
From RT-LOTOS to Time Petri Nets
 New Foundations for a Verification Platform

T. Sadani(1)(2), J.-P. Courtiat(1), P. de Saqui-Sannes(1)(2)
(1)LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse Cedex 04

(2)ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05
tsadani@ensica.fr ; courtiat@laas.fr ; desaqui@ensica.fr

Abstract

The formal description technique RT-LOTOS has
been selected as intermediate language to add
formality to a real-time UML profile named TURTLE.
For this sake, an RT-LOTOS verification platform has
been developed for early detection of design errors in
real-time system models. The paper discusses an
extension of the platform by inclusion of verification
tools developed for Time Petri Nets. The starting point
is the definition of RT-LOTOS to TPN translation
patterns. In particular, we introduce the concept of
components embedding Time Petri Nets. The
translation patterns are implemented in a prototype
tool which takes as input an RT-LOTOS specification
and outputs a TPN in the format admitted by the TINA
tool. The efficiency of the proposed solution has been
demonstrated on various case studies.

1. Introduction

The acknowledged benefits of using formal
methods include the possibility to implement
verification techniques and to perform early detection
of design errors in the life cycle of software intensive
systems. Formal methods with an explicit expression
of time and verification tools enabling detection of
logical and timing errors are of prime interest for the
design of real-time and life-critical systems, such as
airplanes or trains.

This paper addresses the verification of real-time
systems specified in RT-LOTOS [9], a timed extension
of the ISO-based formal description technique LOTOS
[13]. RT-LOTOS differs from other timed extension of
LOTOS by the “latency” operator used to express
temporal indeterminism. Further, RT-LOTOS is
supported by RTL (Real-Time Lotos laboratory [17]),
a verification tool successfully applied in various
domains ranging from control/command systems to
hypermedia authoring [10]. RT-LOTOS and RTL have
also been used to define a formal verification

environment for a real-time profile named TURTLE
(Timed UML and RT-LOTOS Environment [1]).

The RTL tool has been stable for more than eight
years and its reachability analysis procedure based on
[22] outputs graphs which are optimized in terms of
state and transition numbers. As the systems specified
in RT-LOTOS have increased in complexity, RTL has
shown limited performances in terms of execution
speed. RTL further enables verification of CTL
(Computational Tree Logic) properties, not LTL
(Linear Temporal Logic) ones. The need to overcome
these limitations has motivated investigations on the
use of TINA [4] for improving tool support for
verifying complex RT-LOTOS specifications [18]. The
first step was to define translation patterns to compile
RT-LOTOS specifications into TINA’s input format,
namely Time Petri nets [15]. RT-LOTOS to TPN
translation patterns have been defined and formally
proved [19]. The proof is outside the scope of this
paper, which insists on experimental results obtained
with RTL2TINA, a RT-LOTOS to Time Petri nets
compiler which takes as input an RT-LOTOS
specification and outputs a TPN in the TINA format.

The paper is organized as follows. Section 2
introduces the RT-LOTOS language and the RTL tool.
Section 3 briefly presents the TINA tool. Section 4
details RT-LOTOS to TPN translation patterns. In
particular, it is shown how TPNs are embedded in
components and composed. Section 5 presents a case
study. Section 6 surveys related work. Section 7
concludes the paper.

2. RT-LOTOS and the RTL tool

The ISO-based formal description technique
LOTOS [13] extends CCS and implements a multiple
rendezvous mechanism à la CSP. RT-LOTOS [9]
extends LOTOS with three canonical temporal
operators: a deterministic delay, a “latency” operator
which enables description of temporal indeterminism,
and a time-limited offer.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Real-Time LOTOS Laboratory, or RTL for
short [17], enables formal validation of RT-LOTOS
specifications. It supports two techniques. First,
intensive simulation for partial exploration of the
system’s state space. Second, reachability analysis
which outputs a reachability graph characterizing the
set of global states the system may reach from its
initial state. Reachability analysis - which applies to
bounded systems of “reasonable” size - is the subject
of this paper. Note that RTL implements reachability
analysis, not model checking. It provides an interface
to Aldebaran [7], for reachability graph minimization
based on different equivalence relations (e.g.
observational equivalence [16]).

