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Abstract: Functional modules of metabolic networks are essential for understanding the
metabolism of an organism as a whole. With the vast amount of experimental data and the
construction of complex and large-scale, often genome-wide, models, the computer-aided
identification of functional modules becomes more and more important. Since steady
states play a key role in biology, many methods have been developed in that context,
for example, elementary flux modes, extreme pathways, transition invariants and place
invariants. Metabolic networks can be studied also from the point of view of graph theory,
and algorithms for graph decomposition have been applied for the identification of functional
modules. A prominent and currently intensively discussed field of methods in graph theory
addresses the Q-modularity. In this paper, we recall known concepts of module detection
based on the steady-state assumption, focusing on transition-invariants (elementary modes)
and their computation as minimal solutions of systems of Diophantine equations. We present
the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an
example for a useful non-steady-state method and its application to metabolic networks. To
illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the
central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The
intention of the paper is to give a compact presentation of known steady-state concepts from
a graph-theoretical viewpoint in the context of network decomposition and reduction and to
introduce the application of Q-modularity to metabolic Petri net models.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14530618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Metabolites 2013, 3 674

Keywords: metabolic networks; functional module; Petri net; t-invariant; Fourier-Motzkin
algorithm; elementary mode; maximal common transition set; t-cluster; minimal cut set;
community; Q-modularity

1. Introduction

The knowledge of biochemical networks, in particular of metabolic networks, increases daily
with the capabilities of new upcoming high-throughput technologies to measure all the participating
molecules and the relations between them. This enables us to construct large and complex models
for many pathways of different species. In particular, modeling of metabolism helps us to understand
biological function.

A prerequisite for a quantitative model is the complete knowledge of metabolite concentrations and
reaction constants and/or rates or, at least, a critical amount of them. However, in most cases, quantitative
data in sufficient amounts and of high quality are rare and only available for rather small metabolic
systems. This situation motivated the development of qualitative methods, which enable us to analyze
statements on functional behavior and dynamic properties of the system without any knowledge of the
kinetic parameters.

Metabolism is commonly understood as a system of interacting and hierarchically organized
functional modules [1]. Scale-freeness with the appearance of super-hubs, e.g., ATP or NADH ,
are typical features of metabolic networks [2]. The evolutionary reason and advantage of this
organization structure is a topic of ongoing controversial discussions; see, for example, [2,3]. Currently,
bioinformatics takes up the formidable challenges of characterizing the structural properties common in
different metabolic systems and of identifying functional modules and their hierarchical organization.
Many concepts, methods and algorithms emerge for network validation, decomposition and reduction.
All are based on mathematical grounds and allow rigorous statements, even though the running time
behavior becomes an issue for large networks.

Graph-theoretical methods are based on topological properties, mainly connectivity, and do not
account for stoichiometric relations or steady-state conditions. Such non-steady-state methods have
been developed in various scientific fields, for example, in physics [4], social science [5], economy [6],
marketing [7,8], production processes [9] and communication [10]. Many modularization techniques
based on graph partitioning have been developed and studied over decades [11]. Recently, the
Q-modularity introduced by Newman & Girvan [12] has boosted the research on community detection
in graphs [13].

Most techniques have been developed for networks of one-to-one (unipartite) interrelations between
components. These methods are suitable for biological interaction networks, such as protein-protein
interaction in proteomics; see, for example, [14]. However, for reaction systems, such as metabolic
pathways, it is beneficial to consider bipartite graphs, where metabolites cover the passive part, and
the enzyme-catalyzed reactions, the active part of the system. This distinction enables a unique and
exhaustive examination of the concurrent processes inherent in biological networks. The bipartiteness
of graphs is a typical, intuitive feature in all complex networks [15], thus, also, in biochemical networks.
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Because Petri nets own bipartiteness by definition, Petri net theory is a suitable mathematical formalism
for an appropriate description of metabolic networks [16]. Moreover, many mathematically proven
methods exist for Petri nets, such as decomposition algorithms [17,18] or reduction techniques [19–22].

The literature in this field of ongoing research is extensive, and we abstain from giving a
representative overview. The aim of this paper is, first, to present known steady-state methods for
network decomposition from a graph-theoretical point of view; second, to introduce the application of
Q-modularity to metabolic networks; and third to give a compact and understandable review on module
detection discussed from both perspectives, with and without the steady-state assumption.

In the paper, we aberrate from the traditional division into Methods and Results sections, because
we partly present known concepts, but from a different point of view, in order to explain the new
concepts. Thus, the organization of the paper is method driven. We start with the description of computer
science terms of computability. Afterwards, we continue with a recapitulation of steady-state network
decomposition methods and their application to metabolic systems, including a brief consideration of
network representation as hypergraphs and bipartite graphs, the definition of Petri nets and a detailed
explanation of the Fourier-Motzkin algorithm for invariant computation. Addressing graph-theoretical
concepts, we define and discuss communities, Q-modularity and network reduction. In this context, we
consider the use of functional modules for network verification and reduction. To illustrate the concepts
for network decomposition and reduction, we apply a small biochemical running example. Finally, we
summarize and give conclusions.

2. Complexity Definitions of Algorithms and Problem Classification

In practice, we are interested in developing algorithms with the shortest possible running time. In
computer science, problems formalized as algorithms are classified according to their running time
behavior. This makes the formal estimation of running times of algorithms essential, including the
development of a unique notation. We consider the running time dependent on the size of the input data
and want to estimate the evolution of the computing time for big sizes of input data. Distinguishing the
worst case, the best case and the average case, the worst case is of general interest and mainly applied.

For pairwise sequence alignment, the size of the input data is defined by the sequence length; for
multiple sequence alignment, the number of sequences to be compared needs to be included, as well.
For graph-theoretical problems, the number of vertices, n, and edges, m, define the size of the input
data. Now, we have to find a mathematical function that behaves similarly to the running time function,
representing an upper, lower or tight bound. Commonly, the Landau notation [23] is used to denote
asymptotic upper bounds (O and o notation), lower bounds (Ω and ω notation) and tight bounds (Θ and θ
notation). As the Big-O notation for the worst case is most widely used, we explicitly give its definition.
For a more detailed description we refer, for example, to [24].

