
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2010

Approaches to multiprocessor error recovery using
an on-chip interconnect subsystem
Ramakrishna P. Vadlamani
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Vadlamani, Ramakrishna P., "Approaches to multiprocessor error recovery using an on-chip interconnect subsystem" (2010). Masters
Theses 1911 - February 2014. 380.
Retrieved from https://scholarworks.umass.edu/theses/380

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13599612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F380&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Ftheses%2F380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/380?utm_source=scholarworks.umass.edu%2Ftheses%2F380&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

APPROACHES TO MULTIPROCESSOR ERROR RECOVERY USING AN ON-

CHIP INTERCONNECT SUBSYSTEM

A Thesis Presented

by

RAMAKRISHNA VADLAMANI

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2010

ELECTRICAL AND COMPUTER ENGINEERING

© Copyright by Ramakrishna Vadlamani 2010

All Rights Reserved

APPROACHES TO MULTIPROCESSOR ERROR RECOVERY USING AN ON-

CHIP INTERCONNECT SUBSYSTEM

A Thesis Presented

by

RAMAKRISHNA VADLAMANI

Approved as to style and content by:

 Russell G. Tessier, Chair

 Wayne P. Burleson, Member

 Sandip Kundu, Member

__

C. V. Hollot, Department Head

Electrical & Computer Engineering

 iv

ACKNOWLEDGEMENTS

I am extremely indebted to my parents, my grandparents and my brother for

earnestly encouraging me to pursue higher studies and believing in my capabilities,

without which I may not have been here today.

I would like to thank my advisor, Prof. Russell Tessier and Prof. Wayne

Burleson for giving me an opportunity to work in their research group and agreeing to

fund me right from day one. Their unconditional guidance and critical reviews on my

work, throughout my stay here, has played a significant role in the successful

completion on my thesis and related publications. My special thanks to Prof. Sandip

Kundu for agreeing to be on my committee and providing me with some initial insights

into the implementation of my thesis work.

I would like to acknowledge the help and support from my lab mates, Jia,

Deepak, Sailaja and Abhishek, with whom I have had endless coffee-time discussions

and brainstorming sessions. Having teamed up with each of them at various times

during my work in the group, I have really enjoyed their company and admire their

illustrative work ethics.

I would like to make a special mention of the Semiconductor Research

Corporation which funded my thesis work. I am also grateful to my industry liaisons for

providing their valuable and timely feedback.

Lastly, I would like to acknowledge that KEB302 has had a profound impact on

my life and I hope my learnings from here will bear fruits in the future.

 v

ABSTRACT

APPROACHES TO MULTIPROCESSOR ERROR RECOVERY USING AN ON-

CHIP INTERCONNECT SUBSYSTEM

RAMAKRISHNA VADLAMANI, B.E., V.J.T.I. UNIVERSITY OF MUMBAI

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

For future multicores, a dedicated interconnect subsystem for on-chip monitors was

found to be highly beneficial in terms of scalability, performance and area. In this

thesis, such a monitor network (MNoC) is used for multicores to support selective error

identification and recovery and maintain target chip reliability in the context of

dynamic voltage and frequency scaling (DVFS). A selective shared memory

multiprocessor recovery is performed using MNoC in which, when an error is detected,

only the group of processors sharing an application with the affected processors are

recovered. Although the use of DVFS in contemporary multicores provides significant

protection from unpredictable thermal events, a potential side effect can be an increased

processor exposure to soft errors. To address this issue, a flexible fault prevention and

recovery mechanism has been developed to selectively enable a small amount of per-

core dual modular redundancy (DMR) in response to increased vulnerability, as

measured by the processor architectural vulnerability factor (AVF). Our new algorithm

for DMR deployment aims to provide a stable effective soft error rate (SER) by using

DMR in response to DVFS caused by thermal events. The algorithm is implemented in

real-time on the multicore using MNoC and controller which evaluates thermal

information and multicore performance statistics in addition to error information.

 vi

DVFS experiments with a multicore simulator using standard benchmarks show an

average 6% improvement in overall power consumption and a stable SER by using

selective DMR versus continuous DMR deployment.

 vii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF TABLES .. ix

LIST OF FIGURES ... 1

CHAPTER

1. INTRODUCTION... 3

2. BACKGROUND AND RELATED WORK ... 7

2.1. Errors and their detection techniques .. 7

2.1.1. Errors... 7

2.1.2. Error detection techniques .. 8

2.1.3. Error containment ... 8

2.2. Checkpointing and Rollback .. 9

2.2.1. Checkpoint .. 9

2.2.2. Error Recovery .. 10

2.2.2.1. Forward-error recovery .. 10

2.2.2.2. Backwards error recovery .. 10

2.2.3. Checkpointing and Rollback ... 11

2.3. Architectural Vulnerability Factor ... 12

2.4. Dynamic Voltage and Frequency Scaling and AVF 17

2.5. AVF-aware Dual Modular Redundancy .. 17

2.6. Inter-monitor interconnection .. 18

3. MNOC-BASED SHARED MEMORY MULTIPROCESSOR ROLLBACK

RECOVERY SYSTEM .. 20

3.1. Introduction .. 20

3.1.1. MNoC Perspective .. 21

3.2. Typical Interprocessor Communication... 21

3.3. MNoC Based Rollback Recovery Scheme .. 22

3.3.1. Architecture Description ... 22

3.3.1.1. Duplicate pipeline .. 24

3.3.1.2. Error detection comparators .. 24

3.3.1.3. Error Monitor ... 25

3.3.1.4. Error Data .. 26

 viii

3.3.1.5. Incorporating MNoC .. 26

3.3.2. Checkpoint Process ... 27

3.3.3. Rollback Process ... 27

3.3.4. Error detection latency .. 29

3.3.5. MNoC deliberation ... 30

3.4. Experiments and results ... 30

3.4.1. Simulation model .. 31

3.4.2. MEP software flow for rollback recovery 32

3.4.3. Impact of variation in MNoC delay on recovery

performance .. 33

3.4.4. Impact of increasing error rate on recovery performance............. 35

4. MULTICORE SOFT ERROR RATE STABILIZATION USING ADAPTIVE DUAL

MODULAR REDUNDANCY .. 38

4.1. Introduction .. 38

4.2. Adaptive AVF Calculation and Use for DMR ... 40

4.3. Disabling DMR Components ... 41

4.4. AVF Computation in a Multicore Environment .. 42

4.5. Reliability-aware AVF threshold computation .. 45

4.6. Example AVF threshold and overhead computation 46

4.7. Experimental Approach ... 47

4.7.1. Monitor Network on Chip ... 47

4.7.2. AVF-aware DMR throttling .. 49

4.7.3. MNoC Performance and Interface to AVF monitor 50

4.7.4. Experimental Procedure and Results .. 51

5. CONCLUSIONS AND FUTURE WORK .. 55

BIBLIOGRAPHY.. 57

 ix

LIST OF TABLES

Table Page

1. Experimental Setup ... 31

2. System Setup ... 52

3. Power benefit and overhead results for 8 and 16 core system 53

defense-v7.doc#_Toc244331536
defense-v7.doc#_Toc244331537

 1

LIST OF FIGURES

 Figure Page

1. Detailed view of MNoC for multicores .. 5

2. Illustrating error containment. (a) Core containment, (b) Cache

Containment, (c) Memory containment. Adapted from [19] 9

3. Time varying metrics and AVF behavior. The AVF values are along the

Y-axis and time in cycles along the X-axis .. 13

4. Classification of possible outcomes of a faulty bit in a microprocessor.

SDC=silent data corruption, DUE=detected unrecoverable error. The

figure is taken from [24] ... 14

5. Shared memory multiprocessor system .. 20

6. Typical inter-processor shared memory communication and a rollback

scenario ... 22

7. Error recovery scheme using MNoC .. 23

8. Error detection system using MNoC ... 25

9. Illustrating the checkpoint process ... 28

10. A closer look at the error detection latency on timeline 29

11. Impact of MNoC delay on the recovery performance as compared to

non-MNoC case having a zero latency interconnect .. 34

12. Performance degradation due to MNoC delay and rollback overhead 35

13. Impact of increasing error rate on recovery performance for a multicore

system compared to non-MNoC case having zero latency 36

14. Impact of increasing error rate on recovery performance due to the

MNoC latency and rollback overhead .. 37

15. Conceptualization of collaboration between AVF, voltage and frequency

information from across multicores to dynamically arrive at an AVF

threshold value. Refer eq. (1) and (2) as well. .. 39

 2

16. AVF monitor for one pipeline ... 44

17. An 8-core system for AVF-aware DMR throttling ... 48

18. Latency vs. injection rate per router for a 16 router system. Results were

generated using a modified Popnet simulator ... 50

19. Five AVF traces (Y axis) for an instruction queue across 100 consecutive

sampling intervals (X axis) for the LU benchmark .. 54

 3

CHAPTER 1

INTRODUCTION

Recent high-end single and multiprocessors from Intel (Montecito), AMD

(Opteron) and IBM (Cell) use extensive on-chip monitors for run-time estimates of

temperature, power and performance. Specific uses of monitors to determine system

critical soft-error failures, wear-out detection and security issues require fast

connections on a global scale. These connections can be supported by a separate low-

overhead interconnect, called monitor network-on-chip (MNoC) [1], that can be

coupled to the main multicore architecture (Figure 1). Although simplified as compared

to conventional network-on-chip interconnect, this new interconnect technique supports

irregular routing topologies, priority-based data transfer and customized monitor

interfacing that suit most on-chip monitoring applications. Collected monitor data

values are manipulated by one or more processors categorized as monitor executive

processors (MEPs) and the results are used to control an SoC’s run-time operation. For

an eight core system, the area and power overhead for the interconnection of 192

thermal monitors is less than 0.5% [1].

As the number of processors in a multiprocessor system increases, system

reliability becomes of great concern. Numerous error detection and error recovery

techniques (for fault tolerance) have been devised to assess processor errors and restore

the correct multiprocessor system operation [2][3][4][5][6][7]. These approaches

typically contain a fault control architecture consisting of an error monitor or an error

detection unit, a controller for ensuring proper supervision of the fault tolerance

 4

algorithms, restoration circuitry and inter-module interconnect. Common monitors

include soft-error detectors, delay monitors, thermal monitors, and processor activity

monitors. Typically, the interconnect resources used to connect monitors and

controllers are simple point-to-point connections or buses. As system complexity

increases, current monitor interconnections are likely to become increasingly unwieldy,

encouraging the use of MNoC. Towards this end, initially this work examines the

feasibility of using MNoC for supporting multiprocessor error detection and recovery. It

was determined that the increasing MNoC delays or the error data injection rate for up

to 32 cores lead to minimal loss of overall multiprocessor recovery performance. This

motivated us to extend the use of MNoC for collaborative on-chip monitoring

applications using thermal and performance monitors in addition to the error monitors.