The reachability analysis procedure implemented by
RTL can be sketched as follows. The tool first
generates a Dynamic Timed Automaton (DTA [8]).
The later is a labelled timed automaton which
distinguishes between urgent and non urgent actions.
The DTA is the starting point for generating a
reachability graph preserving CTL properties [22]. A
global state or configuration of a timed system consists
of the control state of the DTA and the values of the
clocks. A finite analysis of such a system requires to
partition the configuration space into a finite number of
regions.

A node (or class) defines both a control state and a
region represented by a convex polyhedron whose
dimension equals the number of clocks in the control
state. An edge in the graph corresponds to either an
RT-LOTOS action or a time progression (edge labelled
by t).

3. The TINA tool

A Time Petri Net [15] is a tuple TPN = <P, T, Pre,
Post, Mo, IS> where:
• <P, T, Pre, Post, Mo> is a Petri Net, and
• IS: T Q+ x (Q+U{∞}) is the static Interval function.

The IS function associates each transition t in T with a
temporal interval with rational bounds. IS[t] = [min,
max] with 0 ≤ min ≤ max; min and max represent the
earliest and latest firing dates, respectively.

TINA (TIme petri Net Analyzer [4]) is a software
environment to edit and analyze Petri nets and Time
Petri Nets (Petri Nets with time intervals on
transitions). In addition to the usual editing and
analysis facilities of such environments (compilation of
marking reachability sets, coverability trees, semi-
flows), TINA offers various abstract state space
constructions that preserve specific classes of
properties of the concrete state space of the nets. Those
classes of properties include general properties

(reachability properties, deadlock freeness, liveness),
and specific properties. The latter may rely on the
linear structure of the concrete space state (linear time
temporal logic properties, test equivalence), or on its
branching structure (branching time temporal
properties, bi-simulation). TINA is interfaced with
Aldebaran [7].

4. From RT-LOTOS to Time Petri Nets

One difficulty we have faced in prototyping a RT-
LOTOS to Time Petri Nets translator comes from the
lack of structuring facility in TPNs. Neither the
composition nor the temporal operators of RT-LOTOS
have direct counterpart in TPNs.

This is why we defined translation patterns (Section
4.1). These patterns have been implemented in the
RTL2TINA translator prototype. The latter reuses
RTL’s parser and type-checker. TPNs are generated by
a recursive traversal of the syntactic tree of an RT-
LOTOS specification.

For readability reasons, we use labels to represent
actions in a TPN; different transitions corresponding to
different occurrences of the same action share the same
label. Let us call “Act” the labels associated with RT-
LOTOS actions. In addition to “Act” labels, other
labels (called “Time” labels) are introduced for
representing RT-LOTOS temporal operators:

• A “tv” label represents a temporal violation in a
time-limited offer (temporal offer expiration),

• A “delay” label denotes a deterministic delay, and
• A “latency” label represents a non deterministic

delay.
In order to add formality to the translation

procedure and to structure the TPNs generated by the
RTL2TINA tool, we extended TPNs with a
“component” concept. A component is the basic
building block in the translation procedure. It
encapsulates a TPN which describes its behaviour. A
component performs an action by firing a
corresponding transition. It communicates with its
environment through interaction points. A component
is graphically represented by a box containing a TPN.
The black-filled boxes at the component boundary
represent interaction points.

Figure 1. Component example

For instance, component “C” in Figure 1 can
sequentially perform observable action “a”, perform
hidden action “b” (there is no interaction point related
to “b”) and terminate by “exit”. The dark grey place
“in” represents the input interface of “C” and the light
grey place “out” represents its output interface.

Definition:
A component is a t-uple C = <∑ , Act, Lab, I, F >

where
• ∑ = <P, T, Pre, Post, Mo, Is> is a TPN.
• Act= Ao ∪ Ah ∪ {exit}. Ao and Ah are finite,

disjoints sets of transitions labels. Ao ∪ {exit}
represents the component’s interaction points.
During the translation process, Ao and Ah will
be used to model observable and hidden RT-
LOTOS actions, respectively.

• Lab: T (Act ∪ Time) is a labelling function
which labels each transition in • with either an
action name or a “Time“ label defined in {tv,
delay, latency}.

• I is a set of places defining the input interfaces
of the component.

• F is a singleton defining the output interface
of the component. A component has an output
interface if it has a transition(s) labelled by
“exit”. If so, F is the outgoing place of those
transitions. Otherwise, F= {}.

