
Putting Checkpoints to Work in Thread Level

Speculative Execution

Salman Khan
T

H
E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2010





Abstract

With the advent of Chip Multi Processors (CMPs), improving performance relies on

the programmers/compilers to expose thread level parallelism to the underlying hard-

ware. Unfortunately, this is a difficult and error-prone process for the programmers,

while state of the art compiler techniques are unable to provide significant benefits

for many classes of applications. An interesting alternative is offered by systems that

support Thread Level Speculation (TLS), which relieve the programmer and compiler

from checking for thread dependencies and instead use the hardware to enforce them.

Unfortunately, data misspeculation results in a high cost since all the intermedi-

ate results have to be discarded and threads have to roll backto the beginning of the

speculative task. For this reason intermediate checkpointing of the state of the TLS

threads has been proposed. When the violation does occur, wenow have to roll back

to a checkpoint before the violating instruction and not to the start of the task. How-

ever, previous work omits study of the microarchitectural details and implementation

issues that are essential for effective checkpointing. Further, checkpoints have only

been proposed and evaluated for a narrow class of benchmarks.

This thesis studies checkpoints on a state of the art TLS system running a variety

of benchmarks. The mechanisms required for checkpointing and the costs associated

are described. Hardware modifications required for making checkpointed execution

efficient in time and power are proposed and evaluated. Further, the need for accurately

identifying suitable points for placing checkpoints is established. Various techniques

for identifying these points are analysed in terms of both effectiveness and viability.

This includes an extensive evaluation of data dependence prediction techniques. The

results show that checkpointing thread level speculative execution results in consistent

power savings, and for many benchmarks leads to speedups as well.
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Chapter 1

Introduction

1.1 Chip Multiprocessors and Parallelisation

Since the early days of microprocessors, designs have evolved from simple, microcoded

processors to complex, wide superscalars with multiple levels of cache. This has led to

steadily improving performance, but at the cost of extremely complex designs. In the

last decade, it has become clear that adding complexity to single processors to achieve

greater performance is providing diminishing returns. Meanwhile, the number of tran-

sistors available per chip has continued to grow. This has led to Chip Multiprocessors

(CMPs) becoming the mainstream design choice for general purpose computing.

In the absence of coarse grained parallelism, the performance potential of Chip

Multiprocessors remains unrealised. To improve performance of sequential programs

on CMPs, attempts are made to extract thread level parallelism from the sequential

program flow. This may be done manually by the programmer or through various

compiler techniques. When a sequential program is parallelised conventionally, the

programmer or compiler needs to ensure that threads are freeof data dependences. If

data dependences do exist, threads must be carefully synchronised to ensure that no

violations occur. Specially for languages that support pointers, compile time disam-

biguation is often impossible. This means that compilers are often unable to extract

much parallelism from sequential code while still guaranteeing correctness. In the ab-

sence of speculation, inter-thread dependences constrainperformance and automated

1



2 Chapter 1. Introduction

thread partitioning seldom results in high performance (17).

Improving the performance of hard to parallelise programs through exploiting the

opportunities presented by CMPs has been an area of intense research in recent years.

This includes work in three broad categories. First, improved languages and program-

ming models to allow programmers to more easily expose parallelism. Second, im-

proved static analysis so that more parallelism can be extracted at compile time. And

third, the area this thesis is concerned with, techniques tospeculate on parallelism so

that precise static dependence analysis is no longer required. With Thread Level Spec-

ulation (TLS), the compiler only needs to divide the code into threads. It does not need

to guarantee that the multithreaded code is free of data dependences. If a dependence

violation occurs at run-time, the speculation hardware detects the violation and rolls

back the violating thread to a safe state. This mechanism allows the compiler to par-

allelise very aggressively and extract parallel threads from code that would otherwise

not be parallelisable.

While Thread Level Speculation has been shown to provide significant perfor-

mance improvements for hard to parallelise applications, questions remain about the

efficiency of speculative execution. Re-execution of misspeculated portions of the pro-

gram is wasteful in both time and energy. In case of a data dependence violation, TLS

mechanisms (discussed in Section 2.1) lead to re-executionof all the instructions of

the task in question, regardless of whether those instructions are dependent. The focus

of this thesis is the reduction of wasteful re-execution. First, it proposes mechanisms

for efficient checkpointing. Second, it uses dependence prediction as an effective way

of placing checkpointing.

1.2 Contributions

1.2.1 Efficient Checkpointing

This thesis presents new ways of addressing the inefficiencyof Thread Level Specu-

lative execution by proposing an intermediate checkpointing scheme based on depen-

dence prediction. The idea of checkpointing speculative tasks is not new, however,
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previous work in the area of checkpointing speculative tasks has left many open ques-

tions. This is specially true about checkpoint placement policies. This thesis addresses

implementation and policy details that are missing from previous work.

A detailed study is performed of the mechanisms involved in checkpointing and the

policy issues that it exposes. Specifically, checkpointingis applied to a state-of-the-

art TLS system that supports out of order spawning of speculative tasks. Observing

task behavior leads to the conclusion that the base TLS protocol is not well suited to

checkpointed execution. This motivates extensions in the TLS protocol to allow effec-

tive checkpointing. Further, a dependence predictor basedpolicy is used to effectively

place checkpoints.

1.2.2 Dependence Prediction

Dependence prediction is an important aspect of placing checkpoints effectively. De-

pendence predictors of varying levels of sophistication also have uses beyond check-

pointing. They are important in synchronising speculativetasks to avoid data depen-

dence violations (7; 42) and in resource management (53). This thesis proposes pro-

gram counter and hybrid dependence prediction techniques in addition to previous

address based ones, and performs a detailed evaluation of all these methods. It also

discusses the complexity of constructing these various predictors.

1.3 Structure

This thesis is organised as follows.

Chapter 2 provides background on Thread Level Speculation and techniques for

reducing unnecessary re-execution. This includes work in value prediction and in par-

ticular intermediate checkpointing. This chapter ends with details on the TLS hardware

support assumed for the remainder of the thesis.

Chapter 3 proposes mechanisms for allowing efficient intermediate checkpointing.

First, basic support for inserting intermediate checkpoints is described. Later, ways

of making checkpointing more efficient are presented, including a modified restart

mechanism and changes to the versioned memory system.
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Chapter 4 looks at the policy options for inserting checkpoints. These include

previously proposed stride checkpointing, and using dependence prediction to place

checkpoints. It goes on to describe and compare various dependence predictors. The

effects of overheads on checkpoint placement policy are also discussed.

Chapter 5 describes the simulator setup and the benchmarks used for evaluation.

The metrics used for evaluation are discussed and justified.This includes metrics for

dependence prediction and the performance of checkpointing schemes.

Chapter 6 performs a quantitative evaluation of the techniques described in this

thesis. First, there is an extensive evaluation of dependence predictors and a com-

parison of different schemes. Then, the savings due to checkpointing are evaluated

for various placement policies. The effects of the architectural extensions for efficient

checkpointing proposed in this thesis are demonstrated. Finally, a brief demonstration

is made of applying dependence prediction to synchronisation.

Chapter 7 looks at related work. This includes other uses of checkpointing, such

as early recycling of resources and fault tolerance as well as other schemes for check-

pointing speculative execution.

Finally, Chapter 8 concludes this thesis by summarising the contributions and

discussing avenues of future extension.



Chapter 2

Background

This chapter surveys the background for this work. The first part, in Section 2.1,

provides background on work on Thread Level Speculation (TLS), looking at the exe-

cution model, the architectural support needed, compiler and task selection issues and

the various systems proposed. This section also introducesthe terminology associated

with TLS, which is employed throughout the rest of the thesis. Then, in Section 2.2 var-

ious techniques to address the overhead of wasted re-execution in speculative execution

are discussed. Synchronisation aims to avoid speculative overlap when dependences

exist. Checkpointing reduces the re-execution required bychanging the granularity of

task units that need to be restarted on a violation. Value prediction techniques aim to

avoid restarts by predicting values for speculative uses which would otherwise have

caused a violation. Finally, in Section 2.3 the TLS mechanism assumed in the rest of

the thesis is detailed.

2.1 Thread Level Speculation

In the absence of coarse grained parallelism, Chip Multiprocessors (CMPs) generally

do not match the performance of superscalar processors of comparable die area. To

improve performance of sequential programs on CMPs, attempts are made to extract

thread level parallelism from the sequential program flow. This may be done manually

by the programmer or through various compiler techniques. When a sequential pro-

5



6 Chapter 2. Background

gram is parallelised conventionally, the programmer or compiler needs to ensure that

threads are free of data dependences. If a data dependence does exist, threads must be

carefully synchronised to ensure that no dependence violations occur. In many cases,

this cannot be effectively done by compilers. Specially forlanguages that support

pointers, compile time disambiguation is often impossible. This means that compilers

are often unable to extract much parallelism from sequential code while providing cor-

rectness guarantees. In the absence of speculation, inter-thread dependences constrain

performance and automated thread partitioning seldom results in high performance

(17).

Under the TLS execution model (also referred to in the literature as Speculative

Multithreading), a sequential application is split into threads which are then specula-

tively executed in parallel with the hope that their concurrent execution will not violate

sequential semantics (14; 16; 21; 38; 40). The control flow ofthe sequential code im-

poses a total order on the threads. A thread is said to be speculative if it is executing

such that it is overlapped with a part of the program that is earlier in sequential order.

Threads earlier in the sequential flow are termed less speculative (or predecessors)

with respect to later threads (successors). The least speculative thread being executed

is called theheador thesafe thread. During speculative execution of threads, reads are

monitored to detect data dependence violations. Writes maybe forwarded from less

speculative threads to more speculative ones in order to minimise violations. When ex-

ecuting tasks speculatively in parallel, correct behaviour is maintained by keeping the

tasks ordered and making sure that no data dependences are violated. If a data depen-

dence violation is detected, the consumer of the misspeculated data must besquashed

along with its successors. A squash can result in arestart, reverting the state back to a

safe position from which the thread can be re-executed. Alternatively, a thread can be

killed, where the thread is simply destroyed and no re-execution isattempted. In most

schemes a squash rolls the execution back to the start of the thread, but some propos-

als in the literature use periodiccheckpointingof threads (8) such that upon a squash

it is only necessary to roll the execution back to the closestsafe checkpointed state.

When the execution of a non-speculative thread completes itcommitsand the values

it generated can be moved to safe storage. To maintain sequential semantics, threads



2.1. Thread Level Speculation 7

must commit in order. When a thread commits, its immediate successor acquires non-

speculative status and is allowed to commit. When a speculative thread completes it

must wait for all predecessors to commit before it can commit. After committing, the

processor is free to start executing a new speculative thread.

2.1.1 Speculation Mechanism

To provide the desired memory behaviour, the data speculation hardware must provide

at a minimum:

1. A method for detecting true memory dependences, in order to determine when a

dependence has been violated.

2. A method for backing up and re-executing speculative loads and any instructions

that may be dependent upon them when the load causes a violation.

3. A method for buffering any data written during a speculative region of a program

so that it may be discarded when a violation occurs or permanently committed

at the right time.

Typical ways of achieving these are described below.

2.1.1.1 Tracking Dependences and Detecting Violations

Typically, all data written and read by a task is tracked in order to ensure that any

violations are detected. This may be done at different granularities. Some systems do

so for each word, others for cache lines.

A write marks a location as dirty. If the size of the write is equal to the granularity

of tracking, the location is marked asprotected. This is done so that dependence viola-

tions are not flagged for values that are produced in the same task that consumes them.

Any read is marked as anexposed readunless it is from a protected location. A data

dependence violation occurs when a task writes to a locationthat has been read by a

more speculative task with an exposed read.

Locations can be checked for dependence violations immediately upon a write

or dependences can be checked in bulk at the end of a task. Hardware speculation
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schemes usually perform the checks on each store, while software schemes usually do

the checks when a task finishes (6).

2.1.1.2 Buffering State

Speculative tasks generate speculative writes which cannot be merged with the state of

the system unless the task commits. These writes are stored separately, typically either

in the cache of the processor running the task or in a dedicated speculative store buffer.

If the task successfully commits, the state is merged with system state. If it is squashed

before it reaches completion, buffered state is discarded.A task only commits if it

completes executionandbecomes non-speculative. This ensures that tasks commit in

order, thus preserving sequential semantics. Garzaran et al. (13) provide a taxonomy

of buffering approaches along with their respective advantages.

2.1.1.3 Data Versioning

Each task has one version of each datum. If a number of speculative tasks are running

on a system, each has a different version of shared data. On commit, versions are

merged into system state in task order.

Some proposals allow one version per processor (27), while others support mul-

tiversioned caches and hence allow a speculative task to execute on a processor even

if commit is still pending for a previously executed task (34). Colohan et al. (8)

do not use versioned memory at all in the first level of cache, instead relying on a

multiversionedL2 cache. To allow efficient execution in the presence of shared data,

speculative systems also forward shared data from earlier threads to later threads.