The fault tolerant approaches based on redundancy including component dual

modular redundancy (DMR) and redundant multithreading [4] may not be appropriate

in all cases as they incur significant performance and power overhead and often require

significant operating system support. A localized, low-overhead error reduction

approach which can be selectively enabled provides a possible alternative.

In general, memory-based components in processor cores are vulnerable to

single event upsets due to radiation. Although large memory structures are often

protected by error checking and correcting circuits, smaller components, such as

instruction queues and retirement order buffers, have less protection. Fortunately, not

every bit flip in these components leads to an observable system error. A component's

architectural vulnerability factor (AVF) states the probability that a fault generated in a

processor structure will result in an error in the program output [8]. The AVF for

 5

various processor structures has been shown to vary widely both across and within

applications [9]. Previous studies [9][10][11] have described the efficient run-time

estimation and use of AVF for single core processors in an effort to promote stable

processor failure in time (FIT) rates. However, the growth of multicore use and frequent

per-core voltage and frequency scaling necessitates the reexamination of AVF

calculation and use.

MEP

R R

R

RR

M

M

M

X-Bar

Input Buffer
Port

Control

D

M

D

M

T

Interface

MEP – Monitor Executive

Processor

R – Router

M – Monitor

D – Data

T – Timer module

Figure 1: Detailed view of MNoC for multicores

Dynamic voltage and frequency scaling (DVFS) is commonly used in multicores

to reduce hotspot temperatures and system power consumption. Unfortunately, voltage

decreases and frequency increases can adversely affect system reliability [12][13],

necessitating a fast system response to maintain a stable multicore soft error rate. One

 6

approach to maintaining system reliability is to enable a small amount of redundant

resources for critical system components in the presence of increased soft error risk.

This risk is determined by comparing the instantaneous AVF for the components

following DVFS against a predetermined threshold. If the threshold is passed,

redundant components are enabled to facilitate DMR actions.

In this final experiment the power effects of using AVF-enabled DMR in a

multicore environment implementing DVFS are explored. AVF values for critical

resources are continually assessed throughout processing but special consideration is

given following thermally-induced voltage and frequency scaling. Thermal and AVF

monitor data are transported to a centralized controller via MNoC. The controller

collaboratively uses the data to perform DVFS on affected cores and to enable/disable

redundant resources. Our approach is designed to scale to tens of cores, enabling

flexible fault coverage and performance and power control enhancement. A multicore

architectural simulator and an interconnect simulator are used to assess the power and

performance benefit of this approach for 8 and 16 processor multicores. An overall

power benefit of 6% on average is achieved versus the continual use of redundant

resources.

This thesis is organized as follows. Chapter 2 provides a detailed background

related to processor error recovery, AVF, DVFS and monitor interconnects. The

feasibility experiment for use of MNoC for a shared memory multiprocessor system is

discussed in chapter 3 with results. Our collaborative monitoring approach, along with

the algorithms and results are described in chapter 4. Chapter 5 concludes the thesis

along with some discussion on future work.

 7

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Errors and their detection techniques

2.1.1. Errors

A microprocessor system is susceptible to numerous types of transient and

permanent faults. Transient faults include soft errors due to alpha particles, signal cross

talk, and supply voltage fluctuations. Permanent faults include errors due to

electromigration (wearouts) and manufacturing faults. With respect to reliability, the

International Technology Roadmap for Semiconductors has predicted significant

reliability problems for future systems, which will increase at a pace that has not been

seen in the past [14]. Srinivasan et. al [15] showed a three-fold increase in processor

wear out related faults when scaling from 180nm to 65nm. Similarly, Borkar [16]

estimates a 100-fold increase in transient faults when scaling from 180nm to 16nm,

while Shivakumar et. al [17] predict an even higher nine-orders-of-magnitude increase

in logic circuits’ transient fault rates from 1992 to 2011.

Checkpointing and rollback techniques can be used for both transient and

permanent error recovery. A recently-introduced fine-grained recovery technique [18]

uses rollback to counter permanent errors. A BIST-based error detection technique is

used to test the output of microprocessor components such as ALUs, multipliers, and

decoders. In this approach, damaged units are removed from the microprocessor

datapath. The presence of multiple functional unit instances in the architecture allows

for continued microprocessor operation, albeit at somewhat reduced system speed.

 8

The checkpointing approach described in the next chapter is most appropriate

for soft error recovery. Following recovery, the system re-executes checkpointed

instruction on the same set of components. The availability of these components allows

for continued high performance continuing forward from error recovery. The use of

MNoC to identify and transport error information quickly is vital to rapid system

recovery.

2.1.2. Error detection techniques

Numerous techniques have been developed to quickly identify system errors.

Dual modular redundancy (DMR) uses redundant processor components, such as

processor pipelines, to generate completely redundant streams of results. A result

mismatch indicates an error that must be addressed. A similar software-based approach

uses redundant threads. Two threads can be used to determine the same results on two

different processors. A result mismatch indicates an error. A final approach compares

error detection codes (CRC) for computation. The Fingerprinting [19] approach

compares hashed signatures of the execution history of the processors involved in DMR

to determine an error for a block of computations.

In this work, DMR is used as an error detection technique. Section 3.3 discusses

our use of DMR in error checking.

2.1.3. Error containment

In a multiprocessor system, error checking and recovery can be performed at

various system levels. Often, it is desirable to verify data at a specific level and prevent

faulty values from moving to a higher level. For example, it might be desirable to

contain a data error in an L1 cache rather than having the faulty value propagate to main

 9

memory. The selection of the error containment level determines the amount of

required checkpointing. If containment is performed close to the processor core, the

amount of checkpoint storage is reduced. However, increased error detection may lead

to an increased critical path length [19]. Figure 2 depicts containment at various levels.

The pipeline level error detection technique used for IBM z series [20] systems reduces

the impact of error checking on the critical path by performing computation and data

checking simultaneously. The checkpointing scheme presented in this thesis focuses on

the shared cache and the internal registers of each processor in a multiprocessor system.

Figure 2: Illustrating error containment. (a) Core containment, (b) Cache

Containment, (c) Memory containment. Adapted from [19]

2.2. Checkpointing and Rollback

2.2.1. Checkpoint

For microprocessor systems, checkpoints provide a snapshot of the architectural

system state [21], including register and cache values. Frequently, copies of state values

are stored in a reliable location in case they are needed later for system recovery.

Checkpointing captures all information required to restart microprocessor or

multiprocessor execution from a previous execution point. Usually, checkpointed

information is saved in parity or ECC protected buffers that are error-tolerant. Although

state data can be transferred to buffers immediately following a checkpoint, incremental

 10

checkpointing provides a more measured approach to data transfer by slowly

transferring changed values to buffers incrementally following a checkpoint. Either

approach to checkpointing allows for the recovery of data which is changed following a

checkpoint. A key challenge in checkpointing is system recovery speed following error

detection. By introducing a low latency path from error detection to checkpoint

rollback, we enhance overall system recovery speed. This approach is especially suited

to real time systems where speedy recovery from a fault is extremely desirable.

2.2.2. Error Recovery

This term suggests system-level error recovery techniques. They are broadly

classified into two categories: forward error recovery and backward error recovery.

2.2.2.1. Forward-error recovery

Forward-error recovery (FER) approaches attempt to identify and correct system

errors through redundancy. For example, triple modular redundancy [2] of critical

system components can be used to identify single faults. As the name suggests, three

copies of each vulnerable component generate three copies of data. Since two of three

functional units will continue to generate results which agree, normal system processing

can continue unchecked simply by polling for the majority. FER systems require no

checkpointing or rollback but suffer from excessive hardware overhead. As a result,

FER is primarily used only in the most extreme operating environments (e.g. space

exploration and military applications).

2.2.2.2. Backwards error recovery

Backwards-error recovery (BER) or rollback recovery typically uses some form

of checkpointing, error detection, and rollback. The rollback process generally involves

 11

restoring system state to a previously saved, correct configuration. Rollback is achieved

by copying previously saved data to its original location in a cache, register file or

memory.

2.2.3. Checkpointing and Rollback

A number of checkpointing and rollback schemes have been developed for a

variety of containment levels [19] for single [21][20] and multiprocessor [2][3][22][23]

systems.

A summary [22] of low overhead checkpointing schemes for backward error

recovery (BER) assesses these techniques. Hardware-based checkpointing and rollback

schemes can be classified using a taxonomy with three main characteristics:

1. Data error containment - This characteristic refers to the error

containment granularity discussed in section 2.4. Any datum that propagates outside a

system level is assumed to be correct.

2. Relative checkpoint location – This characteristic refers to the

hierarchical location of the checkpointed data. Dual storage refers to the case when

checkpoint data is stored in a location that is closely attached to the unit that is

checkpointed. For instance, using a register buffer to checkpoint internal registers

would fall under this category. Leveled storage indicates that checkpoint data is stored

elsewhere in the memory system hierarchy. For instance, cache blocks or registers could

be checkpointed in main memory.

3. Separation of checkpoint and active data – Full separation refers to the

storage of checkpoint data in separate memory locations for dual storage. For example,

register file checkpointing could take place in a separate physical buffer adjacent to the

 12

register file. Partial separation typically involves incremental checkpointing where

active and the checkpointed data are stored at the same buffer [21][3][23].

For a multiprocessor system, cache-level checkpointing and error recovery [3]

can use a recovery buffer implemented alongside an L1 cache and a modified cache

coherency protocol. Process checkpointing includes saving register values and flushing

cache block values that have been modified since the last checkpoint. In general, cache

blocks are not saved to a restore buffer immediately following a checkpoint. As cache

values are modified, the original cache values are slowly migrated to the restore buffer

for storage. A checkpoint counter, Ccount is incremented every checkpoint interval if

multiple checkpoints are maintained. The buffer stores copies of modified cache lines

for each checkpoint. A checkpoint identifier, Cid is associated with each cache block. If

Cid is less than Ccount for a specific cache block, the block will be moved to the buffer if

a write occurs. During rollback, cache blocks in the recovery buffer that are associated

with a specific checkpoint are written back to the cache. The processor internal

registers that were also checkpointed are reloaded and execution is restarted.

Another technique that operates in a similar fashion is SafetyNet [23]. This

approach only maintains a single checkpoint and assumes about 100,000 clock cycles

between checkpoints. Before a checkpoint can be completed, all multiprocessor

operations must be validated as complete and correct. Once this status has been attained

for all shared data values, the checkpoint identifier can be advanced.

2.3. Architectural Vulnerability Factor

As discussed in section 2.1, transient errors, including soft errors, are expected

to be more frequent in future technologies. Current hardware- and software-based

 13

redundancy techniques for implementing error detection assume a 100% probability

that a given fault will manifest itself into an error and hence a failure. However, prior

Figure 3: Time varying metrics and AVF behavior. The AVF values are along

the Y-axis and time in cycles along the X-axis

 14

work has suggested that this is almost never the case [9][11][8] and usually the

vulnerability of the functional units such as the instruction queue, register file, control

logic, etc to soft errors varies widely with workloads and execution time as indicated in

Figure 3[9].