A component is active if at least one of its

transitions is enabled. Otherwise, the component is
inactive.

4.1. Translation patterns

An RT-LOTOS behaviour expression represents in
general several sub-behaviours composed by means of
RT-LOTOS operators. Similarly, we define a set of
operations involving the components. These operations
match the composition and temporal operators
supported by RT-LOTOS, and are graphically depicted
through different patterns in the subsequent subsection.
The patterns show the intuition behind the translation
algorithms implemented in RTL2TINA.

The soundness of the translation patterns has been

formally proved in [19]. In particular, we demonstrated
that the translation preserves the sequence of possible
actions but also the occurrence date of these actions.

We distinguish between two sets of patterns.
Patterns that apply to one component and patterns that
apply to a set of components.

4.1.1. Patterns applying to one component. These
patterns extend the TPN encapsulated in a given
component with an additional part linked to its input
interface. The shape of this part depends on the RT-
LOTOS operator expressed by the pattern. Let us
consider a generic component “C” represented by the
dashed box with one interaction point “x” at its
boundary. Figure 2 depicts different patterns applied to
C.

Figure 2. Patterns applying to one component

C1• a; C. C1 is the component resulting from prefixing
C with action “a”. C1 executes “a” then activates C.
C2•a{d};C. C2 is the component resulting from
prefixing C with a limited offer of “d” units of time on
action “a”. If for any reason, “a” cannot occur during
this time interval, the “tv” transition will be fired
causing a temporal violation and C2 will transform into
an inactive component.
C3•delay(d)C. C3 is the component resulting from
delaying the first action of C with a deterministic delay
of “d” units of time.
C4•latency(d)C. C4 is the component resulting from
delaying the first action of C with a non deterministic
delay of “d” units of time. The special case where C
starts with a time-limited offer is addressed in section
4.2.
C5 is the component resulting from instantiating in C,
the formal action “x” by the actual one “y”.
C6 is a component which recursively executes C.
Recursion is achieved by cyclic TPNs. Note: like [12],
we consider only regular RT-LOTOS processes.
C7 is the component resulting from hiding the action x
in C. Hiding allows one to transform observable

(external) actions into unobservable (internal) actions,
then making the latter unavailable for synchronization
with other components. In RT-LOTOS, hiding one or
several actions induces a notion of urgency on action
occurrence. Consequently, a TPN transition
corresponding to a hidden action will be constrained by
a time interval equal to [0,0]. This implies that as soon
as a transition is enabled, it is candidate for being fired.

4.1.2 Patterns applying to a set of components. The
following patterns apply to a set of components
involved in a composition. The latter is modelled by
merging either places or transitions of the TPNs
encapsulated in the corresponding components to form
a unique component (this applies to the “parallel” and
“sequential” composition patterns) or by adding
“shared” places to the different components in order to
obtain the intended behaviour (this applies to the
“disrupt” and “choice” patterns).

Figure 3. Parallel synchronization pattern

Parallel synchronization on gate “a” of C1, C2 and

C3 (C≡ C1|[a]|C2|[a]|C3), is modelled by merging all
the transitions which must engage in synchronization,
as depicted in Figure.3. The resulting component is
able to concurrently perform any action that either C1,
C2 or C3 are ready to perform, except for “a” which is
performed by all the components. Once “a” has
occurred, C1, C2 and C3 go on executing concurrently.

Figure 4. Sequential composition pattern

Figure 4 depicts a sequential composition of C2 and

C1 (C≡ C1>>C2), which means that if C1 successfully
completes its execution then it activates C2. This kind

of composition is possible only if C1 has an output
interface. The resulting component C is obtained by
merging the output interface of C1 and the input
interface of C2, and by hiding the “exit” interaction
point.

Figure 5. Choice pattern

In Figure 5, C is the component which behaves
either as C1 or C2 (C≡ C1 [] C2). The set of initial
actions of C is the union of those of C1 and C2. The
occurrence of an initial action of one of these two
components locks the execution of the other one by
“stealing” the token from the associated “lock” place.
The “lock” places belong to the input interface of the
resulting component C. A “lock” place interacts only
with transitions representing the set of initial actions
and the “Time” labelled transitions related to them.
The latter restore the token in the “lock” place, since
they do not represent an action occurrence, but a time
progression which has not to interfere with the
execution of the other component.

