, and FBS. If the magnitude of trends,
is examined for Ecoregions with trend values beyond the upper and lower fences, values of between ±
0.5% to ± 1.0% yr−1 result in changes in average VFC across Divisions and Ecoregions of between 9%
and 18% over the 18 years of the time series. Upper fence values for standard deviations of pixel trend
values within ecoregions were as high as 1.2% yr−1 and as low as 0.1% yr−1 indicating that there was
major heterogeneity in responses within Ecoregions, related to their size, population distributions, land
use and land cover, and between Ecoregions where vegetation Formation and geographical location,
as well as anthropogenic factors drive variation.

There is extensive scope for much more detailed examination of the trends in the GVFCP across
the globe, and especially within the WGT, and at finer scale for smaller grassy vegetation types.
Specifically, there is a need to segment the time period from 2001–2018 and explore discontinuities
and changes in trends that may be attributable to changes in climate cycles, land use, and production
systems. In addition, there is a need to explore with spatial explicitness, the association between
changes in FPV, FNPV, and FBS; and examine the trends in total cover (FTC) as an indicator of wind and
water erosion potential [13]. There is also a need for the product to be widely used beyond current
Australian applications and be subject to further field validation analysis especially in particular
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ecosystems with very different vegetation structures, arboreal vegetation phenology, and soil surface
colours and conditions. Since the GVFCP is freely available on the GEOGLAM RAPP-MAP website,
the authors are encouraging scientists and agencies to explore and utilize these data.

5. Conclusions

This study has presented the GVFCP and explored the levels and dynamics of FPV, FNPV, and FBS

across the grassy ecoregions of the world. It has documented benchmark long-term average levels,
and areas and magnitudes of significant trends in VFC at Divisional level for WGT Ecoregions.
Focused exploration of the savanna woodlands showed that:

(1) Ecoregions in both Africa and Australia are exhibiting concerning positive trends in FBS probably
associated with climate and land use interactions.

(2) Large areas of both positive and negative trends are occurring in individual ecoregions requiring
more detailed examination of both fine scale spatial pattern and short-term trends.

(3) There is value in explicit measures of level and trend in FNPV since change in dry intact herbaceous
vegetation cover has huge implications for ecosystem function, livestock feed reserves, and carbon
dynamics of grassy systems.

The GVFCP is made freely available to the global scientific community in the hope that they will use
it and provide further validation studies. There is great potential for development of a Landsat/Sentinel
2 global product using the same methodology. This will become necessary upon the demise of the MODIS
sensors since the Visible Infrared Imaging Radiometer Suite sensor does not carry the 2105–2155 nm short
wave infrared channel and sensitivity to FNPV and FBS will likely be diminished.

Online Resources: Global and Australian products are freely available along with analytical tools at https:
//map.geo-rapp.org.
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Appendix A

Table A1. Acronyms and abbreviations used (in addition to WGT acronyms documented in Tables A2
and A3).

Acronyms Full Name

AVFCP Australian Vegetation Fractional Cover Product
AVHRR Advanced Very High Resolution Radiometer
BRDF Bi-directional Reflectance Distribution Function

BS Bare Soil
CAI Cellulose Absorption Index

FAPAR Fraction of Absorbed Photosynthetically Active Radiation
GEOGLAM Group on Earth Observations Global Agricultural Monitoring

GIMMS Global Inventory Modeling and Mapping Studies
GLPS Global Livestock Production Systems

GVFCP Global Vegetation Fractional Cover Product
MODIS Moderate Resolution Imaging Spectroradiometer

29



Remote Sens. 2020, 12, 406

Table A1. Cont.

Acronyms Full Name

NBAR Nadir BRDF-Adjusted Reflectance
NDVI Normalized Difference Vegetation Index
NPV Non-Photosynthetic Vegetation
PV Photosynthetic Vegetation

RAPP Rangeland and Pasture Productivity
SWIR32 Short Wave Infrared Ratio
TEoW Terrestrial Ecoregions of the World
VFC Vegetation Fractional Cover
WGT World Grassland Type

Table A2. World Grassland Type Formations and Divisions (Dixon et al., 2014).

Formation Name (Formation Code)
Division Name

Division
Code

Number of
Ecoregions

NORTHERN HEMISPHERE
Alpine Scrub, Forb Meadow and Grassland (ASFMG)

Central Asian Alpine Scrub, Forb Meadow and Grassland CAASFMG 14
European Alpine Scrub, Forb Meadow and Grassland EASFMG 1

Boreal Grassland, Meadow and Shrubland (BGMS)
Eurasian Boreal Grassland, Meadow and Shrubland EBGS 2

Cool Semi-Desert Scrub and Grassland (CSDSG)
Eastern Eurasian Cool Semi-Desert Scrub and Grassland EECSDSG 12
Western Eurasian Cool Semi-Desert Scrub and Grassland WECSDSG 4

Western North American Cool Semi-Desert Scrub and Grassland WNACSDSG 4
Mediterranean Scrub, Grassland and Forb Meadow (MSGFM)

California Grassland and Meadow CGM 2
Mediterranean Basin Dry Grassland MBDG 2

Temperate Grassland, Meadow and Shrubland (TGSM)
Eastern Eurasian Grassland and Shrubland EEGS 8

Great Plains Grassland and Shrubland GPGS 15
Northeast Asia Grassland and Shrubland NAGS 4

Western Eurasian Grassland and Shrubland WEGS 2
Tropical Freshwater Marsh, Wet Meadow and Shrubland TFMWMS)

Colombian-Venezuelan Freshwater Marsh, Wet Meadow and Shrubland CVFMWMS 1
Tropical Lowland Shrubland, Grassland and Savanna (TLSGS)

Amazonian Shrubland and Savanna ASS 1
Colombian-Venezuelan Lowland Shrubland, Grassland and Savanna CVLSGS

Guianan Lowland Shrubland, Grassland and Savanna GLSGS 1
North Sahel Semi-Desert Scrub and Grassland NSSDSG 1

Sudano Sahelian Dry Savanna SSDS 1
West-Central African Mesic Woodland and Savanna WCAMWS 3

Tropical Montane Shrubland, Grassland and Savanna (TMSGS)
African Montane Grassland and Shrubland AMGS 4
Guianan Montane Shrubland and Grassland GMSG 1

Indomalayan Montane Meadow IMW 1
Warm Semi-Desert Scrub and Grassland (WSDSG)

Eastern Africa Xeric Scrub and Grassland EAXSG 4
North American Warm Desert Scrub and Grassland NAWDSG 1

SOUTHERN HEMISPHERE
Alpine Scrub, Forb Meadow and Grassland (ASFMG)

Australian Alpine Scrub, Forb Meadow and Grassland AASFMG 1
New Zealand Alpine Scrub, Forb Meadow and Grassland NZASFMG 1

Cool Semi-Desert Scrub and Grassland (CSDSG)
Mediterranean and Southern Andean Cool Semi-Desert Scrub and Grassland MSACSDSG 1

Patagonian Cool Semi-Desert Scrub and Grassland PCSDSG 1
Tropical Andean Cool Semi-Desert Scrub and Grassland TACSDSG 1

Mediterranean Scrub, Grassland and Forb Meadow (MSGFM)
Australian Mediterranean Scrub AMS 7

Pampean Grassland and Shrubland (semi-arid Pampa) PGS 4
South African Cape Mediterranean Scrub SACMS 1
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Table A2. Cont.

Formation Name (Formation Code)
Division Name

Division
Code

Number of
Ecoregions

Temperate Grassland, Meadow and Shrubland (TGMS)
Australian Temperate Grassland and Shrubland ATGS 1

New Zealand Grassland and Shrubland NZGS 1
Southern African Montane Grassland SAMG 3

Tropical Freshwater Marsh, Wet Meadow and Shrubland (TFMWMS)
Brazilian-Parana Freshwater Marsh, Wet Meadow and Shrubland BPFMWMS 1

Chaco Freshwater Marsh and Shrubland CFMS 1
Tropical Lowland Shrubland, Grassland and Savanna (TLSGS)

Australian Tropical Savanna ATS 9
Brazilian-Parana Lowland Shrubland, Grassland and Savanna BPLSGS 2

Eastern and Southern African Dry Savanna and Woodland ESADSW 2
Miombo and Associated Broadleaf Savanna MABS 2

Mopane Savanna MS 3
Tropical Montane Shrubland, Grassland and Savanna (TMSGS)

Madagascan Montane Grassland and Shrubland MMGS 1
African Montane Grassland and Shrubland AMGS 4

Brazilian-Parana Montane Shrubland and Grassland BPMSG 1
New Guinea Montane Meadow NGMM 1

Tropical Andean Shrubland and Grassland TASG 4
Warm Semi-Desert Scrub and Grassland (WSDSG)

Australia Warm Semi-Desert Scrub and Grassland AWSDSG 1

Table A3. Savanna, woodland and shrubland ecoregions with World Grassland Types (Dixon et al.,
2014). (See Table A2 for description of Formations and Divisions; Continent codes as follows: AF—Africa;
NA—North America; SA—South America; AU—Australasia (includes New Guinea and New Zealand)).

Formation
Code

ECO_CODE
Division

Code
Hemisphere Continent Ecoregion Name

TLSGS AT0707 WCAMWS N AF Guinean forest-savanna mosaic
TLSGS AT0905 WCAMWS N AF Saharan flooded grasslands
TLSGS AT0705 WCAMWS N AF East Sudanian savanna
TLSGS AT0713 NSSDSG N AF Sahelian Acacia savanna
TLSGS AT0722 SSDS N AF West Sudanian savanna
TMSGS AT1005 AMGS N AF East African montane moorlands

TMSGS AT1007 AMGS N AF Ethiopian montane grasslands and
woodlands

TMSGS IM1001 IMW N AF Kinabalu montane alpine meadows
TMSGS AT1010 AMGS N AF Jos Plateau forest-grassland mosaic
TMSGS AT1008 AMGS N AF Ethiopian montane moorlands

WSDSG AT1313 EAXSG N AF Masai xeric grasslands and
shrublands

WSDSG AT0711 EAXSG N AF Northern Acacia-Commiphora
bushlands and thickets

WSDSG AT0715 EAXSG N AF Somali Acacia-Commiphora
bushlands and thickets

WSDSG AT0716 EAXSG N AF Southern Acacia-Commiphora
bushlands and thickets

WSDSG NA1303 NAWDSG N NA Chihuahuan desert
TLSGS NT0709 CVLSGS N SA Llanos
TLSGS NT0707 GLSGS N SA Guianan savanna
TLSGS NT0158 ASS N SA Rio Negro campinarana
TMSGS NT0169 GMSG N SA Pantepui
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Table A3. Cont.

Formation
Code

ECO_CODE
Division

Code
Hemisphere Continent Ecoregion Name

TLSGS AT0725 MS S AF Zambezian and Mopane woodlands

TLSGS AT1002 WCAMWS S AF Angolan scarp savanna and
woodlands

TLSGS AT0724 MABS S AF Western Zambezian grasslands
TLSGS AT0702 MS S AF Angolan Mopane woodlands
TLSGS AT0717 MS S AF Southern Africa bushveld
TLSGS AT1309 ESADSW S AF Kalahari xeric savanna
TLSGS AT0721 ESADSW S AF Victoria Basin forest-savanna mosaic
TLSGS AT0726 MABS S AF Zambezian Baikiaea woodlands
TMSGS AT1011 MMGS S AF Madagascar ericoid thickets

TMSGS AT1001 AMGS S AF Angolan montane forest-grassland
mosaic

TMSGS AT1013 AMGS S AF Rwenzori-Virunga montane
moorlands

TMSGS AT1015 AMGS S AF Southern Rift montane
forest-grassland mosaic

TMSGS AT1006 AMGS S AF Eastern Zimbabwe montane
forest-grassland mosaic

TLSGS AA0708 ATS S AU Trans Fly savanna and grasslands
TLSGS AA0709 ATS S AU Victoria Plains tropical savanna
TLSGS AA0705 ATS S AU Einasleigh upland savanna
TLSGS AA0706 ATS S AU Kimberly tropical savanna
TLSGS AA0701 ATS S AU Arnhem Land tropical savanna
TLSGS AA0702 ATS S AU Brigalow tropical savanna
TLSGS AA0703 ATS S AU Cape York Peninsula tropical savanna
TLSGS AA0704 ATS S AU Carpentaria tropical savanna
TLSGS AA0707 ATS S AU Mitchell grass downs
TMSGS AA1002 NGMM S AU Central Range sub-alpine grasslands
WSDSG AA1304 AWSDSG S AU Great Sandy-Tanami desert
TMSGS NT0703 BPMSG S NA Campos Rupestres montane savanna
TLSGS NT0702 BPLSGS S SA Beni savanna
TLSGS NT0704 BPLSGS S SA Cerrado
TMSGS NT1003 TASG S SA Central Andean wet puna
TMSGS NT1005 TASG S SA Cordillera de Merida píramo
TMSGS NT1006 TASG S SA Northern Andean píramo
TMSGS NT1004 TASG S SA Cordillera Central píramo
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Abstract: Savannas are heterogeneous ecosystems, composed of varied spatial combinations and
proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing
methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus
underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the
local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology
over the past decade. Accordingly, several review articles already exist on the use of TLS for
characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS
studies according to biome for accurate vegetation structure estimation. A comprehensive review
was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The
review covered a range of aspects, including the global distribution of TLS studies, parameters
retrieved from TLS point clouds and retrieval methods. The review also examined the relationship
between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS
has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests,
with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of
very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution
to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing
new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome,
improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well
as quantifying AGB change through the application of multi-temporal TLS. The integration of data
from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved
vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the
huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities,
challenges and potential future research in the savanna biome.

Keywords: terrestrial laser scanning (TLS); savanna; Above Ground Biomass (AGB); 3D point cloud;
vegetation structure

1. Introduction

1.1. The Role and Importance of Savannas

Savannas are heterogeneous ecosystems characterized by mixed physiognomies
of woody and herbaceous layer [1]. Savanna ecosystems span one-fifth of the global
land [2,3] which makes up approximately 20% of the terrestrial vegetation and contribute
30% of all terrestrial ecosystem gross primary productivity [4,5]. Savanna ecosystems
also contribute significantly to the global carbon cycle with a net primary productivity
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of 1 to 12 t C ha−1 year−1 and a carbon sequestration rate averaging 0.14 t C ha−1 to
0.39 Gt C year−1 [4].

Savannas are vital biomes that play a major role in the provision of ecosystem ser-
vices. Moreover, they contribute significantly to the socio-economic needs of most rural
households, especially in Africa, where many are dependent on natural resources for
their livelihood [6,7]. Savannas support approximately 20% of the world population and
account on average 28% of household income in rural areas of developing countries [8,9].
In west and central Africa, income from bushmeat is equivalent to approximately $1000
per year [7].

Since savannas are home to 20% of the world’s population, humans have caused
changes in these ecosystems through land clearing for agriculture and livestock production,
infrastructure, fire lighting or suppression and fuelwood collection [9,10]. The alteration of
savanna structure and function has direct effects on woody vegetation and results in woody
encroachment as a result of the interaction of drivers mainly herbivory, fire and atmospheric
carbon dioxide [11,12]. Anthropogenic land use and land cover change affects vast areas of
the savanna ecosystem and the consequences can be substantial for the regional climate
cycle [9]. Against this background, it is important to regularly map and monitor savannas
and to quantify the carbon pools and dynamics of these ecosystems because they contribute
significantly to global productivity [13].

1.2. Monitoring of Savannas Using Remote Sensing

Much of the current understanding on savanna vegetation structure is derived from
traditional field-based methods, such as forest inventories, permanent sample plots and
transects [14,15]. Field-based estimates are essential in the validation of remote sensed
data [16], though they are limited in that they are time consuming, expensive, labour
intensive and often require destructive sampling [17,18]. Remote sensing techniques are
more appropriate for monitoring when compared to traditional methods [19]. Especially
for consistent analyses at different spatial and temporal scales and when considering
inaccessible areas, remote sensing with limited fieldwork has been proposed as an efficient
method [17,19].

The main types of Earth observation data used for vegetation studies are based on
optical (multispectral, hyperspectral), Radio Detection and Ranging (RADAR) and Light
Detection and Ranging (LiDAR) sensors [20].

Multispectral data can be acquired from spaceborne (satellites) or airborne (aircrafts,
Unmanned Aerial Vehicles (UAVs) platforms and from the ground imagery (spectrometers).
Multispectral data has the advantage of higher spatial resolution [21] and is publicly
available for most regions in the world e.g., Landsat data. It is limited in terms of spectral
resolution [21] and spaceborne optical data often suffer from cloud cover and mixed
pixels [20,22].

Hyperspectral data can be acquired from spaceborne and airborne sensors and hyper-
spectral cameras [23]. Hyperspectral data is acquired in hundreds of narrow bands, and
thus it has a higher spectral resolution enabling distinguishing of vegetation types [24].
It is limited though in terms of spatial resolution [21] and suffers from band redundancy
where bands are strongly correlated [24].

RADAR data have the advantage of being largely independent of atmospheric and
illumination conditions. However, they are limited because data-specific issues need to be
compensated for or at least considered when using RADAR for vegetation monitoring [25].
Among others, these issues comprise the geometry of Synthetic Aperture RADAR (SAR)
imagery, the dielectric properties of the surveyed surfaces, RADAR speckle complications
due to the separation between signal and noise in the data, RADAR shadow and saturation
problems [25].

To date, LiDAR systems are considered to be the most accurate and recommended
remote sensing technology for vegetation parameter retrieval by producing high-resolution
3D data called point clouds [26,27]. They are available as space and airborne, mobile and
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UAV as well as terrestrial LiDAR sensors [27]. Spaceborne LiDAR provides the opportunity
to make large-scale assessments of vegetation structure for global to regional biomass
estimation [28]. Airborne LiDAR is also able to cover relatively large areas and measures
vegetation structure with high accuracy [29]. Both spaceborne and airborne LiDAR systems
are limited in detecting smaller trees and shrubs. The latter are key attributes in savanna
ecosystems [30]. By using airborne or spaceborne LiDAR these attributes and are restricted
to landscape level estimates. Mobile and UAV LiDAR sensors offer a faster approach
for acquiring 3D point clouds. However, mobile LiDARs are constrained in extracting
canopy and height attributes [31], whereas UAV LiDARs have difficulties in capturing tree
trunks [32] and are also limited in flight time due to batteries [33]. An overview of the main
advantages and disadvantages of the described monitoring technologies i.e., (field surveys,
multi-spectral, hyperspectral, RADAR and LiDAR) platforms are also discussed in Béland
et al. [27], Eisfelder et al. [34] and Galidaki et al. [35].

1.3. Terrestrial Laser Scanning (TLS)

Terrestrial Laser Scanning (TLS) has grown in interest because of its ability to produce
3D point cloud data for characterizing vegetation structure [36]. Accordingly, over the past
decade, a considerable amount of research has been directed towards the 3D quantification
of vegetation structure using TLS [37,38]. Vegetation structural parameters are difficult
and laborious to measure in the field, especially in complex ecosystems like the savanna.
However, TLS has proven efficient in deriving these parameters because it produces consis-
tent and objective measurements with high precision. Furthermore, TLS measurements are
relatively easy to interpret and parameter extraction can be automated [39,40].

A terrestrial laser scanner or ground-based LiDAR is a LiDAR system from which
detailed 3D information called point clouds can be collected [41]. Using a laser beam,
terrestrial laser scanners provide a high-resolution 3D view of the objects [36]. Depending
on their range measurement principle, terrestrial laser scanners are classified into two
types: phase shift or time of flight scanners [36,42]. Phase shift scanners measure distances
by analysing the shift between the emitted and the received laser wave. In contrast, time
of flight scanners compute distances based on the difference between the emission and
reception of the laser pulse [42].

TLS measurements can be collected based on single or multiple scans. Using single
scans, the scanner is placed at a single location within the study area whilst multiple
scans are obtained when the scanner is placed at several positions within the test site [43].
For rapid and efficient extraction of vegetation parameters with reduced fieldwork and
faster post-processing, single scans are preferred [44]. However, this approach is prone
to occlusions (e.g., a tree being in the scan shadow of another tree or any other object)
reducing the accuracy of vegetation structure retrieval and the ability to get a full 3D
representation of an object [44]. For the best plot coverage and a complete 3D description
of the objects under consideration, a multi-scan TLS setup is necessary [31,36].

Multi-scan TLS data allow for reliably retrieving common tree attributes such as Diam-
eter at Breast Height (DBH), tree height, canopy structure and vertical height profiles [45,46].
In addition to these parameters, more detailed and complex vegetation attributes such as
leaf water content [47], basal area and stem density [48], Above Ground Biomass (AGB)
change [49], tree crown change [50] stem curve profiles [51], stem shrinkage [52], have been
derived from TLS point clouds.

TLS provides unmatched 3D information on vegetation structure right down to
branch and leaf scales, making it far superior to data obtained through traditional field
work [38,53]. Using the intensity of the returned laser pulses, TLS can be used to map
pigment concentration, photosynthetic capacity and water content of the vegetation [27]. It
is also possible to separate wood from leaf material [54,55]. TLS offers a non-destructive
approach to quantify canopy and stem volume with high accuracies, thereby enabling the
estimation of AGB with reduced uncertainties as well as the development and improve-
ment of reliable allometric equations [56,57]. TLS also enables the estimation of individual
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tree components [58] and it can also be employed as a calibration and validation dataset
because of its ability to acquire data from the ground that is similar to traditional measures
of vegetation structure [59,60].

The inherent heterogeneity of savannas presents a challenge regarding accurate vege-
tation characterization. To overcome this challenge, 3D data on the horizontal and vertical
structure of the savanna are needed. TLS is able to account for savanna heterogene-
ity (Figure 1) by providing detailed information on all savanna vegetation types and
layers [61,62]. It therefore holds much potential for making holistic AGB assessments,
including long and short stature vegetation [63–65].

 

Figure 1. 3D point cloud showing the inherent heterogeneity of savanna ecosystems. The point cloud was captured with
a time of flight Riegl VZ 1000 scanner in the vicinity of Skukuza Flux Tower in Kruger National Park, South Africa. One
colour pass equals 5 m in height.

Different drivers can result in the loss of large trees in the savanna landscape [66]
and changes in vegetation structure. The non-destructive nature of TLS makes it more so
suitable for quantification of change in vegetation structure and reduction of uncertainties
when estimating AGB [50,67]. The use of repeated TLS scans allows for monitoring these
and other losses (and potentially gains) in savanna AGB over time. Multi-temporal TLS
therefore holds the potential to support carbon accounting programmes such as REDD+.

While TLS is able to capture the 3D configuration of vegetation at high spatial reso-
lution, data can only be acquired for a limited areal extent and data acquisition usually
requires extensive field work [68]. This problem is solved by the integration of TLS with
other remote sensing data to ensure the coverage at landscape scales. For example, land-
scape studies were conducted in the savanna by the integration of TLS with airborne
LiDAR [69], TLS with MODIS satellite data [70] and TLS with ALOS PALSAR L band
data [62]. Moreover, TLS scans frequently feature occlusions (“shadows”) caused by objects
close to the scanner which, in turn, block the view of other objects further away. Although
occlusions are not a major problem in open savannas, they can be minimized by the use of
multiple TLS scans [30,64]. Another shortcoming of TLS systems is that the point density
decreases with distance from the scanner, an effect called beam divergence [68,71] which
causes the point cloud to be unreliable at a certain distance.

1.4. Overall Goal and Objectives of the Review

This paper aims to review the scientific literature on the use of TLS for vegetation
analyses. It puts a special but not exclusive geographic focus on savannas in order to
establish the current status quo in savanna vegetation parameter extraction. In contrast to
existing reviews in the TLS literature [72,73], this study presents the current TLS methods in
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practice and identifies those suitable for accurate biomass assessments in the savanna biome.
To address this gap, our meta-analysis takes a detailed look at the geographic distribution
of TLS studies, the parameters retrieved from TLS point clouds, known retrieval methods
as well as the main opportunities and challenges arising from the studied literature. The
remainder of the paper is structured as follows: Section 2 presents the approach and
Section 3 the main findings of the review. The main discussion points and conclusions
derived from the review are presented in Sections 4 and 5, respectively.

2. Materials and Methods

A systematic literature review was conducted in Web of Science [74]. Access to its
catalogue was granted through the Thüringer Universitäts- und Landesbibliothek Jena
(ThULB). The advanced search functionality in Web of Science was used to develop and
apply a set of predefined queries. The search included all journals in the Web of Science Core
Collection™ database. Peer-reviewed conference papers were also included. Searching for
keywords in the title (TI) and in some instances in all fields (ALL) (when a query returned
fewer than ten articles) was performed with a time frame up to May 2020. The time span
for the search was all years that is from 1945 to 2020. In the event that a search query
returned more than 100 articles, the search was refined by the research areas forestry or
remote sensing to narrow down on specific studies employing TLS for vegetation parameter
extraction. Each query consisted of different keywords and related synonyms (Table 1)
which were combined through logical operators (i.e., “AND”, “OR”).

Table 1. Search terms used to build the search queries for this review.

Search Aspect Search Terms

Vegetation type forest *; grassland *; savanna *; shrub *; woodland *

TLS
ground-based lidar; lidar; terrestrial laser scann *;

terrestrial lidar; TLS

Extraction of vegetation parameters
3D reconstruction; reconstruction; stem; tree

parameter; tree structur *;

TLS experimental setup full waveform; intensity; multi-temporal; reflection

TLS as auxiliary data calibration; validation

An example of one of the search queries developed is: TI = ((TLS OR Terrestrial LiDAR
OR Terrestrial Laser Scann *) AND (Tree Structur *)). This search query would return all
journal articles that have either the word or terrestrial LiDAR or terrestrial laser scanner or
terrestrial laser scanning and the word tree structure or tree structural in their title.

Following the above search scheme, a total of 158 research articles were initially
retrieved from Web of Science. In a second step, certain papers were retained for the review
according to a prescribed set of criteria. The criteria used to refine the initial search results
were as follows:

� The study under consideration focused on the extraction of one or more vegetation
parameters from TLS point clouds. For example, a study was only considered if
parameters like the DBH or AGB were derived on the basis of TLS point clouds [75];

� The study under consideration used TLS point clouds or products as a calibration
and/or validation data set for other remote sensing technologies (e.g., UAV LiDAR [32]
airborne LiDAR [76] and ALOS PALSAR [62];

� The study under consideration reviewed TLS as a remote sensing technology [39];
� The study under consideration conducted technical experiments with TLS data to

investigate, e.g., how specular reflectors affect distance in TLS measurements [77] or
which scan setup (single vs. multiple scans) in the field is best suited for a particular
application [51].
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This resulted in a final number of 113 reviewed publications. To qualitatively and
quantitatively assess the final selection of papers, a comprehensive meta-analysis was
conducted based on 18 predefined study attributes. Besides author(s), year of publication
and publishing journal, the list of reviewed meta-parameters included: study area(s)
(country, continent, biome); type of laser scanner used (TLS model/device); range finder of
the scanner (phase shift or time of flight); type of TLS data used (xyz and intensity); scanner
setup (TLS settings for scanning); field setup (use of reflectors, GPS/dGNSS); number of
scans (single vs. multiple scans); parameters retrieved (e.g., DBH, vegetation height, crown
diameter); retrieval method (algorithm used); number of studied trees and shrubs (total
number of trees/shrubs measured in the research); performance metrics such as coefficient
of determination (R2), Root Mean Square Error (RMSE) and bias; main discussion points
(e.g., advantages and limitations of a used approach); and lastly research gaps and potential
avenues for future research. The above search efforts were undertaken to ensure that all
relevant TLS literature was collected. The full list of papers considered and finally selected
in this review is available in Table S1 (supplementary material).

3. Results

3.1. General Overview

Of the 113 publications used for the detailed review, 80% of the publications focused
on the extraction of vegetation parameters from TLS point clouds, 12% used TLS as
auxiliary data (e.g., TLS data used to validate airborne LiDAR) [78–80] and 8% applied
TLS for technical experiments (e.g., reflectance modelling using TLS intensity data) [81–83].
Among the 113 papers, 97 were publications from peer-reviewed journals whilst 16 were
peer-reviewed proceedings. The most popular journals were Remote Sensing (20 studies),
Remote Sensing of Environment (9 studies), Agricultural and Forest Meteorology (8 studies)
and ISPRS Journal of Photogrammetry and Remote Sensing (6 studies). Most proceedings
papers stem from the International Geoscience and Remote Sensing Symposium (IGARSS),
with 9 studies.

3.2. Temporal and Spatial Patterns

Figure 2 shows the trend observed in the number of TLS studies. Beginning in the
early 2000s, TLS technology evolved slowly. New systems with a range of capabilities and
applications emerged and this explains the rise in the number of studies from the early 2000s
to date. TLS technology had a real breakthrough in vegetation studies around 2013 and the
upward trend seems to continue in 2019. A further significant increase in peer-reviewed
studies can be observed for 2018 and 2019 (25 and 22 articles, respectively). During this
time, the number of published papers per year has more than doubled when compared to
the period after the breakthrough (on average 10.8 studies per year for 2013–2017).

The geographic distribution of the reviewed studies by country is shown in Figure 3.
To date, most studies were conducted in the United States, China and Finland. From a
continental perspective, Europe has the highest number of studies (38%) [84–86] followed
by North America (24%) [46,59,87] and Asia (19%) [88–90]. Africa (6%), Australia (5%)
and South America (7%), with more than half of their landmass belonging to the savanna
biome [1,2], had few TLS studies [64,91,92].

The geographic distribution of studies by biome (after Olson et al. [93]) and the
percentage of reviewed studies per biome are shown in Figures 3 and 4. Studies that
were conducted in more than one biome were counted multiple times and four laboratory
studies were excluded from this analysis, resulting in a sample size of n = 114. The reviewed
papers covered a total of 11 biomes. While most studies were conducted in temperate
forests (47%) [75,94,95], much less papers were published in boreal (16%) [96–98], tropical
and subtropical forests (10%) [99–101] as well as grasslands and savannas (9%) [70,91,92].
The cumulative total for the savanna biome was 13%, including 4% of savanna research
conducted in temperate regions (“Temperate Grasslands Savannas and Shrubland”).
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Figure 2. Number of published studies per year and continent. Over the past 15 years, research
on TLS for vegetation assessments has increased significantly and knowledge has been generated
especially for the European, North American and Asian region. Please note that the low number of
studies in 2020 is an artefact of the review period ending on 31 May 2020.

 

Figure 3. Geographic distribution of reviewed studies. Biome classification according to Olson et al. [93].
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Figure 4. Percentage of reviewed studies per biome. Biome classification according to Olson et al. [93].

3.3. TLS Instruments and Data Used

A variety of TLS instruments can be purchased nowadays. They are offered by differ-
ent manufacturers, with the main companies being RIEGL Laser Measurement Systems
GmbH [102], FARO Technologies Inc [103] and Leica Geosystems [104]. Among others,
TLS instruments differ in their, measurement range (the maximum distance that can be
scanned e.g., 600 m), sample rate (pulses per second e.g., 122,000), wavelength (e.g. 1550 nm
(near-infrared)), angular sampling (angle measurement resolution e.g., 0.02◦), waveform
(discrete or full-waveform), range measurement principle (time of flight or phase shift),
size, mass and power efficiency. Based on our review, Table 2 provides an overview of
frequently used TLS instrument models. Among the most popular scanners were Riegl
VZ 400 (26 studies) [90,105,106], Leica HDS6100 (10 studies) [107–109], Riegl VZ 1000
(9 studies) [110–112], Faro Focus 3D (7 studies) [50,67,113] and Faro Focus 3D X 330 (also
7 studies) [83,114,115].

Figure 5 shows the number of scan positions and the area covered in the reviewed
studies. It becomes clear that a larger area requires a higher number of scan positions,
the higher the number of scan positions the fewer the studies and most studies use up to
10 scan positions and cover an area of less 5000 m2. The number of scan positions and
area covered also depend on the vegetation type and the level of detail required for the
specific research. For high detail data, some studies employed a high number of scan
positions on a relatively small area. Li et al. [63] used 18 scan positions on a 400 m2 plot on
shrubs and Lau et al. [99] used 16 scan positions on each selected tree in a 1200 m2 plot
in a tropical forest. Most inventories follow a field setup with multiple scans, with five
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(28 studies) [121–123], four (23 studies) [124–126] and three (13 studies) [113,127,128] scan
positions being the most popular. However, a single scan experimental design is also very
common (28 studies [83,89,129]).

Table 2. Commonly used terrestrial laser scanners.

Riegl VZ 400 Leica HDS6100 Riegl VZ 1000 Faro Focus 3D Faro Focus 3D X 330

Range finder Time of flight Phase shift Time of flight Phase shift Phase shift

Range of Measurement [m] 1.5–600 79 2.5–1400 0.6–120 0.6–330

Scan angle range [◦] 100/360 360/310 100/360 305/360 300/360

Accuracy [mm] 5 ±2 at 25 m 8 ±2 ±2

Beam divergence [mrad] 0.35 0.22 0.3 0.19 0.19

Laser wavelength [nm] 1550 690 1550 905 1550

Effective measurement rate
[points/sec]

42,000–122,000 508,000 42,000–122,000 122,000–976,000 122,000–976,000

Angel measurement
resolution [◦]

0.0005◦ (1.8arc sec) 0.009◦ Hor × 0.009◦ Ver 0.0005◦ (1.8arc sec) 0.011◦ 0.011◦

Weight [kg] 9.6 14 9.8 5.0 5.2

Reference [116] [117] [118] [119] [120]
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Figure 5. Number of scan positions and area covered (m2) in the reviewed studies.
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TLS instruments provide two types of data that can be used for forestry and vegetation
studies. These are 3D coordinates (XYZ data, point clouds) and the intensity of the reflected
signal. The signal can either be discrete or full-waveform. Discrete data provide single or
multiple returns for each laser pulse [76,130]. Full -waveform contain measurement of the
reflected laser beam as a function of range [76,130]. These two data types can be integrated
with auxiliary data from the field, including RGB images from digital cameras. Most studies
used XYZ data (85 studies) [131–133] whereas intensity information was considered much
less (8 studies) [129,134,135]. A triple combination of both data types and RGB images
(2 studies) [121,136] as well as a combination of XYZ and RGB (3 studies) [75,111,137] was
not commonly observed. Instead, a number of studies took advantage of XYZ and intensity
data (15 studies) [127,138,139]. No paper presented results based on a combination of TLS
intensity data and RGB images.

3.4. TLS Point Cloud Pre-Processing

The scanner in use usually comes with software for pre-processing the point cloud; for
example, Riegl scanners come with Riscan Pro, Faro with FARO Scene and Leica with Leica
Cyclone. The first stage in prepossessing if a multi scan setup was used is to conduct coarse
registration and georeferencing to the local coordinate system using the retroreflectors as
tie points [43,96]. Fine registration can also be achieved using multi-station adjustment
through an iterative closest point algorithm in Riscan Pro software [43,140]. Multi-station
adjustment requires a minimum of 3 TLS setups with a minimum overlap of 30%. The
algorithm uses surface and point normals to compute the adjustment [141]. The registered
point cloud is then clipped to the radius of the plot in the case of circular plots or to the
extent of the plots or to remove low density points at the plot edges [140,142].

The final pre-processing stage involves filtering the point cloud to remove noise from
the data [43,121,142]. Noise and outlier removal is done to increase accuracy and reduce
errors when extracting information from the point cloud data [115]. The noise can be
classified into internal and external noise, internal noise being the inherent noise from the
scanning device and external noise from the reflective nature of the scene [143,144]. The
common noise points from vegetation are leaves, extremely high or low points, and from
occlusions [115,144]. The filtering is performed using various approaches such as statistical,
neighbourhood, projection, signal and partial differential based filtering techniques [144].
For example, in the case of statistical outlier removal, the filtering reduces the error on the
point cloud by computing the average distance to its neighbours and rejects points that are
further away from the average distance [115,144]. Point cloud filtering can be performed
in software packages such as Cloud Compare, LAStools, MeshLab and programming
libraries such as Point Cloud and Open Graphics Library [143]. After pre-processing
various algorithms are then applied to extract the vegetation parameters.

3.5. Methods Used with TLS Point Clouds

Of the 113 papers reviewed, 87 papers focused on the extraction of vegetation pa-
rameters from TLS point clouds. Of the 87, only 15 studies worked in the savanna
biome [39,145,146]. The most frequently employed methods to derive vegetation attributes
are the RANdom SAmple Consensus (RANSAC) algorithm for extracting DBH, stem curve
profiles and the detection of stems [97,147], the use of the highest z coordinate of the point
cloud for estimating heights [61,148], voxel-based and radiative transfer models for assess-
ing LAI [149,150], Canopy Height Models (CHMs) for delineating crown attributes [91,92],
and Quantitative Structure Models (QSMs) for computing tree volume and branch param-
eters [151,152]. Popular software packages to implement and work with these methods
are Lastools [153], Matlab [154], R [155] and Python Programming [156], Cyclone [157],
FARO Scene [158], RiscanPro [159], CompuTree [160] and Cloud Compare [161]. For evalu-
ating the above extraction techniques, performance metrics such as R2, RMSE and bias are
typically used [51].
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3.6. Vegetation Parameters Extracted from TLS Data

The vegetation parameters that can be retrieved from TLS data can be broadly classi-
fied into primary and secondary parameters [22]. Primary parameters are those directly
derived from the TLS point cloud, such as DBH, height, volume and tree canopy charac-
teristics [22]. Secondary parameters can only be estimated indirectly and are derivatives
of primary parameters. They are usually obtained through modelling [22]. Examples of
secondary parameters are AGB, basal area, stem density and LAI [22]. Besides the common
vegetation parameters e.g., DBH and height, some studies focused on extracting unique
and complex vegetation parameters such as tree planar projection [162], the elevation of
angle and azimuth of stem inclination [52], clumping index [163], ground cover [92] and
structural loss [164].As shown in Figure 6, most of the reviewed studies retrieved primary
parameters, including DBH (41), height (32), tree canopy features (e.g., crown diameter,
canopy cover) (20), trees or tree stems (20) and tree volume (15). With only five and six
articles, respectively, branch parameters and stem curve profiles gained the least attention.
Of the secondary parameters, LAI was the most extracted parameter (21), followed by
AGB (11), basal area (5) and stem density (3). Details regarding specific parameters and the
methods to retrieve them are provided in the following subsections. Particular emphasis is
put on savanna ecosystems.
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Figure 6. Primary and secondary vegetation parameters retrieved in the reviewed TLS studies. Studies were counted
multiple times if two or more parameters were retrieved.
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3.7. Primary Vegetation Attributes
3.7.1. DBH

From the reviewed papers, only one study derived DBH in the savanna [92].
Muir et al. [92] employed circle fitting to single-scan TLS data at heights between 1.28 m
and 1.32 m above the Digital Elevation Model (DEM) in an open woodland site in Central
Western Queensland Australia. They compared the resulting stem diameter measurements
with data collected in the field and obtained an R2 value of 0.77 [92]. Slightly better per-
formances are often observed for DBH extraction in temperate, tropical and boreal forests,
with R2 values ranging from 0.81 to 0.99 [94,165,166] when compared to field reference
data. For a pine woodland test site in France, least-squares circle fitting was reported to
be the most accurate method (RMSE = 0.019 m) for estimating DBH when compared to
least squares cylinder fitting and circular Hough transformation [85]. Similarly, Calders
et al. [40] and Chen et al. [167] obtained R2 values of 0.97 when using least squares circle
fitting for DBH estimation with a multi-scan TLS scan with 5 positions in a eucalypt open
forest and boreal forest respectively. Yurtseven et al. [148] obtained an R2 value of 0.99
with a multi-scan with 8 positions in a Mediterranean forest employing randomised hough
transformation with least square regression. In general, multiple TLS scans and a lower
stem density yielded the best results [114,168,169].

3.7.2. Vegetation Height

Tree height estimation in the savanna was reported in five studies [30,62,91,92,145].
Odipo et al. [62] and Muir et al. [92] employed the use of CHMs to estimate tree height
from multiple and single TLS scans (30 positions and single scan) and obtained R2 values
of 0.64 and 0.98 respectively when compared to ground referenced data. Singh et al. [30]
observed an RMSE of 0.25 to 1.45 m based on multi-scan Long Range -TLS (LR-TLS) with
4 positions. They computed heights by measuring the vertical distance between treetops
and the stem base. Kirton et al. [145] employed cylinder fitting to extract tree height and
obtained a standard error of ±0.002 m using a TLS single scan. It was observed in this study
that it is more challenging to derive the height of savanna shrubs than it is for savanna
trees. Muir et al. [92] also reported that shrub heights are difficult to calculate from TLS
data, with R2 values of 0.381 and 0.08 for maximum and average shrub height, respectively.
In contrast to this observation, the extraction of height from short stature vegetation was
achieved with reasonable accuracy in montane areas as well as desert and xeric shrubland
biomes [170]. Vrlingie et al. [170] applied a 2-D spatial wavelet analysis on a TLS derived
CHM to extract shrub height and achieved an R2 of 0.94 when compared to field measured
shrub height.

3.7.3. Stem Detection

The detection of stems from TLS point clouds is an important first step in processing, to
enable extraction of other vegetation parameters [171]. Only one study [147] from the review
was conducted in the savanna biome. Burt et al. [147] employed treeseg algorithm (which
extracts tree point clouds from larger point clouds) on a tropical and on an open vegetation
cloud using TLS multi scans with 5 positions. They achieved 70% and 96% stem detection
accuracy, respectively [147]. The detection of stems was achieved with high accuracies in
temperate and boreal forests [138,171]. Kelbe et al. [138] used voxel stem segment modelling
on a single TLS scan dataset acquired using low resolution TLS in various forest types in
New England. Stems were detected with accuracies of (R2 = 0.99; RMSE = 0.16 m) [138]. In
a boreal forest Zhang et al. [171] employed connected component segmentation using both
single and multi- scan with 5 positions. They achieved stem detection accuracies of 93%
for single scan and 99% for multi-scan TLS setup when compared to reference data [171].
To date, most of the commonly used algorithms (e.g., density-based clustering [172],
Hough transformation [85] and RANSAC cylinder fitting [48,173] used for stem detection
achieved stem detection accuracies of 70% to 99% when applied in temperate, tropical and
boreal forests.
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3.7.4. Crown Attributes

Among the tree crown attributes dealt with in the scientific literature are canopy cover,
canopy height/length, crown width/diameter and tree crown change. In the savanna
biome, extraction accuracies for trees were better as compared to shrubs. Singh et al. [30],
Odipo et al. [62] and Muir et al. [92] employed CHMs to determine canopy cover. Singh
et al. [30] achieved an RMSE of 5.7–15.9% at distances up to 500 m with 4 scan positions,
whilst Odipo et al. [62] and Muir et al. [92] achieved R2 of 0.56 and 0.93 as compared to the
ground referenced data with 30 and single scan positions respectively. Lower accuracies
were obtained when estimating shrub canopy cover, with Muir et al. [92] reporting an
R2 of 0.23 when compared to field measurements. Yet, the application of 2D spatial
wavelet analysis achieved an R2 of 0.51 for 36 shrubs in a desert and xeric shrubland
environment [170]. In this study, shrub crown area was calculated using spatial wavelet
analysis using the detected radius while the actual shrub crown area was determined by
measuring the minor and major axis and then calculating the crown as an ellipse [170]. The
use of different algorithms for accurate extraction of canopy cover was also investigated
by Yurtseven et al. [148] in a mediterranean woodland and scrub. They employed convex
and concave hulls and they concluded that the concave planar underestimates canopy
cover area as compared to the convex hull. A method to quantify canopy cover change
was considered by Olivier et al. [50] in a sugar maple and balsam fir forest in Canada.
They used bi-temporal multi-scan TLS data to identify vegetation boundaries, extract new
material formed or displaced between the two-time period [56].

3.7.5. Tree Volume and Branch Parameters

Volume of standing trees or above ground volume is total stem wood and branches [174].
Branch parameters are parameters like branch total length, branch diameter, branch in-
sertion angle, branch depth into the crown and branch radius. Over the years, a range
of algorithms has been developed to compute tree volume and branch parameters from
TLS point clouds [151,175]. However, none of the corresponding studies was conducted in
the savanna biome. QSMs are the most common algorithms used in literature [96,151,175].
They have the ability to provide reliable volumes estimates of stem and branches of trees,
but also have limitations in reconstructing leaves [176]. Figure 7 shows an example of
a 3D point cloud and the resulting QSM. Branching structure and branch lengths were
determined in boreal and tropical forests using QSM [151,175]. Kaasalainen et al. [175]
used a multi scan with 2 positions to reconstruct branching structure and concluded that
branching structure can be reproduced with ±10% accuracy when compared to laboratory
reference measurements. Lau et al. [151] used a multi-scan with 13 positions and success-
fully reconstructed 87% of the branch lengths. They compared the reconstructed branch
lengths to manually measured branches from destructively harvested trees [151]. For the
estimation of shrub total and green biomass, Olsoy et.al [54] employed voxel-based and
3D convex hull algorithms to first determine shrub volume in a xeric sagebrush ecosystem
in Southern Idaho, USA using multi scan with 2 positions. They then modelled shrub
total and green biomass by subsetting the point cloud into green and non-green woody
components based on the difference in their reflectivity. Their findings showed that convex
hull algorithms (R2 = 0.92, R2 = 0.83) performed slightly better than the voxel-based method
(R2 = 0.86, R2 = 0.73) in estimating total and green biomass respectively [54]. The TLS
derived shrub biomass was compared to the destructive samples of shrubs [54]. These and
other volume-related algorithms (e.g., bounding cuboids, outer hull models, square-based
columns) have also been compared for test sites in the temperate and tropical regions [101].
It was found that convex hull techniques tend to overestimate while the square-based
column method underestimates volume. Moreover, voxel-based estimates are mainly
affected by the point density and level of occlusions in the point cloud [101].
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(a) (b) 

Figure 7. (a) TLS point cloud coloured by height (lowest values in blue and highest values in red). (b) Resulting QSM model
from the algorithm by Raumonen et al. [177]. Data Source: (Madhibha, 2016) [178].

3.7.6. Stem Curve Profiles

Stem profiles or stem taper is the “stem diameter measured as a function of height” [179];
that is, how the diameter of the tree changes at different heights along the stem. Six studies
used TLS point clouds to determine stem curve profiles, five of the studies were conducted
in boreal forests [48,51,52,162,166] and one was conducted in temperate broadleaf and
mixed forest [58]. The methods used to extract stem curve profiles from TLS point clouds
are either circle or cylinder fitting at different height bins [48,51,52,58,162,166]. Maas
et al. [58] extracted stem curve profiles using circle fitting at multiple heights and obtained
an RMSE of 4.7 cm when compared to a harvested stem. Liang et al. [51] observed that
most algorithms used for the extraction of stem curve profiles results in an RMSE of 1.3
and 6.0 cm for single scan data and 0.9 and 5.0 cm from multi scan data for three different
stem densities (i.e. low, medium and high stem densities) in a boreal forest. The RMSE
values obtained are a function of both the stem density and the number of scan positions
employed [51].

3.8. Secondary Vegetation Attributes
3.8.1. AGB

AGB is defined as “the total amount of biological material (oven-dried) present above
the surface in an area” [180]. AGB is the most important secondary attribute derived
from TLS point clouds. The accurate extraction of all other parameters is a necessity in
improving tree biomass estimation. A total of five studies estimated AGB in the savanna
using TLS [62,64,70,90,126]. Zimbres et al. [64] predicted plot AGB of three vegetation
types in the Brazilian cerrado. The TLS derived AGB was validated against the AGB
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values obtained from allometric equations. The R2 values obtained were 0.92 and 0.88
for the woodland savanna dry and rainy season respectively and 0.58 for the forested
savanna. Due to occlusions, no conclusive results were obtained for the gallery forest [70].
Cuni-Sanchez et al. [70] estimated AGB change in five different vegetation types using
vertical plant profiles extracted from a multi-scan TLS over a period of 20 years in Gabon.
However, the savanna plots were not assessed because all the trees had a diameter of less
than 10 cm [70]. Odipo et al. [62] also estimated AGB change in a south african savanna
using TLS derived canopy cover and height metrics for plot level AGB and then further
extrapolating to a wider scale using multi-temporal L band SAR. The TLS derived metrics
were validated with field measured parameters. Significant relationships were obtained
between the TLS derived predictors (canopy cover & height) with field biomass (R2 = 0.93).
Seven variables extracted from TLS data were used to build regression models with field
measured AGB to estimate grass biomass in China [90]. The regression methods used were
Simple Regression (SR, Stepwise Multiple Regression (SMR), Random Forest (RF) and
Artificial Neural Network (ANN). Results obtained showed that the highest prediction
of biomass was obtained using SMR model (R2 = 0.84), followed by SR (R2 = 0.80), RF
(R2 = 0.78) and lastly ANN (R2 = 0.73) [90]. Cooper et al. [126] investigated the application
of Structure from Motion (SfM) photogrammetry and TLS for the estimation of grass
biomass and compared this to destructive harvest grass biomass. The R2 values for the
TLS derived grass biomass was 0.46 and total biomass was 0.57, whilst for the SfM it
was 0.54 for the grass biomass and 0.72 for the total biomass [126]. TLS data have also
been used to derive tree and grass AGB change [49,115]. Srinivasan et al. [49] extracted
various tree parameters (including AGB) from loblolly pines in Texas, USA by the use of
multi-temporal TLS data. The best results (R2 = 0.50, RMSE = 10.09 kg) were obtained by
directly estimating AGB change from the point cloud when compared to field measured
AGB change. Guimarães-Steinicke et al. [115] also investigated grass biomass temporal
change in Thuringia, Germany. They used 25 TLS derived metrics to model biomass [115].

While most of the reviewed studies focused on the estimation of tree biomass, only few
papers dealt with shrub biomass. Shrub biomass was investigated by Greaves et al. [59] in
the arctic tundra. They employed a leave one out cross-validation technique of the canopy
volume against the harvested shrub biomass to establish predictive relationships between
the TLS canopy volume and harvested shrub biomass and between Airborne Laser Scan-
ning (ALS) canopy volume and TLS derived shrub biomass estimates. The TLS produced
more accurate predictions of shrub biomass as compared to the ALS (TLS R2 = 0.78 and
ALS R2 = 0.62). Li et al. [181] merged TLS and ALS to estimate the biomass of sagebrush
in southwest Idaho, USA by building predictive models. TLS derived biomass was used
for calibration of a biomass predictive model with an R2 of 0.87. The TLS derived shrub
volume was compared to the destructive shrub biomass measurements (R2 = 0.88) [181].

3.8.2. LAI

LAI is defined “as the ratio of leaf area to per unit ground surface area” [39,130]. A
study was conducted in the savanna biome by Béland et al. [39]. They applied a voxel-
based approach making use of the contact frequency method on six trees. To this end, they
employed two multi-scan setups with 2 and 3 positions and compared the TLS derived
estimates against direct measurements obtained from leaf harvesting. The leaf area ranged
from 30 to 530 m2 whilst crown LAI was 0.8 and 7.2 with a general bias of 14%. To ensure
an accurate extraction of LAI, the green and non-green components were distinguished in
the TLS data based on a separation threshold applied to the return intensities [39]. Olsoy
et al. [182] estimated the LAI of sagebrush from TLS data with 2 scan positions and found
that the estimated LAI was highly correlated with their reference field data (R2 = 0.78).

3.8.3. Basal Area

Basal area is defined as a “cross-sectional area of all stems in a plot measured at breast
height and usually expressed per unit of the land” [183]. Five studies estimated basal area
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from TLS point clouds, with four being conducted in a temperate broadleaf and mixed
forest [75,78,85,184] and one from the boreal zone [48]. No study has been published
yet for the savanna biome. Yrttimaa et al. [48] and Tansey et al. [85] derived basal area
from TLS point clouds by first calculation basal area for a single stem, then scaling it to
one hectare. The TLS derived basal area was compared to the field derived basal area
which was derived by considering the cross-sectional area of a tree to be circular [48]. The
R2 observed were 0.87, 0.86 and 0.63 for a plot radius of 6, 11 and 16 m respectively [48].
Côté et al. [184] used an architectural model called LiDAR to Tree Architecture (L-Architect)
by reconstructing forest stands with scans of individual trees. The L-Architect derived
basal area was compared to the measured values of basal area to assess accuracy. A relative
difference of −0.01% was obtained between the L-Architect and field measured basal
area [184]. A methodology based on voxel data structure was applied to derive the
basal area of individual trees in a heterogeneous vegetation structure in Washington Park
Arboretum [75]. The TLS derived basal area was derived by fitting a 3D cylinder primitive
to the trunk assuming that the trunk was a geometric circle. The TLS derived basal area
was compared to the manually measured basal area. The TLS derived basal area was
underestimated compared to the field-based methods for conifers, deciduous and mixed
stands (Conifer: Field = 12.3116 m2, TLS = 6.9217 m2; Deciduous: Field = 1.4275 m2,
TLS = 1.0172 m2 & Mixed: Field = 1.8431 m2, TLS = 1.575 m2) [75]. Aijazi et al. [78] used
a super voxel segmentation method to estimate basal area and concluded that parameter
estimation error ranged from 1.6 to 9% from TLS point clouds.

3.8.4. Stem Density

Stem density is defined as “the number of trees per hectare” [185]. Three of the reviewed
studies estimated stem density, with one being performed in a savanna ecosystem [92]. Stem
density is derived from the number of stems identified in the scanned area and comparing
it to the field derived stem density [48,85,92]. Yrttimaa et al. [48] varied the plot size in
order to investigate its effects on stem density. The smaller the plot size, the higher the
correlation of the TLS-derived stem density with field measurements (r = 6 m | R2 = 0.77;
r = 11 m | R2 = 0.67; r = 16 m | R2 = 0.38). Muir et al. [92] determined stem density from
TLS point clouds as well. They achieved an R2 of 0.1 and reported a large RMSE of
130.9 trees/hectare that was attributed to plot complexity.

4. Discussion

4.1. Geographical Trends in the TLS Literature

From a global perspective, most TLS studies have been conducted in Europe, North
America and China (Figure 3). Despite their large geographical extent in Africa, South
America and Australia, savannas have rarely been investigated in these areas. In the early
2000s, TLS-based vegetation studies were mainly conducted in Europe and North America
(Figure 2). From 2009 onwards, TLS studies expanded into the rest of the world, including
Africa, Asia, Australia and South America. An increasing collaboration among TLS research
groups from different parts of the world can explain this observation [57,100,147,171]. To
further advance TLS research in savannas and to learn more about their ecology, building
scientific capacity in financially constrained countries is key.

Savannas cover ca. 50% of Africa’s landmass. Yet, only 6% of the reviewed studies
were conducted in Africa. Of those studies, the majority focused on South Africa. Only a
few articles presented results for other African countries, including Mali [39], Ethiopia [186]
and Gabon [70]. One reason for this observation is that TLS research in Africa is mainly
constrained by financial limitations. The acquisition and processing of TLS data usually
require expensive equipment and software [22]. Moreover, it necessitates trained personnel,
which is limited in most third-world countries [176]. With the advent of low-cost terrestrial
laser scanners [65,187,188], more TLS research can be expected in the future for Africa.

Since savannas cover large geographical areas, TLS data can usually not be used by
itself to study an entire region due to its limited footprint. Instead, an integration of TLS
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point clouds with other geospatial data is necessary for large-scale assessments. In the
past, the creation of wall to wall maps of savannas has been achieved by combining TLS
with L-band SAR [62] and airborne LiDAR [69]. Currently, the existence of freely available
satellite data from Sentinel-1/2 and Landsat 5–8, as well as coarser resolution imagery from
MODIS [70] can resolve upscaling issues from fine spatial resolution from TLS to medium
resolution from Landsat and Sentinel then to coarse resolution using MODIS. The planned
launch of BIOMASS by the European space agency and Multi-footprint Observation LiDAR
and Imager (MOLI) by JAXA after Global Ecosystems Dynamics Investigation (GEDI) and
Ice Cloud & Elevation Satellite-2 (ICESat-2) will present an opportunity for landscape-level
studies of the savanna [60]. Based on these and similar data sets, TLS point clouds can be
used in wide-area mapping for calibration and validation purposes [60].

4.2. Challenges & Opportunities

Single and multiple scans (five, four, three and two positions) were found to be the
most commonly used TLS setups in the reviewed literature. Single scan approaches have
been used successfully to estimate DBH [138,166], height [92] and to detect stems [189].
Single scan inventories received a lot of attention because they allow for fast and less
labour intensive data acquisitions and do not require the registration of multiple point
clouds [109,112]. However, single scan approaches are also more prone to occlusions [43].
Data from multi-scan TLS campaigns were shown to yield higher accuracies and reduced
error margins [45,139]. Therefore, multiple TLS scans with larger plot sizes (>15 m in
radius) provide the only opportunity to adequately capture the heterogeneous nature
of savannas and to characterize the full spectrum of savanna vegetation structure [92].
Depending on the parameters to be extracted, the requirements to be met and the available
resources, the choice between a single- or multi-scan TLS setup should be made carefully.
For example, long range single scans give reliable data in the dry season (leaf-off) and not
in the wet season (leaf-on) [30].

DBH is one of the most reliable proxies for biomass [190]. This is why it is also the most
frequently measured quantity not only by foresters, but also with regard to the reviewed
literature. It has been shown that DBH can be delineated automatically based on multiple
TLS scans [40]. However, these techniques have not yet been adjusted or tested for more
complex vegetation structures [88]. To date, most algorithms to retrieve DBH (and also
stems and stem curve profiles) assume a circular or cylindrical stem geometry. However,
these rather simple geometries are not well-suited to describe the short stature vegetation
and deformed trees that are typically found in savannas [40,191]. While a number of DBH
extraction techniques (e.g., RANSAC algorithm [186], point cloud slicing at 1.3 m [75],
least-squares circle fitting [52] and Hough transformation [86] exist), they have only been
developed and demonstrated in temperate and boreal forests. For savannas, only the circle
fitting method has been explored yet [92].

Height was extracted from TLS point clouds in the savanna, mostly through the
employment of CHMs to achieve the goal. Muir et al. [92] obtained an R2 of 0.97 and
0.38 for TLS-based estimates of tree and shrub heights, respectively. Small stature woody
vegetation is often not well captured by CHMs, which leads to an underestimation of its
height when interpolation is used to create the canopy surface [170]. This issue has not yet
been adequately addressed, and more accurate height assessment techniques still need to
be developed [170]. Potential ways to achieve this would be to elevate the scanner above
the vegetation layer or place the scanner on a suitable vantage position [30,92], to capture
TLS data of shrubs with higher point density (e.g., 16 pts per m2, [170]) and to distinguish
between trees and shrubs in the TLS point cloud and to create two corresponding tree- and
shrub-related CHMs that can be analysed separately [92].

Other methods for vegetation height extraction are available, including the combined
analysis of TLS and airborne (also UAV) LiDAR data [140,192], the highest z-coordinate
(height is derived by the highest value of the return) [51], the vertical distance between the
highest point and stem base at the ground (the vertical distance is measured from the base
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of the stem to the highest point on a segmented point cloud) [30] and cylinder fitting (a
cylinder is fitted on a segmented point cloud and the height is denoted as the highest point
in a vertical cylinder) [58,145]. While they are also not without errors, these techniques
have neither been developed, adjusted nor evaluated for savannas. Known problems, e.g.,
uncertainties from treetop shading [86], are especially common in the riparian zones of
savanna ecosystems.

