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ABSTRACT 

APPROACHES TO MULTIPROCESSOR ERROR RECOVERY USING AN ON-

CHIP INTERCONNECT SUBSYSTEM 

 

RAMAKRISHNA VADLAMANI, B.E., V.J.T.I. UNIVERSITY OF MUMBAI 

 

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell G. Tessier 

 

For future multicores, a dedicated interconnect subsystem for on-chip monitors was 

found to be highly beneficial in terms of scalability, performance and area. In this 

thesis, such a monitor network (MNoC) is used for multicores to support selective error 

identification and recovery and maintain target chip reliability in the context of 

dynamic voltage and frequency scaling (DVFS). A selective shared memory 

multiprocessor recovery is performed using MNoC in which, when an error is detected, 

only the group of processors sharing an application with the affected processors are 

recovered. Although the use of DVFS in contemporary multicores provides significant 

protection from unpredictable thermal events, a potential side effect can be an increased 

processor exposure to soft errors. To address this issue, a flexible fault prevention and 

recovery mechanism has been developed to selectively enable a small amount of per-

core dual modular redundancy (DMR) in response to increased vulnerability, as 

measured by the processor architectural vulnerability factor (AVF). Our new algorithm 

for DMR deployment aims to provide a stable effective soft error rate (SER) by using 

DMR in response to DVFS caused by thermal events. The algorithm is implemented in 

real-time on the multicore using MNoC and controller which evaluates thermal 

information and multicore performance statistics in addition to error information. 
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DVFS experiments with a multicore simulator using standard benchmarks show an 

average 6% improvement in overall power consumption and a stable SER by using 

selective DMR versus continuous DMR deployment. 
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CHAPTER 1 

INTRODUCTION 

Recent high-end single and multiprocessors from Intel (Montecito), AMD 

(Opteron) and IBM (Cell) use extensive on-chip monitors for run-time estimates of 

temperature, power and performance. Specific uses of monitors to determine system 

critical soft-error failures, wear-out detection and security issues require fast 

connections on a global scale.  These connections can be supported by a separate low-

overhead interconnect, called monitor network-on-chip (MNoC) [1], that can be 

coupled to the main multicore architecture (Figure 1). Although simplified as compared 

to conventional network-on-chip interconnect, this new interconnect technique supports 

irregular routing topologies, priority-based data transfer and customized monitor 

interfacing that suit most on-chip monitoring applications. Collected monitor data 

values are manipulated by one or more processors categorized as monitor executive 

processors (MEPs) and the results are used to control an SoC’s run-time operation. For 

an eight core system, the area and power overhead for the interconnection of 192 

thermal monitors is less than 0.5% [1]. 

As the number of processors in a multiprocessor system increases, system 

reliability becomes of great concern. Numerous error detection and error recovery 

techniques (for fault tolerance) have been devised to assess processor errors and restore 

the correct multiprocessor system operation [2][3][4][5][6][7]. These approaches 

typically contain a fault control architecture consisting of an error monitor or an error 

detection unit, a controller for ensuring proper supervision of the fault tolerance 
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algorithms, restoration circuitry and inter-module interconnect. Common monitors 

include soft-error detectors, delay monitors, thermal monitors, and processor activity 

monitors. Typically, the interconnect resources used to connect monitors and 

controllers are simple point-to-point connections or buses. As system complexity 

increases, current monitor interconnections are likely to become increasingly unwieldy, 

encouraging the use of MNoC. Towards this end, initially this work examines the 

feasibility of using MNoC for supporting multiprocessor error detection and recovery. It 

was determined that the increasing MNoC delays or the error data injection rate for up 

to 32 cores lead to minimal loss of overall multiprocessor recovery performance. This 

motivated us to extend the use of MNoC for collaborative on-chip monitoring 

applications using thermal and performance monitors in addition to the error monitors.  

The fault tolerant approaches based on redundancy including component dual 

modular redundancy (DMR) and redundant multithreading [4] may not be appropriate 

in all cases as they incur significant performance and power overhead and often require 

significant operating system support. A localized, low-overhead error reduction 

approach which can be selectively enabled provides a possible alternative. 

In general, memory-based components in processor cores are vulnerable to 

single event upsets due to radiation. Although large memory structures are often 

protected by error checking and correcting circuits, smaller components, such as 

instruction queues and retirement order buffers, have less protection. Fortunately, not 

every bit flip in these components leads to an observable system error. A component's 

architectural vulnerability factor (AVF) states the probability that a fault generated in a 

processor structure will result in an error in the program output [8]. The AVF for 
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various processor structures has been shown to vary widely both across and within 

applications [9]. Previous studies [9][10][11] have described the efficient run-time 

estimation and use of AVF for single core processors in an effort to promote stable 

processor failure in time (FIT) rates. However, the growth of multicore use and frequent 

per-core voltage and frequency scaling necessitates the reexamination of AVF 

calculation and use. 
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Figure 1: Detailed view of MNoC for multicores 

 

Dynamic voltage and frequency scaling (DVFS) is commonly used in multicores 

to reduce hotspot temperatures and system power consumption. Unfortunately, voltage 

decreases and frequency increases can adversely affect system reliability [12][13], 

necessitating a fast system response to maintain a stable multicore soft error rate. One 
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approach to maintaining system reliability is to enable a small amount of redundant 

resources for critical system components in the presence of increased soft error risk. 

This risk is determined by comparing the instantaneous AVF for the components 

following DVFS against a predetermined threshold. If the threshold is passed, 

redundant components are enabled to facilitate DMR actions. 

In this final experiment the power effects of using AVF-enabled DMR in a 

multicore environment implementing DVFS are explored. AVF values for critical 

resources are continually assessed throughout processing but special consideration is 

given following thermally-induced voltage and frequency scaling. Thermal and AVF 

monitor data are transported to a centralized controller via MNoC. The controller 

collaboratively uses the data to perform DVFS on affected cores and to enable/disable 

redundant resources. Our approach is designed to scale to tens of cores, enabling 

flexible fault coverage and performance and power control enhancement. A multicore 

architectural simulator and an interconnect simulator are used to assess the power and 

performance benefit of this approach for 8 and 16 processor multicores. An overall 

power benefit of 6% on average is achieved versus the continual use of redundant 

resources.  

This thesis is organized as follows. Chapter 2 provides a detailed background 

related to processor error recovery, AVF, DVFS and monitor interconnects. The 

feasibility experiment for use of MNoC for a shared memory multiprocessor system is 

discussed in chapter 3 with results. Our collaborative monitoring approach, along with 

the algorithms and results are described in chapter 4. Chapter 5 concludes the thesis 

along with some discussion on future work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

2.1. Errors and their detection techniques 

2.1.1. Errors 

A microprocessor system is susceptible to numerous types of transient and 

permanent faults. Transient faults include soft errors due to alpha particles, signal cross 

talk, and supply voltage fluctuations. Permanent faults include errors due to 

electromigration (wearouts) and manufacturing faults. With respect to reliability, the 

International Technology Roadmap for Semiconductors has predicted significant 

reliability problems for future systems, which will increase at a pace that has not been 

seen in the past [14]. Srinivasan et. al [15] showed a three-fold increase in processor 

wear out related faults when scaling from 180nm to 65nm. Similarly, Borkar [16] 

estimates a 100-fold increase in transient faults when scaling from 180nm to 16nm, 

while Shivakumar et. al [17] predict an even higher nine-orders-of-magnitude increase 

in logic circuits’ transient fault rates from 1992 to 2011.  

