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Abstract

With the advent of Chip Multi Processors (CMPs), improvirggfprmance relies on
the programmers/compilers to expose thread level paisatieio the underlying hard-
ware. Unfortunately, this is a difficult and error-prone gegs for the programmers,
while state of the art compiler techniques are unable to igeogignificant benefits
for many classes of applications. An interesting altexais offered by systems that
support Thread Level Speculation (TLS), which relieve thegpammer and compiler
from checking for thread dependencies and instead use the/ae to enforce them.

Unfortunately, data misspeculation results in a high costesall the intermedi-
ate results have to be discarded and threads have to rolltbable beginning of the
speculative task. For this reason intermediate checkipgirdf the state of the TLS
threads has been proposed. When the violation does occumpwéave to roll back
to a checkpoint before the violating instruction and nothte start of the task. How-
ever, previous work omits study of the microarchitecturaliails and implementation
issues that are essential for effective checkpointing.thiewy checkpoints have only
been proposed and evaluated for a narrow class of benchmarks

This thesis studies checkpoints on a state of the art TL®8ysinning a variety
of benchmarks. The mechanisms required for checkpointiugtiae costs associated
are described. Hardware modifications required for makimgckpointed execution
efficient in time and power are proposed and evaluated. Eytiie need for accurately
identifying suitable points for placing checkpoints isaddtshed. Various techniques
for identifying these points are analysed in terms of boteaiveness and viability.
This includes an extensive evaluation of data dependeratkgbion techniques. The
results show that checkpointing thread level speculatree@tion results in consistent
power savings, and for many benchmarks leads to speedupsllas w
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Chapter 1

Introduction

1.1 Chip Multiprocessors and Parallelisation

Since the early days of microprocessors, designs haveeyéiom simple, microcoded
processors to complex, wide superscalars with multiplelswaf cache. This has led to
steadily improving performance, but at the cost of extrgnoelmplex designs. In the

last decade, it has become clear that adding complexitygesprocessors to achieve
greater performance is providing diminishing returns. Me&hile, the number of tran-

sistors available per chip has continued to grow. This hdi$deChip Multiprocessors

(CMPs) becoming the mainstream design choice for generpbge computing.

In the absence of coarse grained parallelism, the perfacen@otential of Chip
Multiprocessors remains unrealised. To improve perforceasf sequential programs
on CMPs, attempts are made to extract thread level pasatieiiom the sequential
program flow. This may be done manually by the programmer muiph various
compiler techniques. When a sequential program is paisdi@lconventionally, the
programmer or compiler needs to ensure that threads arefreégta dependences. If
data dependences do exist, threads must be carefully symishad to ensure that no
violations occur. Specially for languages that supporhfms, compile time disam-
biguation is often impossible. This means that compileesadten unable to extract
much parallelism from sequential code while still guarairig correctness. In the ab-
sence of speculation, inter-thread dependences congidiormance and automated

1



2 Chapter 1. Introduction

thread partitioning seldom results in high performance (17

Improving the performance of hard to parallelise prograneugh exploiting the
opportunities presented by CMPs has been an area of integsarch in recent years.
This includes work in three broad categories. First, impmlanguages and program-
ming models to allow programmers to more easily expose lgdisxh. Second, im-
proved static analysis so that more parallelism can be eeilzat compile time. And
third, the area this thesis is concerned with, techniquepézulate on parallelism so
that precise static dependence analysis is no longer esjuivith Thread Level Spec-
ulation (TLS), the compiler only needs to divide the code ihreads. It does not need
to guarantee that the multithreaded code is free of datandigmees. If a dependence
violation occurs at run-time, the speculation hardwareclstthe violation and rolls
back the violating thread to a safe state. This mechanisswalthe compiler to par-
allelise very aggressively and extract parallel threadmfcode that would otherwise
not be parallelisable.

While Thread Level Speculation has been shown to provideifsignt perfor-
mance improvements for hard to parallelise applicationgstjons remain about the
efficiency of speculative execution. Re-execution of messgated portions of the pro-
gram is wasteful in both time and energy. In case of a datardkpee violation, TLS
mechanisms (discussed in Section 2.1) lead to re-execafialt the instructions of
the task in question, regardless of whether those instmsi@re dependent. The focus
of this thesis is the reduction of wasteful re-executionrst-it proposes mechanisms
for efficient checkpointing. Second, it uses dependencdigiien as an effective way
of placing checkpointing.

1.2 Contributions

1.2.1 Efficient Checkpointing

This thesis presents new ways of addressing the inefficieh@read Level Specu-
lative execution by proposing an intermediate checkpoghicheme based on depen-
dence prediction. The idea of checkpointing speculatig&gas not new, however,
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previous work in the area of checkpointing speculativeddss left many open ques-
tions. This is specially true about checkpoint placemetiti@s. This thesis addresses
implementation and policy details that are missing fronvimes work.

A detailed study is performed of the mechanisms involvedigokpointing and the
policy issues that it exposes. Specifically, checkpoinitngpplied to a state-of-the-
art TLS system that supports out of order spawning of spé&ealéasks. Observing
task behavior leads to the conclusion that the base TLS qobi® not well suited to
checkpointed execution. This motivates extensions in tte grotocol to allow effec-
tive checkpointing. Further, a dependence predictor bpeédy is used to effectively
place checkpoints.

1.2.2 Dependence Prediction

Dependence prediction is an important aspect of placingkgwnts effectively. De-
pendence predictors of varying levels of sophisticati@o dlave uses beyond check-
pointing. They are important in synchronising speculatasks to avoid data depen-
dence violations (7; 42) and in resource management (53% thksis proposes pro-
gram counter and hybrid dependence prediction techniquesldition to previous
address based ones, and performs a detailed evaluatiohtbésé methods. It also
discusses the complexity of constructing these varioudigi@a's.

1.3 Structure

This thesis is organised as follows.

Chapter 2 provides background on Thread Level Speculation and teciesi for
reducing unnecessary re-execution. This includes worlainesprediction and in par-
ticular intermediate checkpointing. This chapter end$wétails on the TLS hardware
support assumed for the remainder of the thesis.

Chapter [3 proposes mechanisms for allowing efficient intermediagekpointing.
First, basic support for inserting intermediate checkiia described. Later, ways
of making checkpointing more efficient are presented, idiclg a modified restart
mechanism and changes to the versioned memory system.
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Chapter |4 looks at the policy options for inserting checkpoints. Tdhésclude
previously proposed stride checkpointing, and using déeece prediction to place
checkpoints. It goes on to describe and compare variousndepee predictors. The
effects of overheads on checkpoint placement policy aedikcussed.

Chapter 5/describes the simulator setup and the benchmarks useddragion.
The metrics used for evaluation are discussed and justifiba includes metrics for
dependence prediction and the performance of checkpgistihemes.

Chapter |6 performs a quantitative evaluation of the techniques desdrin this
thesis. First, there is an extensive evaluation of deperel@nedictors and a com-
parison of different schemes. Then, the savings due to gloétkng are evaluated
for various placement policies. The effects of the archited extensions for efficient
checkpointing proposed in this thesis are demonstratedllifj a brief demonstration
is made of applying dependence prediction to synchrowisati

Chapter 7 looks at related work. This includes other uses of checkpainsuch
as early recycling of resources and fault tolerance as gadther schemes for check-
pointing speculative execution.

Finally, Chapter |8 concludes this thesis by summarising the contributions and

discussing avenues of future extension.



Chapter 2
Background

This chapter surveys the background for this work. The fiest,pin Section 2.1,
provides background on work on Thread Level SpeculatiorS)Tlooking at the exe-
cution model, the architectural support needed, compiidrtask selection issues and
the various systems proposed. This section also introdheggrminology associated
with TLS, which is employed throughout the rest of the the®ten, in Section 2.2 var-
ious techniques to address the overhead of wasted re-éxegouspeculative execution
are discussed. Synchronisation aims to avoid speculatiedap when dependences
exist. Checkpointing reduces the re-execution requiredianging the granularity of
task units that need to be restarted on a violation. Valudigtien techniques aim to
avoid restarts by predicting values for speculative useglwivould otherwise have
caused a violation. Finally, in Section 2.3 the TLS mecharassumed in the rest of
the thesis is detailed.

2.1 Thread Level Speculation

In the absence of coarse grained parallelism, Chip Mulgpssors (CMPs) generally
do not match the performance of superscalar processorsnop@@ble die area. To
improve performance of sequential programs on CMPs, ati®ame made to extract
thread level parallelism from the sequential program flohisTmay be done manually
by the programmer or through various compiler techniquefieliva sequential pro-

5



6 Chapter 2. Background

gram is parallelised conventionally, the programmer or piden needs to ensure that
threads are free of data dependences. If a data dependesxexdst, threads must be
carefully synchronised to ensure that no dependence ioakbccur. In many cases,
this cannot be effectively done by compilers. Specially llorguages that support
pointers, compile time disambiguation is often impossibleis means that compilers
are often unable to extract much parallelism from sequkctide while providing cor-
rectness guarantees. In the absence of speculationtlimézrd dependences constrain
performance and automated thread partitioning seldomitgesuhigh performance
(17).

Under the TLS execution model (also referred to in the liitn@ as Speculative
Multithreading), a sequential application is split intweads which are then specula-
tively executed in parallel with the hope that their coneatrexecution will not violate
sequential semantics (14; 16; 21; 38; 40). The control flothefsequential code im-
poses a total order on the threads. A thread is said to be Igpigeuf it is executing
such that it is overlapped with a part of the program that iiexan sequential order.
Threads eatrlier in the sequential flow are termed less sataeeil(or predecesso)s
with respect to later threadsiy{ccessols The least speculative thread being executed
is called theneador thesafe thread During speculative execution of threads, reads are
monitored to detect data dependence violations. Writes Ineafprwarded from less
speculative threads to more speculative ones in order towsga violations. When ex-
ecuting tasks speculatively in parallel, correct behavisumaintained by keeping the
tasks ordered and making sure that no data dependenceskatedi If a data depen-
dence violation is detected, the consumer of the misspitlitiata must bequashed
along with its successors. A squash can resultnesgart reverting the state back to a
safe position from which the thread can be re-executed rAdtesely, a thread can be
killed, where the thread is simply destroyed and no re-executiattesnpted. In most
schemes a squash rolls the execution back to the start dfrsead, but some propos-
als in the literature use periodaheckpointingdf threads (8) such that upon a squash
it is only necessary to roll the execution back to the closa$t checkpointed state.
When the execution of a non-speculative thread completamitmitsand the values
it generated can be moved to safe storage. To maintain segjusgmantics, threads
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must commit in order. When a thread commits, its immediatesssor acquires non-
speculative status and is allowed to commit. When a speweeiltitread completes it
must wait for all predecessors to commit before it can comdifiter committing, the
processor is free to start executing a new speculativedhrea

2.1.1 Speculation Mechanism

To provide the desired memory behaviour, the data speounlaardware must provide
at a minimum:

1. A method for detecting true memory dependences, in ocdéetermine when a
dependence has been violated.

2. A method for backing up and re-executing speculatived@aut any instructions
that may be dependent upon them when the load causes amiolati

3. A method for buffering any data written during a specwukategion of a program
so that it may be discarded when a violation occurs or permtineommitted
at the right time.

Typical ways of achieving these are described below.

2.1.1.1 Tracking Dependences and Detecting Violations

Typically, all data written and read by a task is tracked idesrto ensure that any
violations are detected. This may be done at different deaities. Some systems do
so for each word, others for cache lines.

A write marks a location as dirty. If the size of the write isuad|to the granularity
of tracking, the location is marked psotected This is done so that dependence viola-
tions are not flagged for values that are produced in the saskelat consumes them.
Any read is marked as axposed readinless it is from a protected location. A data
dependence violation occurs when a task writes to a loc#tiahhas been read by a
more speculative task with an exposed read.

Locations can be checked for dependence violations imrtedgdiapon a write
or dependences can be checked in bulk at the end of a task.whl@dpeculation
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schemes usually perform the checks on each store, whilwa@ftschemes usually do
the checks when a task finishes (6).

2.1.1.2 Buffering State

Speculative tasks generate speculative writes which ¢dorenmerged with the state of
the system unless the task commits. These writes are stepatgaely, typically either

in the cache of the processor running the task or in a dedicgteculative store buffer.

If the task successfully commits, the state is merged wisesy state. If it is squashed
before it reaches completion, buffered state is discardedask only commits if it
completes executioand becomes non-speculative. This ensures that tasks commit in
order, thus preserving sequential semantics. Garzaran €t3) provide a taxonomy

of buffering approaches along with their respective acages.

2.1.1.3 Data Versioning

Each task has one version of each datum. If a number of spgreuiasks are running
on a system, each has a different version of shared data. @mitpversions are
merged into system state in task order.

