559 research outputs found

    The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Full text link
    Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and possibly indicates an even stronger lower bound (subject to open problems in VAS theory). The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State Systems", for the opportunity to present an early draft of this wor

    On functional module detection in metabolic networks

    Get PDF
    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models

    From RT-LOTOS to Time Petri Nets new foundations for a verification platform

    Get PDF
    The formal description technique RT-LOTOS has been selected as intermediate language to add formality to a real-time UML profile named TURTLE. For this sake, an RT-LOTOS verification platform has been developed for early detection of design errors in real-time system models. The paper discusses an extension of the platform by inclusion of verification tools developed for Time Petri Nets. The starting point is the definition of RT-LOTOS to TPN translation patterns. In particular, we introduce the concept of components embedding Time Petri Nets. The translation patterns are implemented in a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN in the format admitted by the TINA tool. The efficiency of the proposed solution has been demonstrated on various case studies

    On the Enforcement of a Class of Nonlinear Constraints on Petri Nets

    Get PDF
    International audienceThis paper focuses on the enforcement of nonlinear constraints in Petri nets. First, a supervisory structure is proposed for a nonlinear constraint. The proposed structure consists of added places and transitions. It controls the transitions in the net to be controlled only but does not change its states since there is no arc between the added transitions and the places in the original net. Second, an integer linear programming model is proposed to transform a nonlinear constraint to a minimal number of conjunc-tive linear constraints that have the same control performance as the nonlinear one. By using a place invariant based method, the obtained linear constraints can be easily enforced by a set of control places. The control places consist to a supervisor that can enforce the given nonlinear constraint. On condition that the admissible markings space of a nonlinear constraint is non-convex, another integer linear programming model is developed to obtain a minimal number of constraints whose disjunctions are equivalent to the nonlinear constraint. Finally, a number of examples are provided to demonstrate the proposed approach

    A Forward Reachability Algorithm for Bounded Timed-Arc Petri Nets

    Full text link
    Timed-arc Petri nets (TAPN) are a well-known time extension of the Petri net model and several translations to networks of timed automata have been proposed for this model. We present a direct, DBM-based algorithm for forward reachability analysis of bounded TAPNs extended with transport arcs, inhibitor arcs and age invariants. We also give a complete proof of its correctness, including reduction techniques based on symmetries and extrapolation. Finally, we augment the algorithm with a novel state-space reduction technique introducing a monotonic ordering on markings and prove its soundness even in the presence of monotonicity-breaking features like age invariants and inhibitor arcs. We implement the algorithm within the model-checker TAPAAL and the experimental results document an encouraging performance compared to verification approaches that translate TAPN models to UPPAAL timed automata.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Redes de Petri híbridas adaptativas : alcanzabilidad y ausencia de bloqueos

    Get PDF
    Las redes de Petri (RdP) son un paradigma formal ampliamente aceptado para el modelado de sistemas de eventos discretos. No obstante, con poblaciones de gran tamaño, aparece el problema de la explosión de estados (crecimiento exponencial del tamaño del conjunto de estados alcanzables). Una manera de paliar este problema consiste en fluidificar el formalismo y considerar redes de Petri continuas, que permiten abordar de manera eficiente el estudio de los sistemas mediante técnicas lineales de análisis. Sin embargo, las RdP continuas no siempre preservan sus propiedades, como por ejemplo la ausencia de bloqueos. En este Trabajo se introduce, formaliza y estudia un formalismo nuevo, denominado redes de Petri híbridas adaptativas (HAPN), que combina comportamiento continuo y discreto: El comportamiento de las transiciones de la red adaptativa es variable: una transición se comporta como continua si su carga de trabajo supera un umbral establecido inicialmente, en caso contrario se comporta como discreta. Estas redes pueden aproximar mejor las redes discretas, mientras que cuando las poblaciones son elevadas el comportamiento es continuo y las técnicas lineales son aplicables, evitando el problema de la explosión de estados. De esta manera, las HAPN constituyen un marco conceptual muy general que incluye a las redes de Petri discretas,continuas e híbridas. En este trabajo, se ha definido formalmente el formalismo de redes de Petri adaptativas. A continuación, se ha caracterizado el conjunto de marcados alcanzables de las redes de Petri adaptativas, así como se compara con el de las RdP discretas. Por ultimo, se ha estudiado la propiedad de ausencia de bloqueos: se trata de determinar si la red adaptativa preserva la ausencia de bloqueos de la red discreta con misma estructura y marcado inicial

