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Abstract 
 

The formal description technique RT-LOTOS has 
been selected as intermediate language to add 
formality to a real-time UML profile named TURTLE. 
For this sake, an RT-LOTOS verification platform has 
been developed for early detection of design errors in 
real-time system models. The paper discusses an 
extension of the platform by inclusion of verification 
tools developed for Time Petri Nets. The starting point 
is the definition of RT-LOTOS to TPN translation 
patterns. In particular, we introduce the concept of 
components embedding Time Petri Nets. The 
translation patterns are implemented in a prototype 
tool which takes as input an RT-LOTOS specification 
and outputs a TPN in the format admitted by the TINA 
tool. The efficiency of the proposed solution has been 
demonstrated on various case studies.  
 
1. Introduction 
 

The acknowledged benefits of using formal 
methods include the possibility to implement 
verification techniques and to perform early detection 
of design errors in the life cycle of software intensive 
systems. Formal methods with an explicit expression 
of time and verification tools enabling detection of 
logical and timing errors are of prime interest for the 
design of real-time and life-critical systems, such as 
airplanes or trains. 

This paper addresses the verification of real-time 
systems specified in RT-LOTOS [9], a timed extension 
of the ISO-based formal description technique LOTOS 
[13]. RT-LOTOS differs from other timed extension of 
LOTOS by the “latency” operator used to express 
temporal indeterminism. Further, RT-LOTOS is 
supported by RTL (Real-Time Lotos laboratory [17]), 
a verification tool successfully applied in various 
domains ranging from control/command systems to 
hypermedia authoring [10]. RT-LOTOS and RTL have 
also been used to define a formal verification 

environment for a real-time profile named TURTLE 
(Timed UML and RT-LOTOS Environment [1]). 

The RTL tool has been stable for more than eight 
years and its reachability analysis procedure based on 
[22] outputs graphs which are optimized in terms of 
state and transition numbers. As the systems specified 
in RT-LOTOS have increased in complexity, RTL has 
shown limited performances in terms of execution 
speed. RTL further enables verification of CTL 
(Computational Tree Logic) properties, not LTL 
(Linear Temporal Logic)  ones. The need to overcome 
these limitations has motivated investigations on the 
use of TINA [4] for improving tool support for 
verifying complex RT-LOTOS specifications [18]. The 
first step was to define translation patterns to compile 
RT-LOTOS specifications into TINA’s input format, 
namely Time Petri nets [15]. RT-LOTOS to TPN 
translation patterns have been defined and formally 
proved [19]. The proof is outside the scope of this 
paper, which insists on experimental results obtained 
with RTL2TINA, a RT-LOTOS to Time Petri nets 
compiler which takes as input an RT-LOTOS 
specification and outputs a TPN in the TINA format. 

The paper is organized as follows. Section 2 
introduces the RT-LOTOS language and the RTL tool. 
Section 3 briefly presents the TINA tool. Section 4 
details RT-LOTOS to TPN translation patterns. In 
particular, it is shown how TPNs are embedded in 
components and composed. Section 5 presents a case 
study. Section 6 surveys related work. Section 7 
concludes the paper. 

 
2. RT-LOTOS and the RTL tool 
 

The ISO-based formal description technique 
LOTOS [13] extends CCS and implements a multiple 
rendezvous mechanism à la CSP. RT-LOTOS [9] 
extends LOTOS with three canonical temporal 
operators: a deterministic delay, a “latency” operator 
which enables description of temporal indeterminism, 
and a time-limited offer.  
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The Real-Time LOTOS Laboratory, or RTL for 
short [17], enables formal validation of RT-LOTOS 
specifications. It supports two techniques. First, 
intensive simulation for partial exploration of the 
system’s state space. Second, reachability analysis 
which outputs a reachability graph characterizing the 
set of global states the system may reach from its 
initial state. Reachability analysis - which applies to 
bounded systems of “reasonable” size - is the subject 
of this paper. Note that RTL implements reachability 
analysis, not model checking. It provides an interface 
to Aldebaran [7], for reachability graph minimization 
based on different equivalence relations (e.g. 
observational equivalence [16]). 

The reachability analysis procedure implemented by 
RTL can be sketched as follows. The tool first 
generates a Dynamic Timed Automaton (DTA [8]). 
The later is a labelled timed automaton which 
distinguishes between urgent and non urgent actions. 
The DTA is the starting point for generating a 
reachability graph preserving CTL properties [22].  A 
global state or configuration of a timed system consists 
of the control state of the DTA and the values of the 
clocks. A finite analysis of such a system requires to 
partition the configuration space into a finite number of 
regions. 

