278 research outputs found

    Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

    Get PDF
    For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from unpredictable thermal events, a potential side effect can be an increased processor exposure to soft errors. To address this issue, a flexible fault prevention and recovery mechanism has been developed to selectively enable a small amount of per-core dual modular redundancy (DMR) in response to increased vulnerability, as measured by the processor architectural vulnerability factor (AVF). Our new algorithm for DMR deployment aims to provide a stable effective soft error rate (SER) by using DMR in response to DVFS caused by thermal events. The algorithm is implemented in real-time on the multicore using MNoC and controller which evaluates thermal information and multicore performance statistics in addition to error information. DVFS experiments with a multicore simulator using standard benchmarks show an average 6% improvement in overall power consumption and a stable SER by using selective DMR versus continuous DMR deployment

    Putting checkpoints to work in thread level speculative execution

    Get PDF
    With the advent of Chip Multi Processors (CMPs), improving performance relies on the programmers/compilers to expose thread level parallelism to the underlying hardware. Unfortunately, this is a difficult and error-prone process for the programmers, while state of the art compiler techniques are unable to provide significant benefits for many classes of applications. An interesting alternative is offered by systems that support Thread Level Speculation (TLS), which relieve the programmer and compiler from checking for thread dependencies and instead use the hardware to enforce them. Unfortunately, data misspeculation results in a high cost since all the intermediate results have to be discarded and threads have to roll back to the beginning of the speculative task. For this reason intermediate checkpointing of the state of the TLS threads has been proposed. When the violation does occur, we now have to roll back to a checkpoint before the violating instruction and not to the start of the task. However, previous work omits study of the microarchitectural details and implementation issues that are essential for effective checkpointing. Further, checkpoints have only been proposed and evaluated for a narrow class of benchmarks. This thesis studies checkpoints on a state of the art TLS system running a variety of benchmarks. The mechanisms required for checkpointing and the costs associated are described. Hardware modifications required for making checkpointed execution efficient in time and power are proposed and evaluated. Further, the need for accurately identifying suitable points for placing checkpoints is established. Various techniques for identifying these points are analysed in terms of both effectiveness and viability. This includes an extensive evaluation of data dependence prediction techniques. The results show that checkpointing thread level speculative execution results in consistent power savings, and for many benchmarks leads to speedups as well

    Architectural support for secure and survivable embedded software

    Get PDF
    Attacks against vulnerable software have become a serious problem for industry and users alike. There have been many techniques proposed to combat these attacks which range from compiler modifications to additional architectural features. Most of these techniques focus on attack detection, while ignoring the problem of how to gracefully recover from such attacks. In this thesis we propose an architectural approach to attack detection and recovery which we call rollback and huddle. In our approach, a lightweight attack-detection module monitors a program\u27s execution as its state is continuously checkpointed. In the case of an attack, the program state is rolled back to a time before the attack occurred and an additional HW/SW module is loaded to gain extra insight into the attack and possibly repair the original vulnerability. Our approach is based on the observation that the vast majority of a program\u27s execution can be trusted. Therefore, we aim to minimize the performance overhead during normal execution. Once an attack has been detected, the system is put into a high alert mode where a larger performance overhead is tolerated to make use of more complex techniques and avoid system down-time. We introduce simple hardware modules that work alongside a standard computer architecture, and aid in attack detection, checkpoint creation, and attack recovery. Our experimental results show that this approach can be achieved with minimal run-time overhead and resource utilization

    An Efficient Cell List Implementation for Monte Carlo Simulation on GPUs

    Full text link
    Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improvements often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose a novel cell list algorithm that better utilizes its parallel resources. Our goal is an efficient GPU implementation of large-scale Monte Carlo simulations for the grand canonical ensemble. This is a particularly challenging application because there is inherently less computation and parallelism than in similar applications with molecular dynamics. Consistent with the results of prior researchers, our simulation results show traditional cell list implementations for Monte Carlo simulations of molecular systems offer effectively no performance improvement for small systems [5, 14], even when porting to the GPU. However for larger systems, the cell list implementation offers significant gains in performance. Furthermore, our novel cell list approach results in better performance for all problem sizes when compared with other GPU implementations with or without cell lists.Comment: 30 page

    Recoverable Distributed Shared Memory Under Sequential and Relaxed Consistency

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryOffice of Naval Research / N00014-90-J-1270 and N00014-91-J-1283National Aeronautics and Space Administration / NASA NAG 1-61

    Asynchronous Validity Resolution in Sequentially Consistent Shared Virtual Memory