Figure 6. The disrupt pattern

In Figure 6, C is the component representing the
behaviour where component C1 can be interrupted by
C2 at any time during its execution (C≡ C1 [> C2). It
means that at any point during the execution of C1,
there is a choice between executing one of the next
actions from C1 or one of the first actions from C2. For
this purpose, C2 “steals” the token from the shared
place named “disrupt” (which belongs to the input

interface of C). Thus the control is irreversibly
transferred from C1 to C2 (“disrupt” is an “input”
place for C2 first action and “exit” transition of C1, it
is also an input/output place for all the others
transitions of C1). Once an action from C2 is chosen,
C2 continues executing, and transitions of C1 are no
longer enabled.

4.2 Discussion about the latency operator

The latency operator expresses a non deterministic
temporal delay. An RT-LOTOS expression
“latency(L)” is translated by a TPN transition labelled
with the special label “latency” and constrained with a
time interval equal to [0,L].

Let us now discuss the joint use of the latency

operator with a time limited offer. The left part of
Figure 7 depicts a process P which offers to
synchronize with the environment during two units of
time. The offer on “a” is delayed with a
nondeterministic delay of 5 units of time. The latency
and the offer on gate “a” start simultaneously, which
means that if the latency goes up to 2 units of time, the
offer on “a” expires.

We processed the corresponding RT-LOTOS

specification with RTL2TINA. The right part of Figure
7 depicts the generated TPN. The latter has two
initially marked places p0 and p3 (t1 and t3 are
enabled). The component is able to execute “a” (fire
t0) if t0 is enabled (p0 and p4 are marked) i.e. before t1
is fired (at [2.2]).

Therefore, in both process P and the corresponding
component, action “a” is possibly offered to the
environment during 2 units of time only.

Figure 7. RT-LOTOS process and the
Resulting component

4.2.1 Region Graph Vs Class Graph. The question
arises: how can we compare the two state spaces
respectively generated using RTL and
RTL2TINA+TINA?
Considering the state space generated by RTL,
configurations in the same region have the property
that they are indistinguishable in terms of the future
sequences of transitions that can occur. Thus they all
have the same reachability properties and can be
collapsed yielding a graph of regions. As a
consequence of the minimization algorithm
implemented in RTL (adapted from [22]),
configurations of a class are not necessarily all
reachable from the initial configuration; it can be
proven that at least one configuration per node is
actually reachable. The minimization is performed
with respect to strong bisimulation equivalence.

On the other hand, TINA offers a construction

which preserves the branching properties under the
name of Atomic State Class Graph. This graph is built
by a technique similar to the “partition refinement”
[21]. Classes are represented as a marking associated
with an inequality system on the clock space. A class is
atomic versus another if each of its states has a
successor state in the latter, or none has.

There are potential differences between the Region

graph generated by RTL and the Class graph generated
by TINA, due to the two following reasons:

- A minimization procedure is carried out in RTL

but not in TINA. That minimization permits to
consider regions larger than the ones required
from a strict reachability point of view, thereby
minimizing the number of regions within the
Region graph.

- The class graph construction implies for any state
to have a successor in a target class.

Another difference between the two graphs is inherent
to the models themselves: RT-LOTOS and TPNs. With
RT-LOTOS specifications analyzed by RTL, a latency,
a delay or a temporal violation are considered as a time
progression (which may possibly occur within a
region) while, with TPNs produced by RTL2TINA, a
latency, a delay or a temporal violation are necessarily
considered as a specific transition leading to another
class.

Figure 8 depicts the graph generated by RTL for
the specification of process P (the left part), and the

Process P[a]:exit :=
latency(5)a{2};exit
endproc

one generated by TINA for the TPN produced by
RTL2TINA (the right part).

Region graph Class graph

Figure 8. Region graph Vs Class graph

We can see in the Class graph that from the initial

class the firing of the “latency” transition leads to class
1. This is clearly not the case in the Region graph
generated by RTL. After identifying the potential
sources of differences between the two graphs, we can
define a method for comparing the two graphs.

The proposed solution is as follows: in the class
graph generated by TINA, all “Time” labels are
replaced by “t” (the symbol used by RTL to represent
time progression in a reachability graph). Since time
evolution is internal to the system under design and
does not involve communication with an outside
system, we use Milner’s observational equivalence
[16] to minimize the graphs produced by RTL and
TINA, respectively.