2.1.1.4 Register Passing

TLS systems vary in the degree of direct communication between processors. Mul-

tiscalar (38) allows direct communication between processors, allowing passing of

live registers to freshly spawned tasks. Other proposals assume CMPs with no direct

communication between processors and in these, all communication has to take place

through shared memory. If all live registers are transferred from the parent task to
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the spawned task, there are no complications regarding initial processor state for the

speculative task. Otherwise, the issue needs to be addressed in the compiler or runtime

by ensuring either that the newly spawned task does not rely on any registers or that

register values are transferred.

2.1.1.5 Out-of-Order Spawn

In a TLS system, task ordering has to be maintained at all times. Some TLS proposals

can only do this for in-order spawns. This means that tasks can only be created in the

same order as sequential execution. This constraint can be enforced by only allowing

the most speculative task to spawn another task. This means that each task can spawn

at most one task. In-order spawn allows tasks to be spawned for only one loop level.

Other systems support out-of-order spawning as well (32; 34). In this case,any task

can spawn another speculative task. This allows nested tasks to safely be spawned.

Support for out-of-order spawn allows more parallelism to be extracted from nested

loops, nested function calls, loops within function calls,etc.

2.1.1.6 Control Speculation

Most of the TLS architectures discussed support only data speculation. This means

that speculation can only occur between points that areexecution equivalent1. How-

ever, the Superthreaded Architecture (45) supports control speculation, but not data

speculation. The Superthreaded compiler (44) can convert data dependences into con-

trol dependences, so that they can be enforced even without hardware data speculation

support. Mitosis (20; 30) supports both control and data speculation. It does so by

speculating between points that are not execution equivalent, but then addingcancel

instructions on incorrect paths. This ensures that tasks that are created along misspec-

ulated paths are killed.

1Two locations are said to be execution equivalent when one ofthem executes if and only if the other
does, and they both execute the same number of times.
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2.1.1.7 Spawn and Commit Mechanism

The hardware must provide a mechanism for starting tasks andfor signalling that tasks

have reached completion. Typically this is done through special spawnandcommitin-

structions or through software control handlers supportedby some specialised registers

in hardware, as in the case of the Hydra CMP (27).

2.1.2 Compilation

Thread Level Speculative execution typically requires some compiler support. The

compiler can be tasked with one or more of task selection, code generation and TLS

specific performance optimisations.

In most proposed systems, task selection is done staticallyat compile time. One

option is to use high level program structure to select tasks. This means constructs such

as loops and function calls are candidates for tasks. Proposals that use this approach

include the POSH (18) and Spice (31) compilers. Other systems take a more general

approach. Mitosis (30) identifiesspawning pairs, which are pairs of instructions that

meet certain conditions of control and data independence. The Min-Cut approach to

decomposition by Johnson et al. (15) applies graph theoretic algorithms to the control

flow graph, such that all basic blocks and combinations of basic blocks are candidates

for tasks. Other proposals that are not restricted to loops and functions for task selec-

tion include Multiscalar (48) and the compiler framework byBhowmik and Franklin

(1).

Not every candidate task performs well when speculated on. There are various

ways of pruning out inefficient tasks. One possibility is to perform a preliminary task

selection and then profile the resulting decomposition (18). Another is to leverage

information about dependences between tasks at compile time. When taking static de-

cisions on the quality of task decomposition, dependence relationships between tasks

are important. In traditional, non-speculative parallelisation, if pointers are present

pointer analysis needs to be performed to guarantee that there are no inter-task data

dependences. This can be done by comparing the read and writereferences between

them. Traditional pointer analysis techniques classify points-to relationships into those
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that definitely hold and those that may hold. TLS does not require guarantees of tasks

being dependence free, but would benefit in performance frominformation about the

likelihood of dependences across tasks. This information can be provided through a

dependence profile of the sequential program, or throughProbabilistic Pointer Anal-

ysis (4; 37). Dou and Cintra (9) take a different approach, constructing a model to

predict task runtime and then choosing tasks with predictedspeedups. Recently, the

use of hardware based performance counters to create speculative tasks at runtime has

been proposed (19), removing the need for making static compile time and/or profile

based decisions.

Further, in systems that do not support register communication between cores, the

compiler must ensure correctness by communicating all values between tasks through

memory.

Some compilers also perform TLS specific optimisations to make speculative exe-

cution more efficient. For instance, Zhai et al. (55) look at identifying dependent scalar

use and define pairs and then aggressively scheduling theUSEs late in the consumer

task and theDEFs early in the producer task. This increases overlap when synchro-

nisation is being used. In that work, the synchronisation isstatically performed at

compile time, but the same optimisations can apply to dynamic, hardware guided syn-

chronisation and checkpointing schemes. Steffan et al. (41) have noted that small loop

bodies can be made more TLS friendly through loop unrolling.The interaction of loop

unrolling with speculative execution is further studied byWang et al. (50). Software

value prediction code may also be inserted at compile time, as by Mitosis (20) and the

Superthreaded architecture (44). This is discussed in Section 2.2.3.

2.2 Reducing Wasted Re-execution

When there are no dependences between tasks, TLS works well to achieve parallelism

by overlapping execution of sections of code (Figure 2.1a).However, in many cases

violations occur and remove much of the overlapped execution (Figure 2.1b). Depen-

dence violations incur significant overhead. There have been a number of techniques

proposed to reduce this overhead. These are discussed below.
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2.2.1 Synchronisation

Synchronisation aims to avoid dependence violations by serialising parts of execution

such that values are not consumed before they are produced. This can reduce wasteful

re-execution (7; 25; 42; 54; 55).

In the work of Zhai et al. (54; 55), a compiler based approach is used to syn-

chronise scalar communication between tasks. The compileridentifies communicated

scalar values, then insertswait andsignalinstructions, each of which is associated with

the scalar through an architected register. Thewait instruction stalls until the value is

produced in the previous task and communicated through asignal. In this proposal,

since scalar values are explicitly communicated, correct execution depends on main-

taining correct synchronisation. This can be achieved trivially by placing all thesignal

instructions at the end of a task and all thewait instructions at the start. This has the

effect of serialising execution. To achieve overlap, eachsignal is placed as early as

possible and the associatedwait as late as possible. Also, to avoid deadlock,wait and

signal instructions for each synchronised scalar must appear on every possible path.

Further, an aggressive instruction scheduling algorithm is used to maximise overlap.

The work has also been extended to memory resident values (56). In this case, since

the underlying TLS mechanism ensures correctness, the optimisations can be more

aggressive.

There have been a number of hardware techniques proposed as well for synchronis-

ing speculative tasks. The Multiscalar architecture (12; 25) uses anAddress Resolution

Buffer to automatically synchronise dependent load-store pairs.

The Multiscalar approach relies on very close coupling between processors. In a

more general shared memory environment, different techniques have to be employed.

Cintra and Torrellas (7) achieve synchronisation by associating states with cache lines.

This state information is kept in aViolation Prediction Table. If a location sees viola-

tions, the system first tries to value predict, and if this fails it falls back on synchroni-

sation. When a task consumes data from a cache line that commonly causes a violation

and cannot be value predicted, it is stalled. At what point the consumer continues ex-

ecution depends on the state of the cache line. In theStall&Releasestate, it waits for

the first write to the line. On the other hand, in theStall&Wait state, it waits for all
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possible writers, i.e. until the consumer becomes non-speculative.

A slightly different approach is taken by Steffan et al. (42). This scheme also

attempts to value predict in the first instance and falls backon synchronisation when

the prediction confidence is low. However, instead of associating states with cache

lines, it marks loadinstructionsas being hard to predict. If a load instruction leads to

violations, it is added to aviolating loads list. This list is checked whenever a load

instruction executes, and if the Program Counter of an executing instruction is found

in the list, it is stalled. In this scheme, the load is always stalled until it becomes

non-speculative.

2.2.2 Checkpointing

Intermediate checkpointing schemes aim to reduce misspeculation penalty by allowing

partial rollback (Figure 2.1c). This is done by checkpointing the processor at some

point or points during the execution of a task, and upon detecting a violation, only

rolling back to the latest checkpoint which allows correct re-execution. Instead of

avoiding violations, as synchronisation does, checkpointing aims to reduce the cost of

violations.

The effect of checkpointing is quite similar to synchronisation when a violation

does occur. In fact synchronisation is more efficient than checkpointing in cases where

we can be sure that a violation will occur. On the other hand, if a violation occurs

rarely, but at a high cost, then synchronisation may cause unnecessary serialisation,

and checkpointing is a better alternative.

This can be understood better by inspecting the code snippetin Figure 2.3a. As-

sume that when thecondboolean is true, the resulting store in line 6 causes a squash

to all subsequent threads, and that whencond is false, these threads commit without

restart. In Figure 2.3b we can see what happens for the intermediate checkpointing

case when speculation fails. The checkpoint is able to save some of the execution,

however all the instructions executed after the checkpointare wastefully executed. By

synchronising instead, some power can be saved since the wasteful execution of these

instructions is avoided (Figure 2.2c). However, when the store is not performed, and

thus all threads commit, intermediate checkpointing is preferable. As is evident from
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Iteration 1
Iteration 2

More Speculative

Time

(a) TLS with no

dependence

violation.

Store

to *p

Iteration 1
Iteration 2

Restart

More Speculative

Time

(b) TLS with dependence

violation.

Useful Execution

Wasted Execution

Restart OverheadStore

to *p

Iteration 1
Iteration 2

Restart

More Speculative

Time

(c) With dependence violation and intermediate

checkpointing.

Figure 2.1: Example of Thread Level Speculation and checkpointing.

Figure 2.2d, we place a checkpoint before the load and proceed as normal. On the

other hand, by synchronising on that load, the second threadwill have to wait until it

becomes safe, since the store which it attempts to synchronise with, is never performed

by the less speculative thread (Figure 2.2e). This results in unnecessary serialisation.

From this example it is clear that from a performance point ofview intermedi-
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1: for(i=0;i<iters;i++){ 

2:   foo(); 

3:   var1 = *p; 

4:   cond = moo(); 

5:   if(cond){ 

6:     *p = var2; 

7:   } 

8: }

(a)

Store

to *p

Iteration 1
Iteration 2

Restart

More Speculative

Time

Useful Execution

Wasted Execution

Restart Overhead

(b) Intermediate checkpoint with restart.

Store

to *p

Iteration 1
Iteration 2

More Speculative

Time

(c) Synchronisation with

restart.

Iteration 1
Iteration 2

More Speculative

Time

(d) Checkpoint without

restart.

Iteration 1
Iteration 2

More Speculative

Time

(e) Synchronisation

without restart.

Figure 2.2: Comparing synchronisation and checkpointing: synchronising

around predicted dependences can be problematic. We look at a code snippet:

if cond is true, the store will restart subsequent tasks.

ate checkpointing is better (if we disregard the associatedoverhead of possible extra

restarts, which is typically small). In fact, even threads that will have to be killed or

restarted can indirectly provide performance benefits by prefetching for safer threads

(34; 52). However, in terms of number of instructions executed, and thus energy con-

sumed, synchronisation is typically better.

Checkpointing speculative tasks is studied by Colohan et al. (8). This is done in
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the context of supporting efficient speculation for long running database tasks. The

workload considered in that study consists of tasks that areoften more than 50,000

dynamic instructions in size, and show large numbers of cross-thread dependences.

The L2 cache is extended to maintain state for multiple thread contexts. Asub-thread

is created by checkpointing register state and saving subsequent speculative state in the

next thread context.

The decision to place a checkpoint can be taken in a variety ofways. Colohan et

al. (8) place checkpoints periodically on fixed instructionstrides. Waliullah and Sten-

strom (49) place intermediate checkpoints in transactionsin a Transactional Memory

system2, guiding checkpoint placement by identifying loads that may cause misspec-

ulation. This is done by maintaining aCritical Address Buffer. Whenever a violation

occurs, the address of the violating data is inserted into the buffer. The address of

every speculative load is checked against this buffer and ifit is found, a checkpoint is

inserted. Checkpoint placement schemes are explored in detail in Chapter 4.

2.2.3 Value Prediction

There have been a number of proposals that include prediction of speculative values so

as to avoid dependence violations. Value prediction has been suggested in both soft-

ware and hardware. Successfully predicting values communicated from less specula-

tive tasks to more speculative ones breaks dependences altogether and allows for more

overlap. The Spice proposal (31) splits loop iterations into as many speculative chunks

as there are cores available, and inserts code for predicting live-ins for each chunk. The

POSH compiler (18) performs value prediction as well, but only for what it identifies

as induction variables. Mitosis (20; 30) adopts a much more general method for value

prediction, inserting pre-computation slices at the startof speculative sections. This is

done by traversing the control flow graph backwards startingat the speculative section.