    Get PDF
    Shared Virtual Memory (SVM) is an effort to provide a mechanism for a distributed system, such as a cluster, to execute shared memory parallel programs. Unfortunately, SVM has performance problems due to its underlying distributed architecture. Recent developments have increased performance of SVM by reducing communication. Unfortunately this performance gain was only possible by increasing programming complexity and by restricting the types of programs allowed to execute in the system. Validity resolution is the process of resolving the validity of a memory object such as a page. Current SVM systems use synchronous or deferred validity resolution techniques in which user processing is blocked during the validity resolution process. This is the case even when resolving validity of false shared variables. False-sharing occurs when two or more processes access unrelated variables stored within the same shared block of memory and at least one of the processes is writing. False sharing unnecessarily reduces overall performance of SVM systems?because user processing is blocked during validity resolution although no actual data dependencies exist. This thesis presents Asynchronous Validity Resolution (AVR), a new approach to SVM which reduces the performance losses associated with false sharing while maintaining the ease of programming found with regular shared memory parallel programming methodology. Asynchronous validity resolution allows concurrent user process execution and data validity resolution. AVR is evaluated by com-paring performance of an application suite using both an AVR sequentially con-sistent SVM system and a traditional sequentially consistent (SC) SVM system. The results show that AVR can increase performance over traditional sequentially consistent SVM for programs which exhibit false sharing. Although AVR outperforms regular SC by as much as 26%, performance of AVR is dependent on the number of false-sharing vs. true-sharing accesses, the number of pages in the program’s working set, the amount of user computation that completes per page request, and the internodal round-trip message time in the system. Overall, the results show that AVR could be an important member of the arsenal of tools available to parallel programmers

    Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems

    Get PDF
    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR

    Mitosis based speculative multithreaded architectures

    Get PDF
    In the last decade, industry made a right-hand turn and shifted towards multi-core processor designs, also known as Chip-Multi-Processors (CMPs), in order to provide further performance improvements under a reasonable power budget, design complexity, and validation cost. Over the years, several processor vendors have come out with multi-core chips in their product lines and they have become mainstream, with the number of cores increasing in each processor generation. Multi-core processors improve the performance of applications by exploiting Thread Level Parallelism (TLP) while the Instruction Level Parallelism (ILP) exploited by each individual core is limited. These architectures are very efficient when multiple threads are available for execution. However, single-thread sections of code (single-thread applications and serial sections of parallel applications) pose important constraints on the benefits achieved by parallel execution, as pointed out by Amdahl’s law. Parallel programming, even with the help of recently proposed techniques like transactional memory, has proven to be a very challenging task. On the other hand, automatically partitioning applications into threads may be a straightforward task in regular applications, but becomes much harder for irregular programs, where compilers usually fail to discover sufficient TLP. In this scenario, two main directions have been followed in the research community to take benefit of multi-core platforms: Speculative Multithreading (SpMT) and Non-Speculative Clustered architectures. The former splits a sequential application into speculative threads, while the later partitions the instructions among the cores based on data-dependences but avoid large degree of speculation. Despite the large amount of research on both these approaches, the proposed techniques so far have shown marginal performance improvements. In this thesis we propose novel schemes to speed-up sequential or lightly threaded applications in multi-core processors that effectively address the main unresolved challenges of previous approaches. In particular, we propose a SpMT architecture, called Mitosis, that leverages a powerful software value prediction technique to manage inter-thread dependences, based on pre-computation slices (p-slices). Thanks to the accuracy and low cost of this technique, Mitosis is able to effectively parallelize applications even in the presence of frequent dependences among threads. We also propose a novel architecture, called Anaphase, that combines the best of SpMT schemes and clustered architectures. Anaphase effectively exploits ILP, TLP and Memory Level Parallelism (MLP), thanks to its unique finegrain thread decomposition algorithm that adapts to the available parallelism in the application

    Mitosis based speculative multithreaded architectures

    Get PDF
    In the last decade, industry made a right-hand turn and shifted towards multi-core processor designs, also known as Chip-Multi-Processors (CMPs), in order to provide further performance improvements under a reasonable power budget, design complexity, and validation cost. Over the years, several processor vendors have come out with multi-core chips in their product lines and they have become mainstream, with the number of cores increasing in each processor generation. Multi-core processors improve the performance of applications by exploiting Thread Level Parallelism (TLP) while the Instruction Level Parallelism (ILP) exploited by each individual core is limited. These architectures are very efficient when multiple threads are available for execution. However, single-thread sections of code (single-thread applications and serial sections of parallel applications) pose important constraints on the benefits achieved by parallel execution, as pointed out by Amdahl’s law. Parallel programming, even with the help of recently proposed techniques like transactional memory, has proven to be a very challenging task. On the other hand, automatically partitioning applications into threads may be a straightforward task in regular applications, but becomes much harder for irregular programs, where compilers usually fail to discover sufficient TLP. In this scenario, two main directions have been followed in the research community to take benefit of multi-core platforms: Speculative Multithreading (SpMT) and Non-Speculative Clustered architectures. The former splits a sequential application into speculative threads, while the later partitions the instructions among the cores based on data-dependences but avoid large degree of speculation. Despite the large amount of research on both these approaches, the proposed techniques so far have shown marginal performance improvements. In this thesis we propose novel schemes to speed-up sequential or lightly threaded applications in multi-core processors that effectively address the main unresolved challenges of previous approaches. In particular, we propose a SpMT architecture, called Mitosis, that leverages a powerful software value prediction technique to manage inter-thread dependences, based on pre-computation slices (p-slices). Thanks to the accuracy and low cost of this technique, Mitosis is able to effectively parallelize applications even in the presence of frequent dependences among threads. We also propose a novel architecture, called Anaphase, that combines the best of SpMT schemes and clustered architectures. Anaphase effectively exploits ILP, TLP and Memory Level Parallelism (MLP), thanks to its unique finegrain thread decomposition algorithm that adapts to the available parallelism in the application.Postprint (published version
    • …
    corecore