The extraction of LAI using TLS point clouds is not very common across all biomes [22]
including the savanna. Calders et al. [79] argue that caution is needed when using LAI
estimates and the variable that is measured from ground-based sensors is effective Plant
Area Index (ePAI) and effective Wood Area Index (eWAI). They recommend that TLS
measurements are ideal for estimation of gap fraction, ePAI and eWAI as compared to
instruments that are dependent on certain illumination conditions [79]. Gap fraction is an
indirect way of estimating LAI and TLS is recommended for the estimation of gap fraction
to derive ePAI and eWAI [79]. It has been used successfully in the past to estimate LAI [193].
TLS intensity data can also be used to compute LAI. They allow for differentiating between
photosynthetically active (green) from non-active (woody) vegetation parts [39,54]. How-
ever, they can also be compromised by instrumental, atmospheric and object properties as
well as the scanning geometry [82,129]. In order to reliably make use of TLS intensity data
for vegetation applications, conversion of instrumental intensity into the proportional or
equal target reflectance is required [129,135].

While tree crown attributes have been successfully derived from TLS point clouds,
more research needs to be directed towards crown change and shrub parameters. With
regard to the former, the method by Olivier et al. [50] needs to be tested in the savanna
biome. Vierling et al. [170] suggested the use of vantage points, high cliffs or tall tripods
in order to achieve steep viewing zenith angles. These enable the acquisition of enough
returns from both vegetation and ground. Following this procedure, reliable construction
of DEMs and characterization of vegetation structure is ensured. Other ways to capture
more accurate canopy details are the acquisition of full-waveform TLS data [170], the sepa-
ration of trees and shrubs on the basis of height thresholds and noise filtering [92,148,170]
and also separation through the application of reflectance thresholds and LiDAR return
deviations [69].

Various reconstruction algorithms are available to extract plant volume from TLS
data [48,54,96,101]. A limitation common to many of these techniques is that they rely on
simple geometries (e.g., cylinders) to model vegetation components. This usually leads
to an overestimation of volume due to the tapering of branches and the complexity of the
tree architecture [176]. Another challenge lies in the exact evaluation of TLS-based volume
estimates. True validation requires destructive sampling which is seldomly possible and
desired [176]. Despite these limitations, volume reconstructions from TLS point clouds are
key to improving tree allometries, non-destructively estimating and monitoring biomass
change as well as assessing structural gains and losses in savanna ecosystems [30,175].

AGB is a key parameter in the study of vegetation structure and crucial indicator
of terrestrial carbon pools and productivity [140,190]. Accordingly, it is also a popular
secondary vegetation attribute in the TLS literature. Volume estimates form the basis
of AGB assessments with TLS data, which are less prone to errors when compared to
the simple use of allometric equations [40,176]. QSMs are most frequently employed
for estimating AGB from TLS point clouds. However, reconstruction quality still suffers
from certain errors and uncertainties. These are related to the modelling of complex tree
crowns and smaller branches, the optimal use of wood density values (which vary both
within and between species and regions), the use of simple reconstruction geometries
such as cylinders, the separation of leaf and woody components as well as the validation
of AGB values [71,176]. Despite these limitations, volume-based AGB estimates do not
require information on DBH and show better agreement with reference data. As a non-
destructive proxy for estimation of AGB, they should be further explored in the savanna
context [40,176].
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Using TLS point clouds, branch level parameters from a much larger percentage of
a whole tree can be extracted [194]. Combined with other tree attributes, they hold the
potential to calculate whole tree carbon and water use [194]. Especially reconstruction
algorithms like QSMs [177] have enabled their retrieval. To date, there are very few studies
on this topic and none of them focused on savannas. QSMs have been reported to yield
accurate results when modelling thick branches [195]. Accuracies usually drop for smaller
branches, particularly in cases where leaf-on scans are employed [195]. In order to improve
QSMs with regard to branch parameter retrieval, they should be able to correctly separate
the point cloud into leaf and woody components [71].

Shrub volume and AGB has also been estimated using TLS-based reconstruction
algorithms. Greaves et al. [142] employed volumetric surface differencing and voxel
counting in the arctic tundra whereas Olsoy et al. [54] used voxel-based and 3D convex
hull techniques to assess the volume of shrubs. The existing methods hold the potential
to be successfully transferred and adjusted to savanna ecosystems. This would allow for
quantifying shrub layer biomass and help making more accurate AGB assessments overally.
Moreover, these integrated biomass estimates could be used as calibration and validation
reference data for mapping and monitoring savannas at larger spatial scales [142].

4.3. Future Outlook

The accurate extraction of vegetation parameters from TLS data is a challenging task.
This review has shown that there are still a lot of research gaps that need to be addressed.
This is especially true for savannas, which are in many ways much different from those
biomes that have so far gained more attention in the literature. Savannas are heterogeneous
and dynamic ecosystems that feature unique and complex mixtures of trees, shrubs and
grasses. This requires novel developments, (re-) adjustments as well as extensive tests and
experiments when it comes to TLS algorithms and applications.

Savannas are regularly subject to disturbances from fire, herbivory, droughts and
humans. These disturbances lead to vegetation structural changes (including the loss of
large trees [66,196] that can affect savanna ecological functioning [196]. As a future avenue
for mapping and monitoring savanna vegetation, the acquisition and analysis of multi-
temporal TLS point clouds should be considered. While research on this subject is still in its
infancy (e.g., [49,50,115]), there is no doubt that it holds a large potential for characterizing
and understanding savanna dynamics [70], including phenological processes (i.e., leaf-on
vs. leaf-off conditions) [54]. Among others, this is because of the non-destructive nature
of TLS [49,50] and its ability to repeatedly capture 3D vegetation information with great
detail [58]. Levick and Asner et al. [196] quantified the loss of large savanna trees and
observed declines of more than 30% for some sites. However, since they were using
ALS, below-canopy treefall and canopy-related losses (e.g., branch breakages) could not
detected [196]. Such limitations can be addressed by acquiring and investigating time
series of TLS scans. By developing suitable change detection algorithms, multi-temporal
TLS will enable accurate and regular accounting of carbon losses and gains in savannas.

To date, woody AGB mapping in the savanna has mainly been focusing on tree
biomass. Despite being a key component of savannas, shrubs have not been considered
in this regard. Future research should therefore focus on an accurate and more holis-
tic assessment of woody AGB in savannas, including trees, small understory trees and
shrubs [65]. One pathway to achieve this would be a combination of TLS and airborne
LiDAR data. TLS is well-suited to characterize understory vegetation structure in terms
of both trees and shrubs [64,91]. Especially regarding the latter, existing algorithms that
have initially been developed for sagebrush and arctic shrubs [54,110,142] could be tested
and refined. Airborne (including UAV) LiDAR offers 3D point clouds with a bird’s eye per-
spective of the savanna. While it has been found to be of limited use in shrub-dominated
ecosystems [170], it is superior for tree height and canopy structure mapping [27]. By
combining TLS and airborne LiDAR data, synergies between both technologies are ex-
ploited while their individual limitations can be overcome. To increase spatial coverage
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and to create wall-to-wall AGB maps, optical (e.g., Landsat and Sentinel-2) and SAR (e.g.,
Sentinel-1, ALOS PALSAR-1/2, BIOMASS) satellite time series should be integrated into
such a monitoring scheme.

From a technical perspective, TLS-based assessments of volume and AGB have not
adequately taken into account the different types of woody vegetation in the savanna. An
opportunity to improve them would be the separation of TLS point clouds into individual
trees and shrubs. Afterwards, specific 3D models tailored to each savanna life form
as well as dedicated noise filtering algorithms could be applied to yield more accurate
reconstruction results [64,92,170]. For instance, QSMs could be employed to extract volume
information from tree point clouds while convex hulls or voxels could be used in the
case of shrub point clouds. To this end, methods exist that have been tested on trees
in temperate [37], boreal [96,175] and tropical forests [101,151] as well as shrubs in the
temperate regions [54,181]. Future studies in the savanna need to transfer, train and
validate these techniques.

TLS intensity data have already been demonstrated to hold potential for vegetation
analyses in a few studies. However, only limited overall evidence can be found in the
literature so that a number of unresolved scientific questions still remain. In particular, more
research is needed on the improved retrieval of the LAI with TLS intensity [80,150]. Among
others, this could be achieved by a better separation of leaf and wood material [176]. Other
challenging tasks based on TLS reflectance data comprise the study of seasonal changes
(i.e., leaf-on vs. leaf-off vegetation properties) [54] and leaf biochemical parameters to
understand the photosynthetic capacity of savanna vegetation [27].

5. Conclusions

3D data from TLS can make a vital contribution to mapping the current state of sa-
vanna vegetation, monitoring and quantifying its dynamics over space and time and, in this
way, provide a better understanding of the underlying ecological factors and processes as
the very basis for sustainable savanna management and long-term conservation. This study
reviewed the scientific literature on the use of TLS for extracting vegetation parameters
with a special geographic focus on savannas. The current state of the art was presented
and methods relevant for TLS research in the savanna biome were identified and discussed.
To achieve this, a comprehensive quantitative and qualitative meta-analysis of 113 research
articles was conducted using 18 attributes. It was found that only few studies have dealt
with TLS data for vegetation analyses in the savanna. Among others, research gaps exist
with respect to a better separation of leaf and woody components in TLS point clouds,
the accurate 3D reconstruction of savanna vegetation volume and biomass, more holistic
assessments of woody AGB by considering both trees and shrubs as well as the application
of TLS time series data for multi-temporal assessments of vegetation structural change,
including studies quantifying seasonal differences in vegetation dry and green biomass.
Future research should thus concentrate on extending previous experiments to savannas
as well as developing novel information extraction routines for these.
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ALS Airborne Laser Scanning
3D Three Dimensional
AGB Above Ground Biomass
CHM Canopy Height Model
DBH Diameter at Breast Height
DEM Digital Elevation Model
ePAI effective Plant Area Index
eWAI effective Wood Area Index
GPS Global Positioning System
GNSS Global Navigation Satellite System
IGARSS International Geoscience and Remote Sensing Symposium
LAI Leaf Area Index
LANDSAT Land Remote-Sensing Satellite
L-Architect LiDAR to tree Architecture
LiDAR Light Detection And Ranging
MODIS Moderate Resolution Imaging Spectroradiometer
QSM Quantitative Structure Models
R2 Coefficient of determination
RADAR Radio Detection and Ranging
RANSAC RANdom SAmple Consensus
RGB Red, Green, Blue
RMSE Root Mean Squared Error
TLS Terrestrial Laser Scanner
UAV Unmanned Aerial Vehicle

References

1. Scholes, R.J.; Archer, S.R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 1997, 28, 517–544. [CrossRef]
2. Ma, X.; Huete, A.; Moore, C.E.; Cleverly, J.; Hutley, L.B.; Beringer, J.; Leng, S.; Xie, Z.; Yu, Q.; Eamus, D. Spatiotemporal

partitioning of savanna plant functional type productivity along NATT. Remote Sens. Environ. 2020, 246, 111855. [CrossRef]
3. Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig,

F.; et al. Determinants of woody cover in African savannas. Nature 2005, 438, 846–849. [CrossRef] [PubMed]
4. Grace, J.; Jose, J.S.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006,

33, 387–400. [CrossRef]
5. Hutley, L.B.; Setterfield, S.A. Savanna. In Encyclopedia of Ecology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018.

[CrossRef]
6. Galvin, K.A.; Reid, R.S. People in savanna ecosystems: Land use, change, and sustainability. In Ecosystem Function in Savannas;

CRC Press: Boca Raton, FL, USA, 2010; pp. 521–536.
7. Egoh, B.N.; O’Farrell, P.J.; Charef, A.; Gurney, L.J.; Koellner, T.; Abi, H.N.; Egoh, M.; Willemen, L. An African account of ecosystem

service provision: Use, threats and policy options for sustainable livelihoods. Ecosyst. Serv. 2012, 2, 71–81. [CrossRef]
8. Pritchard, R.; Grundy, I.M.; Van Der Horst, D.; Ryan, C.M. Environmental incomes sustained as provisioning ecosystem service

availability declines along a woodland resource gradient in Zimbabwe. World Dev. 2019, 122, 325–338. [CrossRef]
9. Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents.

Glob. Chang. Biol. 2017, 23, 235–244. [CrossRef]
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Abstract: Individual tree carbon stock estimates typically rely on allometric scaling relationships
established between field-measured stem diameter (DBH) and destructively harvested biomass.
The use of DBH-based allometric equations to estimate the carbon stored over larger areas therefore,
assumes that tree architecture, including branching and crown structures, are consistent for a given
DBH, and that minor variations cancel out at the plot scale. We aimed to explore the degree of
structural variation present at the individual tree level across a range of size-classes. We used
terrestrial laser scanning (TLS) to measure the 3D structure of each tree in a 1 ha savanna plot,
with coincident field-inventory. We found that stem reconstructions from TLS captured both the
spatial distribution pattern and the DBH of individual trees with high confidence when compared
with manual measurements (R2 = 0.98, RMSE = 0.0102 m). Our exploration of the relationship
between DBH, crown size and tree height revealed significant variability in savanna tree crown
structure (measured as crown area). These findings question the reliability of DBH-based allometric
equations for adequately representing diversity in tree architecture, and therefore carbon storage, in
tropical savannas. However, adoption of TLS outside environmental research has been slow due to
considerable capital cost and monitoring programs often continue to rely on sub-plot monitoring and
traditional allometric equations. A central aspect of our study explores the utility of a lower-cost TLS
system not generally used for vegetation surveys. We discuss the potential benefits of alternative
TLS-based approaches, such as explicit modelling of tree structure or voxel-based analyses, to capture
the diverse 3D structures of savanna trees. Our research highlights structural heterogeneity as a
source of uncertainty in savanna tree carbon estimates and demonstrates the potential for greater
inclusion of cost-effective TLS technology in national monitoring programs.

Keywords: allometry; biomass; carbon; cost-effective; LiDAR; TLS

1. Introduction

Savanna vegetation structure and biomass are shaped by the scale-dependent interaction of
resource and disturbance drivers. Whilst limited by abiotic resource factors such as climatic conditions,
moisture availability [1] and topoedaphic controls [2,3], savanna vegetation is also modulated by
disturbance factors such as fire regime (frequency, severity) and storm damage, herbivory and human
utilization [4–7]. The interaction and relative importance of these drivers differ at contrasting scales
and their impact on above-ground biomass (AGB) can be localised and patchy, varying even at
individual tree level [5,8]. A commonly referenced estimate approximates savanna vegetation at 30%
of global production; however, the range of 1–12 t C ha−1 yr−1 net primary productivity [9] provided
with this estimate indicates large unresolved uncertainty and considerable opportunity to improve
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those estimates [10]. Global carbon models have long been challenged by poor representation of the
structural heterogeneity in tropical savannas [11] and our understanding of savanna carbon dynamics
remains limited [12–14].

At the individual tree level, resource constraints and disturbance drivers may result in strong
variability of individual tree architecture and therefore AGB. Fire and herbivory are the two main
drivers dramatically altering the vertical structure of savanna trees in African savannas [15,16].
In the tropical savannas of northern Australia however, termites in particular are a significant source
of biomass consumption [17] and the activity of wood-eating termites results in stem and branch
hollowing, increasing the susceptibility of woody vegetation to storm and fire damage. The resulting
asymmetric tree architecture is particularly evident in the crown structure of large trees [18,19].
Tree crowns in north Australian savanna vegetation are estimated to account for up to nearly 45% of
total tree AGB, where destructive sampling of a small number of trees (n = 48) has shown considerable
variation in the proportion of AGB stored in the crown (Eucalypts: branch biomass 17.1% ± 7.6%
and leaf biomass 3.6% ± 1.2%; non-Eucalypts: branch biomass 26.6% ± 11.7% and leaf biomass
5.5% ± 1.5%) [20]. However, allometric models commonly rely only on stem diameter (DBH), or DBH
and height, to estimate AGB as these are relatively easy to measure in the field. Recent studies
have shown that adding crown diameter as a predictive variable to estimate AGB provides more
robust allometric models [21]. However, estimating crown dimensions by means of measuring
vertical crown projection is generally omitted from field inventories due to time constraints and the
inherent inaccuracy of such ground-based measures. Not accounting for variations in individual tree
architecture could be particularly problematic in tropical savannas, where tree crown structure has the
potential to vary significantly for a given DBH [22], however, the extent of heterogeneity in savanna
crown architecture is yet to be established.

LiDAR scanning has become a well-recognised and rapidly developing approach to quantify
forest structure in great detail, as it enables us to produce detailed 3D reconstructions of individual
trees and their structure [23,24]. Of the range of LiDAR platforms, terrestrial laser scanning (TLS)
has been increasingly used for investigating heterogeneity in tree and stand structure in space and
time, due to its high point densities and scan collections from beneath the canopy [25,26]. TLS data
allows us to extract traditional field measured variables such as DBH, stand basal area and tree canopy
height with a high degree of precision [27]. In addition, TLS also enables new metrics, such as detailed
vertical profiles [28] of tree and canopy structure [29–31] and individual crown-morphology to be
quantified [32], thus providing a powerful tool to better quantify heterogeneity in tree crown structure
in tropical savannas.

When applied in temperate Eucalypt open forest, TLS data was able to show a weakening
allometric relationship between DBH and AGB with increasing DBH [33]. We hypothesise that in
tropical savanna, given the cumulative effect of disturbance on tree architecture, variance in crown size
is a major driver of this weakening relationship and a similar trend can therefore be observed between
DBH and crown area. TLS now allows us to measure large numbers of individual trees to investigate
the relationship between crown size and DBH as a potential source of uncertainty impacting the
stability of savanna tree allometric relationships.

A major limiting factor to the adoption of TLS for vegetation surveys is the budgetary implications
of purchasing high-quality scanners (>USD 100,000) generally used for geomorphological and
ecological surveys [34]. Such scanners generally have small beam divergence, high signal-to-noise ratio
and in-built GPS systems. These scanners also have a minimum scanning range of several hundred
meters. However, for the purpose of vegetation surveys, scan points are generally located less than 50 m
apart to avoid data loss through occlusion. Smaller, less precise and lower-powered TLS units generally
used in architecture can technically obtain point clouds within that range, however, their efficacy in
surveying savanna vegetation structure has not yet been investigated. While increasingly adopted
in environmental research, the acquisition cost is a major barrier to the adoption of TLS scanning
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in vegetation monitoring programs, and the advantages of TLS need to be replicable using more
affordable options to enable wider adoption [35].

As such, the aim of this study is to explore the potential of lower-cost (~USD 20,000) TLS in
capturing diverse tree architecture in tropical savanna ecosystems. Using this technology, our primary
research objective is to determine the degree of variability present in the tree crown area for a given DBH
across many hundreds of individual trees. We approached this by coupling a lower-cost, light-weight
TLS scanning system with traditional field-inventory surveys at a research site in the tropical savanna
of northern Australia.

2. Materials and Methods

2.1. Study Site

The study was carried out in August 2018 in open woodland savanna at the Terrestrial Ecosystem
Research Network (TERN) Savanna Supersite at Litchfield National Park in the Northern Territory,
Australia [36] (Figure 1). Litchfield National Park (13.17◦S, 130.79◦E), located 100 km south of Darwin,
is subject to a wet–dry tropical climate with the majority of annual rainfall (1750 mm average annual
rainfall at Buley rockhole, 7.4 km [37]) occurring between November and April. The survey area
was a 1 ha plot and is dominated by Eucalyptus miniata with moderate stem density of 492 trees ha−1

(>0.05 m DBH) and DBH values (up to 0.49 m). Most crowns are not overlapping, and leaves of local
eucalypt species are largely near-vertically aligned, allowing good TLS coverage of tree crowns.

Figure 1. Study area. Left: The north Australian tropical zone spans across Western Australia (WA),
the Northern Territory (NT), and Queensland (Qld). Right: canopy height model of the 1 ha study area
from TLS (scale bar in m, color scale ranging from blue for lowest points through to red for highest
points) showing heterogeneous distribution of tree size classes.

2.2. Data Acquisition

A manual field inventory survey was conducted at the 1 ha site where DBH, tree species and a
tree health rating were recorded for every tree with DBH > 0.05 m. The trunks of multi-stemmed trees
were measured individually if DBH exceeded 0.05 m. DBH was measured over-bark at 1.3 m above
ground level. Tree health was assessed by a single assessor on a scale of 1 to 5 with 1 representing
undamaged and 5 representing dead [38]. To correlate individual measurements to those obtained
by the TLS survey, a stem map was produced using a real-time kinematic (RTK) positioning system
(Leica GS16 with SmartLink). TLS point cloud data was collected during the same field campaign
using a Leica BLK360 (wavelength 830 nm, maximum range 60 m at 78% albedo, beam divergence
0.4 mrad, range accuracy 4 mm at 10 m and 7 mm at 20 m [39]) in high point density collection mode
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(resolution 5 mm at 10 m, scan size approx. 65 mio points) taking less than four minutes for each scan
(Figure 2). The plot was scanned in a regular grid fashion from 25 points with 25 m spacing between
scan locations to minimise occlusion. A reflector was placed to the north of each scan to aid manual
visual alignment of individual scans. Scanning took place in the morning and later afternoon to avoid
strong midday breezes and was completed in one day.

(a) (b)

Figure 2. (a) Leica BLK360 set up within the study area; (b) Eucalyptus tetrodonta sub-sampled to 2
points cm−2, point size 1. The crown is irregularly shaped with evidence of storm and/or fire damage.

2.3. Point Cloud Processing

The raw data was sub-sampled into a uniform point-spacing using an octree filter of 0.01 m.
The individual point clouds were visually aligned using CloudCompare v 2.10.2 (Zephyrus),
and co-registered using the Multi-station Adjustment module in RIEGL RiSCAN PRO v 2.9.
The co-registered point cloud was georeferenced to the WGS84/UTM52S coordinate system using
CloudCompare where RTK points of the flux tower and anchor points for its three guy ropes were used
as a reference. Point cloud segmentation and extraction of tree attributes (DBH, tree height, crown
area) was performed using LiDAR360 v 4.0. Spatial analysis was performed using QGIS v 3.8.0 and
statistical analysis using RStudio. An overview of the workflow is shown in Figure 3 and described in
detail below. Crown area was chosen as a representative measurement for crown size as it is readily
replicated and commonly used in airborne LiDAR surveys (e.g., [40,41]) and is therefore scalable.
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Figure 3. Workflow diagram for point cloud processing.

2.3.1. Point Cloud Segmentation

The co-registered point-cloud was filtered for outliers and ground points were classified based on
morphometric properties. A digital elevation model (DEM) was generated from the ground points
and was then used to normalise the remaining point cloud to height above ground level. A mean shift
algorithm, implemented within LiDAR360 TLS Forest Point Cloud Segmentation tool, was used for
automatic segmentation of the normalised point cloud into individual tree clouds. The Individual
Tree Editor tool was then used to manually edit falsely classified trees (Figure 4). The resulting tree
attribute dataset (n = 976) was inspected for errors and a DBH to height ratio was used to flag any
potentially false DBH measurements. Flagged entries were inspected in the segmented point cloud and
trees where DBH could not be reliably established due to foliage present at 1.3 m above ground were
excluded from the dataset. This process led to the exclusion of 169 unusable segments. Individual tree
structural attributes were recalculated after the completion of the manual editing and quality control
steps. The automated segmentation and manual editing tools allow for a streamlined and user-friendly
segmentation process.
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Figure 4. The study site (1 ha plot) segmented into 976 individual trees. Colours are assigned randomly;
automated segmentation was followed by fine scale user editing.

2.3.2. Matching of Field and TLS Survey

The manual and TLS survey data were overlaid as shapefiles in QGIS and corresponding trees
were matched spatially. This was achieved by applying a 1 m buffer around points in the manual
field survey data set. Offsets in the stem manual positioning due to signal drift was accounted
for by moving TLS points into the buffer of corresponding manual points where a match could be
confidently observed. Of the 492 trees manually surveyed, 450 could be matched in the TLS dataset.
Attributes were then joined by spatial location and checked for duplicate records (indicating joins of
two or more trees from one layer to one tree of the other).

To compare the spatial distribution of trees captured in both surveys, the plot was overlaid with a
10 m and a 20 m grid. For the TLS data, DBH values below 0.05 m DBH (less 0.07 m mean absolute
error (MAE)) were excluded using the query builder. The number of trees located within each grid cell
were counted for both surveys. The resulting polygons were converted to a raster and the difference
between TLS and field tree count calculated using the raster calculator.

2.4. Statistical Analysis

All statistical analyses were performed in the R environment [42] v 3.6.0. Correlation of field
and TLS-derived DBH was performed using linear regression (Figure 7). Visual inspection of the
relationship between DBH and crown area suggested an inflection point beyond which the relationship
between crown area and DBH changes. The location of this point was identified with a change-point
regression using the chngpt package [43]. As the data are heteroscedastic (the variability of the
outcome is not constant across the range of the predictor, violating the assumption of linear regression),
a generalised least squares (GLS) was used to interpret the correlation before and after the change
point (Figure 8). A paired sample t-test was then used to assess how closely spatial distribution of
detected trees matched between the surveys. For each sub-plot the number of detected trees derived
from each method was compared. For this analysis, trees with DBH smaller than 0.05 m were excluded
from the TLS survey (less the mean average error from the field and TLS correlation), to match the
sampling scope of the manual survey (Figure 6). All R code used is available in a github repository
(see Supplementary Materials).
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3. Results

3.1. Tree Counts and Distribution Obtained from Field and TLS

The TLS survey allowed for the capture of tree location and DBH measurements on a plot scale
compatible with data collected using traditional field surveys. Visual inspection of the field inventory
and TLS surveys showed similar patterns in the spatial distributions of DBH as captured by each survey
method (Figure 5a,b) with a similar detection curve evident for both surveys (Figure 5c,d). Additionally,
the TLS was able to detect a large number of small trees (DBH 0.02–0.04 m) which are often excluded
from manual field inventory, as this sampling scale takes considerable time to undertake.

Figure 5. Spatial distribution and number of trees captured in both surveys conducted in August 2018.
(a) distribution map of field survey; (b) distribution map of terrestrial laser scanning (TLS) survey,
red denotes trees with stem diameter (DBH) < 0.05 m not captured in the manual survey (n grey = 449,
n red = 358); (c) Histogram of field survey; (d) Histogram of TLS survey. TLS surveys are able to
capture small trees that are impractical to include in manual field inventories.

Comparing the spatial distribution of tree detections in each survey highlights the potential impact
of edge effect on small sub-plots (10 and 20 m2). Across all sub-plots there was no significant difference
between the TLS and field inventory for tree detection (Paired samples t-test 10 m grid: t(99) = −1.815,
p = 0.07, 20 m grid: t(24) = −1.97, p = 0.06) (Figure 6). However, for a number of sub-plots there
was clear over- or under- estimation observed and are likely due to edge effects and/or GPS drift.
Using sub-plots as simulated by the 10 m and 20 m grids may be disadvantageous, as individual trees
are forced into small plots and thus not necessarily representative of tree density in the area.
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Figure 6. Difference between TLS tree count and field tree count. The average tree count per grid cell
in the field survey is not significantly different from the average tree count in the TLS survey (p > 0.05).
For this analysis only trees with DBH > 0.05 m (−0.007 m mean absolute error (MAE)) were used.

3.2. DBH Obtained from Manual Survey and TLS

The DBH values of individual trees derived from the TLS survey were strongly correlated
with those obtained manually in the field. The RTK GPS tagging of trees during the field survey
ensured precise matching of a large sample of trees captured in the field survey to corresponding TLS
measurements (two outliers were excluded from the analysis). There was a strong correlation between
DBH measured in the field and DBH derived from the TLS point cloud (Figure 7), with R2 = 0.98
and MAE = 0.007 m (Spearman’s ρ = 0.93, p < 0.001). The MAE shows the overall average of errors
while the RMSE (root mean square error) highlights strong outliers as it increases with variance in
the frequency distribution of error magnitudes. For this model, an RMSE value higher than the MAE
indicates that the main source of error likely stems from a small number of strong outliers, rather than
a systematic over or underestimation of field DBH by the TLS derived DBH.

Figure 7. Correlation between field survey and concurrent TLS scan; ribbon showing 95% confidence
interval. For every cm increase in TLS DBH there is an average 1.04 cm increase in field DBH (95% CI
1.03–1.05, p < 0.001) (n = 448).

3.3. Variability in Crown Architecture

Using TLS derived data, crown size (canopy area) was plotted as a function of DBH (Figure 8)
which showed a strong positive relationship with heteroscedastic variance. Deviance from the
mean increases along with maximum crown area, resulting in a non-linear relationship (Table 1).
Our results align with previous observations made while calibrating the local allometric model [22].
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A change-point regression shows a change point at DBH of 0.099 m (95%CI 0.056–0.14, p < 0.001).
For trees below the change point, for every unit (1 m) increase in DBH there is a 88.55 unit increase in
the crown area (95%CI 81.56–95.50); for trees above the change point, the increase in crown area per
unit DBH increases to 240.87 and the 95%CI widens to 191.75–290. Trees with poor health ratings were
not excluded, as this would obscure the true variability in crown size.

Figure 8. TLS derived crown area for a given DBH; ribbon showing 95% confidence interval. The spread
of crown sizes increases with increasing DBH (n = 807).

Table 1. Variability in tree crown structural parameters as a function of DBH class, showing values of
the mean and standard error of the mean.

Canopy Height (m) Crown Area (m2)

DBH Range (m) Mean SE Mean SE

0.00–0.05 4.37 0.10 1.19 0.06
0.05–0.10 7.89 0.14 4.22 0.16
0.10–0.15 11.10 0.44 11.45 1.25
0.15–0.20 14.02 0.64 25.30 2.93
0.20–0.25 17.96 0.49 39.79 3.19
0.25–0.30 18.30 0.50 50.62 6.96
0.30–0.35 19.58 0.66 62.09 9.80
>0.35 17.89 1.56 64.64 18.33

4. Discussion

4.1. Heterogeneity at Landscape/Stand Level

Tropical savannas are disturbance-impacted ecosystems which result in stand-scale structural
heterogeneity, introducing unquantified uncertainty to commonly used methods for estimating AGB
that rely on small sub-samples of DBH-based allometry. When used in tropical savanna woodlands,
TLS can provide accurate and detailed information that allows us to explore this source of uncertainty
in allometric models. Furthermore, the large volume of samples obtainable using TLS allows us to
negate further sources of uncertainty in traditional field surveys arising from the sampling limitations
in the trees surveyed to represent a population when both calibrating and applying allometric models.
Deriving stand size class distributions based on DBH measurements is commonplace in production
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forestry through to ecological surveys of stand biomass. Manual tree measurement and obtaining
the geolocation data required to study size class distribution requires considerable resources and few
studies include geolocation of individual trees within a study site [44]. Instead, a common field method
for estimating the size class distribution is to extrapolate from sub-plots that may be 30 m × 30 m or
less in size [45]. However, in tropical savannas, the assumption of spatial homogeneity underlying this
approach is unlikely to be met, given inherent spatial variability at distances of 20 to 30 m (Figure 6).
TLS data allows us to extract geolocation along with DBH for individual trees and is increasingly used
to investigate ecological processes such as random vs clumped tree distributions, structural change over
time following disturbance [25,30,46] and over annual to decadal scales, or woody encroachment and
thickening [47]. We show that TLS data obtained using a lower-cost scanner enables fast and accurate
acquisition of both, full 3D tree measurements and geographic positioning required to investigate
landscape scale heterogeneity in tree size class distribution (Figures 1 and 5).

4.2. Accuracy of Lower-Cost TLS Scanner for Estimating DBH

Direct comparison of DBH obtained from a manual field survey and concurrent TLS survey
showed a very close fit with a mean absolute error (MAE) of less than 0.01 m, suggesting that
lower-cost TLS data can provide traditional forestry and ecological metrics such as stand basal area
and size class distributions with high precision. Our analysis of DBH obtained in the field as compared
to TLS (Section 3.2) indicates random variation as the main source of error rather than systemic over or
under-prediction of the model (Figure 7). Random errors are common in manual data collection [48,49],
while errors in TLS measurements are commonly caused by wind, random errors in point acquisition,
registration error or occlusion. Errors in data processing occur when measuring DBH, as the model
assumes a perfect circle, which is often not the case. Our study design aimed to minimise TLS
acquisition error and occlusion. Our data shows an RMSE of 1.05 cm, representing a 50% reduction
compared to a similar study in temperate Eucalypt open forest where a minimum distance of 40 m
between scan points was used [33]. However, the two studies also differ in stand structure, equipment
and software used and the impact of either of those factors is yet to be quantified. The accuracy
achieved in this study also reflects results from other vegetation types, such as mixed forests in
Austria [50] and Germany [51], deciduous forest in Iran [52] and India [53], Chinese fir plantations [54],
or tropical forest of Malaysia [55]. However, none of these are structurally representative of tropical
savannas and the suitability of TLS for obtaining DBH was yet to be established. We show that
lower-cost TLS can replicate field measured DBH and tree height, establishing the suitability of TLS to
reliably capture traditional measures of vegetation structure in tropical savanna vegetation.

4.3. Heterogeneity at the Individual Tree Level

Variability in tree crown structure introduces poorly quantified and potentially significant
uncertainty in allometric models predicting AGB based on DBH. Previous research shows that in north
Australian savannas the proportion of biomass stored in tree crowns can vary between 12% and 45%
of total tree AGB (mean ± SD of the branch and foliage components) [20]. However, this estimate is
based on a very small sample size of 48 destructively harvested individuals and is unlikely to capture
the true extend of variability. Our TLS analysis of over 800 individual trees confirmed and quantified a
significant spread of crown area for a given DBH, increasing with DBH (Figure 8). This is in contrast to
previous research published exploring the relationship between DBH and canopy diameter [56] where
a linear relationship (R2 = 0.63) was established across a much larger area. However, investigation of the
raw data shows a weaker relationship for trees surveyed within 150 km of Litchfield NP, indicating that
local-scale variability arising from disturbance might exceed that of regional-scale trends. Furthermore,
structural variability is not only found in overall crown size, but also architecture (Figure 9). While the
addition of crown diameter as a predictive variable improves allometric models [21], the use of canopy
area as a function of canopy diameter assumes a circular crown shape. Using lower-cost TLS we were
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able to highlight the impact of disturbance on tree architecture (Figure 9) and the potential effect on
the stability of allometric relationships introduced by the assumption of homogeneity.

Figure 9. Two examples of typical mature Eucalyptus miniata individuals, both with a DBH of 0.38 m
highlighting the dramatic difference in canopy structure, volume and biomass. Estimates of carbon
storage of the left individual would be significantly overestimated using a manually measured DBH
with allometry applied.

4.4. Further Applications—Capturing Change and Irregularities

The effect of fire as disturbance driver on the understory, including tree seedlings and saplings,
and woody shrubs is a critical ecological process in savanna [57,58], however, detailed inventories of
woody understory vegetation required to quantify this effect are not readily quantified using standard
field inventory. TLS provides the potential for a more accurate inventory of understory density if
high-resolution point clouds are generated. The ability to resolve the diameters of smaller stems
(less than 0.05 m) provides crucial information on the recruitment potential of a stand and/or evidence
of recent disturbance. This sampling detail is undertaken in some traditional inventory methods but
can be extremely time consuming and costly. Furthermore, allometric equations have been calibrated
for small to medium-sized trees with a small fraction of large individuals and are unlikely to be
representative of seedlings and saplings.TLS allows us to capture understory vegetation such as
seedlings, saplings and small shrubs (Figure 5) and use alternative volume-based analyses to estimate
AGB. From the 3D point clouds, algorithms such as voxel or convex hull based approaches [59,60]
can be used to estimate AGB of woody vegetation where metrics like DBH cannot easily be measured,
or suitable allometric models are not available. When applied as successive scans, TLS provides
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detailed observations of structural changes at a stand level, such as mortality and recruitment, or at
individual tree level, such as damage to branching structure and crown development [61,62]. The ability
to quantify recruitment and mortality opens up the opportunity to explore disturbance dynamics such
as fire impacts or storm damage impacts within the regeneration niche at unprecedented detail.

Multi-stemmed trees and shrubs can be challenging to survey manually, especially when a
forking height is located below or at the designated DBH measuring height. To avoid this issue,
some studies opt to measure diameter closer to the ground, e.g., 0.1 m or 0.15 m above ground
level [63,64]. However, such a strong deviation from the norm will prevent comparison or integration
of data from multiple studies and requires further calibration of specialised allometric models. TLS is
not restricted to single-point measurements and can be used to extract a range of data to estimate
AGB. For instance, Quantitative Structure Modelling (QSM) has gained popularity as an alternative
to DBH-based allometric models. Individual tree AGB is estimated based on wood density and
point cloud generated tree volume, avoiding the need for allometric relationships and standardised
measurements [33]. The TLS approach provides the freedom to adapt sampling strategies to include
stand elements that will not conform to traditional survey methods and tree allometric models.

Accounting for loss from termite consumption in susceptible tree species remains a challenge for
biomass estimates based on crown and stem volumes [65]. However, if hollowing functions accounting
for this loss can be developed, the use of TLS offers considerable advantages over manually sampled
inventories given the sampling speed, precision, the range of metrics that can be estimated and the
ability to accurately quantify structural change over time.

4.5. Negating the Cost Barrier

TLS provides clear benefits over traditional manual field surveys and is increasingly utilised in
the research community. However, capital cost has been a major barrier to the wider adoption of
this technology, constricting the application of research outcomes by the wider community [34,35].
We show that rapid developments in commercial scanners now enable us to cost-effectively acquire
point clouds of sufficient quality for detailed vegetation surveys. We demonstrate the benefits of
TLS to vegetation monitoring programs by combining traditional and new measurements obtained
through TLS to explore a major source of uncertainty in traditional allometric models when applied
in frequently disturbed woodlands such as tropical savannas. We also highlight and discuss further
advantages of TLS to capture stand elements traditionally difficult to capture using field inventories.
Limitations apply to the use of lower-cost scanners, particularly in regards to their range and therefore
ability to survey trees above a height of 50 m [35], however, we have demonstrated that such
commercial options provide data of sufficient quality to make state of the art vegetation survey
methods more accessible.

5. Conclusions

Tropical savannas have been challenging to quantify in global carbon models. We show how
heterogeneity in savanna tree structure introduces uncertainty into established protocols for estimating
AGB and therefore carbon content across spatial scales. At plot scale this heterogeneity leads to sample
plots rarely being representative of a larger area, while at tree scale the strength of DBH as an indicator
of tree AGB is diminished by strong variability in tree architecture. Furthermore, the traditional
exclusion of small understory trees (e.g. <0.05 m DBH) from field inventories omits a potentially
important indicator for vegetation and carbon dynamics, including recruitment and regeneration.
TLS provides a more holistic way to retrieve quantitative structural measurements that directly relate
to biomass properties in tropical savanna. Using TLS we were able to reliably obtain traditional
field attributes such as DBH and tree height, but also access new meaningful tree attributes such as
crown size and extent, and spatial distribution of understory vegetation. However, adoption of this
technology in monitoring programs has been limited due to acquisition costs of high-quality TLS
scanners, and skepticism remains as to the utility of TLS in vegetation surveys. We show that in
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savanna vegetation a low-cost TLS scanner will produce high-quality LiDAR data and highlight the
advantages and power in deriving meaningful tree attributes that will allow us to better quantify
AGB at tree and plot scale. Establishing sampling protocols for highly detailed AGB surveys with
reduced budgetary requirements may enable greater inclusion of TLS in national and international
monitoring programs.
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Abstract: Savanna ecosystems are challenging to map and monitor as their vegetation is highly
dynamic in space and time. Understanding the structural diversity and biomass distribution of
savanna vegetation requires high-resolution measurements over large areas and at regular time
intervals. These requirements cannot currently be met through field-based inventories nor spaceborne
satellite remote sensing alone. UAV-based remote sensing offers potential as an intermediate scaling
tool, providing acquisition flexibility and cost-effectiveness. Yet despite the increased availability
of lightweight LiDAR payloads, the suitability of UAV-based LiDAR for mapping and monitoring
savanna 3D vegetation structure is not well established. We mapped a 1 ha savanna plot with
terrestrial-, mobile- and UAV-based laser scanning (TLS, MLS, and ULS), in conjunction with a
traditional field-based inventory (n = 572 stems > 0.03 m). We treated the TLS dataset as the gold
standard against which we evaluated the degree of complementarity and divergence of structural
metrics from MLS and ULS. Sensitivity analysis showed that MLS and ULS canopy height models
(CHMs) did not differ significantly from TLS-derived models at spatial resolutions greater than
2 m and 4 m respectively. Statistical comparison of the resulting point clouds showed minor over-
and under-estimation of woody canopy cover by MLS and ULS, respectively. Individual stem
locations and DBH measurements from the field inventory were well replicated by the TLS survey
(R2 = 0.89, RMSE = 0.024 m), which estimated above-ground woody biomass to be 7% greater than
field-inventory estimates (44.21 Mg ha−1 vs. 41.08 Mg ha−1). Stem DBH could not be reliably
estimated directly from the MLS or ULS, nor indirectly through allometric scaling with crown
attributes (R2 = 0.36, RMSE = 0.075 m). MLS and ULS show strong potential for providing rapid
and larger area capture of savanna vegetation structure at resolutions suitable for many ecological
investigations; however, our results underscore the necessity of nesting TLS sampling within these
surveys to quantify uncertainty. Complementing large area MLS and ULS surveys with TLS sampling
will expand our options for the calibration and validation of multiple spaceborne LiDAR, SAR,
and optical missions.

Keywords: biomass; carbon; LiDAR; TLS

1. Introduction

Savanna vegetation structure is shaped by the interaction of climate, soils and a variety
of disturbance agents acting at multiple spatio-temporal scales [1,2]. The actions of fire,
herbivores, termites, and cyclones have marked effects on the structure of savanna tree
crowns, leading to high degree of structural diversity [3–5]. Mapping and monitoring
the structure of savanna ecosystems is therefore challenging not only because of their
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heterogeneous spatial patterning, but also because of disturbance driven variability in
individual tree crown structure [6]. Structural attributes such as height, canopy diame-
ter, and projected foliage cover are commonly assessed through field inventories—but
these measures are often subjective and prone to sampling errors [7]. Robust assessment
of structural change in tropical savannas requires methods that can account for spatial
and temporal heterogeneity, and a high level of accuracy and precision in structural at-
tribute measurement.

Remote sensing is very attractive from a monitoring and management perspective,
offering large area assessment at ever increasing spatial, temporal and spectral resolu-
tions [8,9]. Despite many advances in spaceborne imaging technology, savanna ecosystems
remain challenging from an earth observation perspective due to their inherent mix of
discontinuous woody cover and herbaceous vegetation [10]. Light-detection-and-ranging
(LiDAR), especially airborne laser scanning (ALS), has emerged as a prominent technology
for mapping and monitoring vegetation in a variety of ecosystems across the globe [11].
ALS is particularly well suited to the measurement of savanna ecosystem structure where
it can delineate subtle topographic and vegetation characteristics [12]. The inclusion of
ALS in ecological studies has advanced the field of savanna ecology, revealing new in-
sights into the controls and drivers of carbon storage [13,14], and providing pathways for
understanding how vegetation structure influences the ecology and diversity of various
fauna [15,16].

Nonetheless, despite the many advantages of ALS, certain ecological processes op-
erate at even finer spatial scales than can be assessed from traditional airborne platforms.
Detecting stress, sub-canopy structural changes, and recruitment dynamics are all examples
of processes that sit at the limits of airborne surveying. Terrestrial laser scanning (TLS) has
emerged as the gold standard for fine-scale 3D reconstruction of above-ground elements,
and is increasingly being used in forestry and ecological surveying [17,18]. One of the main
constraints of TLS is the time-intensive nature of data acquisition and post-processing,
and the relatively small spatial extent that can feasibly be covered [19]. Newer sensors are
overcoming some of these barriers by increasing the speed and ranging distance, and en-
abling larger area coverage in suitable environmental conditions [20]. Reduced size and
weight of modern LiDAR sensors has broadened the field of UAV-based laser scanning
(ULS), offering a high degree of acquisition flexibility and increased spatial resolution
due to lower and slower flying speeds [21–23]. In conjunction with these developments,
handheld and mobile laser scanning (MLS) systems have also been gaining traction,
enabling greater freedom of movement and increased speed of acquisition in comparison
to TLS. MLS enables navigation in confined spaces, and the continuous mapping approach
can reduce occlusion and provide thorough coverage in complex environments [24–26].

Given these recent advances in LiDAR sensor and platform technologies, choosing
the right solution for a particular mapping and monitoring problem has become more
challenging. The relative strengths and weaknesses of different systems needs to be
explored across a range of ecosystems to best match system performance with the specific
research or management objectives. The objective of this study was to assess the degree of
divergence and complementarity of three different laser scanning systems for capturing
the 3D structure of tropical savanna woodland structure. We explore the relative strengths
and weaknesses of terrestrial laser scanning (TLS), mobile laser scanning (MLS) and UAV
laser scanning (ULS) in a vegetation monitoring context, by addressing two key questions:

1. Are there significant differences in the representation of woody canopy height and
cover captured by TLS, MLS and ULS?

2. How reliably can tree stem DBH and above-ground woody biomass be mapped from
TLS, MLS and ULS?
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2. Materials and Methods

2.1. Study Site

This study was undertaken in northern Kakadu National Park in the Northern Ter-
ritory of Australia (Figure 1). The climate is tropical, with maximum and minimum tem-
perature averaging 34.1 ◦C and 22.6 ◦C respectively (Köppen climate classification = Aw).
Rainfall is highly seasonal, with the vast majority of the annual 1557 mm yr−1 falling
predominantly in the December—March wet season [27]. The vegetation is representative
of much of the Australian tropical savanna zone, with an over-storey dominated by Eu-
calyptus tetrodonta, Eucalyptus miniata, and Erythrophleum chlorostachys. The under-storey
is characterized by annual grasses, particularly Sorghum species. Our data collection
campaign took place on 23/24 July 2019, well into the dry season and one month after a
fire passed through—the occurrence of which is typical every 1–2 years in this system [28].
The herbaceous grass layer was reduced by the fire, but small shrubs were still present.

Figure 1. Location of the study site in northern Australia (a), and an aerial view of vegetation cover within the 20 × 20 m
subplots of the 1 ha study area (b).

2.2. Field Inventory

A series of long-term monitoring plots were established in the savanna woodlands
of the Jabiru region in 2017 to provide reference sites for understanding natural system
dynamics and informing the closure criteria of the adjacent Ranger uranium mine [29].
Each plot measures 100 m × 100 m, and the four corners and center are marked with
permanent posts. We selected one of these sites for our study and each woody plant with a
stem diameter > 0.03 m and that was > 1.5 m in height was inventoried in the field. Survey
tapes were laid out in a 20 m × 20 m grid to guide the field crew, and each individual tree
was: (i) tagged with a RTK dGPS (Leica GS16 with Precise Point Positioning); (ii) identified
to species level; and (iii) measured with a DBH tape at 1.3 m above ground level. A total of
521 trees consisting of 572 stems were inventoried in the field.

2.3. Laser Scanning

The selected site was surveyed on 24 July 2019 with three different LiDAR systems,
operating from terrestrial, mobile and UAV platforms (Table 1). Terrestrial laser scanning
(TLS) was conducted from a surveying tripod at 1.8 m agl, using a Riegl VZ-2000i system
with integrated RTK-GNSS (Figure 2). Sixteen scan locations were established, using a reg-
ular grid spacing of 30 m. The scanner was operated at 600 kHz with an angular sampling
resolution of 30 mdeg. The scanner communicated with a RTK base station (Emlid RS2)
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established at the site and operating over a LoRa network. Real-time positioning error of
the scanner at each scan location was < 0.05 m.

Figure 2. Site conditions at the time of the LiDAR surveys. Occlusion from the grass layer was minimal due to the effects of
a fire one month prior.

Mobile laser scanning (MLS) was conducted with a GreenValley LiBackpack D50.
The unit consists of two Velodyne VLP-16 sensors, one operating vertically and one hori-
zontally. The system uses Simultaneous Location and Mapping (SLAM) technology for
co-registration. The MLS system was carried as a backpack by a field technician who
walked slowly through the site ensuring consistent coverage and loop closure. The trajec-
tory of the mobile unit was displayed in real time to the operator via a tablet to ensure full
coverage of the site.

UAV laser scanning (ULS) point clouds were collected using the Nextcore® system
(www.nextcore.co) which uses a Quanergy M8 discrete return LiDAR sensor integrated
with a Spatial Dual (www.advancednavigation.com) INS including IMU and dual antenna
RTK GPS, mounted on a DJI Matrice 600 Pro. The UAV was flown in a grid pattern at
3.5 ms−1 at approximately 40 m agl with a line spacing of 18 m. The sensor pulse rate was
1200 kHz, which resulted in average point densities of 2000 points per m2 within the one
hectare plot.

Table 1. Instrument, surveying, and processing characteristics of the three LiDAR systems. Reported
point densities are after the application of a 0.01 m sub-sampling spatial filter. Note: TLS = terrestrial
laser scanning, MLS = mobile laser scanning, ULS = UAV laser scanning.

TLS MLS ULS

Instrument Riegl VZ-2000i LiBackPack D50 Nextcore Version 1

Manufacturer Riegl Green Valley
International Nextcore

Sensor Riegl Velodyne Quanergy M8
Platform Tripod Backpack Drone (DJI M600)

Acquisition time 120 min 20 min 15 min
Co-registration
processing time 60 min 20 min 20 min

Filtered point density (m2) 7340 2401 2015
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2.4. Point-Cloud Processing

Raw processing of the TLS dataset was conducted in Riegl’s RiSCAN Pro software
suite (v2.9). Scan data were projected into the WGS84 coordinate system (UTM Zone 53S)
and filtered for noise based on reflectance and deviation characteristics. The Multi-Station
Adjustment (MSA) plugin was used to finely co-register the individual scans, which were
already well positioned given the integrated GNSS with real-time correction.

Raw MLS data were converted to a point cloud incorporating the IMU data from the
backpack using proprietary SLAM algorithms in the LiBackpack software from GreenValley
International. The point cloud was geo-referenced in LiDAR360 by detecting six pyramid
structures that were placed throughout the site as ground controls. The 3D RTK-GNSS
location of the peaks of each pyramid were recorded during the field campaign.

ULS point clouds were PPK geo-registered using the proprietary Nextcore® software.
Each of the flight-lines underwent a statistical outlier removal (SOR) filter in CloudCompare.
The number of neighbors used to compute mean distance was set to 10, and the standard
deviation multiplier was set to 2. There was still some systematic misalignment of flight-
lines following the PPK correction. To correct for this, each flight-line was sequentially
registered to its neighbor using the Iterative Closest Point (ICP) algorithm implemented
in CloudCompare. The random sample limit was set to 250,000 and RMS error difference
threshold set to 1 × 10−08. After registration, flight-line point clouds were merged into a
single point cloud.

Co-registered point clouds from each platform were exported to the ASPRS LAS
format version 1.4 for further analysis. A 0.01 m spacing filter was applied to all three clouds
to remove duplicate points and ensure an even distribution of points across the landscape.

2.5. Structural Analysis
2.5.1. Canopy Characterization

The MLS, and ULS point clouds were finely co-registered to the TLS point cloud using
the Iterative Closest Point (ICP) algorithm in CloudCompare [30]. The random sample
limit was set to 500,000 and the RMS error difference threshold set to 1 × 10−05, with 100%
overlap specified. Ground point classification was conducted with the lasground_new tool
in the LAStools suite [31], using -wilderness and -extra_fine settings, and the point clouds
were subsequently normalized to height above ground using lasheight. Canopy height
models (CHMs) were generated with lasgrid at multiple spatial resolutions using the 95th
percentile height. CHM resolution increased in 0.25 m increments from 0.25 m to 5 m
resolution to enable a sensitivity analysis of the resolution at which the combinations of
the three scanning systems were significantly different. Differences in canopy height distri-
bution derived from the three laser scanning systems was tested across the range of CHM
resolutions with the Kolmogorov–Smirnov test [32] in the stats package in R (version 4.0.3).

The 0.25 m resolution CHMs derived from the three scanning systems were used
to assess the percentage of woody canopy cover at multiple height class thresholds that
represented key strata in the savanna woodland (0.25 m, 3 m, 7 m, 12 m). For each height
threshold, median woody canopy cover for 20 m × 20 m subplots embedded in the 1 ha
site (n = 25) was compared between TLS-MLS and TLS-ULS with linear regression.

2.5.2. Individual Tree Delineation and Measurement

Individual trees segmentation was applied to the point clouds derived from the
three scanning systems using the approach described by [33] and implemented in Li-
DAR360 (v4.1, GreenValley International) (Figure 3). Results were manually inspected
post-segmentation and edited to correct any instances of over- or under-segmentation.
Following this quality control checking, the point clouds representing individual trees
were processed further in 3DForest (v0.5) to derive individual tree attributes—tree height,
crown diameter, crown area, crown volume and stem DBH [34]. An overview of the full
processing pipeline is provided in Figure 4.
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Figure 3. Cross-section through the TLS point cloud, displaying an example of the individual tree segmentation.
Color scheme is a randomised palette.

Above-ground woody biomass (AGB) was estimated at the individual tree level using a
set of locally calibrated allometric equations that included the dominant species at the site [35].
AGB was derived from the field inventory as a function of stem DBH (Equation (1), and from
the TLS data as a function of stem DBH and tree height (Equation (2)).

ln(AGB) = β0 + β1 ∗ ln(D) (1)

ln(AGB) = β0 + β1 ∗ ln(D) + β2 ∗ ln(H)2 (2)

Multiple linear regression and Random Forest modeling (randomForest [36]),
conducted in R, were used to assess the relationship between individual tree biomass
(as determined from DBH allometry) and additional measures of tree 3D structure (canopy
height, crown area, crown width, crown volume).

Figure 4. Overview of the processing workflow and software packages used at different stages of analysis.

3. Results

3.1. Woody Canopy Characterization

All three LiDAR sensing systems provided high quality point-cloud data which cap-
tured the three-dimensional structure of the savanna vegetation in rich detail (Figure 5).
Viewing the 1 ha plot from an oblique angle, the three point clouds showed very simi-
lar structure and it is evident that all three systems captured the canopy patterns well
(Figure 5a–c). A cross-sectional slice through the point clouds (5 × 30 m) revealed the
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narrower beam footprint and higher precision of the TLS instrument, with crisp trunk and
branch detail, as well as good definition of material in the herbaceous layer (Figure 5d).
The MLS and ULS point clouds were less resolute in comparison, exhibiting some minor
noise around tree trunks and evidence of occlusion in the lower stems and herbaceous
layer (Figure 5e–f).

The generation of canopy height model (CHM) raster layers confirmed that differences
between the three scanning systems was minimal from a visual perspective and displayed
very similar spatial patterns of canopy height (Figure 6a–c). Subtle differences were
evident, however, and the canopy height distribution ((Figure 6d–f) differed significantly
between all three systems at 0.25 m (KS-test, p < 0.001). Sensitivity analysis showed that
these differences remained significant until a CHM resolution of 2 m was reached for the
TLS-MLS comparisons, and 4 m for TLS-ULS and MLS-ULS comparisons (KS-test, p > 0.05).

Estimation of maximum canopy height was very consistent across the three systems,
even at 0.25 m raster resolution. However, the MLS and ULS showed consistent bias in
woody canopy cover estimation, over- and under-estimating the woody fraction respec-
tively at multiple height intervals (Figure 7 and Table 2).

Figure 5. Oblique view of the point clouds derived from the three LiDAR platforms: (a) TLS, (b) MLS and (c) ULS.
Cross-sectional view of the point clouds derived from: (d) TLS, (e) MLS, and (f) ULS.
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Figure 6. Canopy height models derived from the three co-incident LiDAR datasets, plotted at 0.25 m
resolution (a–c) and their height class distributions (d–f).
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Figure 7. Canopy cover comparisons between MLS and ULS at different height class intervals,
against a TLS reference. Solid black is the 1:1 fit.
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Table 2. Summary statistics of woody canopy attributes collected by the three LiDAR systems at the
1 ha plot scale.

Attribute TLS MLS ULS

CHM max height (m) 18.02 18.65 18.05
Woody canopy cover (%) 51.5 55.3 39.8

Woody canopy cover > 3 m (%) 42.4 46.1 36.9
Woody canopy cover > 5 m (%) 39.9 44.7 34.8

Woody canopy cover > 10 m (%) 18.9 22.1 17.9

3.2. Individual Tree Characterization

Assessment of 3D structure at the individual tree level highlighted some further
distinctions between TLS, MLS and ULS characterization of 3D structure. The TLS capture
provided a very clean representation stem, branch and leaf structure, with points spaced
close enough together to give the impression of a continuous surface (Figure 8a). Extracting
a point-cloud slice from 1.25–1.35 m (to encompass the traditional DBH measurement
height) revealed a clear ring of points that allowed for DBH measurement via cylinder
fitting (Figure 8d).

The MLS scan captured the general size and shape of individual trees very well, includ-
ing small under-storey plants, but loss of detail was evident compared to TLS (Figure 8b).
The MLS point cloud exhibited more noise around tree stems, which is particularly clear in
the thick ring of points extracted at DBH measurement height (Figure 8e). The ULS also
captured the general shape of individual trees very well, and although many returns were
received from tree stems the density of points in the 1.25–1.35 m range was much lower
than from TLS and MLS (Figure 8c,f).

Figure 8. Example of a single large tree as captured by the three LiDAR systems (a–c). Horizontal slice cut through each
stem at 1.25–1.35 m above ground level, showing the pattern and density of points available for DBH fitting from each
system (d–f). .

Considering this, we used a broader portion of the tree stems (1–2 m) for cylinder
fitting and DBH estimation. Comparison of the DBH distributions against those obtained
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from the field inventory showed that the TLS estimates closely mirrored the field-measured
values (Figure 9a,b), but MLS and ULS estimates (Figure 9c,d) were skewed to larger values
and were more normally distributed than the inverse-J patterns evident in the field and
TLS data.

Figure 9. Distribution of DBH estimates from field inventory (a) and the three LiDAR
approaches (b–d).

Linear regression between field-measured DBH and TLS-estimated DBH confirmed
that the TLS could reliably extract individual tree DBH for a broad range of species
(Figure 10). Taller tree species with larger sample sizes in the plot such as Eucalyp-
tus tetradonta, Corymbia porrecta and Xanthostemon paradoxus showed the strongest fits
(Figure 10), while smaller statured species with narrower DBH ranges exhibited greater
error (e.g., Figure 10).