A fault is a defect in a hardware or software component. An error is the

manifestation of a fault resulting in a deviation from the expected results. Hence, a fault

can cause errors but an error may not cause faults. A fault that is masked by virtue of a

program execution flow will not result in an error. Vulnerability factor, as defined in

[8], is the probability that an internal fault in a device during its operation will result in

an external visible error. Failure is caused by errors and is characterized by non-

performance of expected action. A corrected error, however, does not cause failures.

Figure 4: Classification of possible outcomes of a faulty bit in a

microprocessor. SDC=silent data corruption, DUE=detected unrecoverable

error. The figure is taken from [24]

 15

Figure 4 [24] summarizes these concepts and demonstrates their interdependency

clearly.

Mukherjee et. al [8] invented the term architectural vulnerability factor (AVF),

which is a measure of the likelihood that a fault will convert into a visible error.

Gurumurthi et al. [9] and Xiaodong et al. [10] have come up with competing online

techniques for computing the AVF for several processor functional units such as the

load/store queue, register file, control logic, etc. Mukherjee et al. [25] have shown that

for an Itanium2-like processor architecture the AVF for the instruction queue lies

between 14% and 47%, while the AVF for the execution unit lies between 4% and 27%.

Similarly, for an Alpha21164-like architecture the AVF for the pipeline structure has

been found to not exceed 10% [26]. These metrics suggest that affected processor units

can potentially benefit from an AVF-aware redundancy scheme that disables redundant

units during periods of low AVF, thus saving power [8][11][9].

Accurate run-time AVF evaluation has recently been shown to be

computationally feasible [8][9]. Walcott, et al. [9] and Biswas, et al. [11] demonstrated

that the aggregated AVFs of uniprocessor pipeline components can be estimated with

up to a 90% accuracy using a small set of periodically-sampled microarchitectural

parameters. This quantized-AVF (Q-AVF) approach is lightweight since the amount of

processed data is restricted to a small quantum over a restricted sampling interval.

These approaches open up an opportunity to dynamically enable the fault

tolerant redundant infrastructure only when the AVF is above a predefined threshold

during the course of operation of the processor. Gurumurthi et al. perform a thorough

offline simulation-based statistical analysis (involving complex calculations) for

 16

extracting the AVF information from a set of easily-traceable processor performance

metrics and use the results in an online predictor. This approach requires calibration for

different workloads to be able to use it for a variety of real world applications. Xiadong

et al. on the other hand, propose a method of estimating AVF entirely online in which,

artificial errors are introduced in the functional units at a predetermined rate and the

number of instances where a program failure occurred is noted to compute the AVF.

The AVF computation for a structure involves identifying the architecturally

correct execution (ACE) bits (i.e. those that matter or influence the final output of a

program) and un-ACE bits in that structure. Whether a bit is ACE or not depends on

how a user has defined the program output. un-ACE bits are categorized as architectural

and micro-architectural un-ACE bits. Examples of architectural un-ACE bits are the

operand part of a NOP instruction and a prefetch instruction. If an error strikes a

prefetch instruction, it will be ignored leading to a performance loss but it will not

cause an incorrect execution. Micro-architectural un-ACE bits consist of the data and

status bits in an IDLE state, bits in a mis-speculated state or predictor structure, etc.

Thus, AVF computation for a structure (or a processor as a whole) is generally expected

to be expensive and is therefore performed every several million instructions. When the

combined AVF for the entire processor is known to have crossed a predetermined

threshold for the past interval, the pipeline is flushed, redundant units for error

detection are enabled and execution is restarted, so that the processor is protected for

the next interval.

 17

2.4. Dynamic Voltage and Frequency Scaling and AVF

AVF varies with the operating frequency and voltage of a component since it

impacts the utilization of the component [27]. In Soundararajan, et al. [27], this

variation was quantified for DVFS applied to a uniprocessor. More recently, Siddiqua

and Gurumurthi [28] used AVF variation to support redundant multithreading (RMT) in

an effort to reduce soft errors. In the latter two cases, SER levels are considered static

and unaffected by per-core variations in voltage and frequency.

2.5. AVF-aware Dual Modular Redundancy

Error detection for storage components in processor-based systems is often

performed using dual modular redundancy (DMR), in which outputs of duplicate copies

of a component are compared before memory commits are performed [29][30]. DMR

incurs a power consumption penalty and should only be used if a processor component

is likely to incur soft errors. Many storage-based processor pipeline components are

protected without the need for DMR. Register files and caches are generally protected

by ECC/parity-check circuitry. Pipeline latches can use low-overhead error self

detection and correction (i.e. Razor) [31].

Stojanovic et al. [69] came up with an ECC-protected instruction queue

implementation for out-of-order processors, which has a performance overhead of less

than 3% and an area overhead of the order of 10% of the size of the structure. Due to

the small footprint of the additional bits and associated logic for error correction, the

power dissipation is also quite less. Although our work uses DMR based error detection

technique, our reliability stabilization system can work even with the ECC based

 18

approach. Since the power consumption by the ECC-based circuits is a small

percentage of the total chip power, the benefits we see may not be significant.

Additionally, the AVF of a branch predictor is always 0% since a misprediction

due to a predictor soft error strike will not lead to an output error [29]. As a result, as

seen in chapter 4, this work focuses on the DMR protection of specific components

(instruction queue, retirement order buffer, and load store queue) which would

otherwise be unprotected. The detection and rollback circuitry required to restore

processor state following error detection has been discussed in detail in chapter 3 and is

not described again in chapter 4.

2.6. Inter-monitor interconnection

Traditionally bus-based connections and point-to-point connections were

commonly used for on-chip communication on SoC’s. Velusamy et al. interfaced

thermal sensors to a central controller using a bus interface [32]. McGowen et al.

implemented an embedded feedback control system in which, the thermal and voltage

sensors were connected to the analog-to-digital converters of the microcontroller

through point-to-point links [33]. A number of error recovery techniques have been

developed that propagate error data and response information through point-to-point

interconnects. For instance, a recent error recovery system [34] uses clock-skewed flip

flops to detect pipeline errors. Error results are individually sent to a control block that

initiates instruction-retry recovery operations. An alternative approach uses area and

time redundancy to improve the fault tolerance of counters [7]. In this effort, the error

detection and corresponding recovery is also conducted using a point-to-point

interconnect. In an integrated approach [35], an SoC resource manager architecture is

 19

individually connected to performance and thermal monitors. The IBM Power6 monitor

network [36] is composed of eight critical path delay monitors per core that are used for

detecting errors during processor operation. These monitors, along with other on-chip

monitors, are interconnected using a daisy chain bus.

 20

CHAPTER 3

MNOC-BASED SHARED MEMORY MULTIPROCESSOR ROLLBACK

RECOVERY SYSTEM

3.1. Introduction

In general, most multiprocessor systems in use today are based on the shared-

memory programming model. These systems are frequently implemented as chip

multiprocessors (CMPs), symmetric multiprocessors (SMPs), or distributed shared-

memory multiprocessors (DSMs). The application of MNoC to monitors and control

processors for this system represents a challenge.

Figure 5: Shared memory multiprocessor system

Consider the shared memory multiprocessor system shown in Figure 5. For our

experiment, we consider a system of 8 to 128 processing nodes, which could be used in

the following configurations depending on the application under consideration:

1. Single process, multiple threads (one thread per processor)

2. Multiple processes, one thread each

SM

L2

L1

P1

SM

L2

L1

P2

SM

L2

L1

Pn

LEGEND:

SM – Shared Memory

Pn – Processor n

L1 - L1 Cache

L2 - Shared L2 cache

Shared bus

 21

3. A combination of the above two scenarios. For example, 5 cores could be

included in configuration 1 and the rest of the cores could be included in

configuration 2.

4. Multiple processes and multiple threads. This approach will involve context

switches between processes.

3.1.1. MNoC Perspective

Scenario 3 provides an ideal configuration for testing of our monitor network-

on-chip infrastructure. For scenario 3 it would be necessary to have central controller to

decide which nodes need to be rolled back when one node generates an error. A low

latency MNoC provides a path to quickly forward monitor data and assess a rollback

strategy.

3.2. Typical Interprocessor Communication

In this example it is assumed that a single process (P), multi-threaded (T1, T2)

application is running on a system configured under scenario 3. Communication has

been established between threads T1 and T2 (can be extended for more processor

cores). As a result of repeated computation, a data value D is written by T1 and

consumed by T2. Thread T1 informs T2 of the available data value by setting a sync bit.

Soon after T2 reads this data, it clears the sync bit to acknowledge the receipt of the

data. Then T1 puts a new data value at D and the cycle continues.

 22

Figure 6: Typical inter-processor shared memory communication and a rollback

scenario

Assume that D = 1, 2, 3, 4, 5 is written in a sequence and they have been read

and acknowledged by T2 with repeated handshakes through the sync bit (note Figure 6).

It is later discovered that an error was generated while processing data, D=3. At this

point in time T1 is in the process of or has already generated the next data, D=4 since

T2 had acknowledged the data, D=3. Hence, the system needs to roll back to a point

when the memory had data value, D=3, so that T1 can roll back to an instruction that

will set the sync bit and then generate D=4 and T2 can roll back to an instruction that

would attempt to read D=3 from the memory.

In the next few sections we present checkpointing and rollback techniques to

address the above recovery issues and also to highlight the benefits achieved by the use

of MNoC.

3.3. MNoC Based Rollback Recovery Scheme

3.3.1. Architecture Description

Our MNoC-based recovery approach extends previous checkpointing methods

[3][22][23]. The process of taking a checkpoint involves defining the checkpoint

Sync Data,D

 1 1

 0 1

 1 2

 0 2

 1 3

 0 3

 1 4

 0 4

Memory Locations

Value at the

Locations

Writes by T2

Writes by T1

Rollback

Timeline

ERROR

 23

interval and logging modified data in recovery buffers. The rollback process involves

the restoration of logged data and the restart of computation from the saved checkpoint

time. Dual modular redundancy of each processor pipeline is used for error detection;

data mismatches are flagged as errors. Figure 7 provides an overview of the mechanics

of the error recovery scheme.

Figure 7: Error recovery scheme using MNoC

The L1 buffer holds L1 cache values that are overwritten during a checkpoint

interval. In the worst case the buffer would need to be the same size as the cache. If it is

R – Router

MEP – Monitor Executive

 Processor

 – Comparators for

error detection

 L1 Chkpt,

Rollback

Control

P1

Checkpoint

Counter

L2

Shared Memory

Checkpoint Number

Recovery Unit

Chkpt,

Rollback

Control

MEP

Rollback

Signal

R

R

Internal Registers

Shared Bus

Internal Register

Buffer
R

L1

Buffer L1

P2

L1

Buffer

 24

smaller, more frequent checkpoints may be required. The size of the internal register

buffer for each checkpoint is equal to the number of internal registers. A checkpoint

counter guides the checkpointing process. The value of the counter is incremented

automatically every checkpoint interval. The number of simultaneously active

checkpoints will be a research parameter.