Definition 1 (Big-O notation [24]) : Let f(n) be the mathematical function that describes the behavior
of our running time function. For a given function, g(n), we denote O(g(n)) as the set of functions
with O(g(n)) = { f(n): there exists positive constants, c and n0, such that O ≤ f(n) ≤ cg(n) for all
n ≥ n0 }.
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The complexity theory classifies problems according to their running time behavior in the worst
case. Algorithms, whose running time grows not faster than O(namb) with the exponents, a and b,
as small as possible, are favorable. Problems, whose algorithms exhibit such a polynomial behavior,
are classified to be in the complexity class, P (polynomial). Problems for which no polynomial-time
algorithms are known, but whose solutions can be verified in polynomial time, belong to the complexity
class, NP (non-deterministic polynomial). Problems like the Traveling Salesman, Boolean Satisfiability
or Linear Programming are in NP. These problems are also called NP-complete. NP-complete problems
are decision problems in NP and as hard as any other problem in NP. If there would exist a polynomial
algorithm for one NP-complete problem, then every problem in NP would also have a polynomial-time
algorithm. Then, the question, “P = NP?”, would have been solved and, thus, a fundamental problem
in computer science. For a list of NP-complete problems in graph theory, we refer to [25]. NP-hard
problems are at least as hard as any NP-complete problem, but do not have to be in NP. There exists
many other subclass definitions for special problems. One of these definitions that we will need is the
class, EXPSPACE, which is solvable with O(2p(n)) memory, where p(n) is a polynomial function of n.

In practical applications, the complexity class of a task gives a reasonable indicator for the chance
of success when we search for solutions in large graphs. Please keep in mind that the complexity class
describes the worst-case scaling property. The simplex algorithm for linear programming represents
a well-known example. It has an impressive record of running fast in practice, despite having
exponential-time complexity when applied to a hard problem [26,27]. Note that the complexity class
for the averaged scaling behavior is an independent (and interesting) question of its own. We will touch
on the issue of complexity and computability later, again.

The rather long and growing list of NP-complete problems motivated the development of alternative
concepts, such as DNA computing [28,29], quantum computing [30] and membrane computing [31].
However, a discussion of the capabilities and limitations of these concepts are outside the scope of
this work.

3. Network Diagrams: Hypergraphs and Bipartite Graphs

Graph-theoretical representations are widely applied to illustrate networks. For biochemical
networks, these graphs are usually directed. Traditionally, biologists and physicians use the hypergraph
representation; see Figure 1a. A hypergraph consists of a finite set of vertices, representing metabolites,
and a finite set of hyperedges, denoting an arbitrary number of reactions that transform metabolites. In
metabolic networks, a hyperedge covers one reaction, which is usually named after the enzyme that
catalyzes this reaction. Figure 1a illustrates a hypergraph representation of a part of the central carbon
metabolism in young Solanum tuberosum (potato tubers). The edges are weighted by an integer number
that corresponds to the stoichiometric coefficient of the chemical reaction. For example, the hyperedge,
glycolysis, in Figure 1a represents the underlying stoichiometric equation:
Fructose-6-P + 29 ADP → 29 ATP .

The delineation of a metabolic reaction system as a bipartite graph is more detailed. Bipartite graphs
are widely used in computer science. In bipartite graphs, two types of vertices exist, whereby edges are
only allowed between vertices of different type, i.e., the edges separate the vertex set into two vertex
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sets. Researchers in biology and medicine are accustomed to metabolic pathway maps of the KEGG
database [32] (see Figure 2) and, hence, inclined to apply bipartite graphs for visual representation.

Figure 1. Part of the central carbon metabolism in young potato tubers (Solanum tuberosum)
in the hypergraph representation on the left side and, on the right side, the corresponding
bipartite graph as a Petri net. The metabolites are modeled as places and the reactions as
transitions, which are labeled by the corresponding enzyme names. Transitions without
pre-places or post-places model the interface of the system to its environment and are drawn
as flat rectangles. Edges only exist between vertices of different types. Additionally, we
see two other vertex types, which were introduced for a clearly arranged layout. The filled
places stand for logical or fusion vertices. Logical places of the same name represent exactly
one vertex in the underlying graph structure. A transition depicted by two nested rectangles
stands for a hierarchical transition, meaning that it covers a subnetwork; here, the forward
and backward reaction of the transition, phosphoglucoisomerase. If the edge label is not
explicitly indicated, the edge weights are equal one. The transition, glycolysis, is enabled if
there are at least one molecule or mole of fructose-6-P and 29 molecules or moles of ADP
and produces 29 molecules or moles of ATP when it fires.
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Figure 2. The KEGG [32] reference map, number 00500, of the starch/sucrose metabolism
depicts a bipartite graph. The circles correspond to the metabolites, and the edges
represent the enzyme-catalyzed reactions, where the enzyme is denoted by its EC-number in
rectangles. The edges are directed and carry no information on stoichiometry.

4. Petri Nets

Petri nets (PN) have been defined by Carl Adam Petri to describe systems with causal, concurrent
processes [33]. PN are directed, bipartite graphs. The concept is developed under the strong division
into passive and active system elements represented by two vertex types, the set of places, P , and the set
of transitions, T . The vertices are connected by directed edges, defining a flux relation, F : ((P × T ) ∪
(T × P ))→ N0. An edge never connects vertices of the same type, i.e., edges divide the set of vertices
into two disjunct vertex sets. For an example, see Figure 1b. The metabolites are modeled as places
and the reactions as transitions, which usually carry the name of the catalyzing enzyme. Transitions
without pre-places or post-places model the interface of the system to its environment and are drawn as
flat rectangles. Additionally, we see two other vertex types, which were introduced for a clearly arranged
layout. The filled places stand for logical or fusion vertices. Logical places of the same name represent
exactly one vertex in the underlying graph structure. Two nested rectangles stand for a hierarchical
transition, hiding subnetworks. In Figure 1b, the nested rectangle covers the forward and backward
reaction of the transition, phosphoglucoisomerase. If the edge label is not explicitly given, the edge
weight equals one. Places can carry movable objects, the tokens. The distribution of tokens over all
places defines a certain system state. The flow of tokens describes the dynamics of a system. The
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marking, m : P → N0, determines the number of entities (e.g., molecules or moles) of each metabolite
(place) and describes the current state of the metabolic network.

Because tokens can be interpreted in different ways, for example, as objects of manufacturing or
financial processes or as the number of moles or molecules, the token flow can be interpreted in various
ways, strongly dependent on the application field. In metabolic networks, we consider a flow of
substances, whereas in signal transduction networks, we consider a flow of signals, i.e., information.
A token flow may take place if a transition is enabled or activated and operates or fires according to a
specific firing rule, producing a new system state. In Figure 1b, the transition, glycolysis, is enabled if
there are at least 29 tokens of ADP and one token of fructose-6-P , and the capacity of the corresponding
post-place is large enough to accept the produced 29 tokens of ATP, additionally to the existing marking.
In most cases, places with unbounded, i.e., infinite, capacity are defined.

Figure 3. Two possible states of the Petri nets (PN) of Figure 1. On the left side, the place,
glucose, carries one token, and the place, ATP, depicted by three logical places, carries three
tokens. Thus, the transition, hexokinase, is enabled or has concession and can fire. After
firing (right side), one token of glucose-6 phosphate (place glucose-6-P ) was produced,
consuming one token of ATP (place ATP). One token of sucrose was generated by firing of
the transition, sucrose input, which is always enabled.