Some proposals allow one version per processor (27), wililers support mul-
tiversioned caches and hence allow a speculative task tugxen a processor even
if commit is still pending for a previously executed task Y34Colohan et al. | (8)
do not use versioned memory at all in the first level of cachsteiad relying on a
multiversioned._2 cache. To allow efficient execution in the presence of shdeta,
speculative systems also forward shared data from ednlieatls to later threads.

2.1.1.4 Register Passing

TLS systems vary in the degree of direct communication betwgocessors. Mul-
tiscalar (38) allows direct communication between prosessallowing passing of
live registers to freshly spawned tasks. Other proposasrae CMPs with no direct
communication between processors and in these, all conuaimm has to take place
through shared memory. If all live registers are transféfirem the parent task to
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the spawned task, there are no complications regardinglipitocessor state for the
speculative task. Otherwise, the issue needs to be addresbe compiler or runtime
by ensuring either that the newly spawned task does not relgny registers or that
register values are transferred.

2.1.1.5 Out-of-Order Spawn

In a TLS system, task ordering has to be maintained at allsitBeme TLS proposals
can only do this for in-order spawns. This means that taskody be created in the
same order as sequential execution. This constraint canfoeced by only allowing
the most speculative task to spawn another task. This mbhahedch task can spawn
at most one task. In-order spawn allows tasks to be spawmeaxhfp one loop level.
Other systems support out-of-order spawning as well (3%; B#this caseanytask
can spawn another speculative task. This allows nested tasliafely be spawned.

Support for out-of-order spawn allows more parallelisméaeltracted from nested
loops, nested function calls, loops within function cadis,.

2.1.1.6 Control Speculation

Most of the TLS architectures discussed support only dagawdption. This means
that speculation can only occur between points thaeaeeution equivalerﬁ{ How-
ever, the Superthreaded Architecture (45) supports cbgpreculation, but not data
speculation. The Superthreaded compiler (44) can cone¢stdkpendences into con-
trol dependences, so that they can be enforced even withodivare data speculation
support. Mitosis (20; 30) supports both control and datacslagion. It does so by
speculating between points that are not execution equitjdbeit then addingancel
instructions on incorrect paths. This ensures that tasksaite created along misspec-
ulated paths are killed.

1Two locations are said to be execution equivalent when otieenh executes if and only if the other
does, and they both execute the same number of times.
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2.1.1.7 Spawn and Commit Mechanism

The hardware must provide a mechanism for starting task$aarsiynalling that tasks
have reached completion. Typically this is done througltsppepawnandcommitin-
structions or through software control handlers suppdriesbme specialised registers
in hardware, as in the case of the Hydra CMP (27).

2.1.2 Compilation

Thread Level Speculative execution typically requires sarampiler support. The
compiler can be tasked with one or more of task selectione geheration and TLS
specific performance optimisations.

In most proposed systems, task selection is done statiaattpmpile time. One
option is to use high level program structure to select taShgs means constructs such
as loops and function calls are candidates for tasks. Patgptsat use this approach
include the POSH (18) and Spice (31) compilers. Other systeike a more general
approach. Mitosis (30) identifiegpawning pairswhich are pairs of instructions that
meet certain conditions of control and data independenbe. Min-Cut approach to
decomposition by Johnson et al. (15) applies graph theocagorithms to the control
flow graph, such that all basic blocks and combinations oict@lecks are candidates
for tasks. Other proposals that are not restricted to looyisfanctions for task selec-
tion include Multiscalar (48) and the compiler framework Blgowmik and Franklin
(1).

Not every candidate task performs well when speculated dmerel are various
ways of pruning out inefficient tasks. One possibility is grfprm a preliminary task
selection and then profile the resulting decomposition.(18hother is to leverage
information about dependences between tasks at compide YWhen taking static de-
cisions on the quality of task decomposition, dependenegioaships between tasks
are important. In traditional, non-speculative paradlation, if pointers are present
pointer analysis needs to be performed to guarantee thiag #re no inter-task data
dependences. This can be done by comparing the read andrefatences between
them. Traditional pointer analysis techniques classify{ssto relationships into those
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that definitely hold and those that may hold. TLS does notirequarantees of tasks
being dependence free, but would benefit in performance fndonmation about the
likelihood of dependences across tasks. This informatantze provided through a
dependence profile of the sequential program, or thrdigiabilistic Pointer Anal-
ysis(4; 37). Dou and Cintra (9) take a different approach, camsitng a model to
predict task runtime and then choosing tasks with predisfbdups. Recently, the
use of hardware based performance counters to create apeeuhsks at runtime has
been proposed (19), removing the need for making static dertime and/or profile
based decisions.

Further, in systems that do not support register commuic&tetween cores, the
compiler must ensure correctness by communicating allesahetween tasks through
memory.

Some compilers also perform TLS specific optimisations tkerspeculative exe-
cution more efficient. For instance, Zhai et al. (55) looldaintifying dependent scalar
use and define pairs and then aggressively scheduling®ts late in the consumer
task and théDEFs early in the producer task. This increases overlap wheohsgn
nisation is being used. In that work, the synchronisatiostéically performed at
compile time, but the same optimisations can apply to dynghardware guided syn-
chronisation and checkpointing schemes. Steffan et a).h@le noted that small loop
bodies can be made more TLS friendly through loop unrollifige interaction of loop
unrolling with speculative execution is further studied\tang et al. (50). Software
value prediction code may also be inserted at compile timéyaMitosis (20) and the
Superthreaded architecture (44). This is discussed ind®e212.3.

2.2 Reducing Wasted Re-execution

When there are no dependences between tasks, TLS workoveehieve parallelism
by overlapping execution of sections of code (Figure 2.Hgwever, in many cases
violations occur and remove much of the overlapped exes\{fmure 2.1b). Depen-
dence violations incur significant overhead. There have laeeumber of techniques
proposed to reduce this overhead. These are discussed below
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2.2.1 Synchronisation

Synchronisation aims to avoid dependence violations bglg#ng parts of execution
such that values are not consumed before they are produbéesicdn reduce wasteful
re-execution (7; 25; 42; 54; 55).

In the work of Zhai et al. (54; 55), a compiler based approachsed to syn-
chronise scalar communication between tasks. The comgaetifies communicated
scalar values, then insem&it andsignalinstructions, each of which is associated with
the scalar through an architected register. Wadt instruction stalls until the value is
produced in the previous task and communicated througjigrzal In this proposal,
since scalar values are explicitly communicated, corrgetetion depends on main-
taining correct synchronisation. This can be achievedtliwby placing all thesignal
instructions at the end of a task and all thait instructions at the start. This has the
effect of serialising execution. To achieve overlap, esigmalis placed as early as
possible and the associatedit as late as possible. Also, to avoid deadlogkjt and
signalinstructions for each synchronised scalar must appear ery @ossible path.
Further, an aggressive instruction scheduling algoritarased to maximise overlap.
The work has also been extended to memory resident valugsl(béhis case, since
the underlying TLS mechanism ensures correctness, thenatiions can be more
aggressive.

There have been a number of hardware techniques proposesdl &sngynchronis-
ing speculative tasks. The Multiscalar architecture (B);uses a\ddress Resolution
Bufferto automatically synchronise dependent load-store pairs.

The Multiscalar approach relies on very close coupling leetwvprocessors. In a
more general shared memory environment, different teclgsdiave to be employed.
Cintra and Torrellas (7) achieve synchronisation by asgogj states with cache lines.
This state information is kept in@olation Prediction Tablelf a location sees viola-
tions, the system first tries to value predict, and if thissfdifalls back on synchroni-
sation. When a task consumes data from a cache line that colygauses a violation
and cannot be value predicted, it is stalled. At what poiatdbnsumer continues ex-
ecution depends on the state of the cache line. I'tta#&Releasestate, it waits for
the first write to the line. On the other hand, in tB&all&Wait state, it waits for all
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possible writers, i.e. until the consumer becomes nontgptee.

A slightly different approach is taken by Steffan et al. (4d)his scheme also
attempts to value predict in the first instance and falls latkynchronisation when
the prediction confidence is low. However, instead of asgto@ states with cache
lines, it marks loadnstructionsas being hard to predict. If a load instruction leads to
violations, it is added to &iolating loads list This list is checked whenever a load
instruction executes, and if the Program Counter of an dxegunstruction is found
in the list, it is stalled. In this scheme, the load is alwaialed until it becomes
non-speculative.

2.2.2 Checkpointing

Intermediate checkpointing schemes aim to reduce mistggemupenalty by allowing
partial rollback (Figure 2.1c). This is done by checkpaigtihe processor at some
point or points during the execution of a task, and upon dieig@ violation, only
rolling back to the latest checkpoint which allows correetexecution. Instead of
avoiding violations, as synchronisation does, checkpujrdims to reduce the cost of
violations.

The effect of checkpointing is quite similar to synchrotiisa when a violation
does occur. In fact synchronisation is more efficient thaetkpointing in cases where
we can be sure that a violation will occur. On the other hahd, violation occurs
rarely, but at a high cost, then synchronisation may causeceessary serialisation,
and checkpointing is a better alternative.

This can be understood better by inspecting the code snipfgégure 2.3a. As-
sume that when theondboolean is true, the resulting store in line 6 causes a squash
to all subsequent threads, and that witcendis false, these threads commit without
restart. In Figure 2.3b we can see what happens for the iediate checkpointing
case when speculation fails. The checkpoint is able to sane f the execution,
however all the instructions executed after the checkpaatvastefully executed. By
synchronising instead, some power can be saved since thefulaexecution of these
instructions is avoided (Figure 2.2c). However, when theests not performed, and
thus all threads commit, intermediate checkpointing iggreble. As is evident from
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More Speculative More Speculative
Iteration 1 . Iteration 1
Iteration 2 Iteration 2

Store
to *p

Restart

Time Time
(a) TLS with no ( b) TLS with dependence
dependence violation.
violation.

More Speculative

Iteration 1 .
Iteration 2
. Useful Execution

| |
| | .
| | |:| Wasted Execution
| |
Store | | . Restart Overhead
to *p I
|
|
|
|

|
[ /
Restart

Time
Y

( C) With dependence violation and intermediate
checkpointing.

Figure 2.1: Example of Thread Level Speculation and checkpointing.

Figure/ 2.2d, we place a checkpoint before the load and pdoasenormal. On the
other hand, by synchronising on that load, the second thrélatlave to wait until it

becomes safe, since the store which it attempts to syndeavith, is never performed
by the less speculative thread (Figure 2.2e). This resultmnecessary serialisation.

From this example it is clear that from a performance poinviefv intermedi-
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More Speculative

Iteration 1 .
lteration 2
. Useful Execution

| |

| | .

| | |:| Wasted Execution
| B

|

1: for(i=0;i<iters;i++){ Store . [ Restart overhead
2: fool); to *p |
3: varl = *p; I I
4: cond = moo(); [ [
5: if(cond){ Restart I
6: *p =var2; L =
7: } Time
8:} v
( a) (b) Intermediate checkpoint with restart.
More Speculative More Speculative More Speculative
Iteration 1 Iteration 1 . Iteration 1
teration 2 Iteration 2 teration 2

|
|

(e) synchronisation
without restart.

Store

| |

| |

| |

_ | o

| |

to *p I I
| |

| |

Time Time Time

\

( C) Synchronisation with
restart.

\

( d) Checkpoint without
restart.

Figure 2.2: Comparing synchronisation and checkpointing: synchronising
around predicted dependences can be problematic. We look at a code snippet:

if cond is true, the store will restart subsequent tasks.

ate checkpointing is better (if we disregard the associatethead of possible extra
restarts, which is typically small). In fact, even threakattwill have to be killed or
restarted can indirectly provide performance benefits efgiching for safer threads
(34; 52). However, in terms of number of instructions exedytand thus energy con-
sumed, synchronisation is typically better.

Checkpointing speculative tasks is studied by Colohan.ef&l This is done in
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the context of supporting efficient speculation for longming database tasks. The
workload considered in that study consists of tasks thab#ien more than 50,000
dynamic instructions in size, and show large numbers ofsstbeead dependences.
The L2 cache is extended to maintain state for multiple thntexts. Asub-thread
is created by checkpointing register state and saving suiese speculative state in the
next thread context.

The decision to place a checkpoint can be taken in a varietyags. Colohan et
al. (8) place checkpoints periodically on fixed instructsirides. Waliullah and Sten-
strom (49) place intermediate checkpoints in transactior@ss Transactional Memory
systeﬂﬁ;, guiding checkpoint placement by identifying loads thayroause misspec-
ulation. This is done by maintainingGritical Address Buffer Whenever a violation
occurs, the address of the violating data is inserted intobtliffer. The address of
every speculative load is checked against this buffer andsffound, a checkpoint is
inserted. Checkpoint placement schemes are exploredail de€Chapter 4.