The L1 recovery buffer is the main sub-module of the error monitoring system.

If data in the recovery buffer needs to be restored, a rollback control state machine is

used to coordinate the recovery. This unit conducts the checkpointing and rollback

process for each node. Every node houses an error detection system to gather the error

signals and transport them to the central processor, the monitor executive processor

(MEP). Following processing, a rollback response message is generated by the MEP.

Figure 8 illustrates the error detection system in a node.

3.3.1.1. Duplicate pipeline

For each multiprocessor node processor, the processor pipeline is duplicated and

fed with the same instruction sequence as the main pipeline. All accesses to the internal

register file and the L1 cache are compared with those of from the duplicate pipeline

and any error is flagged. The current DMR implementation is a simplified version of

the one used by the IBM G5 processor [20].

3.3.1.2. Error detection comparators

These comparators are situated at the input of the L1 Cache and at the input of

the internal register file for every node in the multiprocessor system. These comparators

detect any data mismatches created by the redundant processor pipelines. As shown in

 25

Figure 8, the comparators operate in parallel with data accesses, outside of the critical

path.

Figure 8: Error detection system using MNoC

3.3.1.3. Error Monitor

This is a lightweight module that is interfaced to an MNoC router. This module

gathers error data and sends out rollback signals to associated recovery units. As shown

in Figure 8, the Error Data Register (EDR) is composed of the following fields:

L1

Cache

To duplicate
Pipeline

Data Bus

Instruction

Pipeline

Instruction Result Bus

C

C

To/From
L2 Cache

R

 Rollback

 Control

Reg
Buffer

Reg
File

From duplicate
Pipeline

Comparator for
error detection

Network Router

 C

R

RECOVERY
 UNIT

R

 MEP

Error Data
Register

Rollback
Signal

Processing Node

Control
Interface

X-bar

ERROR
MONITOR

Interface

Checkpoint

Counter

NODE
ID

L1

Buffer

 26

EDR[1:0] - the error signals from each of the two comparators, EDR[9:2] - the current

checkpoint counter value, EDR[13:10] - the pre-programmed NODE ID of the node.

The EDR is read through a MNoC router and is forwarded to a MEP for further

processing.

NODE ID information is used by the MEP to determine the source of the error

data. The MEP uses this information in conjunction with the assignment of tasks to

processors to coordinate a checkpoint recovery response. Specific processors involved

in the rollback are identified.

3.3.1.4. Error Data

For 16 processors, the EDR will consist of 14 bits of information. This can be

scaled appropriately for up to 128 cores. To protect stored data, it is assumed that the

internal register file, register buffer, L1 cache, L1 buffer, and L2 cache are all protected

by error correction codes (ECC) to correct soft errors in these memory units. This

feature is omitted from Figure 8 for clarity.

3.3.1.5. Incorporating MNoC

The error data generated by each node is stored in their respective error

monitors. This data is transported to the nearest MEP via MNoC so that a rollback

signal can be generated for the appropriate nodes in the multiprocessor system. The

MNoC implementation requires a router at every error monitor as shown in Figure 8.

Due to the critical nature of error detection, a priority channel is allotted for the quick

transport of error data to the MEP. When the MEP receives the error data, the NODE

ID is used to identify affected processors. A rollback message that consists of a rollback

signal and a checkpoint number is then sent to the affected processors.

 27

3.3.2. Checkpoint Process

As shown in Figure 7, checkpointed memory units include the L1 cache and the

internal processor registers. The checkpoint counter stores a checkpoint number (CN)

whose value is incremented automatically every pre-programmed interval that is at least

equal to the error detection latency. Whenever a write access is made to any of the two

memory units, the current checkpoint number (CNi) is tagged to the written data.

However, before the data is written, the checkpoint control checks to determine

whether the previous checkpoint number tagged to the old data at that location is less

than the current checkpoint number. If yes, the old data was modified in the previous

checkpoint interval and should hence be logged in the buffer before new data is written

to the location. After new data is written, its corresponding checkpoint number is

updated to the current value in the checkpoint counter. Figure 9 summarizes this

checkpointing process.

3.3.3. Rollback Process

The recovery unit initiates the rollback process in each node to restart the

execution of the system from a previous safe execution point. As soon as the rollback

signal is received from the MEP, the following actions are performed by the local

controller.

 28

Figure 9: Illustrating the checkpoint process

Rollback Steps for the processor:

a. The recovery buffer freezes its checkpoint state and no pending instructions

are allowed to update.

b. Data corresponding to the checkpoint interval is copied from the L1 buffer

to the L1 cache. The remaining locations in the L1 cache are invalidated.

c. The L1 buffer is reset

d. The saved register state in the recovery buffer is restored

e. The instruction fetch is restarted.

Note that we need to store the checkpointed data for two previous checkpoint

intervals. This is necessary to accommodate a situation where in the error that occurs in

a previous checkpoint interval is detected in the following checkpoint interval. In this

Write

Operation

Checkpoint

Number

(CN)

Data flow

{CN, DATA}

1 1 10

 L1 buffer L1 Cache

2 2 5 A = 5

A

A 1 10

2 2 7 A = 7 A 1 10

3 3 2 A = 2 A 2 7

 29

case, the system must rollback by two checkpoints instead of one, since the last

checkpoint was taken on an error data which is not desirable for restoration of the

system state. Hence, in case of an error we always rollback the system by two

checkpoints instead of one.

The MEP would need to send the checkpoint number to which each

participating processor needs to rollback to ensure that every processor is aware of it.

This may not seem necessary since the checkpoints are synchronized, however, the

rollback message from the MEP to each processor may not reach at the same time due

to unpredictable network delays. In such a situation the processor to which the rollback

message reaches last might have just hopped a checkpoint interval. In this case that

processor will not know to which past checkpoint number it should rollback.

Figure 10: A closer look at the error detection latency on timeline

3.3.4. Error detection latency

Error detection latency, denoted by Terr_lat, indicates the time interval between

when an error, as indicated by one of the error detection comparators, occurs to the time

when the rollback signal reaches the recovery unit. For ease of analysis, the latency can

Terr2samp Tsamp2mep Tmep2resp Tresp2rb

Error registered
in the Error Data

Register

Timeline

Rollback signal
received by the

node

Terr_lat

 30

be split into multiple sections. Figure 10 depicts the latency on a timeline. Individual

components of the time include:

Terr2samp – The time from when the error data is written to the EDR to the time when

it is read by the network.

Tsamp2mep – The time from when the data in EDR is read by the network to the time

when it reaches the MEP.

Tmep2resp – The time spent in the MEP to calculate the response (i.e. rollback

information)

Tresp2rb – The time spent transporting the rollback signal to the recovery unit in an

affected node.

3.3.5. MNoC deliberation

The timeline in Figure 10 suggests that Terr_lat can be reduced significantly by

optimizing the interconnection between an error monitor and the MEP. This

enhancement has a direct impact on the parameters Tsamp2mep and Tresp2rb. The use

of MNoC reduces these values, resulting in a faster error response. Another advantage

of keeping Terr_lat as low as possible is that checkpointing can be carried out more

frequently, if necessary.

3.4. Experiments and results

The checkpointing and rollback control, checkpoint counter, L1 and register file

buffers, the error detection unit and the error monitors described in section 3.3 were

implemented in the SESC [43] architectural simulator. The configuration of the

simulator is summarized in Table 1. Each core is assumed to contain 24 thermal, 8

delay and 1 error monitor, which are all interfaced to the MNoC in a manner described

 31

in [1]. MNoC latency numbers for 8, 16 and 32 cores in the presence of thermal, delay

and error monitor traffic were estimated using our modified PopNet simulator. These

results were used in assessing the performance impact on the multiprocessor rollback

recovery. Four benchmarks from the SPLASH2 suite, Ocean, Radix, Lu and FFT, were

run on the multicore system, each for about 100 million cycles.

Table 1: Experimental Setup

Simulator SESC multiprocessor simulator

Number of Processors 8, 16, 32

Processor Configuration Alpha264 EV6 -like

L1 $ = 32KB (private, writeback)

L2 $ = 1 MB (shared, writeback)

32 Internal registers (64bit)

Soft Error Rate (SER) 1 in million cycles

Checkpointed components L1 $, Internal registers checkpointed every 1 million cycles

Benchmarks Ocean, Radix, LU, FFT (100 million instructions each)

3.4.1. Simulation model

The SESC multiprocessor simulator was modified to evaluate the benefits of

MNoC for a multiprocessor rollback recovery system. The following modifications

were implemented in the SESC simulator to better suit our experimental need.

a) Checkpoint counter: As discussed earlier, we needed a checkpoint counter to

keep track of the current checkpoint interval ID and also to advance the interval

periodically. The simulator was updated with this additional feature.

 32

b) L1 buffer, internal register buffer: Section 3.3.1 discussed the role of the L1

buffer and the internal register buffer in the checkpointing process. The

functionality of these buffers was incorporated into the simulator.

c) Recovery unit: As discussed in section 3.3.3, the recovery unit plays a major role

in rollback recovery. The state machine that controls the checkpoint and

rollback process was implemented closely with the processor core, the L1 cache

and their respective buffers.

d) Error detection system: Pipeline duplication was performed for our DMR

approach. Also, we modified the simulator to use a comparator at the data

interface between the pipeline write back stage and the L1 cache and the

interface between the write back stage and the register file. These comparators

interface to the error data register in the error monitor that is connected to the

MNoC.

e) MNoC: This interconnect has been modeled using the Popnet network simulator

[63].

f) MEP: The MEP could be implemented as a custom state machine or we could

use a dedicated processor to carry out MEP tasks. We dedicated one processor

in our multicore system for the MEP.

3.4.2. MEP software flow for rollback recovery

The multiprocessor system under consideration will likely have groups of

processing nodes that share tasks. For example, in a system consisting of 16 nodes, 4

nodes might run a mutually-shared application, while the next four perform a separate

shared application. In such a scenario, only the nodes affected by an error require

 33

rollback. In our experiments, the MEP software consults a static lookup table in which,

each entry is loaded with the processor identification (PID) along with the ID of the

application that it runs for all the cores in the system. When the MEP receives an error

data (which is annotated by the NODE_ID), it is indexed to extract the application ID.

The MEP then sends out the recovery to all the cores that are tagged with this

application ID. The rest of the rollback steps are performed inside the individual cores

as described earlier.