In this paper, we consider the untimed firing rule of classical place/transition nets (P/T-nets). That
means that firing, i.e., token movement, takes no time. The number of consumed and produced tokens
is defined by the weights of the corresponding edges to the pre- and post-places, respectively, of the
firing transition. Note that the total number of consumed tokens must not be equal to the total number of
produced tokens. Thus, a PN may not conserve the total number of tokens in the system. Figure 3 shows
two states of the PN in Figure 1. On the left side, place glucose carries one token and the place, ATP,
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depicted by three logical places, three tokens. Thus, transition hexokinase is enabled and can fire. After
firing (on the right side), one token of glucose-6 phosphate is generated, consuming one token of ATP .
Moreover, one token of sucrose has entered the system by the firing of transition, sucrose input, which
is always enabled. To explore the entire dynamic behavior, all reachable states have to be computed.

4.1. Reachability Analysis

The reachability analysis aims to enumerate and investigate all possible system states starting from
an arbitrary initial marking. In the analysis, we have to follow all alternatives of firing in the case of
conflicts and concurrency. This results in a semi-ordered (partial-ordered, interleaving) semantics that
reflects the nondeterministic choice of the processes to be executed. In the case of simulation, we have to
decide, for example, which transition of two or more conflicting transitions fires in which order. Figure 4
illustrates a small subnet of the central carbon metabolism in young potato tubers of Figure 1. The place,
fructose-6-P , has two post-transitions, PGIf and glycolysis, which both compete for the tokens on
the place, fructose-6-P . For the reachability analysis, we have to consider the two cases: (1) transition
PGIf fires first or (2) transition glycolysis fires first. To represent all possible states and the transitions
that cause the respective new states, we define the reachability graph RG. The vertices of an RG encode
system states, each defined by a certain token distribution on all places. The directed edges, labeled
by the reaction whose firing induces the change of the system state, indicate the direction of the state
transformations.

Figure 4. Two conflicting transitions in a part of the network of Figure 1. The place,
fructose-6-P , has two post-transitions, PGIf and glycolysis, which compete for the tokens
on the place, fructose-6-P . For the reachability analysis, we have to consider the two cases:
(1) transition PGIf fires first or (2) transition glycolysis fires first.

Usually, a standard graph-theoretical algorithm, called Breadth-First Search (BFS) (see, for
example, [24]), is used as basis for the computation of the RG. This algorithm explores all vertices
of a graph, starting with an arbitrary vertex and all its neighbors. The visited vertices are labeled,
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such that they are not processed again. The algorithm continues with the unvisited neighbors, until all
vertices of the graph have been explored. Thus, for example, all connected components of a graph can
be determined. The BFS algorithm runs in linear time in O(m + n), where m and n are the number
of vertices and edges, respectively. Here, the BFS examines all enabled transitions as neighbors of
the considered state. The exponentially growing number of system states can lead to a state space
explosion.Here, the BFS examines all enabled transitions as neighbors of the considered state. In
biology, even for small networks with up to 20 places and 30 transitions, the state space may become
very huge. Therefore, in the last few years, special data structures, e.g., binary decision diagrams (BDD),
have been developed to cope with the state space explosion [34].

4.2. Incidence Matrix and Stoichiometric Matrix

Let us consider a sequence of reactions, s = (ti1, ti2, . . . , tin), also called firing sequence, which
changes the marking of the system, such that:

mnew = mold + ∆m (1)

and
∆m = C τ (2)

The number of occurrences of reactions, tk ∈ T , in the firing sequence, s, is given by the component,
τk = #tk, of the frequency vector, τ : T → N0. We call τ a Parikh vector of the sequence, s. Originally,
Parikh vectors have been defined for context-free languages, indicating the number of occurrences of a
letter in a word [35].

Generally, an incidence matrix, C, describes the relationships between two sets of objects, for
example, T and P , which corresponds to the columns and rows of the matrix, respectively. The matrix
entry, C(x, y), is nonzero, if x and y are related, and zero, otherwise. For a weighted, directed, bipartite
graph with the edge weights, wtp and wpt, the two sets are defined by the two vertex types, i.e., t ∈ T
and p ∈ P . The two possible directions, forward and backward, of an edge are specified by the numbers,
df = 1 and db = −1, respectively. An entry, [x, y], in the incidence matrix is given by dfwpt and
determines the change of the token number in a place, p, after the firing of a transition, t; see Table 1.
In such a way, we describe the effect of a sequence of firing transitions (reactions) on the marking of the
system by the incidence matrix, C : P ⊗ T → Z. Table 1 illustrates the incidence matrix, C, of the PN
in Figure 1 covering eight places and nine transitions. The token change of metabolites in the marking
on the places is then given by:

∆m =



∆m1

∆m2

∆m3

∆m4

∆m5

∆m6

∆m7

∆m8


=



−1 0 0 0 0 0 0 +1 0

+1 −1 0 0 0 0 0 0 0

+1 0 −1 0 0 0 0 0 0

0 0 +1 +1 −1 −1 0 0 0

0 +1 0 −1 +1 0 −1 0 0

0 0 0 0 0 0 +1 0 −1

0 +1 +1 0 0 −29 +1 0 0

0 −1 −1 0 0 +29 −1 0 0


×



#t1

#t2

#t3

#t4

#t5

#t6

#t7

#t8

#t9


(3)
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Table 1. The incidence (stoichiometric) matrix for the network in Figure 1. pi stands for a
metabolite (place) and tj for a reaction (transition).

C

t1: t2: t3: t4: t5: t6: t7: t8: t9:
Inver- Hexo- Fructo- Phospho- Phospho- Glyco- Starch Sucrose Starch

tase kinase kinase glucosio- glucosio- lysis synthase input output
merase f merase b

p1: Sucrose −1 0 0 0 0 0 0 +1 0
p2: Glucose +1 −1 0 0 0 0 0 0 0
p3: Fructose +1 0 −1 0 0 0 0 0 0
p4: F6P 0 0 +1 +1 −1 −1 0 0 0
p5: G6P 0 +1 0 −1 +1 0 −1 0 0
p6: Starch 0 0 0 0 0 0 +1 0 −1
p7: ADP 0 +1 +1 0 0 −29 +1 0 0
p8: ATP 0 −1 −1 0 0 +29 −1 0 0

The firing of transition t8 (sucrose input) produces a new token of sucrose on p1; see Figure 1. In
this case, the Parikh vector, t, has solely one nonzero component, #t8 = 1, and we yield:

∆m =



∆m1

∆m2

∆m3

∆m4

∆m5

∆m6

∆m7

∆m8


=



−1 0 0 0 0 0 0 +1 0

+1 −1 0 0 0 0 0 0 0

+1 0 −1 0 0 0 0 0 0

0 0 +1 +1 −1 −1 0 0 0

0 +1 0 −1 +1 0 −1 0 0

0 0 0 0 0 0 +1 0 −1

0 +1 +1 0 0 −29 +1 0 0

0 −1 −1 0 0 +29 −1 0 0


×



0

0

0

0

0

0

0

1

0


=



1

0

0

0

0

0

0

0


(4)

We may use the incidence matrix, C, to compute the changes of token (metabolite) numbers, resulting
from the firing sequence of transitions (reactions) (t4, t5).