Checkpointing and rollback techniques can be used for both transient and 

permanent error recovery. A recently-introduced fine-grained recovery technique [18] 

uses rollback to counter permanent errors. A BIST-based error detection technique is 

used to test the output of microprocessor components such as ALUs, multipliers, and 

decoders. In this approach, damaged units are removed from the microprocessor 

datapath. The presence of multiple functional unit instances in the architecture allows 

for continued microprocessor operation, albeit at somewhat reduced system speed. 
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The checkpointing approach described in the next chapter is most appropriate 

for soft error recovery. Following recovery, the system re-executes checkpointed 

instruction on the same set of components. The availability of these components allows 

for continued high performance continuing forward from error recovery. The use of 

MNoC to identify and transport error information quickly is vital to rapid system 

recovery. 

2.1.2. Error detection techniques 

Numerous techniques have been developed to quickly identify system errors. 

Dual modular redundancy (DMR) uses redundant processor components, such as 

processor pipelines, to generate completely redundant streams of results. A result 

mismatch indicates an error that must be addressed. A similar software-based approach 

uses redundant threads. Two threads can be used to determine the same results on two 

different processors. A result mismatch indicates an error. A final approach compares 

error detection codes (CRC) for computation. The Fingerprinting [19] approach 

compares hashed signatures of the execution history of the processors involved in DMR 

to determine an error for a block of computations.  

In this work, DMR is used as an error detection technique. Section 3.3 discusses 

our use of DMR in error checking. 

2.1.3. Error containment  

In a multiprocessor system, error checking and recovery can be performed at 

various system levels. Often, it is desirable to verify data at a specific level and prevent 

faulty values from moving to a higher level. For example, it might be desirable to 

contain a data error in an L1 cache rather than having the faulty value propagate to main 
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memory. The selection of the error containment level determines the amount of 

required checkpointing. If containment is performed close to the processor core, the 

amount of checkpoint storage is reduced. However, increased error detection may lead 

to an increased critical path length [19]. Figure 2 depicts containment at various levels. 

The pipeline level error detection technique used for IBM z series [20] systems reduces 

the impact of error checking on the critical path by performing computation and data 

checking simultaneously. The checkpointing scheme presented in this thesis focuses on 

the shared cache and the internal registers of each processor in a multiprocessor system. 

 

 
Figure 2: Illustrating error containment. (a) Core containment, (b) Cache 

Containment, (c) Memory containment. Adapted from [19] 

 

2.2. Checkpointing and Rollback 

2.2.1. Checkpoint 

For microprocessor systems, checkpoints provide a snapshot of the architectural 

system state [21], including register and cache values. Frequently, copies of state values 

are stored in a reliable location in case they are needed later for system recovery. 

Checkpointing captures all information required to restart microprocessor or 

multiprocessor execution from a previous execution point. Usually, checkpointed 

information is saved in parity or ECC protected buffers that are error-tolerant. Although 

state data can be transferred to buffers immediately following a checkpoint, incremental 
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checkpointing provides a more measured approach to data transfer by slowly 

transferring changed values to buffers incrementally following a checkpoint.  Either 

approach to checkpointing allows for the recovery of data which is changed following a 

checkpoint.  A key challenge in checkpointing is system recovery speed following error 

detection. By introducing a low latency path from error detection to checkpoint 

rollback, we enhance overall system recovery speed. This approach is especially suited 

to real time systems where speedy recovery from a fault is extremely desirable. 

2.2.2. Error Recovery 

This term suggests system-level error recovery techniques. They are broadly 

classified into two categories: forward error recovery and backward error recovery. 

2.2.2.1. Forward-error recovery 

Forward-error recovery (FER) approaches attempt to identify and correct system 

errors through redundancy. For example, triple modular redundancy [2] of critical 

system components can be used to identify single faults. As the name suggests, three 

copies of each vulnerable component generate three copies of data. Since two of three 

functional units will continue to generate results which agree, normal system processing 

can continue unchecked simply by polling for the majority. FER systems require no 

checkpointing or rollback but suffer from excessive hardware overhead. As a result, 

FER is primarily used only in the most extreme operating environments (e.g. space 

exploration and military applications). 

2.2.2.2. Backwards error recovery 

Backwards-error recovery (BER) or rollback recovery typically uses some form 

of checkpointing, error detection, and rollback. The rollback process generally involves 
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restoring system state to a previously saved, correct configuration. Rollback is achieved 

by copying previously saved data to its original location in a cache, register file or 

memory.  

2.2.3. Checkpointing and Rollback 

A number of checkpointing and rollback schemes have been developed for a 

variety of containment levels [19] for single [21][20] and multiprocessor [2][3][22][23] 

systems.  

A summary [22] of low overhead checkpointing schemes for backward error 

recovery (BER) assesses these techniques. Hardware-based checkpointing and rollback 

schemes can be classified using a taxonomy with three main characteristics:  

1. Data error containment - This characteristic refers to the error 

containment granularity discussed in section 2.4. Any datum that propagates outside a 

system level is assumed to be correct.  

2. Relative checkpoint location – This characteristic refers to the 

hierarchical location of the checkpointed data. Dual storage refers to the case when 

checkpoint data is stored in a location that is closely attached to the unit that is 

checkpointed. For instance, using a register buffer to checkpoint internal registers 

would fall under this category. Leveled storage indicates that checkpoint data is stored 

elsewhere in the memory system hierarchy. For instance, cache blocks or registers could 

be checkpointed in main memory.  

3. Separation of checkpoint and active data – Full separation refers to the 

storage of checkpoint data in separate memory locations for dual storage. For example, 

register file checkpointing could take place in a separate physical buffer adjacent to the 
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register file. Partial separation typically involves incremental checkpointing where 

active and the checkpointed data are stored at the same buffer [21][3][23].  

For a multiprocessor system, cache-level checkpointing and error recovery [3] 

can use a recovery buffer implemented alongside an L1 cache and a modified cache 

coherency protocol. Process checkpointing includes saving register values and flushing 

cache block values that have been modified since the last checkpoint. In general, cache 

blocks are not saved to a restore buffer immediately following a checkpoint. As cache 

values are modified, the original cache values are slowly migrated to the restore buffer 

for storage. A checkpoint counter, Ccount is incremented every checkpoint interval if 

multiple checkpoints are maintained. The buffer stores copies of modified cache lines 

for each checkpoint. A checkpoint identifier, Cid is associated with each cache block.  If 

Cid is less than Ccount for a specific cache block, the block will be moved to the buffer if 

a write occurs. During rollback, cache blocks in the recovery buffer that are associated 

with a specific checkpoint are written back to the cache. The processor internal 

registers that were also checkpointed are reloaded and execution is restarted.  

Another technique that operates in a similar fashion is SafetyNet [23]. This 

approach only maintains a single checkpoint and assumes about 100,000 clock cycles 

between checkpoints. Before a checkpoint can be completed, all multiprocessor 

operations must be validated as complete and correct. Once this status has been attained 

for all shared data values, the checkpoint identifier can be advanced.  

2.3. Architectural Vulnerability Factor 

As discussed in section 2.1, transient errors, including soft errors, are expected 

to be more frequent in future technologies. Current hardware- and software-based 
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redundancy techniques for implementing error detection assume a 100% probability 

that a given fault will manifest itself into an error and hence a failure. However, prior 

 
Figure 3: Time varying metrics and AVF behavior. The AVF values are along 

the Y-axis and time in cycles along the X-axis 
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work has suggested that this is almost never the case [9][11][8] and usually the 

vulnerability of the functional units such as the instruction queue, register file, control 

logic, etc to soft errors varies widely with workloads and execution time as indicated in 

Figure 3[9].  

A fault is a defect in a hardware or software component. An error is the 

manifestation of a fault resulting in a deviation from the expected results. Hence, a fault 

can cause errors but an error may not cause faults. A fault that is masked by virtue of a 

program execution flow will not result in an error. Vulnerability factor, as defined in 

[8], is the probability that an internal fault in a device during its operation will result in 

an external visible error. Failure is caused by errors and is characterized by non-

performance of expected action. A corrected error, however, does not cause failures. 