Based on the DBH representation findings discussed above, we restricted our analysis
of above-ground woody biomass to the field and TLS datasets. Our field inventory returned
a total of 572 stems, corresponding to 41.08 Mg ha−1 of above-ground woody biomass
and 20.54 Mg C ha−1 from DBH-based allometry (Equation (1)). Segmentation of the
TLS dataset identified almost 100 more stems (n = 669) than measured in the field survey,
which were mostly in the smaller size classes (Figure 9b). TLS-estimated biomass, using
DBH allometry according to Equation (2), was 7/% greater than the field-inventory estimate
at 44.21 Mg ha−1 of above-ground woody biomass and 22.10 Mg C ha−1.

Mapping out the distribution of individual tree biomass spatially showed that field
records and TLS predictions were very closely co-aligned (Figure 11a–b). The TLS tree
location mapping showed very few instances of omission from field-mapped locations,
and a number of commissions which were predominantly located at the very boundary of
the plot (Figure 11c). Omissions in the field-inventory mapping along the plot boundary
(e.g., south-western corner) are indicative of positioning errors associated with the manual
boundary line placement in the field.
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Figure 10. Comparison of TLS-derived DBH with field-measured values for the dominant woody species.

3.3. Allometric Scaling

Given that the MLS and ULS point clouds from our acquisitions were not suitable for
direct DBH/AGB retrieval (Figure 9), we explored the possibility of predicting AGB in
the MLS and ULS datasets through allometric scaling of tree crown parameters. MLS and
ULS captured the general crown structure of individual trees very well (Table 3), and the
relationship between tree height and crown area that was sensed by the three scanning
systems was very consistent (Figure 12). However, both multiple linear regression and Ran-
dom Forest modeling failed to establish a reliable relationship between canopy attributes
and stem DBH/AGB (R2 = 0.34, RMSE = 0.075 m).

Table 3. Summary statistics of individual tree attributes collected by the three LiDAR systems.

Attribute TLS MLS ULS

Crown volume max (m3) 428.37 475.29 406.37
Crown volume mean (m3) 19.94 23.49 41.67

Crown volume CV (m3) 2.33 2.29 1.6

Woody biomass (Mg ha−1) 44.21 - -
Woody biomass (Mg C ha−1) 22.10 - -
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Figure 11. Spatial distribution of tree biomass as mapped through field inventory (a, n = 572) and from
TLS (b, n = 669) using DBH-based allometric equations. Agreement, omissions, and commissions
between field and TLS mapping are shown in (c) with overlay blending.93
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Figure 12. Relationship between individual tree height and crown area, as determined from the three
different LiDAR systems.

4. Discussion

Laser-based technologies have transformed our ability to measure and monitor sa-
vanna vegetation structure. The level of detail and efficiency exhibited in this study
from all three sensors is very encouraging from a long-term monitoring and manage-
ment perspective—providing rigorous baselines from which to assess current state and
future dynamics.

4.1. Efficient Monitoring of Habitat Structure

TLS has emerged as the gold standard for 3D characterization of vegetation structure
in ecosystems around the globe [17,19]. The high quality results obtained here from TLS
are unsurprising, but it is worth noting that the scan position density that we employed
(30 m spacing, 16 scans ha−1) was considerably lower than current recommendations in
the literature which suggest aiming for 10 m spacing [37]. The TLS literature is heavily
skewed towards forested ecosystems where high density scanning is critical for minimizing
occlusion. In savanna woodlands and shrublands, which occupy 20% of the global
terrestrial surface, the probability of occlusion is much lower and long-range scanners
allow for wider scan position placement [20]. This is important in the context of habitat
monitoring, as TLS is often considered too time intensive for broad extent and repeat
coverage sampling.

Nonetheless, the time required for our TLS survey, and subsequent processing, was
still substantially longer than that required for MLS and ULS captures (Table 1). The effi-
ciency of MLS and ULS in terms of time are clear, but do they provide sufficient structural
information for ecosystem monitoring? From a canopy height model perspective there
is minimal difference among the three scanning approaches and systems. The TLS CHM
could not be matched by MLS or ULS at the 0.25 m resolution, but was indistinguishable
from MLS at 2 m resolution and ULS at 4 m resolution. For many ecological applications
2–4 m is more than sufficient for providing insight into how canopy growth is tracking
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over time, and the extended geographic coverage may often outweigh the benefits of finely
detailed local structural representation.

The minor under-estimation of woody canopy cover by ULS was consistent across
the subplots of our study site. Similar findings have recently emerged from dry sclero-
phyll forests in Tasmania, where ULS underestimated canopy cover by a few percent in
comparison to TLS at the plot scale [38]. Here we show that this under-estimation is a
consistent trend across multiple height classes, indicating that the source of this bias is not
only under-storey, but also small canopy features such as the edges of branches for example.
MLS on the other-hand consistently over-estimated canopy cover in comparison to TLS.
This is contrary to the few published studies exploring MLS characterization of woody
canopy—which have mostly been conducted in forested ecosystems where tall dense
canopy restricts access of the laser beam through to the canopy surface [21,39,40]. In the
open savanna woodland of our study, ground-based TLS and MLS can penetrate canopies
well with good fields of view. In this instance we attribute the over-estimation of canopy
cover by MLS to the nosier point cloud that it produced in comparison to TLS, and these
results could likely be improved through further post-processing of the MLS point cloud.

4.2. Individual Trees and Biomass Scaling

Given that MLS and ULS were able to characterize individual tree height and crown
attributes very well, albeit with minor bias, we had anticipated that estimation of above-
ground biomass would have been possible from these point clouds through allometric
relationships with crown attributes. However, our TLS data showed that DBH-AGB did
not scale in a predictable manner with tree height, crown diameter, area, and volume
(R2 = 0.36, RMSE = 0.075 m). This was initially surprising in light of how well AGB scales
as a function of tree height and crown diameter in many ecoregions around the globe [41],
but it is an important reminder of how local-scale variability is averaged out in regional
and global syntheses. Savanna eucalypts have notoriously complex crown structures,
exacerbated by the actions of fire, termites and cyclone damage [42]. As shown recently in
a similar savanna setting in Litchfield National Park, savanna trees exhibit a wide range
of crown size variability for a given DBH [6]. In addition to confounding the estimation
of DBH and AGB from crown attributes, this variability also brings into question the
reliability of using DBH allometry in the first instance for biomass estimation in these
systems. The growing use of TLS for building Quantitative Structure Models (QSMs) of
trees and accounting for biomass volumetrically has started revealing errors associated with
DBH-based allometry in a variety of ecosystem types [43,44] and needs greater exploration
in different savanna settings.

4.3. Limitations and Future Directions

TLS is a mature field, with well established protocols for data acquisition and pro-
cessing [17]. TLS can be deployed in many different ecosystems with high confidence
placed in data capture and structural representation, with efficient open-source tools for
tree segmentation and structural modeling [45]. Our results obtained from MLS and ULS
are encouraging and capture key elements of the savanna woody structure thoroughly.
As expected both MLS and ULS did not detect some of the finer-scale ecosystem elements
as well as TLS, but are more than sufficient for addressing many ecological questions.

A challenge that arises when comparing different platforms is that the end results are
influenced heavily by the acquisition and pre- and post-processing parameters. As such,
meaningful generalisations are difficult to make. TLS has the advantage of being a mature
technology, with a large user-base and established collection and pre- and post-processing
protocols. MLS and ULS are at earlier stages of development and uptake. Furthermore, it is
a rapidly expanding industry and a wide variety of sensors and platform exist, from very
high-end survey-grade systems (e.g., RIEGL RiCOPTER flying a RIEGL VUX-1) to lighter
weight and lower cost options (e.g., DJI M600 with a Velodyne or M8 sensor). Some MLS
systems rely solely on SLAM for positioning, while others have integrated RTK-GNSS,
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so results and noise levels will vary. Additionally, the actual flight/walk patterns and
speeds have a marked impact on point-cloud characteristics—and optimal acquisition
parameters may be ecosystem specific. Fortunately, since the point-cloud outputs from
MLS and ULS share many features of TLS point clouds (at lower densities) analysis of these
products can make use of and further advance breakthroughs in TLS processing pipelines.

A key challenge moving forward with MLS and ULS surveying will be to optimize the
acquisition and processing parameters in a robust and repeatable manner. We suggest that
TLS be leveraged at the start of baseline and long-term monitoring programs to provide a
benchmark against which the MLS and/or ULS acquisitions can be optimized. This will
enable MLS and ULS to be applied over larger areas and at more frequent time intervals,
with intermittent re-calibration against nested TLS collections in key spatial locations
and temporal stages throughout the monitoring program. Furthermore, establishing the
scaling uncertainty of TLS measurements through to large area ULS surveying will greatly
benefit the earth observation community by assisting in the calibration and validation of
spaceborne optical, LiDAR and SAR missions (e.g., GEDI, ICESAT-2, NISAR, BIOMASS).
When considering the faster acquisition time and the ability to collect data over larger areas,
MLS and ULS systems could prove particularly useful for expanding the geographic range
and representation of current calibration and validation libraries, with known uncertainties
from the nested TLS models.

Lastly, while we have primarily focused here on comparing the individual point clouds
and derived products produced through TLS, MLS and ULS surveying, we recognize
that much could be gained through their integration. For example, a fused point cloud
derived from both TLS and ULS could provide rich vegetation detail from the oblique TLS
perspective and comprehensive terrain characterization from the aerial ULS viewpoint.

5. Conclusions

From a canopy modeling perspective, the differences between the TLS, MLS, and ULS
were negligible for most applications, but there was a large difference in the acquisition
time, with MLS and ULS offering distinct advantages. The trade-off comes through at the
individual tree and stem modeling level, where TLS can reproduce DBH estimates from
the field with high accuracy and precision, and capture smaller stems than are typically
measured in field surveys. Comparisons among TLS, MLS and ULS are challenging as there
are a large range of parameters that can be modified across a wide range of applications.
TLS surveying is relatively mature, whereas optimal sampling and processing strategies
for MLS and ULS are less mature, but rapidly developing. Future research should focus
on using TLS as a benchmarking tool to optimize the acquisition parameters of MLS and
ULS for a given research and/or management objective. Importantly, this needs to be done
across a range of different ecosystem types as the strengths and weaknesses of each sensing
system, and platform, will vary with site-specific conditions.

TLS provides a holistic representation of 3D structure that cannot be obtained through
traditional field inventory and provides an avenue for optimizing MLS and ULS acqui-
sition parameters, generating correction coefficients for MLS and ULS canopy products,
and exploring new allometric models linking point-cloud metrics directly to above-ground
woody biomass.
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Above-ground biomass
DBH Diameter at breast height
CHM Canopy height model
GEDI Global Ecosystem Dynamics Investigator
GPS Global Positioning System
LiDAR Light-detection-and-ranging
MLS Mobile Laser Scanning
RTK Real-time Kinematic
SAR Synthetic Aperture Radar
SLAM Simultaneous Location and Mapping
TLS Terrestrial Laser Scanning
ULS UAV Laser Scanning
UAV Unmanned Aerial Vehicle
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Abstract: Mapping vegetation types through remote sensing images has proved to be effective,
especially in large biomes, such as the Brazilian Cerrado, which plays an important role in the
context of management and conservation at the agricultural frontier of the Amazon. We tested
several combinations of optical and radar images to identify the four dominant vegetation types
that are prevalent in the Cerrado area (i.e., cerrado denso, cerradão, gallery forest, and secondary
forest). We extracted features from both sources of data such as intensity, grey level co-occurrence
matrix, coherence, and polarimetric decompositions using Sentinel 2A, Sentinel 1A, ALOS-PALSAR 2
dual/full polarimetric, and TanDEM-X images during the dry and rainy season of 2017. In order to
normalize the analysis of these features, we used principal component analysis and subsequently
applied the Random Forest algorithm to evaluate the classification of vegetation types. During the
dry season, the overall accuracy ranged from 48 to 83%, and during the dry and rainy seasons it
ranged from 41 up to 82%. The classification using Sentinel 2A images during the dry season resulted
in the highest overall accuracy and kappa values, followed by the classification that used images from
all sensors during the dry and rainy season. Optical images during the dry season were sufficient to
map the different types of vegetation in our study area.

Keywords: Cerrado; Amazon; vegetation type; optical; sar; synergism; mapping

1. Introduction

The Cerrado biome is considered as being among the most extensive and diverse ecosystems in
the Neotropics and is a hotspot in the context of biodiversity [1]. It is also one of the most threatened
ecosystems in South America, with over 40% of the biome converted to agriculture and the remainder
highly fragmented [2]. Despite the threat to the Brazilian Cerrado, studies on this ecosystem are few
and recent.

The Cerrado biome is the second largest complex vegetation present in Brazil and occupies
about 200 million hectares, of which the largest territory is in the state of Mato Grosso [3]. This large
distribution of the Cerrado biome in Brazil covers three main vegetation types: grassland, savannas,
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and forest formations, which results in indeterminate boundary and a gradient of biomass, height, and
tree cover. This large variance in different types of vegetation in the Cerrado is responsible for the high
biodiversity in this biome. The three areas of biodiversity in Cerrado, the South–Southeast, Central
Plateau, and Northeast areas are mainly separated by the altitude and latitude [4]. The heterogeneity
of the vegetation types is also seen in the microclimate variability and in different types of soils,
e.g., mostly latosol, red-yellow latosol, red latosol, quartz-neosols, and argisols [5–7]. In addition,
the amount of biomass and carbon storage is differently distributed in the biome, depending on the
vegetation type and soil [8–10]. This large biodiversity and floristic heterogeneity in Cerrado was and
is decreasing due to deforestation since the 1980s, which can lead to a loss or decrease in ecosystem
services [11].

Cerrado is the most deforested biome in Brazil due to the high agricultural impact, particularly
caused by the world market-oriented production of soy, cotton, and sugarcane. Deforestation is
facilitated by its flat topography, easy management of the soil for agricultural activities, and high
mechanization [12]. For pasture and agricultural activities, Cerrado has become a more viable
alternative to the Amazon despite its poor soil quality. Despite a lack of consistent deforestation
records, a few studies have looked at rates of deforestation in the Cerrado biome. Machado et al. [13]
analyzed the deforestation rates from two different sources. They found that from 1985 to 1993, Cerrado
lost 1.5% of its total vegetation area annually. From 1993 to 2002, the rate of deforestation per year
decreased to 0.67%. Starting from 2002, several Brazilians institutes, such as the Instituto Brasileiro
do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and National Institute for Space
Research (INPE), started to monitor the rate of deforestation in the Cerrado biome. From 2002 to 2017,
Cerrado lost around 0.8% of its total vegetation area per year. The ease of deforesting in the Cerrado
biome created a hotspot region for deforestation at the boundary with Amazon biomes.

Current regulation and restrictions in ecosystem preservation have driven deforestation and cover
changes into the forest–savanna transition zone, as in West Africa [14] and South America [15]. Janssen
at al. [14] projected an increase of tree cover losses from 20 to 85% in Ghana. In South America, the
transitional zone is known as “arc of the deforestation” (AOD). The AOD is located in the frontier
states of Mato Grosso, Pará, and Rondônia, and it accounts for 85% of the areas that were deforested
between 1996 to 2005 [16,17]. In these transition areas, the laws that support the protection of forests
are even weaker and unmanaged. One example is the environmental legislation that defines the
amount of natural vegetation that has to be preserved (80% in the Amazon, 20% in the Cerrado
biome) [18]. Additionally, this forest–savanna boundary comprises a mixture of floristic characteristics
from both adjacent regions, which increases the complexity in mapping the ecotone between the
Amazon and Cerrado. Marques et al. [19] showed that the official boundary between Cerrado and
Amazon conducted by the Brazilian Institute of Geography and Statistics (IBGE) is not accurate,
and in some areas, the length of the transition zone was miscalculated by 245.5%. This problem is
likely to misinterpret the mapping of land use and consequently decrease the accuracy of vegetation
classification. Moreover, the problem of low accuracy in the mapping of the boundary between Cerrado
and Amazon affects the calculation of wood density, and therefore biomass estimation as well [20].
To overcome these problems, Brazil needs to improve the monitoring system of deforestation and land
use change (LUC), especially for the Cerrado biome.

The field monitoring of Cerrado is a time-consuming challenge, given the large size of the biome.
Hence, the use of remote sensing facilitates the monitoring of the status and changes in land cover
and land use at large scales. Most studies with remote sensing to monitor the differentiation of the
vegetation types in Cerrado use optical sensors, mainly in the savanna and grassland formations
where there is low signal saturation. These studies mostly use the Normalized Difference Vegetation
Index (NDVI) [21–23], Spectral Linear Mixture Model (SLMM) [24,25], and phenological profiles [26].
Additionally, Müller et al. [27] demonstrated the challenges in mapping land use in Cerrado, essentially
a result of its high diversity. The study showed a considerable uncertainty in the classification of
cropland and pastures areas. The same problem was reported by Sano et al. [28], whose study reports
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a spectral similarity between cropland, pasture, and natural savanna vegetation, which can increase
the uncertainty when mapping. Moreover, Ministry of the Environment (MMA) [29] mapped the
land use in the whole Cerrado biome and the study showed that one of the biggest challenges for this
area was to map the different types of vegetation, due to the strong seasonality of natural vegetation.
However, the optical sensors can extract the information from the canopy, but arboreal vegetation
types have differences in vertical structure and tree cover, so that with optical sensors, uncertainties in
the identification of forest savanna vegetation types increase. Additionally, optical images are affected
by weather conditions (cloud cover).

Radar sensors have an important advantage compared to optical sensors: the ability of radiation
to penetrate through cloud cover and considerable parts of the canopy of trees/forest stands
due to the higher wavelengths compared to optical sensors. Thus, the resulting radar signals
(amplitude/backscatter and, if available, coherence) provide information that can be used to describe
the vertical structure of vegetation stands. This information can be used to better estimate forest
structure variables such as canopy cover, tree density, tree height or others, as well as to stratify
vegetation (e.g., different types of forest). The longer the wavelength, the deeper radar Bands penetrate
dense vegetation, which increases its sensibility to perceive the differences that improve discrimination
of vegetation types. Almeida-Filho and Shimabukuro [30] demonstrated that the L Band from the
JERS-1 synthetic-aperture radar (SAR) can be used to detect cover changes in forested and non-forested
areas in the Cerrado biome. Evans and Costa [31] also mapped six vegetation habitats in Brazil using L
and C Bands using the backscattering information from the surface. In the same country, Saatchi et
al. [32] mapped five land cover types using the JERS-1 mosaic, using texture measurement. Santos
et al. [33], Sano et al. [34], and Mesquita et al. [35] had satisfactory results using radar images to
discriminate the vegetation types in the Cerrado biome, especially with the L Band. The sensitivity
of the radar sensor to perceive the differences in vegetation structures makes it useful for mapping
different types of forests.

The savanna vegetation has one of the largest forest diversities. In this case, the combination of
different satellite images (optical and radar) and spatial resolution (low, medium, and high) may help
to improve the quality of satellite based monitoring concepts [32]. However, there is little information
about how the synergy of different data can contribute to map forest vegetation types in Cerrado.
Yet, the free availability and the development of new optical and radar sensors, such as Sentinel 2A,
Sentinel 1A (both free) or ALOS2 and TanDEM-X, are increasing the use of both sensors (radar and
optical) for vegetation mapping. Recent studies have shown that the synergy of radar and optical
images improved vegetation type discrimination, especially in the Cerrado biome, where the greenness
seasonality had a huge influence during the year [36–38].

The aforementioned studies concentrate on parts of Cerrado where the vegetation cover is mostly
homogeneous and that are not located in transitional areas such as the the Arc of Deforestation.
However, most of the deforestation and expansion of agricultural and pasture areas are concentrated
in this region. Additionally, these regions have a mixture of vegetation type and species from Cerrado
and Amazon, which makes the study in this area more complex. The few studies in this area are related
to the land use and not the mapping of vegetation type, as in Zaiatz et al. [39], who evaluated the
spatial and temporal dynamics of land use and cover of the Upper Teles Pires River Basin from 1986 to
2014. In order to overcome the lack of studies using both sensors to discriminate vegetation types, the
aim of this study is to evaluate the use of optical and radar remote sensing for mapping the different
types of vegetation in the transitional area between the Cerrado and Amazon biomes.

2. Materials and Methods

2.1. Study Sites

The study area was the result of an overlap between the satellite images selected for this study and
it is located around the city of Nova Mutum, Mato Grosso, which includes the Cerrado and Amazon
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biomes. Nova Mutum is located in the north of Mato Grosso, Brazil, and it is part of the Alto Teles Pires
River Basin (Figure 1). Its climate is classified as Aw (after the Köppen climate classification), with a
clear seasonality of rainy season (October to April) and dry season (May to September). The annual
average temperature is 24 ◦C and annual precipitation is approximately 2200 mm [40]. The topography
is flat with maximum slopes of 3%. The soils in the the area are Oxisols (80%) and Entisols (20%) [41].

Figure 1. Location of the study area within the South America context. The scene footprint of different
satellites are shown on top of a Google Earth image.

Nova Mutum is located in the AOD; this area covers 256 municipalities with the most intensive
deforestation activities in an area of approximately 1,700,000 km2 and it plays an important role in
the context of deforestation in the frontier of Amazon and Cerrado. The AOD accounts for 75% of
the deforestation in the Brazilian Amazon and the largest agricultural area [17]. Legislation, soil,
relief, climate conditions, and the subsidies offered by the government have encouraged agricultural
activity since 1970. Recently, the Brazilian government has established policies to decrease the rates of
deforestation in these areas, such as the “Soy Moratorium” [42], which was an agreement with the
major soybean traders not to purchase soybean that was planted in deforested areas after July 2006 in
the Brazilian Amazon biome.

104



Remote Sens. 2019, 11, 1161

In general, the vegetation of Cerrado in Brazil covers three main different vegetation types:
grassland, savannas, and forest formations. The forest formations consist of arboreal species in
a continuous canopy and include the Gallery, Dry, and Open Forest. The savanna formation is
characterized by a discontinuous herbaceous-shrub and tree canopy. The seven types of savanna
formation are Dense Woodland, Woodland, Open Woodland, Park Woodland, Palm, Vereda, and Stone
Woodland. The grassland formations include three vegetation types: Stone Grassland, Shrub Savanna,
and Grassland. The first two types of grasslands are characterized by the large presence of shrubs
with different types of soils. Figure 2 summarizes the distribution of the three different vegetation
formations in the Cerrado biome. Each of these types has a high diversity, which is a consequence of
the high variability of the soil and microclimates as well as the floristic evolution with plants from
different Brazilian biomes [7].

 
Figure 2. Cerrado biome phytophysiognomies. The graphic depicts two vegetation formations and
their subdivisions in the study area, except the Dry Forest. Source: Adapted from [43].

In our study, we mapped the four dominating vegetation types in Nova Mutum, cerradão (Open
Forest), cerrado denso (Dense Woodland), gallery forest, and secondary forest. Cerradão and cerrado
denso are located within the transition area of the Amazon and Cerrado biomes. As mentioned before,
this area has a high deforestation rate, which can explain the presence of secondary forest. Cerradão
has a crown cover between 50 and 90% and the height of the trees varies from 8 to 15 m. In general, the
soils of Cerradão are well drained, deep, and have medium–low fertility. Cerrado denso has a crown
cover between 5 to 70% and tree height varies from 5 to 8 m. The layers of shrubs and herbs are less
dense compared to cerradão. In general, the soils of cerrado denso have medium to very clayey texture
and are middle-well drained. The gallery forest has a crown cover between 70 to 95% and the height of
the trees varies from 20 to 30 m. Secondary forests are formed after clear-cutting and have different
structures, depending on the age of the succession. At the beginning of its succession time, these
secondary forests are poor in biodiversity and have a simple structure, whereas in the next succession
time, its structure depends on environmental factors such as soil, climate, and management [44].

2.2. Satellite Data

In order to analyze the use of optical and radar sensors to map the vegetation type in Cerrado,
we used a set of images from four sensors (3 SARs and 1 optical). The PALSAR-2 aboard ALOS-2
from the Japan Aerospace Exploration Agency (JAXA); TanDEM-X (TerraSAR-X add-on for Digital
Elevation Measurement) from the German Aerospace Center, DLR, and Astrium GmbH; Sentinel 1A
and the optical Sentinel 2A from the European Union’s Copernicus programme. Figure 3 shows the
temporal coverage of each satellite image used in our analysis.
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Figure 3. . Historical (1961–2017) and Monthly (2016–2017) precipitation values and acquisition dates
of Sentinel 2A, ALOS PALSAR 2 full, ALOS PALSAR 2 dual, TanDEM-X and Sentinel 1A. Precipitation
data were collected from the Diamatino fluviometric station located near to the study area.

We selected the satellite image data following some criteria. First, we selected images from 2017
since the field data were collected in 2017, except for the TanDEM-X image. Secondly, we selected the
radar images on the dates of low precipitation, prior to the date of acquisition. Table 1 shows the date,
polarization, orbit, and accumulated precipitation values three days before the acquisitions.

Table 1. Characteristics of the selected satellite images and the accumulated precipitation values three
days before Radar acquisition.

Sensor Date Polarization Orbit
Accumulated Precipitation
Values 3 Days Before Radar

Acquisition (mm)

Sentinel 1A

08.01.2017

Dual—VH and VV Descending

3.3
01.02.2017 11.5
13.02.2017 58.3
25.02.2017 30.2
09.03.2017 27.2
21.03.2017 24.0
02.04.2017 16.8
14.04.2017 0
26.04.2017 33.3
08.05.2017 0
20.05.2017 0
01.06.2017 0
13.06.2017 0
25.06.2017 0
19.07.2017 0
31.07.2017 0
12.08.2017 0
24.08.2017 0
05.09.2017 0
17.09.2017 0
11.10.2017 0
10.12.2017 88.7
22.12.2017 0
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Table 1. Cont.

Sensor Date Polarization Orbit
Accumulated Precipitation
Values 3 Days Before Radar

Acquisition (mm)

TanDEM-X 20.10.2016 Single—HH 8.1

ALOS-PALSAR
2 dual

01.02.2017

Dual—HH and HV

Ascending 11.5
26.03.2017 Descending 35.7
04.06.2017 0
13.09.2017 Ascending 0

ALOS-PALSAR
2 full

13.04.2017
Full Ascending 0

27.04.2017 0

Sentinel 2A

07.05.2017

- -

0
16.06.2017 0
06.07.2017 0
26.07.2017 0
15.08.2017 19.2
04.09.2017 0
24.09.2017 0

2.3. Data Processing

2.3.1. Sentinel 2A

Seven coverages (using nine Bands altogether, from Band 2 to Band 8A, Band 11, and Band 12) of
the Multispectral Instrument (MSI) on-board Sentinel-2A were processed using the ESA’s Sentinel-2
toolbox in the ESA Sentinel Application Platform (SNAP). First, we applied atmospheric correction
using Sen2cor, which is a L2A-processor for Sentinel-2 data that creates Bottom-Of-Atmosphere (BOA)
reflectance images using Top-Of-Atmosphere (TOA) data [45]. Secondly, we resampled all the bands to
a 10-m spatial resolution based on the geolocations obtained from Level-1C metadata. For the last step,
we created a subset of our study area to speed up processing time, and lastly we mosaicked the images,
as our study area was between two different orbits of the Sentinel 2A.

During the final step, we reduced the number of features by applying principal component
analysis (PCA) on the spectral dataset due to the fact that some classification algorithms, such as
Random Forest, cannot work well with high correlation data. Principal component analysis is a
mathematical procedure that reduces a large amount of variables into principal components. The
primary function of the PCA is to determine the extent of the correlation between multispectral bands
and to remove it through an appropriate mathematical transformation [46]. We used the first principal
component (PC1) of each one of the ten bands to aggregate only information that was essential to the
classification process, as it explained most of the variance, e.g., PC1 of Band 2, PC1 of Band 3, and PC1
of Band 4. Overall, this resulted in a set of ten variables as input for classification for the dry season,
and the dry and rainy season, respectively.

2.3.2. Sentinel 1A

Twenty-three coverages from Sentinel-1A IW Ground Range Detected (GRD) Level-1 product were
processed using the ESA Sentinel Application Platform toolbox. First, each image was radiometrically
calibrated to radar brightness values (β0) [47]. Secondly, we applied the terrain flattening to correct
any terrain variations in the images. Terrain flattering is an important step for the mapping of land use.
Without the terrain flattening, an additional error into the coherency and covariance measurement
could be created, due to the difference in the terrain and subsequently the brightness of the radar
return [48]. During the third step, we coregistrated the 23 images based on the cross-correlation
technique to guarantee that every pixel was correctly located in the same target of all images [49].
Once we had the images from the co-registration process, we separated them into two sub-processes.
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During the first process, we applied the grey level co-occurrence matrix (GLCM) to extract second
order statistical textures features. The GLCMs were extracted separately from every single date
and polarization (VV and VH). These textures can be useful to improve land use classification in
that it extracts intensity variations from the image involving the information of the neighbor pixels
to identify specific clusters or objects [50]. Additionally, we applied the Refined Lee speckle filter
(window size 5 × 5), after GLCMs extraction. This process is necessary to reduce the noise caused by
random constructive and destructive interference from the radar signal [51]. For the second branch of
processing, we only applied the Refined Lee speckle filter on the backscatter images. We applied the
Range Doppler terrain correction in the last step. This process is necessary to geocode and correct the
distortions in the image, which are caused by the topographical variations and the tilt of the sensor [52].
The entire process is illustrated in Figure 4.

Figure 4. Flowchart of the proposal methodology.

We applied the PCA to reduce the number of features in the same way as explained above for
Sentinel 2A. In the backscattering images, we applied the PCA for the two different seasons and two
polarizations, which resulted in four PCs: (a) images of VV polarization in the rain and dry season;
(b) images of VH polarization in the rain and dry season; (c) images of VV polarization during the
dry season; and (d) images of VH polarization during the dry season. The same was applied for the
texture images (ten textures: ASM, contrast, correlation, dissimilarity, energy, entropy, homogeneity,
MAX, mean, variance. This resulted in a set of twenty two inputs in the dry season (one PC of VV, one
PC of VH, ten PCs of VV textures, and ten PCs of VH textures) and a set of fourth four inputs in the
rainy and dry season (one PC of VV in the dry season; one PC of VV in the rainy and dry season; one
PC of VH in the dry season; one PC of VH in the rainy and dry season; ten PCs of VV textures in the
dry season; ten PCs of VV in the rainy and dry season; ten PCs of VH textures in the dry season; ten
PCs of VH in the rainy and dry season).

2.3.3. ALOS-PALSAR 2 (Dual and Full Polarimetric)

Four coverages of the dual polarization images were converted to covariance matrix C2 and one
coverage of the full polarization images was converted to C3 matrix [53]. In this step, multilook with 4
looks in azimuth and 1 in range was applied to convert the image from single look complex to ground
range detected. We applied the speckle filter on all images to reduce speckle noise. For that we used
the Refined Lee adaptive filter (5 × 5 window), which is more efficient and whose results have less
destructive averaging, having been largely used in the radar studies [51–54]. Here, we separated the
images into two subprocesses. For the first, we kept the backscattering images. For the second, we
calculated polarimetric decompositions. Polarimetric SAR decomposition is a useful method to map
and discriminate the different targets on the surface, especially due to the signal of the target, which
is a combination of speckle noise and random vector scattering effects [55]. In our study, we chose
the Freeman–Durden, Yamaguchi, and VanZyl polarimetric decompositions. In general, these three
decompositions are based on the covariance matrix that is divided into three scattering mechanism:
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volume, double bounce and surface scatter [55]. Additionally, polarimetric compositions have been
used before in mapping of vegetation showing the improvement in the vegetation classification in the
Amazon and Cerrado [56]. We applied the Range Doppler terrain correction in all images.

Following the same process of the other images, we applied the PCA to reduce the number of
features and consequently facilitated the further classification process. This resulted in a set of ten PCs,
resulting in four of the dual polarimetric, PC1 of backscattering in each polarization (HH and VH) and
each orbit (ascending and descending) and six of the full polarimetric: PC1 of backscattering in each
polarization (HH, VV and VH) and PC1 of each scattering mechanism (volume, double bounce and
surface scatter).

2.3.4. TanDEM-X

The TanDEM-X mission operates two X-Band satellites flying in close formation in order to
acquire single-pass interferometric SAR data. The primary mission goal of the TanDEM-X mission was
the generation of a global digital elevation model [57]. All TanDEM-X acquisitions are available to
the science community on request in Coregistered Single look Slant range Complex (CoSSC) format.
For the study area, we acquired one TAnDEM-X scene in standard (bistatic) mode with horizontal
polarization (HH). The processed data was separated into two different parts. In the first part, we
estimated the magnitude of coherence. Coherence describes the the degree of correlation between the
two complex radar images [58]. It is a measure of quality of the phase measurement in interferometric
SAR analysis and also used as a proxy for soil and vegetation structural parameters.

In the second part, we processed the intensity images. We performed multilook in both images
(coherence and intensity) from the first and second part, with 4 looks in azimuth and 3 in range to
reduce the noise. Additionally, we applied, as with the other images before, the speckle filter Refined
Lee (window 5 × 5). For the last step, we applied the Range Doppler terrain correction. All images
were processed to have a final product with spatial resolution of 10 m. The PCA was not applied for
TanDEM-X due to the use of only one single date.

2.4. Classification

The process of image classification was separated into two steps. First, a forest mask was generated
as a result of a forest/non-forest classification. At the second step, we classified the forest type within
this forest mask. The area under investigation is covered by all images used in this study.

We used the RF algorithm implemented in R software for image classification. Random Forests is
a supervised classification algorithm that uses multiples decision trees to get an accurate classification
and prediction. The N numbers of trees are being built by the classifier, contributing each to the
assignment of the most frequent class. This algorithm uses the bagging method to produce random
samples of training sets for each random decision tree. Every tree uses a random subset from the
original set. This original set was created from training samples, where two-thirds were used to train
the classifier and one-third of them were used for validation. Two-thirds of the training sample were
the out-of-bag (OOB) data and one-third of the training sample were the OOB error estimate [59].
Random Forest can be used for classification and regression and is an efficient tool due to measuring
the relative importance of each feature. This variable importance measures the decrease of accuracy
when a variable is removed from the classification. The higher a variable is ranked, the more it is
contributing to the accuracy. Additionally, it has a lower probability to overfit compared to other
models if there are enough trees. This method has many improvements: it does not require any input
preparation, it is more stable using big data since it works well with variable non-linearity, it provides
a pre-feature selection building the trees, and reduces the time required for the process. For remote
sensing analysis, RF showed to be a stable and accurate algorithm, especially when it is applied to
different types of sensors and large time series. The achievement of this method can be seen in recent
studies such as References [59–61], which applied RF for vegetation mapping using different types
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of data. In this study, the RF models consisted of 1000 trees, and 70% of our samples were used for
training the classifier and 30% for validation of the classification results.

2.4.1. Forest and Non-Forest

In order to classify the several vegetation types, we first needed to create a map of forest and
non-forest areas. For accuracy assessment, we created 100 random points of 3.13 ha each and visually
classified them using high-resolution imagery from Google Earth and the sensor Sentinel 2A (Figure 5).
During the classification process, we used 70% of these points for training the classifier and 30% for
validation of the classification results.

Figure 5. Distribution of Random Forest and non-forest samples and forest type samples (4 classes) in
the study area, on top of a false color composition of Sentinel 2A Band 3, 4, and 8 (07 July 2017).

2.4.2. Forest Type

Forest-type mapping was only conducted in the areas masked as forests in the previous step.
We created 24 reference areas equally distributed into four different vegetation classes (cerradão,
cerrado denso, gallery, and secondary forest). Each one had an area of 14.265 ha (Figure 5). The
polygons were classified based on field data collection (July 2017) and high-resolution imagery from
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Google Earth and Sentinel 2A (26 July 2017). During the classification process using RF, we used 70%
of the pixels in the 24 references areas for training and 30% for validation.

To analyze the synergy of optical and radar data for mapping Cerrado vegetation types, all possible
combinations between optical and radar sensors were tested in two different scenarios, dry season,
dry and rainy seasons (Table 2). In addition, we used the sensors separately and analyzed the SAR
classifications. In total, 23 datasets were processed.

Table 2. Classification scheme (number in brackets shows the number of variables per input data set).

Dry Season (SAR and
Optical)

Rainy +Dry Seasons
(SAR and Optical)

Dry Season (SAR) Rainy +Dry Seasons (SAR)

Sentinel 2A (10) Sentinel 1A (44) Sentinel 1A + TanDEM-X Sentinel 1A + TanDEM-X
Sentinel 1A (22) ALOS2 full (6) Sentinel 1A + ALOS2 dual Sentinel 1A + ALOS2 dual
TanDEM-X (3) Sentinel 2A + Sentinel 1A Sentinel 1A + ALOS2 full Sentinel 1A + ALOS2 full

ALOS2 dual (4) Sentinel 2A + ALOS2 full TanDEM-X + ALOS2 full TanDEM-X + ALOS2 full
Sentinel 2A + Sentinel 1A All images ALOS2 dual + ALOS2 full ALOS2 dual + ALOS2 full
Sentinel 2A + TanDEM-X

Sentinel 2A + ALOS2 dual
All images

For the classifications, which combined two or more sensors, e.g., Sentinel 2A and ALOS-PALSAR
2, we did not use all the features of each sensor. In this case, we selected the first three features based
on variable importance, which was calculated during RF classification for the single sensor dataset,
respectively. Variable importance shows the interaction between the variables/features and inserts
them into an hierarchy within a level of contribution and importance for the classification.

For both classifications, forest/non-forest and vegetation type, we used the confusion matrix to
analyze the performance of Random Forest classifications. The confusion matrix assesses the accuracy
of the classification, showing the relation between classification result and sample site. Column
values correspond to the sample site results, rows to the classification results, and diagonal to the
correctly classified pixels. The general measurement showed in confusion matrices of q classes is the
overall accuracy, which is a result of dividing the total number of pixels and the pixels that were
correctly classified. Additionally, the kappa coefficient was largely used to measure the accuracy of the
classification. The values of the kappa coefficient range from 0 to 1, where 0 means no relation between
the classification results and the sample site results, and 1 means that both are identical [62].

Finally, for detailed analysis, we calculated both the user’s and producer’s accuracy. User’s
accuracy (Ui) is obtained considering the number of the correctly identified pixels of a given class (pii),
divided by the total number of pixels of the class in the classified image (pi.).

Ui =
pii

pi.
, (1)

On the other hand, producer’s accuracy (Pj) is the number of correctly identified pixels (pjj)
divided by the total number of pixels in the reference image (p. j). A detailed description of the
classification assessment can be found in the literature [62,63].

Pj =
pjj

p. j
, (2)

3. Results

3.1. Forest and Non-Forest

The two different combinations used for classifications, Sentinel 2A with ALOS-PALSAR 2 dual
polarimetric and Sentinel 2A with ALOS-PALSAR 2 full polarimetric, showed similar high overall
accuracy of 0.99 and 1, respectively. The variable importance showed similar results. In both cases, the
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PC1 of Band 11 and Band 5 of the Sentinel 2A images had the highest contribution for the Random
Forest classifier.

Based on this result, we created a mask of forest and non-forest areas, where 34% was forest and
66% was non-forest. (Figure 6). This mask was used in the next step for the forest type classification.

Figure 6. Forest mask extracted from the classification of Sentinel 2A with ALOS-PALSAR full
polarimetric PC1 images.

3.2. Forest Type

3.2.1. Dry Season

The Table 3 shows the overall average accuracy (OAA), Kappa, confidence interval (CI) values,
and variable importance of the classifications during the dry season.

Classifications using only a single radar sensor (Sentinel 1A, TanDEM-X and ALOS2 dual) had
lower overall accuracy and kappa values compared to the classification that used two or more sensors.
Sentinel 2A (S2) had with 82.60 % the highest overall accuracy and kappa values with 0.77. The variable
importance shows the PC1 of Bands 11 and 12 were more important during the RF classification,
followed by the PC1 of Bands 5, 4 and 2. Figure 7 shows the results of the S2 classification. A gradient
is visible, with the north mostly comprising of areas of cerradão, which is closest to the Amazon
biome, and whose south cerrado denso areas are prevailing. Additionally, it illustrates a large area of
secondary forest in the northwest of the study area. Based on this map, Cerrado denso covers 34.50%
of the Cerrado area, cerradão 28.70%, gallery forest 28.14% and secondary forest 8.66%.
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Table 3. Overall accuracy, kappa, confidence interval 95%, overall average accuracy (OAA), and the
three most important variables for the classifications based on the Random Forest variable importance
for Sentinel 2A (S2), ALOS PALSAR 2 full (A2f), ALOS PALSAR 2 dual (A2d), TanDEM X (TX), and
Sentinel 1A (S1). The parameters listed in the variable importance are the PC1 derived from the PCA,
except for the images from TanDEM-X, as only one acquisition was available. Only data acquisitions
during the dry season were considered.

Dry Season (SAR and Optical) Overall Accuracy Kappa Conf. 95% OAA Variable

Sentinel 2A 82.60% 0.77 2.29 Bands 11, 12, 5

Sentinel 1A 48.51% 0.31 2.76 Entropy VV, mean VV, variance
VH

TanDEM-X 58.22% 0.44 2.78 Coherence, intensity master,
intensity slave

ALOS2 dual 59.70% 0.46 2.73 HH descending, HV descending,
HH ascending

Sentinel 2A + Sentinel 1A 79.90% 0.73 2.08 Bands 12, 11, 5 S2

Sentinel 2A + TanDEM-X 81.91% 0.76 2.14 Band 11 S2, Band 12 S2, coherence
HH TX

Sentinel 2A + ALOS2 dual 74.91% 0.67 2.53 Band 11 S2, HV descending A2d,
HH descending A2d

All images 80.33% 0.74 2.05 Band 11 S2, HV descending A2d,
Band 12 S2

Figure 7. Classification results of the spatial distribution of the four Cerrado forest types using Sentinel
2A (dry season) on top of a false color composition of Sentinel 2A, Bands 3, 4, and 8 (07 July 2017).
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The overall accuracy and kappa values of the Sentinel 1A (S1) classification had the lowest
classification results using only single sensors with an overall accuracy of 48.51% and a kappa value
of 0.31. Additionally, the PC1 of entropy and mean images of VV polarization and PC1 of variance
image of VH polarization were more important to the RF classifier. The TanDEM-X classification also
presented low accuracy and kappa values, 58.22% and 0.44, respectively. The coherence was more
important than the intensity. The images from ALOS-PALSAR 2 dual and full polarimetric showed
different results in the classification. In our study, the dual polarization images had a higher overall
accuracy and kappa values, 59.70% and 0.46, respectively, compared to the full polarimetric images.
However, we used four different dates of dual polarimetric images and one of full polarimetric image.
This difference in the number of acquisitions from dual and full polarimetric images can cause a better
accuracy for the dual polarization images.

The combinations of two or more sensors, in general, improved the extraction of the target’s
information, and consequently, the classification. The classification that used S2 and TanDEM-X
showed the highest overall kappa values, 81.91% and 0.76. Variable importance shows the PC1 of
Bands 11 and 12 of S2 and the coherence of TanDEM-X were more important to the RF classifier.

The S1 and S2 classifications had an overall accuracy and kappa value of 79.90% and 0.73. PC1
of Bands 11 and 12 of S2 and the PC1 of contrast of VH polarization of S1 had a high ranking in the
variable importance. The classification that used all images from the dry season had a similar overall
accuracy and kappa values compared to the S2 and TanDEM-X classification. The PC1 of Band 11,
PC1 of ALOS-PALSAR 2 dual VH polarization descending orbit, and PC1 Band 12 images had the
highest importance.

The highest accuracy for each of the four forest classes was obtained by different classification
inputs, the highest producer’s accuracy for cerrado denso class was achieved with S2 and S1 classification
and the highest user’s accuracy with the classification that used S2 images. The highest producer’s
accuracy for cerradão class was reached with the classification that used all images, and the user’s
accuracy was reached with the S2 and TanDEM-X classification. For the gallery forest, the highest
producer’s accuracy was obtained with the classification that used S1 images, and the user’s accuracy
was obtained using S2 images. The highest users’ accuracy for secondary forest class was again reached
with S2 images. The ALOS-PALSAR 2 dual polarimetric images resulted here in the best producer’s
accuracy (Figure 8).

3.2.2. Dry and Rainy Season

Table 4 summarizes the results for the classifications during the dry and rainy season.
The classification of S1 images during the dry and rainy seasons had higher overall accuracy and kappa
values compared to the S1 classification of the dry season, with 16% overall accuracy and a kappa of
33%. This result shows that the use of images combining the dry and rainy seasons improved the
classification of S1 images. Here, the PC1 of entropy and of mean images of VV polarization as well as
of the VH polarization contrast image were the three most important variables. The ALOS-PALSAR
2 full polarimetric classification showed a lower overall accuracy and kappa values compared to
the ALOS-PALSAR 2 dual polarimetric classification during the dry season. Moreover, the volume
polarimetric decomposition image was more important to the RF classifier.
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Figure 8. Producer’s (A) and user’s (B) accuracy of classifications based on single-sensor and
optical/SAR-combinations for the four Cerrado types. Only data acquisitions during the dry season
were considered.

Table 4. Overall accuracy, kappa values, confidence interval 95% OAA, the three most important
variables for the classifications according to Random Forest variable importance for Sentinel 2A (S2),
ALOS PALSAR 2 full (A2f), ALOS PALSAR 2 dual (A2d), TanDEM X (TX), and Sentinel 1A (S1). The
parameters listed in the variable importance are the PC1 derived from the PCA, except for the images
from TanDEM-X, as only one acquisition was available. All data acquisitions during the dry and rainy
season were considered.

Rainy + Dry Season Overall Accuracy Kappa Conf. 95% OAA Variable Importance

Sentinel 1A 56.21% 0.42 2.87 Entropy VV, mean VV,
contrast VH

ALOS2 full 41.26% 0.22 2.77 Volumetric, C22, C11
Sentinel 2A + Sentinel

1A 81.73% 0.76 2.05 Bands 12 S2, 11 S2, contract
VH S1 rainy season

Sentinel 2A + ALOS2 full 79.98% 0.73 2.28 Bands 11, 12, 5 S2

All images 81.91% 0.76 1.97 Band 11 S2, HV descending
A2d, Band 12 S2

For the dry and rainy season, the classifications that combined radar and optical sensors were
more accurate. From each classification, which used more than on sensor, we selected the first three
images with highest variable importance, totalling 15 images and used these images as input for all
image classifications. This classification had the highest overall accuracy and kappa values (81.91%
and 0.76) (Figure 9). The PC1 of Band 11 of S2, PC1 of ALOS-PALSAR 2 dual VH polarization at
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descending orbit and PC1 of Band 12 of S2 were the most important images that contributed to the
classification of all images.

Figure 9. Classification of Cerrado forest type using all images from the dry and rainy season on top of
a false color composition from Sentinel 2A, Bands 3, 4, and 8 (07 July 2017).

The S2 and S1 classifications showed a higher overall accuracy and kappa values, 81.73% 0.75,
compared to the classification during the dry season. Variable importance showed that the PC1 of
Bands 12 and 11 of S2 and the PC1 of contrast VH polarization were more important.

The highest producer’s accuracy for the cerrado denso class was achieved with S2 and
ALOS-PALSAR 2 full polarimetric classification, and the highest user’s accuracy was achieved
with the classification that used all images. The highest producer’s and user’s accuracy for cerradão
class was reached with the classification that used S2 and S1. For the gallery and secondary forest,
the highest user’s accuracy was obtained using S2 and S1 images. The highest producer’s accuracy
for the gallery forest was achieved with S1 images and for the secondary forest class with all images
(Figure 10).
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Figure 10. Producer’s (A) and user’s (B) accuracy of classifications based on single-sensor and
optical/SAR-combinations for the four Cerrado types. All data acquisitions during the dry and rainy
season were considered.

3.2.3. Radar Classification

We separately analyzed the radar classifications of Sentinel 1A, ALOS-PALSAR 2 dual/full
polarimetric, and TanDEM-X (C Band, L Band, and X Band, respectively) for both seasons. Table 5
presents the results of these classifications during the dry season. The TanDEM-X in combination with
ALOS-PALSAR 2 dual polarimetric classification achieved the highest overall accuracy and kappa
values, 66.96% and 0.56. S1, and TanDEM-X had the lowest overall accuracy with 54.46% and 0.39.
Furthermore, PC1 of ALOS-PALSAR 2 dual polarimetric VH descending orbit and HH descending
orbit and coherence of TanDEM-X images were higher ranked in the variable importance list of Random
Forests (Table 5).
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Table 5. Overall accuracy, kappa values, confidence interval 95% OAA, and the three most important
variables for the classifications based on the Random Forest variable importance for Sentinel 2A (S2),
ALOS PALSAR 2 full (A2f), ALOS PALSAR 2 dual (A2d), TanDEM X (TX), and Sentinel 1A (S1). The
parameters listed in the variable importance are the PC1 derived from the PCA except for the images
from TanDEM-X, as only one acquisition was available.

Dry Season Overall Accuracy Kappa Conf. 95% OAA Variable Importance

Sentinel 1A + TanDEM-X 54.46% 0.39 2.66 Coherence HH TX, mean VV S1,
entropy VV S1

Sentinel 1A + ALOS2 dual 62.33% 0.50 2.61 HV descending A2d, HH
descending A2d, HV ascending A2d

TanDEM-X + ALOS2 dual 66.96% 0.56 2.61 HV descending A2d, HH
descending A2d, coherence HH TX

Rainy + dry season

Sentinel 1A + TanDEM-X 64.42% 0.53 0.67 Coherence HH TX, mean VV S1 dry
season, entropy VV S1 dry season

Sentinel 1A + ALOS2 dual 66.61% 0.55 2.69
HV descending A2d, HH

descending A2d, contrast VH S1
rainy season

Sentinel 1A + ALOS2 full 61.10% 0.48 2.78 Volumetric, entropy VV S1 dry
seanson, mean VV S1 dry season

TanDEM-X + ALOS2 full 61.01% 0.48 2.81 Coherence HH TX, volumetric A2f,
C22 A2f

ALOS2 dual + ALOS2 full 58.30% 0.44 2.81 HV descending A2d, HH descening
A2d, HH ascending A2d

Combining the dry and rainy seasons, S1 and ALOS-PALSAR 2 dual polarimetric classification
achieved the highest overall accuracy and kappa values, 66.61% and 0.55, respectively. Here, PC1 of
ALOS-PALSAR 2 dual polarimetric VH descending orbit, HH descending orbit, and PC1 contrast of VH
polarization images were more important. The ALOS-PALSAR 2 dual polarimetric and ALOS-PALSAR
2 full polarimetric classification showed the lowest overall accuracy and kappa values, 58.30% and
0.44, respectively.

Highest producer’s and user’s accuracy for cerrado denso and the cerradão class for the dry
season were achieved with TanDEM-X and ALOS-PALSAR 2 dual polarimetric classification. This
sensor combination also had the highest user’s accuracy and producer’s accuracy together with S1 and
ALOS-PALSAR 2 dual polarimetric in the secondary forest. For the gallery forest, highest producer’s
and user’s accuracies were achieved with S1 and TanDEM-X classification (Table 6). The radar sensors
combinations presented a higher overall accuracy and kappa values compared to the single use of
these sensors.

Table 6. Producer’s and user’s accuracy of classifications based only on combinations of SAR sensors
for the four Cerrado types. Only data acquisitions during the dry season were considered.

Dry Season Cerrado Denso Cerradão Gallery Forest Secondary Forest

Producer’s accuracy
Sentinel 1A + TanDEM-X 40.21% 28.52% 94.46% 54.04%

Sentinel 1A + ALOS2 dual 38.11% 34.86% 76.12% 100.00%
TanDEM-X + ALOS2 dual 40.91% 59.86% 67.13% 100.00%

User’s accuracy
Sentinel 1A + TanDEM-X 50.88% 24.92% 73.19% 70.00%

Sentinel 1A + ALOS2 dual 53.96% 34.14% 70.97% 83.33%
TanDEM-X + ALOS2 dual 68.02% 47.22% 72.93% 82.37%

The dry and rainy season had similar results. Producer’s and user’s accuracy were for the gallery
forest the highest using S1 and TanDEM-X, too. For cerrado denso, the best user’s accuracy was
achieved with S1 and TanDEM-X classification. Highest producer’s accuracy was obtained by using S1
and ALOS-PALSAR 2 dual polarimetric images as input for the classification. This combination was also
the best for the secondary forest, paired with ALOS-PALSAR 2 dual polarimetric and ALOS-PALSAR 2
full polarimetric. Here, TanDEM-X and ALOS-PALSAR 2 full polarimetric images reached the highest
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user’s accuracies. The highest producer’s and user’s accuracy for cerradão class were achieved with
ALOS-PALSAR 2 dual polarimetric and ALOS-PALSAR 2 full polarimetric classification (Table 7).

Table 7. Producer’s and user’s accuracy of classifications based only on combinations of SAR sensors
for the four Cerrado types. All data acquisitions during the dry and rainy seasons were considered.

Rainy + Dry Seasons Cerrado Denso Cerradão Gallery Forest Secondary Forest

Producer’s accuracy
Sentinel 1A + TanDEM-X 53.85% 40.85% 94.81% 67.72%

Sentinel 1A + ALOS2 dual 55.24% 44.72% 66.44% 100.00%
Sentinel 1A + ALOS2 full 47.90% 36.97% 92.04% 67.02%
TanDEM-X + ALOS2 full 43.36% 42.61% 78.89% 78.95%

ALOS2 dual + ALOS2 full 41.96% 51.41% 40.14% 100.00%
User’s accuracy

Sentinel 1A + TanDEM-X 71.96% 37.54% 76.75% 73.11%
Sentinel 1A + ALOS2 dual 65.29% 44.88% 76.19% 77.66%
Sentinel 1A + ALOS2 full 59.57% 40.70% 68.56% 71.27%
TanDEM-X + ALOS2 full 56.36% 39.41% 67.66% 80.36%

ALOS2 dual + ALOS2 full 45.63% 46.79% 58.29% 77.03%

Furthermore, the polarization of radar sensors is shown to be an important factor for the Random
Forest classification. The intensity of cross-polarized HV polarization PC1 images were one of the most
important variables in 60% of the classification, which used radar sensors.

3.2.4. Summary of the Classification

The three highest overall accuracies and kappa values belonged to S2, S2 with TanDEM-X, and to
the combinations of all images for the dry and rainy seasons. Nevertheless, the range of confidence
interval shows different results compared to the overall accuracy and kappa values. The three narrowest
ranges, which indicate good precision, belong to all images of the dry and rainy season, all images of
the dry season and S2 with S1 from the dry and rainy season classifications (Table 5).

The variable importance for the classifications that combined optical and radar images showed
that PC1 of Bands 11, 12, and 5 from S2, PC1 of ALOS-PALSAR 2 dual polarimetric VH descending
orbit, PC1 of ALOS-PALSAR 2 dual polarimetric HH descending orbit, coherence of TanDEM-X, and
the PC1 of contrast VH from the rainy season of Sentinel 1A images were the most important variables
during the Random Forest classification.

4. Discussion

The results showed the importance of integrating satellite images from different sensors to classify
the forest and non-forest area. The Program for the Estimation of Amazon Deforestation (PRODES)
is the most important project that has been conducting satellite monitoring of deforestation in the
Legal Amazon, producing annual deforestation rates in the region, using Landsat images (30 m spatial
resolution). Comparing the data of forest areas from the PRODES project with the results of our work,
it is possible to verify a high underestimation in the forest areas, mainly in the classes gallery forest
and cerrado denso. The PRODES estimated an area of 12,702 ha of forest, and our work estimated an
area of 27,326 ha. This difference can be associated to the different spatial resolution used in PRODES
(30 m) and in our study (10 m).

Optical images are largely used to map vegetation types in the Cerrado biome. In our results,
S2 classifications showed the highest overall accuracy and kappa values. The application of S2 images to
map vegetation types in the Cerrado biome is new. In general, Landsat is the most common sensor used
to discriminate vegetation types in the Cerrado. Nascimento and Sano [23] had 85% overall accuracy
for mapping vegetation types in this biome. The authors used Landsat 7 ETM+ images to discriminate
the Rupestrian Cerrado (Savanna formation) in the Chapada dos Veadeiros National Park in Goias
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State, which can be difficult due to the spectral confusion with other types of Cerrado vegetation. The
optical bands located in the red and NIR wavelengths showed high importance and contribution to
the discrimination of vegetation type, as was visible in our results (Tables 3 and 4). Nascimento and
Sano (2010) [23] agree on the importance of VIS and NIR regions for characterizing forest areas, as the
vegetation has higher reflectance in this wavelength range and is thus more sensitive. Additionally,
the number of optical images in ours and other studies helps the increase of discrimination power of
different vegetation types, due to the unique spectral signatures of the plant during the year [64,65].
The optical data are certainly useful to map the vegetation type in Cerrado; however, these images are
usually not available during the rainy season and the optical data cannot extract information from the
structure of the forest [66]. Moreover, the availability of images in the rainy season would allow for a
higher temporal resolution, which is crucial to better discriminate the vegetation types in the Cerrado
biome due its high seasonality. Additionally, in dense areas of vegetation, the optical sensor is usually
saturated due to the low optical depth penetration through these areas, affecting the mapping of the
various vegetation types. There are important projects assessing the land use of the Cerrado biome,
such as the TerraClass Cerrado project, which produced a map of the land use of the Cerrado biome.
However, the project had great difficulties to discriminate the different types of vegetation, which is
important for the preservation of biodiversity in this region. Nevertheless, TerraClass presents another
step in the challenge of mapping the different types of vegetation in the Cerrado [29].

The use of radar images can be a solution to overcome the lack of image availability in the rainy
season and the high saturation of optical images in areas of great biomass density. In our radar,
classification results from the dry and rainy seasons, TanDEM-X (X Band) and ALOS-PALSAR 2 (L
Band) dual polarimetric classification from the dry season showed the highest overall accuracy and
kappa values. The influence of vegetation scattering mechanism dependencies is strongly dependent
on the wavelength and polarization of the sensor. In the short/intermediate wavelengths, such as X
and C Bands, backscattering represents the radiation interaction of canopy, leaves, branches, secondary
branches, and part of volumetric scattering (inside crown). Longer wavelengths, such as the L and
P Bands, have the capability for deeper penetration. Bigger vegetation components such as trunks,
crown, ground, and branches interact with these lower wavelengths. According to the results for the
dry season, L Band dual polarimetric images had the highest overall accuracy and kappa values were
comparable to the classifications that used single sensor (X and C Bands). The study area is mostly
forested. In these areas, radar signals are more likely to be saturated in the X and C Bands compared to
the L Bands [67]. The polarization controls the types of components that interact with the radiation. In
our study, the L Band cross-polarized HV polarization was the most important variable that contributed
to the random classifier in the best classification. This agrees with the fact that cross-polarized images
have direct relation with volumetric scattering, and are therefore sensitive to forest structure [68]. There
are few studies in the Cerrado biome using only radar images. Sano et al. [34] used the L Band from
JERS-1 SAR data to map the different types of vegetation by analyzing the backscattering coefficient
values. The study could well separate the grassland, mixed grass/shrub/woodland, and woodland in
the state of Distrito Federal.