2.2.3 Value Prediction

There have been a number of proposals that include prediotispeculative values so
as to avoid dependence violations. Value prediction has baggested in both soft-
ware and hardware. Successfully predicting values comeated from less specula-
tive tasks to more speculative ones breaks dependencgstiién and allows for more
overlap. The Spice proposal (31) splits loop iterations a® many speculative chunks
as there are cores available, and inserts code for pregdictgrins for each chunk. The
POSH compiler (18) performs value prediction as well, buydar what it identifies
as induction variables. Mitosis (20; 30) adopts a much mereegal method for value
prediction, inserting pre-computation slices at the sihgpeculative sections. This is
done by traversing the control flow graph backwards stadirthe speculative section.
Instructions that produce the live-ins to the speculateaisn are selected. These se-
lected instructions are then summarised using profile médion. For instance, rarely
taken control paths are pruned out, as are instructionghbdive-ins are infrequently

2Transactional Memory (TM) is a speculative parallelisatiechnique related to TLS. TM systems
also suffer ineffiency due to wasteful re-execution.
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dependant on. These summarised instructions are thercdteali at the start of the
speculative section to formpslice The live-ins produced by thegeslicesare vali-
dated when the previous task has both ended and become eoulajre.

A number of proposals incorporate hardware value precidoo both register and
memory resident values. Cintra and Torrellas (7) proposaradwork for learning and
predicting violations, and using value prediction in certstates. They only evaluate a
simple last value predictor and find that it does not improeégrmance significantly.
Steffan et al. (42) have a similar scheme that throttlesevahediction and only em-
ploys it under certain circumstances. Values are prediatieein the load in question
is likely to squastandthe prediction confidence is high. If the prediction conficen
is low, the load is synchronised. This is discussed in Se@i@.1. The scheme is
evaluated with an aggressive hybrid context and strideigiad

Marcuello et al. (22) evaluate various value predictorstwirtClustered Specu-
lative Multithreaded processor. They look at innermospw SPECIint95 and pro-
pose a new predictor targeted specifically toward speselgtmultithreaded systems,
called anew value predictarThey conclude that it is beneficial to value predict registe
dependences, but that memory value prediction did not keaadlich further improve-
ment.

Prior to this, Oplinger et al. (28), as part of a study to idfgrgources of poten-
tial performance improvement using speculative multitldiieg, observed that return
value prediction for procedures and stride value predictay loops can improve per-
formance.

While synchronisation is aalternativeto value prediction, checkpointing and
value prediction can beombined If a checkpoint is placed when a value is predicted,
the misprediction penalty is reduced. Unlike synchromggtcheckpointing does not
result in a stall.

2.3 Hardware Support for Speculative Multithreading

In this section, the details of the TLS execution model amdhtéirdware to support it
are described. These form a baseline model for the rest dhdss.
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The basic TLS model used is very similar to the one propose®dyau et al.
(32; 34). Data versioning and dependence tracking are bdridfough having a mul-
tiversionedL1 cache. If a task attempts to perform a speculative load lzere is no
space in tha.1 cache to allocate a speculative line, the task cannotrasstiln this
case, the most speculative task on the processor is resiad@ attempt to free some
speculative memory. Thie2 cache is shared and only contains non-speculative data.
Spawns and commits are performed through explicit insivast When aspawnin-
struction is encountered, a new task is spawned off on ardiffgorocessor, with the
Program Counter, Stack Pointer and some task orderingnre#ion copied over. No
other registers are copied, and hence the compiler is reggerfor spilling registers
around spawn instructions and ensuring that live-ins fawsped tasks are commu-
nicated through memory. Since both the parent and child stesf#t with the same
Program Counter, a mechanism needs to exist for each tasketute the correct
code. This is done through the spawn instruction returniffgrént values. That is,
the standard return value register (r31) holds 0 in the gared 1 in the child after the
spawn. A conditional branch placed by the compiler aftergpawn instruction can
thus choose the correct code to execute. An example of suphvensfor loop level
speculation is shown in Figure 2.3.

Since out-of-order spawn is supported, there are no réstngon which tasks are
allowed to spawn. This support is through splitting task Hhges as proposed by
Renau et al. (34).

During speculative execution, whenever a task performsi sit is immediately
written through the_1 cache to the bus, and becomes visible to all other proceds$or
for any task more speculative than the task performing thre sthe address matches an
exposed load, the more speculative task is immediatelgntest Once a task reaches
the end of execution (executescammitinstruction), it becomes ready to commit.
A task cannot actually commit state until it becomes noresfaive. The commit
process itself involves propagating all speculativelytign data to safe system st%te
followed by passing theommit tokerto the next more speculative task. This in turn

3This is done by writing all speculatidel lines associated with the committing task to tf2ecache,
and marking those lines in thel cache to be non-speculative.
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Loop:
{Store Registers}
spawn
. if (child)

Loop: goto C
{Body} {Body} '
iv=ivet ﬁt;r; ilt?eglsters}
if(iv < N) c:

aiziiy e {Load Registers }
. . iv=iv+1

Continuation: if(iv < N)

goto Loop
Continuation:
( a ) Original loop. ( b) With spawn inserted.

Figure 2.3: Example of a simple loop spawn insertion. When the spawn in-
struction executes, both tasks start at the next instruction. The parent has child

set to false and the child has it set to true.

informs the next task that it is now non-speculative andlmagdd to commit.

Restarts are handled by restoring the Program Counter auk Hointer values
with which the task was spawned and starting execution. eSspeculative tasks are
not allowed to assume live-ins through registers, the emégister file does not need
to be restored.

As an energy optimisation, the number of restarts is limitdda task receives a
violation and restarts three times, it then stalls untietbmes non-speculative before
it can continue. This is to prevent tasks with many depenelefrom wasting too much
energy.






Chapter 3
Checkpointing Mechanism

Intermediate checkpointing of speculative tasks requs@ae architectural support.
This chapter describes the mechanisms required to sugdfioitiet intermediate check-
pointing. First, in Section 3.1, the basic checkpointingmurt is described, and the
hardware requirements enumerated. In Section 3.2, casedanttified in which the
basic scheme leads to inefficiencies, and extensions tc@wer these problems are
described.

3.1 Creation of Checkpoints

The insertion of checkpoints in the proposed scheme is gtiggghtforward. When

a task is to beheckpointegwe simply spawn a new task which is an immediate suc-
cessor to it. This is a hardware initiated spawn, unlike thengiler inserted spawn
instruction mentioned in Section 2.1.1.7. We shall refethie new task as theheck-
point This process is shown in Figure 3.1, considering a simpde cétwo iterations

of aloop, one of which is executed speculatively. In the Gds& case, the task receiv-
ing a violation restarts. In the checkpointing case, a cperk is inserted by spawning

off a new task. We assume that the checkpoint is inserted@fste the read frorp

in line 3. Thischeckpointhen behaves exactly as normal, and restarts upon receiving
a violation. The difference is that tleheckpointedask does not see a violation.

21
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More Speculative > More Speculative >
Iteration 1 Iteration 1 X
Iteration 2 Iteration 2
. Useful Execution | |
| |
|:| Wasted Execution | |
| |
Store . Restart Overhead Store | |
to *p i to*p |
| |
| |
1: for(i=0;i<iters;i++){ Restart Restart [
2: foo(); L _ =
3: varl = *p;
4: moo();
5: *p =var2; Time Time
6:} Y Y
( a) Speculatively ( b) Base TLS ( C ) Checkpointed

parallelised code

Figure 3.1: Intermediate checkpointing showing two iterations.

Further, we take a snapshot of the register file so that thekgloént can be restardéd
We constrain the newly created checkpoint to remain on theegarocessor as the
checkpointed task. This simplifies the protocol and keegst®ads low because live
registers remain available in checkpointed execution.dfallowed checkpoints to be
started on a different processor, we would need complexatigr communicating
live registers across processors. Keeping the checkpnitiieosame processor is also
the obvious route to take with respect to data locality. Af@m pinning it to the
same processor as the parent, the checkpoint is treated/ ashear speculative task.
Any violations affecting the checkpoint only cause a rdastarthe checkpoint. If a
violation affects the checkpointed task, it is restarted aimce the checkpoint is a
successor task, the checkpoint is killed. Any task can bekgwnted, even if it is
a checkpoint. The versioned memory mechanism ensuresatbied have the correct
state just as with normal tasks. It is worth observing thahé underlying TLS pro-
tocol only allows in-order tasks, only the most speculatask can be checkpointed
through this mechanism. Since we use a base protocol tlatsatut-of-order spawn,

Ln the base TLS protocol, no such snapshot is required whawrspg a new task, since it is
assumed that there are no live registers and all commuoicaiithe new task is through memory. So
for non-checkpointtasks, we only need to store the Prograomér and Stack Pointer in order to allow
restarts, as discussed in Section 2.3.
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we can checkpoint any task, whether it is the most specelatinot. However, as we
demonstrate in Section 3.2 through examples, there are sateasions required to
the TLS protocol to allow checkpointing to be effective ingraving performance and
reducing power consumption.

3.1.1 Hardware Requirements

The hardware changes required to allow checkpointing dptee tasks are minimal.
The only difference between a normal spawn and a checkp®ititait a checkpoint
requires a snapshot of register state. This can be done bigreets of shadow regis-
ters in the processor, or by storing these snapshots in mertfahe former route is
chosen, snapshots can be taken very quickly, perhaps witimeopenalty at all, but
the number of checkpoints is limited. Such shadow regides ire already supported
in processors to allow recovery from branch mispredictioifs on the other hand,
registers need to be transferred to memory for each chegkpbere is an associated
latency. Storing the snapshot in memory need not cause @ d@@lae this process is
not on the critical path and can be buffered and performeityldzowever, rewinding
to a checkpoint would incur memory access latency in this.cas

It is also possible to envision a hybrid process, which wd€p register state for
some checkpoints on the processor but allow older checkpoirthose less likely to
be used to be moved to memory. If those checkpoints that are likely to be needed
can by successfully identified, this approach could givebist of both worlds.

For the purpose of evaluation in this thesis, checkpointimgugh shadow regis-
ter files in the processor is modeled. The effects of suppgpnarying numbers of
checkpoints are evaluated in Section 6.2.

Checkpointing a task and continuing execution of the cheithpn the same pro-
cessor presents the questionngfenthe checkpoint begins execution. If, on a modern
pipelined processor, we walit for the instructions from theakpointed task to drain
from the pipeline, there is a significant cost. There is nadneewait, however, and
checkpoint instructions can follow immediately. In facice a decision to check-
point is made, it is even possible to insert a checkpoint anstnuction already in the
pipeline. It is important that loads and stores on eithee sifithe checkpoint bound-
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ary are marked with the correct task ID in the versioned cagtigo, the register file

must be checkpointed at the state after the last instructidhe checkpointed task
in sequential execution. This can be achieved by perforrttiegcheckpoint in two

stages. Once the instruction where the checkpoint is todueglis identified, mark all
memory operations after that in sequential order with thkldhsk ID. Second, when
the first instruction in the checkpoint task is ready to commaike a snapshot of the
register file to associate with the checkpoint.

Apart from the mechanism for inserting checkpoints, thexe o be hardware sup-
port for decidingwhento insert a checkpoint. This can be done either by having
explicit checkpoint instructions or by making the decis@tnruntime. Policies for
checkpoint insertion and the hardware requirements foleymy each policy are left
for discussion in Chapter 4.

3.2 Efficient Checkpointing

Though the minimum support for inserting checkpoints igegimple, as described
above, observing checkpointed execution reveals thatntlaig not be sufficient for
checkpointing to befficientin terms of execution time and power consumption. This
is demonstrated through examples in the remainder of ttapteln and hardware ex-
tensions for overcoming these shortcomings are proposed.

3.2.1 Selective Kills and Restarts

In TLS execution, a task may spawn a more speculative taskaaedget killed or
restarted. In the base TLS mechanism, when a task is raftatiethe tasks that
are more speculative are killed. However, since the taskxesutes from the begin-
ning, any tasks it spawned earlier (before restart) are ramvawne@l Rewinding to a
checkpoint may change this behaviour.