    Petri net controllers for Generalized Mutual Exclusion Constraints with floor operators

    Get PDF
    In this paper a special type of nonlinear marking specifications called stair generalized mutual exclusion constraints (stair-GMECs) is defined. A stair-GMEC can be represented by an inequality whose left-hand is a linear combination of floor functions. Stair-GMECs have higher modeling power than classical GMECs and can model legal marking sets that cannot be defined by OR–AND GMECs. We propose two algorithms to enforce a stair-GMEC as a closed-loop net, in which the control structure is composed by a residue counter, remainder counters, and duplicate transitions. We also show that the proposed control structure is maximally permissive since it prevents all and only the illegal trajectories of a plant net. This approach can be applied to both bounded and unbounded nets. Several examples are proposed to illustrate the approach

    Fluidization of Petri nets to improve the analysis of Discrete Event Systems

    Get PDF
    Las Redes de Petri (RdP) son un formalismo ampliamente aceptado para el modelado y análisis de Sistemas de Eventos Discretos (SED). Por ejemplo sistemas de manufactura, de logística, de tráfico, redes informáticas, servicios web, redes de comunicación, procesos bioquímicos, etc. Como otros formalismos, las redes de Petri sufren del problema de la ¿explosión de estados¿, en el cual el número de estados crece explosivamente respecto de la carga del sistema, haciendo intratables algunas técnicas de análisis basadas en la enumeración de estados. La fluidificación de las redes de Petri trata de superar este problema, pasando de las RdP discretas (en las que los disparos de las transiciones y los marcados de los lugares son cantidades enteras no negativas) a las RdP continuas (en las que los disparos de las transiciones, y por lo tanto los marcados se definen en los reales). Las RdP continuas disponen de técnicas de análisis más eficientes que las discretas. Sin embargo, como toda relajación, la fluidificación supone el detrimento de la fidelidad, dando lugar a la pérdida de propiedades cualitativas o cuantitativas de la red de Petri original. El objetivo principal de esta tesis es mejorar el proceso de fluidificación de las RdP, obteniendo un formalismo continuo (o al menos parcialmente) que evite el problema de la explosión de estados, mientras aproxime adecuadamente la RdP discreta. Además, esta tesis considera no solo el proceso de fluidificación sino también el formalismo de las RdP continuas en sí mismo, estudiando la complejidad computacional de comprobar algunas propiedades. En primer lugar, se establecen las diferencias que aparecen entre las RdP discretas y continuas, y se proponen algunas transformaciones sobre la red discreta que mejorarán la red continua resultante. En segundo lugar, se examina el proceso de fluidificación de las RdP autónomas (i.e., sin ninguna interpretación temporal), y se establecen ciertas condiciones bajo las cuales la RdP continua preserva determinadas propiedades cualitativas de la RdP discreta: limitación, ausencia de bloqueos, vivacidad, etc. En tercer lugar, se contribuye al estudio de la decidibilidad y la complejidad computacional de algunas propiedades comunes de la RdP continua autónoma. En cuarto lugar, se considera el proceso de fluidificación de las RdP temporizadas. Se proponen algunas técnicas para preservar ciertas propiedades cuantitativas de las RdP discretas estocásticas por las RdP continuas temporizadas. Por último, se propone un nuevo formalismo, en el cual el disparo de las transiciones se adapta a la carga del sistema, combinando disparos discretos y continuos, dando lugar a las Redes de Petri híbridas adaptativas. Las RdP híbridas adaptativas suponen un marco conceptual para la fluidificación parcial o total de las Redes de Petri, que engloba a las redes de Petri discretas, continuas e híbridas. En general, permite preservar propiedades de la RdP original, evitando el problema de la explosión de estados

    On Zone-Based Analysis of Duration Probabilistic Automata

    Full text link
    We propose an extension of the zone-based algorithmics for analyzing timed automata to handle systems where timing uncertainty is considered as probabilistic rather than set-theoretic. We study duration probabilistic automata (DPA), expressing multiple parallel processes admitting memoryfull continuously-distributed durations. For this model we develop an extension of the zone-based forward reachability algorithm whose successor operator is a density transformer, thus providing a solution to verification and performance evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611
    corecore