A node (or class) defines both a control state and a 
region represented by a convex polyhedron whose 
dimension equals the number of clocks in the control 
state. An edge in the graph corresponds to either an 
RT-LOTOS action or a time progression (edge labelled 
by t). 

 
3. The TINA tool  
 

A Time Petri Net [15] is a tuple TPN = <P, T, Pre, 
Post, Mo, IS> where: 
• <P, T, Pre, Post, Mo> is a Petri Net, and 
• IS: T Q+ x (Q+U{∞}) is the static Interval function. 
 
The IS function associates each transition t in T with a 
temporal interval with rational bounds. IS[t] = [min, 
max] with 0 ≤ min ≤ max; min and max represent the 
earliest and latest firing dates, respectively.  

TINA (TIme petri Net Analyzer [4]) is a software 
environment to edit and analyze Petri nets and Time 
Petri Nets (Petri Nets with time intervals on 
transitions). In addition to the usual editing and 
analysis facilities of such environments (compilation of 
marking reachability sets, coverability trees, semi-
flows), TINA offers various abstract state space 
constructions that preserve specific classes of 
properties of the concrete state space of the nets. Those 
classes of properties include general properties 

(reachability properties, deadlock freeness, liveness), 
and specific properties. The latter may rely on the 
linear structure of the concrete space state (linear time 
temporal logic properties, test equivalence), or on its 
branching structure (branching time temporal 
properties, bi-simulation). TINA is interfaced with 
Aldebaran [7]. 
 
4. From RT-LOTOS to Time Petri Nets  
 

One difficulty we have faced in prototyping a RT-
LOTOS to Time Petri Nets translator comes from the 
lack of structuring facility in TPNs. Neither the 
composition nor the temporal operators of RT-LOTOS 
have direct counterpart in TPNs.  

This is why we defined translation patterns (Section 
4.1). These patterns have been implemented in the 
RTL2TINA translator prototype. The latter reuses 
RTL’s parser and type-checker. TPNs are generated by 
a recursive traversal of the syntactic tree of an RT-
LOTOS specification. 

For readability reasons, we use labels to represent 
actions in a TPN; different transitions corresponding to 
different occurrences of the same action share the same 
label. Let us call “Act” the labels associated with RT-
LOTOS actions. In addition to “Act” labels, other 
labels (called “Time” labels) are introduced for 
representing RT-LOTOS temporal operators: 

• A “tv” label represents a temporal violation in a 
time-limited offer (temporal offer expiration), 

• A “delay” label denotes a deterministic delay, and 
• A “latency” label represents a non deterministic 

delay. 
In order to add formality to the translation 

procedure and to structure the TPNs generated by the 
RTL2TINA tool, we extended TPNs with a 
“component” concept. A component is the basic 
building block in the translation procedure. It 
encapsulates a TPN which describes its behaviour. A 
component performs an action by firing a 
corresponding transition. It communicates with its 
environment through interaction points. A component 
is graphically represented by a box containing a TPN. 
The black-filled boxes at the component boundary 
represent interaction points.  

 
 
 

 
 

Figure 1. Component example 
 



For instance, component “C” in Figure 1 can 
sequentially perform observable action “a”, perform 
hidden action “b” (there is no interaction point related 
to “b”) and terminate by “exit”. The dark grey place 
“in” represents the input interface of “C” and the light 
grey place “out” represents its output interface. 

 
Definition: 
A component is a t-uple C = <∑ , Act, Lab, I, F >  

where 
• ∑ = <P, T, Pre, Post, Mo, Is>  is a TPN. 
• Act= Ao ∪ Ah ∪ {exit}. Ao and Ah are finite, 

disjoints sets of transitions labels. Ao ∪ {exit} 
represents the component’s interaction points. 
During the translation process, Ao and Ah will 
be used to model observable and hidden RT-
LOTOS actions, respectively.  

• Lab: T  (Act ∪ Time) is a labelling function 
which labels each transition in • with either an 
action name or a “Time“ label defined in {tv, 
delay, latency}.  

• I is a set of places defining the input interfaces 
of the component.  

• F is a singleton defining the output interface 
of the component. A component has an output 
interface if it has a transition(s) labelled by 
“exit”. If so, F is the outgoing place of those 
transitions. Otherwise, F= {}.  

 
A component is active if at least one of its 

transitions is enabled. Otherwise, the component is 
inactive. 
 
4.1. Translation patterns 
 

An RT-LOTOS behaviour expression represents in 
general several sub-behaviours composed by means of 
RT-LOTOS operators. Similarly, we define a set of 
operations involving the components. These operations 
match the composition and temporal operators 
supported by RT-LOTOS, and are graphically depicted 
through different patterns in the subsequent subsection. 
The patterns show the intuition behind the translation 
algorithms implemented in RTL2TINA.   