We look at this issue by revisiting the program in Figure 2This time, in Fig-
ure 3.2, we look at speculating on multiple iterations of kbep, assuming a four

2This assumes that the spawns are on a control path that is éaiah time. If this is not true, the
tasks spawned before and after restart may be different.
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More Speculative

Iteration 1

Iteration 2
= Iteration 3 . Useful Execution
= Iteration 4

Store |
to *p
1: for(i=0;i<iters;i++){
2: fOO()' Restart
3. varl = *p;
4: moo();
5: *p =varz;
6:}
Time
( a) Loop that is speculatively ( b) Base TLS
executed.
More Speculative More Speculative
Iteration 1 X Iteration 1 .
Iteration 2 Iteration 2
_ _|lteration3 _ _lteration 3
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to *p to *p

Time Time

Y Y
( C) Checkpointed ( d) Checkpointed with selective

restart

Figure 3.2: Intermediate checkpointing with four processors and a dependence
violation. For simplicity only the first dependence violation is shown, and check-

points are only shown for the first speculative task.
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processor system. In Figure 3/2b, we look at the case wittiwetkpointing. We see
that a violating store tp in the safe task 1 (running iteration 1) causes task 2 (runnin
iteration 2) to be restarted and tasks 3 and 4 to be killed. évew the restarted task
2 quickly causes new tasks to be spawned. Now, looking atake m Figure 3.2c,
where the speculative task 2 is checkpointed immediatdigreehe offending load,
we see that we save re-execution by only rewinding to thekgwot. In this case, the
processors that are left idle because tasks 3 and 4 are kdifedin idle until task 2
finishes executing.

Checkpointing causes this behaviour often since when tasks ot rolled back
completely, they do not necessarily respawn child taskisithae been killed. This is
specially true of loop iteration speculation where spawesodten at the very start of
tasks. This can cause or exacerbate load imbalance. This ¢se baectified with
some changes to the TLS protocol, which are described below.

When a task is restarted, we have to be careful to maintairecimess in more
speculative tasks. In the base protocol, this is achieveditoply killing all tasks
more speculative than a task that is restarted. This is showkigure 3.3a. The
algorithm there shows that whenever a task receives a testaestarts itself, and
propagates a Kkill signal to the next more speculativeJ;taSNe observe that this is
excessively conservative. The only tasks that have tailbed are those that were
spawned incorrectly. That is, those tasks that were spawpeckecution that turned
out to have misspeculated. So, in the updated restart #Higariwe Kill each task
whose parent (spawning) task has been restarted or killedtoQtate it differently,
for each task that is restarted or killed, all its childree &illed. For other tasks that
are more speculative than any killed or restarted task, gvamgh they were spawned
correctly, it is still possible that they have consumed liovzalues forwarded from less
speculative tasks. Therefore, we restart all other taskisate more speculative than
any killed or restarted task. This modified restart mechangshown in Figure 3.3b.
Here, the algorithm is expressed recursivaifvlergeis used to check if a task’s parent
has been killed or restarted as part of the current chainstéres and kills. Each task

3As described in Section 2.1.1.5, in out-of-order specoiatine successor of a task is not necessarily
its child, and the predecessor not necessarily its pardris distinction should be kept in mind during
the discussion of restart and kill mechanisms.
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restart(task){
task.inMerge = true;
if(task.next.parent.inMerge)
kill(task.next);

else
restart(task.next);
task.inMerge = false;

}
restart(task){
restartProcessing(task); kill(task) {
kill(task.next); task.inMerge=true;
} killProcessing(task);
) if(task.next.parent.inMerge)
klll(Fask) { . kill(task.next);
killProcessing(task); else
kill(task.next); restart(task.next);
} task.inMerge=false;
}
(a) Restart in base protocol. (b) Updated restart.
restart(task){ kill(task) {

task.inMerge = true;
if(task.startTime
> earliestRestartTime) {
earliestRestartTime =
max(earliestRestartTime,
task.startTime);
restartProcessing(task);
}
if(task.next.parent.inMerge)
kill(task.next);
else
restart(task.next);
task.inMerge = false;

}

task.inMerge=true;
earliestRestartTime =

max(earliestRestartTime,

task.startTime);

if(task.next.parent.inMerge)

kill(task.next);
else

restart(task.next);
task.inMerge=false;

( C) Updated restart with timestamp comparison.

sively propagated.

Figure 3.3: Restart algorithm showing how restart and kill events are

recur-

27
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that is restarted or killed seiisMergeto true before passing on a kill/restart token. For
any tasktask.nexis the immediately more speculative tastisk.parenis the parent
or spawning task. By checking the valueioMergefor the parent of each task, we
can ensure that all tasks that were spawned from misspedwtatcuation are killed.
It is worth noting that the same effect can be achieved bycatsog a list of task IDs
with the Kill or restart signal, with the ID of each task beagpended to it when it is
killed or restarted.

This issue is specific to out-of-order spawn, since if spaanesonly in-order, for
any given task, all tasks that are more speculative have $iggnned by it or its suc-
cessors. For in-order spawn, the algorithm in 3.3b reduedslling all tasks more
speculative than the restarted one.

If the new restart algorithm is used, we get the situationigufe 3.2d. The check-
point for task 2 gets restarted, but the checkpointed task dot receive a restart. This
means that the task for iteration 3 now receives a restagaof a kill since its parent
is not in the restart/kill chain, and it immediately spawiffssonew task 4. We see that
checkpointing is no longer causing processors to remaé idl

Going further, not all more speculative tasks need to eveedtarted. A given task
requires a restart only if it has overlap with misspecula&eetutiort. This observation
has previously been made by Colohan et al. (8). In that warledtamps are tracked
to compare the start time of a task receiving a violation wite end time of more
speculative tasks. A more speculative task is only restafiés end time is later than
the start time of the task receiving the violation.

We now extend the restart/kill mechanism to keep track & $éart and end times.
To maintain a temporal ordering between tasks, each tashknstated with aimes-
tamp which is the value of the system clock when the task begieswion. Since
the system studied here is a CMP with closely coupled procesk is assumed that
real time is available to each task, and hence a total orgle@@m be maintained. In
situations where a total ordering cannot be establishedntiion oflogical time as
commonly used in distributed systems, can be employed &bksi partial orderings

4strictly speaking, a restart is only required if an incotrealue was forwarded from misspecu-
lated execution. The scheme can be made more precise byngaokwarded values but we avoid the
complexity of that here.
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More Speculative More Speculative
Task 1 Task4 Task 1 Task4
Task 3
_______ S
Task 3
T T Taskz T T T Task 2
Restart
..=*p L =*D
*p =... *p =...
Violation Restart Violation Restart
Time
( a ) Task 4 does not require a restart because it ( b ) Task 4 needs to be restarted because
has no overlap with misspeculated there is no guarantee that incorrect
execution. values are not consumed.

Figure 3.4: Example of selective restart using timestamps.

between tasks.

When a task receives a dependence violation and restari/reskart signal is
propagated. Any task receiving the signal has to be killéd garent was killed/restarted,
and otherwise restarted only if it has overlap with a task wes killed or restarted. It
is important to note that a timestamp comparison with ongt#isk originally receiving
the violation isnot sufficient to guarantee correctness.

This restart requirement has to be enforced because in tovaeaintain correct-
nesswe need to ensure that no invalid forwarded values can bie &apce the correct-
ness of forwarded values is not guaranteed until the soastedf the value commits,
the start time of any task needs to be compared waitlpredecessor tasks that get
killed or restarted, not just the task receiving a violzi%i.oWhen the restart/kill signal

5The work by Colohan et al. (8) appears to only perform a tiaregt comparison with what they
call aprimary violation which is the task receiving the dependence violation. This cause incor-
rect execution, as shown in Figure 3.4b. To guarantee dmess, timestamp comparisons need to be
performed recursively for more speculative tasks for eastarted task in the chain.
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is propagated, each task is checked against the earligstista of any task that has
been killed or restarted in the chain. If there is any overthpt is, the end time of
the task in question is later than the start time of any kilestarted task, the more
speculative task is restarted. Otherwise nothing need®tddme. This is demon-
strated in Figure 3.4. In Figure 3/4a Task 4 does not have weglap with either of
the restarted tasks 2 or 3, and so does not need to be rest@metthe other hand, in
Figurel 3.4b, a different situation is shown, where Task 4visrlapped with Task 3.
If Task 3 is restarted, there is no guarantee that the valaesurmed by Task 4 are
correct, and Task 4 must be restarted. It should be notedttisgbossible for Task 4
to consume incorrect speculative values even though it doelsave any overlap with
the task originally receiving the data dependence viatefi@sk 2). The algorithm for
selectively restarting tasks using timestamps is showngarg 3.3c.

The effects of selective restart on checkpointed execue@nevaluated in Sec-
tion6.3.2.

3.2.2 Memory Optimisation

The advantage of treating checkpoints like any other sp#igaltask is that the TLS
protocol needs very little change to support checkpointse primary disadvantage
appears in increased pressure on versioned memory. Eackpdiet has to maintain
a version of any speculative data it uses or produces. Indake BLS protocol, this
means allocating a speculative line for every block thatleen read by the check-
point. When no space is available in the cache and allocation fails, the most specu-
lative task on the processor is restarted in attempt to foegesspeculative space. Our
experiments show that this causes many restarts. Datatjonakes it likely that a
checkpoint will read locations read by its parent. This hessim duplicate versions of
data. Colohan et. al. (8) avoid this issue by makingltBeache multiversioned, and
by having no versioning in thiel cache.

To deal with this problem, we propose some changes to the myeprotocol.
These are based on a certain relationship between a chet&gpaask and its check-
point. Specifically, it is guaranteed that a checkpointest t&ill haveno overlapped
execution with its checkpoint, and that the checkpoint W#lthe immediately more
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speculative task. With these in mind, we can relax some ofdimstraints of the data
versioning protocol. If the checkpoint accesses a locahahis marked as an exposed
read by its parent, it does not need to allocate a line for hisTs because if that
read turns out to be a misspeculation, the parent will berest, killing the check-
point. Because there is no overlap between the checkpadiasdand its checkpoint,
any misspeculation will be because of a store from a taskdpssulative than the
checkpointed task. The checkpointed task cannot be a sotissspeculation in the
checkpoint. Since the checkpoint is pinned to the same psocas the checkpointed
task, there is no performance related reason to allocateeddr such accesses.

Note that stores still need to be buffered separately fochieekpoint and its parent
in order to allow partial roll back, so checkpointing is notapletely free of overhead
in speculative state buffering.

The effects of these changes on checkpointed executionalieag¢ed in Section 6.3.1.






Chapter 4
Checkpoint Placement Policy

The important policy question when checkpointing taskshiem to insert checkpoints.
Checkpoints should be placed so as to minimise wastefukeetgion. This means,
ideally, placing a checkpoint just before any load thatates. Since in any realistic
model of the system, a checkpoint will have some overheadingertion of check-
points has to be made while taking into account resourcet@nts. In this chapter,
the policy problem of inserting checkpoints is addressegarts. First, in Section
4.1 the initial problem of identifying potential locatiofr checkpoints is addressed.
Section 4.1.3 approaches this problem by looking at vaneasgs of predicting de-
pendences including address based, program counter badduybrid schemes. In
Section 4.2 the resource constraints of the system aresathBnd discussed. Section
4.3 brings these issues together to propose a policy fortingecheckpoints. Finally,
Section 4.4 looks at the viability of checkpointing polEi@nd how they interact with
the instruction pipeline.

4.1 ldentifying Checkpoint Locations

4.1.1 Static Checkpoints

One possibility for placing checkpoints is to have spes&i instructions to insert
checkpoints. This would rely on static analysis to insegaktpoints at appropriate
locations. Techniques similar to those used for synchinogidependences (55) can be
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used. Other techniques, such as probabilistic pointeyaisal4; 37) can be useful for
checkpoint insertion as well. This thesis concentratesuatime techniques and does
not evaluate static checkpoint insertion.

4.1.2 Stride Checkpoints

This is the simplest of the dynamic checkpointing policigaleated in this thesis.
Stride checkpointing involves inserting a checkpoint gWinstructions. This method
has been proposed by Colohan et al. (8). That work looks gé lapeculative tasks
composed of database transactions, explores differadéestalues but does not con-
sider any other method of placing checkpoints. The onlytaaithl hardware required
for placing checkpoints by instruction stride is a countekeéep track of the number
of instructions since the start of a task or since the prexcheckpoint.

4.1.3 Checkpointing By Predicting Dependences

To make checkpointing more effective, checkpoints neecktplaced intelligently be-
fore and as close as possible to violating loads. A perfestigmointing scheme would
place a checkpoint just before every violating load and renelelse. At runtime, it
is not possible to know with certainty which loads will leaddependence violations,
so prediction has to be employed. Hence we look at methodpréaticting which
loads are likely to violate, and use this information forqitey checkpoints. Many
dependence relationshipgan be known statically at compile time, and these can be
synchronised. This does not preclude using dependencefoedor checkpointing
to deal with dependences that are irregular or not analgsabl

When studying dependence prediction for checkpointing,ihportant to keep in
mind the relative costs of mispredictions. As long as cheais can be placed with
fairly low overhead, predicting violating loads is more iarfant than total accuracy.
In other words, the cost of a False Negative is higher thahdha False Positive.
This, coupled with the observation that many dependenedsfiequent and irregular,
means that directly using counter based bimodal tablesasitiose typically used in
branch predictors is not an appropriate choice.
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4.1.3.1 Address Based Prediction

Waliullah and Stenstrom (49) looked at Transactional Mgnsyistems and proposed
inserting checkpoints before loads from addresses tha hagn seen to violate pre-
viously. A similar approach was used by Cintra and Torre{l@sfor synchronising

dependences.
Insert
Prediction
PC Address PC Address "
Critical Address Table Critical Address Table
( a) To make a prediction the address is checked ( b) On a violation, the address is
against the Critical Address Table. inserted into the Critical

Address Table.