∆m =



−1 0 0 0 0 0 0 +1 0

+1 −1 0 0 0 0 0 0 0

+1 0 −1 0 0 0 0 0 0

0 0 +1 +1 −1 −1 0 0 0

0 +1 0 −1 +1 0 −1 0 0

0 0 0 0 0 0 +1 0 −1

0 +1 +1 0 0 −29 +1 0 0

0 −1 −1 0 0 +29 −1 0 0


×



0

0

0

1

1

0

0

0

0


=



0

0

0

+1

−1

0

0

0


+



0

0

0

−1

+1

0

0

0


=



0

0

0

0

0

0

0

0


(5)

The change of metabolites produced by this firing, sums up to zero. In terms of PN theory, the two
reactions, t4 and t5, form a transition-invariant. One of these two reactions, let us say, t4, may fire
spontaneously and drive the systems away from the steady state, but the other reaction, t5, of the
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transition invariant can compensate for the effect of firing of t4. Such stochastic fluctuation is a natural
and inherent property of a metabolic reaction system, in which all reactions are constantly active and the
time-dependent state of the system fluctuates around an ideal steady state.

4.3. Invariants

Let us now consider the invariant properties of the system. The invariants hold in every system state
reachable from an arbitrary, initial marking. We define invariant properties for the active and the passive
part of the system. Considering the active part and the equation system:

C t = 0 (6)

we define a nontrivial, nonnegative integer solution, t, and name the solution vector, transition-invariant
or t-invariant. The solution, t, has to be an integer, because we consider discrete objects—the tokens,
and nonnegative—because any sequence of firing transitions (reactions), s = (ti1, ti2, . . . , tin), gives rise
to an integer and nonnegative Parikh vector. Parikh vectors with negative components are senseless in
the biological context.

Let CT be the transposed incidence matrix. Considering the passive part, we define the nontrivial,
nonnegative integer solution, p, of the equation system:

CT p = 0 (7)

and call it place-invariant or p-invariant.
The solution space of such linear equation systems is, in general, unbounded, i.e., infinite. However,

we are interested in a finite solution set, from which we can compute all possible solutions by positive
integer linear combinations of the solution vectors. Such a set is given by all minimal solutions of the
invariant equations, where minimal means: for an invariant, x, there exists no invariant, z, whose support
is part of the support of x:

@ invariant z : supp (z) ⊆ supp (x) (8)

and the largest common divisor of all entries of x is one. The support of x, written as supp(x),
contains the set of the nonzero entries of a vector, x. In the following, we consider minimal, nontrivial,
nonnegative t- and p-invariants, shortened as t-invariants or TI and p-invariants or PI, respectively.

Invariant properties have important applications in systems biology. P-invariants represent a set of
places whose weighted sum remains always constant, thus representing a conservation of substances.
T-invariants describe a cyclic firing behavior, because the firing of all transitions of a t-invariant
leads back to the initial marking, forming a cycle in the RG. The TI represents basic pathways in
biochemical networks at steady state and describes, thus, the basic network behavior. Before explaining
the application of invariants in more detail, we first want to discuss their computation.

4.4. Fourier-Motzkin Elimination Method

The Fourier-Motzkin elimination method (FM) [36,37] is a classical algorithm for solving equation
systems with minimal, nontrivial, nonnegative integer solutions, i.e., the computation of t-invariants.
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The working principle of the FM can easily be demonstrated for the network in Figure 1. Initially, we
construct a table that consists of the transposed incidence matrix and the |T | × |T | identity matrix:

(t1)→ −1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
(t2)→ 0 −1 0 0 1 0 1 −1 0 1 0 0 0 0 0 0 0
(t3)→ 0 0 −1 1 0 0 1 −1 0 0 1 0 0 0 0 0 0
(t4)→ 0 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
(t5)→ 0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 0
(t6)→ 0 0 0 −1 0 0 −29 29 0 0 0 0 0 1 0 0 0
(t7)→ 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 1 0 0
(t8)→ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
(t9)→ 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

We find one column for each reaction (t1, t2, . . . , t9) and one column for the change of metabolites in
each place (p1, p2, . . . , p8). We can read the table as follows: Each line describes a sequence of reactions
and its effect on the metabolites. The first line corresponds to the sequence (t1), because the entry for
reaction, t1, is one, and the entries for all other reactions are zero. This sequence of reactions (t1)
removes one metabolite of p1 and adds one metabolite of p2 and one metabolite of p3, because in the first
line, the entry is −1 for p1, and the entries for p2 and p3 are both +1. The interpretation of the second
to the eighth line is analog. The basic idea of the algorithm is to combine lines in such a way that the
entries for all metabolites become zero. In the first step, we have to select a metabolite, let us say p1,
and to construct the combinatorial diversity of all sequences of reactions that yield ∆m1 = 0. Checking
the column for p1, we find an entry, −1, in the first line (t1) and an entry, +1, in the eighth line (t8).
Each of the reactions, t1 and t8, influence the metabolite, p1, and the only possible combination of these
reactions that yields ∆m1 = 0 is reaction t1 plus reaction t8. Consequently, we add the first line to the
eighth line to get one new line with an entry zero for p1. We append this new line (t1, t8) to the table and
delete the lines utilized to construct that new line. We get the new table:

(t2)→ 0 −1 0 0 1 0 1 −1 0 1 0 0 0 0 0 0 0
(t3)→ 0 0 −1 1 0 0 1 −1 0 0 1 0 0 0 0 0 0
(t4)→ 0 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
(t5)→ 0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 0
(t6)→ 0 0 0 −1 0 0 −29 29 0 0 0 0 0 1 0 0 0
(t7)→ 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 1 0 0
(t9)→ 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1

(t1, t8)→ 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

Note that all entries in the column for p1 are zero now. The new line (t1, t8) in the table has an entry,
one, in the column for t1 and an entry, one, in the column for t8. Hence, the new line corresponds to
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the reaction sequence (t1, t8). According to the FM, we still have to check whether the new sequence of
reactions is minimal, because the support of a new sequence may be a superset of the support of another
sequence. In this case, the new sequence would not correspond to a minimal solution and would have to
be eliminated from the table. In the particular case of reaction (t1, t8), the candidate solution is minimal.
The FM algorithm proceeds with another metabolite that has nonzero entries in its column. For large
networks, the metabolites should be chosen according to an advantageous heuristic [37]. For simplicity,
we leave such heuristic aside and just choose the metabolite, p2, in the table above. In the column for p2,
we find the entry, −1, in the line, (t2), and the entry, one, in the line, (t1, t8). Again, we can construct
only one new combination that gives p2 = 0. We construct the new line, (t1, t2, t8), by adding the first
line, (t2), to the eighth line, (t1, t8). Then, we delete the utilized lines and append the new line:

(t3)→ 0 0 −1 1 0 0 1 −1 0 0 1 0 0 0 0 0 0
(t4)→ 0 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
(t5)→ 0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 0
(t6)→ 0 0 0 −1 0 0 −29 29 0 0 0 0 0 1 0 0 0
(t7)→ 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 1 0 0
(t9)→ 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1

(t1, t2, t8)→ 0 0 1 0 1 0 1 -1 1 1 0 0 0 0 0 1 0

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

The new line corresponds to a minimal candidate solution, and the FM proceeds with another metabolite
that still has nonzero entries in its column. Proceeding to the next step of the FM for metabolite p3, two
lines are utilized to append a new (minimal) line, (t1, t2, t3, t8):

(t4)→ 0 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
(t5)→ 0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 0
(t6)→ 0 0 0 −1 0 0 −29 29 0 0 0 0 0 1 0 0 0
(t7)→ 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 1 0 0
(t9)→ 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1

(t1, t2, t3, t8)→ 0 0 0 1 1 0 2 -2 1 1 1 0 0 0 0 1 0

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

In the next step of the FM, the combination of the fourth line, (t7), with the fifth line, (t9), zeroes all
entries for the metabolite on p6, and we yield:

(t4)→ 0 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
(t5)→ 0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 0
(t6)→ 0 0 0 −1 0 0 −29 29 0 0 0 0 0 1 0 0 0

(t1, t2, t3, t8)→ 0 0 0 1 1 0 2 −2 1 1 1 0 0 0 0 1 0
(t7, t9)→ 0 0 0 0 −1 0 1 −1 0 0 0 0 0 0 1 0 1

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9
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Note that, up to now, each step of the FM has reduced the number of lines in the table. Such a reduction
of the number of lines is favorable, because, in general, the number of lines grows in each step of the
FM. The growth can be exceptionally fast and presents a serious problem, known as the state explosion
problem for the computation of all minimal solutions of Diophantine equation systems. We choose
(carefully) a network as an example, for which the FM does not run into the state explosion problem.
The next step of the FM for metabolite p4 shows that the number of lines does not have to decrease for
each step. Proceeding with metabolite p4, we find two positive and two negative entries in the column for
p4. The algorithm has to construct the combinatorial diversity of all solutions, which zeroes the entries
in the column for p4. Such combinations are the first line, (t4), with the second line, (t5), the first line,
(t4), with the third line,(t6), the forth line, (t1, t2, t3, t8), with the second line, (t5), and the forth line,
(t1, t2, t3, t8), with the third line, (t6). In this way, we construct four new (minimal) lines and get the
new table:

(t7, t9)→ 0 0 0 0 −1 0 1 −1 0 0 0 0 0 0 1 0 1
(t1, t2, t3, t5, t8)→ 0 0 0 0 2 0 2 −2 1 1 1 0 1 0 0 1 0
(t1, t2, t3, t6, t8)→ 0 0 0 0 1 0 −27 +27 1 1 1 0 0 1 0 1 0

(t4, t6)→ 0 0 0 0 −1 0 −29 29 0 0 0 1 0 1 0 0 0
(t4, t5)→ 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

The next step for metabolite p5 results in the table:

(t1, t2, t3, t6, t7, t8, t9)→ 0 0 0 0 0 0 −26 +26 1 1 1 0 0 1 1 1 1
(t1, t2, t3, 2t7, t8, 2t9)→ 0 0 0 0 0 0 4 −4 1 1 1 0 1 0 2 1 2

(t1, t2, t3, 2t4, t5, 2t6, t8)→ 0 0 0 0 0 0 −56 56 1 1 1 2 1 2 0 1 0
(t1, t2, t3, t4, 2t6, t8)→ 0 0 0 0 0 0 −56 +56 1 1 1 1 0 1 0 1 0

(t4, t5)→ 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

Applying a further step for metabolite p7 gives the final table:

0 0 0 0 0 0 0 0 15 15 15 0 13 2 28 15 28
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 t6 t7 t8 t9

The entries for the metabolites, p1 to p8, have all to be zero in the final table. The entries
for the transitions describe two t-invariants of the network. The t-invariant, {t4, t5}, represents
a simple reversible reaction, and is called a trivial t-invariant. The more complex t-invariant,
{15 t1, 15 t2, 13 t3, 2 t5, 28 t6, 15 t7, t8, 28 t9}, describes the basic functional pathway of the network
in Figure 1b. It is easy to verify that all reactions are members of at least one TI, and hence, the network
is covered by t-invariants CTI.
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Reactions that cannot be compensated by other reactions have to be discussed carefully for their
biological relevance. Such reactions are strong indicators for missing reactions or errors in the model.
The identification of a reaction that contradicts a steady-state behavior is a computational challenge for
large metabolic models. Standard approaches are based on the computation of a minimal generator set
of all TI. In general, the computation of all TI requires exhausting resources in terms of computer time
and memory [38]. Several groups have developed advanced algorithms to speed up the computation of
all TI, for example, the canonical basis approach by Schuster & Hilgetag [39], the nullspace approach by
Wagner [40], the concept of bit pattern trees by Terzer & Stelling [41], and a parallel divide-and-conquer
approach by Jevremovic et al. [42]. Even with all these methods and modern (super-)computers, only
models of moderate size have been tractable until now. The number of TI of a metabolic network of
moderate size can easily reach tens of millions [42]. This leads us to the next problem: how to interpret
this huge amount of basic pathways. Which pathways are the most important ones? To give an answer,
let us now consider first the CTI question without the computation of all t-invariants.

4.5. The CTI Property

We want to define another property, which is helpful, in particular, to verify biochemical systems.
This property represents a completeness condition which may be applied in network verification. If
each transition belongs to at least one t-invariant, we say that the PN is covered by t-invariants (CTI).
Accordingly, we call a PN to be covered by p-invariants (CPI), if each place is a member of at least one
p-invariant. The CPI property can be used to decide boundedness, i.e., the finite number of tokens for all
places. Only for bounded PN, a finite reachability graph can be generated. Though the CPI property is
important for many questions, we will not consider it in more detail in this paper.

4.5.1. The CTI Question

Despite the fact that the knowledge of an even huge number of t-invariants is valuable and represents
a prerequisite for more advanced analytical techniques, we want to decide whether a network is CTI

without computing all TI. Since the set of all t-invariants describes a minimal set of all functional modes
of the system at steady state, each transition should belong to at least one t-invariant. To show the CTI

property for a PN, we have to find one integer solution, t, of the equation:

C t = 0 (9)

with nonzero components (ti ≥ 1, i = 1, 2, . . . , |T |) or to exclude the existence of such a solution. Thus,
to decide the CTI question without computing all TI, a less expensive strategy would be beneficial.