The results of the CI 95% OAA showed the importance of the fusion between optical and radar
data to map vegetation type in the Cerrado biome, since the confidence interval with the narrowest
range belonged to the classification that used all images from the dry and rainy seasons, where the
narrower the interval, the more accurate the classification. The Cerrado vegetation has one of the
largest forest diversities, consequently the combination of different sensors (optical and radar) and
spatial resolution (low, medium, and high) results in a great improvement in the accuracy [32]. Of the
three classifications that obtained the highest values of accuracy and kappa, two used radar and optical
images. This showed the importance of the integration of different sensors in improving the mapping
of forest types in Cerrado. A similar result was reported by Sano et al. [38], who combined optical and
radar images to improve the classification of different vegetation types in the Cerrado biome. The study
had a high overall classification accuracy, which used both sensors in regions of savanna and grasslands
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formations. Sano et al. [38] used data from the dry and rainy seasons and showed the importance of
the time series in improving the classification of different types of vegetation. Additionally, Sano et
al. [38] showed better performance of radar data (JERS-1 SAR) compared to optical data (Landsat).
In contrast, our results showed that optical data performed better for classification, compared to the
radar data. However, this study used a higher number of radar images using L Band compared to
our study, which increased the efficiency of mapping vegetation, due to the sensitivity to identify the
various structures of the forest, consequently better distinguishing the type of forest, as reported by
Lucas et al. [69], Garestier [70], and Santoro [71]. Carvalho et al. [37] used images from ALOS-PALSAR
and Landsat to map the different types of vegetation and the results agree on our findings. The highest
overall accuracy and kappa values were from the S2 classification; therefore, in our results, the use
of radar images did not reach the highest accuracy and kappa values. Carvalho et al. [37] showed
that the use of radar data did not improve classification accuracy; however, the study used only one
data from radar imaging. Concerning GLCM textures, the same study showed similar results. Grey
Level Co-occurrence Matrix textures images had a high variable importance during the Random Forest
classification, in particular for entropy, which showed the disorder of GLCM elements. This may be
related to the differences in the backscattering of the vegetation type classes.

Regarding the user’s accuracy, the secondary forest was better classified using optical images,
whereas the other three classes were better classified using optical and radar images. The optical
bands were the most important variables for the RF classifier. The texture images were the second
most important ones. Several authors presented similar results achieved in this study [62,72,73]. All
mentioned studies showed an improvement in the separability of land cover types employing texture
images. The coherence image from TanDEM-X was the third most important variable. Schlund et
al. [72] and Baron and Erasmi [62] showed an improvement in the discrimination of forest against
other classes using coherence as well.

Other studies about classification of vegetation type in the Cerrado biome, such as Mesquita et
al. [35], were in regions where the vegetation has a smaller gradient compared to regions within the
Arc of Deforestation, such as Distrito Federal, Minas Gerais, and São Paulo. The IBGE and the MMA
mapped vegetation types from the whole Cerrado biome. The studies used Landsat images from the
year 2004 and scaling of 1:250,000, which is not enough to detect the gradients of the Cerrado biome.
The mapping of vegetation types in transition zones is still a challenge, due to these not having a clear
border [74]. However, these regions play an important role in the conservation of the Amazon and
Cerrado biome, wherein 75% of the deforestation in Amazon occurs.

5. Conclusions

In this paper, we evaluated the use of optical and radar remote sensing for mapping different
types of vegetation in the transitional area between the Cerrado and Amazon biomes. The method
described in this study improved the mapping of vegetation type in the Arc of Deforestation in the
Cerrado biome and can be applied to create accurate vegetation type maps. We evaluated the use
of four different sensors, one optical sensor (Sentinel 2) and three radar sensors (Sentinel 1, ALOS,
TanDEM-X), for better vegetation type identification and area discrimination, so that these can be used
for better calculations of biomass loss and carbon storage in the high dynamic Arc of Deforestation
in Brazil.

When applying a supervised random forest classification, the highest overall accuracy and
kappa coefficient were obtained using only the Sentinel 2A for classification. However, of the three
classifications that obtained the highest overall accuracy and kappa values, two used radar and optical
images. Bands 5, 11, and 12 of Sentinel 2A, texture images from Sentinel 1A cross-polarization, and
coherence of TanDEM-X were the most important images in order to separate each class, as calculated
by the random forest variable importance. The combination of optical and radar sensor data usually
improves the vegetation classification. Nevertheless, in our study, the single use of optical sensors
was sufficient to discriminate the four forest classes in the study area: cerradão (Open Forest), cerrado
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denso (Dense Woodland), gallery forest, and secondary forest classes in a highly fragmented complex
vegetation biome. Such information is relevant for the upcoming mapping of vegetation types in the
endangered Cerrado/Amazon ecotone.
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Abstract: The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian
territory, but only 3% of this area is protected. High rates of deforestation and degradation in the
woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in
Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal
variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with
local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify
the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of
the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning
approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado
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using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data,
and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination
of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing
variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from
vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square
error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1.

Keywords: aboveground biomass; Cerrado ecosystem; random forest; SAR

1. Introduction

The tropical savanna in Brazil, known as the Cerrado, is the second-largest biome in South
America, covering over 200 million ha or approximately 23% of the Brazilian territory [1]. It has
the highest species richness and biodiversity among the world’s savannas [2,3]. Gradients of tree
density, height, canopy cover, and aboveground biomass (AGB) in the Cerrado vary according to
the climate, fire regime, geomorphology, and soil nutrient availability, resulting in 19 distinctive
ecoregions [4]. The Cerrado is characterised by a mosaic of grasslands, shrublands, and forestlands in
varying proportions, depending on the location [5]. Its physiognomies range from campo (grasslands) to
the typical Cerrado stricto sensu (trees and shrubs up to 8–10-m-high and with an understory dominated
by grass) and the cerradão (forest formations with trees up to a height of 20-m-high) [6,7].

Although the aboveground carbon stock in the Cerrado is lower than that of the Brazilian Amazon,
the conversion of the Cerrado biome to different types of land uses is occurring much faster than
in the Brazilian Amazon, mainly because the Brazilian livestock and agricultural frontier has been
expanding towards the northern parts of the Cerrado over the last decades [8,9]. This trend has been
increasing due to the governmental policies put in place since 2018. The Cerrado land use and land
cover (LULC) mapping project, conducted by the Brazilian Ministry of Environment (MMA), showed
that, in 2013, approximately 43% (88 million ha) of the biome had already been converted to different
land uses, with 55% (111 million ha) still covered by native vegetation [4]. The remaining 2% of
the Cerrado were covered by water bodies and by the class “unidentified”, which included areas
covered by clouds and burned areas [10]. Most of the remaining natural areas have been undergoing
degradation due to unsustainable selective logging and burning activities, often overlooked as threats
to habitat integrity and connectivity [4,11]. According to MMA-2019 [12] and the MapBiomas alert
platform (https://mapbiomas.org/en/project), the Cerrado was the Brazilian biome with the highest
levels of deforestation between October 2018 and March 2019, losing 47,704 ha of native vegetation.
In addition, about 95% of the deforestation alerts were in areas without any authorisation—that is,
without a license for deforestation, which is issued by either the federal or state environmental agency.
More than 1400 ha of deforestation took place in legal reserves (Brazil’s environmental legislation
obligates private property owners to retain a fixed proportion of their total area for native vegetation.
These areas are called “legal reserves”) [13].

Only 3% of the Cerrado is strictly protected by the law within conservation areas [12,14], and the
high rates of vegetation loss and degradation have made the Cerrado the second-largest source of
carbon emissions in Brazil [15]. In this context, it is essential to monitor AGB and carbon stocks
effectively, and reliable maps are needed for climate change mitigation policies [16–18]. Uncertainties
in current vegetation carbon stock estimates over the Cerrado are high, and biomass estimates vary by
more than 50 Mg ha−1 within the same area [19–21]. This demands improvements in the accuracy and
spatial resolution to estimate the AGB in this biome. The challenge here is to take the large latitudinal
gradient and the high variation of the vegetation structure into consideration [15], as well as the paucity
of field studies quantifying AGB over different regions of the biome [15,16].
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Different types of sensors, such as satellite-based multispectral imagers and Synthetic Aperture
RADAR (SAR) systems, as well as airborne light detection and ranging (LiDAR), have been successfully
applied to estimate AGB in the tropics [21–26]. SAR and LiDAR have been increasingly used to estimate
AGB in the last eight years [27–36]. The microwave pulses transmitted by a SAR system, especially
at longer wavelengths such as the L- or P-band, interact with the branches and trunks, providing
information about the forest structure, which is highly correlated to AGB [37–39]. Airborne LiDAR
provides information on the canopy height and canopy cover [40–43], which are good proxies for
woody AGB estimations [44]. The main limitations of LiDAR are that it is still an expensive technology
and it is typically not available for large areas [45]. So far, only a few studies have explored the
effectiveness of multi-sensor data synergy in tropical savannas [46–48]. In contrast, this approach has
been intensively used to study other biomes [49–51].

Most studies focusing on AGB estimations in the Cerrado are based on establishing statistical
models between remote-sensing measurements and field plots (i.e., allometric equations linking in
situ measurements to parameters such as tree biomass) [5,16,52]. However, uncertainties remain
high [53], and studies using remote sensing to estimate AGB in the Cerrado are still limited [53,54].
Bitencourt et al. [53] studied the Cerrado vegetation using optical and RADAR data, showing a
strong relationship between these Earth Observation (EO) datasets and foliage biomass. The same
authors also used Japanese Earth Resources Satellite (JERS-1) SAR observations to estimate the woody
AGB of the savanna using a multiple regression analysis, resulting in R2 = 0.87. Miguel et al. [54]
used artificial neural networks to predict the wood volume and AGB of the savanna using satellite
observations from the Linear Imaging Self-Scanner (LISS-III) sensor onboard the ResourceSat-1 satellite.
The neural network approach showed a good accuracy for both the wood volume (R2 ~0.98 and
standard error of estimate (SEE) ~4.83%) and AGB (R2 ~0.94 and SEE ~8.5%). Schwieder et al. [55]
combined Landsat phenological metrics with aboveground carbon field samples of woodland savanna
vegetation using random forest (RF) regression models to map the regional carbon distribution and to
analyse the relationship between the phenological metrics and aboveground carbon stocks. The model
performance varied among the three selected study areas, with root mean squared error (RMSE) values
of 1.64 Mg ha−1 (mean relative RMSE 30%), 2.35 Mg ha−1 (mean relative RMSE 46%), and 2.18 Mg ha−1

(mean relative RMSE 45%), while the aboveground carbon distributions revealed characteristic spatial
patterns. Biomass maps can be assessed through the biomass product accuracy requirements of satellite
missions dedicated to the estimation of a biomass, such as those from the BIOMASS mission [56].
BIOMASS is aiming at errors smaller than ± 20% in terms of the relative RMSE (rel. RMSE) for AGB
higher than 50 Mg ha−1 and ± 10 Mg ha−1 in terms of RMSE for AGB lower than 50 Mg ha−1.

In this study, we quantified the spatial distribution of the AGB in the Rio Vermelho watershed,
located in a central Cerrado region in Brazil. Using a machine-learning approach, we produced the
first high-resolution AGB map (30 m) of a Brazilian Cerrado area based on a combination of vegetation
inventory plots, airborne LiDAR data, and satellite images (Landsat 8 and ALOS−2/PALSAR-2).
The two-stage upscaling approach (field to LIDAR and LIDAR to EO) was also applied for the first
time in an area of this biome. We used a RF model and jackknife analyses to analyse the importance of
the remote-sensing predictor variables, enabling us to select the best ones to quantify the AGB.

2. Data and Methodology

2.1. Study Area

The study site is located in the Rio Vermelho watershed, which is part of the Rio Araguaia
watershed in the state of Goiás, Central Brazil (Figure 1), and it covers an area of 1,082,460 ha.
The landscape topography is typically lowland, and the Cerrado biome’s climate is semi-humid (Aw
in the Köppen’s climate classification system). It is a tropical savanna with two marked seasons:
a dry winter (from May to September) and a rainy summer (from October to April). This watershed
is characterised by a relatively constant air temperature throughout the year, with minimum and
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maximum temperatures of 20 ◦C and 32 ◦C, respectively) [57,58]. Intense and localised precipitation
and frequent dry spells occur.

 

Figure 1. Location of the Rio Vermelho watershed study area (outlined in yellow in the right panel)
located in the State of Goiás in Brazil and in the Cerrado biome (grey and green areas in the left
overview panel). The location and a zoom of the canopy height light detection and ranging (LiDAR)
footprints within the watershed (each of those covered an area of 16.82 ha) with the location of the field
plots (black rectangles) are also shown. The entire right panel corresponds to the red square in the
left overview panel. The background image corresponds to the© Bing™ aerial photo, a screenshot(s)
reprinted with permission of Microsoft Corporation.

The Rio Vermelho watershed is part of a region in the Goiás State called “Mato Grosso Goiano”.
This denomination is based on the historical extensive and dense native forest cover (typical for the
Mato Grosso State) in the region [59]. This part of the Brazilian Cerrado underwent intensive human
settlement in the 18th century due to the Brazilian gold rush in Central Brazil [60]. Since forests in
the Cerrado are supposedly associated with soils with good fertility, most of the forest-covered areas
have already been converted to other uses, mainly croplands and pastures [59], sometimes resulting in
land degradation. Today, forest formations are restricted to a small and few fragments. Pastures cover
more than 57% of the study area [6], and livestock ranching is the main economic activity in the region.
By 2018, only approximately 33% of the native vegetation persisted [12,61], and the remaining native
vegetation is fragmented [62] and often located in legal reserves areas.

Vegetation

Most of the Cerrado natural vegetation is comprised of savanna formations (cerrado stricto sensu).
However, forest formations such as woodlands, riparian forests, and seasonal forests play an important
role in the carbon balance, because they have a higher carbon stock density [63]. In the Rio Vermelho
watershed, woodlands or cerradão (in Portuguese) and seasonal forest formations predominate as the
forest remnants. The forest inventory sites were located in two fragments of cerradão, and the plots
follow a structural and biomass gradient from: (a) a savanna-cerradão transition zone (lower biomass),
(b) cerradão, and (c) cerradão-seasonal forest transition zone (higher biomass).
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Dystrophic cerradão is typical for deep, highly lixiviated soil (Oxisols and sandy soils) areas with
a seasonal tropical climate, and their canopy height varies between 8 and 15 m. Canopy cover varies
between 50% and 90%, with an understory of shrubs and grass [62]. They are structurally similar to
seasonal forests and differ mainly in species composition, as they are comprised of seasonal forest as
well as wooded savanna species [62,64].

Seasonal forests are often associated with more fertile soils (mesotrophic and eutrophic soils) and
present different levels of deciduousness during the dry season. The canopy height varies between 15
and 25 m, and the forest cover is between 70% and 95% during the rainy season. In the dry season,
the canopy cover can be lower than 50% in seasonal semideciduous forests and lower than 35% in
seasonal deciduous forests [62].

In wooded savannas, most trees are shorter and sparser than in forest formations, allowing for a
continuous herbaceous grassy layer. Wooded savannas are separated into subgroups according to
their structural gradient: cerrado ralo (2–3-m-tall trees with 5–20% canopy cover), cerrado sensu stricto
or typical cerrado (3–6-m-tall trees with 20–50% forest cover), and cerrado denso (8–15-m-tall trees with
50–70% forest cover) [65].

2.2. Methodology

Figure 2 shows the flowchart of the methodology used to produce the AGB map of the Rio
Vermelho watershed. Our reference datasets consisted of ground measurements and airborne LiDAR
data. We used a combination of Earth Observation (EO) datasets from multispectral passive optical
and synthetic aperture radar (SAR) sensors as predictor variables to estimate the AGB of the study
area. The description of each step of the methodology is provided in the following subsections.

Figure 2. Flowchart showing the methodology used to produce the aboveground biomass (AGB) map
of the Rio Vermelho watershed, Goiás State, Brazil. SR = surface reflectance.

2.2.1. Ground Truth Data

We used woody AGB data from 15 (20 m × 50 m) field plots located in cerradão vegetation to
estimate the AGB from airborne LiDAR. These plots were established in 2014, and all trees with a
diameter at breast height (dbh) ≥ 5 cm at 1.30 m above the ground were considered. The tree heights
were measured with a digital clinometer (HAGLOF ECII-D). The basal area in m2 was calculated from
the dbh (basal area = (π/4) ∗ (dbh/100)2) (Table 1). Ten plots were located in the remnants of native
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vegetation in the municipality of Itapirapuã (Figure 1, right panel, top zoom), while five plots were
located in the municipality of Goiás (Figure 1, right panel, lower zoom).

Table 1. Floristic and structural characterisations of the plots located in fragments of the native Cerrado
vegetation in the Rio Vermelho watershed, Goiás State, Brazil. WS-FS = savanna-cerradão transition
zone, TFS = cerradão, FS-SF = cerradão-seasonal forest transition zone; S = species richness, TD = tree
density, DBH = diameter at breast height, H = height, TBA = tree basal area, AGB = aboveground
biomass, and CV= coefficient of variation.

Plot ID
Vegetation

Type
S

(Species)
TD

(Ind. ha−1)

DBH Range
(cm)

(Mean/CV%)

H (m)
(Mean/CV%)

TBA
(m2/ha)

AGB
(Mg ha−1)

Itapirapuã 1 WS-FS 38 990 5.0–36.7
(9.1/56.9)

1.7–11.2
(5.8/26.9) 13.5 19.3

Itapirapuã 2 WS-FS 32 920 5.0–45.5
(9.5/54.7)

1.6–13.4
(5.6/35.5) 10.8 21.2

Itapirapuã 3 WS-FS 45 1030 5.0–29.4
(10.4/54.5)

2.1–14.0
(5.8/35.9) 15.0 24.5

Itapirapuã 4 WS-FS 41 1040 5.3–52.0
(9.8/58.4)

1.3–12.6
(5.5/33.4) 14.4 28.2

Itapirapuã 5 TFS 36 1140 5.0–41.4
(10.3/60.4)

2.0–12.8
(6.0/31.9) 16.4 32.2

Itapirapuã 6 TFS 45 1570 5.0–34.7
(10.5/47.0)

1.5–12.9
(6.5/31.6) 22.6 35.3

Itapirapuã 7 TFS 50 1990 5.0–43.7
(9.1/52.9)

1.8–13.2
(6.5/33.6) 21.9 36.8

Itapirapuã 8 TFS 60 1440 5.0–48.0
(10.4/61.2)

2.6–13.2
(6.1/31.8) 20.1 40.2

Itapirapuã 9 TFS 35 1210 5.0–53.3
(10.1/62.9)

1.8–13.1
(6.5/30.8) 17.0 40.9

Goiás 10 TFS 41 1260 5.0–35.3
(10.9/57.3)

3.6–19.6
(8.7/38.6) 20.5 52.8

Itapirapuã 11 TFS 39 1260 5.0–42.3
(11.2/65.9)

1.7–14.9
(6.3/36.3) 24.3 54.3

Goiás 12 FS-SF 38 1310 5.0–49.3
(11.3/61.5)

2.5–19.3
(9.3/33.3) 24.6 70.4

Goiás 13 FS-SF 26 690 5.0–49.0
(13.0/73.6)

3.4–22.0
(10.2/43.5) 18.3 77.0

Goiás 14 FS-SF 27 820 5.0–44.2
(13.2/63.5)

3.0–38.0
(12.5/48.7) 22.0 98.3

Goiás 15 FS-SF 24 760 5.0–41.7
(14.0/67.3)

2.5–26
(10.9/52.5) 24.4 103.9

As mentioned, the two native vegetation fragments sampled are classified as cerradão. However,
due to the high structural heterogeneity in the Cerrado biome, there were considerable variations
in the structure of the woody vegetation within the sampled plots. The floristic and structural
characteristics of the plots described in Table 1 (and from Figure S1 to Figure S20 in the Supplementary
Materials) corroborate that the sampled plots adequately represent the gradient of floristic-structural
variation inherent to forest formations from all of the Cerrado. Thus, four plots were classified as a
savanna-cerradão transition zone, seven as cerradão, and four as a cerradão-seasonal forest transition
zone [62]. The sampled plots showed a height gradient directly related to the aboveground biomass
stocks of woody vegetation. In the savanna-cerradão transition zone, the mean height was below 6 m,
in the cerradão, between 6 and 8 m, and, in the cerradão-seasonal forest transition zone, above 9 m
(Table 1). These plots were representative of the structural variation found in the cerradão vegetation
of the region, with AGB values ranging from 19 to 104 Mg ha−1 (Table 1).

In tropical ecosystems, species diversity is generally very high. Therefore, generalised
(mixed-species) allometric models are more appropriate than species-specific equations [66,67]. We used
the following mixed species allometric model [68] designed for cerradão (N = 87, R2 = 0.94, residual
standard error (RSE) = 0.13 Mg; RSE (%) = 49.83). The model estimates the woody AGB (only live trees
were used) with a diameter at breast height ≥ 5 cm, excluding leaf biomass.

AGB = exp [−12.29 + 2.69 ∗ ln(dbh) + 0.80 ∗ ln(h)] (1)
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where dbh is the diameter at breast height, and h is height.
In our study, these in situ woody AGB estimates were then used to establish an empirical model

to estimate AGB as a function of the structural metrics derived from the airborne LiDAR.

2.2.2. LiDAR Data

We used 60 tiles of airborne LiDAR data (covering a total area of 1009.01 ha) collected by the
Sustainable Landscapes project led by the Brazilian Enterprise for Agricultural Research Corporation
(EMBRAPA). The LiDAR data covered the municipalities of Itapirapuã and Goiás, Goiás State, Brazil.
The flights took place between 20 June 2015 and 7 July 2015. The LiDAR dataset has an average density
of returns of ~45 ppm2 (points per square meter). The average altitude of the flights was ~850 m,
with a field of view of 12◦. Two LiDAR sensors (Optech Orion M300 and Optech ALTM 09SEN243)
were used in these campaigns, but the percentage of flight line overlaps was high (~65%). LiDAR
returns of all 15 plots are shown from Figure S6 to Figure S20 in the Supplementary Materials.

The LASTools software [69] was used to process the LiDAR data and to generate the following
variables derived from the LiDAR point cloud data: DSM (digital surface model), CHM (canopy
height model), DTM (digital terrain model), CC (canopy cover coverage), CD (canopy density), Max-H
(maximum height), Percentile_p15, Percentile_p10, Percentile_p20, Percentile_p30, Percentile_p35,
Percentile_p55, Percentile_p40, Percentile_p45, Percentile_p50, Percentile_p60, and Percentile_p65.
Highly correlated variables were excluded, and the ones containing the most unique information,
CHM, CC, and CD, were used to establish statistical models to extrapolate the spatially limited LiDAR
AGB estimates to both the optical and radar observations (Figure 2).

2.2.3. Optical Data

The United States Geological Survey (USGS) Landsat 8 Collection 1 Tier 1 data consists of surface
reflectance products generated from the Landsat 8 Operational Land Imager (OLI), with 30-m spatial
resolution. The USGS atmospherically corrects the scenes using the Landsat 8 Surface Reflectance
Code (LaSRC), which also uses the C function of the mask (CFMASK) algorithm [70] to generate a
cloud, shadow, water, and snow mask. We selected all the scenes acquired in the period of 2015–2017
(244 scenes) to generate a cloud and shadow-free median temporal composite (Figure 2). In addition to
the spectral bands, we generated a range of vegetation indices that could potentially be representative
for the vegetation canopy structure, seasonality, and a measure of vegetation greenness. These were the
normalised difference vegetation index (NDVI), normalised burn ratio (NBR), normalised difference
moisture index (NDMI), and the soil adjusted vegetation index (SAVI). These indices have previously
been used in similar studies [21,23,71–73].

2.2.4. SAR Data

We used the global 25-m resolution ALOS PALSAR/PALSAR−2 annual mosaics, which are
freely available at https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm. This dataset was
pre-processed by the Japanese Aerospace Exploration Agency (JAXA) using L-band SAR images of the
backscattering coefficient acquired by the Advanced Land Observing Satellite (ALOS) and Advanced
Land Observing Satellite-2 (ALOS-2). The mosaics consist of 10 × 10-degree tiles pre-processed to
correct for geometric distortions (ortho-rectification) and topographic effects [74]. The mosaics were
calibrated to γ0 using the following equation:

γ0 = 10 x log10(DN)2 + CF (2)

where γ0 is the gamma-naught in decibels (dB), DN is the digital number in unsigned 16 bit, and CF is
a calibration constant of 83.0 dB.

We reduced the noise of the mosaics by applying a temporal multi-channel filter [75] with
a 5 × 5-pixel moving average window. Then, we applied a temporal normalisation between PALSAR
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and PALSAR-2 images aiming to correct for soil moisture and sensor differences. For our final
PALSAR-2 composite, we used the median value of the three mosaics (2015, 2016, and 2017) (Figure 2).
We observed a geolocation error of ~80 m on average for the PALSAR-2 mosaics in comparison to HR
(high-resolution) imagery and Landsat 8 scenes. We generated a Sentinel-1 SAR median γ0 composite
using 283 scenes from between 2016 and 2018, and we used this not as an input for our modelling but
as a geolocation reference image. The PALSAR-2 composite was georeferenced against the Sentinel-1
composite using a SAR-to-SAR co-registration. This approach, instead of a SAR-to-optical approach,
was chosen to avoid errors derived from the different viewing geometries of SAR and optical images.
The variables used for this study were the SAR backscatter coefficients (γ0

HV and γ0
HH) and two SAR

indices—namely, the radar forest degradation index (RFDI) and the cross-polarised ratio (CpR) [74].

2.3. Modelling Framework

We adopted a two-stage upscaling method from field measurements to airborne LiDAR point
clouds and from the LiDAR-based estimates to satellite imagery. We estimated the woody AGB of the
field plots and used these as a reference to estimate the woody AGB across the LiDAR footprints using
LiDAR-derived structural variables as a predictor. Our field plots covered a representative range of
flora and structure of the woody vegetation (Table 1) from 19 Mg ha−1 to 104 Mg ha−1. As the LiDAR
point clouds are sensitive to the forest structure, we assumed that these plots could express the physical
and structural variations of the vegetation of the study site, and we allowed the AGB LiDAR model
to extrapolate for values < 19 Mg ha−1. This field-to-LiDAR procedure allowed us to increase our
sampling from the 15 plots to thousands of observations derived from the LiDAR footprint covering a
wide range of woody AGB and vegetation types. We then used these LiDAR AGB, representative for
the vegetation in the region, in combination with EO datasets to estimate the woody AGB over the
entire Rio Vermelho watershed.

The first step was to model the relationship between LiDAR woody vegetation structural variables
and the AGB estimated from the field plots (Figure 2). We generated raster-based LiDAR vegetation
structural variables with using a 1-m pixel size. We then used the average value of the pixels within the
20 × 50-m plots (0.10 ha) to develop our models. As we had a limited number of field plots, we had to
limit the number of variables included in the empirical models as well. Based on a visual exploration
of the relationships between the dependent and independent variables, as well as the distribution of
each predictor, we identified three potential predictors: canopy height model (CHM), canopy density
(CD), and canopy cover (CC). We then used all possible combinations of these variables to find the best
generalised linear model to estimate the AGB based on the Akaike’s information criterion corrected for
a small sample size (AICc). This final model was used to estimate the AGB over the entire LiDAR
footprint at a 30-m spatial resolution (0.09 ha). The next step was to model the relationship between
the estimated LiDAR AGB and the EO datasets. These EO datasets were resampled, co-registered, and
stacked at 30-m spatial resolutions (Figure 2). We used the LiDAR AGB pixels (N = 2,973) as training
and test samples in a regression version of the random forest (RF) algorithm [76] in the Google Earth
Engine [77], which was implemented within a k-fold cross-validation framework [73]. The following
variables were used as predictors in the model: γ0

HV; γ0
HH; RFDI; CpR from the PALSAR-2 data; and

blue, green, red, near infrared, and shortwave infrared bands, as well as NDVI, NBR, NBR2, NDMI,
and SAVI from the Landsat 8 data. RF is a nonparametric machine-learning algorithm that uses a
bootstrap technique to construct multiple decision trees. Jackknife tests were also run to compare the
importance of the predictor variables based on a R2 of the model. Due to the randomness (stochastic
nature) of the RF algorithm, the importance may change for each run. Thus, the variable importance
analysis was run for each k and then averaged to produce the overall importance figures. The test was
performed running each single set of variables in isolation to assess the accuracy of each set. The higher
the R2, the higher the importance of the variable. Then, a set of variables was excluded each time from
the whole set to assess the drop in the variance explained by the model.
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The k-fold cross-validation framework was used to train and validate the algorithm (Figure 2),
maximising the reference data available. Figure 2 shows the overview of the method used to produce
the AGB map and the uncertainty characterisation in the Rio Vermelho watershed. The whole reference
dataset was used for both training and validation purposes. The dataset was stratified by three
AGB levels (low, medium, and high), and randomly sampled into the folds to ensure that all folds
have similar probability distribution functions of the AGB. Then, k-1 folds were used to train the
RF algorithm and to produce the AGB map, while the remaining fold was used for the validation.
The process was then run k times, reusing the folds for training purposes but using them only once for
validation purposes. The final outputs were k AGB maps over the study area. The mean value of the k
AGB maps was used as the final AGB map, and we used the standard deviation (SD) of the k estimates
for any given pixel to generate a prediction error (σprediction) map. This error also accounts for the
representativeness of the sampling sites of the true distribution of AGB in the region [21]. The total SD
(σAGB) was propagated, as explained in Rodriguez-Veiga et al. [29] and Saatchi et al. [21], as follows:

σAGB =
(
σ2

measurement + σ2
LiDAR + σ2

allometry + σ2
sampling + σ2

prediction

) 1
2

(3)

where the measurement error (σmeasurement) of the tree level parameters averaged at the plot scale
was assumed as 10% [78], the LiDAR error (σLiDAR) was assumed as 1.5% (from a 0.11-m instrument
error for an average 7.13 m canopy height), the allometric error (σallometry) was assumed to be 49.83%
(Scolforo et al. [68]), and the sampling error (σsampling) from the variability of AGB within the pixels
was estimated as 12.39% based on Réjou-Méchain et al. [79].

Our k-fold cross-validation assessment followed James et al. [80] and involved the calculation
of the R2, RMSE, rel. RMSE, and the mean bias error (MBE). Aside from the overall assessment,
we also analysed the errors by biomass ranges. Finally, we also compared our AGB estimates to four
other studies [21–23,81] (Table 2). Baccini et al. [23] used multi-sensor satellite data to estimate the
aboveground live woody vegetation carbon density for pantropical ecosystems with a 500-m resolution.
Saatchi et al. [21] mapped the total carbon stock in live biomasses (above- and belowground) in the
tropics using a combination of data from in situ inventory plots and satellite LiDAR samples of the
forest structure to estimate the carbon storage, plus optical and microwave imagery (1 km resolution),
to extrapolate over the landscape. Santoro et al. [81] estimated AGB globally at a 100-m resolution by
combining spaceborne SAR, LiDAR, and optical observations for the year 2010, with auxiliary datasets
from forest inventories—namely, additional remote-sensing observations, climatological variables,
and ecosystems classifications. Avitabile et al. [22] combined two existing datasets of vegetation
aboveground biomasses (AGB) into a pantropical AGB map at a 1-km resolution using an independent
reference dataset of field observations and locally calibrated it using high-resolution, harmonised, and
upscaled biomass maps. For the comparison of our results to these maps, we aggregated all of them to
the same spatial resolution (1 km).

Table 2. Summary of forest aboveground biomass (AGB) maps used for comparison with our study
results. RMSE: root mean square error, rel. RMSE: relative root mean square error.

Study Coverage Year
Spatial

Resolution
Methodology Accuracy/Uncertainty

Saatchi et al. [21] Pantropical early 2000s 1 km
MaxEnt (field measurements,

GLAS data, optical and
microwave imagery)

Uncertainty from ±6%
to ±53%

Baccini et al. [23] Pantropical 2007–2008 500 m Random Forest algorithm (field
data, GLAS and MODIS data)

RMSE = 25 Mg C/ha
for tropical America

Avitabile et al. [22] Pantropical 2000–2008 1 km

Weighted linear averaging
method (biomass reference

datasets, Saatchi et al. [21] map
and Baccini et al. [23] map)

RMSE = 87~98 Mg/ha;
Mean error: almost
null in most cases

Santoro et al. [81] Global 2010 100 m
Water Cloud Model (ALOS

PALSAR, Envisat, Landsat and
field plots)

rel. RMSE = 57.1% and
Bias = 10.6 Mg ha −1

for tropical areas
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3. Results

3.1. LiDAR-Derived AGB Map

Table 3 shows the models tested in this study. The AGB = f(CHM, CC) model was the one that
best explained the field-based AGB variations (Table 3, adj R2 = 0.93, RMSE = 6.74 Mg ha−1, or 13% of
the mean biomass values) and, therefore, was used to predict the AGB over the whole LiDAR flight
footprint. This predicted LiDAR AGB was used to generate training and test samples to run the RF
algorithm to extrapolate the AGB to the EO datasets covering the entire Rio Vermelho watershed.
Although the AGB = f(CC, CD, CHM) model resulted in a slightly smaller RMSE and a higher AIC
than AGB = f(CHM, CC), both models showed the same R2 (= 0.93) and RMSE (6.74 Mg ha−1 or rel.
RMSE = 13%). We therefore opted for the AGB = f(CHM, CC) model, as it is more parsimonious and
only uses two independent variables (Table 3 and Figure S1 in the Supplementary Materials).

Table 3. Model comparison according to Akaike’s information criterion corrected for a small sample
size (AICc). Parameters for each model include: LogLik (log-likelihood), k (number of predictor
variables), AICc (Akaike’s information criterion corrected for a small sample size), ΔAICc (difference
in AICc between the current and the best model), Adj R2 (adjusted coefficient of determination),
and RMSE (root mean square error). The intercept and coefficients, as well as the coefficient of
determination (R2) for each model, are also presented. CHM = canopy height model, CD = canopy
density, and CC = canopy cover.

Model LogLik k AICc ΔAICc Adj R2 RMSE (Mg ha−1)

AGB = −61.92 + 4.88*CHM + 0.83*CC −49.90 2 107.81 0.00 0.93 6.74
AGB = −107.18 + 2.21*CC − 1.26*CD + 6.34*CHM −49.40 3 108.81 1.00 0.93 6.52

AGB = −30.03 + 4.30*CHM + 0.66*CD −50.56 2 109.13 1.32 0.92 7.04
AGB = 2.44 + 6.25*CHM −52.71 1 111.42 3.61 0.89 8.12

AGB = −27.17 − 2.31*CC + 3.22*CD −54.83 2 117.66 9.85 0.86 9.36
AGB = −76.56 + 1.76*CD −56.56 1 119.13 11.32 0.81 10.51
AGB = −173.08 + 2.48*CC −60.72 1 127.44 19.63 0.69 13.86

AGB = 52.34 −69.39 0 142.78 34.97 0.00 24.70

3.2. AGB and Uncertainty Map

The AGB varied from 0 to 90 Mg ha−1 per pixel (Figure 3), whereas the pixel-scale uncertainty
estimated by the error propagation approach ranged from 0 to 49 Mg ha−1 (Figure 4). Figure 5 shows
the averaged variable importance analysis across the k-fold procedure for each set of variables derived
from Landsat 8 (L8) and ALOS-2/PALSAR-2 (ALOS) included in the random forest (RF) model. These
results indicated that the Landsat reflectances composite was the most important set of variables when
predicting AGB. However, the ALOS indices contain more unique information not represented by the
other variables, as shown by the largest decrease in accuracy when the variable was excluded. Figure 6
shows the overall accuracy assessment and Table 4 the assessment by AGB range.

The accuracy assessment between the AGB map predicted from EO and the AGB reference from
LiDAR showed R2 = 0.89, RMSE = 7.58 Mg ha−1, rel. RMSE = 43%, and bias = 0.43 Mg ha−1 (Figure 6).
Our map shows an underestimation of very high AGB (negative bias) and a slight overestimation of
low AGB (positive bias) [28] (Table 4). We also found a RMSE of 6.39 Mg ha−1 (rel. RMSE = 61%) for
AGB lower than 50 Mg ha−1 and a RMSE = 13.41 Mg ha−1 (rel. RMSE = 19%) for AGB higher than
50 Mg ha−1. Details of the accuracy assessment by biomass range are shown in Table 4.
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Figure 3. AGB map (30-m resolution) of the Rio Vermelho watershed in the Brazilian Cerrado, Goiás
State. Zooms on the top right and bottom left of the figure show the details of the variations of the AGB
between the different types of forest formations in the study area. Background image: © Bing™ aerial
photo. Screenshot(s) reprinted with permission by Microsoft™ Corporation.

Table 4. Cross-validation assessment by the AGB range. MBE: mean bias error.

AGB Range

(Mg ha−1)
Number of Pixels

Reference AGB
(Mg ha−1)

Map AGB
(Mg ha−1)

MBE
(Mg ha−1)

RMSE
(Mg ha−1)

Rel.
RMSE

0–20 2084 4.4 5.7 1.3 4.8 109%
20–40 379 29.5 31.8 2.3 10.4 35%
40–60 287 49.3 48.8 −0.5 10.8 22%
60–80 152 69.2 62.6 −6.6 11.4 16%
>80 71 89.2 72.3 −17.0 20.0 22%
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Figure 4. Error map (30-m resolution) for the Rio Vermelho watershed in the Brazilian Cerrado. Zooms
on the top right and bottom left of the figure show the details of the variations of the AGB uncertainty
between the different types of forest formations in the study area. Background image: © Bing™ aerial
photo. Screenshot(s) reprinted with permission from Microsoft™ Corporation.

Figure 5. Averaged variable importance analysis across the k-fold procedure for each set of variables
derived from Landsat 8 (L8) and ALOS-2/PALSAR-2 (ALOS) included in the random forest (RF) model.
The R2 for each single set of variables and all variables together (left) and decrease in R2 for models
excluding a single set of variables (right). ALOS backscatter: γ0

HV and γ0
HH. ALOS indices: radar forest

degradation index (RFDI), cross-polarised ratio (CpR). L8 reflectances: blue, green, red, near infrared,
shortwave infrared-1, and shortwave infrared-2. L8 indices: normalised difference vegetation index
(NDVI), normalised burn ratio (NBR), NBR2, normalised difference moisture index (NDMI), and soil
adjusted vegetation index (SAVI).

138



Remote Sens. 2020, 12, 2685

Figure 6. Cross-validation between the AGB map predictions and AGB reference data derived from the
LiDAR point clouds. The black dash line corresponds to the y= x line. RMSE: root mean square error.

Figures 7 and 8 show the comparisons between the AGB estimates produced in our study and four
other studies [21–23,81]. Although these maps were estimated using different methods and at different
resolutions over the pantropical area, it is interesting to observe how the different data products
compared to each other. While this study and Avitabile et al. [22] presented probability distribution
functions skewed towards low biomass ranges, other studies [21,23,81] showed distributions tending
towards much higher AGB levels, with averages two to three times larger than those found in this
study and by Avitabile et al. [22] (Figure 7). Figure 8 shows that the datasets from [21,23,81] did not
adequately represent all the variations that exist in the area due to the lower spatial resolution and, also,
generally showed a greater overestimation of the AGB. Although Santoro et al. [81] provided more
details in terms of the distribution of AGB in comparison with the other three maps, their map still
overestimated the AGB compared to our results. In the map developed in this study, one can observe
the AGB variation in detail, which is corroborated by the observed high coefficient of determination
(R2 = 0.89) between the AGB reference datasets and the final AGB map.

Figure 7. Distribution of the AGB intervals, average, and total AGB observed in this study and in four
comparison maps for the Rio Vermelho watershed, Goiás State, Brazil. All the maps were resampled to
1-km resolutions.
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Figure 8. AGB maps over part of the Rio Vermelho watershed, Goiás State, Brazil produced by this
study (30 m) (A) and by Santoro et al. [81] (100 m) (B), Baccini et al. [23] (500 m) (C), Avitabile et al. [22]
(1 km) (D), and Saatchi et al. [21] (1 km) (E).

4. Discussion

In 2014, Brazil submitted a greenhouse gas (GHG) emission report (Forest Reference Emission
Level (FREL) for Reducing Emissions from Deforestation for REDD+ under the United Nations
Framework Convention on Climate Change (UNFCCC)) [82] as part of the country’s commitment
to reduce GHG emissions from deforestation in the Amazon (FREL Amazonia). Brazil indicated in
that report that its national report would be the sum of the FRELs for each of the six Brazilian biomes.
The FREL report for the Cerrado biome (FREL Cerrado), together with the FREL Amazonia, showed
that emissions induced by land use changes accounted for approximately 73% of the emissions in
Brazilian territory [82]. This shows the importance of the Cerrado biome for REDD+ policies and for
the efforts of climate change mitigation in the country, such as the national inventories initiatives as
part of the Third National Communication of Brazil to the UNFCCC [63].

The reduced number of studies on the quantification and spatial variability of the total Cerrado
AGB stocks limits a full understanding of CO2 emission patterns in this biome. These are especially
critical for local and national climate governance strategies. Appropriate management and mitigation
models will depend on the accuracy of this information. We produced the first high-resolution
continuous map of AGB in an area of the Brazilian Cerrado, making use of a combination of vegetation
inventory plots, airborne light detection and ranging (LiDAR) data, and satellite images (Landsat 8 and
ALOS-2/PALSAR-2). Fieldwork in the Brazilian Cerrado is challenging, time-consuming, and expensive,
and existing field datasets still do not entirely represent the extent of the biome. An alternative to
increasing the sample size is using LiDAR by upscaling the information from field plots (which ideally
should be representative of the analysed ecosystem). This strategy has been used in recent studies in
other forest types [83,84]. We increased our sample size thousands of times, reaching a very high R2 of
0.93 in the AGB LiDAR estimation. This consistent result was essential to allow us to use LiDAR as a
reference for our AGB modelling process using satellite images and machine learning.
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In our study, the RF algorithm proved to be a good strategy to estimate the AGB in the study area
(Table 4 and Figure 6). This result can be attributed to the ability of these techniques to capture the
nonlinearity present in the data, as they can approximate complex functions [85]. This is an important
characteristic for the modelling of vegetation, such as ecological patterns governed by nonlinear and
interactive processes at any ecological scale [85], since they usually present complex behaviours [28].

Current sources of AGB information for the Cerrado are the global and pantropical maps that
have a limited spatial resolution (from 100 m to 1 km) and questionable high estimations for this biome
(Figures 7 and 8) [2]. Figure 7 shows the distribution by AGB intervals, average, and total AGB observed
from our study and the four global and pantropical maps over the Rio Vermelho watershed [21–23,81].
This study and the one conducted by Avitabile et al. [22] presented distributions with an average of
18.66 Mg ha−1 and 16.25 Mg ha−1, respectively. On the other hand, Santoro et al. [81], Saatchi et al. [21],
and Baccini et al. [23] showed distributions tending towards much higher AGB levels, with averages of
33.89 Mg ha −1, 31.12 Mg ha −1, and 58.59 Mg ha −1, respectively. Saatchi et al. [21] and Baccini et al. [23]
found the distributions of the AGB tending toward a normal distribution for the study site, which
was not the case for the map produced by Avitabile et al. [22], Santoro et al. [81], and our study.
Morandi et al. [2] recently calculated AGB values for the Cerrado biome using a large independent
dataset of field plots. The study estimated an average of 20.4 ± 6.0 Mg ha−1 for the central areas of the
Cerrado biome, where this watershed is located, which agrees with our study results. However, global
and pantropical studies showed significantly higher AGB levels in comparison to Morandi et al. [2],
our study (Figure 7), and to the AGB values measured in our field plots. We also observed the tendency
of these products to overestimate the AGB on the lower AGB ranges, which results from the models
attempting to compensate for the underestimation at the higher AGB ranges due to the potential
signal saturation [28]. This agrees with previous studies that have indicated the inconsistency of these
products when compared in several forest biomes [86,87]. Our regional AGB map (Figure 3) takes the
local vegetation structure of the Brazilian Cerrado into account and has a spatial resolution of 30 m.
Overall, the relationship between our reference data and the remote-sensing variables is relatively high
(R2 = 0.89), with a root mean square error (RMSE) of 7.58 Mg ha−1. The accuracy assessment showed
that our map underestimates high AGB levels and slightly overestimates low AGB levels (Table 4).
This result fully meets the biomass product accuracy requirements set by the BIOMASS mission (RMSE
< 10 Mg ha−1 for AGB < 50 Mg ha−1 and rel. RMSE < 20% for AGB > 50 Mg ha−1) [56], with a RMSE of
6.39 Mg ha−1 for AGB < 50 Mg ha−1 and a rel. RMSE = 19% for values > 50 Mg ha−1. It is important to
highlight that we were interested in a representative range for cerradão AGB, including transitions to
other vegetation types.

When analysing the statistical indicators of the goodness-of-fit (RMSE and R2) (Table 4) using
the RF technique, a higher accuracy was achieved for the AGB range > 40 Mg ha−1. However, even
though we are confident in our AGB estimations, we have to be cautious with the estimations of AGB
values < 19 Mg ha−1, areas that are not covered by woody vegetation (e.g. grasslands, agriculture, and
bare soil), as our field-to-LiDAR AGB model was developed using field plots located only in woody
vegetation areas. In Figure 6, we can observe an underestimation of the highest AGB ranges (AGB >
80 Mg ha−1), which is also reflected in the negative bias for this high AGB level (Table 4). The range
of predictions random forest regression can make is bound by the highest and lowest values in the
training data. This can lead to overestimations in the lower value range and underestimations in the
higher range [88]. The scatterplot between the satellite AGB estimates from our results and the LiDAR
AGB showed this effect with the slight underestimation of high AGB (Table 4 and Figure 6). This effect
was also observed in the studies of Nunes and Görgens [88] and Zhang and Lu [89].

It is reported that machine-learning techniques can provide more accurate estimates than
classical regression models [88]. Silva et al. [90] evaluated the use of machine-learning techniques
and mixed models to estimate the volume and AGB of individual trees in the Brazilian Cerrado.
The machine-learning techniques presented, and mixed-effect models, showed similar and highly
accurate results (R2 = from 0.97 to 0.99 and RMSE = from 12% to 13%) [58]. According to Silva et al. [90],
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because the modelling of forest resources commonly presents complex relationships among the variables,
nonlinear mixed-effects modelling (NLME) and machine-learning techniques such as RF, adaptive
network-based fuzzy inference systems (ANFIS), and artificial neural networks (ANNs) may be good
alternative modelling techniques. In our study, using RF, we produced an AGB map of an area in the
Brazilian Cerrado with a R2 of 0.89 and RMSE of 7.58 Mg ha−1. Previous studies tried to estimate
the AGB in savannas using satellite data and reached performances lower than the results from our
work [54,91,92].

Over the last decades, several studies have used SAR, especially ALOS PALSAR L-band radar
images, to estimate the AGB of tropical savannas. Mermoz et al. [93] used ALOS PALSAR data to map
the AGB in savanna ecosystems in Cameroon. They argued that L-band PALSAR mosaics are suitable
for the retrieval of savanna AGB (typically less than 100 Mg ha−1) at the national and continental scales.
In a similar study, Carreiras et al. [27] tested a combination of field data and ALOS PALSAR backscatter
intensity to reduce the uncertainty in the estimation of vegetation AGB in the Miombo savanna
woodlands of Mozambique (East Africa). They applied a machine-learning algorithm, resulting in a
good fit and accurate model (R2 = 0.95 and RMSE = 5.03 Mg ha−1). However, since they used bootstrap
samples in combination with a cross-validation procedure, the reported cross-validation statistics could
be overoptimistic [22]. A combination of datasets from different sources, such as in this study, proved
to be efficient when the goal was to reduce uncertainties in the AGB estimates. Recent studies have
explored the combination of different data types. Braun et al. [91] used passive and active microwaves
to estimate the AGB of savannas. They introduced the integration of passive brightness temperature
as an additional variable for AGB estimation, based on the hypothesis that it contains information
complementary to the microwave backscatter coefficient from active sensors.

As we found in our work, many studies have shown the advantages of combining optical and
SAR datasets using machine-learning techniques such as RF for AGB estimations. The optical data
are sensitive to the biophysical properties of the vegetation, and radar data are more sensitive to
the electrical and geometrical information of the vegetation—more specifically, the moisture content
and vegetation structure. Forkuor et al. [46] showed in a recent study that combining field inventory
data with Sentinel 1 (SAR) and Sentinel 2 (optical) to estimate the AGB in the West African dryland
forest (tropical savanna and woodlands) using a RF algorithm performed much better than either
one of them alone, reaching a R2 of 0.90. This corroborates our results, which have also shown an
improvement in accuracy using the combination of SAR and optical datasets rather than using either
one individually. Our study also showed the highest performance (R2 = 0.89) when all variables were
included. The variable importance analysis (Figure 5) showed a slightly superior R2 for Landsat 8
reflectance data (R2 = 0.84) in comparison to ALOS−2 backscatter data (R2 = 0.79) when mapping the
AGB using a single set of data. Landsat 8 indices seem to have an almost identical performance to
the Landsat 8 reflectance data, and there is no significant drop in performance when the indices are
excluded (Figure 6). Conversely, the exclusion of the ALOS indices from the whole set results in the
largest drop of R2 (i.e., −0.07), despite having the lowest performance when used alone (R2 = 0.51).
This agrees with previous studies that found a higher contribution of the optical reflectance data to
estimate AGB, potentially due to the sensitivity of optical data to shadow and moisture [23,29,94],
which can be a key factor in sparse vegetation such as Cerrado. Additionally, the relatively low AGB
levels in the study area might provide a level playing field with L-band SAR data, which usually
presents a sensitivity of the signal to higher AGB levels than optical data [95–99]. Our study highlighted
the need to use remote sensing in combination with local vegetation inventories to effectively quantify
the spatial variation of AGB in ecosystems of the Brazilian Cerrado. Future high-resolution maps of
ABG will likely be more useful to quantify carbon emissions from Cerrado degradations at the local
and regional scales. The methodology presented here has the potential to be used to generate the
first of its kind AGB map of the entire Brazilian Cerrado, which is often neglected in carbon stock
assessments of the South American continent.

142



Remote Sens. 2020, 12, 2685

5. Conclusions

We provided the first high-resolution map of the AGB (30-m resolution) of a Brazilian Cerrado
area using a combination of field inventory plots, airborne light detection and ranging (LiDAR)
data, and satellite images (Landsat 8 and ALOS−2/PALSAR−2). We used random forest (RF) models
and jackknife analyses to study the importance of remote-sensing variables to quantify the AGB of
cerradão at large scales. Overall, the relationship between the reference data and remote-sensing
variables is strong (R2 = 0.89), with a root mean square error (RMSE) of 7.58 Mg ha−1. Spatially, our
map slightly underestimated and overestimated the values of the AGB in few areas of the savanna
(bias = 0.43 Mg ha−1). However, this spatial bias is similar to other AGB maps. Our study highlights
the need to use remote sensing in combination with local field inventories to effectively quantify the
spatial variation of AGB in the ecosystems of the Brazilian Savanna.
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Figure S1: One-on-one relationship between the selected airborne LiDAR predictors (CC (%): canopy cover; and
CHM (m): canopy height model) and the mean AGB values measured in the field plots (Mg ha-1). Figure S2
to Figure S5: Field photos of natural vegetation found in the Rio Vermelho watershed. Figure S6 to Figure S20:
LiDAR returns.
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Abstract: Widespread in the subtropics and tropics of the Southern Hemisphere, savannas are highly
heterogeneous and seasonal natural vegetation types, which makes change detection (natural vs.
anthropogenic) a challenging task. The Brazilian Cerrado represents the largest savanna in South
America, and the most threatened biome in Brazil owing to agricultural expansion. To assess the
native Cerrado vegetation (NV) areas most susceptible to natural and anthropogenic change over
time, we classified 33 years (1985–2017) of Landsat imagery available in the Google Earth Engine
(GEE) platform. The classification strategy used combined empirical and statistical decision trees
to generate reference maps for machine learning classification and a novel annual dataset of the
predominant Cerrado NV types (forest, savanna, and grassland). We obtained annual NV maps with
an average overall accuracy ranging from 87% (at level 1 NV classification) to 71% over the time
series, distinguishing the three main NV types. This time series was then used to generate probability
maps for each NV class. The native vegetation in the Cerrado biome declined at an average rate of
0.5% per year (748,687 ha yr−1), mostly affecting forests and savannas. From 1985 to 2017, 24.7 million
hectares of NV were lost, and now only 55% of the NV original distribution remains. Of the remnant
NV in 2017 (112.6 million hectares), 65% has been stable over the years, while 12% changed among
NV types, and 23% was converted to other land uses but is now in some level of secondary NV.
Our results were fundamental in indicating areas with higher rates of change in a long time series
in the Brazilian Cerrado and to highlight the challenges of mapping distinct NV types in a highly
seasonal and heterogeneous savanna biome.
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Remote Sens. 2020, 12, 924

Keywords: Cerrado; land cover; grasslands; forests; monitoring; random forest; spectral indexes;
vegetation seasonality

1. Introduction

Widespread in the subtropics and tropics of the Southern Hemisphere, savannas cover
approximately 20% of the Earth’s terrestrial surface—around 65% of Africa, 60% of Australia, and 45%
of South America [1,2]. They are naturally heterogeneous in terms of climate, soil, biodiversity, and
threats posed by human activities and land occupation [3]. This heterogeneity is a consequence of
varying edaphic and climatic conditions, occurrence and frequency of fires and the impacts of herbivore
populations, the latter mainly in the African continent [4,5]. These variations result in the provisioning
of a myriad of ecosystem services, with benefits to human populations that depend directly and
indirectly on the savannas as source of food, water, materials, and pollinators [5].

The Brazilian tropical savanna (Cerrado) is the second largest biome in South America, occupying
approximately 2 million km2. Although mainly distributed in the central part of Brazil, the Cerrado
presents a large latitudinal and longitudinal variation, resulting in different ecoregions [6]. It is formed
by a mosaic of open grasslands, shrublands, savanna woodlands, deciduous or semi-deciduous
forests, and evergreen riparian forests [7]. It is the most biologically diverse savanna in the world
and is considered one of the global hotspots for biodiversity conservation, as it is under severe
human-induced threats [8,9]. The Brazilian Cerrado has already lost half of the biome to croplands
and planted pastures [6,10,11], and the biome currently holds strategic importance for the Brazilian
economy, owing to the production of agricultural commodities. The rate of conversion of native
Cerrado vegetation (NV) is up to two times the conversion observed in the Amazon in the past five
years [12], and most of the native vegetation conversion tends to occur in areas with dense vegetation
(favorable climate and soil conditions) and flat terrains (suitable for mechanized farming) [13].

The conversion of NV has significant impacts on ecosystem functioning, such as regional climate
regulation, hydrological stability, and biogeochemical cycles, associated with the loss of significant
carbon stocks and the replacement of biodiverse ecosystems, presenting heterogeneous canopy and
deep root systems with shallow-rooted monocultures [11,14].

It is, therefore, crucial to understand the spatial and temporal dynamics of land conversion taking
into account the three main Cerrado vegetation types (grasslands, savanna, and forests), as differences
in carbon stocks and water fluxes are related to the degree of woodiness of the vegetation. In that
sense, a long time series of remotely sensed data with high to medium spatial and temporal resolutions
provide the means to better understand the ongoing land cover processes in the biome in order to
support decision making regarding its conservation [13,15].

The lack of systematic land use and land cover (LULC) maps for the Cerrado biome is partially
because of the difficulty in classifying highly complex gradients of natural vegetation with important
differences in woody and herbaceous layers [16]. The differentiation of anthropogenic land-use classes
and the natural cover is not always straightforward. The Cerrado is also highly seasonal, with marked
dry and rainy seasons, different vegetation strata, and different levels of deciduousness during the dry
season [6,7], which makes change detection by remote sensing a challenge. The spectral responses
of the vegetation change drastically from the rainy to dry season [17], and can be confused with
land conversion processes. Moreover, disturbances such as fire are common in savannas [18,19],
and pose other challenges to the discrimination of changes related to natural processes from those
associated with anthropogenic conversion and degradation. Further, the spectral responses of savannas
change drastically from the rainy to dry season (Jacon et al. 2017), often being confused with land
conversion processes. Therefore, a method to effectively monitor land cover change over time, taking
into consideration the effects of fire and seasonal variations, still needs to be developed.
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There are several studies that have aimed to distinguish and map NV types in the Cerrado using
moderate to low spatial resolution imagery [6,15,20–26]. Other initiatives have provided snapshots
of Cerrado LULC at specific points in time. They include the following: Project of Conservation and
Sustainable Use of the Brazilian Biological Diversity (PROBIO) from 2002 [26]; TerraClass Cerrado
Project from 2013 [27]; Brazilian Foundation for Sustainable Development (FBDS) from 2013 [28];
National GHG Inventory Initiative, from 1994, 2002, and 2010 [29]; and the Brazilian Institute for
Geography and Statistics (IBGE), from 2000, 2010, 2012, and 2014 [30] (Table S1). Therefore, the mapping
efforts conducted so far for the biome have been done considering either a single year, a smaller
area, or a short time interval, at low to moderate spatial resolution satellite imagery, and usually not
distinguishing the three Cerrado NV types. Although quite challenging, an extended yearly time series
of the spatio-temporal dynamics of the different Cerrado vegetation types using moderate spatial
resolution satellite images still needs to be produced.

In this paper, we present a novel method for mapping the changes in Cerrado NV cover using
Landsat imagery, which can be applied to other highly seasonal biomes. Landsat time series are
the most suitable dataset for monitoring spatial and temporal dynamics because of their moderate
spatial resolution (30 m), 16-day repeat pass, and the availability of historical data since 1985, with
basically the same acquisition mode (similar spatial, spectral, and temporal resolutions, and same
swath width) [31,32]. The drawback here is the number of scenes necessary to cover the entire
biome (approximately 120 Landsat scenes) which is time-consuming in terms of downloading and
image interpretation. With the recent development of cloud computing platforms (e.g., Google Earth
Engine) [33,34], entire series of satellite images such as from the Landsat mission can be easily accessed,
processed, and analyzed in a fully automated way. Within this context, the objective of this study
was to map three decades of changes in native Brazilian Cerrado vegetation using a machine learning
approach, based on Landsat time series obtained and processed in the Google Earth Engine platform.
The image processing involved empirical and probabilistic decision tree classification and was based
on spectral metrics that indicated seasonal and phenological variations, previously assessed using
available field plot data. These maps were used to retrieve the temporal dynamics of the NV types,
including loss and gain (NV net loss), to indicate the level of stability, and to identify the NV areas that
have faced natural and anthropogenic changes over the last 33 years (1985–2017).