Figure 4.1: Address Predictor in action.

The address based predictor used in this thesis is simillwetone used by Wali-
ullah and Stenstrom (49). Every time a violation occurs,atidress of the violating
store is added to &ritical Address Bufferas shown in Figure 4.1b. On every load,
the buffer is checked to see if the load address is criticdla4 If the address is found
in the buffer, it is potentially violating and a checkpoiratrcbe inserted. The size of
this buffer can be kept quite small without losing much peédn accuracy. The effect
of the size of the buffer is evaluated in Section 6.1.1. A mtéoh table is added to
each processor. Compared to having a single system-widerptlfis fragments the
training history and leads to slower training. However,-parcessor tables are used
in order to keep prediction latency low. Latency also prdekiadding dependence
prediction information to existing per-line speculativate, as is done by Cintra and
Torrellas (7). Since speculative state is kept in tiecache in the system modeled,
such an approach would add the equivalent oL &raccess on every prediction. The
latency issue is further addressed in Section 4.4.

A replacement policy for the buffer needs to be chosen. Ini@e6.1.1, we eval-
uate random, Least Recently Used (LRU) and First-In-Fist-(FIFO) replacement
policies. The replacement policy can make a substantif@rdifice to prediction accu-
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racy for small buffer sizes.

4.1.3.2 PC Based Prediction

Address based checkpointing works well in most cases, len¢ thre some commonly
seen patterns in programs where it fails to identify depahttzads. These include
sliding array operations and pointer chasing. Exampleshosvn in Figure 4,2. In
Figure 4.2a, there is a dependence through a member of aetiffebject pointed to
throughp for each iteration. Figure 4.2b shows a loop carried depecgl¢hrough a
different element of arrafA[] for each iteration. Both of these constitute loop carried
dependences that are not predictable by address, sincenstaniice of the dependence
is through a different address. Itis clear, however, théhismexample, there is a pattern
to the dependences which should be predictable. For cashsastthis, a prediction
can be made using the violation historyin$tructionsrather than memory addresses.
A similar approach was used by Moshovos et al. (25) and Stedfaal. (42) for
synchronisation.

while(p){
foo();
Z = p->count; for(i=0; i<N; i++){
moo(); res = foo();
p=p->next; Ali+1] = A[i] + res;
p->count++; moo();

} }

@ (b)

Figure 4.2: Address based checkpointing sometimes has trouble identifying
dependences. Dependences through p— >count and A are not predictable

through address.

A table based mechanism is used for Program Counter basemdence predic-
tion, similar to that used for address based prediction. driig change is that when a
violation occurs, the Program Counter of the instructiorfgrening the exposed load
that led to the violation is inserted into ti@ritical PC Table rather than the load
address. For each instruction, a prediction can be obtdorechecking whether the
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Program Counter is contained in the criticality tgolef the PC is contained in this
table, a violation is predicted.

Inser‘tl
PC Translation Table PC Translation Table
‘ Prediction
PC Address PC Address
Critical PC Table Critical PC Table

( a) To make a prediction the PC is checked against the ( b) On an exposed load the PC and
Critical PC Table. address are inserted in the
PC Translation Table.

PC

PC Translation Table

Insert

PC Address
Critical PC Table

( C) On a violation, the PC corresponding to
the address is inserted into the
Critical PC Table.

Figure 4.3: PC Predictor in action.

Predicting dependences through the Program Counter dessrgrone complica-
tion. When a dependence violation occurs, the program eowithe violating load is
not directly available. The address of the violating stamed hence the violating load)
is known. This means that this scheme requires some way ofiasisig the address of
an exposed load with the Program Counter of the instructesfopming it. This can be
done through another table, which we refer to asRieTranslation Table When an

1Only load instructions can be critical, so to save power #iet needs to be checked only for these.
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exposed load occurs, the load address and the Program Canat@serted into this
table, shown in Figure 4.3b. It should be noted that thisstébhot on the critical path.
The Program Counter corresponding to an addressligrequired when a violation
occurs and the PC needs to be inserted into the Critical P& T43c). When making
a prediction, only the Critical PC Table needs to be accesseshown in Figure 4.3a.
Therefore some latency can be tolerated when accessin@tiedRslation Table. The
size required for this table depends on how much data is fgte@ly read by a task.

The effects on predictor performance of both the Critical Fable and the PC
Translation Table are discussed in Section 6.1.2.

4.1.3.3 Hybrid Prediction

Any system that runs a variety of workloads will encountepeledences that are pre-
dicted well through one kind of predictor but not the otherfdct, the same program
may show both kinds of behaviour. The obvious solution isge lybrid predictors,
which employ both techniques.

Address Based

Predictor
—>Prediction
PC Based

Predictor

Load Address——>

PC——>

Figure 4.4: A hybrid dependence predictor where the outputs of the predictors
are ORed.

The simplest way of achieving this is to halweth address and program counter
based predictors, in which case a positive prediction igrnetd if either predicts a de-
pendence. That is, the outputs of the predictorsGiRed. This is shown in Figure 4.4.
To build a more conservative predictor, the outputs caA®ed.

A more sophisticated hybrid predictor can also be constdictThe presence of
dependences on some instructions can be identified bettergih load addresses, and
in others by the instruction address. This points to a canstn where a program
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counter based meta-predictor decides on which table toausedarticular instruction.
Such a predictor is shown in Figure 4.5. The disadvantagei®predictor is that it is
more complex and slower to train.

Address Based

Load Address—>| o jictor [ 1| M
u —>Prediction
PC Based X

Predictor

PC

Metapredictor

Figure 4.5: A hybrid predictor. Based on the Program Counter, a meta-predictor

selects the prediction to use.

As with conventional hybrid branch predictors (24), the aaptedictor is updated
only when the predictors disagree, while the other comptsnare always updated.
However, the meta-predictor is trained in a different marthan it traditionally is for
branch prediction. It was discussed in Section 4.1.3 thedipting violating loads cor-
rectly is more important than total accuracy. Keeping thimind, the meta-predictor
is trained such that when the predictors disagree on a lcadatttually violates, the
meta-predictor is saturated in favour of the correct predicThe counter is only in-
cremented/decremented in the opposite case.

Meta-predictors have been well studied in the branch ptieticdomain. They
have been used to select (11; 24) or combine (36) the outpindividual predictors.

4.2 Dealing with Resource Constraints

In a realistic checkpointing system, there will be sometliom the number of check-
points it is possible to place per task. Further, there walsbme overhead associated
with placing checkpoints. This may be in latency or in aduditl speculative buffer
state required, as discussed earlier in Section 3.2.2. drpthsence of such limits
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and costs, it may not be profitable to place a checkpoint oryexasitive prediction.
Hence, the insertion policy takes resource constraingsantount.

4.3 Checkpoint Insertion Policy

Once a data dependence violation is predicted, the systemo li@cide whether or not
to insert a checkpoint. In the simplest case, we insert akgjueat on every predicted
dependence. This can lead to very small tasks, and if we assuem a small overhead
for checkpointing, this does not remain efficient. The nundéeheckpoints available
may also be limited.

We construct a hybrid heuristic which takes these issuesactount and becomes
more cautious about inserting a checkpoint as the numbehedkpoints for a task
increases. The policy chosen for checkpointing is the Valg:

DoCheckpoint = (Dependence Predicted (CP < CPyax) A
- (CP+ 1))

(Size of Task>

max

WhereCRnaxis the maximum number of checkpoints allowed, &Rlis the num-
ber of checkpoints already place8ize of Tasks measured in the number of instruc-
tions from the start of the task, or the latest checkpoint dhackpoint has already
been placed. Here, the consténs the threshold for task size when choosing to place
the last available checkpoint ( Wh&P = CPynax— 1). The effect of the heuristic is to
have a low threshold for task size when a large humber of gianks are available,
and increase it to the maximum val@avhen there is only one more checkpoint avail-
able. The value fo€ is chosen experimentally to be 100. This heuristic is evallia
in Section 6.2.

4.4 Microarchitectural Interactions

Beyond the basic architectural support for checkpointswdised in the previous chap-
ter, checkpoint insertion schemes have their own inteyastivith the microarchitec-
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ture.

Even though we treat checkpoints as speculative tasksxibing task spawning
mechanism may not be sufficient. When a checkpoint is indeittés important that
loads and stores on either side of the checkpoint boundamnarked with the correct
task ID in the versioned cache. This issue has been discbssdlgl in Section 3.1.1.

When (non-checkpoint) spawns are performed based on spastrugtions, the
spawn can be identified when the instruction is decodedaséitrg memory accesses
correctly is not problematic. Runtime dependence presticiind checkpoint insertion
is not always as straightforward, as explained below.

The stride case is simple. Since the decision to insert akglogat is based on
instruction counts, the instruction to be checkpointed lsarknown even before it is
decoded.

For PC based checkpoints, if we assume a low latency predi@tasonable based
on the small Critical PC Table used), this is straightfoidvas well. Once again, we
can have a prediction even before decode, since the prdicéin be made when the
instruction is fetched.

Address based prediction is far more problematic. A préoliictannot be made
until the load address is available. The address may be deapate in the pipeline,
and out-of-order processors will already have reordersttuictions. Itis necessary for
correctnesshat a load which is in the parent thread not be marked as lieithg child
thread. If this does happen, it is possible that the checkpuill receive a violation
thatshouldgo to its parent, resulting in execution not being rewounfagaas it should
be and possible incorrect state. The converse is a perfagriasue, but does not make
execution incorrect. This can be seen by considering the whgre a load belonging
to the child thread gets marked with the parent’s task IDhil tocation then receives
a violation, it is the parent task that gets restarted. Thilsr@sult in correct execution
but with unnecessary re-execution.

This means, for the sake of correctness, the system eitlsetohansure that the
load in question does not get issued before any loads thatldifs, or alternately
has to correct ID’s if this does occur. Another way of dealith the problem is to
conservatively place the checkpoint before the instructiat is ready to retire when
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the load to be checkpointed is identified. This will mean #w@he of the loads/stores
that belong to the checkpoint will have been issued with @rempt’s ID. As mentioned
above, this has performance repercussions but is not actoess issue. It also means
that if the checkpoinis restarted by a violation through the load that was preditded
squash, execution is rewound further back than is necessary

We see that stride and PC based prediction are easier tormepteand PC based
prediction can deal with latency in obtaining predictionsl dience can allow the use
of larger tables or more complicated prediction techniques



Chapter 5
Evaluation Methodology

This chapter discusses the manner in which the checkpgitéchniques and depen-
dence predictors presented in earlier chapters are eealuat

The first issue discussed is that of evaluation metrics. Téopa a quantitative
evaluation, meaningful measurements must be made and cethfBection 5.1 goes
through the metrics that are used for the evaluation andigsstheir selection. Then,
Section 5.2 looks at the simulator used for obtaining thesasurements. The config-
uration parameters of the system modeled are also givemllfim Section 5.3, the
benchmarks used for the evaluation are discussed.

5.1 Evaluation Metrics

5.1.1 Evaluating Dependence Predictors

In order to compare the performance of the dependence poeslievaluated, we must
look at metrics that reflect the usefulness of these prediethen used to place check-
points. This section discusses the metrics used for evaluat

A confusion matrix for predictions and outcomes is shownabl€ 5.1. If a load
is predicted as a dependence, and the prediction is coirésteferred to as drue
Positive(TP). If it predicted as a dependence and is actually not art#gnce, this is
a False PositivgFP). Similar terms are used for negative predictions asvehno the
table.
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Prediction Outcome

Dependence No Dependence
Dependence True Positive False Positive

No Dependence False Negative  True Negative

Table 5.1: Prediction Outcomes.

Dependence prediction is a binary classification problehe ffaditional measures
used for such predictors are Accuracy, Sensitivity and Bipiy.

The Accuracyof a predictor is simply the proportion of correct predictsomade
out of the total number of predictions.

True Positives- True Negatives
True Positives- False Positives- True Negatives- False Negatives

Accuracy=

Sensitivity also known as Recall, refers to the proportion of depeneletitat are
correctly predicted.

True Positives

Sensitivit — -
¥ True Positives- False Negatives

Specificityis the analogous measure for the negative case, i.e. thenimp of
no-dependance outcomes that are correctly predicted.