 
The soundness of the translation patterns has been 

formally proved in [19]. In particular, we demonstrated 
that the translation preserves the sequence of possible 
actions but also the occurrence date of these actions.  

 

We distinguish between two sets of patterns. 
Patterns that apply to one component and patterns that 
apply to a set of components. 

 
4.1.1. Patterns applying to one component. These 
patterns extend the TPN encapsulated in a given 
component with an additional part linked to its input 
interface. The shape of this part depends on the RT-
LOTOS operator expressed by the pattern. Let us 
consider a generic component “C” represented by the 
dashed box with one interaction point “x” at its 
boundary. Figure 2 depicts different patterns applied to 
C. 
 

 
 

 
 
Figure 2. Patterns applying to one component 

 
C1• a; C. C1 is the component resulting from prefixing 
C with action “a”. C1 executes “a” then activates C. 
C2•a{d};C. C2 is the component resulting from 
prefixing C with a limited offer of “d” units of time on 
action “a”. If for any reason, “a” cannot occur during 
this time interval, the “tv” transition will be fired 
causing a temporal violation and C2 will transform into 
an inactive component. 
C3•delay(d)C. C3 is the component resulting from 
delaying the first action of C with a deterministic delay 
of “d” units of time. 
C4•latency(d)C. C4 is the component resulting from 
delaying the first action of C with a non deterministic 
delay of “d” units of time. The special case where C 
starts with a time-limited offer is addressed in section 
4.2. 
C5 is the component resulting from instantiating in C, 
the formal action “x” by the actual one “y”. 
C6 is a component which recursively executes C. 
Recursion is achieved by cyclic TPNs. Note: like [12], 
we consider only regular RT-LOTOS processes.   
C7 is the component resulting from hiding the action x 
in C. Hiding allows one to transform observable 



(external) actions into unobservable (internal) actions, 
then making the latter unavailable for synchronization 
with other components. In RT-LOTOS, hiding one or 
several actions induces a notion of urgency on action 
occurrence. Consequently, a TPN transition 
corresponding to a hidden action will be constrained by 
a time interval equal to [0,0]. This implies that as soon 
as a transition is enabled, it is candidate for being fired. 
 
4.1.2 Patterns applying to a set of components. The 
following patterns apply to a set of components 
involved in a composition. The latter is modelled by 
merging either places or transitions of the TPNs 
encapsulated in the corresponding components to form 
a unique component (this applies to the “parallel” and 
“sequential” composition patterns) or by adding 
“shared” places to the different components in order to 
obtain the intended behaviour (this applies to the 
“disrupt” and “choice” patterns). 

 

 
 

Figure 3. Parallel synchronization pattern 
 
Parallel synchronization on gate “a” of C1, C2 and 

C3 (C≡ C1|[a]|C2|[a]|C3), is modelled by merging all 
the transitions which must engage in synchronization, 
as depicted in Figure.3. The resulting component is 
able to concurrently perform any action that either C1, 
C2 or C3 are ready to perform, except for “a” which is 
performed by all the components. Once “a” has 
occurred, C1, C2 and C3 go on executing concurrently. 

 
Figure 4. Sequential composition pattern 

 
Figure 4 depicts a sequential composition of C2 and 

C1 (C≡ C1>>C2), which means that if C1 successfully 
completes its execution then it activates C2. This kind 

of composition is possible only if C1 has an output 
interface. The resulting component C is obtained by 
merging the output interface of C1 and the input 
interface of C2, and by hiding the “exit” interaction 
point.  

 
 

 
 

Figure 5. Choice pattern 
 

In Figure 5, C is the component which behaves 
either as C1 or C2 (C≡ C1 [] C2). The set of initial 
actions of C is the union of those of C1 and C2. The 
occurrence of an initial action of one of these two 
components locks the execution of the other one by 
“stealing” the token from the associated “lock” place. 
The “lock” places belong to the input interface of the 
resulting component C. A “lock” place interacts only 
with transitions representing the set of initial actions 
and the “Time” labelled transitions related to them. 
The latter restore the token in the “lock” place, since 
they do not represent an action occurrence, but a time 
progression which has not to interfere with the 
execution of the other component. 