This effort is part of the MapBiomas project (https://mapbiomas.org), which aims to generate
annual land use and land cover classification of Brazil using machine learning algorithms available in
the Google Earth Platform. The project is a collaborative network in which different expert groups are
responsible for the mapping of different Brazilian biomes and/or cross-cutting themes. The project is
in constant development and methodological improvement, and has so far launched six collections.
Collection 1.0 covered the period of 2008 to 2015 (published in 2016). Collections 2.0 and 2.3 covered
the period of 2000 to 2016 (published 2018), while Collection 2.3 was the first time that the random
forest algorithm was applied. Collections 3.0 and 3.1 expanded the period covered to 1985–2017.
The work presented here consists of the methodology for mapping the native vegetation for the Cerrado
biome in Collection 3.1, and our results comprise the final integration of our classification with other
cross-cutting themes (e.g., pasture, agriculture, coastal zone, and urban infrastructure). All resulting
maps and methodologies are freely available on the MapBiomas platform, to be downloaded and
replicated to other regions in the world.

2. Materials and Methods

2.1. Study Area

The Cerrado biome occupies more than 2 million km2, with ecotonal transitions with the Amazon
(tropical rainforest), Caatinga (semi-arid), Atlantic Forest (coastal tropical forest), and Pantanal
(wetland) [35]. It ranges over 10 Brazilian states (Bahia, Goiás, Maranhão, Mato Grosso, Mato Grosso
do Sul, Minas Gerais, Paraná, Piauí, São Paulo, Tocantins), and the Federal District. The core area is
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concentrated in the Brazilian highlands, the central part of the country (Figure 1). This biome presents
wide latitudinal variation (22.4 degrees), elevation ranging from sea level to 1800 m, and strong climatic
seasonality (rainy season from October to March and dry season from May to September). The annual
precipitation varies between 600 mm and 2000 mm, increasing from east (border with the semi-arid
Caatinga) to west (boundary with the Brazilian Amazon rainforest). During the rainy season, short
periods of drought (dry spells) can occur, while in the dry season, rainfall levels are deficient, and there
is frequently no rain for three to five months. Relative air humidity can be lower than 15% in July and
August [36]. The average annual temperature is approximately 22–23 ◦C, while the absolute maximum
temperature does not vary much over the year, but can be higher than 40 ◦C [37]. The absolute
minimum temperature, however, varies widely, reaching negative values in May to July, causing frosts
in some regions in the southern part of the biome.

The Cerrado has three predominant NV types, which can be classified according to their degree of
woodiness, from grasslands to savanna woodlands and forests. According to the classification system
proposed by Ribeiro and Walter [7], grasslands can be classified into two types: campo limpo and campo
sujo, characterized by the predominance of herbaceous-shrub species and, to a lesser extent, sparsely
distributed small trees. Savanna vegetation has a variable tree-shrub stratum, with a canopy cover
ranging from 50% to 90%, which allows the coexistence of a grass layer. Forests (forested savannas,
also known as cerradão, and riparian forests) present dense vegetation, with relatively large trees and
low cover of grasses. Total plant biomass and carbon stocks in the Cerrado vary according to the type
of vegetation, with an average of 18.5 t C ha−1 in grasslands, 39.9 t C ha−1 in savannas, and 68.6 t C ha−1

in forests [29]. Data on biomass and vegetation structure from 262 field inventory plots in the Cerrado
compiled by Roitman et al. [38] were used to assess the spectral metrics that defined the different NV
types, as detailed in the next session. The biome was partitioned in a regular grid of tiles compatible
with the 1:250,000 international cartographic charts, where individual classifications were run for each
tile. Each tile covers an area of 1◦ of latitude by 1◦ 30’ of longitude [30], generating a total of 172 tiles.

Figure 1. (A) Location of the Cerrado biome in Brazil and its subdivision into tiles of 1.5 degree by
1.0 degree, and field plots (in red), which were used to explore the spectral differences between vegetation
types; (B) “fisheye” field photographs showing the canopy cover in a forest (top), savanna (middle),
and grassland (bottom); (C) panoramic field photos of forest, savanna, and grassland; (D) R5G4B3
representative Landsat-8 color composites of forest, savanna, and grassland; and (E) average carbon
stock estimates in each vegetation [29].

2.2. Classification Approach

The procedure to generate multi-temporal land cover maps in the Cerrado and to detect changes
over time in the NV followed three main steps. The first step was the production of the year-based
Landsat mosaics for the entire biome by defining the boundaries between the dry and wet seasons
(Figure 2). These mosaics were used to generate spectral metrics, including sub-pixel fractions, indexes,
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and individual spectral bands. The second step included the selection of the best spectral variables for
the definition of a preliminary empirical decision tree (EDT) classification, which in turn was used to
derive a greater feature space to train the statistical decision tree (SDT) classifier. The last step was the
classification of the annual mosaics using a machine learning approach, based on the class consistency
map derived from the previous step.

Figure 2. Workflow of the procedures conducted to map annual native vegetation cover in the Brazilian
Cerrado biome, including the production of the annual mosaics, the definition of the empirical decision
tree classification, and the statistical decision tree classification. L1T TOA = Collection 1, Tier 1
top-of-atmosphere reflectance; SMA = spectral mixing analysis; SEFI = savanna ecosystem fraction
index; GVS = green vegetation and shade; GV = green vegetation; NDFI = normalized difference
fraction index; and NPV = non-photosynthetic vegetation.

2.2.1. Annual Landsat Mosaics

The historical changes from 1985 to 2017 in the Cerrado NV were mapped based on the Landsat-5
Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus (ETM+), and Landsat-8 Operational
Land Imager (OLI). The Landsat top-of-atmosphere reflectance collection (Collection 1 Tier 1 TOA
reflectance), with a 30 m spatial resolution, was accessed via Google Earth Engine (GEE) platform.
The entire image processing procedure was also conducted in this platform for cloud removal,
classification, and post-classification routines (links to the scripts available in the Supplementary
Materials—Table S2).
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For each tile, best-pixel annual mosaics were produced using a combination of pixels from distinct
Landsat scenes gathered during the year in consideration. The temporal window defining the seasonal
limits was evaluated at the state level because of the high variations in annual precipitation over the
extent of the Cerrado. On the basis of the annual precipitation patterns for each state, we identified the
optimum period (OP) of images to compose the annual mosaics, by integrating the six months from
the end of the rainy season to the end of the dry season for each tile (Figure S1). This procedure aimed
to reduce NV commission errors provided by a greener mosaic (for example, by considering images
from the end of the rainy season), or NV omission errors by considering a drier mosaic, composed by
images from the end of the dry season (July to September).

After the definition of the initial and final dates of the optimum period of the mosaic, a cloud and
cloud shadow masking procedure, as well as a data dimensionality reduction based on pixel median,
were conducted. The cloud and cloud shadow pixels were removed by a mask that was produced
with the temporal dark outlier mask (TDOM) (see details of the TDOM in [39]) and complemented
using the quality assessment bitmask (BQA) (see details in https://www.usgs.gov/land-resources/nli/
landsat/landsat-collection-1-level-1-quality-assessment-band). The median algorithm was applied in
each of the original bands, resulting in one final value per pixel and spectral band. The aggregation of
this pixel-based composition of the annual mosaics was used for classification. To better represent
seasonality, we used all normalized difference vegetation index (NDVI) values of the pixel in each year
to produce dry and rainy median bands. The year-based NDVI values of each pixel were divided into
quarters and the median pixels of the quarter with high NDVI were considered the rainy image and
the median of the quarter with lower NDVI were considered the dry image.

2.2.2. Empirical Decision Tree

In order to derive a greater feature space used to train the statistical decision tree (SDT) classifier,
an empirical decision tree was built with the most relevant parameters as inferred by the statistical
evaluation of the input variables. This empirical decision tree (EDT) covered the period of 2000–2016,
and sought to identify areas classified as the same NV over the entire period (stable samples). The factors
selected for the EDT included the median of the original Landsat bands; spectral vegetation indices; and
vegetation, non-photosynthetic vegetation, soil, and shade fractions derived from these bands (Table 1).
A layer of slope data from the ALOS (Advanced Land Observing Satellite) global digital surface model
with a 30 m resolution was also included (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm).

This evaluation was conducted according to our feature space, which consisted of a sample of
pixels selected based on 262 field inventory plots of the three NV types (see Figure 1 for the location of
the plots within the biome) as well as samples from pasture and agriculture fields based on visual
inspection. This procedure sought to identify the best metrics for highlighting the differences between
NV types and major land-use classes such as pasture and agriculture fields (Figure S2). Among
the metrics considered, those with the highest performances were the green vegetation (GV) index,
non-photosynthetic vegetation (NPV) index, and soil and shade fractions, in addition to the green
vegetation and shade (GVS) index and the savanna ecosystem fraction index (SEFI). While GVS
highlights the difference between roughness and greenness of the vegetation, captured as the shade
formed by the tree canopy [40], SEFI represents the combination of the amount of shade provided
by the green vegetation with the non-photosynthetic materials and soils. Both GVS and SEFI were
essential for separating forests and savannas from grasslands and other land use classes (pasture and
agriculture) owing to the combination of vegetation heterogeneity and roughness, the amount of green
material, and bare soil. Except for SEFI, which was developed for this study as an adaptation of the
normalized difference fraction index (NDFI), the sub-pixel fraction images were based on the sub-pixel
modeling and spectral library by Souza Jr. et al. [40].
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Table 1. List of predictive input spectral variables considered to be included in the empirical decision
tree classification. The median statistics were applied to all variables. L5 = Landsat-5; L7 = Landsat-7;
L8 = Landsat-8; Cloud = fractional abundance of cloud within the pixel; OP = optimum period.

Input Variable Meaning/Formula Period Reference

Blue band Band 1 (L5 and L7); Band 2 (L8) Annual, median OP [41]

Green band Band 2 (L5 and L7); Band 3 (L8) Annual, median OP [41]

Red band Band 3 (L5 and L7); Band 4 (L8) Annual, median OP [41]

Near infrared (NIR) band Band 4 (L5 and L7); Band 5 (L8) Annual, median OP [41]

Shortwave infrared (SWIR-1)
band Band 5 (L5 and L7); Band 6 (L8) Annual, median OP [41]

Shortwave infrared (SWIR-2)
band Band 7 (L5 and L7); Band 8 (L8) Annual, median OP [41]

NPV (non-photosynthetic
vegetation fraction)

Fraction of abundance of
non-photosynthetic vegetation

within the pixel
Annual, median OP [40]

GV (green vegetation
fraction)

Fraction of abundance of green
vegetation within the pixel Annual, median OP [40]

Soil fraction Fraction of abundance of soil
within the pixel Annual, median OP [40]

Shade fraction Shade =
100− (GV + NPV + Soil + Cloud) Annual, median OP [39]

GVS (green vegetation shade
fraction) GVS = GV

GV+NPV+Soil+Cloud Annual, median OP [39]

NDVI (normalized
difference vegetation index) NDVI = NIR−Red

NIR+Red Annual, dry, and rainy [42]

SAVI (soil-adjusted
vegetation index) SAVI = 1.5 NIR−Red

NIR+Red+0.5 Annual, dry, and rainy [43]

NDWI (normalized
difference water index) NDWI = NIR−SWIR1

NIR+SWIR1 Annual, dry, and rainy [44]

EVI2 (enhanced vegetation
index 2) EVI2 = 2.5 NIR−Red

NIR+2.4Red+1 Annual, dry, and rainy [45]

SEFI (savanna ecosystem
fraction index) SEFI = GV+NPV−Soil

GV+NPV+Soil Annual, dry, and rainy This study

DifNDFI Di f NDFI = GVS−NPV−Soil
GVS+NPV+Soil Annual, dry, and rainy [39]

Once the main input variables were selected, an EDT classification was semi-automatically created
and calibrated with the variables for each tile and each year. A total of 2924 tiles (172 × 17 years)
were calibrated based on the standard deviation values of each variable for each node, and manually
adjusted using visual interpretation whenever necessary. The EDT is a conditional control statement
algorithm used to support multistage decisions as a tree-like model consisting of a root node, several
interior nodes, and several terminal nodes [42,43]. We used Fmask [45] as the first EDT node, which is a
routine developed within the GEE platform to separate clouds, cloud shadow, and snow. Higher values
of Fmask tend to be cloud and cloud shade, which, in this classification, were classified as non-observed
areas. Non-observed areas on flat terrain were classified as water. Once the non-observed areas and
water were classified, the remaining pixels were classified based on the V1 node defined by the SEFI
variable. The combination of these fractions was used to distinguish the denser vegetation types from
the sparser ones, capturing the differences between forests, savannas, and grasslands (Figure 3).
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Figure 3. Empirical decision tree classification scheme based on the values of the spectral metrics in
262 known field inventory plots in the Cerrado biome, seeking to separate native vegetation classes
(grassland, savanna, and forest) from land use-related classes (mostly agriculture and pastures) and
other non-vegetated areas (e.g., urban areas, bare soils). Values below each split refer to the factors at
each node above it.

The V1 node represented the main node of the EDT classification scheme, where areas with
medium and high SEFI values were classified as forest or savanna with higher tree density. In the
upper branch of this node, the GVS index (V2 node) was used to define the first separation of the
savanna from other classes. This node is followed by the GV index (V6 node), which aimed to separate
young crops, dense forests, and savannas, with higher levels of GV and GVS, from sparser forests
and savannas, and drier, more mature crops. In these last two branches, NPV (V7 node) was used
to separate savanna from forest, as the former has a higher content of non-photosynthetic material
than the latter. Finally, shade (V10 node) was used to distinguish areas classified as forest, but that
were, in fact, non-observed areas shaded by topography. The lower branch of the tree is related to
areas with a more open vegetation structure. Therefore, nodes V3, V4, and V5 were used to separate
open savanna vegetation types from grasslands, and grasslands from pasture and agriculture fields.
This branch (specifically, node V3) also included the definition of non-vegetated areas (e.g., urban
areas, bare soil). The main variables used to define the nodes in this last branch were the combination
of NPV and soil, and the amount of shade, which represents the heterogeneity of surface cover.

Given the lack of robust temporal datasets of land cover maps for the entire Cerrado to be used as
reference for machine learning classification (MLC), we used the resulting annual land cover maps from
the EDT classification from 2000 to 2016 (Mapbiomas Collection 2.0 classification of Cerrado biome
with distinct vegetation types, available in https://mapbiomas.org) as a reference for the distribution of
the random training samples for the MLC. This land cover database also used the TerraClass LULC
map for 2013 [12] as the reference for the spatial distribution of the three main native vegetation types.

2.2.3. Statistical Decision Tree Classification

On the basis of the time series maps produced with the preliminary EDT classification, frequency
maps were built to demonstrate the spatial and temporal consistency of each class, indicating the
number of times in which each pixel was consistently classified as a given class throughout the period
from 2000 to 2016. This routine created a map with frequency values ranging from 0 to 17, which is the
total number of years in that period. The resulting values of this procedure ended up representing the
probability of each pixel belonging to a given class. This probability map was used as the reference
map to collect training samples for the SDT routines.
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The application of the SDT to map NV types over 33 years was based on a machine learning
approach with two main steps. In the first step, a new reference dataset of annual maps was created for
an updated period from 2000 to 2017 (MapBiomas Collection 2.3, available in https://mapbiomas.org).
In this initial SDT classification, the random forest classification algorithm (Breiman, 2001) available in
the GEE platform was trained using 50,000 samples (pixels) per tile selected randomly in the areas
mapped with higher frequency/consistency for each one of the three main NV types. The minimum
number of years in which a pixel would have to be classified to consider a given class as consistent
varied between classes (Table 2). The final number of training samples, therefore, varied between tiles
as a function of the consistent area availability. Each combination of tile and year had its training sample
dataset for application in the random forest classification round (number of trees = 100). The results of
this classification were visually assessed to identify areas of spatial inconsistency between adjacent
tiles. Additional training samples were included from neighboring tiles to increase consistency in areas
of spatial discontinuity.

In the second step, the NV maps resulting from the first random forest classification model were
used to produce a new map of consistently classified NV classes. Over this map, new sampling
points were selected to train the final map classification for the entire period (1985–2017) (MapBiomas
Collection 3.1, available in https://mapbiomas.org). To address the issue of the spatial discontinuity
between adjacent tiles in this final classification, the automatic sampling of points considered a buffer
of 50 km around each tile. Such a procedure ensures that part of the training samples (about 10%) was
representative of the variation found in the contact zone between tiles. Finally, additional samples
were selected visually over the annual mosaics to complement the training samples in tiles with few
consistently classified NV classes. The STD classifications were based on a larger number of spectral
metrics including the ones extracted from the optimum mosaic and used for the EDT (Table 1), as well
as other metrics retrieved for the entire annual dataset collection (Table S3).

Table 2. Probability thresholds were used to define areas of consistent classification for each land use
and land cover (LULC) class. Values inside parentheses indicate the minimum number of years a pixel
had to be classified as a given class to be considered consistent, considering a total of 17 years for
the initial classification from 2000 to 2016, and 33 years for the final classification from 1985 to 2017.
NA = not applicable. SDT, statistical decision tree.

LULC Class

Initial SDT Classification
2000–2016

Final SDT Classification
1985–2017

Probability Threshold
(Number of years)

Probability Threshold
(Number of years)

Forest 88% (15) 100% (33)

Savanna 82% (14) 100% (33)

Grassland 88% (15) 100% (33)

Agriculture/pasture 71% (12) 94% (31)

Non-vegetated areas 71% (12) NA

Water 71% (12) 100% (33)
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2.3. Post Classification

A series of spatial and temporal filters were applied to the resulting maps in the GEE platform.
The spatial filter segmented and indexed the classes of each collection into contiguous regions, which
were subsequently identified and reclassified based on the following criterion: areas less than or equal
to 0.5 ha (i.e., approximately 5 pixels) are reclassified based on the majority of the neighboring classes.
A temporal filter was applied to identify and correct class transitions throughout the time series (i.e.,
3 to 5 consecutive years), as well as to classify pixels with no data caused by cloud cover. For example,
a pixel classified as non-forest in a given year ti (where i = 1985–2017), and forest in year ti − 1 and
ti + 1, was reclassified as forest for the year ti. Several transition rules were defined and applied to be
used in the temporal filter to deal with specific phenological and land use transitions (Table S4).

2.4. Integration with MapBiomas Cross-Cutting Themes

In order to implement the final MapBiomas land use and land cover maps for the Cerrado biome,
the results of the Cerrado NV classification were integrated with other MapBiomas cross-cutting
theme maps (e.g., pasture, agriculture, coastal zone, and urban infrastructure classes), which were
independently developed [41,45]. This integration is hierarchical and follows prevalence rules
to combine the classification results from all themes. For instance, urban areas and agriculture
(i.e., crop fields) had prevalence over NV classes. More details are described in the ATBD
(algorithm theoretical basis document) available at the MapBiomas website (http://mapbiomas.org/).
After integration, the last step is spatial filtering to remove isolated class patches smaller than half a
hectare as well as to remove noise caused by Landsat data misregistration. This spatial filter procedure
is the same as described above in Section 2.3.

2.5. Accuracy Assessment

To assess the accuracy of each year and the NV classes, we used a set of 21,000 independent
sampling points based on visual interpretation of Landsat data by three expert analysts (Figure S3).
The sampling design and visual interpretation were performed by collaborators at the Image Processing
and Geoprocessing Laboratory at the Federal University of Goiás, Brazil (LAPIG/UFG), using in the
Temporal Visual Inspection web platform (tvi.lapig.iesa.ufg.br) [46]. The number of pixels collected to
compose the reference dataset was pre-determined by statistical sampling techniques considering four
tiles of the Cerrado subdivision (described in Section 2.1) as a minimum unit of analysis as well as
six classes of slope, according to the shuttle radar topography mission data. The accuracy analysis
was based on the approach proposed by Stehman et al. [47], using confusion matrix, overall accuracy,
and omission and commission errors. The evaluation of a pixel in a given year was considered valid
only when two or three interpreters agreed on the class observed in that pixel. The accuracy was then
calculated using metrics that compare the class mapped with the class observed by the interpreters
following the good practices proposed by Olofsson et al. [48]. We report year-based accuracy estimates
with circa 5% error for each class in the mapping. The accuracy was reported for two levels of
disaggregation: Level 1, which encompasses all three vegetation types as one class (NV); and Level 2,
which separates all three types of NV.

2.6. Native Vegetation Net Loss

Once the annual NV maps were spatially and temporally filtered, NV net loss was calculated.
The concept of NV net loss considered in this paper comprised the difference between the first and the
last NV maps of the time series, representing the area difference of the Cerrado vegetation types in
1985 in comparison with 2017. Owing to the characteristics of the annual NV maps, which were built
independently for each year, the net loss represented land cover change undergone by the NV over the
past 33 years, accommodating both gains and losses over the whole time series.
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2.7. Stability of Native Vegetation

The stability of the Cerrado NV was defined as the number of times in which a pixel was classified
as the same given class (NV and non-NV) in the 17-year period initial SDT classification and in the
33-year period final SDT classification, indicating class consistency over time. The individual annual
land cover maps were reclassified into four classes (forest; savanna; grassland; and non-NV land
cover classes—agriculture, pasture, water, and non-vegetated areas). Next, they were overlaid and
reduced to a single map to build this class consistency map. The NV stability map was classified into
four classes for the final SDT classification (1985–2017): (i) stable NV areas classified as the same NV
type in the 33 years of analysis; (ii) unstable NV areas, which had been classified as more than one
vegetation type over time; (iii) stable non-NV areas, which had never been classified as NV over the
time series; and (iv) NV areas converted to other non-NV land cover classes at some point in the time
series, regardless of whether they subsequently recovered or not. The stability map was overlaid with
the 2017 NV map indicating the current stable and unstable NV areas as well as the NV areas under
recovery. The unstable NV areas and the NV areas converted to other land cover classes indicate
natural and anthropogenic instability in the biome over the past three decades, respectively.

3. Results

3.1. Accuracy of Native Cerrado Vegetation Mapping

The strategy of using the semi-automatic calibrated EDT to retrieve the first set of annual consistent
NV maps from 2000 to 2016 was fundamental for the improved performance of SDT classification.
It guided the application of the SDT for the entire time series (1985 to 2017) in the highly complex
Cerrado landscape, which lacked reference maps for gathering sets of training sampling points.
The machine learning approach used here, which combined the SDT based on randomly selected
samples in areas previously classified by the EDT as stable over the first time series (2000–2016),
increased accuracy at Level 1 (where all NV types were aggregated as one NV class) by 4%: accuracy
at Level 1 for the EDT alone was 83%, while accuracy for the final SDT classification (built upon the
EDT-derived samples) was 87%.

The average overall accuracy of the final SDT classification at Level 2, analyzing the three NV
classes separately, averaged 71%, ranging from 67% to 74% over the 33 years. The average balanced
accuracy of forest (84%) was consistently higher than the accuracy of savanna (73%) and grassland
(73%) throughout the time series (Figure S4). A confusion matrix was produced by aggregating the 33
annual confusion matrices into a single, average matrix (presented in Table S5). Also, omission and
commission errors for all three classes throughout the time series are presented in Table S6. All classes
presented high commission errors, with higher errors in the grasslands (Tables S5 and S6). These results
suggest a relatively high degree of confusion between savanna and forests, and between savanna
and grasslands, as expected in the naturally heterogeneous Cerrado. This is especially the case of
cerradão, which, even in the field, can be alternately classified as a dense typical savanna or sparse
forest. Confusion was higher with grasslands. Although the accuracy decreased from Level 1 to Level
2, as expected, it increased from the beginning to the end of the time series, and from the first to the
final classifications.

3.2. Spatial and Temporal Patterns of the Cerrado Native Vegetation

The time series maps resulting from the SDT machine learning classification using the random
forest algorithm indicated that, in 2017, 112 million hectares (Mha) (55%) of the original Cerrado range
was still covered by native vegetation (Table 3). Among the three NV types, savanna is the most
abundant. This class covered 52% (52.5 Mha) of the NV area in the biome in 2017 (i.e., 26% of the total
area of the biome), followed by forest and grassland covering 36% (37.9 Mha) and 22% (22.2 Mha) of the
total Cerrado NV, respectively (18% and 11% of the total area of the biome, respectively). Between 1985
and 2017, the Cerrado faced an overall net loss of 24.7 Mha, representing 10% of the original Cerrado
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distribution and 18% of the existing NV in 1985, resulting in 55% of the original NV distribution.
Forests faced a net loss of almost half the total NV loss in the period, with 75% of this loss happening
from 1985 to 2000. For savannas, a net loss of approximately 11 Mha could be observed, but, in contrast
with the forests, the largest proportion of the net loss in the savanna happened after the year 2000 (52%)
(Figure 4). Grasslands remained practically stable throughout this period, with an observed net loss of
1.9 Mha, representing 1% of the original range of the biome (Figure 5).

In the past 33 years (1985 to 2017), the native vegetation in the Cerrado biome has been declining
at an average rate of 0.5% year (748,687 ha yr−1), particularly affecting forests and savannas (Figure 5,
Table 3). Although savannas and forests presented similar amounts of area converted to other land
use classes (around 11.3 million hectares), proportionally, forests lost more NV area than savannas
(23% of forest loss in relation to 18% of savanna loss by 2017). Moreover, the forests presented a higher
conversion rate from 1985 to 2017 (0.7% yr−1) compared with savannas (0.5% yr−1) and grasslands
(0.2% yr−1), as the original area of forest is almost one-fourth of the original area of savanna (Table 3).

Table 3. Native vegetation area in the Brazilian Cerrado at the beginning (1985) and the end (2017)
of the time series, and net loss of native vegetation over the whole period between 1985 and 2017.
Absolute and proportional net loss rates per year were also calculated. NV = native Cerrado vegetation.

NV Type
NV (ha) NV Net

Loss (ha)

NV Net
Loss (%)

Annual Net Loss
Rate (ha yr−1)

Annual Net
Loss Rate (%)1985 2017

Forest 49,265,967 37,908,046 11,357,921 23 344,179 0.7

Savanna 63,810,140 52,456,330 11,353,810 18 344,055 0.5

Grasslands 24,204,833 22,209,899 1,994,934 8 60,453 0.2

Total NV 137,280,941 112,574,275 24,706,666 18 748,687 0.5

Figure 4. Area (hectare) occupied by the three native vegetation types (forest in dark green, savanna
in light green, and grassland in beige) in the Brazilian Cerrado over the time period of 1985–2017.
Mha =million hectares; NV = native Cerrado vegetation.
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The remnant NV is located mostly in the center and northwestern part of the biome, more
specifically in Mato Grosso (19%), Tocantins (18%), Maranhão (15%), Minas Gerais (18%), and Goiás
(12%) (Table S7; Figure S6). These states account for almost 80% of the remaining Cerrado NV in 2017.
Other states such as Bahia, Mato Grosso do Sul, and Piauí accounted for 19% of the current NV area in
the biome (Table S7). Mato Grosso was the state that presented the highest levels of NV lost in the
past 33 years, accounting for one-fourth of the whole NV net loss in the Cerrado from 1985 to 2017
(this state contains approximately 17% of the Cerrado area). The NV type lost that lost the most in this
period in the Mato Grosso was savanna, followed by forest (Figure S7). Other states with important
net loss of NV were Goiás and Mato Grosso do Sul (17% each), followed by Tocantins (13%), Maranhão
(10%), Minas Gerais (8%), Bahia (7%), and Piauí (2%) (Table S7). Most of the NV net loss in Mato
Grosso occurred between 1995 and 2005 (Figure S8), a period with large scale expansion of soybean in
this state [49]. Mato Grosso do Sul and Goiás faced considerable losses in the 1985–1995 time period,
being considered older agriculture frontier. The most recent NV net loss is happening in the states of
the Matopiba region (Maranhão, Tocantins, Piauí, and Bahia). These four states together represent 55%
of the loss of NV that happened recently from 2005 to 2017, representing the new region of Cerrado
where agriculture is growing at the expense of NV loss [11,50].

Only 14% of the remaining Cerrado NV is protected in indigenous lands and conservation units.
Grasslands are the most protected NV types (22% of their total area), followed by forests (17%) and
savannas (9%) (Table S8). In the states where the majority of the NV conversion has already taken
place, the remnant NV is mostly located within protected areas (states of São Paulo, Mato Grosso do
Sul, and Mato Grosso) (Figure 5).

Figure 5. Comparison between the first (1985) and last (2017) maps of the time series, showing the
net loss of the three predominant native vegetation classes in relation to the total area of the Brazilian
Cerrado. Mha =million hectares.

The distribution of the three NV classes and their net losses also varied depending on the regions
of the Cerrado (Figure 6). Forests are dominant in the transition of the Cerrado to the Amazon biome,
for example, in the northwestern portion of the states of Maranhão and western Mato Grosso. These
two areas concentrated the largest NV losses. Savannas are currently concentrated mainly in the
northeast of the biome (states of Tocantins, Bahia, and Piauí). The states of Mato Grosso, Mato Grosso
do Sul, and Goiás presented the largest savanna losses along the time series. Grasslands are mainly
clustered in the state of Tocantins and surrounding areas. Only a few tiles presented more than 50% of
grassland loss over time.
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Figure 6. Temporal distribution of (A) forest, (B) savanna, and (C) grassland per year and per tile from
1985 to 2017 in the Brazilian Cerrado. Tiles with a reduction of over 50% in each NV class over the time
series are highlighted in red.

3.3. Stability of the Cerrado NV Classes

Forests were the vegetation type that presented the highest intra-annual map consistency, mostly
concentrated in the northern portion of Maranhão state and western portion of Mato Grosso along
the border with the Amazon biome (Figure 7; Table 4). Approximately 43% of NV areas mapped
as forest from 1985 to 2017 were consistently mapped as forest from 27 to 33 times. Savanna was
the second NV class in terms of temporal consistency, with 36% mapped consistently for more than
27 years over the biome. Concentration of savanna is found especially in Bahia and Piauí states.
For grasslands, consistently mapped areas comprised 32% of the total grassland mapped, especially
located in Tocantins and in the bordering Mato Grosso and Bahia states. Stable areas are primarily
located in large fragments of NV (Figures 7 and 8).
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Figure 7. Classification probability maps of three native vegetation classes (A—forest, B—savanna, and
C—grassland) in the Brazilian Cerrado, indicating the levels of consistency (low: 1–11 years; medium:
12–26 years; and high: 27–33 years) observed for each class in the 1985–2017 period.

Table 4. Consistency of the native vegetation classes in terms of the number of years in which the
pixels were classified as the same class. Three consistency categories were considered: low: 1–11 years;
medium: 12–26 years; and high: 27–33 years.

Consistency Forest Savanna Grassland

Area (ha) Percent (%) Area (ha) Percent (%) Area (ha) Percent (%)

Low 24,371,387 34 31,295,167 36 21,230,505 48
Medium 16,595,370 23 24,016,090 28 8,947,041 20

High 30,357,159 43 30,689,708 36 14,146,397 32

The stability map of the final SDT classification indicated that 36% of the Cerrado is composed of
stable NV (classified as the same NV class over the entire time series) (Figure 8). Unstable areas of
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NV, which varied among different types of NV class, occupy 7% of the biome. Meanwhile, 38% of the
biome was covered by NV that was converted to other land cover classes (e.g., pasture and crop fields),
and 19% of areas that were classified as non-NV throughout the time series. These results suggest that
the majority of the standing vegetation in 2017 is stable in terms of NV type (65%), while 12% varied
among NV classes (natural instability) and 23% was converted at some point in time to other non-NV
classes and recovered to NV by the end of the period (anthropogenic instability; Table 5).

Figure 8. Analysis of stability of native vegetation (NV) and other non-NV classes in the Brazilian
Cerrado from 1985 to 2017, presenting stable NV and non-NV areas, as well as the unstable areas that
either changed to other NV classes or to other non-NV land cover classes.

Table 5. Out of the area classified as native vegetation (NV) in 2017, the total area that did not change
class (stable), the total area that changed among other NV classes (natural instability), and the total
area that had been previously converted (anthropogenic instability followed by NV recovery).

Native Vegetation in 2017 Area (ha) Percentage (%)

Stable NV 75,678,855 65

NV that changed among NV 14,474,258 12

NV that had been previously converted (NV recovery) 26,357,350 23
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4. Discussion

4.1. Innovative Machine Learning Approach to Map Temporal Dynamics of Cerrado Native Vegetation

The combination of a priori EDT with STD classification was able to adequately discriminate the
three main NV types from a heterogeneous and seasonal biome, which is the case of the Brazilian
Cerrado, over the entire time series of the Landsat mission (1985–2017). The use of cloud computing
and the GEE platform has allowed the generation and calibration of automatic or semi-automatic
methods for continuously monitoring land use and land cover with a medium to high spatial and
temporal resolution over decades [51,52]. This procedure is a milestone in terms of creating robust
baseline reference maps that can be used to train machine learning algorithms for monitoring and
detecting changes in NV classes in complex and highly seasonal landscapes. This is especially relevant
in regions where reference maps for guiding times series classification are insufficient or completely
lacking. This is especially important for savanna ecosystems such as the Cerrado, which are currently
undergoing changes owing to severe pressure for conversion, as well as facing degradation related to
climate change [6,10,11].

Even though the Landsat image collection does not represent the most adequate imagery for
capturing intra-annual or phenological variability of the NV because of the 16-day interval of image
acquisition, it has been commonly used to map changes in NV in highly complex and variable
ecosystems [22,26,53]. In addition, the Landsat mission is the only one that currently provides a
historical perspective of change within a period of at least three decades of imagery with medium to
high spatial resolutions [31,32]. It can also provide a consistent measure of the inter-annual variability
of NV over the entire Earth’s surface. Some other initiatives have generated classification maps for
the entire Brazilian Cerrado biome using Landsat free-archives (Table S1). The most widely used
approaches in Brazil are the visual interpretation and traditional supervised classifications. These
processes are very slow and costly, and classification is possible only in specific time periods [6,12,29,30]
and was never applied to the entire Landsat series. Therefore, the generation of a semi-automatic
method applied to long time series to discriminate the main types of NV present in the Cerrado biome
with levels of accuracy compatible with existing initiatives was innovative and our main goal.

The results of this effort offer, to the scientific community, the first long-term annual dataset of NV
(forest, savanna, and grassland) compatible with some of the few existing single-year NV maps for the
biome. The average overall accuracy at Level 1 of 87% from 1985 to 2017 was similar to that obtained
by Sano et al. [15] in their land cover map of the Cerrado for 2002 (90% overall accuracy), and by the
TerraClass Cerrado Initiative for 2013 (80% overall accuracy). The distinction between NV classes from
other land use types (Level 1 aggregation) presented an overall accuracy of 71%, which was the same
as that reported by Sano et al. [15] (71% overall accuracy), but using much fewer points (315 field data
validation points compared with 21,062 validation points used in this study) and only for a single year
(2002). The accuracy increased from the beginning to the end of the time series, representing a gain of
stability when we have a greater quality and quantity of images available.

The main challenges in distinguishing NV classes in the Cerrado include the misclassification
between grasslands and planted pasture (ca. 8%), as well as the confusion between savannas and
the other two NV types (forest and grasslands) [15]. Savannas are often misclassified as forests
(omission error, ca. 39%), and grasslands are misclassified as savannas (commission error; ca. 46%)
(Table S5). About 20% of pixels classified as forest were, in fact, savanna, while approximately 75% of
the pixels classified as forest in the reference data were correctly classified (Table S5). Even though
we had considerable errors of omission and commission at the edge of the NV types, this long time
series allowed us to identify those areas where the stable vegetation is concentrated, and those where
confusion among vegetation types is expected. This contributed greatly to the definition of the more
unstable areas in the biome, and highlights where the map can and must be improved.

Moreover, the confusion among NV types occurs because they are distributed along a natural
gradient of vegetation structure, with the savannas ranging from dense to very sparse woodlands
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dominated by grasses [7]. The study conducted by Ribeiro and Walter [7], or even the system
of classification of vegetation proposed by the Brazilian Institute of Geography and Statistics
(IBGE), subdivided the Cerrado into at least seven more detailed vegetation types, known as
phytophysiognomies. The classification of these phytophysiognomies, which are defined by specific
ranges of vegetation structure, is even more challenging. One way to improve this classification is by
adding structural characteristics to the spectral components of the NV, such as height. Some studies
have demonstrated the ability of LiDAR (Light Detection and Ranging) technology to differentiate
between Cerrado vegetation types [54,55]. However, this time series represents the best comprehensive
temporal data set on NV distribution in Cerrado.

4.2. Temporal and Spatial Dynamics of the Cerrado Native Vegetation

Up until 2017, remnant NV covered about 55% of the Brazilian Cerrado, although it was very
unevenly distributed over the biome. While NV comprises 90% in the northern part of the biome,
only 15% is left in its southern portions. The area classified as NV in 2017 included some areas of
secondary NV. Although the approach used in this study generates temporally independent annual
land cover maps that do not differentiate primary NV areas from regenerating areas, this proportion of
remnant NV (55%) is compatible with those found in other studies [6,12].

Savannas still represent the predominant NV type in the Cerrado, occupying 52% of the NV
area in 2017. Forests and grasslands occupy 36% and 22%, respectively. The prevalence of savannas
is consistent with the results obtained by other authors [6,12]. This distribution is explained by the
spatial configuration of the Cerrado NV, forming a gradient of mosaics related to a series of continuous
environmental characteristics such as topography, soil, and climate [7].

Over the last three decades, the annual net loss rate of the Cerrado NV was 0.50% per year or
748,687 ha per year, which is 20% lower than the official annual gross deforestation estimates for
the past 10 years (944,521 ha yr−1) [12]. This difference was expected as our concept of NV net loss
includes NV areas that recovered after conversion, while gross deforestation estimates by the National
Institute of Spatial Research (INPE) [12] do not include them. Beuchle et al. [23] reported a 0.60% net
loss rate from 2000 to 2010 for the Cerrado biome, which is comparable to our observed average rate.
Most of the net loss occurring in the first half of the time series (1985 to 2000) was in forests owing to
cropland expansion.

The majority of the NV net loss occurred in the southern part of the Cerrado, in the states of
Goiás, Mato Grosso do Sul, and Mato Grosso (Table S7), and mainly in the early stages of the time
series, so that they are considered as older frontiers of agricultural expansion in the country. In these
regions, most of the remaining NV mapped in 2017 is located within protected areas. The newest
agriculture frontier in the Cerrado, responsible for large-scale deforestation, is located in the northern
part of Cerrado, in a region known as MATOPIBA (southern portion of states of Maranhão and Piauí,
north of Tocantins and west of Bahia) [11,56]. Native vegetation conversion to agricultural areas in the
Cerrado biome is related to biophysical characteristics and infrastructure improvements [57].

Savannas and forests were the most affected NV types in terms of net loss due to the increase
of pastures and agriculture in the biome along with the time series. Even though savannas are the
most abundant vegetation type in the biome, forests faced most of the net loss over the time series.
While savannas lost 11 Mha in 33 years, forests accounted for a comparable net loss in absolute terms,
even though they represent two-thirds of the area of savanna. Grasslands correspond to the areas
mostly unsuitable for agriculture usually owing to them being located over shallow and poor soils, and
despite being mostly unprotected by law [57]. Detecting conversion of grasslands was quite difficult
because of the spectral confusion between native grasslands and planted pastures, usually requiring
observations of phenological timings [26]. These timings are easily missed by monitoring approaches
that do not capture intra-annual changes, which is corroborated by the lower accuracies observed for
this class.
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4.3. Stability of the Cerrado Native Vegetation Classes

In a highly seasonal and heterogeneous biome, vegetation stability evaluation is a challenge that
can be overcome with consistent long-term information. We managed to identify areas where specific
types of NV are dominant, as well as areas with high instability in terms of NV mapping. This strategy
demonstrated that the forests presented the highest consistency over time compared with savannas
and grasslands in the Brazilian Cerrado. On the other hand, grasslands were the NV with the lowest
mapping consistency over time. These patterns are expected and can be explained by the effects of
seasonality on the spectral response of NV types dominated by grasses, which are more susceptible to
drought [15,20]. These results also help to guide further improvements in classifying the unstable NV
areas using either higher temporal and/or spatial resolution imagery.

The consistency maps can be also used to suggest whether the main drivers of instability are
either natural (e.g., seasonality, fire) or anthropogenic (e.g., NV conversion to agriculture). In this way,
we identified that 36% of the Cerrado is covered by NV that was mapped consistently over time as a
specific NV class, so it can be considered as stable. Only 7% of the biome presented NV classes that
were highly unstable in terms of mapping, probably associated with natural disturbances. Other areas
of high NV instability were related to areas that, at some point in time, were converted to other land
uses (e.g., agriculture and pasture), representing 38% of the biome, and were considered anthropogenic.
This analysis suggests that, from 55% of the Cerrado area with NV, only 43% remained as NV during at
least 33 years. When the stability map was masked by the 2017 NV map, it revealed that the majority
(62%) of the NV types were stable over time, while 23% were in the process of recovery. This indicates
that around 12% of the Cerrado biome is currently in the process of regeneration. These numbers are
fundamental for assisting public policies towards Cerrado conservation.

5. Conclusions

This study was the first to apply a combination of EDT and SDT classification techniques for
mapping different types of native vegetation in the Cerrado biome, using a long time series of satellite
data (1985–2017). The use of Landsat archive and cloud computing freely available in the Google Earth
Engine platform allowed the generation and calibration of a semi-automatic method for monitoring
the spatiotemporal land cover dynamics over three decades. We managed to obtain annual-based
estimates of the remnant NV in this biome dominated by a very heterogeneous landscape, marked
seasonality, and intensive human land occupation. The results showed that approximately 45% of the
Cerrado NV was converted into some type of land use and land occupation by 2017. The conversion is
occurring rapidly, especially in the northern part of the biome where most of the remnant NV is found
nowadays. This study also showed some areas where the NV appeared as a mosaic of grasslands,
savannas, and forests, indicating a limitation of Landsat data to discriminate these three vegetation
types properly, perhaps because of its moderate spatial resolution (30 m). Despite our promising
results, discriminating different NV types in highly seasonal and heterogeneous ecosystems such as
the Cerrado remains challenging, especially if the goal is to discriminate between phytophysiognomies
rather than general classes. As a future investigation, we suggest including other satellite data such as
the Sentinel-1 (radar) and Sentinel-2 (optical) images obtained with 10 m spatial resolution and repeat
pass of five days, which are available on the Internet without cost.

Supplementary Materials: The following supplementary materials are available online at http://www.mdpi.com/
2072-4292/12/6/924/s1, Table S1. Characteristics of the existing native vegetation maps covering the entire Brazilian
Cerrado and produced by semi-automatic methods and visual interpretation of varying remote sensing data;
Table S2. Scripts used in the initial and final statistical decision tree classification of the native Cerrado vegetation;
Table S3. Spectral metrics, indexes, and other variables used to train the random forest SDT classification; Table S4.
Rules of the temporal filters applied to classify native Cerrado vegetation. RG = General Rule; RP = First Year
Rule; RU = Last Year Rule; FF = Forest; SV = Savanna; GL = Grassland; AG =Mosaic of Agriculture and Pasture;
AR = Rocky Outcrop; WB =Water; and NO = Non-Observed; Table S5. Confusion matrix of NV classes at level 2.
Other land cover classes include agriculture and pasture fields and non-vegetated areas. UA = user´s accuracy; PA
= producer’s accuracy; Table S6. Omission and commission errors of the 33 classified maps; Table S7. State-level
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distribution of native vegetation (NV) and NV net loss from 1985 to 2017; Table S8. Distribution of the native
Cerrado vegetation (NV) inside protected areas (indigenous lands and conservation units) from 1985 to 2017;
Figure S1. Mean monthly precipitation and normalized difference vegetation index (NDVI) data from forest
and savanna vegetation. Gray rectangle corresponds to the six-month optimum period for deriving the Landsat
mosaic of the Brazilian Cerrado; Figure S2. Boxplots representing the distribution of the dominant land cover
classes of the Brazilian Cerrado over six spectral metrics included in the empirical decision tree classification. GVS
= green vegetation and shade; GV = green vegetation; NPV = non-photosynthetic vegetation; SEFI = savanna
ecosystem fraction index; Figure S3. Location of 21,000 sampling points used for accuracy assessment. Other
=water, non-vegetated, agriculture, and pasture fields; Figure S4. Overall accuracy for the three classifications
(empirical decision tree (EDT), initial statistical decision tree (SDT), and final SDT), considering the aggregated
legend; Figure S5. State-level proportion of native vegetation (NV) in 2017, other non-NV land cover types in 2017,
and NV net loss from 1985 to 2017. MS—Mato Grosso do Sul, GO—Goiás, MT—Mato Grosso, TO—Tocantins,
MA—Maranhão, MG—Minas Gerais, BA—Bahia, PI—Piauí, SP—São Paulo, and DF—Federal District; Figure S6.
State-level net loss of native vegetation (NV) from 1985 to 2017. Mha = million hectares. See Figure S6 for
state identification; Figure S7. State-level native vegetation (NV) net loss in three different periods: 1985–1995,
1995–2005, and 2005–2017. M ha =million hectares. See Figure S6 for state identification.
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Abstract: We investigated the water use of Caatinga vegetation, the largest seasonally dry forest in
South America. We identified and analysed the environmental phenological drivers in woody species
and their relationship with transpiration. To monitor the phenological evolution, we used remote
sensing indices at different spatial and temporal scales: normalized difference vegetation index
(NDVI), soil adjusted vegetation index (SAVI), and green chromatic coordinate (GCC). To represent
the phenology, we used the GCC extracted from in-situ automated digital camera images; indices cal-
culated based on sensors included NDVI, SAVI and GCC from Sentinel-2A and B satellites images,
and NDVI products MYD13Q1 and MOD13Q1 from a moderate-resolution imaging spectroradiome-
ter (MODIS). Environmental drivers included continuously monitored rainfall, air temperature,
soil moisture, net radiation, and vapour pressure deficit. To monitor soil water status and vegetation
water use, we installed soil moisture sensors along three soil profiles and sap flow sensors for five
plant species. Our study demonstrated that the near-surface GCC data played an important role in
permitting individual monitoring of species, whereas the species’ sap flow data correlated better
with NDVI, SAVI, and GCC than with species’ near-surface GCC. The wood density appeared to
affect the transpiration cessation times in the dry season, given that species with the lowest wood
density reach negligible values of transpiration earlier in the season than those with high woody
density. Our results show that soil water availability was the main limiting factor for transpiration
during more than 80% of the year, and that both the phenological response and water use are directly
related to water availability when relative saturation of the soil profile fell below 0.25.

Keywords: plant water availability; tree phenology; phenocams; Sentinel-2; MODIS

1. Introduction

A better understanding of plant water availability and water use is of great impor-
tance for reliable assessments of ecosystem’s resilience to droughts [1]. Water availability is
critical for plant growth, inducing phenological transitions and, ultimately, plant survival.

Remote Sens. 2021, 13, 75. https://doi.org/10.3390/rs13010075 https://www.mdpi.com/journal/remotesensing

173



Remote Sens. 2021, 13, 75

Additionally, information on plant water balance also allows the development of more real-
istic soil water assessment tools and land surface models, which is a widely acknowledged
requirement for research related to the plant–soil–atmosphere continuum [2].

Plant species have their own specific adaptive mechanisms to cope with droughts [3,4],
which are particularly important in water-limited ecosystems such as seasonally dry
tropical forests (SDTFs).

The SDTF is a unique biome that occurs in low-latitude areas of fertile soils with a low
annual precipitation (ranging from about 250 to 1500 mm year−1) and a prolonged dry
season that extends for five to six months [5–7]. The vegetation ranges from tall forests with
closed canopies to scrublands rich in succulents and thorn-bearing plants [7,8]. The long
water-limited period has been shown to be selective for deciduous, thorny, and succulent
plant species that show a marked leaf senescence during the dry season followed by
synchronous leaf flushing at the beginning of the rainy season [3,4,7–9]. The deciduity and
absence of a grassy layer are important characteristics that distinguish SDTFs from other
mild seasonally dry tropical biomes such as the savannas [8].

In South America, SDTFs are largely represented by the Caatinga vegetation, the pre-
dominant vegetation in northeast Brazil and located in a semi-arid region that extends
over 800.000 km2 [10–12]. The climate is predominantly hot and dry, with temperatures
around 26 ◦C and high evapotranspiration (1500 to 2000 mm year−1) coupled with low
annual rainfall (400 to 800 mm year−1) [11,13]. This results in high water deficits, which are
aggravated by the short rainy season that usually lasts three to five months and show
erratic rain episodes [10,13]. The water deficit is even more severe during catastrophic
severe droughts that may last three to five years [11].

For most Caatinga plant species, vegetative and reproductive structures develop
exclusively during the rainy season [3,14]. In fact, the fast metabolic response, which is
unique to the Caatinga, allows species to produce a synchronous leaf flush with the onset
of the rainy season [3,14].

Caatinga tree species are able to cope with long periods of drought by exhibiting
different transpiration-reducing leaf morphological and photosynthetic characteristics.
They also display a considerable variability in wood density and related water storage
properties [3,14]. Lima et al (2012) show a high correlation between wood density and water
storage in Caatinga vegetation and relate these characteristics to a seasonal phenology.
Several studies have shown that high wood density and thick cell walls tend to protect
plants from cavitation but, in general, both are associated with low water storage in stem
tissues [15–19]. On the other hand, low wood density and thin cell walls increase the
chances of cavitation but water storage may be higher and the maintenance of a high water
potential may be prolonged [15–17]. The combination of these diverse plant traits produce
different phenological evolutions throughout the growing season that depend on different
plant water use strategies [18–20].

Eddy covariance (EC) and remote sensing (RS) techniques have been used to evaluate
terrestrial environments because they allow vegetation systems to be studied at differ-
ent scales: from local to global scales. The use of RS is gaining importance as satellites
provide low-cost products and images with increasing spatial and temporal resolutions.
The advances in technology have allowed several RS vegetation indices (VIs) to be used, im-
proving our understanding of temporal and spatial changes in plant communities [21–23].
The direct relationship between water use and phenological response observed by RS
has been used in models that seek to estimate evapotranspiration (ET) and gross primary
production [24], mainly through the use of empirical or semi-empirical parameterisations,
taking advantage of vegetation indices such as normalized difference vegetation index
(NDVI) [25]. This approach is particularly successful in the Brazilian semi-arid regions due
to the strong synchronicity between phenology and plant-water availability [3].

An alternative approach to monitor vegetation phenology is near-surface RS, which uses
in-situ automated cameras (phenocams) [26]. This technique, in combination with EC mea-
surements and remote sensing, has been applied in Brazilian SDTFs [4] to investigate
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the drivers that regulate phenological patterns and vegetation responses to seasonal and
severe droughts.

Regarding water use, EC and RS can be used to estimate ET [25], a flux that en-
compasses processes other than transpiration, such as evaporation of soil water, canopy-
intercepted water, and other free water surfaces. However, RS generally provides discon-
tinuous time series of ET (e.g., due to cloudy conditions) [27]. Moreover, none of these
tools allow direct measurements of transpiration at the individual tree or species level.
Hence, these techniques cannot explain species-specific strategies that are strongly depen-
dent on individual structural, phenological, and physiological traits. For such, in-situ or
near-surface methods make monitoring possible.

Continuous in-situ estimation of transpiration is possible with sap flow sensors.
Among the methods used to estimate sap flow, thermal dissipation probes (TDP) have
been widely used and improved throughout the years [28]. Information on transpiration is
essential for studies related to plant water use, including those in SDTFs [29,30]. Sap flow
measurement techniques can provide time series of diurnal and seasonal water fluxes to
estimate plant water use. The TDP method, suggested by Granier [31,32], is widely applied
to estimate tree transpiration because the sensor system is simple to construct, easy to
install, and relatively inexpensive [33,34].

When analysing time series and patterns of water use, vapor pressure deficit (VPD) has
been considered as the main environmental driver of plant transpiration under most condi-
tions, representing the atmospheric demand Grossiord 2019 [35]. performed continuously-
logged sap flow monitoring experiments in humid tropical forests and observed that
sap flow was highly dependent on VPD. However, for the less humid regions studied,
very high VPD led to a reduction in transpiration as a result of the strong negative depen-
dence of stomatal opening on VPD Grossiord et al. Similarly, Butz et al (2018) monitored
sap flow of both deciduous and non-deciduous species and showed that evergreen species
have a stronger relationship with seasonal VPD variation than deciduous ones, and a
slightly higher dependence of sap flow on soil moisture than on VPD. Overall, these stud-
ies indicate that in more water-limited systems, species will be more dependent on soil
water availability.

Here, we combine several datasets and approaches, as well as ground truth data,
in order to test the efficiency of remote sensing data to monitor a significant physiological
process such as water use. We aim to investigate the relationship between plant water use
and phenology for Caatinga woody plant species at both the species and community level
using different scales: moderate RS spatial resolution, high RS spatial resolution, and near-
surface cameras. In addition, we intend to evaluate the environmental drivers and factors
that limit plant phenology (leaf flush and senescence) and transpiration. We hypothesize
that: (1) phenology at the community level (represented by RS data) and at the species
level (represented by near surface remote sensing data) are fully explained by soil water
availability; (2) RS data for the Caatinga vegetation are strongly correlated to variations in
water use strategies among species; (3) variations in the sap flow signal are fully explained
by changes in water availability.

2. Materials and Methods

2.1. Study Site

The study site (Figure 1) is located in central-northern part of the Brazilian state of
Pernambuco, in the municipality of Serra Talhada (7◦58’12” S, 38◦23’06” W, 455 m a.s.l.).
The soils are predominantly Aridisols Argid and Entisols orthents [36]. The area has a
relatively smooth relief and comprises various xerophilous vegetation types [37]. The local
climate is Bsh (arid-steppe-hot arid) according to the Köppen system in a transition region
to the Aw (winter dry season) [38–40], with a mean annual rainfall of 680 mm yr−1 and a
mean temperature of 23.8 ◦C [40]. The experimental site includes a 50 × 100 m monitoring
plot (Figure 1) which is part of the Nordeste project plot network [41], and a 10 m tall eddy
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covariance (EC) flux tower (site ID BR-CST in AmeriFlux network; 7.9682◦ S, 38.3842◦ E)
located 200 m away from the monitoring plot.

Figure 1. Study site: Map of the study area showing eddy covariance (EC) flux tower location (where the phenocam is
installed), and the monitoring plot (where sap flow and soil moisture sensors were installed); location of the study site in
the context of the Brazilian Caatinga. Spatial resolution: 15 cm.

Our study was carried out from April 2018 to March 2019, during which the in-situ
pluviometer registered a pronounced rainy season from December to April (total precipita-
tion of 499 mm), whereas the dry period lasted from May to November (total precipitation
of 40 mm). Regarding the total rainfall in April, which marked the beginning of our exper-
iment, that month was considered the wet-to-dry transition period. These precipitation
values and their timing are consistent with the normal climate found for this region [40].
Therefore, the results found in this work can be extended to other years with normal rainfall.

2.2. Experimental Strategy

The experimental design is shown in the flowchart (Figure 2). In terms of ground data,
the experimental strategy consists in: (i) measuring the sap flux density (Fd) on individual
tree species found within the monitoring plot and normalizing it among the sampled
species (Fdn); (ii) upscaling the normalized flux density (Fdn) to the level of the plot (or com-
munity; Fdnc); (iii) comparing the Fdn with the soil water availability. The purpose of these
measurements was to evaluate the main drivers affecting the physiological response of
Caatinga trees (i.e., the plant-water availability and VPD). To test the relationship between
plant physiology patterns (sap flow density) and leaf phenology, we used VIs obtained
from different sources. Besides being used as a proxy of leaf phenology, VIs from different
sources were also evaluated in terms of their ability to represent certain physiological
process, such as intra-annual variability of sap flow.
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Figure 2. Flowchart of the experimental design.

2.2.1. Plant Species

A total of 24 species were found in the plot, of which 11 showed a dominance over
1.0: Anadenanthera colubrina (Vell.) Brenan, Aspidosperma pyrifolium Mart. & Zucc, Astron-
ium urundeuva Engl., Cenostigma nordestinum Gagnon & G.P.Lewis, Cereus jamacaru DC.,
Commiphora leptophloeos (Mart.) J.B. Gillett, Croton echioideus Baill., Erythroxylum pungens
O.E.Schulz, Mimosa acutistipula Benth. Piptadenia flava Benth. and Senegalia polyphylla (DC.)
Britton & Rose.

We selected five species to monitor sap flow density, which accounted for 80% of the
total dominance: C. leptophloeos; A. colubrina; S. polyphylla and; A. pyrifolium; C. nordestinum.
All selected species are deciduous and were selected based on their abundance registered in
the inventory of the monitoring plot and the Nordeste project plot network [41], and based
on their relative abundance, as indicated in Table 1.

Table 1. Tree species monitored, wood density (Wd, g·cm−3), mean diameter at breast height (DBH) mean species height
(H.), dominance in the plot (D.), estimated sum of the sapwood area per species per species, percentage of the sapwood area
in relation to the total sapwood area in the plot.

Species Wd DBH (cm) H. (m) D. (%) Sap. Area (cm2) % of Total Sap.

Anadenanthera colubrina 0.59 13.4 7.2 4 175 6.2
Aspidosperma pyrifolium 0.54 8.1 4.9 30 772 27.3
Cenostigma nordestinum 0.66 13.8 5.4 30 1751 62.0
Commiphora leptophloeos 0.28 20.0 5.2 1 78 2.8

Senegalia polyphylla −− 15 7.7 5.4 49 1.7
Total −− 80 −− −− 2824 100

Wd values obtained from [3].
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All plant specimens were collected and identified by botanists at the Herbarium of
the State University of Feira de Santana (HUEFS) Bahia, Brazil. The inventory included all
plant individuals with a diameter at breast height (DBH) over 5 cm; the average height of
trees in the plot was 5.2 m. Abundance of each species was determined by establishing the
frequency of individuals of a given species within the monitoring plot.

We estimated sapwood depth using the linear regression given by 0.377 * DBH −1.075,
R2 of 0.67 (p < 0.05 for both coefficients). Additionally, we estimated the total sapwood
area for all individuals of a given species, calculated the sapwood area of each species,
and estimated the percentage of the total active xylem area for each species Table 1.

2.2.2. Ground Measurements

Sap flux density (Fd, g m−2 min−1) for the selected individuals was measured using
Granier’s TDP method (see Supplementary Materials, Section S1C). The sap flux density
at the individual level (Fd) was first normalized, yielding Fdn, and then scaled-up to the
community level, Fdnc, considering the relative sapwood area of each species (Table 1).
At the community level, Fdnc was calculated as the weighted average considering the
relative contribution of the sapwood area for each species. The environmental drivers
and plant traits used in the sap flow and phenology analysis are described in Table 2.
The environmental drivers and plant traits used in the sap flow and phenology analysis
were: vapour-pressure deficit (VPD) and plant water availability—expressed in terms of
soil water content (Sw) and relative soil water saturation (Se,pro f ; Table 2). Sw is the amount
of water for the total soil profile of 77.5 cm. Se,pro f is a fraction between; dependent on the
actual profile soil moisture, θpro f , and the difference between the saturated profile moisture
content, θs,pro f , and residual profile moisture content, θr,pro f (see Supplementary Materials
Equation (S2)). For more details, see Supplementary Materials, as indicated in Table 2.

Table 2. Summary of measured or derived environmental variables: category of the variable; name; description; units;
section number. See the Supplementary Material for more details.

Category Variable Description Unit SM s nr.