3.4.3. Impact of variation in MNoC delay on recovery performance

As the number of cores is increased from 8 to 32, there is a proportional

increase in the number of error, thermal, and delay monitors. Due to this, the network

traffic and hence the network delays increase significantly. Using the corresponding

latencies offered by the MNoC for these varying workloads (as derived in [1]), the

overall impact on the recovery performance has been studied. For comparison, we

assume two systems, one in which MNoC is used as an interconnect for transporting the

monitor data traffic to the MEP and the control action from the MEP back to the cores

and another in which MNoC is replaced by a hypothetical interconnect that has a

structure which is similar to MNoC but has zero latency. By this way we can accurately

measure the impact of increasing MNoC delay on the recovery performance. In both the

systems, checkpointing, rollback and error detection systems are active. In this

experiment we assume the presence of soft errors that strike at an average rate of once

in a million cycles. The graph in Figure 11 shows the performance impact for four

benchmarks. The performance impact is not more than 0.1% for a 32 core system. The

performance degrades with increasing MNoC delay because it contributes to

 34

the rollback latency and hence the rollback overhead.

The above experiment assumes the use of a regular channel in the MNoC. It was

shown in [1] that the priority channel incurs a much lower latency than the regular

channel, almost in the range of 20-30 cycles for up to 32 cores and above, provided the

priority channel traffic is about 5% of the regular channel traffic. Since, soft errors have

been shown to be very infrequent, the use of a priority channel is well justified. The

impact on the recovery performance due to MNoC latency, when a priority channel is

used, will be less than 0.01%. This is a 10x improvement over the regular channel

MNoC case.

Figure 11: Impact of MNoC delay on the recovery performance as compared to

non-MNoC case having a zero latency interconnect

 35

The graph in Figure 12 shows the impact of MNoC delay on the multiprocessor

recovery performance when compared to a system that did not have any faults. This

result helps us visualize the contribution of not only the MNoC delay but also the

rollback overhead to the overall performance degradation. We see that the performance

degrades by less than 1% for a 32 core system.

3.4.4. Impact of increasing error rate on recovery performance

The motivation behind this experiment is to assess the performance of MNoC

when applied for errors other than soft errors which are much more frequent. For

instance, delay-related errors arising due to the fluctuations in the supply voltage or

voltage droops are a major concern. Similarly, dynamic voltage scaling (DVS) using

delay error detection and correction is performed by reducing the supply voltage below

the point of first failure (PoFF) until the error rate does not exceed 0.1% [37] or 0.04%

[38] to achieve a higher overall energy gain. This experiment studies the performance

of MNoC-based error recovery when employed in such relatively high error rate

Recovery performance compared to fault-

free case vs Number of cores

0.95

0.96

0.97

0.98

0.99

1

1.01

8 16 32

Number of cores

N
o

rm
a

li
z
e

d

P
e

rf
o

rm
a

n
c

e

Ocean

Radix

LU

Figure 12: Performance degradation due to MNoC delay and rollback overhead

 36

scenarios.

As in the previous experiment, we consider two systems, one in which MNoC is used as

interconnect and the other in which a hypothetical zero latency interconnect is used.

This comparison across various error rates, number of cores and benchmarks will

accurately model the impact of increasing MNoC delay on the recovery performance.

The graph in Figure 13 shows that for error rates as high as 0.01% (i.e. once every

10000 cycles) the impact of MNoC delay on the recovery performance for a 32 core

system is less than 0.6%. The effect on system performance is noted next.

Recovery performance vs. Error rate

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

100.1

0.00001 0.0001 0.01

Error rate (%)

P
e

rf
o

rm
a

n
c

e
 w

.r
.t

.
n

o
n

-

M
N

o
C

 c
a

s
e

OCEAN, 8 core

OCEAN, 16 core

OCEAN, 32 core

RADIX, 8 core

RADIX, 16 core

RADIX, 32 core

LU, 8 core

LU, 16 core

LU, 32 core

FFT, 8 core

FFT, 16 core

FFT, 32 core

Figure 13: Impact of increasing error rate on recovery performance for a

multicore system compared to non-MNoC case having zero latency

 37

The graph in Figure 14 shows the impact of the increasing error rate on the

recovery performance when compared to a system with no faults. This indicates the

contribution of the MNoC delay and the rollback overhead to the overall performance

degradation. We see that the performance degrades by a significant margin as the error

rate increases to 0.01% for a 32 core system.

In conclusion, the use of MNoC for various kinds of error monitors is practical.

This result motivates us to look at further enhanced experiments that involve

collaboration between different kinds of monitors like the architectural vulnerability

monitor that could work with the error monitor in providing better overall power and

performance.

Recovery Performance vs. fault free case for

varying error rates

0

20

40

60

80

100

120

0.00001 0.0001 0.01

Error Rate (%)

P
e

rf
o

rm
a

n
c

e
 (

%
)

8 core

16 core

32 core

Figure 14: Impact of increasing error rate on recovery performance due to the

MNoC latency and rollback overhead

 38

CHAPTER 4

MULTICORE SOFT ERROR RATE STABILIZATION USING ADAPTIVE

DUAL MODULAR REDUNDANCY

4.1. Introduction

Previous work by Soundararajan et al. [27] assesses the impact of various DVFS

schemes on AVF for a single core. Hence it allows them to choose a specific DVFS

scheme that optimizes the architectural vulnerability factor (AVF) the best, resulting in

a reduced reliability impact. In contrast to [27] and [28], a system is developed that

maintains the reliability of a multicore chip under a specified target failure-in-time

(FIT) error rate while thermal-aware DVFS is performed. The reliability impact of

DVFS is countered by a proportional increase in the amount of error protection in terms

of increased DMR. To perform this action, a chain of relationships between the

instantaneous values of voltage, frequency, soft error rate (SER) and AVF are derived to

determine an optimum AVF threshold value for each processor. Once the AVF

threshold is set, redundancy is enabled (disabled) when the instantaneous AVF crosses

above (below) this threshold. The trend graphs in Figure 15 illustrate our idea.

Due to the masking nature of the AVF, the effective SER of a chip can be

written as follows [8]:

Effective_SER = AVF * Raw_SER -------------- (4.1)

If DMR-based error protection is always provided, the effects of SER can be

completely eliminated. However, for a given SER target, if AVF information is

exploited, it is not necessary to provide error protection 100% of the time. Instead, it

 39

suffices to provide protection to a structure only when the AVF of that structure

exceeds a predetermined threshold. Thus we can imagine the term AVF in equation

(4.1) to be an AVF threshold since any errors occurring when AVF > AVF-threshold are

corrected by the protection that becomes enabled.

Effective_SER = AVF-threshold * Raw_SER -------------- (4.2)

Our goal is to maintain the Effective_SER constant as required by the chip

specifications in the presence of a DVFS scheme. AVF is the probability that a bit

contributes to the final output of the program. This behavior is completely dependent on

A
V

F

Freq

(a)

S
E

R

Freq

(b)

S
E

R

Volt

(c)

A
V

F
 T

h

Freq

(e)

A
V

F
 T

h

Volt

(f)

A
V

F

Volt

(d)

A
V

F
 T

h

Volt, Freq

(g)

F
re

q

Volt

(h)

Figure 15: Conceptualization of collaboration between AVF, voltage and

frequency information from across multicores to dynamically arrive at an AVF

threshold value. Refer eq. (1) and (2) as well.

 40

the program behavior and flow. Since a program execution is cycle dependent, AVF

seems to be independent of frequency of operation of a processor as shown in Figure 14

(a). Referring to Figure 15 (d), AVF does not change with supply voltage [27]. Since

AVF is based on the utilization of a structure, the processor operating frequency affects

the instruction flow rate through the structure and changes its AVF [27]. SER has been

shown to increase in proportion to the operating frequency and reduce exponentially

with the supply voltage [39]. In general, the variation in a structure’s AVF due to

frequency or other parameters will not impact the AVF threshold, since the presence of

a threshold will compensate for the increased AVF by enabling redundancy more

frequently. However, a change in the raw SER due to temperature or voltage variation

(Figure 15(b), (c)) requires a corresponding change in the AVF threshold to maintain a

constant effective SER (refer to equation (4.2)). This observation forms the basis for the

graphs in Figure (e), (f), (g). Hence, AVF threshold is a function of instantaneous supply

voltage and frequency. The DVFS algorithm assumes that the frequency scales linearly

with supply voltage as discussed in [12] and [13] (Figure 11(h)).

4.2. Adaptive AVF Calculation and Use for DMR

Our adaptive DMR approach requires real-time AVF computation and the use of

an interconnect architecture for thermal monitor and system parameter data collection

and processing. Three specific operating scenarios are considered in which real-time

AVF information is used to enable/disable component-based DMR for the instruction

queue (IQ), retirement order buffer (ROB), and load-store queue (LSQ):

1. AVF information is used to enable/disable DMR for the components

which exhibit an AVF below a predetermined, fixed threshold.

 41

2. AVF information is used to enable/disable DMR for the components

which exhibit an AVF below a dynamically-determined, variable threshold which

changes with voltage and frequency updates.

3. AVF information is ignored and DMR is always enabled for the

components.

Each of these cases is considered in the context of multicore DVFS performed

in response to thermal events.

4.3. Disabling DMR Components

Power gating and clock gating are two common procedures to reduce the

dynamic and static power consumption of processor structures.

Power gating involves disabling the header transistor in the gates that help

reduce the leakage in addition to overall power. Hence, this technique has an associated

timing overhead. Hu et al. [67] have discussed this overhead in detail. Homayoun et al.

[68] have discussed the potential of power gating for instruction queue in a superscalar

processor, since this unit is usually responsible for 27% of a superscalar processor.

Their technique has been shown to reduce up to 95% of leakage power during idle

times.

Clock gating has a comparatively lower timing overhead since it involves gating

of the clock supply to a module rather than gating all the gates in the block [44]. This

does not reduce the leakage power to a large extent. As a result, the power savings are

expected to be lower than the power gating approach.

Our work focuses on power savings of our variable AVF threshold approaches.

Hence, we use power gating for the unused redundant resources (IQ, ROB or LD/ST

 42

queue) in each processor and assume that the resulting performance overhead is

tolerable.

4.4. AVF Computation in a Multicore Environment

AVF calculation for IQ, ROB, and LSQ components must occur periodically

since AVF values typically show significant run time variation [9][29]. The AVF of

each component is determined using microarchitectural parameters obtained from the

processor. A linear combination of eight parameters can be combined [11] to describe

the AVF for each component at an accuracy level approaching 90%. These parameters

include:

1. Stores flushed before data translation lookaside buffer response.

2. Store buffer utilization

3. Retirement order buffer empty cycles

4. Retirement order buffer utilization

5. Branch misprediction count

6. Reservation station utilization

7. Instruction queue utilization

8. Total front-end instruction kill latency

Each parameter is scaled and linearly combined to form the AVF estimates for

the three components (IQ, ROB, LSQ) in each processor. Since our processor model is

slightly less complex than the one used in [11], the coefficients for parameters 1, 6, and

8 are set to zero. The five remaining parameters related to AVF calculation are

commonly monitored in hardware in microprocessors. The required performance

 43

monitoring hardware often consists of two parts [40], an event detector and an event

counter.