 

 
 

Figure 6. The disrupt pattern 
 

In Figure 6, C is the component representing the 
behaviour where component C1 can be interrupted by 
C2 at any time during its execution (C≡ C1 [> C2). It 
means that at any point during the execution of C1, 
there is a choice between executing one of the next 
actions from C1 or one of the first actions from C2. For 
this purpose, C2 “steals” the token from the shared 
place named “disrupt” (which belongs to the input 

  



interface of C). Thus the control is irreversibly 
transferred from C1 to C2 (“disrupt” is an “input” 
place for C2 first action and “exit” transition of C1, it 
is also an input/output place for all the others 
transitions of C1). Once an action from C2 is chosen, 
C2 continues executing, and transitions of C1 are no 
longer enabled.   
 
4.2 Discussion about the latency operator  
 

The latency operator expresses a non deterministic 
temporal delay. An RT-LOTOS expression 
“latency(L)” is translated by a TPN transition labelled 
with the special label “latency” and constrained with a 
time interval equal to [0,L]. 

 
Let us now discuss the joint use of the latency 

operator with a time limited offer. The left part of 
Figure 7 depicts a process P which offers to 
synchronize with the environment during two units of 
time. The offer on “a” is delayed with a 
nondeterministic delay of 5 units of time. The latency 
and the offer on gate “a” start simultaneously, which 
means that if the latency goes up to 2 units of time, the 
offer on “a” expires. 

 
We processed the corresponding RT-LOTOS 

specification with RTL2TINA. The right part of Figure 
7 depicts the generated TPN. The latter has two 
initially marked places p0 and p3 (t1 and t3 are 
enabled). The component is able to execute “a” (fire 
t0) if t0 is enabled (p0 and p4 are marked) i.e. before t1 
is fired (at [2.2]).  
 

Therefore, in both process P and the corresponding 
component, action “a” is possibly offered to the 
environment during 2 units of time only.  
 
 

 
 
 
 
 
 
 

Figure 7. RT-LOTOS process and the 
Resulting component 

 

4.2.1 Region Graph Vs Class Graph. The question 
arises: how can we compare the two state spaces 
respectively generated using RTL and 
RTL2TINA+TINA? 
Considering the state space generated by RTL, 
configurations in the same region have the property 
that they are indistinguishable in terms of the future 
sequences of transitions that can occur. Thus they all 
have the same reachability properties and can be 
collapsed yielding a graph of regions. As a 
consequence of the minimization algorithm 
implemented in RTL (adapted from [22]), 
configurations of a class are not necessarily all 
reachable from the initial configuration; it can be 
proven that at least one configuration per node is 
actually reachable. The minimization is performed 
with respect to strong bisimulation equivalence.   

 
On the other hand, TINA offers a construction 

which preserves the branching properties under the 
name of Atomic State Class Graph. This graph is built 
by a technique similar to the “partition refinement” 
[21]. Classes are represented as a marking associated 
with an inequality system on the clock space. A class is 
atomic versus another if each of its states has a 
successor state in the latter, or none has. 

 
There are potential differences between the Region 

graph generated by RTL and the Class graph generated 
by TINA, due to the two following reasons: 

 
- A minimization procedure is carried out in RTL 

but not in TINA. That minimization permits to 
consider regions larger than the ones required 
from a strict reachability point of view, thereby 
minimizing the number of regions within the 
Region graph. 

- The class graph construction implies for any state 
to have a successor in a target class. 

 
Another difference between the two graphs is inherent 
to the models themselves: RT-LOTOS and TPNs. With 
RT-LOTOS specifications analyzed by RTL, a latency, 
a delay or a temporal violation are considered as a time 
progression (which may possibly occur within a 
region) while, with TPNs produced by RTL2TINA, a 
latency, a delay or a temporal violation are necessarily 
considered as a specific transition leading to another 
class. 

Figure 8 depicts the graph generated by RTL for 
the specification of process P (the left part), and the 

Process P[a]:exit := 
latency(5)a{2};exit  
endproc 



one generated by TINA for the TPN produced by 
RTL2TINA (the right part). 

 
 
 
 
         
            
       
             

Region graph         Class graph 
 

Figure 8. Region graph Vs Class graph 
 
We can see in the Class graph that from the initial 

class the firing of the “latency” transition leads to class 
1. This is clearly not the case in the Region graph 
generated by RTL. After identifying the potential 
sources of differences between the two graphs, we can 
define a method for comparing the two graphs. 

The proposed solution is as follows: in the class 
graph generated by TINA, all “Time” labels are 
replaced by “t” (the symbol used by RTL to represent 
time progression in a reachability graph). Since time 
evolution is internal to the system under design and 
does not involve communication with an outside 
system, we use Milner’s observational equivalence 
[16] to minimize the graphs produced by RTL and 
TINA, respectively.  