Instructions that produce the live-ins to the speculative section are selected. These se-

lected instructions are then summarised using profile information. For instance, rarely

taken control paths are pruned out, as are instructions thatthe live-ins are infrequently

2Transactional Memory (TM) is a speculative parallelisation technique related to TLS. TM systems
also suffer ineffiency due to wasteful re-execution.
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dependant on. These summarised instructions are then duplicated at the start of the

speculative section to form ap-slice. The live-ins produced by thesep-slicesare vali-

dated when the previous task has both ended and become non-speculative.

A number of proposals incorporate hardware value prediction for both register and

memory resident values. Cintra and Torrellas (7) propose a framework for learning and

predicting violations, and using value prediction in certain states. They only evaluate a

simple last value predictor and find that it does not improve performance significantly.

Steffan et al. (42) have a similar scheme that throttles value prediction and only em-

ploys it under certain circumstances. Values are predictedwhen the load in question

is likely to squashand the prediction confidence is high. If the prediction confidence

is low, the load is synchronised. This is discussed in Section 2.2.1. The scheme is

evaluated with an aggressive hybrid context and stride predictor.

Marcuello et al. (22) evaluate various value predictors on their Clustered Specu-

lative Multithreaded processor. They look at innermost loops in SPECint95 and pro-

pose a new predictor targeted specifically toward speculatively multithreaded systems,

called anew value predictor. They conclude that it is beneficial to value predict register

dependences, but that memory value prediction did not lead to much further improve-

ment.

Prior to this, Oplinger et al. (28), as part of a study to identify sources of poten-

tial performance improvement using speculative multithreading, observed that return

value prediction for procedures and stride value prediction for loops can improve per-

formance.

While synchronisation is analternative to value prediction, checkpointing and

value prediction can becombined. If a checkpoint is placed when a value is predicted,

the misprediction penalty is reduced. Unlike synchronisation, checkpointing does not

result in a stall.

2.3 Hardware Support for Speculative Multithreading

In this section, the details of the TLS execution model and the hardware to support it

are described. These form a baseline model for the rest of thethesis.
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The basic TLS model used is very similar to the one proposed byRenau et al.

(32; 34). Data versioning and dependence tracking are handled through having a mul-

tiversionedL1 cache. If a task attempts to perform a speculative load and there is no

space in theL1 cache to allocate a speculative line, the task cannot continue. In this

case, the most speculative task on the processor is restarted in an attempt to free some

speculative memory. TheL2 cache is shared and only contains non-speculative data.

Spawns and commits are performed through explicit instructions. When aspawnin-

struction is encountered, a new task is spawned off on a different processor, with the

Program Counter, Stack Pointer and some task ordering information copied over. No

other registers are copied, and hence the compiler is responsible for spilling registers

around spawn instructions and ensuring that live-ins for spawned tasks are commu-

nicated through memory. Since both the parent and child taskstart with the same

Program Counter, a mechanism needs to exist for each task to execute the correct

code. This is done through the spawn instruction returning different values. That is,

the standard return value register (r31) holds 0 in the parent and 1 in the child after the

spawn. A conditional branch placed by the compiler after thespawn instruction can

thus choose the correct code to execute. An example of such a spawn for loop level

speculation is shown in Figure 2.3.

Since out-of-order spawn is supported, there are no restrictions on which tasks are

allowed to spawn. This support is through splitting task ID ranges as proposed by

Renau et al. (34).

During speculative execution, whenever a task performs a store, it is immediately

written through theL1 cache to the bus, and becomes visible to all other processors. If,

for any task more speculative than the task performing the store, the address matches an

exposed load, the more speculative task is immediately restarted. Once a task reaches

the end of execution (executes acommit instruction), it becomes ready to commit.

A task cannot actually commit state until it becomes non-speculative. The commit

process itself involves propagating all speculatively written data to safe system state3,

followed by passing thecommit tokento the next more speculative task. This in turn

3This is done by writing all speculativeL1 lines associated with the committing task to theL2 cache,
and marking those lines in theL1 cache to be non-speculative.
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(a) Original loop. (b) With spawn inserted.

Figure 2.3: Example of a simple loop spawn insertion. When the spawn in-

struction executes, both tasks start at the next instruction. The parent has child

set to false and the child has it set to true.

informs the next task that it is now non-speculative and is allowed to commit.

Restarts are handled by restoring the Program Counter and Stack Pointer values

with which the task was spawned and starting execution. Since speculative tasks are

not allowed to assume live-ins through registers, the entire register file does not need

to be restored.

As an energy optimisation, the number of restarts is limited. If a task receives a

violation and restarts three times, it then stalls until it becomes non-speculative before

it can continue. This is to prevent tasks with many dependences from wasting too much

energy.





Chapter 3

Checkpointing Mechanism

Intermediate checkpointing of speculative tasks requiressome architectural support.

This chapter describes the mechanisms required to support efficient intermediate check-

pointing. First, in Section 3.1, the basic checkpointing support is described, and the

hardware requirements enumerated. In Section 3.2, cases are identified in which the

basic scheme leads to inefficiencies, and extensions to overcome these problems are

described.

3.1 Creation of Checkpoints

The insertion of checkpoints in the proposed scheme is quitestraightforward. When

a task is to becheckpointed, we simply spawn a new task which is an immediate suc-

cessor to it. This is a hardware initiated spawn, unlike the compiler inserted spawn

instruction mentioned in Section 2.1.1.7. We shall refer tothis new task as thecheck-

point. This process is shown in Figure 3.1, considering a simple case of two iterations

of a loop, one of which is executed speculatively. In the baseTLS case, the task receiv-

ing a violation restarts. In the checkpointing case, a checkpoint is inserted by spawning

off a new task. We assume that the checkpoint is inserted justbefore the read from*p

in line 3. Thischeckpointthen behaves exactly as normal, and restarts upon receiving

a violation. The difference is that thecheckpointedtask does not see a violation.

21
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1: for(i=0;i<iters;i++){ 

2:    foo(); 

3:    var1 = *p; 

4:    moo(); 

5:    *p = var2; 

6 : }

(a) Speculatively

parallelised code

Store

to *p

Iteration 1
Iteration 2

Restart

Useful Execution

Wasted Execution

Restart Overhead

More Speculative

Time

(b) Base TLS

Store

to *p

Iteration 1
Iteration 2

Restart

More Speculative

Time

(c) Checkpointed

Figure 3.1: Intermediate checkpointing showing two iterations.

Further, we take a snapshot of the register file so that the checkpoint can be restarted1.

We constrain the newly created checkpoint to remain on the same processor as the

checkpointed task. This simplifies the protocol and keeps overheads low because live

registers remain available in checkpointed execution. If we allowed checkpoints to be

started on a different processor, we would need complex support for communicating

live registers across processors. Keeping the checkpoint on the same processor is also

the obvious route to take with respect to data locality. Apart from pinning it to the

same processor as the parent, the checkpoint is treated as any other speculative task.

Any violations affecting the checkpoint only cause a restart to the checkpoint. If a

violation affects the checkpointed task, it is restarted and since the checkpoint is a

successor task, the checkpoint is killed. Any task can be checkpointed, even if it is

a checkpoint. The versioned memory mechanism ensures that tasks have the correct

state just as with normal tasks. It is worth observing that ifthe underlying TLS pro-

tocol only allows in-order tasks, only the most speculativetask can be checkpointed

through this mechanism. Since we use a base protocol that allows out-of-order spawn,

1In the base TLS protocol, no such snapshot is required when spawning a new task, since it is
assumed that there are no live registers and all communication to the new task is through memory. So
for non-checkpoint tasks, we only need to store the Program Counter and Stack Pointer in order to allow
restarts, as discussed in Section 2.3.



3.1. Creation of Checkpoints 23

we can checkpoint any task, whether it is the most speculative or not. However, as we

demonstrate in Section 3.2 through examples, there are someextensions required to

the TLS protocol to allow checkpointing to be effective in improving performance and

reducing power consumption.

3.1.1 Hardware Requirements

The hardware changes required to allow checkpointing speculative tasks are minimal.

The only difference between a normal spawn and a checkpoint is that a checkpoint

requires a snapshot of register state. This can be done either by sets of shadow regis-

ters in the processor, or by storing these snapshots in memory. If the former route is

chosen, snapshots can be taken very quickly, perhaps with notime penalty at all, but

the number of checkpoints is limited. Such shadow register files are already supported

in processors to allow recovery from branch mispredictions. If, on the other hand,

registers need to be transferred to memory for each checkpoint, there is an associated

latency. Storing the snapshot in memory need not cause a delay, since this process is

not on the critical path and can be buffered and performed lazily. However, rewinding

to a checkpoint would incur memory access latency in this case.

It is also possible to envision a hybrid process, which wouldkeep register state for

some checkpoints on the processor but allow older checkpoints or those less likely to

be used to be moved to memory. If those checkpoints that are more likely to be needed

can by successfully identified, this approach could give thebest of both worlds.

For the purpose of evaluation in this thesis, checkpointingthrough shadow regis-

ter files in the processor is modeled. The effects of supporting varying numbers of

checkpoints are evaluated in Section 6.2.

Checkpointing a task and continuing execution of the checkpoint on the same pro-

cessor presents the question ofwhenthe checkpoint begins execution. If, on a modern

pipelined processor, we wait for the instructions from the checkpointed task to drain

from the pipeline, there is a significant cost. There is no need to wait, however, and

checkpoint instructions can follow immediately. In fact, once a decision to check-

point is made, it is even possible to insert a checkpoint at aninstruction already in the

pipeline. It is important that loads and stores on either side of the checkpoint bound-
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ary are marked with the correct task ID in the versioned cache. Also, the register file

must be checkpointed at the state after the last instructionof the checkpointed task

in sequential execution. This can be achieved by performingthe checkpoint in two

stages. Once the instruction where the checkpoint is to be placed is identified, mark all

memory operations after that in sequential order with the child task ID. Second, when

the first instruction in the checkpoint task is ready to commit, take a snapshot of the

register file to associate with the checkpoint.

Apart from the mechanism for inserting checkpoints, there has to be hardware sup-

port for decidingwhen to insert a checkpoint. This can be done either by having

explicit checkpoint instructions or by making the decisionat runtime. Policies for

checkpoint insertion and the hardware requirements for employing each policy are left

for discussion in Chapter 4.

3.2 Efficient Checkpointing

Though the minimum support for inserting checkpoints is quite simple, as described

above, observing checkpointed execution reveals that thismay not be sufficient for

checkpointing to beefficientin terms of execution time and power consumption. This

is demonstrated through examples in the remainder of this chapter and hardware ex-

tensions for overcoming these shortcomings are proposed.

3.2.1 Selective Kills and Restarts

In TLS execution, a task may spawn a more speculative task andlater get killed or

restarted. In the base TLS mechanism, when a task is restarted, all the tasks that

are more speculative are killed. However, since the task re-executes from the begin-

ning, any tasks it spawned earlier (before restart) are now respawned2. Rewinding to a

checkpoint may change this behaviour.

We look at this issue by revisiting the program in Figure 2.2.This time, in Fig-

ure 3.2, we look at speculating on multiple iterations of theloop, assuming a four

2This assumes that the spawns are on a control path that is taken each time. If this is not true, the
tasks spawned before and after restart may be different.
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1:  fo r ( i=0 ; i< i te rs ; i++) {
2:    foo();
3:    var1 = *p;
4:    moo();
5:    *p = var2;
6 :  }

(a) Loop that is speculatively

executed.
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Iteration 2

Restart

Useful Execution

Wasted Execution
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(b) Base TLS
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(c) Checkpointed

Kill
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to *p

Iteration 1
Iteration 2

Restart

More Speculative

Time

Iteration 3

Iteration 4

(d) Checkpointed with selective

restart

Figure 3.2: Intermediate checkpointing with four processors and a dependence

violation. For simplicity only the first dependence violation is shown, and check-

points are only shown for the first speculative task.
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processor system. In Figure 3.2b, we look at the case withoutcheckpointing. We see

that a violating store top in the safe task 1 (running iteration 1) causes task 2 (running

iteration 2) to be restarted and tasks 3 and 4 to be killed. However, the restarted task

2 quickly causes new tasks to be spawned. Now, looking at the case in Figure 3.2c,

where the speculative task 2 is checkpointed immediately before the offending load,

we see that we save re-execution by only rewinding to the checkpoint. In this case, the

processors that are left idle because tasks 3 and 4 are killedremain idle until task 2

finishes executing.

Checkpointing causes this behaviour often since when tasksare not rolled back

completely, they do not necessarily respawn child tasks that have been killed. This is

specially true of loop iteration speculation where spawns are often at the very start of

tasks. This can cause or exacerbate load imbalance. This issue can berectifiedwith

some changes to the TLS protocol, which are described below.