 

 

Figure 4: Classification of possible outcomes of a faulty bit in a 

microprocessor. SDC=silent data corruption, DUE=detected unrecoverable 

error. The figure is taken from [24] 
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Figure 4 [24] summarizes these concepts and demonstrates their interdependency 

clearly.  

Mukherjee et. al [8] invented the term architectural vulnerability factor (AVF), 

which is a measure of the likelihood that a fault will convert into a visible error. 

Gurumurthi et al. [9] and Xiaodong et al. [10] have come up with competing online 

techniques for computing the AVF for several processor functional units such as the 

load/store queue, register file, control logic, etc. Mukherjee et al. [25] have shown that 

for an Itanium2-like processor architecture the AVF for the instruction queue lies 

between 14% and 47%, while the AVF for the execution unit lies between 4% and 27%. 

Similarly, for an Alpha21164-like architecture the AVF for the pipeline structure has 

been found to not exceed 10% [26]. These metrics suggest that affected processor units 

can potentially benefit from an AVF-aware redundancy scheme that disables redundant 

units during periods of low AVF, thus saving power [8][11][9].  

Accurate run-time AVF evaluation has recently been shown to be 

computationally feasible [8][9]. Walcott, et al. [9] and Biswas, et al. [11] demonstrated 

that the aggregated AVFs of uniprocessor pipeline components can be estimated with 

up to a 90% accuracy using a small set of periodically-sampled microarchitectural 

parameters. This quantized-AVF (Q-AVF) approach is lightweight since the amount of 

processed data is restricted to a small quantum over a restricted sampling interval. 

These approaches open up an opportunity to dynamically enable the fault 

tolerant redundant infrastructure only when the AVF is above a predefined threshold 

during the course of operation of the processor. Gurumurthi et al. perform a thorough 

offline simulation-based statistical analysis (involving complex calculations) for 
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extracting the AVF information from a set of easily-traceable processor performance 

metrics and use the results in an online predictor. This approach requires calibration for 

different workloads to be able to use it for a variety of real world applications. Xiadong 

et al. on the other hand, propose a method of estimating AVF entirely online in which, 

artificial errors are introduced in the functional units at a predetermined rate and the 

number of instances where a program failure occurred is noted to compute the AVF.  

The AVF computation for a structure involves identifying the architecturally 

correct execution (ACE) bits (i.e. those that matter or influence the final output of a 

program) and un-ACE bits in that structure. Whether a bit is ACE or not depends on 

how a user has defined the program output. un-ACE bits are categorized as architectural 

and micro-architectural un-ACE bits. Examples of architectural un-ACE bits are the 

operand part of a NOP instruction and a prefetch instruction. If an error strikes a 

prefetch instruction, it will be ignored leading to a performance loss but it will not 

cause an incorrect execution. Micro-architectural un-ACE bits consist of the data and 

status bits in an IDLE state, bits in a mis-speculated state or predictor structure, etc. 

Thus, AVF computation for a structure (or a processor as a whole) is generally expected 

to be expensive and is therefore performed every several million instructions. When the 

combined AVF for the entire processor is known to have crossed a predetermined 

threshold for the past interval, the pipeline is flushed, redundant units for error 

detection are enabled and execution is restarted, so that the processor is protected for 

the next interval.  
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2.4. Dynamic Voltage and Frequency Scaling and AVF 

AVF varies with the operating frequency and voltage of a component since it 

impacts the utilization of the component [27]. In Soundararajan, et al. [27], this 

variation was quantified for DVFS applied to a uniprocessor.  More recently, Siddiqua 

and Gurumurthi [28] used AVF variation to support redundant multithreading (RMT) in 

an effort to reduce soft errors. In the latter two cases, SER levels are considered static 

and unaffected by per-core variations in voltage and frequency. 

2.5. AVF-aware Dual Modular Redundancy 

Error detection for storage components in processor-based systems is often 

performed using dual modular redundancy (DMR), in which outputs of duplicate copies 

of a component are compared before memory commits are performed [29][30]. DMR 

incurs a power consumption penalty and should only be used if a processor component 

is likely to incur soft errors. Many storage-based processor pipeline components are 

protected without the need for DMR. Register files and caches are generally protected 

by ECC/parity-check circuitry. Pipeline latches can use low-overhead error self 

detection and correction (i.e. Razor) [31].  

Stojanovic et al. [69] came up with an ECC-protected instruction queue 

implementation for out-of-order processors, which has a performance overhead of less 

than 3% and an area overhead of the order of 10% of the size of the structure. Due to 

the small footprint of the additional bits and associated logic for error correction, the 

power dissipation is also quite less. Although our work uses DMR based error detection 

technique, our reliability stabilization system can work even with the ECC based 
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approach. Since the power consumption by the ECC-based circuits is a small 

percentage of the total chip power, the benefits we see may not be significant. 

Additionally, the AVF of a branch predictor is always 0% since a misprediction 

due to a predictor soft error strike will not lead to an output error [29]. As a result, as 

seen in chapter 4, this work focuses on the DMR protection of specific components 

(instruction queue, retirement order buffer, and load store queue) which would 

otherwise be unprotected. The detection and rollback circuitry required to restore 

processor state following error detection has been discussed in detail in chapter 3 and is 

not described again in chapter 4.  

2.6. Inter-monitor interconnection 

Traditionally bus-based connections and point-to-point connections were 

commonly used for on-chip communication on SoC’s. Velusamy et al. interfaced 

thermal sensors to a central controller using a bus interface [32]. McGowen et al. 

implemented an embedded feedback control system in which, the thermal and voltage 

sensors were connected to the analog-to-digital converters of the microcontroller 

through point-to-point links [33]. A number of error recovery techniques have been 

developed that propagate error data and response information through point-to-point 

interconnects. For instance, a recent error recovery system [34] uses clock-skewed flip 

flops to detect pipeline errors. Error results are individually sent to a control block that 

initiates instruction-retry recovery operations. An alternative approach uses area and 

time redundancy to improve the fault tolerance of counters [7]. In this effort, the error 

detection and corresponding recovery is also conducted using a point-to-point 

interconnect. In an integrated approach [35], an SoC resource manager architecture is 
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individually connected to performance and thermal monitors. The IBM Power6 monitor 

network [36] is composed of eight critical path delay monitors per core that are used for 

detecting errors during processor operation. These monitors, along with other on-chip 

monitors, are interconnected using a daisy chain bus.  
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CHAPTER 3 

MNOC-BASED SHARED MEMORY MULTIPROCESSOR ROLLBACK 

RECOVERY SYSTEM 

3.1. Introduction 

In general, most multiprocessor systems in use today are based on the shared-

memory programming model. These systems are frequently implemented as chip 

multiprocessors (CMPs), symmetric multiprocessors (SMPs), or distributed shared-

memory multiprocessors (DSMs). The application of MNoC to monitors and control 

processors for this system represents a challenge. 

 

 
Figure 5: Shared memory multiprocessor system 

 

Consider the shared memory multiprocessor system shown in Figure 5. For our 

experiment, we consider a system of 8 to 128 processing nodes, which could be used in 

the following configurations depending on the application under consideration: 

1. Single process, multiple threads (one thread per processor) 

2. Multiple processes, one thread each  
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3. A combination of the above two scenarios. For example, 5 cores could be 

included in configuration 1 and the rest of the cores could be included in 

configuration 2. 

4. Multiple processes and multiple threads. This approach will involve context 

switches between processes. 

3.1.1. MNoC Perspective  

Scenario 3 provides an ideal configuration for testing of our monitor network-

on-chip infrastructure. For scenario 3 it would be necessary to have central controller to 

decide which nodes need to be rolled back when one node generates an error. A low 

latency MNoC provides a path to quickly forward monitor data and assess a rollback 

strategy. 