Minimization is performed using Aldebaran [7]. Its 
output is a quotient automaton. As expected the two 
quotient automata are identical (Figure 9), meaning 
that the TPN and the RT-LOTOS specification indeed 
express the same behaviour. 

 
 
 
 

Figure 9. Quotient Automaton 
 

4.3. A simple railway control system  
 

The railway control system described in [14] will 
serve as a complete illustration of our approach.  
The system is composed of a simple railroad on which 
a train is running. A sensor controls a barrier: when the 
train reaches sensor1, the gate starts moving down. It 
takes between 8 and 16 seconds before the gate reaches 
the closed state. When the train reaches sensor2, the 
gate starts moving up. It takes between 10 and 20 
seconds before the gate is open. After the train passed 
through sensor1, it takes between 15 and 20 seconds 

before the train Enters the railway crossing and then 
between 10 and 15 seconds to reach Sensor2.  
[14] describes a looping system. After passing through 
Sensor2, the train takes between 100 and 150 seconds 
to pass through Sensor1 again. 

Figure 10 gives the RT-LOTOS specification of the 
railway crossing system and Figure 11 depicts the 
Time Petri Net automatically generated by the 
RTL2TINA tool, starting from the specification below.  
 
Specification Railway_Control_System :noexit 
behaviour  
hide sensor1, sensor2, enter, closed, open in 
     Train[sensor1,enter,sensor2] 
    |[sensor1,sensor2]|  
     Barrier[sensor1,closed,sensor2,open]  
where 
 process Train[sensor1,enter,sensor2] : noexit := 
   sensor1; delay(15,20) enter;  
   delay(10,15)sensor2; 
   delay(100,150)Train[sensor1,enter,sensor2] 
 endproc 
process Barrier[sensor1,closed,sensor2,open] :  noexit := 
   sensor1; delay(8,16)closed; 
   sensor2; delay(10,20)open; 
 Barrier[sensor1,closed,sensor2,open]  
endproc 
endspec 
 

Figure 10.  RT-LOTOS specification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

Figure11. Time Petri Net generated by 
RTL2TINA 

 

 



Table 1 compares the reachability graphs generated 
by TINA and RTL, respectively. With its 
implementation of [22]’s algorithm, RTL optimize the 
graph’s size. The two graphs have been minimized 
using Aldebaran. The quotient automaton is the same 
for both reachability graphs (Figure 12). 

 
Table 1. Reachability analysis results1 

 
 RTL2TINA 

+TINA 
RTL 

Classes / Transitions 35 / 50 19 / 28 
Time 0.00s 0.725s 

 

 

 
Figure 12. Quotient automaton 

 
5. Case study  
 

In [6], the authors proposed to compare different 
formal methods and their verification tools on a case 
study based on the flight command system embedded 
on board A340 airplanes. We reuse that example for 
one purpose: to compare RTL2TINA+TINA with RTL 
on a system which makes it possible to add 
functionalities one by one and therefore to quickly face 
a state explosion problem. We want to check the 
robustness of the solutions proposed in the paper with 
respect to the state explosion problem. 

 
 
 
 
 
 

 
 
 
 

 
Figure 13. Simplified architecture of a flight 

command system 

                                                           
1 All the experiments described in this paper have been 

performed on a PC with 512 Mo memory and a processor at 3.2 

GHz. 
 

 
We consider a system which controls a rudder and 

periodically sends a command to that rudder. The 
system has three redundant functions, each being 
executed on a calculator. The three functions are as 
follows: 

- A master function FR which is a periodic task with 
a period of 20 ms. It is executed on calculator CR. It 
generates a CmdR command over Bus1. FR is initially in 
command mode until it fails. 

- A spare function FL which is a periodic task with a 
period of 20 ms. It is executed on calculator CL. If FR 
fails, FL issues a CmdR command over Bus2. FL 
considers FR as failed if it did not receive any CmdR 
command during two clock cycles (40 ms). If so, FL 
switches to command mode until it fails, and issues 
CmdL. 

- A second spare function FB which is a periodic 
task with a period of 20 ms. It is executed on calculator 
CB. If both FL and FR fail, then FB issues a CmdB 
command. FB considers FL and FR are both failed if 
FL did not receive any CmdR or CmdL command for 5 
clock cycles (100 ms). If so, FB switches to the 
command mode and issues a CmdB. 

 
For simplification purposes, we consider that the 

asynchronism inherent to aeronautical systems can be 
reduced to communication latencies. We also consider  
that a failure will block the corresponding function 
(fail-stop). 

 
 

 
 
 
 
 
 

 
Figure14. Functional architecture of the 

system 
 
The system also includes three channels - CRL, CRB 

and CLB – whose respective latencies are defined by the 
following intervals: [0,20ms], [0,40ms] and [0,40ms]. 
The CRL channel can store one message. The CRB and 
CLB channels can store two messages. 