When a task is restarted, we have to be careful to maintain correctness in more

speculative tasks. In the base protocol, this is achieved bysimply killing all tasks

more speculative than a task that is restarted. This is shownin Figure 3.3a. The

algorithm there shows that whenever a task receives a restart, it restarts itself, and

propagates a kill signal to the next more speculative task3. We observe that this is

excessively conservative. The only tasks that have to bekilled are those that were

spawned incorrectly. That is, those tasks that were spawnedby execution that turned

out to have misspeculated. So, in the updated restart algorithm, we kill each task

whose parent (spawning) task has been restarted or killed. Or, to state it differently,

for each task that is restarted or killed, all its children are killed. For other tasks that

are more speculative than any killed or restarted task, eventhough they were spawned

correctly, it is still possible that they have consumed invalid values forwarded from less

speculative tasks. Therefore, we restart all other tasks that are more speculative than

any killed or restarted task. This modified restart mechanism is shown in Figure 3.3b.

Here, the algorithm is expressed recursively.inMergeis used to check if a task’s parent

has been killed or restarted as part of the current chain of restarts and kills. Each task

3As described in Section 2.1.1.5, in out-of-order speculation the successor of a task is not necessarily
its child, and the predecessor not necessarily its parent. This distinction should be kept in mind during
the discussion of restart and kill mechanisms.
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restart(task){

    restartProcessing(task);

    kill(task.next);

}

kill(task) {

    killProcessing(task);

    kill(task.next);

}

(a) Restart in base protocol.

restart(task){

    task.inMerge = true;

    if(task.next.parent.inMerge)

    kill(task.next);

else

    restart(task.next);

    task.inMerge = false;

}

kill(task) {

    task.inMerge=true;

    killProcessing(task);

    if(task.next.parent.inMerge)

        kill(task.next);

    else

        restart(task.next);

    task.inMerge=false;

}

(b) Updated restart.

restart(task){

    task.inMerge = true;

    if(task.startTime

            > earliestRestartTime) {

        earliestRestartTime =

            max(earliestRestartTime,

        task.startTime);

        restartProcessing(task);

    }

    if(task.next.parent.inMerge)

        kill(task.next);

    else

        restart(task.next);

    task.inMerge = false;

}

kill(task) {

    task.inMerge=true;

    earliestRestartTime =

    max(earliestRestartTime,

        task.startTime);

    if(task.next.parent.inMerge)

        kill(task.next);

    else

        restart(task.next);

    task.inMerge=false;

}

(c) Updated restart with timestamp comparison.

Figure 3.3: Restart algorithm showing how restart and kill events are recur-

sively propagated.
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that is restarted or killed setsinMergeto true before passing on a kill/restart token. For

any task,task.nextis the immediately more speculative task.task.parentis the parent

or spawning task. By checking the value ofinMergefor the parent of each task, we

can ensure that all tasks that were spawned from misspeculated execuation are killed.

It is worth noting that the same effect can be achieved by associating a list of task IDs

with the kill or restart signal, with the ID of each task beingappended to it when it is

killed or restarted.

This issue is specific to out-of-order spawn, since if spawnsare only in-order, for

any given task, all tasks that are more speculative have beenspawned by it or its suc-

cessors. For in-order spawn, the algorithm in 3.3b reduces to killing all tasks more

speculative than the restarted one.

If the new restart algorithm is used, we get the situation in Figure 3.2d. The check-

point for task 2 gets restarted, but the checkpointed task does not receive a restart. This

means that the task for iteration 3 now receives a restart instead of a kill since its parent

is not in the restart/kill chain, and it immediately spawns off a new task 4. We see that

checkpointing is no longer causing processors to remain idle.

Going further, not all more speculative tasks need to even berestarted. A given task

requires a restart only if it has overlap with misspeculatedexecution4. This observation

has previously been made by Colohan et al. (8). In that work, timestamps are tracked

to compare the start time of a task receiving a violation withthe end time of more

speculative tasks. A more speculative task is only restarted if its end time is later than

the start time of the task receiving the violation.

We now extend the restart/kill mechanism to keep track of task start and end times.

To maintain a temporal ordering between tasks, each task is annotated with atimes-

tamp, which is the value of the system clock when the task begins execution. Since

the system studied here is a CMP with closely coupled processors, it is assumed that

real time is available to each task, and hence a total ordering can be maintained. In

situations where a total ordering cannot be established, the notion oflogical time, as

commonly used in distributed systems, can be employed to establish partial orderings

4Strictly speaking, a restart is only required if an incorrect value was forwarded from misspecu-
lated execution. The scheme can be made more precise by tracking forwarded values but we avoid the
complexity of that here.
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Violation

More Speculative

Time

*p =... 

...=*p

Restart

Task 1

Task 2

Task 3

Task 4

(a) Task 4 does not require a restart because it

has no overlap with misspeculated

execution.

Violation

More Speculative

*p =... 

...=*p

Restart

Task 1

Task 2

Task 3

Task 4

Restart

(b) Task 4 needs to be restarted because

there is no guarantee that incorrect

values are not consumed.

Figure 3.4: Example of selective restart using timestamps.

between tasks.

When a task receives a dependence violation and restarts, a kill/restart signal is

propagated. Any task receiving the signal has to be killed ifits parent was killed/restarted,

and otherwise restarted only if it has overlap with a task that was killed or restarted. It

is important to note that a timestamp comparison with only the task originally receiving

the violation isnot sufficient to guarantee correctness.

This restart requirement has to be enforced because in orderto maintain correct-

ness, we need to ensure that no invalid forwarded values can be kept. Since the correct-

ness of forwarded values is not guaranteed until the source task of the value commits,

the start time of any task needs to be compared withall predecessor tasks that get

killed or restarted, not just the task receiving a violation5. When the restart/kill signal

5The work by Colohan et al. (8) appears to only perform a timestamp comparison with what they
call a primary violation, which is the task receiving the dependence violation. Thiscan cause incor-
rect execution, as shown in Figure 3.4b. To guarantee correctness, timestamp comparisons need to be
performed recursively for more speculative tasks for each restarted task in the chain.
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is propagated, each task is checked against the earliest start time of any task that has

been killed or restarted in the chain. If there is any overlap, that is, the end time of

the task in question is later than the start time of any killed/restarted task, the more

speculative task is restarted. Otherwise nothing needs to be done. This is demon-

strated in Figure 3.4. In Figure 3.4a Task 4 does not have any overlap with either of

the restarted tasks 2 or 3, and so does not need to be restarted. On the other hand, in

Figure 3.4b, a different situation is shown, where Task 4 is overlapped with Task 3.

If Task 3 is restarted, there is no guarantee that the values consumed by Task 4 are

correct, and Task 4 must be restarted. It should be noted thatit is possible for Task 4

to consume incorrect speculative values even though it doesnot have any overlap with

the task originally receiving the data dependence violation (Task 2). The algorithm for

selectively restarting tasks using timestamps is shown in Figure 3.3c.

The effects of selective restart on checkpointed executionare evaluated in Sec-

tion 6.3.2.

3.2.2 Memory Optimisation

The advantage of treating checkpoints like any other speculative task is that the TLS

protocol needs very little change to support checkpoints. The primary disadvantage

appears in increased pressure on versioned memory. Each checkpoint has to maintain

a version of any speculative data it uses or produces. In the base TLS protocol, this

means allocating a speculative line for every block that hasbeen read by the check-

point. When no space is available in theL1 cache and allocation fails, the most specu-

lative task on the processor is restarted in attempt to free some speculative space. Our

experiments show that this causes many restarts. Data locality makes it likely that a

checkpoint will read locations read by its parent. This results in duplicate versions of

data. Colohan et. al. (8) avoid this issue by making theL2 cache multiversioned, and

by having no versioning in theL1 cache.

To deal with this problem, we propose some changes to the memory protocol.

These are based on a certain relationship between a checkpointed task and its check-

point. Specifically, it is guaranteed that a checkpointed task will haveno overlapped

execution with its checkpoint, and that the checkpoint willbe the immediately more



3.2. Efficient Checkpointing 31

speculative task. With these in mind, we can relax some of theconstraints of the data

versioning protocol. If the checkpoint accesses a locationthat is marked as an exposed

read by its parent, it does not need to allocate a line for it. This is because if that

read turns out to be a misspeculation, the parent will be restarted, killing the check-

point. Because there is no overlap between the checkpointedtask and its checkpoint,

any misspeculation will be because of a store from a task lessspeculative than the

checkpointed task. The checkpointed task cannot be a sourceof misspeculation in the

checkpoint. Since the checkpoint is pinned to the same processor as the checkpointed

task, there is no performance related reason to allocate a line for such accesses.

Note that stores still need to be buffered separately for thecheckpoint and its parent

in order to allow partial roll back, so checkpointing is not completely free of overhead

in speculative state buffering.

The effects of these changes on checkpointed execution are evaluated in Section 6.3.1.





Chapter 4

Checkpoint Placement Policy

The important policy question when checkpointing tasks is where to insert checkpoints.

Checkpoints should be placed so as to minimise wasteful re-execution. This means,

ideally, placing a checkpoint just before any load that violates. Since in any realistic

model of the system, a checkpoint will have some overhead, the insertion of check-

points has to be made while taking into account resource constraints. In this chapter,

the policy problem of inserting checkpoints is addressed inparts. First, in Section

4.1 the initial problem of identifying potential locationsfor checkpoints is addressed.

Section 4.1.3 approaches this problem by looking at variousways of predicting de-

pendences including address based, program counter based and hybrid schemes. In

Section 4.2 the resource constraints of the system are analysed and discussed. Section

4.3 brings these issues together to propose a policy for inserting checkpoints. Finally,

Section 4.4 looks at the viability of checkpointing policies and how they interact with

the instruction pipeline.

4.1 Identifying Checkpoint Locations

4.1.1 Static Checkpoints

One possibility for placing checkpoints is to have specialised instructions to insert

checkpoints. This would rely on static analysis to insert checkpoints at appropriate

locations. Techniques similar to those used for synchronising dependences (55) can be

33
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used. Other techniques, such as probabilistic pointer analysis (4; 37) can be useful for

checkpoint insertion as well. This thesis concentrates on runtime techniques and does

not evaluate static checkpoint insertion.

4.1.2 Stride Checkpoints

This is the simplest of the dynamic checkpointing policies evaluated in this thesis.

Stride checkpointing involves inserting a checkpoint every N instructions. This method

has been proposed by Colohan et al. (8). That work looks at large speculative tasks

composed of database transactions, explores different stride values but does not con-

sider any other method of placing checkpoints. The only additional hardware required

for placing checkpoints by instruction stride is a counter to keep track of the number

of instructions since the start of a task or since the previous checkpoint.

4.1.3 Checkpointing By Predicting Dependences

To make checkpointing more effective, checkpoints need to be placed intelligently be-

fore and as close as possible to violating loads. A perfect checkpointing scheme would

place a checkpoint just before every violating load and nowhere else. At runtime, it

is not possible to know with certainty which loads will lead to dependence violations,

so prediction has to be employed. Hence we look at methods forpredicting which

loads are likely to violate, and use this information for placing checkpoints. Many

dependence relationshipscan be known statically at compile time, and these can be

synchronised. This does not preclude using dependence prediction for checkpointing

to deal with dependences that are irregular or not analysable.

When studying dependence prediction for checkpointing, itis important to keep in

mind the relative costs of mispredictions. As long as checkpoints can be placed with

fairly low overhead, predicting violating loads is more important than total accuracy.

In other words, the cost of a False Negative is higher than that of a False Positive.

This, coupled with the observation that many dependences are infrequent and irregular,

means that directly using counter based bimodal tables suchas those typically used in

branch predictors is not an appropriate choice.
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4.1.3.1 Address Based Prediction

Waliullah and Stenstrom (49) looked at Transactional Memory systems and proposed

inserting checkpoints before loads from addresses that have been seen to violate pre-

viously. A similar approach was used by Cintra and Torrellas(7) for synchronising

dependences.

PC Address
Critical Address Table

Prediction

(a) To make a prediction the address is checked

against the Critical Address Table.

PC Address
Critical Address Table

Insert

(b) On a violation, the address is

inserted into the Critical

Address Table.

Figure 4.1: Address Predictor in action.

The address based predictor used in this thesis is similar tothe one used by Wali-

ullah and Stenstrom (49). Every time a violation occurs, theaddress of the violating

store is added to aCritical Address Buffer, as shown in Figure 4.1b. On every load,

the buffer is checked to see if the load address is critical (4.1a). If the address is found

in the buffer, it is potentially violating and a checkpoint can be inserted. The size of

this buffer can be kept quite small without losing much prediction accuracy. The effect

of the size of the buffer is evaluated in Section 6.1.1. A prediction table is added to

each processor. Compared to having a single system-wide buffer, this fragments the

training history and leads to slower training. However, per-processor tables are used

in order to keep prediction latency low. Latency also precludes adding dependence

prediction information to existing per-line speculative state, as is done by Cintra and

Torrellas (7). Since speculative state is kept in theL1 cache in the system modeled,

such an approach would add the equivalent of anL1 access on every prediction. The

latency issue is further addressed in Section 4.4.