Lipton [43] gives the proof that the reachability problem for vector addition systems requires
exponential space in the worst case. Accordingly, the CTI decision problem is EXPSPACE-hard. For
a vector addition system, (s, e, {v1, v2, . . . , vn}), of dimension k, the reachability problem reads: do
vectors w1, . . . , wm ∈ Nk exist, such that:

w1 = s (10)
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wm = e, and (11)

for each i, wi+1 = wi + vj, for some+ j? (12)

We can easily see the equivalence to the CTI decision problem. Let the dimension, k, be the number
of places, ( k = |P |), the incremental change vectors, (v1, v2, . . . , vn) ∈ Zk, the column vectors of the
incidence matrix, C, the end vector, e ∈ Nk, sufficiently large and the starting vector, s ∈ Nk, the sum of
the end vector, e ∈ Nk. Then, the change of metabolites, resulting from firing each transition once, is:

s = e+ C y (13)

where in the Parikh vector, all components equal one (yi = 1, i = 1, 2, . . . |T |). Any solution of this
vector addition problem represents a solution of Equation (9) and shows the CTI property of the network.

4.6. Geometric Point of View

The CTI question and the concept of TI are closely related to the theory of convex cones. In this
context, Schuster et al. [39] defined the elementary flux modes or elementary modes (EM), which
correspond to the TI [44]. It is obvious that the set, S = {s = C x |x ∈ Nk

0}, of all solutions of
Equation (6) is a pointed convex cone. A network is CTI if and only if the effect of firing of all reactions
can be compensated. Firing of all reactions in our example network in Figure 1 results in the following
changes of metabolites:

∆m =



−1 0 0 0 0 0 0 +1 0

+1 −1 0 0 0 0 0 0 0

+1 0 −1 0 0 0 0 0 0

0 0 +1 +1 −1 −1 0 0 0

0 +1 0 −1 +1 0 −1 0 0

0 0 0 0 0 0 +1 0 −1

0 +1 +1 0 0 −29 +1 0 0

0 −1 −1 0 0 +29 −1 0 0


×



1

1

1

1

1

1

1

1

1


=



0

0

0

0

0

0

−26

26


(14)

These changes of metabolites have to be compensated by a reaction of the net. Therefore, we have to
find an element, s, in the convex cone, S, that compensates for ∆m, i.e., s = −∆m. Geometrically, the
network is CTI if the vector:

b = −C y (15)

is inside the convex cone, S, and the Parikh vector, y, has all components equal to one (yi = 1,

i = 1, 2, . . . |T |). We have to check whether b is inside (b ∈ S) or outside (b 6∈ S) of the cone. Here,
the Lemma of Farkas [45] provides a useful statement: The vector, b, is either inside of the convex cone,
S, or it is possible to find a hyperplane, S⊥, that separates b from the convex cone. Such a separating
hyperplane must be a tangent hyperplane to the convex cone, S. Without loss of generality, we can
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choose a surface normal, s⊥, that points into the same direction as the cone, i.e., the angle between s⊥
and all vectors in the cone is not greater than 90◦:

CT s⊥ ≥ 0 (16)

This inequality can be expressed as:
CT s⊥ − I ν = 0 (17)

where I is the identity matrix and ν is an arbitrary vector with nonnegative integer components. The
surface normal, s⊥, determines a tangent hyperplane, S⊥ = {s ∈ Zk | sT s⊥ = 0}.

Now, we have to prove whether the vector, b, is located on the “wrong” side of the hyperplane, i.e.,
opposite of the convex cone, S. It turns out that the vector, b, is located opposite of the convex cone
if a solution, (s, ν), of Equation (17) with nonzero positive components of ν ≥ 0 exists [46]. The
nonzero components of ν identify the reactions not covered by TI. Applying this strategy to the network
in Figure 1, we have to construct all solutions (s⊥, ν) of the dual system (17):



−1 1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 1 −1 0 −1 0 0 0 0 0 0 0

0 0 −1 1 0 0 1 −1 0 0 −1 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 −1 0 0 −29 29 0 0 0 0 0 −1 0 0 0

0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1


×



s1,⊥
s2,⊥
s3,⊥
s4,⊥
s5,⊥
s6,⊥
s7,⊥
s8,⊥
ν1

ν2

ν3

ν4

ν5

ν6

ν7

ν8

ν9



= 0 (18)

The FM can be again applied to construct all positive integer solutions, (s⊥, ν), of this system of the
Diophantine Equation (17). In general, solutions of Equation (17) with zero components, ν = 0, are
called place-invariants in PN formalism [22] and describe the conservation law of metabolites [47]; see
Section 4.3. Note that the computation of solutions of the system of the Diophantine Equation (6) and the
computation of solutions of the dual system of the Diophantine Equation (17) are both EXPSPACE-hard
problems [46].

5. Network Decomposition into Functional Modules

Functional modules are important for representing, understanding, reducing and verifying general
networks. This is true, in particular, for biochemical networks, which are big and complex and
for which an experimental validation can be difficult or is even not possible. Several definitions of
functional modules have been proposed in various scientific fields. Definitions inspired by biology are
mainly manually derived induced by biological knowledge. They often rely on the experience of the
individual researcher. With the growing amount of data, the automatic detection of modules becomes
of great interest. All known definitions are at least implicitly based on graph-theoretical properties.
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For biochemical systems, we distinguish between module definitions that are based on the steady-state
assumption and definitions that ignore it. Both types of definitions are advantageous to solve specific
biological questions.

5.1. Steady-State Modules

The reactions (transitions) of each EM (TI) and the metabolites (places) in between, including the
corresponding edges between them, build connected subnetworks that stand for a certain biological
function. Thus, a subnetwork defined by a TI can be understood as a functional module. The careful
evaluation of the biological interpretation of functional modules, often manually done, is part of proving
the model for its correctness. There are many studies that provide exactly this kind of analysis. Some
of them report the detection of new pathways that have been later experimentally validated. An example
is the prediction of the glyoxylate pathway [48,49] and its validation [50]. Because the number of
TI can grow exponentially, thousands to millions and more of TI can exist, even for middle-sized
networks of two or three hundred vertices. To handle such a huge number of functional modules,
further differentiation becomes necessary and was developed by several groups. We distinguish between
methods that are based on the support of a TI vector and others that consider the actual numbers in the
Parikh vector.

5.1.1. Support Vector-Based Methods

Methods based on the support vector do not explicitly take into account the integer numbers of the
Parikh vector and, thus, implicitly ignore the stoichiometric relations. Instead, we consider the binary
information of whether a reaction or enzyme (transition) is a member of a TI or not. An example of such
a method to define modules are minimal cut sets.

Minimal Cut Sets (MCS) [51]: MCS has been introduced to study the fragility of metabolic networks
and possible knockout strategies to prevent or avoid a specific biological function. An MCS is defined
as a minimal set of reactions (enzymes) that blocks, after its removal, all feasible, balanced fluxes that
involve an objective reaction (enzyme). Applying the Lemma of Farkas, MCS can be computed without
the computation of the TI [52].