Minimization is performed using Aldebaran [7]. Its
output is a quotient automaton. As expected the two
quotient automata are identical (Figure 9), meaning
that the TPN and the RT-LOTOS specification indeed
express the same behaviour.

Figure 9. Quotient Automaton

4.3. A simple railway control system

The railway control system described in [14] will
serve as a complete illustration of our approach.
The system is composed of a simple railroad on which
a train is running. A sensor controls a barrier: when the
train reaches sensor1, the gate starts moving down. It
takes between 8 and 16 seconds before the gate reaches
the closed state. When the train reaches sensor2, the
gate starts moving up. It takes between 10 and 20
seconds before the gate is open. After the train passed
through sensor1, it takes between 15 and 20 seconds

before the train Enters the railway crossing and then
between 10 and 15 seconds to reach Sensor2.
[14] describes a looping system. After passing through
Sensor2, the train takes between 100 and 150 seconds
to pass through Sensor1 again.

Figure 10 gives the RT-LOTOS specification of the
railway crossing system and Figure 11 depicts the
Time Petri Net automatically generated by the
RTL2TINA tool, starting from the specification below.

Specification Railway_Control_System :noexit
behaviour
hide sensor1, sensor2, enter, closed, open in
 Train[sensor1,enter,sensor2]
 |[sensor1,sensor2]|
 Barrier[sensor1,closed,sensor2,open]
where
 process Train[sensor1,enter,sensor2] : noexit :=
 sensor1; delay(15,20) enter;
 delay(10,15)sensor2;
 delay(100,150)Train[sensor1,enter,sensor2]
 endproc
process Barrier[sensor1,closed,sensor2,open] : noexit :=
 sensor1; delay(8,16)closed;
 sensor2; delay(10,20)open;
 Barrier[sensor1,closed,sensor2,open]
endproc
endspec

Figure 10. RT-LOTOS specification

Figure11. Time Petri Net generated by
RTL2TINA

Table 1 compares the reachability graphs generated
by TINA and RTL, respectively. With its
implementation of [22]’s algorithm, RTL optimize the
graph’s size. The two graphs have been minimized
using Aldebaran. The quotient automaton is the same
for both reachability graphs (Figure 12).

Table 1. Reachability analysis results1

 RTL2TINA

+TINA
RTL

Classes / Transitions 35 / 50 19 / 28
Time 0.00s 0.725s

Figure 12. Quotient automaton

5. Case study

In [6], the authors proposed to compare different
formal methods and their verification tools on a case
study based on the flight command system embedded
on board A340 airplanes. We reuse that example for
one purpose: to compare RTL2TINA+TINA with RTL
on a system which makes it possible to add
functionalities one by one and therefore to quickly face
a state explosion problem. We want to check the
robustness of the solutions proposed in the paper with
respect to the state explosion problem.

Figure 13. Simplified architecture of a flight

command system

1 All the experiments described in this paper have been

performed on a PC with 512 Mo memory and a processor at 3.2

GHz.

We consider a system which controls a rudder and

periodically sends a command to that rudder. The
system has three redundant functions, each being
executed on a calculator. The three functions are as
follows:

- A master function FR which is a periodic task with
a period of 20 ms. It is executed on calculator CR. It
generates a CmdR command over Bus1. FR is initially in
command mode until it fails.

- A spare function FL which is a periodic task with a
period of 20 ms. It is executed on calculator CL. If FR
fails, FL issues a CmdR command over Bus2. FL
considers FR as failed if it did not receive any CmdR
command during two clock cycles (40 ms). If so, FL
switches to command mode until it fails, and issues
CmdL.

- A second spare function FB which is a periodic
task with a period of 20 ms. It is executed on calculator
CB. If both FL and FR fail, then FB issues a CmdB
command. FB considers FL and FR are both failed if
FL did not receive any CmdR or CmdL command for 5
clock cycles (100 ms). If so, FB switches to the
command mode and issues a CmdB.

For simplification purposes, we consider that the

asynchronism inherent to aeronautical systems can be
reduced to communication latencies. We also consider
that a failure will block the corresponding function
(fail-stop).

Figure14. Functional architecture of the

system

The system also includes three channels - CRL, CRB

and CLB – whose respective latencies are defined by the
following intervals: [0,20ms], [0,40ms] and [0,40ms].
The CRL channel can store one message. The CRB and
CLB channels can store two messages.