A replacement policy for the buffer needs to be chosen. In Section 6.1.1, we eval-

uate random, Least Recently Used (LRU) and First-In-First-Out (FIFO) replacement

policies. The replacement policy can make a substantial difference to prediction accu-
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racy for small buffer sizes.

4.1.3.2 PC Based Prediction

Address based checkpointing works well in most cases, but there are some commonly

seen patterns in programs where it fails to identify dependant loads. These include

sliding array operations and pointer chasing. Examples areshown in Figure 4.2. In

Figure 4.2a, there is a dependence through a member of a different object pointed to

throughp for each iteration. Figure 4.2b shows a loop carried dependence through a

different element of arrayA[] for each iteration. Both of these constitute loop carried

dependences that are not predictable by address, since eachinstance of the dependence

is through a different address. It is clear, however, that inthis example, there is a pattern

to the dependences which should be predictable. For cases such as this, a prediction

can be made using the violation history ofinstructionsrather than memory addresses.

A similar approach was used by Moshovos et al. (25) and Steffan et al. (42) for

synchronisation.

while(p){

   foo();

   z = p->count;

   moo();

   p=p->next;

   p->count++; 

}

(a)

for(i=0; i<N; i++){

   res = foo();

   A[i+1] = A[i] + res;

   moo(); 

}

(b)

Figure 4.2: Address based checkpointing sometimes has trouble identifying

dependences. Dependences through p− >count and A are not predictable

through address.

A table based mechanism is used for Program Counter based dependence predic-

tion, similar to that used for address based prediction. Theonly change is that when a

violation occurs, the Program Counter of the instruction performing the exposed load

that led to the violation is inserted into theCritical PC Table, rather than the load

address. For each instruction, a prediction can be obtainedfor checking whether the
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Program Counter is contained in the criticality table1. If the PC is contained in this

table, a violation is predicted.

PC Address
Critical PC Table

Prediction

PC Translation Table

(a) To make a prediction the PC is checked against the

Critical PC Table.

PC Address
Critical PC Table

PC Translation Table

Insert

(b) On an exposed load the PC and

address are inserted in the

PC Translation Table.

PC Address
Critical PC Table

PC Translation Table

Insert

PC

(c) On a violation, the PC corresponding to

the address is inserted into the

Critical PC Table.

Figure 4.3: PC Predictor in action.

Predicting dependences through the Program Counter does present one complica-

tion. When a dependence violation occurs, the program counter of the violating load is

not directly available. The address of the violating store (and hence the violating load)

is known. This means that this scheme requires some way of associating the address of

an exposed load with the Program Counter of the instruction performing it. This can be

done through another table, which we refer to as thePC Translation Table. When an

1Only load instructions can be critical, so to save power the table needs to be checked only for these.
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exposed load occurs, the load address and the Program Counter are inserted into this

table, shown in Figure 4.3b. It should be noted that this table is not on the critical path.

The Program Counter corresponding to an address isonly required when a violation

occurs and the PC needs to be inserted into the Critical PC Table (4.3c). When making

a prediction, only the Critical PC Table needs to be accessed, as shown in Figure 4.3a.

Therefore some latency can be tolerated when accessing the PC Translation Table. The

size required for this table depends on how much data is speculatively read by a task.

The effects on predictor performance of both the Critical PCTable and the PC

Translation Table are discussed in Section 6.1.2.

4.1.3.3 Hybrid Prediction

Any system that runs a variety of workloads will encounter dependences that are pre-

dicted well through one kind of predictor but not the other. In fact, the same program

may show both kinds of behaviour. The obvious solution is to use hybrid predictors,

which employ both techniques.

Address Based 

Predictor

PC Based 

PredictorPC

Load Address

Prediction

Figure 4.4: A hybrid dependence predictor where the outputs of the predictors

are ORed.

The simplest way of achieving this is to haveboth address and program counter

based predictors, in which case a positive prediction is returned if either predicts a de-

pendence. That is, the outputs of the predictors areORed. This is shown in Figure 4.4.

To build a more conservative predictor, the outputs can beANDed.

A more sophisticated hybrid predictor can also be constructed. The presence of

dependences on some instructions can be identified better through load addresses, and

in others by the instruction address. This points to a construction where a program
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counter based meta-predictor decides on which table to use for a particular instruction.

Such a predictor is shown in Figure 4.5. The disadvantage of this predictor is that it is

more complex and slower to train.

Address Based 

Predictor

PC Based 

Predictor

M
u
x

Metapredictor

PC

Load Address

Prediction

Figure 4.5: A hybrid predictor. Based on the Program Counter, a meta-predictor

selects the prediction to use.

As with conventional hybrid branch predictors (24), the meta-predictor is updated

only when the predictors disagree, while the other components are always updated.

However, the meta-predictor is trained in a different manner than it traditionally is for

branch prediction. It was discussed in Section 4.1.3 that predicting violating loads cor-

rectly is more important than total accuracy. Keeping this in mind, the meta-predictor

is trained such that when the predictors disagree on a load that actually violates, the

meta-predictor is saturated in favour of the correct predictor. The counter is only in-

cremented/decremented in the opposite case.

Meta-predictors have been well studied in the branch prediction domain. They

have been used to select (11; 24) or combine (36) the outputs of individual predictors.

4.2 Dealing with Resource Constraints

In a realistic checkpointing system, there will be some limit on the number of check-

points it is possible to place per task. Further, there will be some overhead associated

with placing checkpoints. This may be in latency or in additional speculative buffer

state required, as discussed earlier in Section 3.2.2. In the presence of such limits



40 Chapter 4. Checkpoint Placement Policy

and costs, it may not be profitable to place a checkpoint on every positive prediction.

Hence, the insertion policy takes resource constraints into account.

4.3 Checkpoint Insertion Policy

Once a data dependence violation is predicted, the system has to decide whether or not

to insert a checkpoint. In the simplest case, we insert a checkpoint on every predicted

dependence. This can lead to very small tasks, and if we assume even a small overhead

for checkpointing, this does not remain efficient. The number of checkpoints available

may also be limited.

We construct a hybrid heuristic which takes these issues into account and becomes

more cautious about inserting a checkpoint as the number of checkpoints for a task

increases. The policy chosen for checkpointing is the following:

DoCheckpoint = (Dependence Predicted)∧ (CP< CPmax)∧
(

Size of Task>
C

CPmax
· (CP+1)

)

WhereCPmax is the maximum number of checkpoints allowed, andCP is the num-

ber of checkpoints already placed.Size of Taskis measured in the number of instruc-

tions from the start of the task, or the latest checkpoint if acheckpoint has already

been placed. Here, the constantC is the threshold for task size when choosing to place

the last available checkpoint ( whenCP= CPmax−1). The effect of the heuristic is to

have a low threshold for task size when a large number of checkpoints are available,

and increase it to the maximum valueC when there is only one more checkpoint avail-

able. The value forC is chosen experimentally to be 100. This heuristic is evaluated

in Section 6.2.

4.4 Microarchitectural Interactions

Beyond the basic architectural support for checkpoints discussed in the previous chap-

ter, checkpoint insertion schemes have their own interactions with the microarchitec-
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ture.

Even though we treat checkpoints as speculative tasks, the existing task spawning

mechanism may not be sufficient. When a checkpoint is inserted, it is important that

loads and stores on either side of the checkpoint boundary are marked with the correct

task ID in the versioned cache. This issue has been discussedbriefly in Section 3.1.1.

When (non-checkpoint) spawns are performed based on spawn instructions, the

spawn can be identified when the instruction is decoded, so tracking memory accesses

correctly is not problematic. Runtime dependence prediction and checkpoint insertion

is not always as straightforward, as explained below.

The stride case is simple. Since the decision to insert a checkpoint is based on

instruction counts, the instruction to be checkpointed canbe known even before it is

decoded.

For PC based checkpoints, if we assume a low latency prediction (reasonable based

on the small Critical PC Table used), this is straightforward as well. Once again, we

can have a prediction even before decode, since the prediction can be made when the

instruction is fetched.

Address based prediction is far more problematic. A prediction cannot be made

until the load address is available. The address may be computed late in the pipeline,

and out-of-order processors will already have reordered instructions. It is necessary for

correctnessthat a load which is in the parent thread not be marked as beingin the child

thread. If this does happen, it is possible that the checkpoint will receive a violation

thatshouldgo to its parent, resulting in execution not being rewound asfar as it should

be and possible incorrect state. The converse is a performance issue, but does not make

execution incorrect. This can be seen by considering the case where a load belonging

to the child thread gets marked with the parent’s task ID. If this location then receives

a violation, it is the parent task that gets restarted. This will result in correct execution

but with unnecessary re-execution.

This means, for the sake of correctness, the system either has to ensure that the

load in question does not get issued before any loads that it follows, or alternately

has to correct ID’s if this does occur. Another way of dealingwith the problem is to

conservatively place the checkpoint before the instruction that is ready to retire when
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the load to be checkpointed is identified. This will mean thatsome of the loads/stores

that belong to the checkpoint will have been issued with the parent’s ID. As mentioned

above, this has performance repercussions but is not a correctness issue. It also means

that if the checkpointis restarted by a violation through the load that was predictedto

squash, execution is rewound further back than is necessary.

We see that stride and PC based prediction are easier to implement, and PC based

prediction can deal with latency in obtaining predictions and hence can allow the use

of larger tables or more complicated prediction techniques.
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Evaluation Methodology

This chapter discusses the manner in which the checkpointing techniques and depen-

dence predictors presented in earlier chapters are evaluated.

The first issue discussed is that of evaluation metrics. To perform a quantitative

evaluation, meaningful measurements must be made and compared. Section 5.1 goes

through the metrics that are used for the evaluation and justifies their selection. Then,

Section 5.2 looks at the simulator used for obtaining these measurements. The config-

uration parameters of the system modeled are also given. Finally, in Section 5.3, the

benchmarks used for the evaluation are discussed.

5.1 Evaluation Metrics

5.1.1 Evaluating Dependence Predictors

In order to compare the performance of the dependence predictors evaluated, we must

look at metrics that reflect the usefulness of these predictors when used to place check-

points. This section discusses the metrics used for evaluation.

A confusion matrix for predictions and outcomes is shown in Table 5.1. If a load

is predicted as a dependence, and the prediction is correct,it is referred to as aTrue

Positive(TP). If it predicted as a dependence and is actually not a dependence, this is

a False Positive(FP). Similar terms are used for negative predictions as shown in the

table.

43
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Prediction Outcome

Dependence No Dependence

Dependence True Positive False Positive

No Dependence False Negative True Negative

Table 5.1: Prediction Outcomes.

Dependence prediction is a binary classification problem. The traditional measures

used for such predictors are Accuracy, Sensitivity and Specificity.

TheAccuracyof a predictor is simply the proportion of correct predictions made

out of the total number of predictions.

Accuracy=
TruePositives+TrueNegatives

TruePositives+FalsePositives+TrueNegatives+FalseNegatives

Sensitivity, also known as Recall, refers to the proportion of dependences that are

correctly predicted.

Sensitivity=
TruePositives

TruePositives+FalseNegatives

Specificityis the analogous measure for the negative case, i.e. the proportion of

no-dependance outcomes that are correctly predicted.

Speci f icity=
TrueNegatives

FalsePositives+TrueNegatives

There is one additional measure we look at. ThePrecision, also called thePos-

itive Predictive Value(PPV), of a predictor is a measure of the accuracy of positive

predictions.
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Precision=
TruePositives

TruePositives+FalsePositives

In the context of checkpointing, if we use a certain predictor directly for placing

checkpoints, the Sensitivity of the predictor tells us whatproportion of violating loads

are checkpointed, and the Precision tells us what proportion of checkpoints placed was

actually needed. The Accuracy and Specificity of the predictor are not as useful to

directly reflect the behaviour of a predictor when placing checkpoints. Therefore, for

the purposes of evaluating dependence predictors, the metrics we concentrate on are

Sensitivity and Precision.

Another commonly used measure employed is theF-measure. This is the weighted

harmonic mean between the Sensitivity and the Positive Predictive Value.

Fβ =
(1+β2)(Precision·Sensitivity)

β2 ·Precision+Sensitivity

Or,

Fβ =
(1+β2) ·TruePositives

((1+β2)TruePositives+β2FalseNegatives+FalsePositives)

The F-measure for a perfect predictor is 1, and the worst possible value is 0. The

F1-measure, whereβ = 1, evenly weights Sensitivity and Precision. Higher valuesfor

β weight the Sensitivity higher, and values lower than 1 weight the Precision higher.