3.2. Typical Interprocessor Communication 

In this example it is assumed that a single process (P), multi-threaded (T1, T2) 

application is running on a system configured under scenario 3. Communication has 

been established between threads T1 and T2 (can be extended for more processor 

cores). As a result of repeated computation, a data value D is written by T1 and 

consumed by T2. Thread T1 informs T2 of the available data value by setting a sync bit. 

Soon after T2 reads this data, it clears the sync bit to acknowledge the receipt of the 

data. Then T1 puts a new data value at D and the cycle continues. 
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Figure 6: Typical inter-processor shared memory communication and a rollback 

scenario 

 

Assume that D = 1, 2, 3, 4, 5 is written in a sequence and they have been read 

and acknowledged by T2 with repeated handshakes through the sync bit (note Figure 6). 

It is later discovered that an error was generated while processing data, D=3. At this 

point in time T1 is in the process of or has already generated the next data, D=4 since 

T2 had acknowledged the data, D=3. Hence, the system needs to roll back to a point 

when the memory had data value, D=3, so that T1 can roll back to an instruction that 

will set the sync bit and then generate D=4 and T2 can roll back to an instruction that 

would attempt to read D=3 from the memory.  

In the next few sections we present checkpointing and rollback techniques to 

address the above recovery issues and also to highlight the benefits achieved by the use 

of MNoC. 
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Our MNoC-based recovery approach extends previous checkpointing methods 
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interval and logging modified data in recovery buffers. The rollback process involves 

the restoration of logged data and the restart of computation from the saved checkpoint 

time. Dual modular redundancy of each processor pipeline is used for error detection; 

data mismatches are flagged as errors. Figure 7 provides an overview of the mechanics 

of the error recovery scheme. 

 

 

Figure 7: Error recovery scheme using MNoC 
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smaller, more frequent checkpoints may be required. The size of the internal register 

buffer for each checkpoint is equal to the number of internal registers. A checkpoint 

counter guides the checkpointing process. The value of the counter is incremented 

automatically every checkpoint interval. The number of simultaneously active 

checkpoints will be a research parameter.  

The L1 recovery buffer is the main sub-module of the error monitoring system. 

If data in the recovery buffer needs to be restored, a rollback control state machine is 

used to coordinate the recovery. This unit conducts the checkpointing and rollback 

process for each node. Every node houses an error detection system to gather the error 

signals and transport them to the central processor, the monitor executive processor 

(MEP).  Following processing, a rollback response message is generated by the MEP. 

Figure 8 illustrates the error detection system in a node.  

3.3.1.1. Duplicate pipeline  

For each multiprocessor node processor, the processor pipeline is duplicated and 

fed with the same instruction sequence as the main pipeline. All accesses to the internal 

register file and the L1 cache are compared with those of from the duplicate pipeline 

and any error is flagged. The current DMR implementation is a simplified version of 

the one used by the IBM G5 processor [20].  

3.3.1.2. Error detection comparators  

These comparators are situated at the input of the L1 Cache and at the input of 

the internal register file for every node in the multiprocessor system. These comparators 

detect any data mismatches created by the redundant processor pipelines. As shown in 
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Figure 8, the comparators operate in parallel with data accesses, outside of the critical 

path. 

 

Figure 8: Error detection system using MNoC 
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gathers error data and sends out rollback signals to associated recovery units. As shown 

in Figure 8, the Error Data Register (EDR) is composed of the following fields: 

    
L1 

Cache 

To duplicate 
Pipeline 

Data Bus 

Instruction 

Pipeline 

Instruction Result Bus 

C 

C 

To/From 
L2 Cache 

R 

 Rollback 

  Control 

Reg 
Buffer 

Reg 
File 

From duplicate 
Pipeline 
 
Comparator for 
error detection 
 
Network Router 
 

  C 

R 

RECOVERY  
    UNIT 

R 

 MEP 

Error Data 
Register 

Rollback 
Signal 

Processing Node 

Control 
Interface 

X-bar 

ERROR 
MONITOR 

Interface 

Checkpoint 

Counter 

NODE 
ID  

    
L1 

Buffer 



 

 26 

 

EDR[1:0] - the error signals from each of the two comparators, EDR[9:2] -  the current 

checkpoint counter value, EDR[13:10] - the pre-programmed NODE ID of the node. 

The EDR is read through a MNoC router and is forwarded to a MEP for further 

processing. 

NODE ID information is used by the MEP to determine the source of the error 

data. The MEP uses this information in conjunction with the assignment of tasks to 

processors to coordinate a checkpoint recovery response. Specific processors involved 

in the rollback are identified. 

3.3.1.4. Error Data 

For 16 processors, the EDR will consist of 14 bits of information. This can be 

scaled appropriately for up to 128 cores. To protect stored data, it is assumed that the 

internal register file, register buffer, L1 cache, L1 buffer, and L2 cache are all protected 

by error correction codes (ECC) to correct soft errors in these memory units. This 

feature is omitted from Figure 8 for clarity. 

3.3.1.5. Incorporating MNoC  

The error data generated by each node is stored in their respective error 

monitors. This data is transported to the nearest MEP via MNoC so that a rollback 

signal can be generated for the appropriate nodes in the multiprocessor system. The 

MNoC implementation requires a router at every error monitor as shown in Figure 8. 

Due to the critical nature of error detection, a priority channel is allotted for the quick 

transport of error data to the MEP. When the MEP receives the error data, the NODE 

ID is used to identify affected processors. A rollback message that consists of a rollback 

signal and a checkpoint number is then sent to the affected processors.  
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3.3.2. Checkpoint Process 

As shown in Figure 7, checkpointed memory units include the L1 cache and the 

internal processor registers. The checkpoint counter stores a checkpoint number (CN) 

whose value is incremented automatically every pre-programmed interval that is at least 

equal to the error detection latency. Whenever a write access is made to any of the two 

memory units, the current checkpoint number (CNi) is tagged to the written data. 

However, before the data is written, the checkpoint control checks to determine 

whether the previous checkpoint number tagged to the old data at that location is less 

than the current checkpoint number. If yes, the old data was modified in the previous 

checkpoint interval and should hence be logged in the buffer before new data is written 

to the location. After new data is written, its corresponding checkpoint number is 

updated to the current value in the checkpoint counter. Figure 9 summarizes this 

checkpointing process.  

 

3.3.3. Rollback Process 

The recovery unit initiates the rollback process in each node to restart the 

execution of the system from a previous safe execution point. As soon as the rollback 

signal is received from the MEP, the following actions are performed by the local 

controller. 
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Figure 9: Illustrating the checkpoint process 

 

Rollback Steps for the processor: 

a. The recovery buffer freezes its checkpoint state and no pending instructions 

are allowed to update. 

b. Data corresponding to the checkpoint interval is copied from the L1 buffer 

to the L1 cache. The remaining locations in the L1 cache are invalidated.  

c. The L1 buffer is reset 

d. The saved register state in the recovery buffer is restored 

e. The instruction fetch is restarted. 

Note that we need to store the checkpointed data for two previous checkpoint 

intervals. This is necessary to accommodate a situation where in the error that occurs in 

a previous checkpoint interval is detected in the following checkpoint interval. In this 
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case, the system must rollback by two checkpoints instead of one, since the last 

checkpoint was taken on an error data which is not desirable for restoration of the 

system state. Hence, in case of an error we always rollback the system by two 

checkpoints instead of one.  

The MEP would need to send the checkpoint number to which each 

participating processor needs to rollback to ensure that every processor is aware of it. 

This may not seem necessary since the checkpoints are synchronized, however, the 

rollback message from the MEP to each processor may not reach at the same time due 

to unpredictable network delays. In such a situation the processor to which the rollback 

message reaches last might have just hopped a checkpoint interval. In this case that 

processor will not know to which past checkpoint number it should rollback. 

 

Figure 10: A closer look at the error detection latency on timeline 

 

3.3.4. Error detection latency 

Error detection latency, denoted by Terr_lat, indicates the time interval between 
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be split into multiple sections. Figure 10 depicts the latency on a timeline. Individual 

components of the time include: 

Terr2samp – The time from when the error data is written to the EDR to the time when 

it is read by the network.  