To evaluate AVF in our system, fixed event detectors and counters are needed to

collect desired performance information. For example, store buffer (STB) utilization

can be determined by monitoring store buffer write and read events. A corresponding

counter for STB utilization increases by 1 when an STB write occurs and decreases by 1

when an STB read occurs. Since the size of the STB is known, it is straightforward to

calculate STB utilization from the counter. The same method works for the utilization

calculation of an ROB, a reservation station and an instruction decode queue. Event

detectors are connected to both the read and write signals of the target structure. A write

event increments the counter and a read event decreases the counter for the target

structure. To determine ROB empty cycles, an event detector is connected to the ROB

empty signal. A count is incremented for each cycle the signal indicates an ROB empty.

The similar method works for the branch misprediction counter. The event detector is

connected to a misprediction signal. Whenever a misprediction happens, the counter

increases by 1.

Figure 16 shows the structure of a processor pipeline and the associated AVF

monitoring circuitry. Event detectors are connected to the IQ, LSQ, ROB and branch

predictor to probe operations in these units. Some detectors have been omitted from this

figure for clarity. Five counters are connected to the corresponding detectors to obtain

utilization information for the five parameters. The hardware cost of the performance

counters and detectors is modest. AVF calculation is performed every 1024 cycles [11]

 44

leading to a counter requirement of 5 * 10 bits = 50 bits. Each detector can be

implemented in a small number of logic gates.

The hardware overhead required to duplicate the IQ, LSQ, and ROB is also

modest. For our architecture, based on an Alpha264, a total of 16, 112 and 176 thirty-

two bit values are needed (see Table 2). This analysis indicates a total of 9728 storage

bits. As a result, the total hardware overhead for per-core AVF-enabled DMR is about

200K transistors, a small percentage of the total processor transistor count, including

cache.

As shown in Figure 16, monitored information is transferred to a centralized

processor using an interconnect network (MNoC), which is discussed later in this

Fetch Dispatch IQ

LSQ

ROB ARF

FU 1

FU n

Instruction

Queue

Load/Store

Queue

Floating

Unit Reorder

Buffer

Architectural

Register File

D
e

te
c

to
rs

D
e

te
c

to
rs

D
e

te
c

to
rs

To MNoC

Router

Branch

Predictor

D
e

te
c

to
rs

C
o

u
n

te
r 0

C
o

u
n

te
r 1

C
o

u
n

te
r 2

C
o

u
n

te
r 3

C
o

u
n

te
r 4

Figure 16: AVF monitor for one pipeline

 45

chapter. The centralized processor (MEP) calculates the AVF of each core based on the

obtained counter values.

4.5. Reliability-aware AVF threshold computation

Processing components require a stable SER to operate properly. Due to the

masking capability of the AVF, the effective SER of a processor core [8] is defined as:

Effective_SER = AVF * Raw_SER (4.3)

The Raw_SER (total expected bit flip rate) is reduced to an Effective_SER

since not all soft errors eventually affect the visible program output. Processors

generally have a target effective_SER threshold (Target_SER) which is predefined for

the architecture. To ensure proper operation, it is desirable to keep the instantaneous

SER of the processor core components below the target SER. If the rate rises above the

target SER threshold, resource redundancy can be used to mitigate errors. Equation

(4.3) can be rewritten as:

Target_SER = AVF_threshold * Raw_SER (4.4)

which indicates that the target SER threshold is directly related to the

AVF_threshold. If the Raw_SER is constant, the need for component redundancy can

be directly determined from the measured AVF. A measured value for a component

which is above the AVF threshold indicates the need for DMR. Otherwise, DMR can be

deactivated.

min1

)1(

0 10),(
f

xd

SERfVSER

 (4.5)

 46

In most cases, however, Raw_SER is not constant. For example, the SER fault

model in Equation (4.5) [12][39] assumes an exponential relationship for SER with

respect to the frequency and supply voltage. In the equation, fmin corresponds to a

normalized minimum-energy frequency [41] (e.g. an fmin of 0.2 indicates the minimum

frequency is 20% of the maximum) and x indicates the relative scaling of f and V

between their min and max values.

Frequencies below fmin (typically 5% of fmax [41]) consume additional energy

due to increased memory latency. Parameter d = 2 is based on the expected fault

injection source [12]. SER0 is the raw SER corresponding to the maximum voltage and

frequency used by the multicore. This model indicates that both AVF_threshold and

instantaneous SER must be considered in determining the need for DMR. If raw SER

increases, the AVF threshold used to enable redundancy must be reduced so that target

SER levels are not crossed. In summary, the relationship between AVF_threshold and

Target_SER can be expressed as:

AVF_Threshold = Target_SER/SER(V,f) (4.5)

where SER(V, f) can be calculated using Equation (4.4).

4.6. Example AVF threshold and overhead computation

The AVF thresholds used for experimentation in this work were determined as

follows. Mukherjee et al. [8] determined a FIT of approximately 200 to 2000 for the

200,000 vulnerable bits in the SPARC64 microprocessor. Since each core (based on an

Alpha264) in our example multicore has roughly 10% the number of vulnerable bits of

a SPARC64, raw_SER in Equation (4.3) is set to 28 FIT. Additionally, Mukherjee et al.

 47

determined a 1000 year mean time between failures (MTBF) for a SPARC64 and

suggested that MTBF should be increased proportionally for each core when a

multicore system is considered. For our 8 core system, an MBTF of 8000 years is used

to achieve an overall 1000 year MTBF. This MTBF corresponds to a 14 FIT per core

(109/8000*365*24), which is our target_SER. Using Equation (4.4), an AVF_threshold

of 50% is determined.

Our system dynamically computes AVF thresholds for each core in the system

based on current frequency and voltage values. A two-level DVFS system is

implemented which switches the voltage and frequency between more aggressive

(2GHz, 1.2V) and less aggressive (1GHz, 0.84V) parameters. Since fmin for our system

is equal to 0.05 * fmax, fmin is set to 100MHz/2GHz = 1/20 after normalization. When

this value of fmin and the raw_SER (i.e. SER0) of 28 FIT are used in Equation (4.4), a

new raw_SER at 0.84V, 1GHz is set to 10 times SER0. Using Equation (4.5), this value

leads to an adjusted AVF_threshold of 25% for low voltage (0.84V). This adjustment

can be applied since AVF values are influenced by frequency changes [27].

4.7. Experimental Approach

4.7.1. Monitor Network on Chip

Our AVF-enabled DMR approach benefits from the use of a dedicated

interconnect for monitor traffic. The five microarchitectural parameters listed in section

4.3. are collected by an AVF monitor located in each processing core (Figure 16). The

monitor interfaces to lightweight monitor network on chip (MNoC) routers which

transport the information to a centralized monitor executive processor (MEP) [1]. The

 48

irregular topology support provided by MNoC is suited to the distributed placement of

an AVF monitor and one MNoC router in each core (Figure 17). In addition to AVF

information, MNoC also transports thermal monitor information and control

information which modulates per-core voltage and frequency. A total of 8 thermal

monitors are allocated per core to achieve 0.1 degC accuracy [1].

L1$

L2$

Shared Memory

MEP

R

R

Shared Bus

R

R Router

MEP Monitor Executive

Comparators for

error detection

L1$

AVF calculation

related counters

MNoC

Redundant

Units

P1 P8

Figure 17: An 8-core system for AVF-aware DMR throttling

 49

4.7.2. AVF-aware DMR throttling

Shared memory multiprocessor systems consisting of 8 and 16 cores are used for

experimentation. Each processor contains the following duplicated pipeline structures:

instruction queue, retirement-order buffer/reservation stations and load/store buffers.

When DMR is enabled for a pipeline component, a per-core error detection system flags

an error if a component output does not match the data from its counterpart. An AVF

monitor, the 8 thermal monitors, and 3 error monitors per core are connected to an

MNoC router via a multiplexer. The error monitor’s low bandwidth limits their impact

on monitor data and processing.

The MEP executes the following DMR throttling algorithm for each redundant

component in each core. Initially, all redundancy is enabled. Each AVF monitor in the

multiprocessor system is then sampled in a round-robin fashion. When the AVF values

for a processor component falls below a predefined lower threshold, the MEP sends a

disable signal for the replicated resource. If the AVF is greater than the threshold, the

redundant resource is re-enabled. Sequentially, the DVFS algorithm on the MEP

proceeds as follows:

1. Measure the instantaneous values of temperature (T) and AVFs for each

core in each sampling period

2. If T > threshold, reduce V, f (perform DVFS) for affected core. Update

AVF_Threshold values.

3. If AVF > AVF_Threshold for a processor component, enable DMR for

the component. Otherwise disable DMR.

 50

The Update_AVF_Threshold routine required in the algorithm uses Equation

(4.5).

4.7.3. MNoC Performance and Interface to AVF monitor

Based on previous work [42], the sampling rate of a thermal monitor is set to 1

per 800 clock cycles at 500 MHz. The five architectural parameters (discussed earlier)

needed for AVF calculation are transferred to the MEP once every 1024 system cycles.

Since one MNoC router is used per core, the injection rate per MNoC router is 8 * (1

per 800 cycles) + 5 * (1 per 1024) = 1 injection per 67 clock cycles.

To assess the expected MNoC monitor data latency in MNoC, a latency

experiment was performed for a 16 processor multicore system. As shown in Figure 18,

as long as the injection rate per router is less than 1 per 17 cycles, MNoC latency

remains consistently low. In our system, the injection rate per MNoC router is low

Figure 18: Latency vs. injection rate per router for a 16 router system. Results

were generated using a modified Popnet simulator

 51

enough to provide an MNoC latency of less than 15 clock cycles. For 8 core

multiprocessors, our experiments show a similar 15 cycle latency.

4.7.4. Experimental Procedure and Results

The simulation setup including the configuration of the simulated shared

memory multiprocessor system is summarized in Table 2. A modified SESC [43]

multiprocessor architectural simulator is used to evaluate the run-time effects of DVFS

on a series of applications and the collection of information from one AVF (Figure 16)

and 8 thermal monitors in each processor core. The MEP functionality is assigned to

one of the cores in the simulated multicore system.

The processor power model used by SESC is based on Wattch [44]. The cache

power model is based on CACTI [45] and the temperature model for both (called

SESCSpot) is based on HotSpot [42]. SESCSpot calculates the temperature of processor

subblocks based on the power trace of the architecture in a post processing fashion. The

processor architecture is modeled on an Alpha264 with a MIPS ISA and the floorplan

of each processor core used for thermal modeling is based on prior work [46]. For our

DVFS implementation we integrated SESCSpot into the core of the SESC simulator to

obtain temperature readings at run-time. This approach enabled the MEP to sample the

temperature readings at run-time and execute the DVFS algorithm.

In order to assess the benefits of our AVF-based dual modular redundancy

approach, the three specific operating scenarios are considered:

1. AVF threshold fixed – DMR enabled when a component AVF passes a

fixed threshold

 52

2. AVF variable threshold – DMR enabled when a component AVF passes

a threshold which varies with DVFS based on Equation (4.5).