The advantage of using theFβ-measure is that it reduces the performance of a predictor

to one easily comparable number. The disadvantage that follows is that the comparison

is only meaningful if the weighting chosen is reflective of the comparative advantage

of a useful checkpoint versus the cost of a wasted checkpoint. This depends on system

characteristics such as the overhead of placing a checkpoint and the re-execution saved

when a checkpoint is correctly saved. To keep the evaluationas general as possible,

over-reliance on this single measure is avoided.
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Benchmark Known Prediction Outcomes (%)

bzip2 78

crafty 71

gap 43

gzip 91

mcf 83

parser 63

twolf 95

vortex 94

vpr 64

Table 5.2: Percentage of Outcomes Known.

5.1.1.1 Measuring Dependence Predictor Performance

For the purpose of evaluating a dependence predictor, the outcome (as in Table 5.1)

has to be measured for each prediction made. However, not allpredictions have an

associated outcome. When a task receives a violation and is restarted or killed, apart

from the address receiving the violation, the outcomes for the loads performed by the

thread are not known. The outcomes known are those for violating loads and for all

loads within tasks that commit.

All results reported for dependence predictors in Chapter 6necessarily take into

account only known outcomes. Table 5.2 shows, for each benchmark, the fraction of

predictions made that have a known outcome. This fraction isfairly high, and is below

50% for only one benchmark (gap). This means that when evaluating predictors, we

are able to take into account a large portion of the predictions made.

5.1.2 Evaluating Checkpointing Schemes

Beyond the effectiveness of dependence predictors, the checkpoint insertion schemes

also need to be evaluated in terms of the savings they provide. Once again, an attempt
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1: for(i=0;i<iters;i++){ 

2:    foo(); 

3:    var1 = *p; 

4:   � oo(); 

5:    *p = var2; 

6 : }

(a)

Store

to *p

Iteration 1
Iteration 2

Restart

More Speculative

Time

�
oa ��

rom *p

�
aste �

Instructions

(b)

Figure 5.1: The instructions before the load from *p are not dependent, and

are wastefully re-executed. All the instructions from the start of the task to the

one immediately preceding the load are wasted instructions.

has been made to keep the evaluation as general as possible.

The purpose of checkpointing is to reduce wasteful re-execution. A direct measure

of wasteful re-execution is the number of unnecessarily squashed instructions. When a

task is squashed, the violated load and every instruction after that has to be re-executed.

However, in practice, there may be instructions between thestart of the task and the of-

fending load. These instructions do not have to be re-executed to maintain correctness,

and re-execution only occurs as a consequence of where task boundaries are placed.

Here these instuctions are referred to aswasted instructions. An example is shown in

Figure 5.1, where all the instructions before the load from*p in the speculative task

are wasted instructions.

As with dependence prediction, the evaluation must reflect both the savings and the

potential cost in overhead. Where savings in re-executed instructions are important, in

cases where there is a cost associated with placing a checkpoint, it is important to take

that into account. So, alongside the total savings in wastedinstructions, checkpointing

is also evaluated in wasted instructions saved per benchmark.

The checkpointing schemes are also evaluated using the traditional metrics of exe-
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cution time, power and energy.

5.2 Simulator

We conduct our experiments using the SESC simulator (33). SESC can model dif-

ferent processor architectures, such as single processors, chip multi-processors and

processors-in-memory. It models a full out-of-order pipeline with branch prediction,

caches, buses, and every other component of a modern processor necessary for accurate

simulation. The simulator leverages the MINT emulator (47)to generate instruction

objects, which the event driven SESC simulator then uses fortiming simulation.

The SESC simulator has been extended to include the checkpointing support de-

scribed in Chapter 3 and the dependence predictors described in Chapter 4.

The main microarchitectural features of the baseline system are listed in Table 5.3.

The system we simulate is a multicore with 4 processors, where each processor is 4-

issue out-of-order superscalar. For the TLS protocol we assume out-of-order spawning

(34). The latencies of all the caches were computed based on CACTI (43). The power

consumption numbers are extracted using CACTI and Wattch (2).

5.3 Benchmarks

We use the integer programs from the SPEC CPU 2000 benchmark suite running the

Reference data set. We use the entire suite excepteon, gccandperlbmk, which failed

to compile in our infrastructure. The TLS binaries were obtained with the POSH in-

frastructure (18). A subset of the SPEC CPU 2006 benchmarks is also used. These

areastar, bzip2, mcf andsphinx3, running the Training data set. The running times

for these benchmarks is much longer than for the SPEC 2000 programs, so the Train-

ing data set is used to keep simulation time feasible. This subset of SPEC 2006 was

chosen because it shows good TLS potential and is not trivialto parallelise (29). For

these benchmarks, high coverage loops have been selected for speculation.bzip2and

mcf show behaviour very similar to their SPEC2000 counterparts, hence they are not

discussed separately in the Evaluation chapter.
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Parameter TLS (4 cores)

Frequency 5GHz

Fetch/Issue/Retire Width 4, 4, 5

L1 ICache 16KB, 4-way, 2 cycles

L1 DCache 16KB, 4-way, 3 cycles

L2 Cache 1MB, 8-way, 10 cycles

Main Memory 500 cycles

I-Window/ROB 40, 100

Branch Predictor 16Kbit Hybrid

BTB/RAS 1K entries, 2-way, 32 entries

Cycles from Violation to Kill/Restart 12

Cycles to Spawn 12

Table 5.3: Architectural parameters used.

In order to compare sequential, TLS and checkpointed execution, we need to make

sure that the same code segments are executed in each case. Traditionally, this is en-

sured by executing a given number of instructions. For speculative systems, however,

the instruction count may differ depending on the amount of misspeculation. For this

reason, we placesimulation marksacross the code regions we wish to simulate and

make sure that evaluations are based on the same code segments. This is also neces-

sary because the sequential and TLS binaries are different,due to re-arrangements of

the code by POSH. After skipping the initialisation phase for each benchmark, enough

simulation marks are simulated so that the corresponding sequential application grad-

uates more than 750 million instructions.





Chapter 6

Results and Evaluation

In this chapter, a quantitave analysis is performed of the techniques described earlier

in the thesis. First, in Section 6.1, the various dependencepredictors described in Sec-

tion 4.1.3 are evaluated and compared, and various configuration options considered.

Then, Section 6.2 evaluates the performance of checkpointing policies and explores

parameter selection for these. Section 6.3 looks at the effects of the hardware mecha-

nisms described in Section 3.2, including memory system optimisations and selective

kills and restarts. Finally, Section 6.4 compares checkpointing with synchronising

loads that are predicted to be dependent

6.1 Dependence Prediction

Various dependence prediction mechanisms were described in Section 4.1.3. Here, the

performance of these address based, Program Counter based and hybrid predictors is

evaluated. The effects of structure sizes are analysed and in Section 6.1.4 the perfor-

mance of address based, Program Counter based and hybrid predictors is compared.

For the evaluation of the predictors, a four processor system running Thread Level

Speculative code is simulated. No checkpointing is performed for this evaluation. This

allows easier comparison of predictors, since predictionsdo not modify execution and

no secondary effects are introduced, hence each predictor sees exactly the same mem-

ory accesses and dependences.

51
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6.1.1 Address Based Prediction

The first evaluation performed is of the performance of an address based predictor as

described in Section 4.1.3.1. The plots in Figure 6.1 show the Sensitivity of the predic-

tor along with the Precision as the size of the Critical Address Buffer is varied from 2

to 128. The Sensitivity increases along the x-axis, while the Precision increases along

the y-axis. Desirable predictor performance would be in thetop right corner of the

graph, with Precision and Sensitivity being close to one. Asthe results in this chapter

show, in practice, tuning predictors to be more aggressive leads to higher Sensitivity,

but lower Precision. The choice of these metrics to evaluatesquash predictors has been

discussed in Section 5.1. The address based predictor is evaluated for Random, First-

In-First-Out (FIFO) and Least Recently Used (LRU) replacement policies. Each line

in the plots corresponds to a replacement policy. The datapoints have been annotated

with the number of entries in the Critical Address Buffer.

The results show that, as expected, larger buffer sizes result in higher Sensitivity,

but at the cost of a larger number of false positives, reflected in lower Precision. What

this means in terms of checkpointing is that if the predictoris used directly to place

checkpoints, a larger buffer would result in better coverage. That is, a higher propor-

tion of dependent loads would be checkpointed. The higher number of false positives,

however, would result in a larger number of unnecessary checkpoints. It becomes im-

portant to avoid unnecessary checkpoints if there is a high cost to placing a checkpoint,

or if the number of checkpoints allowed is limited.

It should be noted that the range of variation in Sensitivityis dramatically different

for different benchmarks.mcf shows very little change in going from one entry up-

wards, while other benchmarks show strong improvement. Some of the benchmarks,

for examplecrafty andvpr show improving Sensitivity right up to 64 entries, while

others (parser, gzip, vortex) stop showing considerable improvement earlier.twolf is

the only benchmark to show noticeable improvement up to 128 entries. The Precision

also has very different ranges of variation for different benchmarks. Precision is ex-

tremely low forgzip (0 to 0.01) andvortex(0.01 to 0.04). These benchmarks do not

see much of an effect from table size on the Precision. On the other hand,bzip2, gap

andmcf show fairly high Precision of over 0.3 for many table sizes.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Sensitivity and Precision for address based dependence predictor

with LRU, FIFO and Random replacement policies. (Continued on next page)
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(g) (h)

(i) (j)

Figure 6.1: Continued: Sensitivity and Precision for address based depen-

dence predictor with LRU, FIFO and Random replacement policies.

The comparison of replacement policies provides some interesting results. With

only the exception ofcraftyand at some sizesmcf, LRU replacement provides greater

Sensitivity for the same buffer size than FIFO or Random replacement. This is most

pronounced at buffer sizes from 2 till 8. The fact that the effect lessens at large buffer

sizes is explainable by the fact that at sizes above 8, buffercapacity is not the main

limiting factor for Sensitivity. For a single entry buffer,the replacement policies are

equivalent so no difference is observed.

Even though LRU replacement provides better Sensitivity for equal table size com-

pared to the two other replacement policies, it can be seen that for most benchmarks,

and on average for all benchmarks, the lines for FIFO and Random replacement lie

above the line for LRU. This means that we can achieve a given Sensitivity with fewer

false positives than is the case for LRU. This leads to the conclusion that, if we ig-
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nore the power and area effects of buffer size, then for just the predictor performance

tradeoffs, it is preferable to use FIFO or Random replacement than LRU. In fact, look-

ing at the mean performance for all benchmarks for buffer sizes of 16 and 32, the

difference in Sensitivity is negligible while the difference in Precision is much more

significant. The only case where LRU replacement is preferable is when high Sensi-

tivity is required from a comparatively small table of size 2, 4 or 8. Apart from this,

the complexity of LRU replacement can be avoided and simplerreplacement policies

can be used for a better performing predictor.

The evaluation shows that the advantage of increasing the size of the Critical Ad-

dress Table beyond 32 has little benefit in Sensitivity. Thissuggests that a 32 or 64

entry, FIFO replaced table is the best choice.

6.1.2 Program Counter Based Prediction

Figure 6.2 shows the performance of a Program Counter based predictor as described

in Section 4.1.3.2. Similarly to the address based predictor, it is evaluated for Random,

First-In-First-Out (FIFO) and Least Recently Used (LRU) replacement policies. For

the results in Figure 6.2, an unlimited PC Translation Tableis assumed.

The Program Counter based predictor behaves fairly similarly to the address based

one discussed above as the Critical PC Buffer size and replacement policy are varied.

Growing Sensitivity accompanied by falling Precision can be observed as the buffer

size is increased. There is little benefit in Sensitivity shown above a buffer size of 16,

and next to none above 32.

Apart from crafty, a buffer size of 8 sees all the benchmarks reach either 90%

Sensitivity, or, in the case ofvortexclose to the maximum Sensitivity available.

Comparing the replacement policies shows that for the critical PC buffer, LRU re-

placement leads to Precision compared to Random and FIFO, and the Sensitivity is

markedly better for only one benchmark -vortex. However, unlike the address based

predictor discussed above, the difference between replacement policies is only signif-

icant for buffer sizes of 2 to 8. This still leads to the same conclusion: it is best to

use a simpler Random or FIFO replacement policy since LRU adds complexity for no

benefit.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Sensitivity and Precision for Program Counter based table depen-

dence predictor with LRU, FIFO and Random replacement policies. (Continued

on next page)
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(g) (h)

(i) (j)

Figure 6.2: Continued: Sensitivity and Precision for Program Counter based

table dependence predictor with LRU, FIFO and Random replacement policies.