Atmospheric driving
Rn
Tair

VPD
P

Net Radiation
Air temperature

Vapour-pressure deficit
Rainfall

W m−2

◦C
hPa
mm

1.A
1.A
1.A
1.A

Soil moisture status Se,pro f
Ws

Relative saturation
Soil Water Storage

-
mm

1.B
1.B

Transpiration and
evapotranspiration

Fdn
Fdnc
ET

Sap flow density normalized
Community sap flow normalized

EC evapotranspiration

-
-

mm month−1

1.C
1.C
1.A

Plant trait
Wd

Dominance
Sap. area

Wood density
Relative frequency abundance

Sum of estimated species sapwood area

g·cm−3

%
cm2

*
1.C
1.C

2.2.3. Remote Sensing Data

Information on land surface phenology and vegetation indexes (VIs) was obtained
from remote sensing (RS) sensors which operate at different spatial and temporal scales:
remote sensors MODIS/Terra + Aqua (250 m products MYD13Q1 and MOD13Q1) and
MSI/Sentinel-2A + B (10 m), and near-surface remotely sensed data, obtained by one phe-
nocam (Mobotix AG-Germany) installed at the top of the EC flux tower (see Supplementary
Materials, Section S1A). The VIs derived from these RS products are NDVI (MODIS and
Sentinel-2A), GCC (Sentinel-2A and phenocam) and SAVI (Sentinel-2A), as presented
in Table 3.

Because of the rapid dynamics of the Caatinga vegetation, which responds to rain
and soil water content within a few days, a short revisit time satellite was necessary.
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The Sentinel-2 satellite was chosen because of its spatial resolution (10 m) and mainly
because of its revisit time (3–10 days). The MODIS sensor was chosen for comparison
purposes. Despite its moderate spatial resolution (250 m) considering the dimensions of
our plot, the high revisit frequency and well known product quality provides a simple and
effective way to compare the performance of the Sentinel-2 index. Since our objective is to
analyze forest change over time, comparing the variables with a product resulting from a
very low revisit time is essential (Terra and Aqua satellites cross every day, morning and
afternoon, providing temporal VI products with much less cloud probability). The pheno-
cam provided the field truth for the region and also enabled us to evaluate the phenology
of each species separately.

Table 3. Remote Sensing data: Variable; Sensor/Satellite, spatial resolution; temporal resolution; respective section.
Please see the Supplementary Materials for more details.

Variable Sensor/Satellite Spatial Resolution Temporal Resolution Section nr.

NDVImodis MODIS/TERRA + AQUA 250 m 8 days * 1.D
NDVIS2 MSI/Sentinel 2A + 2B 10 m 3–10 days 1.D
GCCS2 MSI/Sentinel 2A + 2B 10 m 3–10 days 1.D
GCCns Near surface camera/NA ** daily 1.D
SAVIS2 MSI/Sentinel 2A + 2B 10 m 3–10 days 1.D

* pixel composition from daily image acquisitions; ** camera spatial resolution depends on the distance from camera’s nadir.

The proportion of canopy coverage in relation to soil exposure is also seen by Sentinel-
2 and MODIS. The coverage was considered spatially homogeneous since no significant
differences (p > 0.5) were found between the temporal behavior of the sentinel individual
pixels and individual species. This was due to the proximity of trees from different species,
sometimes less than two meters, but also due to the spatial autocorrelation of the pixels.
Each pixel influences its neighborhood [42], reducing the effective pixel resolution. It is
worth mentioning that the spatial miss-registration in the Sentinel-2 images series vary
by around 12 m (more than one pixel) but can be greater than 3 pixels according to [43].
For all these reasons, it was not possible to analyze the temporal behavior of Sentinel-2
pixels individually. Thus, a temporal profile was extracted considering the pixel mean of
the monitoring plot area.

Regarding the phenocam images, the regions of interest (ROIs) were selected at the
species and at the community level. At the species level, we selected pixels corresponding
to the tree crowns of the four species found within the phenocam’s field of view (Figure 3).
S. polyphylla, which represents only 1.7% of the total sapwood area, was not present within
the camera’s field of view. We then extracted the GCC for each ROI and calculated the
mean GCC for each species (GCCns,e. At the community level, we selected the ROI pixels
corresponding to the entire vegetated area in the image, excluding bare soil and the tower
(Figure 4). The community ROI includes trees, shrubs, and eventual forbs if present.
The GCC was extracted from the community’s ROI. Conservatively, the same ROI was used
for the community during the entire study period, including the dry and rainy seasons.
Figure 4 shows the contrast between the seasons: the fully developed tree crowns in the
rainy season and the leafless crowns during the dry season.

2.3. Data Analysis

In order to establish relationships between plant water use and environmental drivers,
we compared the temporal variability of Fdnc with the environmental data obtained from
the micrometeorological flux tower (i.e., VPD, Rn and Tair) and with the relative saturation,
Se,pro f . To identify the relationship at the community level, we used the same approach to
compare Fdnc with NDVI (MODIS and Sentinel-2) and GCCS2.

The VIs (GCC, SAVI, and NDVI) used to compare with the results obtained from
the phenocams (GCCns) were calculated for the tower region; we assumed that the tower
region consisted of a circle around the flux tower with a radius of 50 m, which is compatible
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with the camera field of view. The VIs (Table 3) used to compare with the sap flow (Fdn and
Fdnc) data and with Se,pro f were calculated using the pixels that covered the monitoring
plot area (Figure 1).

To compare the VIs obtained from different scales, we used the transition dates of
start (SOS) and end (EOS) of the growing season. The length of the growing season and
associated phenological transitions, SOS and EOS [21], were calculated from the phenocam
GCC and the RS vegetation indices GCC, SAVI, and NDVI based on Alberton et al. 2019.

Figure 3. Example of a hemispherical image used for the proximal remote sensing phenological
analyses at the study site, PE-Brazil. The areas selected in white represent tree crowns of individuals
from four species: A, Anadenanthera colubrina; B, Aspidosperma pyrifolium; C, Cenostigma nordestinum
and D, Commiphora leptophloeos.

Figure 4. Hemispherical image used for the proximal remote sensing phenological analyses at the
study site, PE-Brazil; (A) In the rainy season day of year (DOY) 107, 2018. (B) In the dry season DOY
256, 2018; the area selected in white represents the entire vegetation sampled as the region of interest
(ROI) of the community for the extraction of phenological indices.

This method uses the confidence intervals of curve derivatives to identify changes
in phenology [4]. First, we fitted a generalized additive model (GAM) using the species
and community GCC as the response variable fitted by the sequence of consecutive days
(time) of the phenological observations, which was used as an independent smoother
variable to produce the phenological curves. We then calculated which regions of the curve
had derivatives and detected when the derivatives were increasing (to determine SOS)
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or decreasing (to determine EOS) [4]. We considered SOS as the first day detected on the
derivative at the left side of the GCC curve and EOS as the last day of the derivative at
the right side of the curve. The transition dates calculated from the phenocam GCC were
verified by visual inspection of the digital images and adjusted when necessary (for more
details see Supplementary Materials Section S1D).

In addition, to evaluate whether variations in wood density could explain differences
in water use and transition dates, we assessed species’ wood density (Wd, g·cm−3) and the
difference between Fdn time series and near-surface GCC for each species.

Finally, the Fdnc data were compared with the VI that showed the greatest correlation
with Fdnc. Thus, we compared NDVI indices (NDVImodis and NDVIS2) with Se,pro f using
scatter plots in order to explicitly assess the dependence between variables across their
data range.

3. Results

3.1. Hydroclimatological Drivers of Sap Flux Density

Figure 5a shows that the net radiation, Rn, was relatively low between April and
August. This is part of the dry and cooler period where shortwave and longwave incom-
ing radiation are lower than during the wet period, while albedo and longwave outgoing
radiation are relatively more frequent, as previously observed in the Caatinga [22,44]. Rn re-
mained approximately constant after September. The ET, shown in Figure 5b, varies be-
tween 0 and 125 mm month−1, and the lowest values were found between August and
November, when rainfall, (P) was negligible (see Figure 5a). Despite the low P in May
and June, ET is still considerable because of the total water stored (Sw) in the soil profile
(see Figure 5c), which allows transpiration to continue. It is worth noting that for leaves
that are well-coupled to the atmosphere (i.e., with open stomata), the transpiration at the
leaf level can be approximated by the product of the leaf-to-air VPD and the stomatal con-
ductance according to Fick’s law of diffusion [45]. However, in this region, our results show
that intra-annual ET was inversely related to VPD (p < 0.05) (Figure 5b), most likely because,
despite the higher VPD, plant species are mostly leafless from September to November.

The ET is in phase with Sw. The latter varied from a maximum of 184 mm at the begin-
ning of April to a minimum of 74 mm at the end of November. However, after September
Sw remained fairly constant (approximately 75 mm) until November when the rains started
(Figure 5c). The highest air temperatures, Tair, coincided with the lowest values of ET,
underlining the harsh climatic conditions during the dry season. Tair varied between 24 ◦C
in July and 28.5 ◦C in November.

The community-level sap flow, Fdnc (Figure 5d), is in phase with Sw and ET. How-
ever, ET increased rapidly during the first rainy month, while Fdnc increased gradually,
suggesting that a large part of the ET recorded during the first rainy month may be due
to the evaporation of intercepted water and/or to soil water evaporation. Furthermore,
the Fdnc varies in synchrony with the vegetation indices GCCS2, NDVIS2, and NDVImodis
(Supplementary Materials, Figure S2).
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Figure 5. Climate variables, soil water availability, and community-level sap flow: (a) Net Radiation
(Rn, W m−2) and rainfall (P, mm month−1); (b) vapour pressure deficit (VPD, hPa) and EC evapo-
transpiration (ET, mm month−1); (c) soil water storage (Sw, mm) and monthly mean air temperature
(Tair; ◦C); (d) Normalized sap flow for the plot community (Fdnc, dimensionless).

3.2. Transpiration, Soil Water Condition, and Remote Sensing Data

The normalized sap flux density at the species level, Fdn, was strongly affected by
soil conditions when Se,pro f was below 0.25 (Figure 6), indicating the high dependency of
transpiration on stored water and demonstrating the threshold when plant water stress
starts to limit transpiration. GCC and Fdn increased rapidly after the first rain, even with low
water availability (Se,pro f around 0.18), for all species except A. pyrifolium. After December
2019, the sap flow signal varied reasonably, but still followed the evolution of Se,pro f . This
is due in part to climate variations, but also to the fact that a number of sensors failed
during this period. Thus, the average Fdn for certain months was not based on all four sap
flow sensors. All individuals from the studied species had a fully developed canopy at
the beginning of the sap flow measurements. Therefore, our study period included two
transition dates, the EOS of the ongoing growing season (2017–2018) and the SOS of the
second growing season (2018–2019). Moreover, leaf fall still occurred after the EOS in the
rainy season in 2018, and a SOS with new leaf flushing was detected at the beginning of
the next rainy season in December of 2019. All species showed a negative correlation to
daily VPD since all are deciduous and lost their leaves, halting transpiration precisely in
the periods when VPD was highest.

Despite their approximate correspondence (Figure 6), as both variables exhibit a strong
seasonality, the correlation between Fdn and GCC obtained from the proximal RS was poor
(see Table 4, last column; the highest correlation (0.51) was found for A. colubrina and
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C. nordestinum, species with high wood density). In fact, Fdn and Fdnc have a stronger
relationship with all RS indices, especially with NDVI (Table 4). NDVImodis data better
explained the variation in Fdnc than NDVIS2, Table 4 shows a Pearson correlation coefficient
of 0.92 (p < 0.01) versus a value of 0.88 (p < 0.01).
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Table 4. Pearson correlation coefficient between Fdn and NDVImodis, NDVIS2, GCCS2, SAVIS2 and
GCCns, respectively.

Fdn NDVImodis NDVIS2 GCCS2 SAVIS2 GCCns

A. colubrina 0.83 * 0.80 * 0.71 * 0.74 * 0.36 *
A. pyrifolium 0.76 * 0.78 * 0.67 * 0.79 * −0.14

C. leptophloeos 0.31 0.49 0.55 * 0.56 * 0.06
C. nordestinum 0.85 * 0.71 * 0.68 * 0.63 * 0.51 *

S. polyphylla 0.82 * 0.73 * 0.71 * 0.62 * –
Fdnc 0.92 * 0.88 * 0.84 * 0.81 *

obs.: * = p < 0.5.

The transition dates (in format DD/MM/YY) calculated for each species were the
following: A. pyrifolium: EOS = 10/08/18, SOS = 10/01/19; C. nordestinum: EOS = 05/08/18,
SOS = 08/12/18; C. leptophloeos: EOS = 12/06/18, SOS = 11/12/18; A. colubrina: EOS =
03/08/18, SOS = 07/12/18. Based on visual inspections of the images, we found that
during the period between EOS and SOS, all individuals of the four species were leafless.
The development dates for the tower region estimated by the sensors (Sentinel-2 and
MODIS) can be seen in Table 5. We found that NDVImodis was the index with the highest
correlation to species’ water use, and its transition dates were the most similar to the GCCns
results (Table 5).

Table 5. VI Transition dates (day of year/year) and bias in relation to near-surface GCC.

Transition Dates GCCns GCCS2 NDVIS2 SAVIS2 NDVImodis

EOS 238/18 220/18 (−18) 196/18 (−42) 191/18 (−47) 229/18 (−9)
SOS 339/18 306/18 (−33) 305/18 (−34) 321/18 (−18) 309/18 (−20)

Both the seasonal evolution of transpiration and the phenological response of the
vegetation show an asymptotic limit in relation to Se,pro f (Figure 7a,b), most likely because
we are using θs,pro f and θr,pro f to normalise the data (please see the Supplementary Ma-
terials for an explanation of these parameters and of θpwp and θ f c used below). During a
considerable part of the year, the moisture content of the soil layers that contain most
of the roots are below wilting point (θpwp), yet above the residual moisture content (θ f c).
Additionally, not all of the water stored in the soil pores is used for transpiration, as part of
it is stored below the root zone or lost to soil evaporation.
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4. Discussion

This study explored the sensitivity of remotely sensed indices to measure water use
in the Caatinga. Our findings indicate that (i) the water use is highly dependent on soil
moisture conditions; (ii) differences in wood characteristics seem to directly affect differ-
ences in when species sap flow ceases; (iii) with increasing resolution, from satellites with
low resolutions to cameras that allow monitoring of individual tree species, new sources of
uncertainties, previously masked by low spatial resolution, reduce correlations between
RS indices and individual and community measurements of water use. Notwithstanding,
the high resolution of the cameras has the benefit of allowing isolated events, such as the
SOS and EOS, to be detected for different species.

It is remarkable how strongly Fdnc is related to Se,pro f , especially when considering
daily values (Figure 6), which shows relative saturation together with rainfall, as well as
greenness and sap flow per species. The strong seasonality, reflected in the highly variable
sap flow values observed for all monitored Caatinga plant species, is evident and in agree-
ment with previous studies [3,4,46]. Seasonality is particularly evident with regards to the
timing of leaf shedding (EOS) and the drop in soil water storage (Sw) (Figure 5d). Moreover,
the fact that seasonally varying values of Fdnc are only very weakly and negatively related
to changes in VPD corroborates the idea that this vegetation is relatively independent of
the atmospheric demand when considering intra-annual variation. This is not the case for
the diurnal variation of sap flow (data not shown), which remains dependent on VPD as
shown by Butz et al. (2018). These findings most likely reflect the fact that we considered a
single value of Fdnc and VPD for each day, thus the diurnal dependence (where sap flow
increases as VPD increases) between these variables was not considered. The same effect
occurs between the intra-annual variation of Rn and Fdn (Figure 5).

The inverse relationship between VPD and ET is also partially caused by the fact that,
during the dry season, all trees shed their leaves and water uptake reduces to near-zero,
despite the increase in VPD. Furthermore, during leaf-on periods with low atmospheric
humidity, it is the strong negative dependence of stomatal opening on VPD that counteracts
the concurrent increase in driving force, as mentioned in the introduction. Although
the VPD values tend to be lower during the rainy season, thereby reducing potential
transpiration, ET is high due to an increased water availability and related presence
of leaves. Moreover, there is a strong relationship between VPD and Tair (Figure 5c),
given the temperature depends on the saturated vapour pressure as calculated by Teten’s
formula [47]; around 57% of the VPD variation is caused by the variation in Tair.

Fdnc appears to be independent of Se,pro f when it reaches values higher than 0.25
(for reasons explained in the Results section, see Figure 7b). When Se,pro f was below 0.25,
there was a clear reduction in sap flow, which became even more pronounced with values
below 0.18. When Se,pro f values were around 0.16, Fdnc became negligible, and NDVI
reached its minimum (0.34 for NDVImodis and 0.26 NDVIS2), indicating a minimum NDVI
for the monitored Caatinga species. Although Fdnc was poorly correlated to water avail-
ability when Se,pro f values were >0.25 (indicating that the lack of radiation is a stronger
driver), values of Se,pro f remained below 0.25 for more than 80% of the monitored period,
indicating that for at least 80% of the year, water availability was the dominant environ-
mental driver of transpiration. This dependence of Fdnc on Se,pro f indirectly explains the
high correlation between Fdnc and NDVI, as shown in Table 4, since NDVI also strongly
depends on Se,pro f (Figure 7b).

In the dry season, when Fdn was approaching 0, for four of the monitored species
(Figure 6) the timing difference seems to be due to differences in wood density, Wd. How-
ever, for the species with high Fdn, this difference is subtle. As can be surmised from
Figure 6, the order in which Fdn approached 0 was inversely correlated with the order of
Wd: C. leptophloeos (0.28 g·cm−3) at the end of April; A. pyrifolium (0.54 g·cm−3) at the end
of June; A. colubrina (0.59 g·cm−3) in mid July; C. nordestinum (0.66 g·cm−3) in mid to late
July. Although this study only compared the Wd of four species, our results indicate that
low Wd is a limiting factor for these plants, particularly considering the duration in which
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they can maintain foliage, since the early senescence observed for low Wd species may
be part of the plant’s water conservation strategy as is stomatal control, which ultimately
prevents the plant from cavitation [15–17]. Thus, the high Wd promoted by thick cell walls
plays an important role in protecting plants from cavitation, allowing the plant to continue
extracting water even from relatively dry soils.

Since Wd is directly related to the capacity of Caatinga plant tissues to store water [3],
species with higher wood densities, which have larger stores of water, may be able to
survive extremely dry periods. Moreover, the species with the lowest Wd, C. leptophloeos
has the shortest sap flow period (Figure 6) and exhibits a peculiar greenish photosynthetic
bark [48], which increases plant survival during the dry season [49]. Unfortunately, our data
set did not allow us to gather evidence of a higher leaf water potential maintained over a
longer period for the species with lower wood density.

C. leptophloeos was not dominant in the monitoring plot and behaved differently, from a
phenological perspective, from the other species: leaf flushing began earlier and occured
at a slightly faster rate. This species also has a very early onset of senescence (Figure 6f),
as was previously reported by [3] and attributed to the species low wood density and high
water storage characteristics. Despite the fact that the high storage water capacity increases
plant survival during dry periods, its low wood density suggests it cannot extract water
from soils with very negative water potentials. Therefore, to avoid cavitation, this species
shows an early EOS. Furthermore, it is expected that species with considerably different
phenologies and low dominance will have a low correlation with the overall phenological
timing of the plot-level vegetation. This explains the low correlations of C. leptophloeos Fdn
with the vegetation indices, which reflects the entire plot (Table 4).

The GCCns values of A. pyrifolium decreased considerably in the dry period but did
not reach their minimum until the onset of the dry season, contrary to the drop in Fdn and
its ranking with regards to Wd. However, low GCC values indicate a long leafless period,
which was confirmed by the visual inspection of digital imagery and the negligible values
of transpiration. The young green leaves of A. pyrifolium, with high photosynthetic and
transpiration rates, were produced one month after the onset of the rainy season, unlike the
other species in which leaf flushing began only a few days after the rains. Moreover, it is
worth mentioning that the individuals monitored using GCC were not the same ones
monitored with the sap flow sensors, despite the fact that they belong to the same species.

The index adjusted to the soil, SAVIS2, showed higher EOS bias (-47 days), com-
pared to NDVIS2 (-42 days) (Table 5), but a considerable lower SOS bias (-18 days) than
NDVIS2 (-42 days). Moreover, GCCns presented a higher correlation with SAVIS2 (0.74)
than NDVIS2 (0.72) (Supplementary Materials, Table S2). Although the differences may
seem small, taking into account that the dates for EOS and SOS extracted from GCCns are
the most realistic representation of phenology in this work (since they were confirmed
with visual analysis), we can say that SAVIS2 better represents phenology in terms of leaf
presence. However, regarding plant water use, SAVIS2 showed a lower correlation with
Fdnc, indicating that the best vegetation index representing phenology is not necessarily
the best VI representing plant water use.

Fdnc exhibited a stronger linear relationship with NDVI derived from MODIS and
Sentinel-2 (R2 0.92 and R2 0.88, respectively) than the other indices (Table 4; Figure 7).
A plausible explanation for the lower performance of the NDVIS2 is that with an increase
in the resolution, the pixel heterogeneity and number of pixels per image will increase,
which means that the Sentinel-2 images will be noisier. Another explanation is that the
MODIS algorithm has already undergone numerous revisions, while Sentinel-2 processing
may not be mature enough. In the present work, the automatic cloud detection and cirrus
correction filter offered by sen2core was not totally effective, requiring a subsequent visual
analysis, suggesting that the algorithm still needs improvement. The last and most likely
reason is that the higher temporal resolution of MODIS increases the chance of resulting
in a better image composition; therefore, the lower temporal resolution of Sentinel-2 has
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a higher risk of yielding poor quality images, even when accounting for the filters and
quality ratings.

Compared to the near-surface GCCns, the GCCS2 data show a stronger correlation
with the sap flow data. Theoretically linked to leaf age, both GCC indices decrease when
senescence occurs for all monitored species, as expected. However, GCCns displayed a
slight increase before the end of the dry season (Figure 6). This unexpected rise follows
the first sporadic rains and produced a temporary disconnect with Fdn and soil water
storage, causing the relatively poor correlations (Table 4). Other likely explanations for
these lower performances include: signal contamination by shrub vegetation, wet/dry
terrain, difficulty in selecting pixels, and even the wind causing leaf movements. However,
an increase in GCCns clearly signals the beginning of leaf flushing, thus it could be used
in studies investigating when the growing season begins, the rate of leaf establishment,
and how long the growing season lasts. Therefore, near-surface GCC data are important as
it allows for individual monitoring of tree species.

Our results regarding the transition dates and water use indicate that the NDVImodis
provided the best fit and most reliable proxy for the community phenology, but both
datasets performed well. The choice of VI is of paramount importance to understand the
relation of phenology and plant water use at both the species and community levels [21].
Therefore, detection of the near remote phenology through the use of digital cameras
(phenocams) can fill the gap between satellite and on-the-ground observations, improving
the detection of which VI better represents the vegetation changes observed on the ground
(see [21]). On the other hand, phenocam GCC also enhanced our understanding of the sap
flow dynamics in individual plants. The fact that the decrease in sap flow is not coupled
with the decrease in GCCns at the end of the rainy season in 2018 (Figure 6) indicates that
the leaf drop of most species is preceded by the cessation of sap flow. As expected, both
sap flow and GCCns remained low during the dry season. Nevertheless, while GCCns
remained high and at approximately constant values after leaf flushing, the sap flow was
variable during the 2018 rainy season. Regardless, the strong correlation between Fdnc and
both NDVIs shows that the recorded phenological behaviour of the tree vegetation in the
plot, as reflected by fluctuations in vegetation indices such as NDVI, represents the overall
profile soil moisture conditions well and its effects on the canopy exchange processes for
this Caatinga vegetation.

Our findings compare remote sensing products related to vegetation status at different
temporal and spatial scales, with the aim to analyse the water use of Caatinga vegetation.
Sentinel-2 and MODIS satellite products also provide data from various other spectral
bands that have not been used in our analyses. Bands that could be used to generate other
indices, for example, which could be explored with advanced statistical methods, and
combined with in-situ data that are complementary to ours or with data from other satellite
platforms. Therefore, our study addresses the hypotheses set out at the beginning of the
paper, but points to paths in which future work could be further explored.

5. Conclusions

Given the hypotheses raised, we can conclude the following:

(1) Soil water availability explained the Caatinga phenology at an ecosystem level, but
less so at the species level;

(2) Seasonal signals of vegetation indices GCC and NDVI derived from optical RS data
collected for Caatinga vegetation were indeed strongly related to water use, as repre-
sented by the late-morning community level sap flow data. However, the individual
GCC determined from proximal RS (phenocams) was poorly correlated to individual
sap flow.

(3) The sap flow of the monitored species was entirely limited by soil water availability
when relative saturation of the soil profile fell below 0.25, a situation that occurred for
more than 80% of the observed year.
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Our results provide meaningful information about the physiological responses of
dry forests in the Caatinga area to environmental variables. They also show the ability
of different scales of SR products in detecting variations in plant phenology, which is
essential information to interpret and analyse the soil water availability and plant flux
density. Moreover, our findings identified when to use SR data as a proxy for phenological
and physiologal processes in the Caatinga vegetation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/1/75/s1, Table S1: Soil characteristics estimated: θs, θ f c, θwp, θr; the θmax and θmin observed
for each monitored soil layer depth (in cm3 cm−3) and; the r2 of the Durner model versus observed
water retention curve, for each layer, Figure S1: Scatter plot of measured individuals sapwood depth
(mm) and their respective DBH (mm), Table S2: Pearson correlation table—near-surface GCC versus
orbital VI. Figure S2: Community sap flow and phenological response: (A) Normalized sap flow for
the plot community (Fdnc, dimensionless), GCCS2 and SAVIS2. (B) Fdnc, NDVImodis and NDVIS2.
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Abstract: Globally, the spatial distribution of vegetation is governed primarily by climatological
factors (rainfall and temperature, seasonality, and inter-annual variability). The local distribution of
vegetation, however, depends on local edaphic conditions (soils and topography) and disturbances
(fire, herbivory, and anthropogenic activities). Abrupt spatial or temporal changes in vegetation
distribution can occur if there are positive (i.e., amplifying) feedbacks favoring certain vegetation
states under otherwise similar climatic and edaphic conditions. Previous studies in the tropical
savannas of Africa and other continents using the MODerate Resolution Imaging Spectroradiometer
(MODIS) vegetation continuous fields (VCF) satellite data product have focused on discontinuities in
the distribution of tree cover at different rainfall levels, with bimodal distributions (e.g., concentrations
of high and low tree cover) interpreted as alternative vegetation states. Such observed bimodalities
over large spatial extents may not be evidence for alternate states, as they may include regions that
have different edaphic conditions and disturbance histories. In this study, we conduct a systematic
multi-scale analysis of diverse MODIS data streams to quantify the presence and spatial consistency
of alternative vegetation states in Sub-Saharan Africa. The analysis is based on the premise that major
discontinuities in vegetation structure should also manifest as consistent spatial patterns in a range
of remote sensing data streams, including, for example, albedo and land surface temperature (LST).
Our results confirm previous observations of bimodal and multimodal distributions of estimated
tree cover in the MODIS VCF. However, strong disagreements in the location of multimodality
between VCF and other data streams were observed at 1 km scale. Results suggest that the
observed distribution of VCF over vast spatial extents are multimodal, not because of local-scale
feedbacks and emergent bifurcations (the definition of alternative states), but likely because of other
factors including regional scale differences in woody dynamics associated with edaphic, disturbance,
and/or anthropogenic processes. These results suggest the need for more in-depth consideration of
bifurcation mechanisms and thus the likely spatial and temporal scales at which alternative states
driven by different positive feedback processes should manifest.

Keywords: Savanna; alternative stable states; MODIS VCF; land surface temperature; albedo

1. Introduction

Global distributions of vegetation structure, species composition, and functional composition
are governed primarily by climate and phylogenetic processes [1–5]. In the seasonal tropics,

Remote Sens. 2019, 11, 815; doi:10.3390/rs11070815 www.mdpi.com/journal/remotesensing191



Remote Sens. 2019, 11, 815

precipitation patterns and ecohydrological interactions are the principal drivers of large scale vegetation
patterns [6–8], with increasing precipitation generally corresponding to increasing tree density, canopy
cover, and tree height [8–10]. While continental-scale average tree density, cover, and height may
increase with precipitation, at fine spatial scales, local factors including soil type and hydrological
interactions, fire and herbivory, and agriculture and wood harvest lead to considerable spatial
heterogeneity in vegetation structure [3,7,11–15]). Thus, landscapes with similar climate are not
necessarily similar in vegetation structure (e.g., tree cover, density, and height), and patch mosaics
emerge at different spatial scales, reflecting different edaphic conditions and disturbance histories.

More interesting in the context of this paper, however, is the degree to which spatial variability in
a landscape is (a) proportional to the frequency, intensity, and time since disturbance (e.g., a harvest
event that removes a fraction of tree cover in a particular location) and subsequent regrowth (“linear
patch dynamics”), or is (b) amplified by positive feedbacks that lead to alternative state dynamics in
response to disturbance events (“bifurcating patch dynamics”). The classic example of an amplifying
feedback producing bifurcating patch dynamics (between forest and savannas in mesic systems, and
savanna and grasslands in drier savannas) is the so-called fire-trap, where an initial loss (or gain) of
tree cover promotes (or suppresses) grass growth, providing more (or less) fuel for fires and increased
(or decreased) tree mortality in a continuing cycle of tree loss (or gain) [16–23].

Numerous studies have examined satellite observations in search of empirical support for
the prevalence of alternative vegetation states [18,19,24–27] in spatial and temporal data [23,28].
The majority of studies that presented evidence for alternate states were based on interpretation of
frequency distributions of tree cover over large spatial regions with similar mean annual rainfall
(implicitly assuming similar local edaphic and ecological conditions). Regions following linear
patch dynamics would be expected to result in unimodal histograms while, in sharp contrast,
regions following bifurcating patch dynamics would result in bi-modal or multimodal histograms,
with each mode defining an alternative state caused by the presence of a positive feedback. The earlier
studies [18,19,24–27] used tree cover estimates from the MODIS vegetation continuous field product
(VCF) [29,30] and found that bimodal and multimodal tree cover distributions were common,
particularly in the semi-arid and mesic tropical savanna regions, suggesting the presence of alternative
states. In these studies, potential spatial variability in ecological, edaphic, and anthropogenic
factors within rainfall zones were mostly ignored. Further, the MODIS VCF retrieval was based
on classification and regression tree (CART) algorithms and trained using pre-averaged binning
techniques that have been linked to possible artifacts (artificial clumping of predictions) that could
be wrongly interpreted as alternative states not present in reality [31–33]. Thus, the true extent and
prevalence of bifurcating patch dynamics in the tropical savannas remains unknown.

Remote sensing data are invaluable for our understanding of savanna ecology and the importance
of positive feedbacks at landscape, continental, and global scales. However, to advance our
understanding of alternative vegetation states, it is critical that we identify not only the specific
processes potentially leading to alternative states but also the spatial scale at which the emergent
patterns should be detectable and thus the appropriate spatial resolution for data used in its detection.
We suggest that the controversy and uncertainty in the extent to which VCF-based analyses have proven
the existence of alternative states in tropical savannas can be resolved by systematic comparisons
among diverse remotely sensed data streams which, in theory, should also respond to changing tree
cover. We posit that bifurcations (i.e., discontinuities) in the frequency distributions of tree cover
should also logically be expressed in other remotely-sensed data streams, including albedo and
surface temperature. More particularly, not only should the bimodal distributions in the VCF tree
cover be detected in other physically based remote sensing variables, but those bifurcations should
exhibit spatial consistency (i.e., occur in the same geographic locations). Consistency among diverse
data-streams would provide strong evidence supporting earlier conclusions from analysis of the
VCF product and remove potential bias associated with any one product. Inconsistencies, on the
other hand, would require reevaluation of the earlier results and more in-depth consideration of the
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mechanisms of bifurcation and thus the likely spatial and temporal scales at which alternative states
driven by different positive feedback processes should manifest. In this work, we examine MODIS
derived satellite VCF, albedo, and land surface temperature to determine the degree of similarity in
the occurrence of multimodality and inference of alternative stable states across Sub-Saharan Africa
(Figure 1). For this analysis, the Sub-Saharan study area includes the African continent from 22◦

North to 35◦ South, including Madagascar but excluding the Arabian Peninsula (Figure 1). We ask the
following questions: (1) are the apparent forest-savanna and savanna-grassland bifurcations detected
in earlier VCF analysis also present in albedo and surface temperature data?; and (2) to what extent are
emergent bifurcations in VCF, albedo, and land surface temperature dependent on the spatial scale
of analysis?

We report results of three distinct multi-scale analyses (at the continental scale, based on zones
of similar rainfall, and at the landscape scale) designed to quantify the presence of bimodality
as a diagnostic of forest-savanna and savanna-grassland bifurcations. Further, we undertake a
comprehensive analysis to identify evidence of multiple vegetation states across different data
streams [VCF, near-infrared (NIR) albedo, and LST] at the same geographic locations, noting that
the independent (i.e., non-VCF) products are derived using fundamental physical principles with
relatively little empirical model fitting, while VCF estimates rely on an empirical CART approach.
For this analysis, the Sub-Saharan study area includes the African continent south of the Sahara Desert,
including Madagascar (Figure 1). The dominant (~66%) ecosystems in this region are tropical and
subtropical grassland, savanna, and shrublands.

Figure 1. Terrestrial ecosystems [34] over the Sub-Saharan study area.
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2. Data

2.1. Precipitation Data

We use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) [35].
CHIRPS is a 30+ year (1981 onwards to current) quasi-global (50◦S–50◦N) rainfall dataset defined at
monthly time-steps for 0.05◦ × 0.05◦ spatial grids. CHIRPS combines satellite based precipitation
estimates with in-situ station data to create high quality reliable rainfall time series with reduced
systematic bias relative to other available global precipitation datasets [35–37], particularly over
Sub-Saharan Africa. The mean annual precipitation (MAP) used in this study is computed using
30 years of CHIRPS monthly precipitation data (1981 to 2011; Figure 2).

Figure 2. Long-term mean annual precipitation [MAP (mm yr−1)] in Sub-Saharan Africa using 30 years
(1981–2011) of data from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS).

2.2. MODIS Vegetation Continuous Fields

The most recent MOD44B collection 6 VCF data available at a spatial scale of 250 m are used
in this study [29,30]. VCF estimates are generated using a CART based algorithm and MODIS
optical bands spanning blue to shortwave infrared wavelengths. A suite of metrics derived using
annual multi-spectral reflectance observations and vegetation indices are used as predictor variables.
The CART is trained using estimates of tree cover, non-tree vegetation, and non-vegetated area
observations from field data that are up-scaled using Landsat data [29,30]. The VCF product also
includes standard deviation estimates for retrieved tree cover and non-vegetated percent cover along
with quality and cloud or water status information. In this study, a spatially explicit VCF map for the
study region is created using only the highest quality non-cloudy 2005 data over Sub-Saharan Africa
(Figure 3A). The 2005 MOD44B 250 m data are nearest neighbor resampled to a spatial resolution of

194



Remote Sens. 2019, 11, 815

1 km to match the resolution of other MODIS data streams (NIR albedo and LST) used in this study
using the nearest neighbor method. We use the nearest neighbor approach since averaging pixels tends
to reduce spatial heterogeneity and thus suppress identification of alternative vegetation modes.

2.3. MODIS NIR Albedo

The albedo defines the ratio of radiant energy scattered away from a surface in all directions to the
down-welling irradiance incident upon that surface. The albedo over vegetated regions is a function
of the local illumination conditions that includes solar geometry and atmospheric conditions, the
reflectance properties of the vegetation (leaf optical properties, leaf area index, and distribution of leaf
angles), and the underlying soil [38,39]. The MODIS albedo retrieval algorithm first characterizes the
surface anisotropy by combining multi-date multi-band atmospherically corrected surface reflectance
data to derive the albedo (MCD43B3 V5, 1 km spatial and 16 day temporal resolutions) defined in
three spectral regions: visible (VIS: 0.3–0.7 μm), near-infrared (NIR: 0.7–5.0 μm), and shortwave (SWIR:
0.3–5.0 μm) albedo. Changes in the VIS and NIR albedo have also been related to season and vegetation
growth [40], while the SWIR albedo is more influenced by non-vegetative components of the land
cover. The VIS and NIR albedo are highly correlated; we use the NIR albedo for this study [39], as it is
less affected by the atmosphere. The MCD43B3 albedo data include a solar angle specific black sky
albedo, solar angle independent diffuse white sky albedo, and associated quality flags. The median
NIR albedo map is computed using 45 eight day composites over Sub Saharan Africa for the year
2005. The median (instead of the mean) is used because it is less sensitive to outliers in the data sets
(Figure 3B).

2.4. MODIS Land Surface Temperature

Land surface temperature is a function of both net radiation and the fluxes of latent and sensible
heat that are mediated by vegetation cover [41–47]. Observations [46,47] suggest that land surface
temperatures depend on the abundance and type of vegetation, with regions with higher vegetation
density—such as forests—showing lower surface temperatures than sparsely vegetated surfaces.
Hence, surface temperature is expected to reflect underlying tree cover distributions. The observations
in the thermal infrared (TIR: 10–13 μm) bands in conjunction with observations in the middle infrared
(MIR: 3 μm) are used here to deduce both the land surface temperatures and emissivity using physically
based models. The MYD11A2 [48] V6 daytime LST (1 km spatial resolution and eight day composite)
includes LST observations and emissivity estimates. LST observations for Sub Saharan Africa in the
year 2005 are used to compute the median daytime LST for analysis in this study. The median (instead
of the mean) is preferred to reduce sensitivity to outliers (Figure 3C).

Figure 3. Illustration of all data streams used in this study. Spatially explicit maps of: (A) tree cover
estimates from MODerate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous
fields (VCF), (B) median 2005 near-infrared (NIR) white sky albedo, and (C) median 2005 land surface
temperature (LST, K).
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3. Methods

Past studies that suggested empirical evidence of alternate vegetation states analyzed tree
cover distributions in rainfall zones defined using MAP intervals over large geographic areas
(see, for example, the rainfall intervals in Figure 2). Here, we report results of three distinct multi-scale
analyses designed to quantify the presence of bimodality as a diagnostic of savanna bifurcations: (1)
a non-spatially explicit continental-scale analysis, (2) a non-spatially explicit rainfall zone analysis,
and (3) a spatially explicit landscape-scale analysis. Further, we undertake a comprehensive analysis
to identify evidence of multiple states across different data streams (VCF, NIR albedo, and LST) at the
same geographic locations, noting that the independent (i.e., non-VCF) products are derived using
fundamental physical principles with relatively little empirical model fitting, while VCF estimates rely
on an empirical CART approach. We also note that while MODIS VCF is known to be unreliable for low
tree cover values, distinctions of high and low tree cover may be more reliable [31–33]. Quantitative
evidence for the presence or absence of unimodality (i.e., multimodality) can be inferred statistically
using Hartigan’s dip test [48] on a population of observations [49,50]. This work uses the Hartigan’s
dip test for populations of observations at multiple scales as evidence for or against unimodality.
Hartigan’s dip test is sensitive to skew [24,51], thus the VCF data are arcsine transformed to reduce
skew. Hartigan’s dip test p values of less than 0.05 and 0.01 are considered to be moderately and highly
significant indicators of multimodality, respectively. The following sections detail the multi-scale
analysis approach followed in this work.

3.1. Non-Spatially Explicit Continental Scale Analysis

For this initial analysis, observations over all of Sub-Saharan Africa are examined both
qualitatively and quantitatively. Histograms of each data set (VCF, albedo, and LST) are used to
quantitatively infer the presence or absence of multiple vegetation states using the Hartigan’s dip test.
Scatter plots of each data set with long-term MAP as the dependent variable are also visually inspected
for evidence of discontinuities indicative of multimodality.

3.2. Non-Spatially Explicit Rainfall Zone Analysis

Rainfall zones defined by ranges of MAP at continental scales are often spatially extended and, in
some cases, spatially disconnected across the African continent (Figure 1). We examine the histograms
of MODIS VCF, albedo, and LST in 200 mm rainfall zones (e.g., 0–200 mm/yr, 200–400 mm/yr, etc.)
for all of Sub-Saharan Africa, replicating earlier analyses that used VCF tree cover stratified by rainfall
to infer bifurcation dynamics [18,19,24–27]. We anticipate that bimodality detected in VCF data should
also be present in the albedo and LST measurements. Hartigan’s dip test p values are tabulated for
each precipitation zone, and similarities among data sets are used to identify consistent/inconsistent
signals of alternative vegetation states.

3.3. Spatially Explicit Landscape-Scale Analysis

We finally conduct a finer-scale, spatially explicit analysis to detect evidence for bimodality at the
landscape level (local spatial extents of 15 km × 15 km). The premise is that bimodality in savanna
structure (i.e., tree cover) detected at these local scales will provide more compelling evidence for
positive feedbacks and bifurcations occurring within the same local climate and broad edaphic, biotic,
and anthropogenic environments. This is in contrast to the continental scale rainfall zone analyses
(above) where observed bimodality might reflect much coarser scale differences in soils, topography,
and anthropogenic activity not reflected in coarse scale MAP stratifications. Strong evidence
for alternative states is inferred if landscapes with multimodality are spatially consistent among
independent data sets (i.e., occur in the same geographic locations). Conversely, the lack of spatial
consistency might be cause for caution in interpreting apparent bimodality as evidence for the existence
of alternative vegetation states in those locations. To test for spatial consistency at finer pixel level
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scales, spatially explicit signals of multimodality for each data product for each pixel are inferred using
the dip test over its surrounding n × n pixel window (n = 15 × 15 = 225, 1 km2 pixels), ignoring pixels
labeled as cloudy and pixels labeled as water in the VCF data. The number of locations that shows
evidence for multimodality for each product on its own and in conjunction with other products are
tabulated. Spatial consistency between two variables is inferred by generating a confusion matrix and
interpreting the Cohen’s kappa [52] agreement/disagreement metric.

4. Results

4.1. Non-Spatially Explicit Continental Scale Analysis

Figure 3 shows maps of MODIS VCF, NIR albedo, and LST analyzed in this study. All datasets
exhibit broadly similar spatial patterns at continental scales, with the drylands distinct from the mesic
savannas and forest zones. Spearman’s correlation between the MODIS VCF-NIR albedo is moderately
high at −0.43, while it is higher for MODIS VCF-LST at −0.71 and LST-NIR albedo at 0.64. However,
the histograms (Figure 4) are markedly different for each of the data streams. The MODIS VCF and
LST show at least two distinct modes, while NIR albedo appears unimodal visually. The MODIS VCF
shows distinct peaks in the frequency of tree cover at <20% and ~80%, while the MODIS LST shows
three distinct peaks between 300 K and 315 K. Hartigan’s dip test indicates that all histograms show
highly significant (p value << 0.001) statistical evidence for multimodality.

Figure 4. Histograms showing data distributions for (A) tree cover, (B) NIR albedo, and (C) LST. A total
of 21,081,051 1 km2 locations with MAP ≥ 100 mm are used in the histogram analysis, with 20 equal
bins spanning the range of each dataset. The red line traces the density (>512 equal bins) for visual
identification of multiple modes not easily seen in the histogram. Multimodal distributions are visually
evident in the VCF and LST, but less so in the NIR albedo. Hartigan’s dip test results indicate highly
significant departure from unimodal distribution for all data streams.

Figure 5 shows scatter plots illustrating the relationships between the MODIS data streams and
MAP. MODIS VCF shows a distinct bimodality (disconnected islands of red, orange, and yellow at
a similar MAP in Figure 5A) between low (<20%) and high (~80%) tree cover, with bimodality for
MAP regions >1200 mm/yr. However, such bimodality is not visually evident in the NIR albedo,
which shows a broad exponential decline with MAP associated with increasing vegetation cover but
without visually distinct discontinuities (Figure 5B). LST shows a decreasing trend with increased MAP
(Figure 5C), as more trees tend to reduce the daytime land surface temperature, but the bimodality
observed in the tree cover data is not visually evident in the LST data. These observations corroborate
past researcher observations of bimodality in VCF, but they also suggest that the discontinuities seen
in the VCF tree cover are not readily apparent in other related MODIS data at the 1 km scale.
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Figure 5. Scatter plots of each data stream with respect to long term MAP. (A) VCF tree cover, (B) NIR
albedo, and (C) LST. The density of points is color-coded to show increasing point-density in warmer
(red) colors.4.2. Non-Spatially Explicit Rainfall Zone Analysis

Similar to past work [26], we analyze tree cover distributions in 200 mm MAP precipitation
intervals, providing 22 MAP zones between 0 and 4400 mm MAP. Hartigan’s dip test results applied
to all MODIS data over each zone are shown in Table 1. Individual histograms for each precipitation
interval are shown in supplemental Figures S1–S3 for reference. It can be inferred from Table 1 that the
VCF tree cover shows evidence for multimodality over the entire MAP range. Visual examination of
the tree cover data (Figure 5) shows distinct bifurcation between 1200 and 2000. However, the dip test
(Table 1) and Figure S1 suggest multimodality over almost the entire range of MAP. The dip test results
for LST also indicate the presence of multimodality over most of the range of MAP, while multimodality
in the albedo data is indicated in relatively fewer MAP ranges at low and intermediate rainfall.

Table 1. Hartigan’s dip test for multimodality in three independent remote sensing datasets assessed
within 200 mm MAP zones of Sub-Saharan Africa. Statistical significance is color coded, with red highly
significant (p < 0.01), yellow moderately significant (p < 0.05), and gray not significant. These data
organized by rainfall zones suggest multimodality is common, however, see text and Figure 4 for
analysis of the spatial organization of bifurcation in these datasets.

MAP Range
[mm]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400
VCF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18
LST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.15 0.49 0.51 1.00 0.33 0.11

Albedo 0.00 0.00 0.99 0.96 0.36 0.16 0.11 0.01 0.00 0.04 0.37 0.92 0.78 0.38 0.99 0.99 1.00 0.99 0.39 0.91 0.66 0.70

To further understand the results in Table 1, we show the tree cover, albedo, LST histograms,
and associated spatial maps for the regions of the continent with mean annual rainfall between
1600–1800 mm MAP, where all three datasets show evidence for bifurcations (Figure 6). The histogram
for the VCF clearly shows a marked bimodality between the highest (~80%) and lowest (<20%)
VCF values. However, the potential problems in using such MAP intervals and histograms to
analyze for savanna bifurcations is evident from the spatially explicit map in Figure 6. In particular,
when we examine these data spatially, it becomes evident that the apparent bifurcations in the VCF
histogram occur in distinctly different regions. This suggests that histograms based on rainfall zones
are multimodal not because of local-scale feedbacks and emergent bifurcations (the definition of
alternative states), but because of regional scale differences in woody dynamics associated with
edaphic, disturbance, and anthropogenic regimes.
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Figure 6. Histograms and maps of (A) tree cover (%), (B) NIR albedo, and (C) LST (K) in the
1600–1800 mm/yr mean annual precipitation zones of Africa, showing that bimodality seen in the tree
cover datasets occurs in spatially disconnected regions. While the histograms in this MAP interval
are visually and statistically bimodal, the apparent bifurcations occur in spatially distant locations
on the fringes of the moist tropical forests of West Africa (e.g., the low tree cover mode in red) and
the fringes of the Congo Basin (e.g., the high tree cover mode in green). Similar separation of low
and high tree cover modes is apparent between eastern and western Madagascar. The LST and NIR
albedo multimodality, while much less pronounced than in the tree cover data, is also geographically
separated between West Africa and Congo Basin locations.

4.2. Spatially Explicit Landscape-Scale Analysis

Figure 7 shows results of our analysis of multimodality within 15 × 15 km (i.e., 225 pixels)
moving windows across all of Africa, with red and yellow colors showing locations with statistical
evidence for multimodality assessed using the Dip test. The VCF data have the highest number of
locations across most of Sub-Saharan Africa, with evidence for bimodal or multimodal distributions
in most areas at this scale. At this scale, the occurrence of multimodality in the albedo and LST data
streams is much less common, with a general lack of spatial consistency between VCF, albedo, and
LST datasets (Table 2). Quantitatively, the percent agreement of multimodality among all three data
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streams (VCF, LST, and albedo) conveys that only 0.52% of the locations show multimodality in the
VCF data.

Analysis of Cohen’s kappa (Table 2) quantifies this apparent lack of spatial consistency in the
locations where multimodality is observed. The exclusion of VCF to examine the degree of spatial
coherence between LST and albedo marginally improves the spatial consistency (Table 2), but there is
still considerable disagreement between LST and albedo in the locations with multimodality.

Figure 7. Spatially explicit signals of local bifurcations (non-unimodality) calculated within window
sizes of 15 × 15 km for data shown in Figure 3, (A) tree cover, (B) albedo, (C) LST. Red and yellow
colors show 15 × 15 km landscapes with high and moderate statistical evidence for local bifurcations
(i.e., Hartigan’s unimodality dip test is rejected in these locations).

Table 2. Tests for spatial consistency in detections of multimodality among three remote sensing
datasets, showing the number of 15 km × 15 km locations across Sub-Saharan Africa with evidence
for multimodality individually (columns 2–4) and in conjunction with other products (columns 5–8,
where, for example, VCF and LST quantify locations scored as multimodal in both VCF and LST).
Only locations that have a MAP ≥ 100 mm are considered. Statistical significance is based on Hartigan’s
dip test p value < 0.05. The Cohen’s kappa (κ), a measurement of agreement between data sets, is given
in parenthesis. Kappa values close to unity indicate strong agreement, while values close to zero imply
low or poor agreement, and negative values imply strong disagreement. The percent agreement of
multimodality among all data streams over the entire continent is also tabulated.

VCF LST Albedo
VCF and

LST
VCF and
Albedo

LST and
Albedo

VCF and LST
and Albedo

Number of multimodal
locations and (Cohen’s

Kappa κ)
15,913,877 657,792 2,360,289 475,702

(−0.005)
1,774,261
(−0.117)

118,256
(0.026)

84,095
0.52%

5. Discussion

In this study, we examine the distributions of MODIS VCF tree cover estimates in Sub-Saharan
Africa alongside data on albedo and LST to determine the degree of similarity among datasets in the
occurrence of multimodality and inference of alternative stable states. While we argue that albedo and
LST should be closely correlated with tree cover, we also recognize that the darkening and cooling
effect of trees in a landscape may also occur with dense herbaceous vegetation, potentially reducing
the effectiveness of both NIR-albedo and LST as indices of tree cover.

The above caveat notwithstanding, our results (Figures 4–7) show clearly that bimodality is common
in MODIS VCF when visualized at a continental scale, when sorted into MAP bands (consistent with
past studies, [18,19,24–26]; Table 2), and when analyzed at landscape scales (15 × 15 km blocks; Table 2).
However, analysis of NIR albedo and LST datasets suggest multimodality is much less common in these
datasets. Examination of the spatial distribution of high and low tree cover within an example MAP
interval (Figure 6) highlights the potential dangers in the approach. In particular, while Figures 4 and 5
suggest strong bimodality in tree cover, examination of the spatial distribution of the data reveals that the
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high and low modes are geographically separated, indicating regional differences in tree cover related to
possible edaphic or anthropogenic impacts on mean tree cover rather than positive feedbacks giving rise
to bifurcations at local scales under similar edaphic conditions.

Past studies presenting empirical evidence for alternative states at different levels of MAP did not
examine independent data sets, nor did they consider the spatial organization of tree cover modes
within each MAP band. Based on the conclusion that detection of multimodality in spatially extensive
MAP intervals may not be appropriate for the diagnosis of bifurcations at regional scales, we carry out
spatially explicit analyses designed to detect bifurcations at landscape scales (15 × 15 km) in the three
independent data streams. Multimodality is suggested across most of Sub-Saharan Africa in the VCF
dataset but exists in much more constrained regions in the NIR albedo and LST datasets. Metrics of
spatial consistency in multimodality among data-streams based on Cohen’s kappa (Table 2) indicate
that VCF is distinct from LST and albedo (i.e., very little spatial consistency), with more agreement
(but still considerable differences) in the locations of bimodality in the albedo and LST data streams.
These results support concerns raised elsewhere [31–33] that the VCF product may not be appropriate
for the diagnosis of alternative states (i.e., bifurcations) because of the calibration approach utilized
and the discontinuities inherent in CART-based model-fitting approaches.

6. Conclusions

We posed the following two questions: (1) are the apparent forest-savanna and savanna-grassland
bifurcations detected in earlier VCF analysis also present in albedo and surface temperature data?;
and (2) to what extent are emergent bifurcations in VCF, albedo, and land surface temperature
dependent on the spatial scale of analysis? Our results show that apparent bifurcation in the VCF
data, diagnosed via statistical tests for multi-modality, far exceeds bifurcation detections in albedo
and land surface temperature data. Further, our multi-scale analysis highlights that the “rainfall
zone” analysis approach adopted by earlier authors (i.e., aggregating continental data using rainfall
bins; Section 4.2) tends to identify multimodality associated with regional differences in tree cover
rather than detecting landscape-scale bifurcations. Our explicit landscape scale analysis finds that,
while apparent bifurcations are ubiquitous in the VCF data, they are far less common in both the
albedo and the land surface temperature data.

The lack of consistent signatures of bimodality in satellite estimates of tree cover, land surface
temperature, and albedo highlights the need for caution in analyses suggesting that alternative states
are widespread in tropical savannas. A more considered review of the associated ecological theory
points to several explanations for this difference of opinion: (1) while positive feedbacks relating
to fire, tree-grass competition, and herbivory can—in theory—lead to the emergence of areas of
high and low tree cover under similar climate [12,18,53], in biologically and edaphically complex
landscapes, the processes potentially leading to bifurcations may be buffered by other interactions [54];
(2) in connected landscapes, spatial interactions may reduce the climate space where bifurcations
emerge, making bifurcations less common than expected based on simple non-spatial models [18,55];
and (3) the positive feedbacks potentially driving bifurcations in tree cover are processes that operate
at distinct spatial scales that may not be captured by the relatively coarse grain of many satellite tree
cover datasets. For example, while facilitation and competition among plants in arid and semi-arid
systems is a well-known cause of the patterned vegetation states known as tiger-bush (i.e., stripes
of dense vegetation separated by stripes of bare soil [56]), the processes involved (i.e., redistribution
of water and root competition) occur at relatively fine spatial scales (<~100 m). We should therefore
not anticipate being able to detect this type of alternative vegetation state in data with a spatial grain
>~50 m. While remote sensing data are invaluable for our understanding of savanna ecology at
landscape, continental, and global scales, to advance our understanding of alternative vegetation
states, it is critical that we identify not only the specific processes potentially leading to alternative
states but also the spatial scale at which the emergent patterns should be detectable.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/7/815/s1,
Figure S1: Histograms of MODIS tree cover (VCF) over regions stratified by mean annual precipitation (MAP in
mm/y). Each histogram was generated using 20 equally spaced bins spanning the range of the data in each region
Red lines trace the kernel density estimates to help visualize the shape of the histograms., Figure S2: Histograms
of MODIS NIR albedo over regions stratified by mean annual precipitation (MAP in mm/y). Each histogram
was generated using 20 equally spaced bins spanning the range of the data in each region Red lines trace the
kernel density estimates to help visualize the shape of the histograms, Figure S3: Histograms of MODIS Land
Surface Temperature over regions stratified by mean annual precipitation (MAP in mm/y). Each histogram was
generated using 20 equally spaced bins spanning the range of the data in each region Red lines trace the kernel
density estimates to help visualize the shape of the histograms.
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Abstract: Understanding trends or changes in biomass and biodiversity around conservation areas
in Africa is important and has economic and societal impacts on the surrounding communities.
Gorongosa National Park, Mozambique was established under unique conditions due to its complex
history. In this study, we used a time-series of Normalized Difference Vegetation Index (NDVI)
to explore seasonal trends in biomass between 2000 and 2016. In addition, vegetation directional
persistence was created. This product is derived from the seasonal NDVI time series-based analysis
and represents the accumulation of directional change in NDVI relative to a fixed benchmark
(2000–2004). Trends in precipitation from Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) was explored from 2000–2016. Different vegetation covers are also considered
across various landscapes, including a comparison between the Lower Gorongosa (savanna), Mount
Gorongosa (rainforest), and surrounding buffer zones. Important findings include a decline in
precipitation over the time of study, which most likely drives the observed decrease in NDVI. In terms
of vegetation persistence, Lower Gorongosa had stronger positive trends than the buffer zone,
and Mount Gorongosa had higher negative persistence overall. Directional persistence also varied by
vegetation type. These are valuable findings for park managers and conservationists across the world.

Keywords: remote sensing; vegetation dynamics; vegetation persistence; conservation;
savannas; Africa

1. Introduction

Savannas are commonly defined as grassland with scattered trees, but in practice are a mix of grass,
shrub, and trees [1–3] which comprise over 55% of the southern African landscape, and approximately
20% of Earth’s landcover [1]. Savannas are controlled by key factors: precipitation, herbivory,
fire, and humans [4–7]. Savannas are water-limited systems, therefore precipitation is the main
driving factor for the ecosystem [5,8]. Up to a precipitation threshold of 750 mm/year, grasses
dominate, between 750-950 mm/year, more mixed systems occur, and above 950 mm/year, woodlands
dominate [5,7–9]. Decreases in precipitation alone can lead to declines in vegetation, and when
coupled with rising temperatures the resulting lower availability of soil moisture causes even further
declines in vegetation [10–12]. Savannas are an important conservation landscape in southern Africa.
Understanding and conserving these systems is vital as they support high faunal and floral biodiversity.
Savannas are also an important biome affecting the carbon cycle, supporting high human populations,
and contributing 14% of global net primary productivity [8,13–17]. Conservation areas are a key
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resource in southern Africa both in terms of their ecological importance (biodiversity, biomass, carbon,
etc.) and as socioeconomic drivers for the surrounding communities [18].

Remote sensing of these savanna systems is a challenge due to the heterogeneity of savanna
landscapes, but given their ecological and socioeconomic importance, they are a target for development
of innovative image analysis techniques. One such approach to evaluating savannas with imagery
includes continuous time series analysis [19,20]. The normalized difference vegetation index (NDVI)
can be used as a proxy for vegetation biomass, health, and abundance [20–26]. The value of this
vegetation index may be enhanced with new time series measures to provide better understanding of
trends in vegetation health over time and space [19]. One such measure, derived from NDVI, is that
of vegetation persistence, which has demonstrated its usefulness in drylands globally [20]. This is
an NDVI-based time series approach to compare vegetation greenness in a given season and year
to a baseline period. This methodology allows the user to detect inter-annual changes of NDVI in
a spatially explicit manner and identify key trends on the landscape, with a statistical significance
attached to each pixel [19,20].