True Negatives
False Positives- True Negatives

Specificity=

There is one additional measure we look at. Hrecision also called thd?os-
itive Predictive ValugPPV), of a predictor is a measure of the accuracy of positive
predictions.
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True Positives
True Positives- False Positives

Precision=

In the context of checkpointing, if we use a certain prediclioectly for placing
checkpoints, the Sensitivity of the predictor tells us whratportion of violating loads
are checkpointed, and the Precision tells us what propodicheckpoints placed was
actually needed. The Accuracy and Specificity of the prediate not as useful to
directly reflect the behaviour of a predictor when placingakpoints. Therefore, for
the purposes of evaluating dependence predictors, thecsi@te concentrate on are
Sensitivity and Precision.

Another commonly used measure employed isfthmeasure This is the weighted
harmonic mean between the Sensitivity and the Positivei@es Value.

(1+ B?)(Precision Sensitivity

F = - - -, = -
P B2- Precision+ Sensitivity

Or,

(14 B?) - True Positives
((1+ B?)True Positives- B2False Negatives False Positives

3=

The F-measure for a perfect predictor is 1, and the worstiplesgalue is 0. The
Fi-measure, wherp = 1, evenly weights Sensitivity and Precision. Higher valiogs
B weight the Sensitivity higher, and values lower than 1 wetbk Precision higher.
The advantage of using tikg-measure is that it reduces the performance of a predictor
to one easily comparable number. The disadvantage thaw®ik that the comparison
is only meaningful if the weighting chosen is reflective of tomparative advantage
of a useful checkpoint versus the cost of a wasted checkpbiis depends on system
characteristics such as the overhead of placing a chedkgodthe re-execution saved
when a checkpoint is correctly saved. To keep the evaluasogeneral as possible,
over-reliance on this single measure is avoided.
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Benchmark Known Prediction Outcomes (%)

bzip2 78
crafty 71
gap 43
gzip 91
mcf 83
parser 63
twolf 95
vortex 94
vpr 64

Table 5.2: Percentage of Outcomes Known.

5.1.1.1 Measuring Dependence Predictor Performance

For the purpose of evaluating a dependence predictor, tttome (as in Table 5.1)
has to be measured for each prediction made. However, nptedictions have an
associated outcome. When a task receives a violation amdtiarted or killed, apart
from the address receiving the violation, the outcomesHerlbads performed by the
thread are not known. The outcomes known are those for nglddads and for all
loads within tasks that commit.

All results reported for dependence predictors in Chaptaeéessarily take into
account only known outcomes. Table 5.2 shows, for each lmear) the fraction of
predictions made that have a known outcome. This fractifeiriy high, and is below
50% for only one benchmarlgép. This means that when evaluating predictors, we
are able to take into account a large portion of the predistimade.

5.1.2 Evaluating Checkpointing Schemes

Beyond the effectiveness of dependence predictors, thekpbant insertion schemes
also need to be evaluated in terms of the savings they pro@dee again, an attempt
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More Speculative

Iteration 1
Iteration 2

Wasted
Instructions

Load
from *p

Store |
to *p

Restart

1: for(i=0;i<iters;i++){

2: foo();

3:  varl = *p;

4:  moo(); Time
5

6

*p = 2;
}p var v

(@) (b)

Figure 5.1: The instructions before the load from *p are not dependent, and
are wastefully re-executed. All the instructions from the start of the task to the

one immediately preceding the load are wasted instructions.

has been made to keep the evaluation as general as possible.

The purpose of checkpointing is to reduce wasteful re-etx@cuA direct measure
of wasteful re-execution is the number of unnecessarilashiad instructions. When a
task is squashed, the violated load and every instructien éfat has to be re-executed.
However, in practice, there may be instructions betweetidne of the task and the of-
fending load. These instructions do not have to be re-eredotmaintain correctness,
and re-execution only occurs as a consequence of where tasidaries are placed.
Here these instuctions are referred tonasted instructionsAn example is shown in
Figure/ 5.1, where all the instructions before the load frgarin the speculative task
are wasted instructions.

As with dependence prediction, the evaluation must reflettt the savings and the
potential cost in overhead. Where savings in re-executgdictions are important, in
cases where there is a cost associated with placing a chieckp important to take
that into account. So, alongside the total savings in wastdictions, checkpointing
is also evaluated in wasted instructions saved per benéhmar

The checkpointing schemes are also evaluated using th&dred metrics of exe-
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cution time, power and energy.

5.2 Simulator

We conduct our experiments using the SESC simulator (33)SGGEan model dif-
ferent processor architectures, such as single processus multi-processors and
processors-in-memory. It models a full out-of-order pipelwith branch prediction,
caches, buses, and every other component of a modern poocesgssary for accurate
simulation. The simulator leverages the MINT emulator (#&/yenerate instruction
objects, which the event driven SESC simulator then usetsnfiing simulation.

The SESC simulator has been extended to include the chextkppsupport de-
scribed in Chapter|3 and the dependence predictors deddnlighapter 4.

The main microarchitectural features of the baseline syste listed in Table 5.3.
The system we simulate is a multicore with 4 processors, &bach processor is 4-
issue out-of-order superscalar. For the TLS protocol wamassout-of-order spawning
(34). The latencies of all the caches were computed based@T11043). The power
consumption numbers are extracted using CACTI and Wattch (2

5.3 Benchmarks

We use the integer programs from the SPEC CPU 2000 benchmigkrgnning the
Reference data set. We use the entire suite exa@mpgccandperlbmk which failed
to compile in our infrastructure. The TLS binaries were ai¢d with the POSH in-
frastructure (18). A subset of the SPEC CPU 2006 benchmarktso used. These
areastar, bzip2 mcf andsphinx3 running the Training data set. The running times
for these benchmarks is much longer than for the SPEC 20Gfygres, so the Train-
ing data set is used to keep simulation time feasible. THisetuof SPEC 2006 was
chosen because it shows good TLS potential and is not ttivipharallelise (29). For
these benchmarks, high coverage loops have been selectguefulationbzip2and
mcf show behaviour very similar to their SPEC2000 counterpaitsace they are not
discussed separately in the Evaluation chapter.
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Parameter TLS (4 cores)

Frequency 5GHz

Fetch/Issue/Retire Width 4,4,5

L1 ICache 16KB, 4-way, 2 cycles

L1 DCache 16KB, 4-way, 3 cycles

L2 Cache 1MB, 8-way, 10 cycles
Main Memory 500 cycles

[-Window/ROB 40, 100

Branch Predictor 16Kbit Hybrid

BTB/RAS 1K entries, 2-way, 32 entries

Cycles from Violation to Kill/Restari 12

Cycles to Spawn 12

Table 5.3: Architectural parameters used.

In order to compare sequential, TLS and checkpointed eix@tuwe need to make
sure that the same code segments are executed in each cadionally, this is en-
sured by executing a given number of instructions. For siadiga systems, however,
the instruction count may differ depending on the amount sispeculation. For this
reason, we placsimulation marksacross the code regions we wish to simulate and
make sure that evaluations are based on the same code segfieistis also neces-
sary because the sequential and TLS binaries are diffetantfo re-arrangements of
the code by POSH. After skipping the initialisation phasegfach benchmark, enough
simulation marks are simulated so that the correspondiggessial application grad-
uates more than 750 million instructions.






Chapter 6
Results and Evaluation

In this chapter, a quantitave analysis is performed of tokrigjues described earlier
in the thesis. First, in Section 6.1, the various dependpnesictors described in Sec-
tion/4.1.3 are evaluated and compared, and various confignraptions considered.
Then, Section 6.2 evaluates the performance of checkpgimolicies and explores
parameter selection for these. Section 6.3 looks at theteftd# the hardware mecha-
nisms described in Section 3.2, including memory systernmogations and selective
kills and restarts. Finally, Section 6.4 compares cheakay with synchronising
loads that are predicted to be dependent

6.1 Dependence Prediction

Various dependence prediction mechanisms were descnlfgeltion 4.1.3. Here, the
performance of these address based, Program Counter basdéglarid predictors is
evaluated. The effects of structure sizes are analysedrna8ddtion 6.1.4 the perfor-
mance of address based, Program Counter based and hyldidtpre is compared.
For the evaluation of the predictors, a four processor systenning Thread Level
Speculative code is simulated. No checkpointing is peréatiior this evaluation. This
allows easier comparison of predictors, since predictadmaot modify execution and
no secondary effects are introduced, hence each predaxsrexactly the same mem-
ory accesses and dependences.
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6.1.1 Address Based Prediction

The first evaluation performed is of the performance of arreskibased predictor as
described in Section 4.1.3.1. The plots in Figure 6.1 sh@8tnsitivity of the predic-
tor along with the Precision as the size of the Critical AddrBuffer is varied from 2
to 128. The Sensitivity increases along the x-axis, whiéeRnecision increases along
the y-axis. Desirable predictor performance would be inttgeright corner of the
graph, with Precision and Sensitivity being close to oneth&sresults in this chapter
show, in practice, tuning predictors to be more aggressadd to higher Sensitivity,
but lower Precision. The choice of these metrics to evalsgtesh predictors has been
discussed in Section 5.1. The address based predictorlisaéed for Random, First-
In-First-Out (FIFO) and Least Recently Used (LRU) replaeabpolicies. Each line
in the plots corresponds to a replacement policy. The datépbave been annotated
with the number of entries in the Critical Address Buffer.

The results show that, as expected, larger buffer sizedtiestigher Sensitivity,
but at the cost of a larger number of false positives, refteatéower Precision. What
this means in terms of checkpointing is that if the predicsonsed directly to place
checkpoints, a larger buffer would result in better coveraghat is, a higher propor-
tion of dependent loads would be checkpointed. The higherhau of false positives,
however, would result in a larger number of unnecessarylg@nots. It becomes im-
portant to avoid unnecessary checkpoints if there is a haghto placing a checkpoint,
or if the number of checkpoints allowed is limited.

It should be noted that the range of variation in Sensitiigtgramatically different
for different benchmarksmcf shows very little change in going from one entry up-
wards, while other benchmarks show strong improvement. ésohthe benchmarks,
for examplecrafty and vpr show improving Sensitivity right up to 64 entries, while
others parser, gzip, vorteX stop showing considerable improvement earlternolf is
the only benchmark to show noticeable improvement up to 1i#8es. The Precision
also has very different ranges of variation for differenhbemarks. Precision is ex-
tremely low forgzip (0 to 0.01) andsortex(0.01 to 0.04). These benchmarks do not
see much of an effect from table size on the Precision. Onfttier dandpzip2 gap
andmcf show fairly high Precision of over 0.3 for many table sizes.
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Figure 6.1: Sensitivity and Precision for address based dependence predictor

with LRU, FIFO and Random replacement policies. (Continued on next page)
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Figure 6.1. Continued: Sensitivity and Precision for address based depen-

dence predictor with LRU, FIFO and Random replacement policies.

The comparison of replacement policies provides someaastiry results. With
only the exception ofrafty and at some sizesncf LRU replacement provides greater
Sensitivity for the same buffer size than FIFO or Randomaeginent. This is most
pronounced at buffer sizes from 2 till 8. The fact that theetflessens at large buffer
sizes is explainable by the fact that at sizes above 8, baffpacity is not the main
limiting factor for Sensitivity. For a single entry buffahe replacement policies are
equivalent so no difference is observed.

Even though LRU replacement provides better Sensitivitgtpal table size com-
pared to the two other replacement policies, it can be sesrfahmost benchmarks,
and on average for all benchmarks, the lines for FIFO and Baneplacement lie
above the line for LRU. This means that we can achieve a gieasi8vity with fewer
false positives than is the case for LRU. This leads to thelosion that, if we ig-



6.1. Dependence Prediction 55

nore the power and area effects of buffer size, then for justptredictor performance
tradeoffs, it is preferable to use FIFO or Random replacértiem LRU. In fact, look-
ing at the mean performance for all benchmarks for buffeesiaf 16 and 32, the
difference in Sensitivity is negligible while the differesm in Precision is much more
significant. The only case where LRU replacement is preferawhen high Sensi-
tivity is required from a comparatively small table of sized?or 8. Apart from this,
the complexity of LRU replacement can be avoided and simelglacement policies
can be used for a better performing predictor.

The evaluation shows that the advantage of increasing tieeo$ithe Critical Ad-
dress Table beyond 32 has little benefit in Sensitivity. Buggests that a 32 or 64
entry, FIFO replaced table is the best choice.

6.1.2 Program Counter Based Prediction

Figure 6.2 shows the performance of a Program Counter baseitior as described
in Section 4.1.3.2. Similarly to the address based preqiitts evaluated for Random,
First-In-First-Out (FIFO) and Least Recently Used (LRUplezement policies. For
the results in Figure 6.2, an unlimited PC Translation Tabkssumed.