In the results above, an infinite buffer was assumed for performing Address to PC

translation on violations. Obviously this is not a realistic assumption. In Figure 6.3 the

effects of varying the size of the PC Translation Table are shown. The sizes shown are

1, 2, 4, 8, 16, 32, 64, 128, 256 and Infinite. Each line corresponds to a different size of

the Critical PC Buffer: 4,16 and 64.

It can be seen that translation table sizes of less than 16 achieve very low Sensi-

tivity. For all the benchmarks, there is rapidly increasingSensitivity to a certain table

size, after which increase in the size becomes far less important. This size required to

get close to the maximum benefit available varies from 16 forbzip, gapandmcf to 128

for vortex. vortexis also the only benchmark to show any improvement at all beyond

a size of 128. The mean for all benchmarks shows rapid improvement in Sensitivity

up to 64, some further increase to 128 and negligible improvements after that. These
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Sensitivity and Precision for PC based dependence predictor for

various sizes of PC Translation Table. (Continued on next page)
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(g) (h)

(i) (j)

Figure 6.3: Continued: Sensitivity and Precision for PC based dependence

predictor for various sizes of PC Translation Table.

results suggest that a size of 64 is sufficient to capture mostdependences. This is true

regardless of the size of the Critical PC Buffer.

It should be noted that like the PC Criticality Buffer, this is a fully associative

table. If set associative or direct mapped storage is used, alarger size may be required.

However, unlike the Criticality Buffer, the Translation Table is not on the critical path,

so keeping the size small is not as much of a concern.

The evaluation for the Program Counter predictor shows thatit reaches its best per-

formance at a smaller sized criticality table compared to the address based predictor.

There is little benefit beyond 8 to 16 entries in the PC Criticality Table. The PC Trans-

lation Table, however, requires 64 entries to show good performance. This suggests

that the predictor should be configured with an 8 to 16 entry Criticality Table and a 64

entry Translation Table.
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6.1.3 Hybrid Prediction

In this section the various hybrid predictors described in Section 4.1.3.3 are evaluated.

In Figure 6.4, we evaluate the predictions obtained by taking the OR and AND of

the address and Program Counter based tables discussed in the previous two sections.

Buffer size for Critical Address and Critical PC buffers is varied from 1 to 128. The

PC Translation table is fixed at 64 entries.

TheORhybrid predictor obtains an aggressive prediction, by prediction a depen-

dence when either of the individual predictors returns a positive prediction. This leads

to high Sensitivity, but a high false positive rate. TheAND predictor is much more

conservative, only predicting a dependence when both individual predictors agree on

a positive prediction. This leads to a lower false positive rate, but obtains far less

Sensitivity than theORpredictor.

Next, in Figure 6.5, we look at a hybrid bimodal predictor, using a direct mapped

bimodal table to select which prediction to use. The lines inthe figure are various sizes

for this table. The critical address and PC buffers are fixed at 32. The points for each

line show the number of bits for the counters in the table.

The results show that a very small metatable of 32 or 64 entries leads to both

lower Sensitivity and Precision. This is because of aliasing between different PC val-

ues. Because the training method is biased towards maintaining Sensitivity (saturate

on dependence, decrement on no-dependence), the aliasing has less of an effect on

Sensitivity than on Precision, particularly for wider counters. Above 1k entries, the

difference in predictor performance is negligible. Therefore, larger metatable sizes are

not shown.

When we see the variation through the number of counter bits,we see steadily

increasing Sensitivity. This points to behaviour where some dependences only occur

rarely. Increasing the number of bits to a very large value would lead to behaviour

where once a dependence is observed, the individual predictor returning a positive

prediction is always selected. This would approximate theORpredictor.

Next, in Figure 6.6, we look at 128 entry and 1k entry tables, with 2 and 5 bits and

observe the effect of varying the buffer size of the individual predictors from 1 to 128.

As the results above suggested, a metatable with 5 bits controls the false positive rate
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: AND and OR hybrid predictors, varying buffer size for individual

predictors. (Continued on next page)
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(g) (h)

(i) (j)

Figure 6.4: Continued: AND and OR hybrid predictors, varying buffer size for

individual predictors.

best while providing good Sensitivity as well.

One interesting thing to note from these results is that for both Sensitivity and the

tradeoff between Sensitivity and Precision, the number of counter bits is much more

important than the number of entries in the table (beyond very small values). This

reflects the fact that many important dependences are infrequent, and to maintain Sen-

sitivity, the predictor has to have long memory. The design related result that follows

from this is that a comparatively small metatable is sufficient, but it is important to use

a wide enough counter.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Hybrid bimodal predictor, varying table size and the number of

counter bits. (Continued on next page)
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(g) (h)

(i) (j)

Figure 6.5: Continued: Hybrid bimodal predictor, varying table size and the

number of counter bits.

6.1.4 Comparison of Predictors

Figure 6.7 shows a comparison between the performance of thepredictors discussed so

far. For all buffers, a First-In-First-Out (FIFO) replacement policy is used, and Critical

Address and Critical PC Buffer sizes are varied from 1 to 128.For the hybrid bimodal

predictor, a 128 entry, 5 bit metatable is employed. For all the PC predictors used, a

64 entry PC Translation Table is modeled.

It can be seen that for most benchmarks (with the notable exception of vortex),

and on average for all benchmarks, the line for the hybrid bimodal predictor lies well

above any of the other predictors. This means that we can achieve a given Sensitiv-

ity with fewer false positives. When we compare the simpler address and Program

Counter based predictors, we observe higher Sensitivity for a given buffer size if we
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Hybrid bimodal predictor, varying buffer size for individual predic-

tors. (Continued on next page)
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(g) (h)

(i) (j)

Figure 6.6: Continued: Hybrid bimodal predictor, varying buffer size for individ-

ual predictors.

use Program Counter based prediction. This is true for all the benchmarks. However,

bzip2, and for some table sizes, gap and twolf show a better tradeoff between Sensitiv-

ity and true positive rates for an address based predictor. Of the predictors evaluated,

the best Sensitivity is achieved by the aggressive OR predictor. This is at the cost of

a high False Positive rate, particularly at larger buffer sizes. The more conservative

AND predictor provides a better tradeoff, but still not as good as the hybrid bimodal

predictor.

Table 6.1 shows theFβ values for the predictor types. TheFβ measure has been

discussed earlier in Section 5.1. Two sets of comparisons are shown. On the left,

the Address predictor is configured with a Critical Address Buffer of size 8. For a

fairer comparison, since the Program Counter predictor requires the PC Translation

Table, it is configured with half the buffer size. The hybrid predictors, since they need
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Comparing various predictors. (Continued on next page)
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(g) (h)

(i) (j)

Figure 6.7: Continued: Comparing various predictors.

Predictor F1 F2 F3 F7 Predictor F1 F2 F3 F7

Address (8) 0.28 0.56 0.67 0.71 Address (64) 0.21 0.54 0.70 0.77

PC (4) 0.29 0.61 0.73 0.78 PC (32) 0.18 0.52 0.72 0.82

AddrAndPC (4) 0.34 0.55 0.61 0.63AddrAndPC (32) 0.31 0.62 0.74 0.78

AddrOrPC (4) 0.28 0.60 0.74 0.80 AddrOrPC (32) 0.16 0.48 0.70 0.80

Hybrid (4) 0.34 0.64 0.74 0.78 Hybrid (32) 0.28 0.64 0.79 0.85

Table 6.1: Fβ values for predictors.
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two tables each, are also configured with each table of size 4.It can be seen that

the Address and AddressAndPC predictors do comparatively well according to theF1

measure, since they have high Precision. When Sensitivity is prioritised, these two

predictors do noticeably worse than the others. The hybrid bimodal table has the best

performance on almost all the measures.

This comparative performance leads to the conclusion that if area and power are at

a premium, then a simple Program Counter based buffer is the best predictor to use.

It is clear that the PC based predictor does better in both Sensitivity and Precision

than the address based one. Combined with easier implementation (as described in

Section 4.4), this makes the PC predictor the clear choice over the address predictor.

In Figure 6.7j it can be seen that the address based predictor, provides the worst tradeoff

among the predictors evaluated, giving the poorest Precision for any given Sensitivity.

Otherwise, if area and power are not tightly constrained, a hybrid bimodal predictor

combining Program Counter and address buffers is the best choice.

6.2 Checkpointing Scheme

It would be desirable to find a limit for the maximum savings available through check-

pointing, however, it is not straightforward to do so. Firstly, placing checkpoints

through an oracle predictor would not necessarily lead to the best possible placement

of checkpoints. Further, since placing a checkpoint effects execution, and hence may

change the relative ordering of loads of stores and the resulting dependence violations,

it is not possible to use a trace of execution as a perfect predictor, as is done when

evaluating branch predictors. Constructing a checkpointing scheme that uses an oracle

predictor would involve the following: whenever a dependence is observed, rewind-

ing execution at least as far back as the load involved in the dependence, and placing

a checkpoint at that load. In the infrastructure used for evaluation, this means either

restarting execution on every dependence or saving the entire state of the simulator

periodically. For the purpose of this evaluation, it was felt that such a methodology

would be too complex and time consuming, specially since it would not provide a pre-

cise limit on improvement through checkpointing, and a heuristic would still need to
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be employed to avoid checkpoints from being placed excessively close.

In this section some of the predictors described earlier areused to place check-

points, as well as placing checkpoints by stride, and the results are evaluated. Check-

pointing policies are evaluated by observing the effect of checkpointing on the number

of wasted instructions. The wasted re-execution is shown asa percentage of the wasted

re-execution in the case without any checkpointing. For theaddress and PC predictors,

tables of size 32 are used, and the hybrid bimodal employs a 128 entry, 5 bit metatable.

For the first set of results, in Figure 6.8 a checkpoint is placed whenever a positive

dependence prediction is obtained. The wasted instructions are shown for different

checkpointing schemes and for different values for the maximum number of check-

points allowed per task. When the maximum number of checkpoints is reached, all

further positive predictions are ignored. It should be noted that the vertical axis in Fig-

ure 6.8 is inlog scale. To keep the figure easy to read, the vertical axis starts at 1, so in

cases where the wasted instructions are less than 1% of non-checkpointed TLS, no bar

appears.

The savings from checkpointing by stride are much less than using dependence

predictors. Among the dependence predictors, the PC predictor produces the most

savings, followed by the hybrid, and then the address. Only in one benchmark,vortex,

does checkpointing by address result in more savings than doing so by PC. This is con-

sistent with the predictor Sensitivity shown in Figure 6.7,where the PC predictor has

higher sensitivity for 32 entries for all benchmarks apart from vortex. The address and

hybrid predictors show improved savings up to 16 checkpoints, while the PC predictor

shows improvement up to 32. This may be a reflection of the lower Precision of the PC

predictor, which leads to a need for more checkpoints to achieve the maximum saving.

In Figure 6.9a, the reduction in wasted instructions for address, Program Counter,

hybrid and stride based checkpointing is summarised. For this, a maximum of 8 check-

points per task are assumed. Predictor based checkpoints behave consistently with the

results in the previous section. The PC predictor provides the most reduction, followed

by the hybrid bimodal and address predictor. This is in keeping with the Sensitivity

observed for these predictors. In Figure 6.9b, the efficiency of checkpoints is shown

in terms of the number of instructions saved per checkpoint plotted against the wasted
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(a)

(b)

(c)

(d)

(e)

(f)
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(i)

(j)

(k)

(l)

Figure 6.8: Continued: Change in savings of wasted instructions as the maxi-

mum number of checkpoints is changed.
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(a) Wasted instructions for checkpointing using different placement schemes.

(b) Wasted instructions vs. savings per checkpoint.

Figure 6.9: Unnecessary re-execution as a percentage of TLS with no check-

pointing for different checkpoint placement schemes.

re-execution. Here, it can be seen that the address based predictor, apart from having

the lowest savings among the three predictor types, is also the least efficient in terms

of savings per checkpoint, saving only an average of 20 instructions per checkpoint.

The PC based predictor gets better savings with greater efficiency than the address

based predictor. The hybrid bimodal predictor places checkpoints with the highest

efficiency, and obtains a reduction that lies between that for the PC and address pre-

dictors. Hybridbi-H shows the case where the heuristic described in Section 4.3 is

used rather than inserting a checkpoint on every positive prediction. It can be seen

that using this policy that takes into account the limitation on the number of check-

points provides improved efficiency in terms of savings per checkpoint. The saved

re-execution per-checkpoint increases by 30% when using this policy over checkpoint-

ing on each positive prediction. There is also a small reduction in wasted re-execution,
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from 8.4% to 7.6%.

The predictors are also compared against stride checkpointing. The performance

for checkpoints inserted by stride is far lower than that forusing predictors. Small

strides result in reducing wasted re-execution, but with very small savings per check-

point. Larger strides do not produce much saving.