The next two module definitions are suitable for large networks. Since our running example is too
small to illustrate the usefulness of these definitions, we refer to examples in [53–55].

Maximal Common Transition sets (MCT-sets) [56,57]: Inspired by maximal common subgraphs, we
summarize equal parts of the solution vectors into new sets, the MCT-sets. An MCT-set is defined by
a set of reactions, {1, . . . ,m}, in which each pair of reactions, ti and tj , with i, j ∈ 1, ...,m, occurs in
exclusively the same TI, such that:

χ{0}(xi) = χ{0}(xj) (19)

where X denotes the set of all TI x, with i, j ∈ 1, ...,m, and χ{0} denotes the characteristic binary
function, indicating if its argument equals zero. This grouping leads to maximal sets of transitions,
where each set of transitions, ϑ, fulfills:

∀x ∈ X : ϑ ⊆ supp(x) ∨ ϑ ∩ supp(x) = ∅ (20)



Metabolites 2013, 3 691

Because of the exclusive membership of transitions, MCT-sets and the places and edges in between
define disjunctive subnetworks. Thus, MCT-sets can be interpreted as building blocks, for example, in
synthetic biology. Please note that the reactions of an MCT-set do not necessarily represent connected
subnetworks, i.e., they do not necessarily form consecutive firing sequences.

T-clusters [54,58]: Whereas MCT-sets define disjunctive subnetworks caused by the strong criterion
of exclusiveness in their definition, we may wish to allow overlapping subnetworks with a broader,
specific biological function. We define t-clusters based on hierarchical clustering methods, such as
UPGMA or NEIGHBOR JOINING. As a distance measure, we use the Tanimoto coefficient [59]. The
similarity between two t-invariants, ti and tj , is then:

s(ti, tj) = sij =
|supp(ti)

⋂
supp(tj)|

|supp(ti)
⋃
supp(tj)|

(21)

where supp(ti) and supp(tj) denote the support vectors of the t-invariants, ti and tj . The pair-wise
similarity, sij , expressed by this coefficient is transformed into a distance measure for dissimilarity,
dij [60]:

dij = 1− sij (22)

For a detailed description of clustering techniques, see, for example, [61].
The definition of the best number of clusters, which is a fundamental problem in unsupervised

classification, is implemented as a user-defined parameter. Additionally, cluster validity measures can
be applied to identify the number of clusters which “best” represents the intrinsic grouping of the
data [62]. The silhouette width [63], which is computed as the average silhouette value over all data
samples, seems to be a suitable measure for biochemical applications. The silhouette value, S, for an
individual data sample, i, is defined as:

S(i) =
bi − ai

max(bi, ai)
(23)

where ai denotes the average distance between i and all the data samples in the same cluster and bi

denotes the average distance between i and all data samples in the nearest other cluster. In contrast to
MCT-sets, subnetworks based on t-clusters can overlap.

MCT-sets and t-clusters have been applied to metabolic systems, but also to signal transduction
pathways [57] and gene regulatory networks [64]. An interesting biological interpretation is that the
reactions of an MCT-set take place always together, i.e., the expression behavior of the participating
genes should be similar.

ACoM (Aggregation around Common Motif) [65]: Starting with a common motif defined as the set
of transitions that belong to all TI as a seed, it will be extended according to specific rules. This seed
motif is of determined length and is successively extended, until a certain threshold is reached. Similar
to t-clusters, overlapping aggregations of common motifs were defined.

Elementary Flux Patterns [66]: The concept of elementary flux patterns is similar to EM analysis.
It explicitly takes into account possible steady-state fluxes through a genome-scale metabolic network
when analyzing pathways in a subsystem. Thus, many EM can be computed in reasonable time, although
not the complete set of all EM or TI. The concept of elementary flux patterns allows for the application
of many EM-based tools to genome-scale metabolic networks.
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5.1.2. A Parikh Vector-Based Method

Enzyme subsets (ES) [67]: Enzyme subsets are enzymes that always operate together in fixed flux
distributions in all steady states of the system. In the context of Metabolic Control Analysis, groups of
enzymes were introduced as monofunctional units or super-enzymes [68,69]. In monofunctional units,
all Parikh entries of the TI, i.e., the ratios of (nonzero) frequencies of the reactions, have to be identical.
This requirement represents a restrictive criterion for the definition of functional modules.

5.2. Communities As Non-Steady-State Modules

Communities play a prominent role in a broad range of scientific fields, including, e.g., social
science, economics, computer science, engineering, politics, and biology. Examples of communities are
friends in a school class, readers of books sharing similar interests, electronic components to be placed
together on a layout of a solid-state circuit board, co-authors of scientific articles, interacting proteins
or words with similar associations. For an excellent review, we refer to the work of Fortunato [13].
Communities are intuitively understood as a group of members of a network. The members should have
many connections within the community and only a few connections to vertices outside the community.
Interrelations inside the communities should be dense and between the communities, sparse. The well
accepted quality criterion, called Q-modularity, for a partition into communities is defined by:

Q =
1

2m

∑
ij

(Aij − Pij) δ(Ci, Cj) (24)

for a unipartite network with m unweighted undirected edges and communities, C [12]. The formula
sums the entries of the adjacency matrix, Aij , over all pairs of vertices, i, j, in the same community. The
Kronecker delta, δ(Ci, Cj), becomes one, if both vertices, i and j, are in the same community and zero,
otherwise. The summation over Aij gives the number of edges inside of all communities and a number
that cannot exceed the total number of edges times two. The pre-factor, 1/(2m), guarantees a value
which is equal to or less than one. Each entry, Aij , is reduced by a probability, Pij , to find the edge,
(i, j), by chance in an appropriately chosen statistical null model. A random network with identical
distribution of the vertex degree leads to a simple sum over nc modules:

Q =
nc∑
c=1

[
lc
m
−
(
dc
2m

)2
]

(25)

where lc is the number of edges in the module, c, and dc is the total sum of the vertex degrees in the
module, c. This formula for the Q-modularity is not directly applicable to metabolic networks because
metabolic networks are bipartite graphs with directed edges and edge weights. An easy way to apply
the formula above would be to transform a metabolic network into a unipartite network with undirected
and unweighted edges. This can be done in different ways, but a loss of crucial information (e.g., the
direction of flow of metabolites) cannot be avoided.

5.2.1. Q-Modularity

A partition of a PN is given by disjoint modules, Ci, with i = 1, 2, . . . , nc. The vertices of
a module can be transitions and/or places. An appropriate formula for Q-modularity of metabolic
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networks has to consider the direction of edges within modules and between modules in a bipartite
metabolic network [70]. Note that, to find modules for which the value of Q reaches its maximum is
an NP-hard problem [13]. We apply a genetic algorithm to obtain an optimized structure of modules for
metabolic networks. The value of the Q-modularity increases from generation to generation and reaches
a maximum after a sufficient number of steps. Figure 5 shows an application of this algorithm to the
network in Figure 1b.