The Program Counter based predictor behaves fairly siipilarthe address based
one discussed above as the Critical PC Buffer size and replest policy are varied.
Growing Sensitivity accompanied by falling Precision candbserved as the buffer
size is increased. There is little benefit in Sensitivitywh@bove a buffer size of 16,
and next to none above 32.

Apart from crafty, a buffer size of 8 sees all the benchmarks reach either 90%
Sensitivity, or, in the case ofortexclose to the maximum Sensitivity available.

Comparing the replacement policies shows that for thecati®®C buffer, LRU re-
placement leads to Precision compared to Random and FIRDthanSensitivity is
markedly better for only one benchmarkertex However, unlike the address based
predictor discussed above, the difference between replacepolicies is only signif-
icant for buffer sizes of 2 to 8. This still leads to the samadtosion: it is best to
use a simpler Random or FIFO replacement policy since LRl adchplexity for no
benefit.
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Figure 6.2: Sensitivity and Precision for Program Counter based table depen-
dence predictor with LRU, FIFO and Random replacement policies. (Continued

on next page)
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Figure 6.2: Continued: Sensitivity and Precision for Program Counter based

table dependence predictor with LRU, FIFO and Random replacement policies.

In the results above, an infinite buffer was assumed for paiifogy Address to PC
translation on violations. Obviously this is not a reafistssumption. In Figure 6.3 the
effects of varying the size of the PC Translation Table amwsh The sizes shown are
1,2,4,8,16, 32,64, 128, 256 and Infinite. Each line corredpdo a different size of
the Critical PC Buffer: 4,16 and 64.

It can be seen that translation table sizes of less than liévachery low Sensi-
tivity. For all the benchmarks, there is rapidly increasBensitivity to a certain table
size, after which increase in the size becomes far less it@porThis size required to
get close to the maximum benefit available varies from 1®#gp, gapandmcfto 128
for vortex vortexis also the only benchmark to show any improvement at all beyo
a size of 128. The mean for all benchmarks shows rapid impnev in Sensitivity
up to 64, some further increase to 128 and negligible impreds after that. These
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Figure 6.3: Sensitivity and Precision for PC based dependence predictor for

various sizes of PC Translation Table. (Continued on next page)
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Figure 6.3: Continued: Sensitivity and Precision for PC based dependence

predictor for various sizes of PC Translation Table.

results suggest that a size of 64 is sufficient to capture oegstndences. This is true
regardless of the size of the Critical PC Buffer.

It should be noted that like the PC Criticality Buffer, this a fully associative
table. If set associative or direct mapped storage is udadyer size may be required.
However, unlike the Criticality Buffer, the Translationfla is not on the critical path,
so keeping the size small is not as much of a concern.

The evaluation for the Program Counter predictor showsitheaches its best per-
formance at a smaller sized criticality table compared atldress based predictor.
There is little benefit beyond 8 to 16 entries in the PC Ciiitigdable. The PC Trans-
lation Table, however, requires 64 entries to show goodoperdnce. This suggests
that the predictor should be configured with an 8 to 16 entiticality Table and a 64
entry Translation Table.
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6.1.3 Hybrid Prediction

In this section the various hybrid predictors describedent®n 4.1.3.3 are evaluated.
In Figure[ 6.4, we evaluate the predictions obtained by takire OR and AND of
the address and Program Counter based tables discussedaretiious two sections.
Buffer size for Critical Address and Critical PC buffers iaried from 1 to 128. The
PC Translation table is fixed at 64 entries.

The OR hybrid predictor obtains an aggressive prediction, by jtezh a depen-
dence when either of the individual predictors returns atpesprediction. This leads
to high Sensitivity, but a high false positive rate. TAND predictor is much more
conservative, only predicting a dependence when both ikl predictors agree on
a positive prediction. This leads to a lower false positiggef but obtains far less
Sensitivity than th€®©R predictor.

Next, in Figure 6.5, we look at a hybrid bimodal predictoringsa direct mapped
bimodal table to select which prediction to use. The lingkéfigure are various sizes
for this table. The critical address and PC buffers are fixegRa The points for each
line show the number of bits for the counters in the table.

The results show that a very small metatable of 32 or 64 enteads to both
lower Sensitivity and Precision. This is because of aligdiatween different PC val-
ues. Because the training method is biased towards maimgafensitivity (saturate
on dependence, decrement on no-dependence), the aliasngds of an effect on
Sensitivity than on Precision, particularly for wider coers. Above 1k entries, the
difference in predictor performance is negligible. Theref larger metatable sizes are
not shown.

When we see the variation through the number of counter bhi¢ssee steadily
increasing Sensitivity. This points to behaviour where satependences only occur
rarely. Increasing the number of bits to a very large valuailddead to behaviour
where once a dependence is observed, the individual poedieturning a positive
prediction is always selected. This would approximateQ@igpredictor.

Next, in Figure 6.6, we look at 128 entry and 1k entry tableégh ® and 5 bits and
observe the effect of varying the buffer size of the indidbpredictors from 1 to 128.
As the results above suggested, a metatable with 5 bitsatsilre false positive rate



6.1. Dependence Prediction 61

bzip2
0.45 0.2
. 2
0.4 4 8 0.18
S 326 0.16
0.35 -
0.3 : 0.14
0.12
S 025 S
2 o 2 » 01
g o : 3 008
T 015 % 006
0.1 AddrOrPc 0.04 & AddrOrPc 16
= AddrAndPc == AddrAndPc
0.05 0.02
0 0
0.6 0.65 07 075 08 085 0.9 0.95 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sensitivity Sensitivity
0.4 9ap 0.04 9zlp
. 2 5 . ;
0.35 0.04
2 '8
0.3 0.03
0.25 1 0.03
s s
5 02 % 0.02
2 3
&£ 015 £ 002
0.1 AddrOrPc 0.01 4 AddrbrPc
0.05 " AddrAndPc 0.01 “**AddrAndPc
0 0
0 01 02 03 04 05 06 07 08 09 1 0.7 0.75 0.8 0.85 0.9 0.95 1
Sensitivity Sensitivity
mcf parser
0.3 1 0.45
¢ B 04 !
1 .
0.25
0.35 1
0.2 0.3 .
c S 025 186,
5 015 2 5
2 g 02
4 o
a 01 a 015
& AddrOrPc 0.1 e AddrOrPc
0.05 e« AgdrAndPC == AddrAndPc
0.05
0 0
0.97 0.98 0.98 0.99 0.99 1 1 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Sensitivity Sensitivity

(e) (f)

Figure 6.4: AND and OR hybrid predictors, varying buffer size for individual

predictors. (Continued on next page)
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Figure 6.4: Continued: AND and OR hybrid predictors, varying buffer size for

individual predictors.

best while providing good Sensitivity as well.

One interesting thing to note from these results is that @ihsensitivity and the
tradeoff between Sensitivity and Precision, the numberoointer bits is much more
important than the number of entries in the table (beyong genall values). This
reflects the fact that many important dependences are udreggand to maintain Sen-
sitivity, the predictor has to have long memory. The desiated result that follows
from this is that a comparatively small metatable is suffitiéut it is important to use
a wide enough counter.
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number of counter bits.

6.1.4 Comparison of Predictors

Figure 6.7 shows a comparison between the performance pféaéctors discussed so
far. For all buffers, a First-In-First-Out (FIFO) replacent policy is used, and Critical
Address and Critical PC Buffer sizes are varied from 1 to I128.the hybrid bimodal
predictor, a 128 entry, 5 bit metatable is employed. FortedlPC predictors used, a
64 entry PC Translation Table is modeled.

It can be seen that for most benchmarks (with the notableptxceof vortey,
and on average for all benchmarks, the line for the hybriddaiai predictor lies well
above any of the other predictors. This means that we cameela given Sensitiv-
ity with fewer false positives. When we compare the simpldrass and Program
Counter based predictors, we observe higher Sensitivita fgiven buffer size if we
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Figure 6.6: Hybrid bimodal predictor, varying buffer size for individual predic-

tors. (Continued on next page)
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Figure 6.6: Continued: Hybrid bimodal predictor, varying buffer size for individ-

ual predictors.

use Program Counter based prediction. This is true for albénchmarks. However,
bzip2, and for some table sizes, gap and twolf show a be#tdetff between Sensitiv-
ity and true positive rates for an address based predictbthépredictors evaluated,
the best Sensitivity is achieved by the aggressive OR piadidhis is at the cost of

a high False Positive rate, particularly at larger buff@esi The more conservative
AND predictor provides a better tradeoff, but still not aoodas the hybrid bimodal

predictor.

Table 6.1 shows th&g values for the predictor types. Thg measure has been
discussed earlier in Section 5.1. Two sets of comparisoashown. On the left,
the Address predictor is configured with a Critical Addressf& of size 8. For a
fairer comparison, since the Program Counter predictouireg the PC Translation
Table, it is configured with half the buffer size. The hybriggictors, since they need
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Predictor Fi F F F Predictor Fi R F F
Address (8) 0.28 0.56 0.67 0.7 Address (64) 0.21 0.54 0.70 0.77
PC (4) 0.29 0.61 0.73 0.7 PC (32) 0.18 0.52 0.72 0.82
AddrAndPC (4) 0.34 0.55 0.61 0.6 AddrAndPC (32) 0.31 0.62 0.74 0.78
AddrOrPC (4) 0.28 0.60 0.74 0.8 AddrOrPC(32) 0.16 0.48 0.70 0.80
Hybrid (4) 0.34 0.64 0.74 0.7 Hybrid (32) 0.28 0.64 0.79 0.85

Table 6.1: FB values for predictors.
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two tables each, are also configured with each table of sizé# 4an be seen that
the Address and AddressAndPC predictors do comparativelyagcording to thé-;
measure, since they have high Precision. When Sensitwiprioritised, these two
predictors do noticeably worse than the others. The hykrtbdal table has the best
performance on almost all the measures.

This comparative performance leads to the conclusion tlzaéa and power are at
a premium, then a simple Program Counter based buffer is¢begdredictor to use.
It is clear that the PC based predictor does better in botlsibaty and Precision
than the address based one. Combined with easier impletoenfas described in
Section 4.4), this makes the PC predictor the clear choiee the address predictor.
In Figure 6.7j it can be seen that the address based pregictordes the worst tradeoff
among the predictors evaluated, giving the poorest Paatieir any given Sensitivity.

Otherwise, if area and power are not tightly constrained;kaild bimodal predictor
combining Program Counter and address buffers is the besteh

6.2 Checkpointing Scheme

It would be desirable to find a limit for the maximum savingaiéable through check-
pointing, however, it is not straightforward to do so. Hisiplacing checkpoints
through an oracle predictor would not necessarily lead ¢oibst possible placement
of checkpoints. Further, since placing a checkpoint effesiecution, and hence may
change the relative ordering of loads of stores and thetiagudependence violations,
it is not possible to use a trace of execution as a perfectiggeedas is done when
evaluating branch predictors. Constructing a checkpoggcheme that uses an oracle
predictor would involve the following: whenever a depenckeis observed, rewind-
ing execution at least as far back as the load involved in #peddence, and placing
a checkpoint at that load. In the infrastructure used fofuatéon, this means either
restarting execution on every dependence or saving theeesttite of the simulator
periodically. For the purpose of this evaluation, it wag feht such a methodology
would be too complex and time consuming, specially sinceitlal not provide a pre-
cise limit on improvement through checkpointing, and a reigrwould still need to
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be employed to avoid checkpoints from being placed excelysilose.

In this section some of the predictors described earlierusedl to place check-
points, as well as placing checkpoints by stride, and thelteare evaluated. Check-
pointing policies are evaluated by observing the effecthaiokpointing on the number
of wasted instructions. The wasted re-execution is shovapescentage of the wasted
re-execution in the case without any checkpointing. Foetidress and PC predictors,
tables of size 32 are used, and the hybrid bimodal employ8 @4y, 5 bit metatable.

For the first set of results, in Figure 6.8 a checkpoint is @tbwhenever a positive
dependence prediction is obtained. The wasted instructoa shown for different
checkpointing schemes and for different values for the maxn number of check-
points allowed per task. When the maximum number of checkpos reached, all
further positive predictions are ignored. It should be ddteat the vertical axis in Fig-
ure 6.8 is inlog scale. To keep the figure easy to read, the vertical axisstaft, so in
cases where the wasted instructions are less than 1% ofiremiqoointed TLS, no bar
appears.

The savings from checkpointing by stride are much less ttsmgudependence
predictors. Among the dependence predictors, the PC poedicoduces the most
savings, followed by the hybrid, and then the address. Ongne benchmark;ortex
does checkpointing by address result in more savings thiaig do by PC. This is con-
sistent with the predictor Sensitivity shown in Figure 6xhere the PC predictor has
higher sensitivity for 32 entries for all benchmarks apeotr vortex The address and
hybrid predictors show improved savings up to 16 checkgoinhile the PC predictor
shows improvement up to 32. This may be a reflection of the i&wecision of the PC
predictor, which leads to a need for more checkpoints toeaehihe maximum saving.