The system has been specified in RT-LOTOS. It is 
made up of the composition of six processes: 
FR,FL,FB,CRL,CLB, and CRB. Table 2 compares the 
reachability graphs respectively generated by 
RTL2TINA+TINA and RTL for that specification. 

FR 

FB 

FL CLB : [0,40ms] 

CRB : [0,40ms] 

        CRL : [0,20ms] 



 
Table 2. Reachability analysis results 

 
 RTL2TINA+ TINA RTL 

Classes / 
Transitions 

566 / 1447 104 / 152 

CPU <1s 430s 
 

The next two subsections present the results 
obtained for extended versions of this flight command 
system. 
 
5.1. Extension 1 
 

We first propose to extend the latencies between 
the three functions. We consider a system S2 made up 
of three functions F1, F2, and F3 organized according 
the redundancy principle presented before: such that 
the communication latency between two 
communication functions Fj and Fi (j<i) takes its values 
between 0 and L cycles. 

 
Table 3. Comparison for extension 1 

 
RTL2TINA + 

TINA 
RTL  

Classes/ 
Transitions 

CPU 

(s) 
Regions/ 

Transitions 
CPU

(s) 

L=[0,1] 346 / 688 <1s 100 /143 430s 
L=[0,2] 1373 / 4096 <1s 104 /152 430s 
L=[0,5] 3208/ 10617 <1s 142 /208 430s 
L=[0,9] 5850/20 641 <1s 146 /214 430s 
 
The latency domain has been extended. The graph 

generated by TINA increases in size but the time taken 
to generate the state space remains as short as before. 
For RTL, the time taken to generate the reachability 
graph remains constant and the graph size doesn’t 
increase significantly. The reasons are to be sought in 
the fact that the region graph generated by RTL has a 
size exponential in the number of clocks. Increasing 
the domain of the latencies doesn’t add clocks. 
Moreover, it may happen that some particular 
configurations from different regions may be also 
indistinguishable; after merging these regions, we 
obtain a much smaller minimized graph.  
 
5.2. Extension 2  

 
Now, we propose to increase the number of 

functions. We consider a system S3(n) made up of n 

functions F1, F2, …, Fn. Each function has a period of 
20 ms. All the channels store one and only one 
message. The value of the latency between two 
functions Fj and Fi (j<i) is between 0 and 20ms. 

 
Table 4. Comparison for extension 2 

 
RTL2TINA + TINA RTL  

N Classes/ 
Transitions 

CPU Regions/ 
Transitions 

CPU 

2 19 / 26 <1s 9 /11 <1s 
3 264 / 508 <1s 85 /148 13s 

4 2064 / 4984 <1s 340/736 118mn 

5 640 017 /  2 819 379 428s ? >24h 

 
6. Related Work 

 
Much work on translating LOTOS specifications 

into Petri nets has been done for the untimed version of 
LOTOS and untimed Petri nets [2], [3] [12] [11]. The 
opposite translation (i.e. from Petri nets to LOTOS) 
has been discussed by [20]. [5] pioneered work on 
timed enhancements of the control part of LOTOS 
inspired by a timed Petri net model.  

[2] defined a Petri net semantics for a subset of 
LOTOS restricted to the constructs which can be 
translated into place-transition Petri nets. [3] 
demonstrated the possibility to verify LOTOS 
specifications using verification techniques developed 
for place-transitions Petri nets. [3]’s approach avoids 
compiling an RT-LOTOS specification into a Petri net. 
[3] implemented a Karp and Miller procedure in the 
LOTOS world. By contrast, the reachability procedure 
implemented by the RTL2TINA tool presented in this 
paper, applies to time Petri nets and enables 
application of more powerful state space construction 
procedures, namely those implemented in the TINA 
tool [4]. 

The rest of this survey is dedicated to a comparison 
with the LOTOS to Petri nets compilation procedure 
proposed by Garavel [12] and implemented in the 
CAESAR tool. CAESAR is the most powerful tool we 
know for the compilation of original and untimed 
version of LOTOS specifications into Petri nets. It 
handles both the control and data part of LOTOS. So 
far, the RTL2TINA tool compiles the control part of 
RT-LOTOS specifications (i.e. a timed extension of 
LOTOS). Garavel proposed a 3-step compilation 
technique: expansion, generation, and simulation. 
Garavel introduced so-called "ε-transitions". The latter 
are atomic transitions labelled by fictive gates that do 
not correspond to any observable action. In [12], the 



author clearly indicates that “ε-transitions” introduce 
non determinism. We came up to the same conclusions 
when we tried to apply Garavel’s approach to RT-
LOTOS. The quotient automata obtained after 
minimizing a class graph containing "ε-transitions” 
does not match the quotient automaton obtained after 
minimizing the reachability graph generated by RTL. 
Trace equivalence is preserved but observational 
equivalence is not.  Therefore, although using “ε-
transitions” may have helped reducing the complexity 
of RT-LOTOS to TPN translation patterns, we did not 
implement that technique for RT-LOTOS. 