Tsamp2mep – The time from when the data in EDR is read by the network to the time 

when it reaches the MEP. 

Tmep2resp – The time spent in the MEP to calculate the response (i.e. rollback 

information) 

Tresp2rb – The time spent transporting the rollback signal to the recovery unit in an 

affected node. 

3.3.5. MNoC deliberation 

The timeline in Figure 10 suggests that Terr_lat can be reduced significantly by 

optimizing the interconnection between an error monitor and the MEP. This 

enhancement has a direct impact on the parameters Tsamp2mep and Tresp2rb. The use 

of MNoC reduces these values, resulting in a faster error response. Another advantage 

of keeping Terr_lat as low as possible is that checkpointing can be carried out more 

frequently, if necessary.  

3.4. Experiments and results 

The checkpointing and rollback control, checkpoint counter, L1 and register file 

buffers, the error detection unit and the error monitors described in section 3.3 were 

implemented in the SESC [43] architectural simulator. The configuration of the 

simulator is summarized in Table 1. Each core is assumed to contain 24 thermal, 8 

delay and 1 error monitor, which are all interfaced to the MNoC in a manner described 
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in [1]. MNoC latency numbers for 8, 16 and 32 cores in the presence of thermal, delay 

and error monitor traffic were estimated using our modified PopNet simulator. These 

results were used in assessing the performance impact on the multiprocessor rollback 

recovery. Four benchmarks from the SPLASH2 suite, Ocean, Radix, Lu and FFT, were 

run on the multicore system, each for about 100 million cycles. 

Table 1: Experimental Setup  

 

Simulator SESC multiprocessor simulator 

Number of Processors 8, 16, 32 

Processor Configuration Alpha264 EV6 -like 

L1 $ = 32KB (private, writeback) 

L2 $ = 1 MB (shared, writeback) 

32 Internal registers (64bit) 

Soft Error Rate (SER) 1 in million cycles 

Checkpointed components L1 $, Internal registers checkpointed every 1 million cycles 

Benchmarks Ocean, Radix, LU, FFT (100 million instructions each) 

 

3.4.1. Simulation model 

The SESC multiprocessor simulator was modified to evaluate the benefits of 

MNoC for a multiprocessor rollback recovery system. The following modifications 

were implemented in the SESC simulator to better suit our experimental need. 

a) Checkpoint counter: As discussed earlier, we needed a checkpoint counter to 

keep track of the current checkpoint interval ID and also to advance the interval 

periodically. The simulator was updated with this additional feature. 
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b) L1 buffer, internal register buffer: Section 3.3.1 discussed the role of the L1 

buffer and the internal register buffer in the checkpointing process. The 

functionality of these buffers was incorporated into the simulator. 

c) Recovery unit: As discussed in section 3.3.3, the recovery unit plays a major role 

in rollback recovery. The state machine that controls the checkpoint and 

rollback process was implemented closely with the processor core, the L1 cache 

and their respective buffers. 

d) Error detection system: Pipeline duplication was performed for our DMR 

approach. Also, we modified the simulator to use a comparator at the data 

interface between the pipeline write back stage and the L1 cache and the 

interface between the write back stage and the register file. These comparators 

interface to the error data register in the error monitor that is connected to the 

MNoC.  

e) MNoC: This interconnect has been modeled using the Popnet network simulator 

[63]. 

f) MEP: The MEP could be implemented as a custom state machine or we could 

use a dedicated processor to carry out MEP tasks. We dedicated one processor 

in our multicore system for the MEP. 

3.4.2. MEP software flow for rollback recovery 

The multiprocessor system under consideration will likely have groups of 

processing nodes that share tasks. For example, in a system consisting of 16 nodes, 4 

nodes might run a mutually-shared application, while the next four perform a separate 

shared application. In such a scenario, only the nodes affected by an error require 
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rollback. In our experiments, the MEP software consults a static lookup table in which, 

each entry is loaded with the processor identification (PID) along with the ID of the 

application that it runs for all the cores in the system. When the MEP receives an error 

data (which is annotated by the NODE_ID), it is indexed to extract the application ID. 

The MEP then sends out the recovery to all the cores that are tagged with this 

application ID. The rest of the rollback steps are performed inside the individual cores 

as described earlier. 

3.4.3. Impact of variation in MNoC delay on recovery performance 

As the number of cores is increased from 8 to 32, there is a proportional 

increase in the number of error, thermal, and delay monitors. Due to this, the network 

traffic and hence the network delays increase significantly. Using the corresponding 

latencies offered by the MNoC for these varying workloads (as derived in [1]), the 

overall impact on the recovery performance has been studied. For comparison, we 

assume two systems, one in which MNoC is used as an interconnect for transporting the 

monitor data traffic to the MEP and the control action from the MEP back to the cores 

and another in which MNoC is replaced by a hypothetical interconnect that has a 

structure which is similar to MNoC but has zero latency. By this way we can accurately 

measure the impact of increasing MNoC delay on the recovery performance. In both the 

systems, checkpointing, rollback and error detection systems are active. In this 

experiment we assume the presence of soft errors that strike at an average rate of once 

in a million cycles. The graph in Figure 11 shows the performance impact for four 

benchmarks. The performance impact is not more than 0.1% for a 32 core system. The 

performance degrades with increasing MNoC delay because it contributes to 



 

 34 

 

the rollback latency and hence the rollback overhead.  

The above experiment assumes the use of a regular channel in the MNoC. It was 

shown in [1] that the priority channel incurs a much lower latency than the regular 

channel, almost in the range of 20-30 cycles for up to 32 cores and above, provided the 

priority channel traffic is about 5% of the regular channel traffic. Since, soft errors have 

been shown to be very infrequent, the use of a priority channel is well justified. The 

impact on the recovery performance due to MNoC latency, when a priority channel is 

used, will be less than 0.01%. This is a 10x improvement over the regular channel 

MNoC case.   

 
 

Figure 11: Impact of MNoC delay on the recovery performance as compared to 

non-MNoC case having a zero latency interconnect 
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The graph in Figure 12 shows the impact of MNoC delay on the multiprocessor 

recovery performance when compared to a system that did not have any faults. This 

result helps us visualize the contribution of not only the MNoC delay but also the 

rollback overhead to the overall performance degradation. We see that the performance 

degrades by less than 1% for a 32 core system. 

3.4.4. Impact of increasing error rate on recovery performance 

The motivation behind this experiment is to assess the performance of MNoC 

when applied for errors other than soft errors which are much more frequent. For 

instance, delay-related errors arising due to the fluctuations in the supply voltage or 

voltage droops are a major concern. Similarly, dynamic voltage scaling (DVS) using 

delay error detection and correction is performed by reducing the supply voltage below 

the point of first failure (PoFF) until the error rate does not exceed 0.1% [37] or 0.04% 

[38] to achieve a higher overall energy gain. This experiment studies the performance 

of MNoC-based error recovery when employed in such relatively high error rate 
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Figure 12: Performance degradation due to MNoC delay and rollback overhead 
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scenarios. 

As in the previous experiment, we consider two systems, one in which MNoC is used as 

interconnect and the other in which a hypothetical zero latency interconnect is used. 

This comparison across various error rates, number of cores and benchmarks will 

accurately model the impact of increasing MNoC delay on the recovery performance. 

The graph in Figure 13 shows that for error rates as high as 0.01% (i.e. once every 

10000 cycles) the impact of MNoC delay on the recovery performance for a 32 core 

system is less than 0.6%.  The effect on system performance is noted next.  
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Figure 13: Impact of increasing error rate on recovery performance for a 

multicore system compared to non-MNoC case having zero latency 
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The graph in Figure 14 shows the impact of the increasing error rate on the 

recovery performance when compared to a system with no faults. This indicates the 

contribution of the MNoC delay and the rollback overhead to the overall performance 

degradation. We see that the performance degrades by a significant margin as the error 

rate increases to 0.01% for a 32 core system. 