Figure 5. The structure of modules optimized using a genetic algorithm. Each colored
subnet represents a community: the red subnet describes the sucrose uptake and cleavage by
invertase; the green subnet covers all reactions, where ADP and ATP are participating; the
blue subnet describes the only reversible reaction in the system, and the yellow one stands
for the starch production.

6. Application to Network Reduction and Verification

We have already discussed the complexity class of various methods for analyzing qualitative
properties of metabolic networks. The search for the best possible partition in modules is an NP-hard
task, and the CTI question is EXPSPACE-hard. For example, the rather medium-sized metabolic network
of Saccharomyces cerevisiae with 63 metabolites and 117 reactions considered in Jevremovic et al. [42]
has about 50 million TI. Keeping in mind this huge number of invariants and the extensive computational
effort required to compute them, it seems to be hopeless to apply an invariant analysis to metabolic
networks of thousands of reactions as published in current databases [71]. The computational effort may
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explode with the increasing number of network components. This explosion problem is a well-known
drawback in practical computations. However, it is instructive to see how the explosion problem can be
circumvented for networks using special networks properties: metabolic networks are usually expected
to be scale-free; reaction chains appear often; there are super-hubs of metabolites playing an essential
role for most reactions (e.g.,ATP ); many reactions are reversible and most likely have a small number of
one or two input metabolites. Such properties make metabolic networks special and well-distinguishable
from random networks or technical networks.

It may, for example, be possible to reduce the computational effort to answer the CTI question by
transforming a network into a smaller one. Thus, network reduction enables insights into coarse-grained
structural properties of the network [19–22,72]. Useful network reduction techniques for the CTI

question are transformations of networks that preserve the CTI property. These CTI-conservative
reduction techniques are favorable to decide the CTI question for large networks. For most biological
networks, a significant reduction of the computational complexity is possible. A typical kind of a
reduction step is inspired by MCT-sets [57] or enzyme subsets [67] (see Section 5.1). The basic idea
is that chains of reaction can be summarized to one reaction if they consist of common transition pairs
(CTP). A CTP is a local structure of a place that has exactly one pre-transition and one post-transition.
Intuitively, the pre-transition produces tokens on a place that can be removed by the post-transition only.
Another local structure useful in this context is the invariant transition pair (ITP). An ITP is a reversible
reaction, consisting of a forward and backward reaction. Figure 6 depicts an example for network
reduction. For a detailed definition and discussion, we refer to [46].

The starting point for the analysis of a new constructed model should always be the theoretical
verification of the model. Standard approaches are based on the condition that the model should have the
ability to establish an equilibrium with the environment, i.e., external resources have to be supplied by
the environment, and accumulating metabolites have to be discharged. We may find dynamic properties
of a model that contradict such a steady-state behavior of the system. An iterative process of verification
and remodeling is necessary to improve the model and to correct fundamental errors. Thus, laborious
computations based on the mass action kinetics or stochastic simulation of a not validated and, possibly,
erroneous model can be avoided.

Metabolic networks are commonly described in terms of mass action kinetics, using kinetic
parameters such as concentrations of the metabolites, reaction constants and rates. The steady-state
behavior of the model may, in principle, be evaluated by applying bifurcation theory, local stability
analysis and the theory of dynamical systems [74,75]. However, the nonlinear character and the high
number of resulting equations hinder such an approach for most metabolic reaction systems, besides the
fact that the kinetic parameters in most cases are unknown. Moreover, such a point of view of metabolism
is well-satisfied only for well-mixed systems of large spatial dimension. Biological systems, for example,
a cell or mitochondrion, are characterized by a complex spatial organization in a small volume. The
assumption of well-mixed concentrations of freely diffusing proteins, complexes and small metabolites
that react by mass action kinetics inside of a large macroscopic volume is obviously not always met
for such systems. Even for small metabolites, the functional role of gradients of concentrations and
non-diffusive transport processes (e.g., see the electron transport chain in mitochondria) hamper the
application of mass action kinetics. The number of enzymes and metabolites are discrete, countable and
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not even nearly on the order of the Avogadro constant, NA = 6.02214× 1023. A theoretical description
in terms of probability functions and solutions of the stochastic master equation would be more realistic
to specify the fluctuation of species in the system [76,77]. Even at the steady state, the numbers of
molecules are not constant, but fluctuate around average values, where the average number of molecules
of a species depends on its chemical concentrations.

Figure 6. Reduced network of a part of the central carbon metabolism in young potato tubers
(Solanum tuberosum) of Figure 1b. The original network, consisting of eight metabolites and
nine reactions, is reduced by four common transition pairs (CTP) and one invariant transition
pair (ITP). The three reactions of the reduced network represent the concerted action
of several reactions of the original system. The places, glucose-6-P and fructose-6-P ,
lump together the metabolites, glucose-6 phosphate and fructose-6 phosphate. The reduced
network is CTI and has only one TI. The frequencies of the individual reactions in the
invariant are given by the numbers in the red colored rectangles. Note that the two minimal
invariants of the original network (compare Section 4.4) can be constructed by an appropriate
extension procedure [46]. The picture was generated using MONALISA [73].

7. Summary and Conclusions

The work aims to give an overview about important methods in both connectivity-based, as well
as steady-state-based methods. In this paper, we report two types of approaches for functional
module detection: those that are based on the steady-state assumption and those that are based on
graph-theoretical methods without a steady-state consideration. The first one considers a bipartite graph
representation of metabolic networks, whereas the second one works on unipartite graphs. For the first
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case, we describe the computation of t-invariants (EM), which can be further decomposed by several
approaches into disjunctive or overlapping subnetworks.

We introduce Petri nets as a widely used and suitable formalism to model systems with concurrent
processes. In the context of PN, we define the system’s invariants, which give us insight into the
dynamic behavior of the system without any kinetic knowledge. To illustrate the idea, we provide a
detailed example for the computation of t-invariants (EM) using the Fourier-Motzkin method. From the
geometric point of view, t-invariants are equivalent to the extreme rays of a convex cone. We consider the
CTI question, which is important to verify a biochemical model. Using the proof by Lipton, we show that
this question corresponds to the reachability problem for vector addition systems and is EXPSPACE-hard.

To consider connectivity-based methods, we define communities. We introduce the Q-modularity
measure to verify the partitioning by these algorithms. In addition, we illustrate the methods described,
using a small metabolic network, and discuss the development of new methods for the structural analysis
of metabolic systems.

Network reduction plays an important role, in particular, in handling genome-scale networks. We
explain how common transition pairs (CTP) and invariant transition pairs (ITP) enable us to compute
t-invariants of large networks, even if we will not get a minimal set of t-invariants. Finally, we shortly
discuss network verification with respect to kinetic analysis techniques.
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