The saving per checkpoint for all the schemes is fairly low - the highest, for the

hybrid bimodal predictor, is an average of 56 instructions per checkpoint. For some

programs, such ascraftyandmcf, this value is less than 20. This means, that to obtain

any advantage from checkpointing for these programs, it is important that the check-

pointing mechanism has low overhead.

Figure 6.10: Checkpointing shows power improvement, resulting in an energy

improvement of 7% on average over base TLS.

The effects on execution time and power of checkpointing areshown in Figure 6.10.

The figure shows execution time, power and energy for checkpointed execution nor-

malised against base TLS. For this evaluation we use a hybridbimodal dependence

predictor for inserting checkpoints, and selective restart is employed. The tasks for

the SPEC 2000 benchmarks have been selected through a profiler. This has resulted

in tasks with late dependences being pruned out. This results in a low ratio of wasted

instructions to committed instructions. Even though few tasks in these benchmarks

are good candidates for checkpointing, there is still a 6% improvement in energy on

average, with up to 14% forvpr, 10% forgzipand 9% forgap. The source of this is an

improvement in power, with a negligible effect on executiontime on average. We do

observe some speedups and slowdowns for individual programs. The worst slowdowns
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are forgapandparser, while bzipandvpr see substantial speedups.

Figure 6.11: Checkpointing recovers some of the power lost to speculation

while maintaining speedup.

Figure 6.11 puts these results in the context of sequential execution. Once again,

execution time and power are normalised against base TLS execution. It is clear that

the performance improvement of TLS is obtained at the cost ofgreatly increased power.

Even in cases such asgap andgzip, where the speedup through speculation is very

small, the power increases substantially. Checkpointing is able to recover some of this

lost power with a negligible effect on execution time.

astarandsphinx3from SPEC2006 have much longer running tasks than any of the

SPEC2000 benchmarks. In particular,sphinxregularly shows violations due to loads

over 450 instructions from a task boundary. This presents a good opportunity for en-

ergy savings through checkpointing.astarhas greater variation in task sizes and how

far into tasks violating loads occur. This makes it a good candidate for checkpoint-

ing as well. For all the benchmarks evaluated, checkpointing results in a 7% energy

improvement on average.

6.3 Sensitivity to Architectural Extentions

6.3.1 Memory System Modification

Checkpointing results in added pressure on the versioned memory system. This has

been discussed in Section 3.2.2. In the applications considered, because the working
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sets are small, the extra restarts due to failed allocation of speculative space have a

very small effect on execution time and power. The reason is that the working sets

are small, and even for checkpointed execution, the number of restarts due to failed

allocation is very small compared to the total number of restarts (less than 3% of total

restarts for all benchmarks and less than 1% on average). Forprograms with large

working sets, and particularly those with long running speculative tasks, this could

become a performance concern.

Figure 6.12: Number of times allocation of a speculative line fails in check-

pointed execution normalised against TLS without checkpointing.

To measure the effect of the changes described in Section 3.2.2, the number of

failed allocations is shown in Figure 6.12. As before, checkpoints are inserted using a

hybrid bimodal dependence predictor. It can be seen that formany benchmarks there

is a large increase in the number of failed allocations when checkpointing is employed.

The changes proposed reduce the number of additional failedallocations due to restarts

to less than a third on average.

6.3.2 Restart Mechanism

In Figure 6.13, we show the effect of selective restart, as described in Section 3.2.1,

on execution time. We note that the programs showing substantial improvement in

execution time due to checkpointing (bzip, vpr andastar) only do so when selective

restart is used. The selective restart mechanism also reduces the execution time penalty

on gap, parserandsphinx3. The benchmarks that see little effect on execution time
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from checkpointing consequently see little effect from selective restart. The mean

improvement in execution time due to selective restart is 3%, with up to 8% forbzip2

andastar, and 5% forvpr.

Figure 6.13: Execution time for sequential execution and TLS when checkpoint-

ing with and without selective restart, normalised against TLS without check-

points.

6.4 Using Dependence Prediction for Synchronisation

An alternative to checkpointing for avoiding wasteful re-execution is synchronisation.

In this section, a brief demonstration is made of the application of the dependence

prediction techniques described earlier towards synchronisation. However, this section

does not intend to perform a detailed evaluation of which prediction technique is best

for synchronisation.

Figure 6.14 shows the results observed when different policies are applied to syn-

chronisation. First, in Figure 6.14a, a predictor similar to the one used for check-

pointing is used. This is a 1024 entry, 5 bit hybrid bimodal predictor, with 32 entry

Address and PC Criticality Tables and a 64 entry PC Translation table. It can be seen

that the performance of the system is degraded significantlywhen synchronising. This

is because the predictor has a low Precision. Every false positive causes unnecessary

synchronisation and results in most computation being serialised. This is reflected in

a power improvement of 20% but a slowdown of 38% on average, which results in a

9% increase in energy consumed. The slowdown is large enoughto make the system
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(a) Aggressively synchronising dependences.

(b) Synchronising dependences with a less aggressive predictor.

(c) More conservative synchronisation, adding minimum task size.

Figure 6.14: Effect of synchronisation on execution time, power and energy,

normalised against base TLS execution.

slower than non-TLS sequential execution.

In Figure 6.14b, the predictor is configured to be less aggressive, with higher Pre-

cision. In this case, the bits per entry in the metatable are reduced to 2, and the Ad-

dress and PC Criticality tables are reduced to 2 entries each. It can be seen that this

greatly improves the performance of the system when synchronising. The execution
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time degradation is reduced to 25% and the increase in energyto 3%. The fact that

there is a significant slowdown and an energy degradation suggests that the system is

still synchronising too often.

Figure 6.14c shows the results when the synchronisation is made even more con-

servative, by changing the policy so that synchronisation on a dependence prediction

only takes place if the size of the task is at least 50 instruction. This results in synchro-

nisation now showing an Energy improvement of 3%, but still aslowdown of 7%.

These results show that it is crucial to have a well performing prediction mecha-

nism for synchronisation to be effective. Further, since there is considerable cost to

unnecessary synchronisation in the form of serialisation,the Precision of the predictor

is far more important.





Chapter 7

Related Work

7.1 Thread Level Speculation

Thread level speculation has been previously proposed (e.g., (14; 16; 21; 38; 40)) as a

means to provide some degree of parallelism in the presence of data dependencies. The

vast majority of prior work on TLS systems has focused on architectural features di-

rectly related to the TLS support, such as protocols for multi-versioned caches and data

dependence violation detection. All these are orthogonal to our work. In particular, we

use the system proposed by Renau et al. (34) as our baseline.

7.2 Checkpointing

This thesis uses checkpoints to tolerate dependences between speculative tasks. The

most directly related previous work is by Colohan et al. (8) and Waliullah and Sten-

strom (49). The work in (8) proposes checkpointing as part ofextensions to the TLS

mechanism to support long running threads. Checkpoints areplaced at fixed instruction

strides without any prediction of the dependence behaviourof instructions or memory

addresses. We find that this approach is not suitable for our applications and does

not produce significant savings. We apply checkpoints to smaller tasks as well, which

means the overhead of checkpoints is not negligible and so smarter placement schemes

are required. The work by Waliullah and Stenstrom (49) looksat intermediate check-

81



82 Chapter 7. Related Work

points to improve behaviour for transactions in a Transactional Memory system.

Checkpointing is also used to aid finer grained speculation in processors. They

are used to recover from mispredicted branches. CAVA (3) uses checkpoints to assist

value prediction onL2 cache misses. On anL2 miss, a checkpoint is placed and execu-

tion continues with a predicted value. CHERRY (23) uses checkpoints to allow early

recycling of resources, by decoupling resource release andinstruction retirement.

There is extensive work in the area of using checkpoints as part of fault tolerance

schemes. A survey of the area is provided by Elnozahy et al. (10). In particular, Wu

et al. (51) use a mechanism similar to that used for TLS, by tagging cache blocks with

checkpoint IDs. Sorin et al. (39) use checkpoint schemes to support long latency fault

detection schemes in shared memory multiprocessors.

7.3 Other Schemes for Reducing Wasted Execution

Other proposals have been made to tolerate dependences between tasks through learn-

ing dependences and dynamically synchronising to avoid violations (7; 42). Zhai et

al. (55) statically synchronise scalar communication at compile time. These have been

discussed in some detail in Section 2.2.1.

A different mechanism for selective re-execution is to find thesliceof instructions

affected by a dependence violation (35). Tuck and Tullsen (46) use multiple contexts

to recover from failed value prediction.

7.4 Data Dependence Prediction

Data dependence prediction has been previously proposed invarious contexts. Moshovos

and Sohi (26) use dependence prediction to identify loads and stores that are dependent

via memory operations. These predictions are used to speculatively execute dependent

loads without waiting for memory operations to complete. Predictions are also used

to leverage a smallTransient Value Cache, avoiding accessing the data cache for short

lived values. Similarly, Chrysos et al.(5) predict dependences through tracking astore

setfor each load in order to speculatively execute the load as soon as possible.
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Waliullah and Stenstrom (49), in the use of dependence prediction most directly re-

lated to this thesis, use a technique very similar to the address based scheme discussed.

These predictions are used to checkpoint transactions in a Transactional Memory sys-

tem. We observe that in many cases, address based predictorsfail to find dependent

loads.

Cintra and Torrellas (7) and Steffan et al. (42) use dependence prediction to syn-

chronise speculative tasks. Xekalakis et al. (53) use dependence predictions to estimate

the likelihood of squashes for speculative tasks in order toallocate resources.

In other work (53), we have used data dependence prediction to estimate whether

a task is performing useful work and scale the voltage and frequency of the processor

accordingly.





Chapter 8

Conclusions and Future Work

This chapter presents the conclusions reached and discusses possibilities for extension

of the work presented in this thesis.

8.1 Summary of Contributions

This thesis makes two sets of contributions: mechanisms forefficient checkpointing

and dependence prediction techniques.

The thesis improves the efficiency of TLS systems by craftingefficient checkpoint-

ing. This is done through extending the base TLS protocol with selective restart and

making changes to the versioned memory system. It is shown that selective restart is

important for maintaining the execution time advantage of TLS when checkpointing.

A heuristic for placing checkpoints based on depedence prediction is proposed.

An evaluation of various dependence prediction techniquesis performed and showed

that Program Counter based and hybrid predictors outperform earlier proposals. To

our knowledge there has been no previous comparison of dependence prediction tech-

niques for coarse grained speculation. The evaluation alsoshows that using depen-

dence prediction is a far more efficient way of placing checkpoints than doing so by

stride as proposed previously. The practical issues associated with constructing pre-

dictors are also discussed, with the conclusion that Program Counter based predictors

present fewer complications in implementation than previously proposed address based
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predictors.

It is concluded that checkpointing based on dependence prediction is an effective

way of reducing inefficiency in speculative execution. Using the checkpoint mech-

anisms proposed, and placement policy based on dependence prediction, the bench-

marks evaluated show energy improvement of up to 14% , and 7% on average. This is

achieved with a very small effect (1%) on execution time. Comparing checkpointing

with synchronisation shows that synchronisation achievesenergy improvements but at

a substantial cost in execution time.

The presence of intermediate checkpoints makes misspeculation far less expensive.

This changes the tradeoffs in task selection. We believe that it makes the problem of

task selection easier since more aggressive speculation can be performed, and profile

based task pruning is less critical to performance than in previous proposals.

8.2 Future Work

There are many avenues of future extension based on this thesis. These include im-

provements in dependence prediction, checkpointing policy, and integrating with wider

systems.

The dependence prediction techniques evaluated in this thesis do not use any in-

formation beyond the violation history for addresses and instructions. The predictors

achieve good Sensitivity but fairly low Precision. Using more information (context,

stride) for prediction may be able to improve predictor Precision.

More sophisticated checkpointing policies may be able to improve performance,

by taking into account detailed resource information, suchas the pressure on the spec-

ulative cache, or tracking task sizes to more intelligentlyadapt the size of tasks before

they are checkpointing.

Checkpointing can be combined with value prediction. Predicting speculatively

used values can reduce the probability of dependence violations, but can still have a

high cost in case of misprediction. This cost can be reduced by checkpointing when a

value is predicted.

Checkpointing and synchronisation can also be employed at the same time. For
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instance, if the dependence predictor can provide a confidence measure, then synchro-

nisation is a better choice in the case where a dependence is predicted with high confi-

dence. However, if a dependence is predicted with low confidence, then a checkpoint

can be placed. A more sophisticated system can take into account effects on the mem-

ory system, so that even if a dependence is predicted with high confidence, the system

may continue checkpointed execution in order to obtain benefit from prefetching.

Checkpointing has repercussions on task selection. An areaof future exploration

is establishing what changes need to be made to the task selection algorithm to get

optimum preformance.
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