3. Full DMR: DMR is always enabled for all three components (IQ, ROB,

and LSQ).

All three of these cases are considered in the context of DVFS. The third case is

the worst case scenario and it is used as a baseline for the other two. The first case

considers the AVF threshold for a component to be fixed regardless of voltage and

frequency. As a result, the AVF threshold must be set to a reduced value of 0.25 (25%

of bits are important) which is used during both high voltage and low voltage usage.

The second case considers the AVF threshold as dynamically varying as DVFS changes

Table 2: System Setup

Simulator SESC multiprocessor simulator

Technology 90 nm

Num of processors 8, 16

DVFS V, f levels f(high)=2GHz, V(high)=1.2V

f(low)=1GHz, V(low)=0.84V

Benchmarks SPLASH2 (400M instructions

each)

Processor configuration

Instruction Issue 4 out-of-order

I-cache 64KB, 4-way

D-cache 64KB, 8-way, 2 cycles

Branch Predictor Hybrid

Branch Target Buffer 4K entries, 16-way

Instruction Queue 16 entries

Retirement Order Buffer 176 entries

Load/Store Buffers 56/56 entries

L2 Cache 1MB, 8-way, 10 cycles

 53

voltage and frequency levels. AVF thresholds of between 25% and 50% are determined

by the MEP for each processor component.

The power benefits of a variable AVF threshold in enabling DMR are shown in

Table 3 for four SPLASH2 benchmarks mapped to 8 and 16 cores. Portions of each

benchmark are distributed across the cores. DMR is only performed on the specific

processor components which have an AVF greater than the target threshold. On

average, the variable AVF threshold approach (case 1) reduces core power (without

cache) versus full DMR (case 3) by about 8% and 6%, respectively, for 8 and 16 core

processors. An average power improvement of 6% and 2% is seen for the variable AVF

threshold approach versus the fixed AVF threshold approach. In general, the cost of

providing a stable SER through DMR is low. The power cost of including DMR is

about 5% for 8 cores and 6% for 16 versus unprotected scenarios. The power

Table 3: Power benefit and overhead results for 8 and 16 core system

Test

bench

name

Case

8 core 16 core

Power

per core

(W)

Power

benefit

(%)

Power

per core

(W)

Power

benefit

(%)

LU

Full DMR 11.50 11.75

Fixed threshold 10.88 5.39 11.19 4.77

Variable threshold 10.80 6.09 11.10 5.53

Ocean

Full DMR 9.83 10.04

Fixed threshold 9.63 2.03 9.63 4.08

Variable threshold 9.13 7.12 9.29 7.47

FMM

Full DMR 14.28 10.28

Fixed threshold 14.13 1.05 9.75 5.16

Variable threshold 12.28 14.01 9.69 5.74

Radix

Full DMR 4.48 4.25

Fixed threshold 4.38 2.23 4.13 2.82

Variable threshold 4.12 8.04 3.94 7.29

 54

consumption of MNoC (~250 mW) is considered in these calculations. The 8-core

FMM application shows a particular savings with a variable versus fixed threshold

(14% vs. 1%) since most AVF values are above the fixed threshold.

Even though the precision of Wattch has not been discussed explicitly, it has

been shown to have an accuracy of 10% and a relative accuracy of 10-13% [44]. Our

power consumption results have been generated using Wattch. Since we measure the

relative benefit, precison of Wattch is an important factor in determining the reliability

of our results.

The variability of AVF is apparent from Figure 19, which shows AVF variation

across LU benchmark run time for an instruction queue for five traces of 100 samples.

AVF values are measured over several time trials. In general, calculated AVF is mostly

at or below 50% with frequent deviations over a wide range.

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71 81 91 101

Sample number

A
V

F
(%

)

1

2

3

4

5

Figure 19: Five AVF traces (Y axis) for an instruction queue across 100 consecutive

sampling intervals (X axis) for the LU benchmark

 55

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

As the process technologies scale and the multicores begin to gain a

commonplace status in the processor based systems, increasing number of on-chip

monitors are expected to be deployed for ensuring high reliability, high performance

and low power. A dedicated interconnect subsystem such as MNoC provides an

efficient, lightweight and programmable on-chip monitor data communication solution.

Different types of on-chip monitors for measuring temperature, critical path delay,

processor error, processor performance among others can be seamlessly integrated

using MNoC and used in several monitoring applications to achieve power, reliability

and performance benefits.

In this thesis, the thermal, error and AVF monitors that are spread across up to

32 cores are integrated using MNoC. The information from these monitors are sampled

in real-time by a central controller, MEP, and used for remedial applications such as

shared memory error recovery, and reliability-and-thermal-aware DVFS for the

multicore system.

Use of MNoC for shared memory recovery approach is shown to provide

flexibility in terms of selective recovery of only affected processors. This approach is

found to be highly scalable for up to 32 cores since it suffered minimal performance

degradation (less than 4%) as the monitor data communication delays increased.

Looking further the remedial system was expanded to include AVF and thermal

monitors in addition to the error monitors, for DVFS applications. Previous work has

 56

suggested a considerable impact of voltage and frequency variations on the raw SER.

AVF has indicated the presence of an inherent architectural masking that alleviates the

effective SER to a large extent. For a given target effective SER, amount of redundancy

to be enabled in the system can be smartly decided based on the run time AVF of the

structures in the system, while being also sensitive to the raw SER fluctuations. In this

collaborative monitoring approach, a 6% reduction in power is achieved versus always-

active redundancy while a stable multicore effective SER is maintained.

 57

BIBLIOGRAPHY

[1] S. Madduri, R. Vadlamani, W. Burleson, R. Tessier, “A Monitor Interconnect

and Support Subsystem for Multicore Processors,” In the Proceedings of the

IEEE/ACM Design Automation and Test in Europe Conference, Nice France,

April 2009.

[2] M. Prvulovic, Z. Zhang, J. Torrellas, “ReVive: CostEffective Architectural

Support for Rollback Recovery in SharedMemory Multiprocessors,” In

Proceedings 29th Annual International Symposium, May 2002, pp 111 – 122.

[3] Kun-Lung Wu, W. K. Fuchs, J. H. Patel, “Error Recovery in Shared Memory

Multiprocessors Using Private Caches,” IEEE Transactions on Parallel and

Distributed Systems, Volume 1, Issue 2, April 1990, pp 231 – 240.

[4] S. Reinhardt, S. Mukherjee, “Transient Fault Detection via Simultaneous

Multithreading,” In Proceedings of the International Symposium on Computer

Architecture (ISCA), pages 25–36, June 2000.

[5] Fault-tolerant computer system design. Dhiraj K. Pradhan, Pages: 135 - 138

1996 ISBN:0-13-057887-8

[6] M. J. Iacoponi, “Hardware assisted real-time rollback in the advanced fault-

tolerant data processor,” Digital Avionics Systems Conference, 1991.

Proceedings., IEEE/AIAA 10th , vol., no., pp.269-274, 14-17 Oct 1991.

[7] A. Maheshwari, W. Burleson, R. Tessier, “Trading Off Transient Fault-tolerance

and Power Consumption in Deep Submicron VLSI Circuits,” In IEEE

Transactions on VLSI Systems, vol 12, no. 3, March 2004, pp. 299-311.

[8] S.S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, T.Austin, “A Systematic

Methodology to Compute the Architectural Vulnerability Factors of a High-

Performance Microprocessor,” in Proc. 36th Ann. Int’l Symp. Microarchitecture

(MICRO-36), IEEE CS Press, 2003.

[9] K.R. Walcott, G. Humphreys, S. Gurumurthi, “Dynamic Prediction of

Architectural Vulnerability From Microarchitectural State,” Proceedings of the

International Symposium on Computer Architecture, pages 516-527, June 2007.

[10] L. Xiaodong, S. V. Adve, P. Bose, J. A. Rivers, “Online Estimation of

Architectural Vulnerability Factor for Soft Errors,” Computer Architecture,

2008. ISCA '08. 35th International Symposium on , vol., no., pp.341-352, 21-25

June 2008.

 58

[11] A. Biswas, et al., “Quantized AVF: A Means of Capturing Vulnerability

Variations over Small Windows of Time”, IEEE Workshop on Silicon Errors in

Logic - System Effects, March 2009.

[12] D. Zhu, et al., “The effects of energy management on reliability in real-time

embedded systems”, in the Proc. of the IEEE/ACM International Conference on

Computer Aided Design, 2004.

[13] Z. Baoxian, H. Aydin, and D. Zhu, “Reliability-aware Dynamic voltage scaling

for energy-constrained real-time embedded systems”, in the Proc. of the IEEE

Conference on Computer Design, pp. 633-639, Oct. 2008.

[14] International Technology Roadmap for Semiconductors. http://www.itrs.net/

[15] J. Srinivasan, S. V. Adve, P. Bose, J. A. Rivers, “The Impact of Technology

Scaling on Lifetime Reliability,” Proceedings of International Conference on

Dependable Systems and Networks (DSN '04) June 2004.

[16] S. Borkar, “Challenges in Reliable System Design in the Presence of Transistor

Variability and Degradation,” IEEE Micro, vol. 25, no. 6, Nov.-Dec. 2005, pp.

10-16.

[17] P. Shivakumar et al. “Modeling the effect of technology trends on the soft error

rate of combinational logic,” In Proceedings of the International Conference on

Dependable Systems and Networks, June 2002, 389–398.

[18] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, T. Austin, “Ultra Low-

Cost Defect Protection for Microprocessor Pipelines,” International Conference

on Architectural Support for Programming Languages and Operating Systems,

October 2006.

[19] J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, A. Nowatzyk, “Fingerprinting:

Bounding Soft-Error Detection Latency and Bandwidth,” In Proceedings of the

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 224–234, October 2004.

[20] T.J Slegel et al. “IBM’s S/390 G5 Microprocessor Design.” IEEE Micro, pp 12-

23, March/April 1999.

[21] Y. Tamir, M. Tremblay, D. A. Rennels, “The Implementation and Application

of Micro Rollback in Fault-Tolerant VLSI Systems,” Fault-Tolerant Computing,

1988. FTCS-18, Digest of Papers., Eighteenth International Symposium, June

1988, pp 234 – 239.

[22] R. Teodorescu, J. Nakano, J. Torrellas, “SWICH: A Prototype for Efficient

Cache-Level Checkpointing and Rollback,” IEEE Micro, Sept.-Oct. 2006.

Volume: 26, Issue: 5, pp. 28-40.

 59

[23] D. J. Sorin, M. M. K. Martin, M. D. Hill, D. A. Wood, “SafetyNet: improving

the availability of shared memory multiprocessors with global

checkpoint/recovery,” 29th Annual International Symposium on Computer

Architecture, Anchorage, AK. May 25-29, 2002.