In conclusion, the use of MNoC for various kinds of error monitors is practical. 

This result motivates us to look at further enhanced experiments that involve 

collaboration between different kinds of monitors like the architectural vulnerability 

monitor that could work with the error monitor in providing better overall power and 

performance. 
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Figure 14: Impact of increasing error rate on recovery performance due to the 

MNoC latency and rollback overhead 
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CHAPTER 4 

MULTICORE SOFT ERROR RATE STABILIZATION USING ADAPTIVE 

DUAL MODULAR REDUNDANCY 

4.1. Introduction 

Previous work by Soundararajan et al. [27] assesses the impact of various DVFS 

schemes on AVF for a single core. Hence it allows them to choose a specific DVFS 

scheme that optimizes the architectural vulnerability factor (AVF) the best, resulting in 

a reduced reliability impact. In contrast to [27] and [28], a system is developed that 

maintains the reliability of a multicore chip under a specified target failure-in-time 

(FIT) error rate while thermal-aware DVFS is performed. The reliability impact of 

DVFS is countered by a proportional increase in the amount of error protection in terms 

of increased DMR. To perform this action, a chain of relationships between the 

instantaneous values of voltage, frequency, soft error rate (SER) and AVF are derived to 

determine an optimum AVF threshold value for each processor. Once the AVF 

threshold is set, redundancy is enabled (disabled) when the instantaneous AVF crosses 

above (below) this threshold. The trend graphs in Figure 15 illustrate our idea. 

Due to the masking nature of the AVF, the effective SER of a chip can be 

written as follows [8]: 

Effective_SER = AVF * Raw_SER   -------------- (4.1) 

If DMR-based error protection is always provided, the effects of SER can be 

completely eliminated. However, for a given SER target, if AVF information is 

exploited, it is not necessary to provide error protection 100% of the time. Instead, it 
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suffices to provide protection to a structure only when the AVF of that structure 

exceeds a predetermined threshold. Thus we can imagine the term AVF in equation 

(4.1) to be an AVF threshold since any errors occurring when AVF > AVF-threshold are 

corrected by the protection that becomes enabled.  

Effective_SER = AVF-threshold * Raw_SER   -------------- (4.2) 

Our goal is to maintain the Effective_SER constant as required by the chip 

specifications in the presence of a DVFS scheme. AVF is the probability that a bit 

contributes to the final output of the program. This behavior is completely dependent on 
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Figure 15: Conceptualization of collaboration between AVF, voltage and 

frequency information from across multicores to dynamically arrive at an AVF 

threshold value. Refer eq. (1) and (2) as well. 
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the program behavior and flow. Since a program execution is cycle dependent, AVF 

seems to be independent of frequency of operation of a processor as shown in Figure 14 

(a). Referring to Figure 15 (d), AVF does not change with supply voltage [27]. Since 

AVF is based on the utilization of a structure, the processor operating frequency affects 

the instruction flow rate through the structure and changes its AVF [27]. SER has been 

shown to increase in proportion to the operating frequency and reduce exponentially 

with the supply voltage [39]. In general, the variation in a structure’s AVF due to 

frequency or other parameters will not impact the AVF threshold, since the presence of 

a threshold will compensate for the increased AVF by enabling redundancy more 

frequently. However, a change in the raw SER due to temperature or voltage variation 

(Figure 15(b), (c)) requires a corresponding change in the AVF threshold to maintain a 

constant effective SER (refer to equation (4.2)). This observation forms the basis for the 

graphs in Figure (e), (f), (g). Hence, AVF threshold is a function of instantaneous supply 

voltage and frequency. The DVFS algorithm assumes that the frequency scales linearly 

with supply voltage as discussed in [12] and [13] (Figure 11(h)). 

4.2. Adaptive AVF Calculation and Use for DMR 

Our adaptive DMR approach requires real-time AVF computation and the use of 

an interconnect architecture for thermal monitor and system parameter data collection 

and processing. Three specific operating scenarios are considered in which real-time 

AVF information is used to enable/disable component-based DMR for the instruction 

queue (IQ), retirement order buffer (ROB), and load-store queue (LSQ): 

1. AVF information is used to enable/disable DMR for the components 

which exhibit an AVF below a predetermined, fixed threshold. 
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2. AVF information is used to enable/disable DMR for the components 

which exhibit an AVF below a dynamically-determined, variable threshold which 

changes with voltage and frequency updates. 

3. AVF information is ignored and DMR is always enabled for the 

components. 

Each of these cases is considered in the context of multicore DVFS performed 

in response to thermal events. 

4.3. Disabling DMR Components 

Power gating and clock gating are two common procedures to reduce the 

dynamic and static power consumption of processor structures.  

Power gating involves disabling the header transistor in the gates that help 

reduce the leakage in addition to overall power. Hence, this technique has an associated 

timing overhead. Hu et al. [67] have discussed this overhead in detail. Homayoun et al. 

[68] have discussed the potential of power gating for instruction queue in a superscalar 

processor, since this unit is usually responsible for 27% of a superscalar processor. 

Their technique has been shown to reduce up to 95% of leakage power during idle 

times.  

Clock gating has a comparatively lower timing overhead since it involves gating 

of the clock supply to a module rather than gating all the gates in the block [44]. This 

does not reduce the leakage power to a large extent. As a result, the power savings are 

expected to be lower than the power gating approach.  

Our work focuses on power savings of our variable AVF threshold approaches. 

Hence, we use power gating for the unused redundant resources (IQ, ROB or LD/ST 
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queue) in each processor and assume that the resulting performance overhead is 

tolerable. 

4.4. AVF Computation in a Multicore Environment 

AVF calculation for IQ, ROB, and LSQ components must occur periodically 

since AVF values typically show significant run time variation [9][29]. The AVF of 

each component is determined using microarchitectural parameters obtained from the 

processor. A linear combination of eight parameters can be combined [11] to describe 

the AVF for each component at an accuracy level approaching 90%. These parameters 

include: 

1. Stores flushed before data translation lookaside buffer response. 

2. Store buffer utilization  

3. Retirement order buffer empty cycles  

4. Retirement order buffer utilization  

5. Branch misprediction count  

6. Reservation station utilization 

7. Instruction queue utilization 

8. Total front-end instruction kill latency 

Each parameter is scaled and linearly combined to form the AVF estimates for 

the three components (IQ, ROB, LSQ) in each processor. Since our processor model is 

slightly less complex than the one used in [11], the coefficients for parameters 1, 6, and 

8 are set to zero. The five remaining parameters related to AVF calculation are 

commonly monitored in hardware in microprocessors. The required performance 
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monitoring hardware often consists of two parts [40], an event detector and an event 

counter.  

To evaluate AVF in our system, fixed event detectors and counters are needed to 

collect desired performance information. For example, store buffer (STB) utilization 

can be determined by monitoring store buffer write and read events. A corresponding 

counter for STB utilization increases by 1 when an STB write occurs and decreases by 1 

when an STB read occurs. Since the size of the STB is known, it is straightforward to 

calculate STB utilization from the counter. The same method works for the utilization 

calculation of an ROB, a reservation station and an instruction decode queue. Event 

detectors are connected to both the read and write signals of the target structure. A write 

event increments the counter and a read event decreases the counter for the target 

structure. To determine ROB empty cycles, an event detector is connected to the ROB 

empty signal. A count is incremented for each cycle the signal indicates an ROB empty. 

The similar method works for the branch misprediction counter. The event detector is 

connected to a misprediction signal. Whenever a misprediction happens, the counter 

increases by 1.  