For a more detailed comparison with [12], let us 
now consider the “disrupt” operator. We use it to 
interrupt a process P by a process Q. [12] proposed to 
introduce ε-transitions to link each interruptible state in 
P with the entrance state of Q. We investigated a 
similar approach for RT-LOTOS. We did not use ε-
transitions, but transitions labelled with the first actions 
of Q. It took little time to discover the weakness of that 
solution when we wrote a specification with several 
parallel processes P1..Pn and a process Q which was 
given the possibility to interrupt theses processes at 
any time. We quickly faced combinatorial explosion 
problems. Conversely, such problems are avoided by 
the translation approach proposed in Figure 6. The 
following RT-LOTOS specification served as 
benchmark: 
 
Specification Sender2 :exit 
 behaviour  
  hide send_data, end_transfer, receive_ack, err in 
     (Sender[send_data,end_transfer,receive_ack] 
    |[end_transfert]|  
      Sender[send_data,end_transfer,receive_ack] )  
   [> 
     Error[err] 
 where 
 process Sender[send_data, end_transfer receive_ack]:    exit 

:= 
   send_data; end_transfer; receive_ack; exit 
  endproc 
  process Error[err] :noexit := 
   err; stop 
  endproc 
endspec 

 
The above specification represents an artificial 

system where processes called “Senders” initiate a data 
transfer. The senders show certain solidarity by 
synchronizing in the action “end_transfer” before 
ending the transfer. The latter can be interrupted at any 
time by the occurrence of an error. Its main interest is 
to exhibit a desired behaviour in a compact text and to 
enable comparison between CAESAR and 
RTL2TINA+TINA. For both TINA and CAESAR, we 
generate a graph in the Aldébaran format. Thus, it was 

possible to verify that the automaton respectively 
generated by TINA and CAESAR are bi-similar.  

 
Table 5. Comparison with CAESAR 

 
RTL2TINA+TINA CAESAR  

#  
Senders 

Petri Net 
(Places/ 

Transitions) 

Automaton 

(time) 

Petri Net 
(Places/ 

Transitions) 

Automaton 

(time) 

2 13 / 7 < 1s 11 / 16 <1s 
5 28 / 13 < 1s 32 / 43 1s 
8 43 / 19 < 1s 53 / 70 1s 

10 53 / 23 < 1s 67 / 88 6s 
13 69 / 29 8s 88 / 115 1514s 
15 78 / 33 23s 102 /133 >24h 

 
7. Conclusions and Future Work 
 

The paper presents a new verification approach for 
RT-LOTOS specifications. The proposed solution is as 
follows: to compile an RT-LOTOS specification into a 
Time Petri Net and to reuse TINA, a TPN verification 
tool whose performances are better than the ones 
offered by the RTL tool developed a decade ago for 
RT-LOTOS. 

Therefore, the paper presents RT-LOTOS to TPN 
translation patterns. TPN are embedded into 
components and composed. The paper also discusses 
two case studies with experimental results showing 
that the toolkit made up of RTL2TINA and TINA 
positively compares with RTL for timed specifications. 
RTL2TINA+TINA also positively compares with 
CAESAR for untimed LOTOS specifications. In both 
comparisons, the approach proposed in this paper has 
demonstrated its efficiency. Note that a formal proof 
on the RT-LOTOS to TPN translation patterns has 
been written in a separate document [19]. 

So far, the RTL2TINA tool handles the control part 
of RT-LOTOS. It still has to be extended to process the 
data part of the language. This work in not limited to 
the verification of real-time systems directly specified 
in RT-LOTOS. The ultimate goal is to provide a more 
powerful verification environment for real-time 
systems modelled in TURTLE [1]. 
 