The system has been specified in RT-LOTOS. It is
made up of the composition of six processes:
FR,FL,FB,CRL,CLB, and CRB. Table 2 compares the
reachability graphs respectively generated by
RTL2TINA+TINA and RTL for that specification.

FR

FB

FL CLB : [0,40ms]

CRB : [0,40ms]

 CRL : [0,20ms]

Table 2. Reachability analysis results

 RTL2TINA+ TINA RTL

Classes /
Transitions

566 / 1447 104 / 152

CPU <1s 430s

The next two subsections present the results
obtained for extended versions of this flight command
system.

5.1. Extension 1

We first propose to extend the latencies between
the three functions. We consider a system S2 made up
of three functions F1, F2, and F3 organized according
the redundancy principle presented before: such that
the communication latency between two
communication functions Fj and Fi (j<i) takes its values
between 0 and L cycles.

Table 3. Comparison for extension 1

RTL2TINA +

TINA
RTL

Classes/
Transitions

CPU

(s)
Regions/

Transitions
CPU

(s)

L=[0,1] 346 / 688 <1s 100 /143 430s
L=[0,2] 1373 / 4096 <1s 104 /152 430s
L=[0,5] 3208/ 10617 <1s 142 /208 430s
L=[0,9] 5850/20 641 <1s 146 /214 430s

The latency domain has been extended. The graph

generated by TINA increases in size but the time taken
to generate the state space remains as short as before.
For RTL, the time taken to generate the reachability
graph remains constant and the graph size doesn’t
increase significantly. The reasons are to be sought in
the fact that the region graph generated by RTL has a
size exponential in the number of clocks. Increasing
the domain of the latencies doesn’t add clocks.
Moreover, it may happen that some particular
configurations from different regions may be also
indistinguishable; after merging these regions, we
obtain a much smaller minimized graph.

5.2. Extension 2

Now, we propose to increase the number of

functions. We consider a system S3(n) made up of n

functions F1, F2, …, Fn. Each function has a period of
20 ms. All the channels store one and only one
message. The value of the latency between two
functions Fj and Fi (j<i) is between 0 and 20ms.

Table 4. Comparison for extension 2

RTL2TINA + TINA RTL

N Classes/
Transitions

CPU Regions/
Transitions

CPU

2 19 / 26 <1s 9 /11 <1s
3 264 / 508 <1s 85 /148 13s

4 2064 / 4984 <1s 340/736 118mn

5 640 017 / 2 819 379 428s ? >24h

6. Related Work

Much work on translating LOTOS specifications

into Petri nets has been done for the untimed version of
LOTOS and untimed Petri nets [2], [3] [12] [11]. The
opposite translation (i.e. from Petri nets to LOTOS)
has been discussed by [20]. [5] pioneered work on
timed enhancements of the control part of LOTOS
inspired by a timed Petri net model.

[2] defined a Petri net semantics for a subset of
LOTOS restricted to the constructs which can be
translated into place-transition Petri nets. [3]
demonstrated the possibility to verify LOTOS
specifications using verification techniques developed
for place-transitions Petri nets. [3]’s approach avoids
compiling an RT-LOTOS specification into a Petri net.
[3] implemented a Karp and Miller procedure in the
LOTOS world. By contrast, the reachability procedure
implemented by the RTL2TINA tool presented in this
paper, applies to time Petri nets and enables
application of more powerful state space construction
procedures, namely those implemented in the TINA
tool [4].

The rest of this survey is dedicated to a comparison
with the LOTOS to Petri nets compilation procedure
proposed by Garavel [12] and implemented in the
CAESAR tool. CAESAR is the most powerful tool we
know for the compilation of original and untimed
version of LOTOS specifications into Petri nets. It
handles both the control and data part of LOTOS. So
far, the RTL2TINA tool compiles the control part of
RT-LOTOS specifications (i.e. a timed extension of
LOTOS). Garavel proposed a 3-step compilation
technique: expansion, generation, and simulation.
Garavel introduced so-called "ε-transitions". The latter
are atomic transitions labelled by fictive gates that do
not correspond to any observable action. In [12], the

author clearly indicates that “ε-transitions” introduce
non determinism. We came up to the same conclusions
when we tried to apply Garavel’s approach to RT-
LOTOS. The quotient automata obtained after
minimizing a class graph containing "ε-transitions”
does not match the quotient automaton obtained after
minimizing the reachability graph generated by RTL.
Trace equivalence is preserved but observational
equivalence is not. Therefore, although using “ε-
transitions” may have helped reducing the complexity
of RT-LOTOS to TPN translation patterns, we did not
implement that technique for RT-LOTOS.