[24] C. Weaver, J. Emer, S. S. Mukherjee, S. K. Reinhardt, “Techniques to reduce

the soft error rate of a high-performance microprocessor,” Computer

Architecture, 2004. Proceedings. 31st Annual International Symposium on, vol.,

no., pp. 264-275, 19-23 June 2004.

[25] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, T. Austin, “Measuring

architectural vulnerability factors,” Micro, IEEE , vol.23, no.6, pp. 70-75, Nov.-

Dec. 2003.

[26] N. Wang , M. Fertig, S. Patel, “Y-Branches: When You Come to a Fork in the

Road, Take It,” Proc. 12th Int’l Conf. Parallel Architectures and Compilation

Techniques (PACT 03), IEEE CS Press, 2003, pp. 56-67.

[27] N. Soundararajan, et al., “Impact of DVFS on the architectural vulnerability of

GALS architectures”, in the Proc. of the Int’l Symposium on Low Power

Electronics and Design, August 2008.

[28] T. Siddiqua and S. Gurumurthi, “Balancing Soft Error Coverage with Lifetime

Reliability in Redundantly Multithreaded Processors”, in the Proc. of

International Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems, Sept. 2009.

[29] S. Mukherjee, J. Emer and S. Reinhardt, “The soft error problem: an

architectural perspective”, in the Proc. of International Symposium on High-

Performance Computer Architecture, pp. 243-247, 2005.

[30] A. Golander, S. Weiss and R. Ronen, “DDMR: Dynamic and Scalable Dual

Modular Redundancy with Short Validation Intervals”, in Computer

Architecture Letters, vol. 7, issue 2, pp. 65-68, 2008.

[31] D. Ernst, et al., "Razor: circuit-level correction of timing errors for low-power

operation”, IEEE Micro, vol. 24, no. 6, pp.10-20, Nov.-Dec. 2004.

[32] S. Velusamy, W. Huang, J. Lach, M. Stan, and K. Skadron, “Monitoring

Temperature in FPGA based SOCs” , In Proceedings of the International

Conference on Computer Design, Oct 2005, San Jose, CA

[33] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H. Parks, S.

Naffziger, “Power and Temperature Control on a 90nm Itanium Family

Processor”, IEEE Journal on Solid State circuits , vol. 41, no 1, Jan 2006 , pp.

229-237.

 60

[34] K. A. Bowman, J. W. Tschanz, N. Sung Kim, J. C. Lee, C. B. Wilkerson, Shih-

Lien L. Lu, T. Karnik, V. K. De, “Energy-Efficient and Metastability-Immune

Timing-Error Detection and Instruction-Replay-Based Recovery Circuits for

Dynamic-Variation Tolerance,” ISSCC 2008.

[35] M. Saen, K. Osada, S. Misaka, T. Yamada, Y. Tsujimoto, Y. Kondoh,T. Kamei,

Y. Yoshida, E. Nagahama, Y. Nitta,T. Ito, T. Kameyama, N. Irie, “Embedded

SoC Resource Manager to Control Temperature and Data Bandwidth,” ISSCC

2007.

[36] M.S. Floyd, S. Ghiasi, T.W Keller, K. Rajamani, F.L. Rawson, J. C. Rubio, M.

S. Ware, “System Power Management Support in the IBM Power6

Microprocessor,” IBM Journal of Research and Development, vol. 51, no 6, Nov

2007.

[37] S. Das, D. Roberts, L. Seokwoo, S. Pant, D. Blaauw, T. Austin, K. Flautner, T.

Mudge, “A self-tuning DVS processor using delay-error detection and

correction,” Solid-State Circuits, IEEE Journal of , vol.41, no.4, pp. 792-804,

April 2006.

[38] D. Blaauw, S. Kalaiselvan, K. Lai, Wei-Hsiang Ma, S. Pant, C. Tokunaga, S.

Das, D. Bull, “RazorII: In-Situ Error Detection and Correction for PVT and SER

tolerance,” IEEE International Solid-State Circuits Conference (ISSCC),

February 2008.

[39] P. Hazucha, C. Svensson, “Impact of CMOS technology scaling on the

atmospheric neutron soft error rate”, In: Proc. of IEEE Transactions on Nuclear

Science, 2000, pp. 2586-2594.

[40] B. Sprunt, “Pentium 4 Performance-Monitoring Features”, IEEE Micro, vol. 22,

no. 4, pp. 72-82, 2002.

[41] X. Fan, C. Ellis, and A. Lebeck, “The synergy between power-aware memory

systems and processor voltage”, in the Proc. of the Workshop on Power-Aware

Computing Systems, 2003.

[42] K. Skadron, et al., “Temperature-aware microarchitecture: Modeling and

implementation”, in ACM Transactions on Architecture and Code Optimization,

vol. 1 no. 1, pp. 94-125, Mar. 2004.

[43] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss, S.

Sarangi, P. Sack, P. Montesinos, “SESC Simulator,” Jan. 2005,

http://sesc.sourceforge.net.

[44] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in the Proc. of the

International Symposium on Computer Architecture, June 2000.

http://sesc.sourceforge.net/

 61

[45] P. Shivakumar and N. Jouppi, “CACTI 3.0: An integrated cache timing, power

and area model,” in Technical Report 2001/2, Compaq Computer Corporation,

August 2001.

[46] G. Link and N. Vijaykrishnan, “Thermal trends in emerging technologies,” Proc.

of the Int’l Symposium on Quality Electronic Design, Mar. 2006.

[47] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, R. Rangan,

“Computing architectural vulnerability factors for address-based structures,”

Computer Architecture, 2005. ISCA '05. Proceedings. 32nd International

Symposium on , vol., no., pp. 532-543, 4-8 June 2005.

[48] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James,

M. Floyd, V. Pokala, “ A Distributed Critical-Path Timing Monitor for a 65nm

High-Performance Microprocessor,” In Proceedings of the IEEE International

Solid-State Circuits Conference , Feb 2007.

[49] B. Froba, C. Rothe, C. Kublbeck, “Evaluation of sensor calibration in a

biometric person recognition framework based on sensor fusion,” Fourth IEEE

International Conference on Automatic Face and Gesture Recognition, 2000,

pp.512 – 517, 2000.

[50] B. T. Gold, J. C. Smolens, B. Falsafi, J. C. Hoe, “The Granularity of Soft-Error

Containment in Shared Memory Multiprocessors,” 2006 Workshop on System

Effects of Logic Soft Errors, April 2006.

[51] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M.

Meeuwsen, C. Watnik, P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, B. M.

Baas, “A 167-processor 65 nm Computational Platform with Per-Processor

Dynamic Supply Voltage and Dynamic Clock Frequency Scaling,” Symposium

on VLSI Circuits, (VLSI '08), July 2008, C3.1.

[52] E. Boemo, S. Lopez-Buedo, “Thermal Monitoring on FPGAs using Ring-

Oscillators,” In Proceedings of the Seventh International Workshop on Field

Programmable Logic and Applications , Sep 1997, London, UK.

[53] E. Chi , A. M. Salem, R.I. Bahar, R. Weiss, “Combining Hardware and Software

Monitoring for Improved Power and Performance Tuning,” In Proceedings of

the Seventh Workshop on Interaction between Compilers and Computer

Architectures , Anaheim, CA, Feb 2003.

[54] G. G. Yen, W. Feng, “Intelligent sensor validation by a hierarchical mixture of

experts network,” Industrial Electronics Society, 2000. IECON 2000. 26th

Annual Confjerence of the IEEE , vol.1, no., pp.155-160 vol.1, 2000.

[55] G. Yalcin, O. Ergin, “Using Tag-Match Comparators for Detecting Soft Errors,”

IEEE Computer Architecture Letters, vol. 6, no. 2, pp. 53-56, Jul-Dec, 2007.

 62

[56] I. Koren, C. M. Krishna, “Fault-Tolerant Systems”. Amsterdam; Boston :

Elsevier/Morgan Kaufmann, 2007.

[57] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Palo Alto, CA, U.S.A.:Morgan Kaufmann, 1988.

[58] J. Smolens et al. , “Detecting emerging wearout faults,” In SELSE ’07: Procs. of

the 3rd Workshop on Silicon Errors in Logic - System Effects, 2007.

[59] J. Blome, S. Feng, S. Gupta, S. Mahlke, “Self-calibrating Online Wearout

Detection,” Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM

International Symposium on , vol., no., pp.109-122, 1-5 Dec. 2007.

[60] L. Shang, L. Peh, N. K. Jha, "Dynamic voltage scaling with links for power

optimization of interconnection networks," International Symposium on High-

Performance Computer Architecture, pp. 91-102, Feb. 2003.

[61] M. A. Holtz, S. Narasimhan, S. Bhunia, “On-Die CMOS Voltage Droop

Detection and Dynamic Compensation,” GLSVLSI’08, pp. 35-40, May 4–6,

2008, Orlando, Florida, USA.

[62] N. Bartzoudis, K. McDonald-Maier, “An adaptive processing node architecture

for validating sensors reliability in a wind farm,” Bio-inspired, Learning, and

Intelligent Systems for Security, 2007. BLISS 2007. ECSIS Symposium on ,

vol., no., pp.83-86, 9-10 Aug. 2007.

[63] S. Madduri, W. Burleson, R. Tessier, “A Simulation Study of Monitor Network-

on-Chip Protocols and their Interface with the Monitor Executive Processor

Used for Control,” SRC Report. Sept 2007.

[64] S. Mukherjee, M. Kontz, S. Reinhardt, “Detailed Design and Evaluation of

Redundant Multithreading Alternatives,” In International Symposium on

Computer Architecture (ISCA), pages 99–110, May 2002.

[65] T. Austin, D. Blaauw, T. Mudge, K. Flautner, “Making Typical Silicon Matter

with Razor,” Computer, vol. 37, no. 3, pp. 57-65, Mar., 2004.

[66] V. Bychkovskiy, S. Megerian, D. Estrin, M. Potkonjak, “A Collaborative

Approach to In-Place Sensor Calibration,” Center for Embedded Network

Sensing, Technical Reports, pp. 59, 2003.

[67] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H.Jacobson, P. Bose,

“Microarchitectural Techniques for Power Gating of Execution Units,”

International Symposium on Low Power Electronics and Design, 2004.

 63

[68] H. Homayoun; T. H. Szymanski, "Reducing the Instruction Queue Leakage

Power in Superscalar Processors," Electrical and Computer Engineering, 2006.

CCECE '06. Canadian Conference on , vol., no., pp.1685-1689, May 2006.

[69] V. Stojanovic, R. I. Bahar, J. Dworak, R. Weiss, "A cost-effective

implementation of an ECC-protected instruction queue for out-of-order

microprocessors" In Proceedings of the 43rd Annual Design Automation

Conference (San Francisco, CA, USA, July 24 - 28, 2006). DAC '06. ACM, New

York, NY, 705-708.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2010

	Approaches to multiprocessor error recovery using an on-chip interconnect subsystem
	Ramakrishna P. Vadlamani

	Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