8. References 
 
[1] L. Apvrille, J.-P. Courtiat, C. Lohr, P. de Saqui-Sannes, 
“TURTLE : A Real-Time UML Profile Supported by a 
Formal Validation Framework”, IEEE Transactions on 
Software Engineering, Vol.30, No.4, July 2004. 
[2] M. Barbeau, G. von Bochmann, “Verification of LOTOS 
Specifications: A Petri Net Based Approach”, Proc. of 



Canadian Conference on Electrical and Computer 
Engineering, Ottawa, Canada, 1990. 
[3] M. Barbeau, G. von Bochmann, “Extension of the Karp 
and Miller Procedure to Lotos Specifications”, DIMACS 
Series in Discrete Mathematics and Theoretical Computer 
Science, volume 3, 1991. 
[4] B. Berthomieu, P.O. Ribet, F. Vernadat, “The TINA 
Tool: Construction of Abstract State Space for Petri Nets and 
Time Petri Nets”, International Journal of Production 
Research, Vol.42, N°14, pp.2741-2756, 2004. 
[5] T. Bolognesi, F. Lucidi, S. Trigila, “From Timed Petri 
Nets to Timed LOTOS”, Protocol Specification, Testing and 
Verification, X, IFIP WG 6.1 Tenth International 
Symposium, 1990, Ottawa, Canada, pages 395-408, North-
Holland, 1990. 
[6] F. Boniol, G. Bel, J. Ermont. « Trois Approches pour la 
Modélisation et la Vérification de Systèmes Embarqués », 
Technique et science informatique, 2003.  
[7] http://www.inrialpes.fr/vasy/cadp/ 
[8] J.-P. Courtiat, R.C. De Oliveira, “A reachability analysis 
of RT-LOTOS specifications, Eighth International 
Conference on Formal Description Techniques Protocol 
(FORTE’95), Montreal, Canada, Chapman and Hall, London, 
1995. 
[9] J.-P. Courtiat, C.A.S. Santos, C. Lohr, B. Outtaj, 
“Experience with RT-LOTOS, a Temporal Extension of the 
LOTOS Formal Description Technique”, Computer 
Communications, Vol. 23, No. 12, p. 1104-1123, 2000. 
[10] J-P. Courtiat, “Formal design of interactive multimedia 
documents”, 23rd IFIP WG 6.1 International Conference on 
Formal Techniques for Networked and distributed systems 
(FORTE’2003), Berlin. Lecture Notes in Computer Science 
2767, Eds.H.Konig, M.Heiner, A.Wolisz, 2003. 
[11] D. Larrabeiti, J. Quelmada, S. Pavón, From LOTOS to 
Petri nets through expansion, FORTE/PSV’96, 
Kaiserslautern, Germany, 1996. 
[12] H. Garavel, J. Sifakis, Compilation and Verification of 
LOTOS Specifications, In: Logrippo, L.; et al.: Protocol 
Specification, Testing and Verification, X. Proceedings of the 
IFIP WG 6.1 Tenth International Symposium, 1990, Ottawa, 
Ont., Canada, pages 379-394. Amsterdam, Netherlands: 
North-Holland, 1990.  
[13] ISO, “LOTOS – A Formal Description Technique Based 
on the Temporal Ordering of Observational Behavior”, ISO 
Information Processing Systems – Open Systems 
Interconnection  IS 8807, September 1988. 
 [14] T. Massart, L. Van Begin, E. Van Nuffel. Design of 
Timed Systems using a real-time process algebra. 
 [15] P.M. Merlin, D.J. Farber, Recoverability of 
Communication Protocols: Implications of a theoretical 
Study, IEEE Trans. on Communications, Vol.24, No.9, 1976. 
[16] R.M. Milner, “Communications and Concurrency”, 
Prentice Hall, 1989. 
[17] Real-time LOTOS. http://www.laas.fr/RT-
LOTOS. 
[18] T. Sadani, P. de Saqui-Sannes, J.-P. Courtiat. Formal 
Validation of RT-LOTOS Specifications: New Directions 

and Preliminary Results. Work in progress Session. Real 
Time Systems Symposium  lisbon Portugal December 2004. 
[19] T. Sadani, M. Boyer, J.-P. Courtiat, P. de Saqui-Sannes. 
Translation from RT-LOTOS to Time Petri Nets. LAAS 
research report. 
[20] R. Sisto, A. Valenzano, Mapping Petri nets with 
Inhibitor Arcs onto Basic LOTOS Behaviour Expressions, 
IEEE Transactions on Computers, Vol.44, N.12, December 
1995, pp.1361-1370. 
[21] S. Tripakis, S.Yovine, “Analysis of timed systems based 
on time-abstracting bisimulations”, 8th Conference 
Computer-Aided Verification, CAV’96, Springer LNCS 
1102, July 1996, p. 232-243. 
[22] M. Yannakakis, D. Lee, “An efficient algorithm 
for minimizing real-time transition system, CAV’93, 
Lecture Notes in Computer Science, vol. 697, Springer, 
Berlin 