Figure 16 shows the structure of a processor pipeline and the associated AVF 

monitoring circuitry. Event detectors are connected to the IQ, LSQ, ROB and branch 

predictor to probe operations in these units. Some detectors have been omitted from this 

figure for clarity. Five counters are connected to the corresponding detectors to obtain 

utilization information for the five parameters. The hardware cost of the performance 

counters and detectors is modest. AVF calculation is performed every 1024 cycles [11] 
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leading to a counter requirement of 5 * 10 bits = 50 bits. Each detector can be 

implemented in a small number of logic gates. 

The hardware overhead required to duplicate the IQ, LSQ, and ROB is also 

modest. For our architecture, based on an Alpha264, a total of 16, 112 and 176 thirty-

two bit values are needed (see Table 2). This analysis indicates a total of 9728 storage 

bits. As a result, the total hardware overhead for per-core AVF-enabled DMR is about 

200K transistors, a small percentage of the total processor transistor count, including 

cache.  

As shown in Figure 16, monitored information is transferred to a centralized 

processor using an interconnect network (MNoC), which is discussed later in this 
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Figure 16: AVF monitor for one pipeline 
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chapter. The centralized processor (MEP) calculates the AVF of each core based on the 

obtained counter values. 

 

4.5. Reliability-aware AVF threshold computation 

Processing components require a stable SER to operate properly. Due to the 

masking capability of the AVF, the effective SER of a processor core [8] is defined as: 

Effective_SER = AVF * Raw_SER        (4.3) 

The Raw_SER (total expected bit flip rate) is reduced to an Effective_SER 

since not all soft errors eventually affect the visible program output. Processors 

generally have a target effective_SER threshold (Target_SER) which is predefined for 

the architecture. To ensure proper operation, it is desirable to keep the instantaneous 

SER of the processor core components below the target SER. If the rate rises above the 

target SER threshold, resource redundancy can be used to mitigate errors.  Equation 

(4.3) can be rewritten as: 

Target_SER = AVF_threshold * Raw_SER       (4.4) 

which indicates that the target SER threshold is directly related to the 

AVF_threshold. If the Raw_SER is constant, the need for component redundancy can 

be directly determined from the measured AVF. A measured value for a component 

which is above the AVF threshold indicates the need for DMR. Otherwise, DMR can be 

deactivated.  

min1

)1(

0 10),(
f

xd

SERfVSER





       (4.5) 
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In most cases, however, Raw_SER is not constant. For example, the SER fault 

model in Equation (4.5) [12][39] assumes an exponential relationship for SER with 

respect to the frequency and supply voltage. In the equation, fmin corresponds to a 

normalized minimum-energy frequency [41] (e.g. an fmin of 0.2 indicates the minimum 

frequency is 20% of the maximum) and x indicates the relative scaling of f and V 

between their min and max values.  

Frequencies below fmin (typically 5% of fmax [41]) consume additional energy 

due to increased memory latency. Parameter d = 2 is based on the expected fault 

injection source [12]. SER0 is the raw SER corresponding to the maximum voltage and 

frequency used by the multicore. This model indicates that both AVF_threshold and 

instantaneous SER must be considered in determining the need for DMR. If raw SER 

increases, the AVF threshold used to enable redundancy must be reduced so that target 

SER levels are not crossed. In summary, the relationship between AVF_threshold and 

Target_SER can be expressed as: 

AVF_Threshold = Target_SER/SER(V,f)    (4.5) 

where SER(V, f) can be calculated using Equation (4.4). 

 

4.6. Example AVF threshold and overhead computation 

The AVF thresholds used for experimentation in this work were determined as 

follows. Mukherjee et al. [8] determined a FIT of approximately 200 to 2000 for the 

200,000 vulnerable bits in the SPARC64 microprocessor. Since each core (based on an 

Alpha264) in our example multicore has roughly 10% the number of vulnerable bits of 

a SPARC64, raw_SER in Equation (4.3) is set to 28 FIT. Additionally, Mukherjee et al. 
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determined a 1000 year mean time between failures (MTBF) for a SPARC64 and 

suggested that MTBF should be increased proportionally for each core when a 

multicore system is considered. For our 8 core system, an MBTF of 8000 years is used 

to achieve an overall 1000 year MTBF. This MTBF corresponds to a 14 FIT per core 

(109/8000*365*24), which is our target_SER. Using Equation (4.4), an AVF_threshold 

of 50% is determined.  

Our system dynamically computes AVF thresholds for each core in the system 

based on current frequency and voltage values. A two-level DVFS system is 

implemented which switches the voltage and frequency between more aggressive 

(2GHz, 1.2V) and less aggressive (1GHz, 0.84V) parameters. Since fmin for our system 

is equal to 0.05 * fmax, fmin is set to 100MHz/2GHz = 1/20 after normalization. When 

this value of fmin and the raw_SER (i.e. SER0) of 28 FIT are used in Equation (4.4), a 

new raw_SER at 0.84V, 1GHz is set to 10 times SER0. Using Equation (4.5), this value 

leads to an adjusted AVF_threshold of 25% for low voltage (0.84V). This adjustment 

can be applied since AVF values are influenced by frequency changes [27].   

 

4.7. Experimental Approach 

4.7.1. Monitor Network on Chip 

Our AVF-enabled DMR approach benefits from the use of a dedicated 

interconnect for monitor traffic. The five microarchitectural parameters listed in section 

4.3. are collected by an AVF monitor located in each processing core (Figure 16). The 

monitor interfaces to lightweight monitor network on chip (MNoC) routers which 

transport the information to a centralized monitor executive processor (MEP) [1]. The 
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irregular topology support provided by MNoC is suited to the distributed placement of 

an AVF monitor and one MNoC router in each core (Figure 17). In addition to AVF 

information, MNoC also transports thermal monitor information and control 

information which modulates per-core voltage and frequency. A total of 8 thermal 

monitors are allocated per core to achieve 0.1 degC accuracy [1].    

 

L1$

L2$

Shared Memory

MEP

R

R

Shared Bus

R

R  Router

MEP  Monitor Executive

Comparators for

error detection

L1$

AVF calculation

related counters

MNoC

Redundant

Units

P1 P8

 

Figure 17: An 8-core system for AVF-aware DMR throttling 
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4.7.2. AVF-aware DMR throttling 

Shared memory multiprocessor systems consisting of 8 and 16 cores are used for 

experimentation. Each processor contains the following duplicated pipeline structures: 

instruction queue, retirement-order buffer/reservation stations and load/store buffers. 

When DMR is enabled for a pipeline component, a per-core error detection system flags 

an error if a component output does not match the data from its counterpart. An AVF 

monitor, the 8 thermal monitors, and 3 error monitors per core are connected to an 

MNoC router via a multiplexer. The error monitor’s low bandwidth limits their impact 

on monitor data and processing.  

The MEP executes the following DMR throttling algorithm for each redundant 

component in each core. Initially, all redundancy is enabled. Each AVF monitor in the 

multiprocessor system is then sampled in a round-robin fashion. When the AVF values 

for a processor component falls below a predefined lower threshold, the MEP sends a 

disable signal for the replicated resource. If the AVF is greater than the threshold, the 

redundant resource is re-enabled. Sequentially, the DVFS algorithm on the MEP 

proceeds as follows: 

1. Measure the instantaneous values of temperature (T) and AVFs for each 

core in each sampling period  

2. If T > threshold, reduce V, f (perform DVFS) for affected core. Update 

AVF_Threshold values. 

3. If AVF > AVF_Threshold for a processor component, enable DMR for 

the component. Otherwise disable DMR. 
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The Update_AVF_Threshold routine required in the algorithm uses Equation 

(4.5).  

4.7.3. MNoC Performance and Interface to AVF monitor 

Based on previous work [42], the sampling rate of a thermal monitor is set to 1 

per 800 clock cycles at 500 MHz. The five architectural parameters (discussed earlier) 

needed for AVF calculation are transferred to the MEP once every 1024 system cycles. 