Gorongosa National Park (GNP) in central Mozambique contains two important ecosystem
types—savanna and montane rainforest. This paper examines the complex savanna system of the lower
part of GNP (herein referred to as “Lower Gorongosa”) and compares it to the montane rainforest of
Mount Gorongosa [27]. Like many mountainous areas [28], the latter provides a haven for biodiversity
much of which remains to be discovered, as evidenced by the extraordinary discoveries from the rapid
biodiversity collection event held by E.O. Wilson in 2011 [29]. GNP is chosen for analysis because of the
interesting conditions under which it was established and also due to the fact that it has been restored
in the last decade. GNP was originally established in 1920 under Portuguese colonial rule, and the park
served as headquarters for both sides at some point during both the War for Independence and the
Civil War, which lasted from 1964 to 1994. As a result, between 90% and 99% of all mammals in the park
were extirpated by crossfire, lack of sustenance, and poaching, and this lack of mammals over time may
affect vegetation [30]. Following peace, a variety of illegal hunting activities continued for years in the
park, pressuring already drastically decreased populations. In 2004, a relationship developed between
the Mozambican government and an American NGO initiating the Gorongosa Restoration Project,
the first conservation collaboration of its kind in the world. This project has three main goals: science
and conservation, sustainable tourism, and human development. These goals include the restoration
of the ecosystem to a pre-war baseline of wildlife [31]. A significant management presence began in
the park in 2008 with the aim to restock animals, which might then affect vegetation. The park is a
natural experiment for the impact of herbivores on vegetation. Several studies note that the absence of
large herbivores enables trees to attain maturity here in GNP, unlike other places in southern Africa
where bush densification has been the trend [32,33]. The primary focus of restoration has been wildlife,
however, a healthy park also needs healthy vegetation to sustain its wildlife populations. Therefore,
the purpose of this paper is to evaluate trends in vegetation biomass during pre- (2000–2008) and post-
(2009–2016) management periods in GNP.

The objective of this study is to understand the trends in vegetation in Lower Gorongosa and to
compare them to the buffer zone and Mount Gorongosa. The questions we addressed are: 1. Is there a
difference in the precipitation between the period since restoration management has been imposed
and the prior period? 2. Has there been a trend in the seasonal precipitation time period between 2000
and 2016? 3. Can trends in vegetation density and biomass be detected in the period 2000 to 2016? 4.
Does the vegetation directional persistence methodology detect significant changes in NDVI as an
indicator of vegetation change, in the period 2000 to 2016?
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2. Materials and Methods

2.1. Study Area

The GNP occupies approximately 4000 km2 in central Mozambique (18.2◦S and 34.0◦E) (Figure 1).
Annual minimum and maximum temperatures on average range between 15 ◦C and 30 ◦C, in the
dry and wet seasons respectively. The ecosystem of the original area of the park, Lower Gorongosa
(LG), is markedly different to that of the more newly incorporated Mount Gorongosa (MG), which
lies to the northwest at 700 m elevation. Based on the park management report, LG contains various
savannas ranging from “open” savanna (floodplain grassland, 21% of LG) in the central part of the
park, to “mixed” savanna (grass-shrub-open tree, 44% of LG), and “closed” savanna (thick woodlands
dominated by several different tree species, 35% of LG). Montane rain forest vegetation dominates
the flanks of MG, while short grassland/rock covers the summit. The protected area on MG is critical
to the health of both LG and people living in the surrounding area, as it constitutes the dominant
source of stream flow. The areas surrounding parks, known as buffer zones, provide a comparison
to vegetation trends occurring inside the park because they are not as protected as parks, but have
similar environmental conditions affecting them. They therefore help better understand how the park
is functioning in the larger context of the landscape. Based on literature indicating that a buffer zone
analysis should encompass approximately 3–4 times the size of the park [34], a 20 km buffer zone
around the park was considered in this work. There is some limited human activity in this zone where
communities live. Six study areas are addressed: (1) LG (first as a whole), and then further divided
into land cover types- (2) open savanna, (3) mixed savanna, and (4) closed savanna, (5) a 20 km buffer
zone around LG and (6) MG.

Figure 1. Study area map of low Lower Gorongosa, Mount Gorongosa and buffer area shown on a
true color composite Landsat image. In the top inset map, open savanna, mixed savanna, and closed
savanna are shown.
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2.2. Vegetation Change Characteristics

This section addresses factors used to measure vegetation change and related drivers.

2.2.1. Mean NDVI

The Normalized Difference Vegetation Index (NDVI) is used to establish trends in vegetation
health and density over time. The metric is a band ratio between red (R) (highly absorptive in healthy
vegetation) and near infrared (NIR) (highly reflective in healthy vegetation) energy [35]:

NDVI =
NIR−R
NIR + R

(1)

NDVI ranges from −1 to +1. Higher values indicate the presence of higher vegetation density,
and values below 0 indicate no vegetation [35]. NDVI composite products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor, i.e., MOD13Q1.006 Terra Vegetation Index,
were used in this research due to their fine temporal resolution. The data span March 2000 to
November 2016, have a spatial resolution of 250 m, and are a 16-day composite of the highest NDVI
value per pixel. The data are atmospherically corrected and masked for clouds, cloud shadows,
water, and heavy aerosols. Furthermore, as water produces negative NDVI values, the Lake Urema
system in LG is also masked out and removed from further analysis. Data are aggregated into
seasonal composites based on per-pixel seasonal mean values for the following seasons; December,
January, February (wet), March, April, May (wet), June, July, August (dry), and September, October,
November (dry). Data are further aggregated by mean pixel value for the seasons into different periods
corresponding to different on-the-ground management practices in GNP: 2000–2004 (no management),
2005–2008 (management contracts negotiated), 2009–2012 (beginning of on the ground management),
and 2013–2016 (fully implemented on the ground management). These can be grouped broadly into
2000–2008, pre-management and 2009–2016, post-management [29]. The analysis is separated into
each of the six study areas. Spatial extents of the three savanna types in LG (open, mixed, and closed)
were provided by the park management team.

2.2.2. Seasonal Precipitation Totals

As savannas are water limited systems, monitoring trends in precipitation is critical in
understanding changes in vegetation. Estimates of monthly precipitation totals from 2000 to 2016 were
extracted from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) gridded
dataset (0.05◦ resolution). Given the coarse spatial resolution of the data and the relatively small study
area, a mean value for each time period was extracted over the whole study area [36]. Total seasonal
precipitation for the park is created for each year from the monthly estimates observations. The annual
migration of the Intertropical Convergence Zone (ITCZ) is considered to be the principal driver of
intra-annual precipitation [37,38]. Given the delay between the arrival of precipitation and green up of
vegetation, seasonal estimates of vegetation are lagged by one month [39]. Therefore, the seasonal
precipitation-vegetation pairs are respectively as follows: (NDJ-DJF; FMA-MAM; MJJ-JJA; ASO-SON).
Mean annual precipitation (2000–2016) is 1075 mm, and individual annual totals range from 665 mm in
2015 to 1415 mm in 2001.

Analysis of seasonal precipitation totals proceeds in several ways. Totals are expressed as
being above or below the long-term (2000–2016) mean and the subsequent counts of the number of
above/below mean years in each time period recorded. To investigate if total seasonal precipitation
has increased/decreased between the two management periods, a hypergeometric test was used. The
hypergeometric distribution determines the probability of experiencing a given number of years
with values above (or below) mean characteristic at random [40]. It therefore highlights whether
the observed number of years (above/below mean) is significantly greater than/less than, would be
expected at random. Years during which a seasonal total fall above the mean are considered “successes”
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and during which it falls below the mean are considered “failures.” The probability distribution of the
number of successes (failures) is given as:

p(x) =

(
k
x

) (
N − k
n− x

)
(

N
n

) (2)

where N is the number of years in the record (i.e., N = 17 during 2000–2016), n is the sample size
(the number of years in a particular period during which a set of management practices is followed),
and k is the total number of observations in the entire record with the desired property (success or
failure) [40]. The sample time periods for the hypergeometric distribution was chosen based on the
main management time frame of 2000–2008, where there was not a management presence on the
ground, and 2009–2016, where there was a heavy management presence on the ground.

Precipitation values were also graphed as a time series, normalized for seasonality, anomalies
were determined, and linear trends were added. Precipitation is also quantitatively compared to mean
NDVI, as savanna vegetation-precipitation association is well established [5,7–9,12,20–26].

2.2.3. Vegetation Directional Persistence

Newly developed directional persistence (DP), a continuous time series metric, is calculated on a
per-pixel basis and is the cumulative direction of change over time in NDVI calculated in comparison to
a benchmark value [19,20]. This approach illuminates trends in vegetation over time and space [19,20].
We implemented the DP analysis using the time-series data from the MOD13Q1.006 Terra Vegetation
Index products outlined above in Section 2.2.1. To calculate DP, per-pixel seasonal mean NDVI over the
period 2000–2004 was calculated as the benchmark. Then, all subsequent seasonal values 2005–2016
(N = 12) were compared to it at a pixel level, generating the equivalent of a random walk in each
pixel. Under the null hypothesis of persistent vegetation, i.e., no change in vegetation, there is an
equal chance of an observation above the benchmark (success) or below it (failure) [19]. For a “success”
in a particular year the pixel receives a value of +1, if a “failure”, it receives a −1. These values are
accumulated through time, resulting in a net value of DP in each pixel. In the case of a N of 12, a pixel
value of +12 would indicate that every year had a NDVI value higher than the benchmark. Likewise,
a pixel value of −12 would indicate that every year had a NDVI value lower than the benchmark. The
DP values can be assigned to statistical significance levels based on the hypergeometric distribution.
Given the preliminary nature of this exploration and the comparatively short (2005–2016) period of
evaluation, a 0.10 level of significance, or critical DP of +/−6, is chosen for testing. The respective
mean directional persistence, and the percentage of pixels returning significant (positive or negative)
persistence are calculated for each of the six study areas.

3. Results

3.1. Precipitation Anomolies and Trends

Figure 2 highlights trends in seasonal precipitation, with the blue and red bars indicating the years
with precipitation above and below the overall mean, respectively. Each season except ASO, returns
approximately equal numbers of years above and below the long-term mean. However, it appears
that there are more below-mean years later in the time series. Additionally, the magnitude of the
negative anomalies are high compared to those of the positive anomalies. There were some periods of
consecutive seasonal rainfall below the mean, such as in ASO from 2004 to 2010, however application
of the hypergeometric test revealed no statistically significant differences at the 0.1 level in the number
of positive and negative anomalies in any season or time period. This means that the number of years
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with rainfall above or below the mean were not statistically different from what we might expect at
random when we compare the pre and post management periods.

Figure 2. Seasonal precipitation anomalies 2000–2016 for November, December, January (NDJ), mean
550 mm; February, March, April (FMA), mean 384 mm; May, June, July (MJJ), mean 80 mm; August,
September, October (ASO), mean 61 mm. The numbers in the graphs are count data for above and
below mean precipitation years in the time period.

The time series in Figure 3 suggests a decreasing trend in precipitation over time, particularly in the
latter part of the time series. In Figure 3a, when seasonal anomalies are represented by their standard
deviates, there is a statistically significant decline over this time period at the 0.1 level of significance.
In Figure 3b, where seasonal totals were separated out, there was a statistically significant decline over
time in February, March, April (FMA) and May, June, July (MJJ) at the 0.05 significance level.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Precipitation time series 2000-2016 for (a) continuous raw seasonal totals, seasonal anomalies
(mm), and seasonal anomalies expressed as standard deviates (z) and (b) separated seasonal anomalies
for November, December, January (NDJ), February, March, April (FMA), May, June, July (MJJ),
and August, September, October (ASO).

3.2. Changes of NDVI

Mean NDVI values computed by season (MAM, JJA, SON, DJF) and time period (2000–2004,
2005–2008, 2009–2012, and 2013–2016) are mapped across the LG and MG (Figure 4). This clearly
shows the role of seasonality, with higher NDVI values in the wet season than in the dry season.
Even within the wet/dry seasons the impact of soil moisture accumulation (MAM is greener than
DJF), and depletion (JJA is greener than SON) is apparent. Each season also appears to have some
variability of NDVI during the time periods. In general, the first period (2000–2004) had the highest
NDVI across the study areas, the most recent period (2013–2016) had the lowest NDVI across the study
areas, and the two periods between (2005–2008 and 2009–2012) were variable.

Daily NDVI values, extracted by pixel from MODIS data from 2000-2016, are examined to give
further insight into the vegetation dynamics of LG, revealing several important findings, including
notable shifts in both the magnitude and timing of anomalies in each period (Figure 5a). There was
an overall decline in dry season NDVI after the first time period (2000–2004), which may have even
greater negative effects on flora and fauna as this is already the most difficult part of the year for them
to survive. In Figure 5a, during the initial period (2000–2004), the data supports that the landscape was
greener than the long-term mean during the dry season. During the second period (2005–2008), which
was a time of less precipitation, the data shows that it was much less green during the dry season than
the long-term mean. During the third time period (2009–2012), NDVI was greener than the long-term
mean during the wet season. In the fourth time period (2013–2016), it was less green in the first half
of the wet season, and greener during the second half of the wet season than the long-term mean.
Figure 5b highlights the magnitude of the positive and negative anomalies (seen in Figure 5a) in both
absolute number and percentage.
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Figure 4. Mean NDVI in Lower Gorongosa and Mount Gorongosa by season: March, April, May
(MAM), June, July, August (JJA), September, October, November (SON), December, January, February
(DJF) and time periods: 2000–2004, 2005–2008, 2009–2012, 2013–2016.

In order to identify any shifts in the timing of the highest and lowest values of NDVI, the dates
during which the seasonally averaged NDVI exceeds (or falls below) the value of the upper (or lower)
10% of long-term NDVI values are recorded (Figure 5c) as an objective indicator of green-up and
brown-down. Both the upper and lower limits have moved later in the season, indicating that shifts
in climate (precipitation coming later) are already noticeable across this region. Several differences
emerge in comparison to long-term characteristics: (a) high levels of greening are attained earlier in
the first and second periods (by as much as 30 days), and later in the fourth period (by about 10 days);
(b) high levels of NDVI persist until the end of May, except in the second period when declines are
noted about half a month earlier; (c) the timing of the lowest values of NDVI show considerably
less inter-period variability than those of high levels; (d) the lowest values of NDVI are generally
experienced in mid-September, starting slightly earlier in the first and second periods; and (e) the
landscape starts to return NDVI values higher at the end of October in all periods. Post management
(2009–2016) there seems to have been less variability in these dates (Figure 5c). Shifts in season length
are important for future vegetation response and health, with related implications on wildlife and
people on this landscape. Specifically, they can have very real consequences for people’s livelihood
and wildlife health.
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(a) 

 
(b) 

Figure 5. Cont.
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(c) 

Figure 5. Daily NDVI (2000-04, 2005-08, 2009-12, 2013-16) of Lower Gorongosa (a) positive and negative
anomalies compared to the long term mean (b). NDVI anomalies displaying the frequency of anomaly
both as an absolute count and as a percentage of days exhibiting negative and positive anomalies from
the long term mean in each of the four periods (left to right and top to bottom 2000–2004, 2005–2008,
2009–2012, 2013–2016), and histograms of the distribution of the magnitudes of those anomalies.
(c) The dates on which the uppermost (0.732) and lowermost (0.343) 10% of NDVI values occurred
during the entire period of study and period of interest. The day count on the x-axis starts on 1
March, given our seasons for the year start with March–April–May, then June–July–August, then
September–October–November, then December into January–February of the following year.

Time series of mean NDVI across the six study areas highlight several important findings. All
data reveal decreasing trends, though not all are statistically significant (Figure 6). There are also some
similarities between the LG and the 20 km buffer zone. However, the rate of decline within the buffer
zone is steeper than that of LG, suggesting that the conservation and management practices within the
park have been effective in mitigating some potential decline [34].

The overall higher NDVI exhibited by MG than LG is attributable to the differing land cover.
LG contains varying types of drier savanna, and MG supports montane rainforest. There is a more
pronounced and significant decline in NDVI on MG (Figure 6a). This may be due in part to the rainforest
of MG supporting higher NDVI and the impacts of human-driven processes such as deforestation being
particularly pronounced. Given the land cover types, there is also much less interannual variability in
MG when compared to LG. Regardless, the same trends of declining NDVI and precipitation are seen
across this landscape.

NDVI was also graphed by land cover type within LG and MG. All land cover types were clearly
separable by mean NDVI values. The lowest NDVI values occur in the open savanna vegetation
class (0.36–0.69). These increase to 0.41-0.76 in mixed savanna and 0.51–0.81 in closed savanna. The
highest NDVI occurs in the heavily forested landscape on MG (0.62–0.82) even though there is a
significant decline over time (Figure 6a). Given that these three savanna land cover classes within
LG are respectively dominated by grassland, shrubland, and woodland, this separation of vegetation
abundance (NDVI) makes sense biologically. There is a significant decline in the NDVI of open
grassland savanna in LG (Figure 6b) and greater interannual variability than in closed woodland
because grasslands are more dependent, in the short term, on precipitation than woodlands are. The
smallest and non-significant decline is found in the closed savanna land cover class in LG (Figure 6c) as
woody plants tend to be hardier/less vulnerable, which is also supported by the literature [5,8,20,41].
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(a) 

(b) 

Figure 6. Cont.
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(c) 

Figure 6. Time series of mean NDVI seasonally (December–January–February (DJF); March–April–May
(MAM); June–July–August (JJA); September–October–November (SON)) from 2000–2016 for (a) Mount
Gorongosa (significant trend), (b) open savanna (significant trend), (c) and closed savanna (no significant
trend) other non-significant trends (in mixed savanna, LG, and the buffer) are not shown.

In Figure 7a, seasonal precipitation and lagged NDVI are shown. Dry season NDVI is much more
sensitive (steeper slope) to small increments in precipitation than the rainy season NDVI. In Figure 7b,
there is a significant relationship between precipitation and vegetation in terms of interannual variability
(e.g., if there was a wetter than normal wet season versus an unusually high NDVI). This relationship
was significant across all seasons of comparison (precipitation to NDVI respectively): FMA to MAM
(r-squared = 0.466, slope = 0.000416, and is significant at the 0.01 level); MJJ to JJA (r-squared = 0.146,
slope = 0.002981, and is significant at the 0.10 level); ASO to SON (r-squared = 0.570, slope = 0.005185,
and is significant at the 0.01 level); and NDJ to DJF (r-squared = 0.247, slope = 0.000441, and is
significant at the 0.05 level), thus supporting the notion of savanna as a water limited system and
precipitation as the main driver of vegetation growth [5].
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(a) 

 
(b) 

Figure 7. Precipitation and lagged NDVI (respectively) (a) plotted by season together with different
colors for: February, March, April (FMA) to March, April, May (MAM); May, June, July (MJJ)
to June, July, August (JJA); August, September, October (ASO) to September, October, November
(SON); and November, December, January (NDJ) to December, January, February (DJF) (b) by season
individually with fitted regression lines.

3.3. Tendencies in Vegetation Directional Persistence

Maps of DP for these study areas (Figure 8) show declines in vegetation, particularly during
the dry season and in central LG (which is the open savanna cover, Figure 1) relative to the initial
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baseline period. This area corresponds with open savanna (grassland/floodplain) land cover. There is
a dominating negative trend in vegetation persistence during the dry season, particularly in the central
part of LG and on MG. During the wet season fewer significant values (positive or negative) of DP
prevail. Again similar tendencies are found both inside LG and in the buffer area, though the buffer
area has greater negative values of DP.

Figure 8. Directional persistence (2005–2016 compared to initial baseline period 2000–2004 at a pixel
level) in Lower Gorongosa (including the three savanna types, open, mixed, and closed), Mount
Gorongosa, and the buffer zone highlighted by season (MAM =March, April, May, JJA = June, July,
August, SON = September, October, November, DJF = December, January, February).

The seasonal properties of mean directional persistence of all six study areas are presented in
Figure 9. Across all study areas, the absolute value of mean persistence is larger during the dry season
(more negatively deviated from zero), than the wet season (less positively deviated from zero). This
suggests the tendency for NDVI in the dry season to be more negative through time than the baseline
value to a greater magnitude than in the wet season. When comparing LG, the buffer zone, and MG,
LG had the most positive/least negative mean DP values across seasons. This indicates that, of the
six study areas, LG had higher percentages of positive vegetation persistence over time. MG with
negative mean DP values across all seasons, shows the most marked decline in vegetation persistence
over time. Within the three land cover types in LG, closed savanna had the most positive/least negative
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mean DP values, whereas open savanna had the most negative DP values (Figure 9). OS appears to
suffer most in terms of vegetation declines, as found elsewhere in the literature.

 

Figure 9. Mean directional persistence values for Lower Gorongosa (LG), the buffer zone (B), Mount
Gorongosa (MG), and the three Lower Gorongosa land cover types: open savanna (O), mixed savanna
(M), and closed savanna (C) by season (December-January-February (DJF); March-April-May (MAM);
June-July-August (JJA); September-October-November (SON)).

Percentage significant positive and negative DP (+/−6) is also calculated for each study area
(Figure 10). LG has higher percentages of significant positive DP and lower percentages of significant
negative DP than the buffer zone. MG returns higher percentages of significant negative DP and lower
percentages of significant positive DP than any other study area. In the dry season, as much as 70% of
the MG landscape has a significant negative DP value. Of the three LG land cover types, open savanna
exhibits the highest percentages of significant negative DP. In the dry season, as much as 75% of the
OS landscape has a significant negative DP value. OS also has the lowest percentages of significant
positive DP across all seasons.
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Figure 10. Percentages of significant directional persistence (positive and negative) across the
landscapes for: Lower Gorongosa (LG), the buffer zone (B), Mount Gorongosa (MG), and the three
Lower Gorongosa land cover types: open savanna (O), mixed savanna (M), and closed savanna (C)
by season (December–January–February (DJF); March–April–May (MAM); June–July–August (JJA);
September–October–November (SON)).

4. Discussion

This study evaluates the relationship between savanna vegetation and precipitation, the role of
protected areas in vegetation conservation, and the importance of distinguishing vegetation type for
evaluation of its health/persistence. We found that there was a decline in precipitation in Gorongosa
National Park over the 2000 to 2016 period, which could be linked to a decline in NDVI. However,
we found that there were differences in decline of NDVI amongst savanna land cover classes within
LG, with OS having the steepest decline. Compared to the buffer zone, inside the protected area of
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LG had less vegetation decline. MG had the greatest decline of all six study areas in terms of NDVI,
as well as the highest negative DP. This may be due to more localized drivers outlined below, but with
further conservation efforts, we hope to see more positive trends in the future.

Degradation has been of concern for several decades in savannas [42,43]. Degradation can include
several phenomena, including a decrease in biomass of vegetation (seen in this study in and around
GNP) and bush encroachment. Bush encroachment is a type of degradation that results in an increase
in lower quality short woody plants [12,44,45]. Important drivers of savanna vegetation and therefore
potential degradation include, decline in precipitation (already seen here), changes in herbivory
(increases to a certain population level may mitigate degradation, but beyond that level, may actually
exacerbate it), decreased fire frequency, and humans [4–7,42–47]. Under continued climate change and
rewilding, these systems will need to be carefully monitored for further degradation [15,48]. One type
of bush encroachment reported in the park, particularly in the vulnerable floodplain grasslands, is that
of Mimosa pigra. This is due to the previous absence of herbivory (almost no herbivores survived the
civil war, allowing encroachers to increase). Now with the heavy reintroduction of herbivores, the park
is seeing a decrease in these woody encroachers [84]. However, given the relatively recent rewilding,
our longer-term study is seeing the trend of degradation in OS. Though a constant fire regime (the fire
regime remains consistent pre- and post-war) has enabled large trees to be able to survive and thrive
here [29,32,33]. A common way to mitigate the effects of some drivers on the savanna protected area
landscape is to implement buffer zones. Buffer zones are areas surrounding parks that act as a more
neutral space for activity than the broader landscape. In buffer zones there may be some human
activity, but generally it is limited [49]. Creation of these areas increases the distance between protected
zones and potential disturbances, limits edge effects, and thereby increases the conservation value of
the protected area [50,51].

Jung et al. (2010) [11] point to a global decline in precipitation leading to reduced soil moisture
and evapotranspiration. This study found some decrease in precipitation in this region of southeastern
Africa during the 21st century [10,44], linked to a decline in vegetation health [10–12], [52,53]. The
observed decline in vegetation health (using NDVI as a proxy) further strengthens the link between
vegetation biomass in savannas and its main driver, precipitation [5,7–9,12,20–26]. Declines in
precipitation and vegetation health suggest that management has not yet had a significant impact on
vegetation [10,53] and is still subordinate to the effects of precipitation.

Global greening has been detected over recent decades by remote sensing [53–60]. The most
important factors influencing greening appears to be an increase in carbon dioxide and nitrogen levels,
land use, temperature, and weather [52,61–63]. Some limited studies have found an opposite trend,
specifically that of forest browning [53,64]. This research matches more with the browning literature,
with decreases in vegetation amount over time. Negative directional persistence in the forests of MG
is consistent with literature on browning hotspots globally, especially in subequatorial Africa [10].
de Jong et al., (2013) stress the importance of the scale of the study, and, at a localized scale, direct
human interventions, such as deforestation in this landscape, may have more effect than climate. Since
rainforests are less climatically driven than savannas [9,54], the significant decline in NDVI on MG
may reflect its recent incorporation into the national park and on-going struggles with deforestation for
conversion to agriculture and timber harvesting [29]. Therefore, this study provides a local exception
to the literature on global greening [53–60]. de Jong et al., (2013) report much less greening in more
open savanna cover types, and Southworth et al., (2015) [20] note significant negative trends in dryland
vegetation of Mozambique from 1982 to 2010.

These results also highlight the importance of understanding specific vegetation types that make
up the heterogeneous savannas [44], whose impacts may otherwise have been masked by contrasting
trends. The various rates of decline of NDVI across differing vegetation types underline the importance
of understanding the vegetation structural groups within LG and MG [31,65–68]. While all vegetation
types examined exhibit declining NDVI, particularly in the dry season, the decline is not equal.
In LG, open grassland shows the greatest and most significant decline, whereas the declines of woody
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vegetation cover types (mixed savanna and closed savanna) are not statistically significant. This
finding further supports the proposal that open grasslands are the most vulnerable type of savanna
because of their strong water-dependence and vulnerability to encroachment [5,8,10,20,41].

A principal purpose of protected areas is to conserve vegetation. Placement of the park on the
landscape and proximity to humans can be as important in achieving this goal as biophysical variables,
such as climate and soil [34,69–73]. The NDVI time series and directional persistence demonstrate
that despite evidence of a strong link between precipitation and vegetation [11], protected areas can
be effective in conserving vegetation. Vegetation inside protected areas tends to fare better than
in surrounding areas [34]. Management practices of the LG protected area seem to be conserving
vegetation better than in the buffer zones, as suggested by the smaller declines in NDVI compared
to the surrounding buffer areas. MG is unique in the sense that management practices are not yet
fully implemented and some deforestation persists, with concomitant detrimental impacts on NDVI as
reported globally [20,24,25,74–84].

More locally, this study will help the park management team identify areas for conservation and
those most vulnerable to vegetation decline like the grasslands and MG, both of which are key to
tourism—the socioeconomic driver of this region. While precipitation data correspond very well with
NDVI, a limitation of this study is that the data are resolved at a coarse spatial scale (0.05◦) relative to
the study area [36], and that gridded datasets are dependent on the availability of local observations
and satellite data, which may not be robust in this system. Another important note concerning DP
values is that this is an NDVI comparison to the baseline in number of years above or below the
baseline, but this measure does not account for magnitude of difference.

In the context of the broader landscape, this park seems to be maintaining vegetation health,
and proving its effectiveness as a protected area in this respect. There were similar, but more negative
trends detected in the buffer zone. Going forward, the park management team’s work with community
projects should also have a positive effect in the buffer zone. Though, socioeconomically speaking, this
new model of conservation is already mutually beneficial for conservation [29]. One effort to combat
deforestation on MG and stimulate the local economy is the production of shade-grown coffee [29].
This year, the shade-grown coffee being grown on MG is being sold globally. The park is currently
expanding this coffee by 100 hectares per year, and by the year 2025, they will have developed 1000
hectares of coffee plantation. This translates to over 5000 hectares of restored forest cover on and
around MG [29].

Significant mammal restocking, both herbivore (i.e., antelope) and carnivore (i.e., painted wolves),
is also underway in the park, and more is planned in the future. Given the importance of herbivory as
a driver in savanna landscapes and possible bush encroachment, the monitoring and measurement of
vegetation cover change in this region is essential. The park can serve as an interesting comparison
study to many other parks in southern Africa that are already suffering from bush encroachment and
degradation due to overstocking [42–46]. The role of GNP, both as a crucial conservation area in this
landscape, and as an important area for monitoring and research given its unique historical trajectory,
cannot be overstated. Future monitoring and research will be of key importance to the management of
African parks.

5. Conclusions

This study finds a declining trend in precipitation in GNP from 2000–2016, though the pre-
(2000–2008) and post- (2009–2016) management precipitation regimes are not found to be statistically
different. There is a corresponding decrease in NDVI over time across the entire study area. Different
vegetation types display varying rates of decline in NDVI with grasslands and rainforest exhibiting the
steepest (and significant) decline. Woody savanna vegetation experienced the least decline in NDVI
over time.

The directional persistence metric evidences significant declines in vegetation biomass 2005–2016
compared to the 2000–2004 baseline. Negative persistence is strongest on MG, possibly reflecting
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continuing deforestation issues and the area’s recent incorporation under protection. Open grassland
savanna in LG also experienced significant negative persistence. LG experiences smaller declines
in vegetation biomass and smaller values of directional persistence compared to the buffer zone,
suggesting that the park is functioning effectively in conserving vegetation. Overall, there have been
declines in vegetation in and around GNP during the 21st century. These declines may be prompted
by a decline in precipitation, a shift in the seasonal timing of this precipitation, and direct human
action. However, LG fares better than the surrounding area, further strengthening the justification
for protected areas. The “laboratory” provided by this particular park and its unique history will be
useful not only to scientists, but also to managers of protected areas, particularly savannas, as they can
separate out the differing impacts of natural changes (such as precipitation which are outside manager
control) and manmade changes (such as linked to deforestation, management rules etc.).
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Abstract: Remnant midwestern oak savannas in the USA have been altered by fire suppression and
the encroachment of woody evergreen trees and shrubs. The Gus Engeling Wildlife Management Area
(GEWMA) near Palestine, Texas represents a relatively intact southern example of thickening and
evergreen encroachment in oak savannas. In this study, 18 images from the CHRIS/PROBA (Compact
High-Resolution Imaging Spectrometer/Project for On-Board Autonomy) sensor were acquired
between June 2009 and October 2010 and used to explore variation in canopy dynamics among
deciduous and evergreen trees and shrubs, and savanna grassland in seasonal leaf-on and leaf-off
conditions. Nadir CHRIS images from the 11 useable dates were processed to surface reflectance and
a selection of vegetation indices (VIs) sensitive to pigments, photosynthetic efficiency, and canopy
water content were calculated. An analysis of temporal VI phenology was undertaken using a fishnet
polygon at 90 m resolution incorporating tree densities from a classified aerial photo and soil type
polygons. The results showed that the major differences in spectral phenology were associated with
deciduous tree density, the density of evergreen trees and shrubs—especially during deciduous
leaf-off periods—broad vegetation types, and soil type interactions with elevation. The VIs were
sensitive to high densities of evergreens during the leaf-off period and indicative of a photosynthetic
advantage over deciduous trees. The largest differences in VI profiles were associated with high and
low tree density, and soil types with the lowest and highest available soil water. The study showed
how time series of hyperspectral data could be used to monitor the relative abundance and vigor of
desirable and less desirable species in conservation lands.

Keywords: savanna; post oak; vegetation index; ecosystem function; phenology; encroachment;
evergreen; deciduous

1. Introduction

Midwestern oak savannas originally occupied the transition zone between the true prairie
grasslands and the eastern deciduous forests in North America. They stretched from eastern Texas
in the south to northern Minnesota and occupied as much as 20 M ha in a continuous band [1].
Despite their association with rolling landforms on light sandy soils, most of these savannas were
cleared for grazing and arable agriculture in the 19th century, leaving only about 12,000 ha of highly
fragmented remnants [2]. Much of the remaining southern remnants are post oak woodlands and
savanna grasslands in varying states of intactness, conservation status, or extirpation. Post oak savanna
and savanna grasslands occupy approximately 2.7 M ha of eastern Texas [3]. Other studies place the
total area in Texas at around 4 M ha [4,5]. In eastern Texas, Post Oak Motte and Woodland occupies
about 38% and Savanna Grassland occupies about 58% of this vegetation type, with other minor types
making up the remainder [3].
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The Gus Engeling Wildlife Management Area (GEWMA) represents a relatively intact example
of post oak savanna and savanna grassland and includes hardwood bottomland forest and riparian
areas [5]. As a result of fire suppression, the upland oak savanna dominated by post oak (Quercus
stellata), red oak (Q. falcata), blackjack oak (Q. marilandica), and bluejack oak (Q. incana) has thickened
to exclude understory grasses such as little bluestem (Shizachyrium scoparium) in many areas, and open
areas have suffered from woody encroachment by native evergreen species such as eastern red cedar
(Juniperus virginiana; [6]) and yaupon (Ilex vomitoria). The GEWMA is under an active program of
land cover management aimed at the regeneration of open savannas by clearing sections of oak and
replanting little bluestem grassland.

For the past 15 years, the spaceborne hyperspectral remote sensing of vegetation has depended
upon two experimental sensors, EO-1 Hyperion (Earth Observer 1 Hyperion) and CHRIS/PROBA
(Compact High-Resolution Imaging Spectrometer/Project for On-board Autonomy) for data at a spatial
resolution (30–34 m pixels) for field and landscape-scale studies [7–11]. Although the CHRIS sensor
only covers the 400–1000 nm wavelength range, it also provides nadir images and two forward and
backward-looking off-nadir angles. It has been applied to a wide range of studies on classification [12],
vegetation properties [13,14], vegetation mapping [15,16], water [17–19], canopy function [20], canopy
radiative transfer [21,22], and vegetation indices [23].

Time series of hyperspectral data have proven valuable in vegetation classification and the
detection of changes in functional processes. However, dense time series over a single site are relatively
rare. The GEWMA site, with its thickening of post oak woodland and woody encroachment by
evergreens, provides an opportunity to use CHRIS data to explore the extent to which suites of
functionally based vegetation indices (VI) can distinguish differences in vegetation canopy properties
and behaviors over a full seasonal growing cycle. A very large number of VIs have been constructed to
target various aspects of photosynthetic function, canopy structure, fractional cover of photosynthetic
and non-photosynthetic components, and canopy water content [24]. In general, narrow-band VIs
acquired from visible and near infrared wavelengths can provide quantitative information about
photosynthetic pigments such as chlorophyll, carotenoids and anthocyanins ([25–27], photosynthetic
radiation use efficiency (RUE; [28,29]), canopy senescence using the chlorophyll to carotenoid ratio [30],
and subtle differences in photosynthetic capacity based on many variants and more complex surrogates
of the Normalized Difference Vegetation Index (NDVI; see [24]). Imagery from sensors such as
Hyperion with short-wave infrared bands can be used to derive VIs with sensitivity to canopy water
content and dynamics [31] and the fractional cover of photosynthetic and non-photosynthetic canopies
and bare soil [32].

Previous work has explored the application of selected VIs derived from EO-1 Hyperion imagery
to the identification of vegetation states in tropical savannas [33] and North American savannas and
grasslands [34]. However, the image acquisition frequency in these studies was insufficient for the
characterization of phenology. In this study, a sequence of 17 CHRIS images was acquired between
June 2009 and October 2010, providing an opportunity to explore variation in canopy dynamics among
deciduous and evergreen trees and shrubs and savanna grassland in seasonal leaf-on and leaf-off
conditions for a valuable remnant of the threatened midwestern oak savannas. The objectives of the
study were as follows:

(1) To characterize the seasonal phenology of deciduous post oak savanna and encroaching evergreen
shrubs with functional VIs derived from CHRIS PROBA imagery;

(2) To explore the sensitivity of VIs for distinguishing differences in photosynthetic capacity and
water status between deciduous savanna vegetation and evergreen shrubs;

(3) To illustrate the utility and sensitivity of combinations of VIs for describing differences in
vegetation function across soil-vegetation associations in a post oak savanna.
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2. Materials and Methods

2.1. Study Area

The Gus Engeling Wildlife Management Area (GEWMA) is located about 29 km northwest of
Palestine, near Bethel in Anderson County, Texas (Figure 1a). The GEWMA was acquired by the
State of Texas between 1950 and 1960, and comprises 4434 ha of prairie, post oak savanna, hardwood
bottomlands, and riparian areas including pitcher plant bogs ([3,5,35]. The area is regarded as being
less disturbed than much of Texas, since soils are too poor for arable agriculture. However, it was
grazed as open range by cattle and hogs from the mid-1800s, becoming severely overgrazed prior to
acquisition by the State [5]. The landscape has a rolling terrain with elevation ranging from 75 to 150 m
and vegetation cover dominated by a mix of deciduous and evergreen trees and shrubs (Figure 1a,b).
The climate is characterized by hot summers and mild winters, with average monthly maximum
temperatures approaching 35 ◦C in August and average monthly minima approaching 0 ◦C in January
(Figure 2). Average monthly rainfall reaches a peak in May and October; however, rainfall can be
highly variable. Very heavy rainfall in May 2010 resulted in the flooding of the lower parts of GEWMA
and the surrounding villages and towns (Figure 2).

The soils range from loamy sands and sandy loams on the terraces and lowlands to fine sands on
the upland post, black and bluejack oak woodlands (Table 1). The Ecological Site Description (ESD)
provided with soil maps by the Natural Resources Conservation Service (NRCS) of the United States
Department of Agriculture (USDA) provides descriptions of original reference vegetation and state
and transition frameworks for vegetation succession in response to disturbance, fire exclusion and
management of herbivory (Table 1; Soil Survey Staff, NRCS, 3 October 2017). However, the detailed
vegetation mapping in [5] and in Phase 2 of the Texas Vegetation Classification Project [3] (Figure 3b;
Table 2) provides a better indication of the vegetation on GEWMA at the time of this study.

Figure 1. (a) Location of Gus Engeling Wildlife Management Area (GEWMA) in Anderson County,
near Bethel, Texas showing the elevation of the county landscape. (https://tpwd.texas.gov/huntwild/
hunt/wma). (b) National Agricultural Imagery Program (NAIP) images from 2009 and 2012 show the
canopy cover in leaf-off and leaf-on states, the classification window (red box) used later in the study,
and the structured clearing of thickened woodland to re-establish savanna in the north-west of the area
(2012 image).
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Figure 2. Average monthly and actual daily maximum and minimum temperatures and precipitation
for Palestine, Texas for 2009 and 2019. Note the flooding rains in late May 2010. Letters indicate the
timing of Compact High-Resolution Imaging Spectrometer (CHRIS) acquisitions with Y/N indicating
whether the image was used in the analysis or not.

The vegetation canopy structure on GEWMA is shown in Figure 1b contrasting leaf-off and leaf-on
images from 2009 and 2012. Note that site managers started to clear part of the thickened woodland
in 2010 in order to restore some of the original oak savanna parkland environment. The result of
this is visible in the 2012 image. A simplified version of the Phase 2 land cover map identifies four
major and three minor vegetation associations on GEWMA: savanna grassland, post oak motte and
woodland, seasonally flooded hardwood forest, floodplain hardwood evergreen forest; and juniper
woodland, mesquite woodland, and post oak/red cedar motte and woodland (Figure 3b). The species
composition of these main types is shown in Table 2, indicating the diversity of the genera and species
involved. The proportions of these vegetation sites associated with each major ESD and NRCS soil
types are shown in Table 1 (the minor land cover types with evergreen shrubs are all aggregated into
one for this purpose). The savanna grassland, post oak motte and woodland are strongly concentrated
on Darco, Kirvin, Teneha and Tonkawa fine sands, whilst floodplain hardwoods and seasonally
flooded hardwoods are primarily concentrated on Thenas fine sandy loam, Naconiche loamy fine sand,
and Nahatche and Pluck soils (Table 1).

Observations from field work carried out in November 2009 indicated that the upland oak savanna
was thickened and dense with little or no understory (Figure 4a), the savanna grassland (Figure 4b,c)
had areas of bare soil, thin areas of little bluestem and scattered evergreen shrubs, and the lowlands
and terraces contained dense stands of hardwoods with evergreen shrub understories (Figure 4c
background, Figure 4d roadside). The map developed in [5] identifies natural vegetation types with
more spatially explicit detail but does not identify invasive evergreens aside from long-established
eastern red cedar and mesquite stands.
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Table 1. Dominant ecological site descriptions (provisional status), soil types and major Texas Land
Cover Project classes for GEWMA.

1 Dominant ESD
Description

Soil Description (Code) % Area
ASW

100 cm (%)

2 Land Cover (%)
POW; SG; HF;

SFHF; JM

Clayey Upland Kirvin–Sacul association, sloping; (KnE)
Sacul fine sandy loam, 1 to 5 percent slopes (SaC)

4.8
0.4

12.3
9.8 94; 0; 0; 0; 0; 0

Loamy Upland Elrose fine sandy loam, 1 to 3 percent slopes (EiB);
Kullit fine sandy loam, 1 to 3 percent slopes (KuB)

0.2
0.6

13.1
13.0 71; 22; 0; 0; 4

Northern Sandy
Loamy Upland

Rentzel fine sand, 0 to 5 percent slopes (ChC);
Lilbert loamy fine sand, 0 to 3 percent slopes (FuB);
Lilbert loamy fine sand, 3 to 8 percent slopes (FuD);
Larue loamy fine sand, 1 to 3 percent slopes (LaB);

Rentzel loamy fine sand, 0 to 5 percent slopes (LeC);
Trep loamy fine sand, 1 to 5 percent slopes (TpC);

2.7
7.3
2.6
0.3
0.3
4.8

8.6
9.6
9.2

10.0
8.6

10.0

85; 8; 0; 0; 3

Northern Deep
Sandy Upland

Darco fine sand, 1 to 8 percent slopes (DaD);
Darco, Kirvin, and Tenaha soils, sloping (DkF)

28.5
8.6

7.8
9.8 89; 7; 0; 0; 2

Very Deep Sandy
Upland Tonkawa fine sand, 1 to 8 percent slopes (ArD) 7.3 6.0 66; 26; 0; 0; 3

Terrace Annona fine sandy loam, 1 to 5 percent slopes (SsC);
Annona soils, 3 to 10 percent slopes, eroded (SuD2)

0.3
0.4

14.6
14.6 95; 0; 3; 0; 0

Stream Bottomland Thenas fine sandy loam (Th) 4.4 13.8 9; 0; 76; 15; 0

Sandy Bottomland Naconiche loamy fine sand, 0 to 5 percent slopes
(PeC) 1.1 9.7 99; 0; 0; 0; 0

Loamy Bottomland Nahatche and Pluck soils (Na) 21.9 16.1 3; 0; 43; 53; 0
1 certain soil polygons do not have an Ecological Site Description (ESD) association: LuA (Lufkin fine sandy loam),
W (Water); 2 POW – post oak woodland; SG – savanna grassland; HF – hardwood forest; SFH – seasonally flooded
hardwood forest; JM – juniper or mesquite woodland.

Figure 3. (a) Major soil types by soil polygon from the United States Department of Agriculture (USDA)
Natural Resources Conservation Service (NRCS) for GEWMA; see Table 1 for descriptions (minor soil
types in the southern area are shown as blank for simplicity). (b) Major land cover classes from the
Texas Vegetation Classification Project ([2] for GEWMA (minor classes covering <200 pixels in the
dissected southern area have been excluded for simplicity).
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Table 2. Major species associated with the most important land cover types from the TNRIS classification
and major encroaching evergreen species mapped in this study [3,5]. Species are listed from major to
minor; however, woodlands and forests are very heterogeneous.

Land Cover Type Species

Post oak motte and woodland
(POW)

Overstory: Quercus stellata, Q. marilandica, Q. nigra, Q. falcata, Q. incana,
Q. fusiformis, Ulmus crassifolia, Celtis laevigata, Carya texana,
Mid-story: Prosopis spp., Diospyros virginiana, Ilex vomitoria, I. decidua, U. alata,
Sideroxylon lanuginosum, Callicarpa americana, Juniperus virginiana

Savanna grassland (SG) Herbaceous: Shizachyrium scoparium, Sorghastrum nutans, Bothriochloa saccharoides,
Stipa leucotricha, Sporobolus asper var. asper, Paspalum plicatulum
Scattered: Q. stellata, Q. marilandica, Q. falcata, I. vomitoria, J. virginiana

Floodplain hardwood forest (HF) Overstory: Fraxinus americana, Q. stellata, F. pennsylvanica, U. crassifolia,
U. americana
Mid-story: C. laevigata, Salix spp.

Seasonally flooded hardwood
forest (SHHF)

Overstory: Q. marilandica, U. americana, Carya illinoinensis, F. pennsylvanica,
Q. phellos, Q. lyrate, Liquidambar styraciflua

Juniper or mesquite
shrubland/woodland (JM)

J. virginiana, Prosopis spp., Q. marilandica, Q. virginiana, U. crassifolia, U. alata,
C. laevigata, D. texana

Successional shrublands
(Evergreens)

J. virginiana, I. vomitoria, C. laevigata, U. crassifolia

 

Figure 4. (a) Thickened post oak woodland on the sandy upland ArD or DaD soil type with virtually
no understory. (b) Savanna grassland with sparse grasses, yaupon and eastern red cedar. (c) Degraded
savanna grassland with bottomland hardwood forest in the background. (d) Dense mixed oak woodland
with shrubby understory by the road. (Photos: M.J.H and A.M.).
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2.2. Remote Sensing Data and Processing

2.2.1. Aerial Photography

To aid with the geometric correction of CHRIS data, characterization of the vegetation cover,
and identification of evergreen vegetation, a National Agricultural Imagery Program (NAIP) 1 m
resolution airborne image with red, green, blue and near infrared bands was acquired for January
2009 coinciding with the winter leaf-off period for deciduous trees. The four-band image was
subjected to an unsupervised isodata classification to create 25 classes. These classes were then
aggregated to five vegetation classes (water or shadow, deciduous trees, leaf/grass understory; bare or
sparse herbaceous vegetation, and evergreen trees and shrubs) based on a visual interpretation
of the NAIP image (Figure 5a). Potential for error was greatest in distinguishing deciduous tree
cover from understory since the separation of trees from understory under leaf-off conditions was
dependent upon trunk/shadow mixtures. Varying the aggregated class allocation for the most marginal
class resulted in unacceptably high “omission” differences of -86% for deciduous tree cover and a
“commission” difference of 140% for understory, which did not match our knowledge of the site based
on measurements of canopy trees along two transects in central GEWMA, as well as qualitative surveys
throughout the area. Using the most conservative aggregation for evergreens changed the evergreen
percentage from around 20% to around 10%. However, this excluded classes with clear red edge
signatures indicative of photosynthetic vegetation. Since this classification was undertaken at the NAIP
pixel resolution of 1 m, but subsequent analysis was undertaken at a resolution of multiple CHRIS
pixels, minor accuracy errors in this classification had very little impact on the results of the study.

Figure 5. (a) Classification of the winter 2009 NAIP image into five classes specifically identifying
evergreen trees; and (b) Fishnet polygons corresponding to a 5 × 5 grid of CHRIS Project for On-Board
Autonomy (PROBA) pixels showing the proportion of evergreen trees.

2.2.2. CHRIS PROBA Data

The ESA sensor CHRIS/PROBA was launched on 22 October 2001 [8]. The CHRIS sensor on
the PROBA-1 platform was designed to capture high-resolution images at multiple view angles in
62 narrow reflectance channels for wavelengths between 400 and 1000 nm [8] (Table 3). The sensor
could be tasked in several modes which varied the swath width, pixel resolution and number of
spectral channels. For this study, CHRIS data were acquired in Mode 1 which provided 62 spectral
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channels and five view angles at a nominal pixel resolution of 34 m (Table 3). The CHRIS data were
acquired on 17 dates between June 2009 and October 2010 over the GEWMA study area (Table 4).

The CHRIS images were processed using the CHRIS Toolbox [36] in version 4.7 of the BEAM
software package to process data from a variety of European Space Agency sources [37] and in
ENVI®(ENvironment for Visualizing Images). Following the procedure in [36], the standard noise
reduction, cloud identification and masking, and atmospheric correction with spectral calibration,
aerosol optical thickness retrieval and column water vapor retrieval were carried out to obtain
surface reflectance images. The atmospheric correction module of the CHRIS Toolbox [38] is based
on MODTRAN4 (MODerate resolution atmospheric TRANsmission) [39]. Although the full set of
multi-angular images was acquired and processed for almost all dates, only nadir images were used in
this study, as the focus was on the temporal domain rather than the angular domain.

Nadir surface reflectance images were converted to tiff format, exported and imported into ENVI®.
Only those images without cloud over the GEWMA site were subjected to further processing, and the
20 December image was excluded due to a targeting error. This left 11 useable images for further
processing (Table 4). Images for each date were individually geometrically corrected using ground
control points from the NAIP image. Due to the nature of the GEWMA environment with limited
manmade features, CHRIS images were warped to an 18 m pixel resolution with a registration accuracy
of approximately 1 pixel. Although this leads to the oversampling and smearing of the detected
signal, this was not important in the context of this study, in which patch-based temporal profiles
were the major target. Finally, the individually registered images were co-registered using Texas Road
centerlines with an accuracy of approximately 2 pixels (36 m).

Table 3. CHRIS PROBA Specifications for Acquisition Mode 1.

Spatial Resolution Image Size
Nominal View

Angles
Spectral Bands Spectral Range

34 m pixels at 556 km
altitude

372 × 374 pixels
(12.65 × 12.72 km)

+55◦, +36◦, 0◦
(nadir), −36◦, −55◦

62 bands
9–12 nm width

except 20 nm at 930
and 950 nm

Min 406–992 nm
Max 415–1003 nm
Mid 411–997 nm

Table 4. CHRIS PROBA image acquisition dates, viewing geometry for nadir image, solar geometry
and cloud contamination.

Date
Day

(2009–2010)

Observation
Zenith (◦),

Azimuth (◦)

Solar
Zenith (◦),

Azimuth (◦)

Local Fly-by
Time GMT

-5/-6 (hr)
Cloud (%) Image Used

1 Leaf
Stage

18 June 2009 169 5.73, 222.82 28.0, 100.55 11.25 32.0 N (site cloud) On
9 August 2009 221 19.60, 136.99 35.0, 109.43 11.11 13.1 N (site cloud) On

18 August 2009 230 15.84, 137.97 36.0, 113.95 11.12 17.4 N (site cloud) On
6 September 2009 249 21.07, 315.08 38.0, 127.26 11.25 0 Y On
19 October 2009 292 8.83, 139.26 51.0, 140.89 11.09 0 Y Sen

6 November 2009 310 5.00, 140.00 56.0, 145.64 10.11 6.6 N Sen
24 November 2009 328 5.00, 140.00 60.0, 147.91 10.12 0 Y Off
3 December 2009 337 5.00, 140.00 61.0, 148.18 10.13 0 Y Off
20 December 2009 358 5.00, 140.00 65.0, 145.06 10.04 0 N (off site) Off
21 December 2009 359 5.00, 140.00 63.0, 147.30 10.15 0 Y Off

25 January 2010 390 9.35, 224.82 62.0, 139.70 10.07 0 Y Off
14 April 2010 469 12.29, 138.53 42.0, 113.72 10.50 0 Y On

20 May 2010 505 2.99, 198.03 22.0, 100.50 10.50 0 N (missing
data) On

29 May 2010 514 3.57, 23.84 35.0, 97.84 10.51 0 Y On
16 June 2010 532 9.21, 224.65 35.0, 94.62 10.51 19.1 N (site cloud) On
30 July 2010 576 8.24, 141.47 40.0, 99.11 10.40 10.3 Y On

4 September 2010 642 3.24, 205.52 45.0, 114.4 10.39 0 Y On
19 October 2010 657 10.45, 224.75 56.0, 132.99 10.37 3.2 Y (site clear) Sen

1 Sen - senescing.
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2.2.3. Vegetation Indices

A total of 51 narrow band VIs was calculated from the 62 channel surface reflectance images based
on the formulae documented in [24] with wavelengths adjusted for CHRIS band centers. Given the
nature of the study site, with very dense tree cover except for certain soils where savanna grassland
occurred, the identification of the key VIs focused first on known pigment-sensitive wavelength
combinations found to be effective in previous studies with Hyperion imagery [33,34], and then on
whether the many different narrow-band indices creating variants on the NDVI [38] and targeting the
red edge provided any additional sensitivity to augment NDVI. The VIs that utilized blue wavelengths
below 480 nm often failed due to low-quality blue bands. Based on [33,34], visual assessment of images
and pixel histograms, eight VIs were selected as indicators of vegetation canopy properties (Table 5).
The NDVI was ultimately selected as the indicator of greenness/photosynthetic capacity since no
advantage was gained from the other greenness VI variants. Although band centers were well aligned
with narrow band reference values, CHRIS band widths at 6–12 nm can only broadly approximate
the narrow bands used in the original derivation of some of these indices. For example, [28] used an
average band width of 2.8 nm in deriving the PRI2. Nevertheless, the image value ranges for highly
precise VIs such as PRI and PRI2 matched the ranges observed in the original studies [28,29].

Table 5. Vegetation indices selected as indicators. Formulae depict band reflectance (R) wavelengths
in nanometers.

Narrow Band
Vegetation Index 1 Narrow Band Formula 1 CHRIS PROBA

Equivalent 2 Context

ARI1 (Anthocyanin
Reflectance Index)

(
1

R550

)
−
(

1
R700

) (
1

R551

)
−
(

1
R703

)
Stress, senescence [26]

ARI2 (Anthocyanin
Reflectance Index 2) R800

(
1

R550

)
−
(

1
R700

)
R800
(

1
R551

)
−
(

1
R703

)
Stress, senescence [26]

CRI (Carotenoid
Reflectance Index)

(
1

R510

)
−
(

1
R550

) (
1

R510

)
−
(

1
R551

)
Senescence [27]

NDVI (Normalized
Difference Vegetation

Index)

(R803− R681)
(R803+ R681)

(R800− R680)
(R800+ R680)

Chlorophyll, photosynthetic
capacity [40]

PRI (Photochemical
Reflectance Index)

(R531− R570)
(R531+ R570)

(R530− R572)
(R530+ R572)

Photosynthetic efficiency [29]

PRI2 (Photochemical
Reflectance Index 2)

(R570− R539)
(R570+ R539)

(R572− R540)
(R572+ R540)

Photosynthetic efficiency [28]

PSRI (Plant Senescence
Reflectance Index)

(R680− R500)
(R750)

(R680− R500)
(R748)

Senescence, brownness [30]

WI (plant Water Index) R900
R970

R905
R965

Canopy water content [31]

1 From [24]; 2 band centers based on [41].

2.3. Analysis

2.3.1. Fishnet Polygon Extraction of Tree Cover Density and VI Profiles

In order to capture the broad patterns of vegetation canopy dynamics with such heterogeneous
species mixtures (Table 2), the analysis was based on averaging across pixels at a patch scale. A fishnet
polygon layer was constructed with a polygon cell size of 5 × 5 CHRIS pixels making a 90 × 90 m cell.
Each fishnet polygon was attributed a unique number. Pixel counts of tree and other cover classes were
then extracted from the classified NAIP image (with each fishnet polygon cell containing 8100 NAIP
pixels), converted to cover class proportions and assigned to each fishnet polygon cell (Figure 5b;
percentage of evergreen class shown). The fishnet was then merged with the soil polygon layer for
GEWMA to create a combined layer with vegetation cover fractions and soil type for each fishnet
polygon. The fishnet was then used to extract VI values for each fishnet polygon from each VI time
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series creating a database with cover fraction, soil type, and VI value for each 90 × 90 m polygon
across GEWMA. To minimize the effects of uncertainty in the attribution of aggregated classes in
the NAIP image classification, the time series profiles of each VI were then examined for average
deciduous and evergreen tree cover at 10% intervals. Associations with the Texas Land Cover classes
were also examined.

2.3.2. Combined Indicators of Vegetation Function

Based on image coverage and quality, two dates (September 2009—leaf-on—and 25 January
2010—leaf-off) were selected to explore information provided by combining VIs. The data were
windowed to focus on the northern half of GEWMA, where a consistent gradient from the upland
sandy savannas to the lowland hardwood floodplain and riparian areas could be sampled. The six best
VIs from the phenological analysis were stacked (Anthocyanin Reflectance Index 2 (ARI2), Carotenoid
Reflectance Index (CRI), NDVI, Photochemical Reflectance Index 2 (PRI2), Plant Senescence Reflectance
Index (PSRI) and Water Index (WI)) for each date. An isodata unsupervised classification was carried
out on the VI stacks for each date to create a 20-class image. The classifications were then aggregated
to eight classes based on the dendrograms and class distances. The mean and standard deviation of VI
index values, NAIP classification cover percentages and dominant soil type percentage were extracted
for each classified image.

3. Results

The extracted time series profiles showed major differences in relation to the major land cover
types and deciduous tree density levels and in relation to the proportion of evergreen trees and
shrubs present.

3.1. Overall VI Profiles

The comparison of profiles for the selected VIs showed a clear separation between areas with
trees and those without during leaf-on. For most leaf-on dates, savanna grassland VI profiles were
separated from the 40% and 80% tree cover profiles by more than one standard deviation (Figure 6).
The differences among the deciduous tree canopies largely disappeared during leaf-off.

Although increments in VI response to tree density were evident, there was a substantial overlap
in standard deviations, with CRI and ARI1 and ARI2 exhibiting a higher variation in values within a
tree density level and between dates. In general, magnitudes of pigment-sensitive VIs during leaf on
could be ranked 80% > 40% hardwood > 40% post oak >> savanna/grassland (for PRI2, low values
represent a high response). The largest range of response was exhibited by CRI during leaf-on, but the
rankings among tree densities were the same. The PSRI exhibited little sensitivity to hardwood tree
density, but a consistently higher response for post oak at 40% tree cover and savanna/grassland
(Figure 6g). The compressed and low values for CRI, ARI and ARI2 for day 576 (July 30) are likely
anomalous as they are not supported by parallel behaviors in NDVI, WI, PRI or PRI2. The WI showed
large seasonal variation in canopy water content, but the main difference in profiles was between the
savanna grassland and the areas with trees (Figure 6h).

3.2. Response of VIs to Evergreen Density

The effect of evergreens on the VI profiles was examined for the DaD soil type dominated by
post oak woodland with total tree cover of >80% (see Table 1) and evergreen tree cover in increments
of 10% up to the maximum observed of 40% (Figure 7). The pigment-sensitive VIs exhibited small
increases in values in the leaf-off period between 350 and 430 days (mid-December 2009–mid-March)
in response to increasing evergreen cover, except for the ARI (Figure 7). Although the increments due
to evergreen density were evident, standard deviations within date and density levels were relatively
large and exhibited a significant overlap. The PRI2 and NDVI exhibited lower values at 40% tree
cover than at 80% tree cover in the leaf-on period of 2010 (Figure 7a,b). The PSRI and WI provided
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the clearest response to increasing evergreen percentage, with PSRI declining and WI increasing
incrementally with each 10% increase in evergreens (Figure 7c,d). The responses to increasing the
evergreen percentage were similar for the other soil types, but the magnitude of the difference between
zero and 40% evergreens was generally smaller. Evergreen percentages were very low on the ArD soil
type except when adjacent to bottomlands.