For a more detailed comparison with [12], let us
now consider the “disrupt” operator. We use it to
interrupt a process P by a process Q. [12] proposed to
introduce ε-transitions to link each interruptible state in
P with the entrance state of Q. We investigated a
similar approach for RT-LOTOS. We did not use ε-
transitions, but transitions labelled with the first actions
of Q. It took little time to discover the weakness of that
solution when we wrote a specification with several
parallel processes P1..Pn and a process Q which was
given the possibility to interrupt theses processes at
any time. We quickly faced combinatorial explosion
problems. Conversely, such problems are avoided by
the translation approach proposed in Figure 6. The
following RT-LOTOS specification served as
benchmark:

Specification Sender2 :exit
 behaviour
 hide send_data, end_transfer, receive_ack, err in
 (Sender[send_data,end_transfer,receive_ack]
 |[end_transfert]|
 Sender[send_data,end_transfer,receive_ack])
 [>
 Error[err]
 where
 process Sender[send_data, end_transfer receive_ack]: exit

:=
 send_data; end_transfer; receive_ack; exit
 endproc
 process Error[err] :noexit :=
 err; stop
 endproc
endspec

The above specification represents an artificial

system where processes called “Senders” initiate a data
transfer. The senders show certain solidarity by
synchronizing in the action “end_transfer” before
ending the transfer. The latter can be interrupted at any
time by the occurrence of an error. Its main interest is
to exhibit a desired behaviour in a compact text and to
enable comparison between CAESAR and
RTL2TINA+TINA. For both TINA and CAESAR, we
generate a graph in the Aldébaran format. Thus, it was

possible to verify that the automaton respectively
generated by TINA and CAESAR are bi-similar.

Table 5. Comparison with CAESAR

RTL2TINA+TINA CAESAR

Senders

Petri Net
(Places/

Transitions)

Automaton

(time)

Petri Net
(Places/

Transitions)

Automaton

(time)

2 13 / 7 < 1s 11 / 16 <1s
5 28 / 13 < 1s 32 / 43 1s
8 43 / 19 < 1s 53 / 70 1s

10 53 / 23 < 1s 67 / 88 6s
13 69 / 29 8s 88 / 115 1514s
15 78 / 33 23s 102 /133 >24h

7. Conclusions and Future Work

The paper presents a new verification approach for
RT-LOTOS specifications. The proposed solution is as
follows: to compile an RT-LOTOS specification into a
Time Petri Net and to reuse TINA, a TPN verification
tool whose performances are better than the ones
offered by the RTL tool developed a decade ago for
RT-LOTOS.

Therefore, the paper presents RT-LOTOS to TPN
translation patterns. TPN are embedded into
components and composed. The paper also discusses
two case studies with experimental results showing
that the toolkit made up of RTL2TINA and TINA
positively compares with RTL for timed specifications.
RTL2TINA+TINA also positively compares with
CAESAR for untimed LOTOS specifications. In both
comparisons, the approach proposed in this paper has
demonstrated its efficiency. Note that a formal proof
on the RT-LOTOS to TPN translation patterns has
been written in a separate document [19].

So far, the RTL2TINA tool handles the control part
of RT-LOTOS. It still has to be extended to process the
data part of the language. This work in not limited to
the verification of real-time systems directly specified
in RT-LOTOS. The ultimate goal is to provide a more
powerful verification environment for real-time
systems modelled in TURTLE [1].