Since one MNoC router is used per core, the injection rate per MNoC router is 8 * (1 

per 800 cycles) + 5 * (1 per 1024) = 1 injection per 67 clock cycles. 

To assess the expected MNoC monitor data latency in MNoC, a latency 

experiment was performed for a 16 processor multicore system. As shown in Figure 18, 

as long as the injection rate per router is less than 1 per 17 cycles, MNoC latency 

remains consistently low. In our system, the injection rate per MNoC router is low 

 
 

Figure 18: Latency vs. injection rate per router for a 16 router system. Results 

were generated using a modified Popnet simulator 
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enough to provide an MNoC latency of less than 15 clock cycles. For 8 core 

multiprocessors, our experiments show a similar 15 cycle latency.  

 

4.7.4. Experimental Procedure and Results 

The simulation setup including the configuration of the simulated shared 

memory multiprocessor system is summarized in Table 2. A modified SESC [43]  

multiprocessor architectural simulator is used to evaluate the run-time effects of DVFS 

on a series of applications and the collection of information from one AVF (Figure 16) 

and 8 thermal monitors in each processor core. The MEP functionality is assigned to 

one of the cores in the simulated multicore system.  

The processor power model used by SESC is based on Wattch [44]. The cache 

power model is based on CACTI [45] and the temperature model for both (called 

SESCSpot) is based on HotSpot [42]. SESCSpot calculates the temperature of processor 

subblocks based on the power trace of the architecture in a post processing fashion. The 

processor architecture is modeled on an Alpha264 with a MIPS ISA and the floorplan 

of each processor core used for thermal modeling is based on prior work [46]. For our 

DVFS implementation we integrated SESCSpot into the core of the SESC simulator to 

obtain temperature readings at run-time. This approach enabled the MEP to sample the 

temperature readings at run-time and execute the DVFS algorithm.  

In order to assess the benefits of our AVF-based dual modular redundancy 

approach, the three specific operating scenarios are considered: 

1. AVF threshold fixed – DMR enabled when a component AVF passes a 

fixed threshold 
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2. AVF variable threshold – DMR enabled when a component AVF passes 

a threshold which varies with DVFS based on Equation (4.5).  

3. Full DMR: DMR is always enabled for all three components (IQ, ROB, 

and LSQ). 

All three of these cases are considered in the context of DVFS. The third case is 

the worst case scenario and it is used as a baseline for the other two. The first case 

considers the AVF threshold for a component to be fixed regardless of voltage and 

frequency. As a result, the AVF threshold must be set to a reduced value of 0.25 (25% 

of bits are important) which is used during both high voltage and low voltage usage. 

The second case considers the AVF threshold as dynamically varying as DVFS changes 

Table 2:  System Setup 

 

Simulator SESC multiprocessor simulator  

Technology 90 nm 

Num of processors 8, 16 

DVFS V, f levels f(high)=2GHz, V(high)=1.2V 

f(low)=1GHz, V(low)=0.84V 

Benchmarks SPLASH2 (400M instructions 

each) 

Processor configuration 

Instruction Issue 4 out-of-order 

I-cache 64KB, 4-way 

D-cache 64KB, 8-way, 2 cycles 

Branch Predictor Hybrid 

Branch Target Buffer 4K entries, 16-way 

Instruction Queue 16 entries 

Retirement Order Buffer 176 entries 

Load/Store Buffers 56/56 entries 

L2 Cache 1MB, 8-way, 10 cycles 
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voltage and frequency levels. AVF thresholds of between 25% and 50% are determined 

by the MEP for each processor component.  

The power benefits of a variable AVF threshold in enabling DMR are shown in 

Table 3 for four SPLASH2 benchmarks mapped to 8 and 16 cores. Portions of each 

benchmark are distributed across the cores. DMR is only performed on the specific 

processor components which have an AVF greater than the target threshold. On 

average, the variable AVF threshold approach (case 1) reduces core power (without 

cache) versus full DMR (case 3) by about 8% and 6%, respectively, for 8 and 16 core 

processors. An average power improvement of 6% and 2% is seen for the variable AVF 

threshold approach versus the fixed AVF threshold approach. In general, the cost of 

providing a stable SER through DMR is low. The power cost of including DMR is 

about 5% for 8 cores and 6% for 16 versus unprotected scenarios. The power 

Table 3: Power benefit and overhead results for 8 and 16 core system 

 

Test 

bench 

name 

Case 

8 core 16 core 

Power 

per core 

(W) 

Power 

benefit 

(%) 

Power 

per core 

(W) 

Power 

benefit 

(%) 

LU 

Full DMR 11.50  11.75  

Fixed threshold 10.88 5.39 11.19 4.77 

Variable threshold 10.80 6.09 11.10 5.53 

Ocean 

Full DMR 9.83  10.04  

Fixed threshold 9.63 2.03 9.63 4.08 

Variable threshold 9.13 7.12 9.29 7.47 

FMM 

Full DMR 14.28  10.28  

Fixed threshold 14.13 1.05 9.75 5.16 

Variable threshold 12.28 14.01 9.69 5.74 

Radix 

Full DMR 4.48  4.25  

Fixed threshold 4.38 2.23 4.13 2.82 

Variable threshold 4.12 8.04 3.94 7.29 
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consumption of MNoC (~250 mW) is considered in these calculations. The 8-core 

FMM application shows a particular savings with a variable versus fixed threshold 

(14% vs. 1%) since most AVF values are above the fixed threshold. 

Even though the precision of Wattch has not been discussed explicitly, it has 

been shown to have an accuracy of 10% and a relative accuracy of 10-13% [44]. Our 

power consumption results have been generated using Wattch. Since we measure the 

relative benefit, precison of Wattch is an important factor in determining the reliability 

of our results. 

The variability of AVF is apparent from Figure 19, which shows AVF variation 

across LU benchmark run time for an instruction queue for five traces of 100 samples. 

AVF values are measured over several time trials. In general, calculated AVF is mostly 

at or below 50% with frequent deviations over a wide range. 
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Figure 19: Five AVF traces (Y axis) for an instruction queue across 100 consecutive 

sampling intervals (X axis) for the LU benchmark 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

As the process technologies scale and the multicores begin to gain a 

commonplace status in the processor based systems, increasing number of on-chip 

monitors are expected to be deployed for ensuring high reliability, high performance 

and low power. A dedicated interconnect subsystem such as MNoC provides an 

efficient, lightweight and programmable on-chip monitor data communication solution. 

Different types of on-chip monitors for measuring temperature, critical path delay, 

processor error, processor performance among others can be seamlessly integrated 

using MNoC and used in several monitoring applications to achieve power, reliability 

and performance benefits.   

In this thesis, the thermal, error and AVF monitors that are spread across up to 

32 cores are integrated using MNoC. The information from these monitors are sampled 

in real-time by a central controller, MEP, and used for remedial applications such as 

shared memory error recovery, and reliability-and-thermal-aware DVFS for the 

multicore system.  

Use of MNoC for shared memory recovery approach is shown to provide 

flexibility in terms of selective recovery of only affected processors. This approach is 

found to be highly scalable for up to 32 cores since it suffered minimal performance 

degradation (less than 4%) as the monitor data communication delays increased.  

Looking further the remedial system was expanded to include AVF and thermal 

monitors in addition to the error monitors, for DVFS applications. Previous work has 
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suggested a considerable impact of voltage and frequency variations on the raw SER. 

AVF has indicated the presence of an inherent architectural masking that alleviates the 

effective SER to a large extent. For a given target effective SER, amount of redundancy 

to be enabled in the system can be smartly decided based on the run time AVF of the 

structures in the system, while being also sensitive to the raw SER fluctuations. In this 

collaborative monitoring approach, a 6% reduction in power is achieved versus always-

active redundancy while a stable multicore effective SER is maintained. 
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