 
Figure 6. Overview of seasonal phenology of vegetation indices that are indicators of photosynthetic
activity and pigments averaged across soil polygons with predominant vegetation types of post oak,
bottomland hardwoods and grassland at tree cover percentages of 80, 40 and <10 and no evergreens.
The bars denote standard deviations. The gap in the ARI2 profile is due to an unrecoverable error in
the calculation for 19 October (see Table 1 for land cover association with soil types). (a) PRI; (b) PRI2;
(c) NDVI; (d) CRI; (e) ARI; (f) ARI2; (g) PSRI; and (h) WI.

3.3. Responses within Tree Density Levels among Soil Types

Available soil water (ASW) is a major variable among dominant soil types on GEWMA, with upland
sandy soils having 6–10% ASW and loamy bottomland soils having approximately 14–16% ASW
(Table 1). In contrast with the other profile analyses, differences in PRI2 and WI among the different
combinations of soil type and tree density mostly exceeded one standard deviation indicating the
importance of ASW in canopy processes. The comparisons between selected soils at the extremes
of ASW content showed major differences during the leaf-on period among the three soil types
predominantly associated with grassland savanna or woodland at tree densities of <10% for PRI2,
and smaller differences during the leaf-off period (Figure 8a). There were also differences between the
ArD and Na at 80% tree cover in the leaf-on period, but these disappeared in the leaf-off period. There
were small differences in WI between ArD and both DkF and DaD soils in the leaf-on and leaf-off
periods, and between ArD and Na in the leaf-on period (Figure 8b), but the relative differences were
smaller than for PRI2.
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Figure 7. Variation in responses of the Vegetation Indices (VIs) most sensitive to increasing levels of
evergreen tree cover within the DaD soil type dominated by post oak woodland. The bars denote
standard deviations. (a) PRI2; (b) NDVI; (c) PSRI; and (d) WI.

Figure 8. Variation in VI indicators across extremes of deciduous tree cover (<10% and >80%) without
evergreens, and across soil types in terms of available soil water (see Table 1). The bars denote standard
deviations. (a) Photosynthetic activity, PRI2; and (b) vegetation water content, WI.
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3.4. Sensitivity of VIs to Spatial Variability in Leaf-on and Leaf-off Periods

Images from 6 September 2009 and 25 January 2010—peak leaf-on and leaf-off conditions,
respectively—were chosen to examine the sensitivity to vegetation and canopy variation and underlying
soil differences that could be obtained by combining the VIs by classification. The 2009 date was
chosen because site managers commenced clearing parts of the upland woodland in mid-2010 (see
Figure 1) and consistent vegetation cover between leaf-on and leaf-off was required. The images from
these dates clearly reflect the differences in leaf-on and leaf-off canopies (Figure 9) and highlight the
presence of evergreen vegetation in January (Figure 9b,d,f,h). Whilst the NDVI shows limited
within-canopy sensitivity, PRI2 shows a marked difference between evergreen-dominated and
deciduous oak-dominated areas in September (Figure 9a,c). The upland post oak woodland and
savanna environment associated with drier soil types (Table 1) is sharply delineated in January NDVI
and ARI2 (Figure 9b,f). The PSRI and WI show the same patterns as the pigment-specific indices with
a similar sharp delineation of the upland post oak woodland and savanna in January in both VIs
(Figure 10) and the presence of evergreen vegetation in January (Figure 10b,d).

The image classification results for September and January produced distinctly different class
patterns, with the leaf-on September image highlighting the grassland/savanna areas, variation in
the post oak woodland canopy, and no clear distinction of hardwoods on bottomland (Figure 11a).
By contrast, the results for January clearly distinguished the post oak woodland and savanna grassland
on ArD and DaD soil types, areas of evergreen vegetation and the flooded stream bottomland associated
with the Na soil type (Figure 11b).

The extracted profiles for each classification illustrate the difference in VI sensitivity, class
association with tree and evergreen density, and class association with soil type (Figure 12). Available
soil water is a major variable among dominant soil types on GEWMA, with upland sandy soils having
6–10% ASW and loamy bottomland soils having approximately 14–16% ASW (Table 1). Within the
image, the dominant soil types were DaD > ArD > DkF >Na, thus representing a contrast between
drier soils supporting post oak woodland and savanna grassland, and bottomland loams supporting
hardwood forest (Figure 12). In September, most of the area was occupied by classes 1, 2, 6, 7 and 8.
Classes 1 (78%) and 2 (61%) were strongly associated with elevations between 100 and 129 m, while
classes 7 (55%) and 8 (76%) were strongly associated with elevations between 78 and 100 m. Neither
the evergreen vegetation nor the understory fraction varied much between classes, but bare soil was
most associated with class 1 and least associated with class 8. In all cases, VI class values showed
either a regular positive progression from class 1 to class 8 for ARI2, CRI, NDVI, PRI2 (negative PRI2
represents a higher value) and WI, and a negative progression for PSRI (Figure 12). These progressions
represented a regular increase in pigments, photosynthetic activity and canopy water content, and a
regular decrease in brownness/yellowness with class number. Class 1 occupied 40% of soil type ArD,
while class 2 occupied 20% of each of ArD, DkF and FuB.

In January, most of the area was occupied by classes 1, 3, 4, 5, 6, and 7 (Figure 12b). Bare areas
were associated with classes 1 and 3, and evergreen vegetation was associated with classes 7 and 8.
The class association with elevation was more marked than in September, with between 88–100% of
classes 5–8 being associated with elevations between 78–115 m, and 63% of class 2 being associated
with elevations between 78 and 85 m. Classes 7 and 8 had the highest NDVI, CRI and ARI2 and the
lowest PRI2 values as well as the highest WI and lowest PSRI. Among classes 1, 3 and 4, associated
with the deciduous post oak woodland and savanna grassland, there were lower values for WI for
classes 3 and 4 with greater understory cover than class 1 with more bare cover. Class 1 occupied >40%
of the Na soil type, class 3 occupied between 30 and 40% of soil types ArD, DaD and FuB, and class 6
occupied around 30% of the minor soil types KnE, DkF and PeC (Figure 12b).
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Figure 9. Photosynthesis and pigment-sensitive VIs at leaf-on and leaf-off for deciduous trees. (a) NDVI
6 September 2009; (b) NDVI 25 January 2010; (c) PRI2 6 September 2009; (d) PRI1 25 January 2010;
(e) ARI2 6 September 2009; (f) ARI2 25 January 2010; (g) CRI 6 September 2009; (h) CRI 25 January 2010.
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Figure 10. Dryness and moisture-sensitive VIs at leaf-on and leaf-off for deciduous trees. (a) PSRI
6 September 2009; (b) PSRI 25 January 2010; (c) WI 6 September 2009; (d) WI 25 January 2010.
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Figure 11. Classification of the northern section of GEWMA based on six VIs aggregated to eight
classes. (a) September 6, 2009: deciduous leaf-on; (b) January 25, 2010: deciduous leaf-off.

 

Figure 12. Vegetation Index profiles of cover types from classified NAIP imagery and proportion of
NRCS Web Soil Survey soil types associated with (a) September 2009 and (b) January 2010 classifications
shown in Figure 11. Numbers at the top indicate the percentage of the area occupied by each class.
Numbers on the soil type legend indicate the percentage of the area occupied by each major soil type
(minor soil types were excluded).
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4. Discussion

This study on a remnant post oak woodland area has shown that the major differences in spectral
phenology as defined by VIs are associated with deciduous tree density, the density of evergreen
trees and shrubs—especially during deciduous leaf-off periods—broad vegetation types, and soil
types. Although major differences in VIs at peak leaf-on and leaf-off were clearly associated with high
and low evergreen density and extremes of ASW associated with soils, combining VIs in a simple
classification also revealed variation in canopy water content and photosynthetic capacity within
ostensibly uniform post oak savanna on the sandy soils with low ASW. The photosynthetic capacity
of evergreens during deciduous leaf-offwas clearly indicated by NDVI, PRI1 and PRI2 profiles with
obvious growth advantages for further encroachment. Although tree species vary between post oak
savanna and bottomland hardwoods, VI phenology was remarkably similar at the same tree densities.
Heterogeneous and shared species composition post oak woodland and hardwood forests limited
patch-scale discrimination with VI profiles.

The temporal pattern of spectral VIs was dominated by the deciduous tree leaf-on/leaf-off cycle of
post oak woodland and hardwoods, and spatial variation in amplitude was primarily determined by
tree density from >80% cover down to <10%. There was a greater range in the amplitude of NDVI and
CRI than PSRI—an indicator of the chlorophyll/carotenoid ratio [30]—or ARI and ARI2 during leaf-on
in response to the tree densities and major vegetation types. The precipitation records from September
2009 to October 2010 indicate that the site did not undergo any unusual moisture stress during the
study. In addition, due to a flooding event in May of 2010 with substantial cloud in the preceding
couple of months, 2010 spring green-up was not captured. There are significant differences in pigment
magnitudes [42], anthocyanin synthesis [43] and rates of decay during senescence associated with stress
or different mixes of deciduous species [44,45]. Such differences were either minimal or undetectable in
this study. Since deciduous species are highly intermingled in both post oak savanna and bottomland
hardwood forest (see Table 2 [3,5]; the pixel resolution of CHRIS and the 90 m resolution of the fishnet
used in the analysis meant that patch-scale species differences were likely to be distinguishable).

At the landscape scale, the upland post oak savanna was clearly delineated in the leaf-offVI images,
and there was a strong association with soil type and elevation. However, in leaf-on images, PRI2 and
WI showed most sensitivity to the differences between upland and bottomland in soil properties,
elevation and vegetation type, and to variation within the upland post oak savanna woodland and
savanna grassland. The PRI and PRI2 are sensitive to photosynthetic RUE [28,29] and evergreens
exhibit reduced midday PRI levels compared to deciduous species [29]. In this study, lower values
for PRI and higher values for PRI2 were observed for 40% evergreen tree cover compared to 0–30%
evergreen cover at 80% total tree cover in the peak leaf-on period of 2010. This suggests that evergreens
suffer some disadvantage in photosynthesis when competing with deciduous trees during the leaf-on
period. However, this is a minor factor when compared with the opportunity for photosynthesis
and growth in the 3–4 month deciduous leaf-off period. An examination of the weather during the
study period (Figure 2) and the long-term climate indicates that the temperature and precipitation are
favorable for the growth of evergreens, especially coniferous Juniperus spp., while deciduous trees are
in a leaf-off state.

The largest differences in pigment/senescence and photosynthetic-sensitive VIs occurred when
comparing tree canopies among the sandy soil types with the lowest ASW at tree densities of <10%,
and between the soil types with the lowest and highest ASW for tree densities >80%. This suggests
that water relations are not only the most important driver of the vegetation types between upland
woodland and bottomland hardwood forest at the landscape scale, but also potentially influence
the vigor and location of savanna tree species at the patch scale. While differences in leaf-off classes
derived from combined VIs were obviously associated with the presence or absence of an evergreen
canopy, leaf-on classes associated with deciduous cover of >50% and ≤20% bare (classes 5–8) showed a
significant variation in WI that is indicative of different canopy water contents. Studies have shown
significant differences in water use attributes such as access to soil water, stomatal conductance,
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water use efficiency, and leaf-specific hydraulic conductance among Quercus spp. [46,47]. The post
oak woodland contains a mix of Quercus spp., but tree-by-tree identification for any local site was not
available or collected for this study. However, spatial variation in class distribution in the water-limited
upland savanna environment in September 2010 may be indicative of both local variation in Quercus
species composition and the vigor of trees associated with differences in water relations attributes.

The observation and analysis of woody encroachment across North America suggest that the
potential for “release” of woody encroachers favored by fire suppression is greater at sites with higher
precipitation [48], and by inference might be better on bottomland soils with higher ASW rather
than on upland soils with lower ASW. Certain Quercus species have exhibited higher pre-dawn and
midday water potentials than eastern red cedar [49,50] which is known to use water year-round,
and almost 100% of precipitation reaches the soil surface [51]. In this study, higher densities of
evergreens were clearly negatively associated with the soils with the lowest ASW, higher elevation
(compare Figures 3 and 5) and those most dominated by thickened post oak woodland. Evergreens
were mainly distributed among a range of soils in the bottomlands as an understory to hardwood
canopies and along small tributaries of the main stream, Catfish Creek, at relatively lower elevations
than the adjacent terrain. Among the native evergreens, eastern red cedar may have the most potential
to encroach on low ASW soils since it has a record of highly successful encroachment in grasslands
where it has an advantage in terms of rooting depth [52] and in upland oak forests in Oklahoma [53].
At the time of this study, the upland post oak savanna area was densely thickened with no grasses
and a dense thatch of leaf litter (Figure 4a). The combination of high oak density, low ASW, rapid soil
drainage at higher elevations, and the advantage in water relations attributes over eastern red cedar
may explain its almost complete absence from the upland post oak woodlands.

Close to the end of the study period, a section of the northern upland post oak savanna was
partially cleared to enable the planting of grasses and regeneration of a savanna landscape as part of
an on-going management plan by the Texas Parks and Wildlife Department (Figure 1b). Small areas of
GEWMA had been replanted with Shizachyrium scoparium prior to the commencement of this study.
Airborne and satellite remote sensing could play a key role in the monitoring and management of
GEWMA by tracking the development of replanted areas, identifying evergreen woody encroachment
in newly planted areas, selecting areas for spraying, burning and/or mechanical control of eastern red
cedar, and monitoring the long-term health of the important remnants of original savanna grassland,
post oak woodland and hardwood forest (e.g., [54]). Such monitoring could be carried out with
relatively frequent imagery at a 10–20 m resolution from Sentinel 2a and 2b. A prior study simulated
Sentinel 2 with Hyperion imagery across a range of sites in North America and showed that suites of
VIs could provide clear insights into differences among vegetation states and processes [34]. Various
baseline conditions and approaches for the restoration of oak savannas [55,56] could be informed
with suitable passive and active remote sensing data (e.g., [34,57]). This study used a now almost
20-year-old sensor with relatively low signal to noise and 400–1000 nm spectral coverage to detect a
variety of differences seasonal phenology due to plant functional type, vegetation type, soils, and tree
density. Advances in the hyperspectral detection of plant species diversity and function [58–62] provide
exciting potential for monitoring important repositories of biodiversity with heterogeneous species
composition from space or airborne platforms.

5. Conclusions

This study showed that functional VIs can identify differences in vegetation types that are strongly
associated with soil type and landform and indicative of differences in physiological function and plant
functional type. The study applied a relatively rare time series of CHRIS imagery at an acquisition
frequency that captured variation in canopy dynamics both between and within major vegetation
types and tree densities. Although the discrimination of known species-level differences in pigment
dynamics and soil water access could not be detected with precision using the CHRIS data due to
heterogeneous species mixtures and the patch-scale analysis applied, the potential for this with airborne
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sensors or new spaceborne hyperspectral sensors was clearly indicated. Although no explicit difference
in photosynthetic function among deciduous canopies was detected in this study, nevertheless, the VIs
sensitive to carotenoids, anthocyanins and photosynthetic efficiency can discriminate among species
and landscape components when retrieved with better-quality sensors. In the meantime, Sentinel 2
with its additional bands in the pigment-sensitive wavelengths at a 20 m pixel resolution, may be
used effectively for current monitoring. Although evergreen encroachment on rare oak savanna
conservation lands may be easily monitored with leaf-off aerial photography, hyperspectral imagery
can provide additional insights into the phenological behaviors that relate to physiological function
and competitive advantage. This information could be helpful in the management and control of
evergreen shrubs on bottomland areas [63] that present a substantial challenge due to their competitive
advantages over deciduous oaks and hardwoods in the leaf-off period.
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Abstract: Annual grasslands are an essential component of oak savanna ecosystems as the primary
source of fodder for livestock and wildlife. Drought resistance adaptation has led them to complete
their life cycle before serious soil and plant water deficits develop, resulting in a close link between
grass phenology and soil water dynamics. In this work, these links were explored using a combination
of terrestrial photography, satellite imagery and hydrological ground measurements. We obtained key
phenological parameters of the grass cycle from terrestrial camera data using the Green Chromatic
Coordinate (GCCc) index. These parameters were compared with those provided by time-series of
vegetation indices (VI) obtained from Sentinel-2 (S2) satellites and time-series of abiotic variables,
which defined the hydrology of the system. The results showed that the phenological parameters
estimated by the S2 Normalized Difference Vegetation Index (NDVI) (r = 0.83, p < 0.001) and soil
moisture (SM) (r = 0.75, p < 0.001) presented the best agreement with ground-derived observations
compared to those provided by other vegetation indices and abiotic variables. The study of NDVI and
SM dynamics, that was extended over four growing seasons (July 2015–May 2019), showed that the
seasonality of both variables was highly synchronized, with the best agreements at the beginning and
at the end of the dry seasons. However, stage changes were estimated first by SM, followed by NDVI,
with a delay of between 3 and 10 days. These results support the use of a multi-approach method to
monitor the phenology and the influence of the soil moisture dynamic under the study conditions.

Keywords: vegetation indices; oak-grass savanna; phenology; hydrology; Sentinel-2

1. Introduction

Monitoring the phenology of Mediterranean ecosystems is key to adequately assessing the impacts
of global warming on different time scales, identifying pre-critical states in the framework of early
warning decision-making systems, and establishing adaptation planning and management in the
medium- to long-term time horizons. The natural variability of the climatic–hydrological regime in
these areas, usually with complex spatial patterns of the vegetation that is sometimes difficult to access,
makes it necessary to exploit the available data from remote sensing sources.

The holm oak savanna ecosystem of the Iberian Peninsula (known as dehesa in Spain and montado
in Portugal) is an ancient system emerging as the only productive and sustainable structure able to deal
with the combination of low soil fertility and the high variability of the Mediterranean climate [1]. This
landscape is formed by a low density of holm oak trees, an understory of grasslands and, occasionally,
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shrubs and crops of cereals and legumes. The result is a mixture of natural facto and management,
making it difficult to differentiate the absolute determinants of its structure [2]. However, water
availability is known to be important in the conformation of this mixture of grasses and woody plants
which, as stated in [3], is the only stable state of equilibrium when a marked seasonality in water
availability occurs. In this state, canopy density maximizes biomass, thus minimizing water stress [4].
Annual grasslands are an essential component of this system as the primary source of fodder for
livestock, and is the main economic activity in these areas, but also contains a high richness of vascular
plants supporting a wide diversity of habitats [5]. The escape mechanism—i.e., the ability for the
plant to complete its life cycle before serious soil and plant water deficits develop [6]—is used by
these grasses to cope with the long summer dry season and the recurrent water scarcity events of the
Mediterranean climate. This results in a close link between grass phenology and soil water dynamics.

Plant phenological shifts have been observed as a result of changes in the climate [7–10].
Phenological research has advanced in developing climate–phenology models derived from ground
observations [11,12] and also in improving the monitoring methods constructed from satellite
information [13]. In recent years, the use of remote sensing in the study of phenology has increased
thanks to a greater availability of global products, which allow one to extend these studies in space
and time. In particular, the use of vegetation indices (VIs) has been generalized to determine changes
in vegetation on different spatial scales, ranging from centimeters to tens of kilometers. Some
examples are the use of the AVHRR (Advanced Very-High-Resolution radiometer) sensor for global
studies [14–16]; broad scale analysis using MERIS (Medium Resolution Imaging Spectrometer) and
MODIS (Moderate-Resolution Imaging Spectroradiometer) data for maize crops and forests [17,18];
studies on a detailed scale using Landsat or ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer) for multiple crops monitoring [19,20]; and at a very high spatial resolution
with UAVs (unmanned aerial vehicles) in vineyards [21]. The Sentinel-2 (S2) sensor, part of the
European Union Copernicus Program, has provided the renewed possibility of addressing canopy
phenological changes on a local scale with high spatial and temporal resolutions (10–20 m or 5 days),
and an improved spectral resolution providing narrow bands in the red-edge region. Despite the short
time series available (from July 2015 to present), S2 has been used for the monitoring of vegetation,
addressing aspects such as phenology [22], complementing other sensor datasets such as MODIS [23]
or Landsat [24], and monitoring biophysical variables through the proposal of new indices making
use of the red-edge bands [25]. However, its potential for improving the accuracy of estimating the
phenological transition stages has not been fully explored yet.

Remote sensing studies rely on field data of phenological parameters to explain their results.
However, field monitoring requires frequent and time-consuming observations, especially over areas
which are difficult to access. The use of digital terrestrial cameras offers a cost-effective solution,
providing real-time and reliable information to track vegetation phenology. Previous studies have
used cameras for phenological monitoring [26,27], and the creation of networks of these cameras
for a more global phenological follow-up is being increasingly demanded [28]. In addition, these
cameras can complement the information provided by other equipment, such as weather stations or
eddy covariance systems, in a wide range of applications [29–32]. The combination of these ground
observations with satellite images has also been explored [33–35], and the integration of highly detailed
terrestrial photography with large-scale satellite images is a promising tool that could reduce the scale
gap between phenological field and remote sensing studies.

The Mediterranean climate of this area presents a high vulnerability to global warming, with an
increasing occurrence of extreme droughts and torrential rainfall. This region is projected to warm
more and experience greater changes in the precipitation regime over the course of the century [36–38].
An improved knowledge of how climate and hydrology influence plant phenology is key to making
appropriate decisions to cope with these threats [39]. In addition, changes in values of satellite VIs
have proved to be able to reflect the heterogeneity of the hydrological behavior in this region [40]. In
the same line, phenological variations, assessed by using satellite data, could be useful for evaluating
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the cumulative effect of the hydrological regime over large areas, in a capacity that would not be
achievable with a field observation network.

In this work, images provided by a terrestrial camera were combined with meteorological
information and satellite data to provide an insight into the dynamics of phenological processes and
their links with the hydrological behavior of the grassland of an oak–grass savanna ecosystem. On this
basis, the objectives of the present study were: (1) to explore the potential of the S2 satellites to monitor
phenological changes over grasslands using a variety of vegetation indices derived from different
band combinations, both broadband and narrowband indices, taking advantage in the latter case of
the new possibilities offered by the red-edge bands of these satellites, (2) identify the links between
hydrology and vegetation phenology derived from terrestrial photography, evaluating the response of
grass vegetation and its life cycle to changes in the main abiotic variables controlling this system, and
(3) study the relationship between satellite VIs and the hydrological state of the system regarding their
ability to monitor grassland phenology.

2. Material and Methods

2.1. Study Site and Datasets

The study was conducted in a dehesa farm, called “Santa Clotilde” (Figure 1a), located in Southern
Spain (Córdoba, 38◦ 12′ 37′’ N, 4◦ 17′ 24′’ W, 734 m.a.s.l.) [41]. It is part of an environmentally protected
area (Sierra de Cardeña y Montoro Natural Park) with a landscape composed of sparse holm oak trees
and natural grasses. The semiarid climate in this region is characterized by cold winters and long dry
summers, with periodic severe droughts. Beef cattle and pigs are raised extensively on grasslands
and acorns.

Figure 1. (a) Farm location. (b) Aerial photography of the experimental site, including the location of
the weather station and the terrestrial digital camera and its field of view (FOV). (c) Image from the
terrestrial digital camera and region of interest (ROI) for natural grass used in the analysis (red polygon).

253



Remote Sens. 2020, 12, 600

Field measurements were taken at a grass-dominated site (Figure 1b), in which the grasses were
annual species of a medium size (with a maximum plant height between 0.5–1 m) and a variable
coverage. The field has a great variety of species, chiefly grams such as Vulpia spp, Bromus spp or
Aegilops spp, although legumes such as Trifolium spp, Ornithopus spp, Uncaria spp or Medicago spp are
also found [42]. The soil at the site is dominated by Eutric Cambisols, with a loamy sand texture in the
grass root zone (0–30 cm). The soil moisture content, modeled at field capacity (FC) and wilting point
(WP) [43], was equal to 0.18 and 0.08 m3/m3, respectively.

The site’s instrumentation included a digital camera, micrometeorological equipment and soil
moisture probes. Terrestrial photography was acquired using a CC5MPX Digital Camera (Campbell
Sci. Inc) installed at a height of 1.65 m above the ground surface. This is a programmable camera of 5
megapixels which has been specially prepared to be placed outdoors (at a thermal amplitude –40 to
60 ◦C). Its field of view (FOV) is 790 square meters (Figure 1b), and images were obtained from the
installation every hour over the daylight period, generally from 8 a.m. to 6 p.m., from the beginning of
December 2017 to the end of May 2019.

According to data availability, two study periods were defined: a first period, herein called A,
from December 2017 to May 2019, with available terrestrial images on a daily basis measuring field
grassland greenness, and an extended period of analysis (study period B), from July 2015 to May 2019,
which covered the whole period with Sentinel-2 availability (since first acquisition time).

The set of abiotic variables measured at the site during the whole study period (Figure 1b) included
the following:

1. Air temperature, recorded using an HMP45A probe (Vaisala OyJ); daily minimum (Tmin),
maximum (Tmax) and mean temperature (Tmed) values were computed from half-hourly records.

2. Incoming and outgoing solar radiation (Rad), measured with a four-way radiometer NR-01
(Campbell Sci. Inc); daily cumulative radiation fluxes were computed from half-hourly records.

3. Vapor pressure deficit (VPD) was derived from atmospheric pressure and relative humidity
(HMP45A probe (Vaisala OyJ); daily values were computed from half-hourly records.

4. Precipitation (R) was measured with a weighing-type recording rain-gauge ARG100 (Campbell
Sci. Inc); daily values were computed from the aggregation of 30 min cumulative values.

5. Volumetric soil moisture (SM) was measured at two depths (10 and 30 cm) with an ENVIROSCAN
(Campbell Sci. Inc) probe at 10 min intervals. Daily values were computed from these data and
averaged between both depths.

Figure 2 shows the general meteorological characterization of the study period with monthly
values of R and Tmed and the monthly average of the province of Córdoba with historical data from
1971–2000 [44]. A very irregular annual distribution of rainfall was observed, as expected, as well
as a great thermal amplitude on different time scales. Compared with the historical values, the four
hydrological years of the study period could be considered within the average regime in terms of mean
temperature, with values in summer close to 30 ◦C that may drop below 10 ◦C in winter, and mean
annual temperature of 16 ◦C. In terms of total precipitation, the historical annual value in the area was
about 650 mm: 2015/2016 and 2016/2017 were normal periods (close to 700 mm) but with different
temporal distributions; 2017/2018 was an anomalous year in the seasonal distribution of precipitation
in that it was drier than average until the month of March, in which 356 mm of the final 820 mm of
annual precipitation was concentrated; and 2018/2019 was the driest period (500 mm).
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Figure 2. Monthly values of precipitation and average temperature (a) during study period B from the
weather station in Santa Clotilde, (b) from historic data 1971–2000 in Córdoba.

The satellite image dataset consisted of 242 granules of Sentinel-2 images. It included all available
images with less than 15% of cloud coverage from July 2015 to May 2019. From March 2017 to May
2019, the atmospherically corrected product Level 2A available from ESA (European Space Agency)
was used. From July 2015 to March 2017, the images were atmospherically corrected using the module
Sen2cor included in SNAP (ESA Sentinel Application Platform v2.3.0). Seven bands were processed to
compute the different vegetation indices used in this study (the central wavelength and the bandwidth
are indicated in parentheses): B2 = blue (492 nm; 66 nm), B3 = green (559 nm; 36 nm)), B4 = red (665 nm;
31 nm), B5 = red edge 1 (704 nm; 15 nm), B6 = red edge 2 (740 nm; 15 nm), B7 = red edge 3 (783 nm;
20 nm) and B8 = near infrared (NIR) (833 nm; 106 nm).

2.2. Phenological Parameters From Terrestrial Photography

The greenness of the grass, observed by terrestrial photography, was used as a field indicator of
grass phenology and used to evaluate the phenological parameters retrieved from the satellite images.
A quantitative value of this greenness was computed using the Green Chromatic Coordinate (GCC)
(Equation (1)) [45]. The GCC index is not a direct measurement of chlorophyll content, and previous
research [35,46,47] has addressed its sensibility to changing levels of green pigmentation in vegetation
and how canopy phenology can be monitored and quantified without the need for a human observer.
This index is a non-linear transformation of the digital levels of the green color of the picture, and it
is known to minimize the effects of different lighting between images taken on different days. Their
characterization of greenness has proved to be better than those of other camera indices [48]:

GCC =
G

R + G + B
(1)

where

GCC: Green Chromatic Coordinate index;
R: digital level in red;
G: digital level in green;
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B: digital level in blue.

This index was calculated as the average value of the pixels of a homogeneous grass region of
interest (ROI) (Figure 1c). Daily index values were computed for period A (December 2017 to May
2019) using the 90th percentile, in which all the GCC values were used in a 3-day moving window,
assigning the average value to the central day. This methodology is assumed to reduce the error in the
estimates by more than 30% [49].

To calculate the phenological parameters from GCC values, the 50% amplitude method [50] was
used. In this method, the temporal evolution of a variable is considered as a function, and the state
changes are supposed to be within 50% of the amplitude of this function. The amplitude was fixed for
each annual growing cycle as the difference of the minimum GCC (baseline value) and the maximum
value (peak value). The parameters calculated were as follows:

Start of season (SOS): time when 50% of the amplitude is reached.
Peak of season (POS): time when the data reach the maximum value of the cycle.
End of season (EOS): time when 50% of the amplitude is reached to the right of the peak value.
To homogenize the extraction of values, the data were fitted using a double logistic function

(Equation (2)), which is commonly employed to process remotely sensed data for phenology
monitoring [51–53]. This function has proved to be useful for reducing the noise in a satellite
time-series and enforcing a general seasonal shape on noisy data [54].

v(t) = vmin + vmax

( 1
1 + ex1y1t −

1
1 + ex2y2t

)
v(t) = v (2)

where

v(t): value of the function at time t;
vmin: minimum value of the amplitude;
vmax: maximum value of the amplitude;
x and y: parameters that control the shape of the curve. x1 and x2 control the left and right inflexion
points, respectively, and y1 and y2 represent the rate of change at time t.

The TIMESAT program [51,54,55] was used to fit the double logistic function to the time series
and extract the phenological parameters.

2.3. Selection of Satellite Vegetation Indices

The time series of various vegetation indices, derived from Sentinel-2 images, were studied to
evaluate their ability to capture the phenology of the vegetation observed in the field using terrestrial
photography. An initial set of VIs, listed in Table 1, were calculated and spatially averaged in the
FOV given in Figure 1b. The first group of broad-band indices included the Normalized Difference
Vegetation Index (NDVI) [56], and a version of this which changed the red reflectance for the green
one—the Green Normalized Difference Vegetation Index (GNDVI) [57]; the Soil Adjusted Vegetation
Index (SAVI) [58]; the Enhanced Vegetation Index (EVI) [59] and a simplified version, EVI2 [60]. The
new possibilities of Sentinel-2 red edge bands made a second group of narrowband indices possible,
including an adaptation of the Meris Terrestrial Chlorophyll Index (MTCI) [61] and two indices
developed specifically for Sentinel-2 data: the Inverted Red Edge Chlorophyll Index (IRECI) and
Sentinel-2 Red Edge Position (S2REP) [25]. Finally, GCC was computed using Sentinel-2 bands and
was named as GCCs to distinguish it from the GCC from the camera, herein called GCCc. All VIs were
calculated for the whole study period and spatially averaged at the camera FOV.
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Table 1. Vegetation indices used in the study (listed alphabetically), formulation with Sentinel-2 bands
and the available spatial resolution. Bands of Sentinel-2: B2 = blue, B3 = green, B4 = red, B5 = red edge
1, B6 = red edge 2, B7 = red edge 3, B8 = near infrared (NIR). EVI: Enhanced Vegetation Index; GCC:
Green Chromatic Coordinate; GNDVI: Green Normalized Difference Vegetation Index; IRECI: Inverted
Red Edge Chlorophyll Index: MTCI: Meris Terrestrial Chlorophyll Index; S2REP: Sentinel-2 Red Edge
Position; SAVI: Soil Adjusted Vegetation Index.

Index Sentinel-2 Formulation Spatial Resolution

EVI 2.5(B8 − B4)/(B8 + 6B4 − 7.5B2 + 1) 10 m

EVI2 2.5(B8 − B4)/(B8 + 2.4B4 + 1) 10 m

GCCs B3/(B2 + B3 + B4) 10 m

GNDVI (B8 − B3)/(B8 + B3) 10 m

IRECI (B7 − B4)/(B5/B6) 20 m

MTCI (B6 − B5)/(B5 − B4) 20 m

NDVI (B8 − B4)/(B8 + B4) 10 m

S2REP 705 + 35(((B7 + B4)/2) − B5)/(B6 − B5)) 20 m

SAVI 1.5(B8 − B4)/(B8 + B4 + 0.5) 10 m

Once the indices values were obtained for Sentinel-2 acquisition days, a daily time series for period
A was computed using a linear interpolation between every two consecutive images. To minimize
the effect of possible spikes due to clouds or poor atmospheric conditions, daily index values were
smoothed using the Savitzky–Golay filter [62]. This method replaces each data value by a linear
combination of nearby values in a moving window, helping to reduce the noise and producing a higher
quality VI time series [63]. These satellite-derived time series were compared with GCCc values for the
same period; the statistical analysis was able to identify those of satellite VI better on reproducing the
digital camera observations. In order to compare the performance of the different indices, their values
were normalized.

Similar to GCCc, satellite VI time-series were fitted to a double logistic function, and the 50%
amplitude method was applied to estimate the phenological parameters, comparing their results with
those obtained from GCCc data.

2.4. Selection of Abiotic Variables

The daily evolutions of different weather variables together with the water content of the
root-depth soil layer were studied to locally evaluate their links with vegetation phenology and to
obtain information on the main factors influencing their behavior.

The set of abiotic variables initially selected were those commonly identified in phenological
studies (Tmax, Tmed and R), the meteorological variables often used in crop growth models (Tmin, Rad
and VPD), and the water content in the root depth of the soil layer of the grasses (SM). Daily data were
obtained from half-hourly values of the weather station for the period December 2017 to May 2019, as
described in Section 2.1.

The relationship between these variables and the daily series of GCCc were analyzed throughout
period A. The principal explanatory variable was also employed to determine phenological parameters
by fitting its values to a double logistic function, as described previously, and applying the 50%
amplitude method.

2.5. Satellite VI and Abiotic Variable Relationship

The dynamic of the selected satellite VI and the most significant abiotic variable were compared
during period B (July 2015 to May 2019). For this purpose, data from both of them for this period were
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fitted to a double logistic function, and the phenological parameters were extracted in the same way as
period A.

2.6. Statistical Analysis

To evaluate the relationships between the GCCc, satellite VIs, and the abiotic variables, a Pearson
correlation matrix and principal component analysis (PCA) were carried out to detect the group of
variables that similarly governed the behavior of the system [64]. This method generates a new set of
variables, called principal components (PCs), which are linear combinations of the original ones. The
variables are related by coefficients that range between −1 and 1. The closer to 1 or −1 they are in a
certain PC, the higher the direct or inverse influence they exert, respectively, on the PC. All the PCs are
orthogonal to each other, so there is no redundant information. Once the PCs are obtained, all the
variables of the system are grouped by processes. Since the original variables have different dimensions,
standardization was applied prior to the PCA by dividing each one by its standard deviation. This
process was applied firstly to GCCc with satellite VIs in order to select the representative ones, and,
secondly, to GCCc with the abiotic variables.

The TIMESAT program was used to fit a double logistic function to all the variables’ time series
and extract the phenological parameters. Finally, the coefficient of determination (R2) and the root
mean square error (RMSE) were used to evaluate the results.

All these calculations and statistical treatments were conducted by programming in MATLAB
(The Mathworks Inc., MA). The algorithms used were corcoeff for Pearson correlation matrices, pca for
PCA and the Curve fitting tool for R2 and RMSE.

To assess the relationship between the phenological parameters estimated using the indices, the
differences in days i.e., the biases with respect to the values obtained by the GCCc were computed,
and the percentage of those biases was calculated with respect to the total length of the phenological
cycle, with an estimated value of 210 days (seven months) as an average [1]. In the case of the joint
assessment of satellite VI and the abiotic variable, the bias in days was also calculated.

3. Results

3.1. Deriving Phenological Parameters From Terrestrial Photography

Figure 3 shows the evolution of the GCCc values throughout period A consisting of one and a
half growing seasons and the function fitted to those data. The days when the baseline, SOS, EOS and
the two POS for the period were reached have been identified, and the pictures (Figure 3a–e) illustrate
the state of the grass at each phenological stage.
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Figure 3. Evolution of GCCc (raw data, fitted function and error) throughout period A and
corresponding images of the phenological dates (red dots): (a) peak of season (POS) 1 (03/22);
(b) end of season (EOS (06/05); (c) Baseline (08/17); (d) start of season (SOS) (10/17); (e) POS 2 (01/15).

The lack of a first cycle starting point and the ending of the second one prevented the analysis
of a complete single cycle. The start of the period coincided with the installation of the camera; the
premature end of the second cycle was artificial and due to common farm management practices, i.e.,
plowing and preparing the soil for a future cereal crop. Thus, the parameters to be studied were the
EOS of the first cycle, the SOS of the second and the peaks of both cycles. The baseline value used was
the summer minimum of 2018.

The fitted function presented a high correlation of R2 = 0.9 and a very low error of RMSE = 0.01.
It can be seen that the dates of the phenological parameters given by the 50% amplitude method correctly
matched the observations derived from the visual inspection of the digital camera photographs. Both
POSs showed a green full cover; in the baseline, the grass was totally dry, and EOS and SOS showed
the beginning of senescence and the grass becoming green, respectively.

3.2. Terrestrial Camera vs. Satellite-derived Indices

3.2.1. Satellite and Ground-based Indices Comparison

The behavior of the different satellite indices and GCCs in the study area was analyzed using the
histograms of the values obtained during a complete growing cycle (year 2018). Figure 4 presents the
distribution of the normalized VI values throughout this year. It can be observed that some variability
was derived from the different algorithms and band combinations. All indices presented a first peak
corresponding to low/very low values. This peak was more pronounced for EVI2, SAVI, IRECI and
GCCs. Most indices also presented a second peak corresponding to intermediate/high index values.
NDVI, EVI, GNDVI showed a more balanced distribution between both peaks than the previous group.
However, MTCI and S2REP shapes do not completely follow this general pattern.
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Figure 4. Histograms of vegetation index (VI) normalized values in the study area during 2018. Blue:
satellite VIs; Green: Digital camera index.
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Table 2 shows the Pearson correlation coefficients of daily time series of GCCc with the daily time
series of a selection of satellite-derived VIs.

Table 2. Pearson correlation matrix between GCC data and the satellite VI on a daily scale. * p < 0.001.

Variable r (GCC)

EVI 0.72 *

EVI2 0.77 *

GCCs 0.79 *

GNDVI 0.82 *

IRECI 0.71 *

MTCI 0.52 *

NDVI 0.83 *

S2REP −0.44 *

SAVI 0.78 *

The correlation of all satellite indices with GCCc was significant (p < 0.001) and had a high
correlation value (r > 0.7), except for MTCI and S2REP (r = 0.52 and –0.44, respectively).

The results for PCA are shown in Figure 5. Most of the variance (79%) was explained by the PC 1,
in which two groups of indices could be distinguished: a first group of higher coefficients (equal to or
greater than 0.3) included GCCc and GCCs with the rest of the satellite indices except the MTCI and
S2REP, which would together form a second group with lower or negative coefficients. In turn, these
two indices presented higher values (> 0.5) in PC 2, which explained 11% of the total variance.

Figure 5. Principal component analysis (PCA) of GCCc and vegetation indices. The two first principal
components (PCs) are shown. Between parenthesis: percentage of variance explained.
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3.2.2. Satellite-derived Phenology

Based on the results of the previous section, VIs with a correlation higher than 0.7 and placed in
the same group of data in PCA were selected for the subsequent analysis. Thus, seven satellite VIs
were selected for the phenological analysis: EVI, EVI2, GCCs, GNDVI, IRECI, NDVI, and SAVI.

The smoothed daily data from the fitted functions are shown in Figure 6 together with the
phenological parameters obtained from those VIs.

Figure 6. (a) Evolution of vegetation indices (raw data, fitted function and error) throughout the
study period (a1 = EVI, a2 = EVI2, a3 = GCCs, a4 = GNDVI, a5 = IRECI, a6 =NDVI, a7 = SAVI). (b)
Comparison of the phenological dates of GCCc and satellite VIs in period A.

All fitted functions showed very high correlation values (R2 > 0.95) and low RMSEs (<0.03).
It can be observed (Figure 6) that the EOS was the parameter which was most similarly estimated

by all indices and had the lowest bias with respect to the GCCc. The estimation of both POSs presented
a higher dispersion. For this reason, POS 1 and POS 2 derived from the original raw data have been
also included in Table 3 in addition to the values derived from the adjusted functions. These data are
not presented for the EOS and SOS parameters due to the observed existence of erratic spikes that may
cause erroneous estimations of green-up or real senescence shifts. Table 3 summarizes the biases of the
phenological dates of the satellite VI with respect to GCCc (Figure 6b).
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Table 3. Biases in days of the phenological parameters extracted from satellite vegetation indices with
respect to GCCc, for POS 1, EOS, SOS and POS 2. The percentage of error with respect to the whole
cycle is displayed in parentheses.

POS 1
(raw data)

POS 1 EOS SOS POS 2
POS 2

(raw data)

EVI −8 (3.7) 1 (0.5) 6 (2.9) 31 (14.8) 30 (14.3) 36 (17.2)

EVI2 20 (9.3) 28 (13.3) −2 (9) 25 (11.9) 23 (11) 23 (11)

GCCs 18 (8.7) 28 (13.3) −13 (6.2) 12 (5.7) 3 (1.4) −3 (1.4)

GNDVI 13 (6) 22 (10.5) −6 (2.9) 9 (4.3) 11 (5.2) 6 (2.9)

IRECI 26 (12.4) 31 (14.8) −5 (2.4) 34 (16.2) 30 (14.3) 37 (17.7)

NDVI 4 (1.9) 9 (4.3) 1 (0.5) 9 (4.3) 9 (4.3) 2 (0.9)

SAVI 17 (8.2) 26 (12.4) −1 (0.5) 21 (10) 21 (10) 23 (11)

The estimation of the green up (SOS) was delayed by all satellite VIs, with GCCs, GNDVI and
NDVI presenting the lowest errors of around ten days (less than 10% of the cycle). The agreement
was higher for the end of the season, with errors below 10% in all cases and biases of only one day
using NDVI and SAVI. For both peaks of the season, there was a general delay in the estimations, with
lower errors in POS 1 than in POS 2 in most cases. EVI and NDVI produced the best results for POS1,
and GCCs and NDVI for POS 2. However, in the case of POS, the dates obtained using the original
raw data generally improved the estimates. It could be of interest to evaluate the impact of specific
weather events. In general, NDVI obtained the most consistent results and lowest errors; considering
this, NDVI was selected for further analysis in this work.

3.3. Analysis of Abiotic Variables and Greenness Dynamics

The results of the Pearson correlation matrix between the daily time series of GCCc and the
daily time series of selected abiotic variables for period A are shown in Table 4. All correlations were
significant (p<0.001), and soil moisture (SM) presented the highest correlation (r= 0.75). Some variables,
including VPD, Rad, Tmin, Tmed, and Tmax, were inversely correlated with greenness. Rainfall, although
positively correlated, presented the lowest coefficient of all analyzed variables. In the PCA results
(Figure 7), the first PC explained 60% of the total variance, showing high coefficients (greater than 0.3)
for most variables. Similar to the correlation matrix results, a first group with negative coefficients
included GCCc and variables favoring an increase of soil water content (SM and R); a second group
with positive coefficients was formed by variables with high values during the summer when the grass
canopy was dry.

Table 4. Pearson correlation matrix between GCCc data and the abiotic variables at a daily scale.
* p < 0.001.

Variable r (GCCc)

SM 0.75 *

VPD −0.68 *

R 0.17 *

Rad −0.56 *

Tmin −0.68 *

Tmed −0.72 *

Tmax −0.69 *

263



Remote Sens. 2020, 12, 600

Figure 7. Principal component analysis (PCA) of GCCc and abiotic variables. The two first principal
components (PCs) are shown. Between parenthesis: percentage of variance explained.

Grassland Phenology and Soil Moisture Relationship

Considering the previous results, SM has been selected to evaluate its capability to predict the
phenology of the grass canopy of oak–grass savanna ecosystems. Figure 8a shows the distribution
of SM data and the fitted function. This function presented a correlation of R2 = 0.9 and an error of
RMSE = 0.02, indicating a good agreement, although to a lesser extent than those obtained for GCCc
and satellite VIs.

 

Figure 8. (a) Evolution of SM (raw data, fitted function and error) for the study period. (b) Comparison
of the phenological dates of GCCc (green) and SM (blue) in period A.
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The phenological parameters predicted by this function were compared to those derived from
GCCc (Figure 8b). The SOS and EOS were quite similar to the timings estimated by GCCc, with
a slight advance in both dates according to SM estimations. The 50% amplitude method resulted
in similar values of SM, around 0.14 m3 /m3 on average, marking the beginning and the end of the
growing season.

3.4. Relationships Between Soil Moisture and NDVI

The relationship between NDVI and SM—i.e., the variables that best suited the phenological
monitoring of the grassland according to the previous results—were analyzed during period B (July
2015 to May 2019) comprising a total of four growing seasons.

Figure 9 shows the data for SM, the smoothed data for NDVI, the functions fitted to both
series, and the phenological parameters extracted from them. The marked and mostly synchronized
seasonality of both variables can be observed. The highest differences were found during the second
year, corresponding to the growing season 2016/2017, with differences of 9 days (4.3%) for SOS, 28
days (13.3%) for POS and 16 days (7.6%) for EOS. Both fitted functions showed a high correlation
(R2 = 0.9 for SM and R2 = 0.93 for NDVI) and low errors (RMSE = 0.02 for SM and RMSE = 0.04 for
NDVI). Compared to GCCc, NDVI showed a later response to water availability, resulting in lower
differences in monitoring the phenology.

 

Figure 9. (a) Evolution of NDVI (raw data, fitted function and error) throughout the study period. (b)
Evolution of SM (raw data, fitted function and error) during the study period. (c) Comparison of the
phenological dates of NDVI and SM in the whole study period
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4. Discussion

4.1. Capability of the Terrestrial Photography to Provide Phenological Parameters

The two hydrological years of study period A are an example of Mediterranean climate variability
(Figure 2), and therefore of phenology variability. In 2017/2018, most of the precipitation was
concentrated in a short period of time at the beginning of March, and POS 1 occurred shortly after
those intense events. On the other hand, 2018/2019 was a drier year, but with a more regular rainfall
distribution in the fall and spring. A lower GCCc maximum value was reached, but the growing
season was longer, producing a plateau shape in which an intermediate value was identified as POS 2.

GCCc values ranged between 0.35 and 0.5, reaching their maximum values between November
and April, eventually presenting drops of varying duration and intensity due to the particular weather
conditions of the year. This temporal trend of the GCCc time series was similar to the one observed by
other studies in Mediterranean grasslands [65,66]. The reasonable behavior of the CGGc of canopy
status in the field according to the weather conditions, the previous studies and the visual observations
provided by the terrestrial photography supported the use of GCCc time series as a reference to
evaluate the performance of satellite vegetation indices.

4.2. Comparison of Ground and Satellite-based Indices

The first peak with a low value observed in Figure 4 corresponds to a predominance of dry
grass/bare soil coverage during the dry season. Indices particularly sensitive to soil contribution, such
as EVI, EVI2 and SAVI [58], present a higher concentration around these low values. The second peak
may correspond to the central time of the spring, when the greening is widespread, while intermediate
values reflect periods of green-up and senescence. The narrow band indices (IRECI, MTCI and S2REP)
showed a wider distribution in values, probably due to the greater sensitivity to the changes that the
red edge presented. It is worth mentioning that NDVI and GNDVI presented a sharpened ending at
high values compared to other indices, with an accumulation of intermediate–high values that did not
reach its maximum. This might indicate a certain degree of saturation of both indices under high grass
cover conditions. This issue, described in previous studies for forest or high biomass crops [67,68],
appears to occur here also to some extent. It is also worth noting the difference in the distribution of
GCCs and GCCc; with the same formulation, the satellite version presented lower values than those
calculated using the field camera. This result could have been due to the differing geometry of the
image acquisition.

The low correlation for MTCI shown in Table 2 could be explained by the rapid response of this
index to chlorophyll variations [61]. This causes the time series to follow a different trend than the
rest of the indices, which is more connected to green foliage density [69] with smoother transitions.
MTCI has presented good results in more homogeneous canopies, such as subalpine grasslands [33]
or in deciduous trees in Central Europe [70]. In this case, the high diversity of species, typical of
Mediterranean grasslands, might explain the high variability observed in these values. The case of
S2REP is similar since it was also designed to measure chlorophyll variation using three bands located
in the red-edge region, and allegedly provides a better characterization of the red-edge slope than
MTCI [25]. IRECI also uses three bands in the red edge, although the high correlation presented
with GCCc might be explained by a different formulation. In this case, the index was designed to
focus on the chlorophyll content of the canopy instead of the leaf scale addressed by S2REP [25]. The
influence of the vegetation ground coverage and foliage density was higher and more similar to the
other broad-band indices.

The results for PCA in Figure 5 showed that most of the variance (79%) was explained by the
PC 1, in which two groups could be distinguished; a first group of higher coefficients (equal to or
greater than 0.3) included GCCc and the rest of the satellite indices except the MTCI and S2REP, which
would form a second group with lower or negative coefficients. In turn, these two indices had high
values (>0.5) in PC 2, which explained 11% of the total variance. This grouping confirmed the results
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obtained by the Pearson correlation and suggested that these two red-edge indices might be related to
a different process than the rest. In that case, MTCI and S2REP would be more useful for estimating
leaf chlorophyll content [61,71], while the rest were more influenced by canopy foliage. Regarding the
pixel size, it does not seem to have had an influence on previous results or to determine the selection of
the index for the conditions of this study. IRECI, at 20 m in size (like MTCI and S2REP), was included
in the subsequent phenological analysis.

The estimation of the green up (SOS) was delayed by all satellite VIs, but GCCs, GNDVI and
NDVI presented low errors of around ten days (less than 10% of the cycle). The agreement was
higher for EOS, with errors below 10% in all cases and biases of only one day using NDVI and SAVI.
However, in the case of POS, the dates obtained using the original raw data generally improved the
estimates—something of interest to evaluate the impact of specific weather events—nevertheless, in
the case of analyzing long time series, fitted functions provide a useful homogenization procedure,
generally leading to a more consistent analysis.

The disagreement in terms of POS estimations between satellite-borne and ground-borne sensors
can be explained by the different acquisition angle of both systems. The field camera captures flowering
and the presence of non-photosynthetic elements such as stems [46], which might reduce greenness
and anticipate peak time. Despite this factor, NDVI exhibited a very similar behavior to GCCc, with
lower differences in days than those of previous studies in grasslands [66,72]. A possible reason for
the comparatively lower errors could be the higher spatial resolution employed in this case (10 m
for Sentinel-2 versus 250 or 500 m for MODIS, as previously used). This factor may become a major
issue in mixed grass/tree systems [34]. GNDVI also provided good general results for EOS and SOS,
although POS, especially for the first year, was somewhat delayed. GCCs, with the same formulation
as GCCc, presented higher errors than NDVI when applied to satellite bands. EVI, EVI2, IRECI and
SAVI displayed the highest difference of days in this study, despite EVI2 and NDVI having performed
similarly in other types of grasslands [47] and with even better EVI2 results for maize yield [73] and EVI
for deciduous tree coverages ([74,75]). In general, NDVI obtained the most consistent results and the
lowest errors (less than 10% in all cases). These good results support the use of this multi-scale approach
to complement phenology studies in grasslands. Even though the availability of terrestrial camera
observations is not widespread, the increasing number of these stations is a promising framework to
encourage this combined strategy.

4.3. Analysis of the Dynamics of Abiotic Variables, Greenness and Phenology

The results shown in Table 4 are consistent with the water-limited condition of this ecosystem,
where the dynamics of plant development and soil moisture are intimately related. This explains
the high correlation of SM with GCCc, and the positive values found for SM and rainfall, with both
variables favoring an increase in soil water content. The low correlation coefficient of the rainfall
was also reasonable considering the daily time scale and the bulk analysis performed over a period
with high rainfall variability. Rainfall has been previously related to the timing of leaf flush in dry
forest [76], suggesting that an event-based analysis at specific times of the year might produce different
results. High values of solar radiation, air temperature and VPD—characteristics of the dry season—are
linked to an increase in atmospheric water demand, thus accelerating the water stress process in the
vegetation and explaining the inverse relationships with grass greenness. This general description
of the ecosystem behavior is also supported by PCA results (Figure 7). The first PC explained 60%
of the total variance, showing high coefficients (greater than 0.3) for most variables. Similar to the
correlation matrix results, a first group with negative coefficients included GCCc and variables favoring
an increase in soil water content (SM and R); a second group with positive coefficients was formed by
variables with high values during the summer when the grass canopy was dry. These variables might
negatively influence the plant water status in water scarce conditions. No significant differences in
both analyses were obtained when the different growing season stages were analyzed separately.
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Analyzing the behavior of SM shown in Figure 8, the value of SM selected by the 50% method for
the EOS seems slightly high, as it coincides with a fraction of around 60% of the total available soil
water. This depletion fraction is close to the threshold used for crops [77] below which the soil water
can no longer be transported quickly enough towards the roots to meet the transpiration demand,
and the plant starts to experience stress. However, in this application, this threshold is supposed to
indicate the complete senescence of the plant rather than the beginning of plant water stress, which
might indicate that both processes—the soil drying and the response of the vegetation—happened
very quickly.

The use of SM to compute the POS in this environment makes less sense than for SOS and EOS,
and the biases found with respect to GCCc estimations confirm this point. First of all, the data reflected
a significant difference between the two POSs reached in the field-calibrating period as a consequence of
the natural climatic variability of this region. POS 1 estimation with SM was closer to GCCc estimation,
occurring with a bias of 9 days (4.3%). For POS 2, the bias was of –23 days (11%), presenting a difficult
identification of the peak due to a flatter distribution of SM over the mid-growing season. Looking at
the distribution of GCCc (Figure 3) and SM (Figure 8a), the shape of the first cycle was sharper because
high SM values were concentrated in a short period, producing a fast response in GCCc values, with the
POS reached before the SM peak, once the plant had no limitation to accessing soil water. In the second
cycle, the distribution of SM followed a distribution with two similar low peaks (November 2018 and
February 2019) with a slightly drier period around January. This reduction in SM was reflected by both
GCCc (Figure 3) and some satellite VIs such as NDVI or GCCs (Figure 6), confirming the close link
between SM and greenness and also the fast response of the vegetation to relatively small reductions in
SM. This change in SM was small and it was not reproduced by the different fitted functions however,
nevertheless, it caused a notable bias in the peak identification. Using the unfitted data for the POS, the
results were similar; in POS 1, there was an advance of 9 days (4.3%), and in POS 2, this was 31 (14.7%).

4.4. Relationship Between SM and NDVI

The synchronized seasonality of both variables observed in Figure 9 has already been pointed out
for other vegetation types under arid or semi-arid conditions in [78], in which the authors reported an
increasing synchronization following a gradient of dry season length in a region. It is worth noting
here the similar shapes of both variables following the beginning and the end of the dry periods,
supporting the higher control of soil moisture on vegetation development during those periods. In
general, an average delay between 3 and 10 days can be noted in the estimation of most phenological
parameters with NDVI with respect to SM. The highest differences were found in the second year,
corresponding to the growing season 2016/2017, with differences of 9 days (4.3%) for SOS, 28 days
(13.3%) for POS and 16 days (7.6%) for EOS. During that year, the grassland was plowed and sown in
the middle of February, following a management practice conducted every nine years or so that is
currently disappearing in the area. Therefore, these two grass-growing cycles were artificially shaped
and were not adequately reproduced by the fitting function. The poor adjustment of the function affects
the phenological estimations, increasing their errors. Apart from this specific case, both fitted functions
showed a high correlation (R2 = 0.9 for SM and R2 = 0.93 for NDVI) and low errors (RMSE = 0.02
for SM and RMSE = 0.04 for NDVI). Compared to GCCc, NDVI showed a later response to water
availability, resulting in lower differences in monitoring the phenology. However, this difference could
simply be due to the lower temporal resolution of satellite data, with a minimum of 5 days, compared
to the daily availability of the terrestrial photography.

5. Conclusions

The phenology of a semi-arid grassland was monitored using terrestrial photography, satellite
images, and abiotic ground measurements. The similarities and discrepancies observed using these
datasets supported the capability of satellite vegetation indices to track important phenological
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parameters of this canopy and highlight the close relationship between these phenological parameters
and the soil moisture dynamic under the study conditions.

The methodology to process the ground and satellite time series and extract the phenological
information, implemented in TIMESAT, successfully fitted the data, with high correlation coefficients
and low errors (R2> 0.9 and RMSE < 0.03 in all cases at the two scales), and identified key seasonal
changes of the natural grasslands. On the ground, daily time series of the GCCc, computed using digital
photography, estimated grassland phenological parameters in accordance with visual inspection and
with the observed climatic conditions of the experimental study period. On the S2 satellite platform,
NDVI was the index that better reproduced ground GCCc behavior, with the highest correlation
(r = 0.83) and less than 10 days of difference for all the phenological parameters studied (representing
less than 5% error within a grass cycle). None of the VIs using bands in the red-edge region improved
the NDVI results. Two of them, MTCI and S2REP, followed a different trend than the rest of the
explored indices. Both indices presented a high temporal variability, which could be explained by
chlorophyll content variations caused by the diversity of species of this grassland, different to the more
homogeneous canopies of previous studies [33,70]. The rest of the indices were more related to foliage
density [69] and presented smoother changes in this canopy.

The abiotic variable that best represented the behavior of GCCc was SM (r = 0.75). The estimation
of SOS and EOS phenological parameters using SM time series presented a good agreement with
GCCc, with SM reaching threshold values a few days before greenness ones, as measured by GCCc.
The values of SM found at the beginning and the end of the growing seasons, when changes between
green and senescent stages occurred, were high according to the modeled soil water holding capacity.
This might indicate that these modeled values were not accurate enough to assess the quick response
of this canopy to the soil drying process. On the other hand, SM was not a good indicator of the POS,
presenting significant biases with respect to GCCc estimations.

Finally, the behavior of NDVI and SM during the four growing seasons points out the synchronized
seasonality shown in this system by the vegetation greenness, measured here by the NDVI and the
SM. Higher agreement was found at the beginning and the end of the dry season, with stage changes
estimated first by SM followed by NDVI with a delay of between 3 to 10 days. Taking into account
these results, it is possible to monitor the water state of the soil from the phenological parameters
obtained with NDVI of S2 and also to determine the phenological state of the cover from the SM with
errors below ten days for this type of coverage.
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