8. References

[1] L. Apvrille, J.-P. Courtiat, C. Lohr, P. de Saqui-Sannes,
“TURTLE : A Real-Time UML Profile Supported by a
Formal Validation Framework”, IEEE Transactions on
Software Engineering, Vol.30, No.4, July 2004.
[2] M. Barbeau, G. von Bochmann, “Verification of LOTOS
Specifications: A Petri Net Based Approach”, Proc. of

Canadian Conference on Electrical and Computer
Engineering, Ottawa, Canada, 1990.
[3] M. Barbeau, G. von Bochmann, “Extension of the Karp
and Miller Procedure to Lotos Specifications”, DIMACS
Series in Discrete Mathematics and Theoretical Computer
Science, volume 3, 1991.
[4] B. Berthomieu, P.O. Ribet, F. Vernadat, “The TINA
Tool: Construction of Abstract State Space for Petri Nets and
Time Petri Nets”, International Journal of Production
Research, Vol.42, N°14, pp.2741-2756, 2004.
[5] T. Bolognesi, F. Lucidi, S. Trigila, “From Timed Petri
Nets to Timed LOTOS”, Protocol Specification, Testing and
Verification, X, IFIP WG 6.1 Tenth International
Symposium, 1990, Ottawa, Canada, pages 395-408, North-
Holland, 1990.
[6] F. Boniol, G. Bel, J. Ermont. « Trois Approches pour la
Modélisation et la Vérification de Systèmes Embarqués »,
Technique et science informatique, 2003.
[7] http://www.inrialpes.fr/vasy/cadp/
[8] J.-P. Courtiat, R.C. De Oliveira, “A reachability analysis
of RT-LOTOS specifications, Eighth International
Conference on Formal Description Techniques Protocol
(FORTE’95), Montreal, Canada, Chapman and Hall, London,
1995.
[9] J.-P. Courtiat, C.A.S. Santos, C. Lohr, B. Outtaj,
“Experience with RT-LOTOS, a Temporal Extension of the
LOTOS Formal Description Technique”, Computer
Communications, Vol. 23, No. 12, p. 1104-1123, 2000.
[10] J-P. Courtiat, “Formal design of interactive multimedia
documents”, 23rd IFIP WG 6.1 International Conference on
Formal Techniques for Networked and distributed systems
(FORTE’2003), Berlin. Lecture Notes in Computer Science
2767, Eds.H.Konig, M.Heiner, A.Wolisz, 2003.
[11] D. Larrabeiti, J. Quelmada, S. Pavón, From LOTOS to
Petri nets through expansion, FORTE/PSV’96,
Kaiserslautern, Germany, 1996.
[12] H. Garavel, J. Sifakis, Compilation and Verification of
LOTOS Specifications, In: Logrippo, L.; et al.: Protocol
Specification, Testing and Verification, X. Proceedings of the
IFIP WG 6.1 Tenth International Symposium, 1990, Ottawa,
Ont., Canada, pages 379-394. Amsterdam, Netherlands:
North-Holland, 1990.
[13] ISO, “LOTOS – A Formal Description Technique Based
on the Temporal Ordering of Observational Behavior”, ISO
Information Processing Systems – Open Systems
Interconnection IS 8807, September 1988.
 [14] T. Massart, L. Van Begin, E. Van Nuffel. Design of
Timed Systems using a real-time process algebra.
 [15] P.M. Merlin, D.J. Farber, Recoverability of
Communication Protocols: Implications of a theoretical
Study, IEEE Trans. on Communications, Vol.24, No.9, 1976.
[16] R.M. Milner, “Communications and Concurrency”,
Prentice Hall, 1989.
[17] Real-time LOTOS. http://www.laas.fr/RT-
LOTOS.
[18] T. Sadani, P. de Saqui-Sannes, J.-P. Courtiat. Formal
Validation of RT-LOTOS Specifications: New Directions

and Preliminary Results. Work in progress Session. Real
Time Systems Symposium lisbon Portugal December 2004.
[19] T. Sadani, M. Boyer, J.-P. Courtiat, P. de Saqui-Sannes.
Translation from RT-LOTOS to Time Petri Nets. LAAS
research report.
[20] R. Sisto, A. Valenzano, Mapping Petri nets with
Inhibitor Arcs onto Basic LOTOS Behaviour Expressions,
IEEE Transactions on Computers, Vol.44, N.12, December
1995, pp.1361-1370.
[21] S. Tripakis, S.Yovine, “Analysis of timed systems based
on time-abstracting bisimulations”, 8th Conference
Computer-Aided Verification, CAV’96, Springer LNCS
1102, July 1996, p. 232-243.
[22] M. Yannakakis, D. Lee, “An efficient algorithm
for minimizing real-time transition system, CAV’93,
Lecture Notes in Computer Science, vol. 697, Springer,
Berlin