In Figure 6.9a, the reduction in wasted instructions forreds, Program Counter,
hybrid and stride based checkpointing is summarised. Ferahmaximum of 8 check-
points per task are assumed. Predictor based checkpolmsdeonsistently with the
results in the previous section. The PC predictor providesiost reduction, followed
by the hybrid bimodal and address predictor. This is in kegpiith the Sensitivity
observed for these predictors. In Figure 6.9b, the effigiesfacheckpoints is shown
in terms of the number of instructions saved per checkpdottgd against the wasted
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Figure 6.9: Unnecessary re-execution as a percentage of TLS with no check-

pointing for different checkpoint placement schemes.

re-execution. Here, it can be seen that the address bas#idtpreapart from having
the lowest savings among the three predictor types, is hkst¢etst efficient in terms
of savings per checkpoint, saving only an average of 20uns8tns per checkpoint.
The PC based predictor gets better savings with greateresffig than the address
based predictor. The hybrid bimodal predictor places cpetks with the highest
efficiency, and obtains a reduction that lies between thathi® PC and address pre-
dictors. Hybridbi-H shows the case where the heuristic desd in Section 4.3 is
used rather than inserting a checkpoint on every positiegliption. It can be seen
that using this policy that takes into account the limitatan the number of check-
points provides improved efficiency in terms of savings pgeeakpoint. The saved
re-execution per-checkpoint increases by 30% when usiagtiicy over checkpoint-
ing on each positive prediction. There is also a small redoéh wasted re-execution,
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from 8.4% to 7.6%.

The predictors are also compared against stride checkpginThe performance
for checkpoints inserted by stride is far lower than thatdsemg predictors. Small
strides result in reducing wasted re-execution, but witly wenall savings per check-
point. Larger strides do not produce much saving.

The saving per checkpoint for all the schemes is fairly lowe highest, for the
hybrid bimodal predictor, is an average of 56 instructioes gheckpoint. For some
programs, such asrafty andmcf, this value is less than 20. This means, that to obtain
any advantage from checkpointing for these programs, mjgoirtant that the check-
pointing mechanism has low overhead.

1.2
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1.1 O Power
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Figure 6.10: Checkpointing shows power improvement, resulting in an energy

improvement of 7% on average over base TLS.

The effects on execution time and power of checkpointinghoevn in Figure 6.10.
The figure shows execution time, power and energy for chaokga execution nor-
malised against base TLS. For this evaluation we use a hymddal dependence
predictor for inserting checkpoints, and selective réessaemployed. The tasks for
the SPEC 2000 benchmarks have been selected through amprofiie has resulted
in tasks with late dependences being pruned out. This ssudt low ratio of wasted
instructions to committed instructions. Even though fesk&ain these benchmarks
are good candidates for checkpointing, there is still a 6%rawement in energy on
average, with up to 14% faupr, 10% forgzipand 9% forgap. The source of this is an
improvement in power, with a negligible effect on executimne on average. We do
observe some speedups and slowdowns for individual pragraihe worst slowdowns
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Figure 6.11: Checkpointing recovers some of the power lost to speculation

while maintaining speedup.

Figure 6.11 puts these results in the context of sequentawgion. Once again,
execution time and power are normalised against base TL&igga. It is clear that
the performance improvement of TLS is obtained at the cogtextly increased power.
Even in cases such a&mp andgzip, where the speedup through speculation is very
small, the power increases substantially. Checkpoinsrable to recover some of this
lost power with a negligible effect on execution time.

astarandsphinx3from SPEC2006 have much longer running tasks than any of the
SPEC2000 benchmarks. In particulsphinxregularly shows violations due to loads
over 450 instructions from a task boundary. This presentsaa gpportunity for en-
ergy savings through checkpointingstar has greater variation in task sizes and how
far into tasks violating loads occur. This makes it a gooddadette for checkpoint-
ing as well. For all the benchmarks evaluated, checkpajnasults in a 7% energy
improvement on average.

6.3 Sensitivity to Architectural Extentions

6.3.1 Memory System Modification

Checkpointing results in added pressure on the versionedamnesystem. This has
been discussed in Section 3.2.2. In the applications ceresd because the working
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sets are small, the extra restarts due to failed allocatfspeculative space have a
very small effect on execution time and power. The reasohas the working sets
are small, and even for checkpointed execution, the numberstarts due to failed
allocation is very small compared to the total number ofagst(less than 3% of total
restarts for all benchmarks and less than 1% on average) priegrams with large
working sets, and particularly those with long running spative tasks, this could
become a performance concern.

B Without Memory Mod. B With Memory Mod.
5.3 162 59 43 21

Normalised Line Allocation Failures

bzip2 crafty gap gzip mcf parser twolf vortex vpr astar sphinx3

Figure 6.12: Number of times allocation of a speculative line fails in check-

pointed execution normalised against TLS without checkpointing.

To measure the effect of the changes described in Sectiof, 3t number of
failed allocations is shown in Figure 6.12. As before, clpethkts are inserted using a
hybrid bimodal dependence predictor. It can be seen thah&ory benchmarks there
is a large increase in the number of failed allocations whestkpointing is employed.
The changes proposed reduce the number of additional filechtions due to restarts
to less than a third on average.

6.3.2 Restart Mechanism

In Figurel 6.13, we show the effect of selective restart, acidleed in Section 3.2.1,
on execution time. We note that the programs showing sutistamprovement in
execution time due to checkpointingzip, vpr andastar) only do so when selective
restartis used. The selective restart mechanism alsoesdhe execution time penalty
on gap, parserandsphinx3 The benchmarks that see little effect on execution time
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from checkpointing consequently see little effect fromeséle restart. The mean
improvement in execution time due to selective restart is &8th up to 8% forbzip2
andastar, and 5% forvpr.

B Sequential
[ Checkpoint — No Selective Restart
B Checkpoint - Selective Restart

Normalised execution time

bzip2 crafty gap gzip mcf parser twolf vortex vpr mean_spec2000 astar sphinx3 mean_all

Figure 6.13: Execution time for sequential execution and TLS when checkpoint-
ing with and without selective restart, normalised against TLS without check-

points.

6.4 Using Dependence Prediction for Synchronisation

An alternative to checkpointing for avoiding wasteful peeeution is synchronisation.
In this section, a brief demonstration is made of the appbtoaof the dependence
prediction techniques described earlier towards syndkabion. However, this section
does not intend to perform a detailed evaluation of whicldigtéon technique is best
for synchronisation.

Figure 6.14 shows the results observed when different jigsliare applied to syn-
chronisation. First, in Figure 6.14a, a predictor similarthe one used for check-
pointing is used. This is a 1024 entry, 5 bit hybrid bimodadgctor, with 32 entry
Address and PC Criticality Tables and a 64 entry PC Tramsidtible. It can be seen
that the performance of the system is degraded significarttgn synchronising. This
is because the predictor has a low Precision. Every falsiiymsauses unnecessary
synchronisation and results in most computation beingakseid. This is reflected in
a power improvement of 20% but a slowdown of 38% on averag&wesults in a
9% increase in energy consumed. The slowdown is large enougiake the system
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Figure 6.14: Effect of synchronisation on execution time, power and energy,

normalised against base TLS execution.

wer than non-TLS sequential execution.

In Figure 6.14b, the predictor is configured to be less agiyreswith higher Pre-
ion. In this case, the bits per entry in the metatable edeced to 2, and the Ad-

dress and PC Criticality tables are reduced to 2 entries. eldcan be seen that this

greatly improves the performance of the system when symé$irgg. The execution
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time degradation is reduced to 25% and the increase in erterg%. The fact that
there is a significant slowdown and an energy degradatiogesig that the system is
still synchronising too often.

Figure 6.14c shows the results when the synchronisatioratene@ven more con-
servative, by changing the policy so that synchronisatioma@ependence prediction
only takes place if the size of the task is at least 50 ingwaciT his results in synchro-
nisation now showing an Energy improvement of 3%, but stilavdown of 7%.

These results show that it is crucial to have a well perfogrprediction mecha-
nism for synchronisation to be effective. Further, sincer¢his considerable cost to
unnecessary synchronisation in the form of serialisatioa Precision of the predictor
is far more important.
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Related Work

7.1 Thread Level Speculation

Thread level speculation has been previously proposed (&4 16; 21; 38; 40)) as a
means to provide some degree of parallelism in the presdmtaadependencies. The
vast majority of prior work on TLS systems has focused on igectural features di-
rectly related to the TLS support, such as protocols for rugdtsioned caches and data
dependence violation detection. All these are orthoganaiit work. In particular, we
use the system proposed by Renau et al. (34) as our baseline.

7.2 Checkpointing

This thesis uses checkpoints to tolerate dependencesdrespeculative tasks. The
most directly related previous work is by Colohan et al. (8) &Valiullah and Sten-
strom (49). The work in (8) proposes checkpointing as pagxténsions to the TLS
mechanism to support long running threads. Checkpointslaced at fixed instruction
strides without any prediction of the dependence behawbinstructions or memory
addresses. We find that this approach is not suitable for pplications and does
not produce significant savings. We apply checkpoints tdlemasks as well, which
means the overhead of checkpoints is not negligible and sotenplacement schemes
are required. The work by Waliullah and Stenstrom (49) loakmtermediate check-

81
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points to improve behaviour for transactions in a Transaeti Memory system.

Checkpointing is also used to aid finer grained speculatioprocessors. They
are used to recover from mispredicted branches. CAVA (3% abeckpoints to assist
value prediction o2 cache misses. On &2 miss, a checkpoint is placed and execu-
tion continues with a predicted value. CHERRY (23) uses kpeints to allow early
recycling of resources, by decoupling resource releaseretiaiction retirement.

There is extensive work in the area of using checkpoints @sgpdault tolerance
schemes. A survey of the area is provided by Elnozahy et 8. (b particular, Wu
et al. (51) use a mechanism similar to that used for TLS, bgitepcache blocks with
checkpoint IDs. Sorin et al. (39) use checkpoint schemesppat long latency fault
detection schemes in shared memory multiprocessors.

7.3 Other Schemes for Reducing Wasted Execution

Other proposals have been made to tolerate dependenceselpatreks through learn-
ing dependences and dynamically synchronising to avoithtiams (7; 42). Zhai et
al. (55) statically synchronise scalar communication atjgite time. These have been
discussed in some detail in Section 2.2.1.

A different mechanism for selective re-execution is to findglice of instructions
affected by a dependence violation (35). Tuck and Tullsé) (4e multiple contexts
to recover from failed value prediction.

7.4 Data Dependence Prediction

Data dependence prediction has been previously proposedaus contexts. Moshovos
and Sohi (26) use dependence prediction to identify loadstores that are dependent
via memory operations. These predictions are used to spiaell execute dependent
loads without waiting for memory operations to completeedfetions are also used
to leverage a smallransient Value Cacheavoiding accessing the data cache for short
lived values. Similarly, Chrysos et al.(5) predict depamzis through tracking store
setfor each load in order to speculatively execute the load as 88 possible.
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Waliullah and Stenstrom (49), in the use of dependence giredimost directly re-
lated to this thesis, use a technique very similar to theestdpased scheme discussed.
These predictions are used to checkpoint transactions rarssactional Memory sys-
tem. We observe that in many cases, address based predatdosfind dependent
loads.

Cintra and Torrellas (7) and Steffan et al. (42) use depetglprediction to syn-
chronise speculative tasks. Xekalakis et al. (53) use dbgrare predictions to estimate
the likelihood of squashes for speculative tasks in ordetltcate resources.

In other work (53), we have used data dependence prediaiestimate whether
a task is performing useful work and scale the voltage argligacy of the processor
accordingly.






Chapter 8
Conclusions and Future Work

This chapter presents the conclusions reached and disqusssibilities for extension
of the work presented in this thesis.

8.1 Summary of Contributions

This thesis makes two sets of contributions: mechanismsffaient checkpointing
and dependence prediction techniques.

The thesis improves the efficiency of TLS systems by crafgffigient checkpoint-
ing. This is done through extending the base TLS protocdh wélective restart and
making changes to the versioned memory system. It is shoatrstective restart is
important for maintaining the execution time advantage lo% when checkpointing.
A heuristic for placing checkpoints based on depedenceagired is proposed.

An evaluation of various dependence prediction techniggiesrformed and showed
that Program Counter based and hybrid predictors outpertarlier proposals. To
our knowledge there has been no previous comparison of depee prediction tech-
niques for coarse grained speculation. The evaluationstisws that using depen-
dence prediction is a far more efficient way of placing checkfs than doing so by
stride as proposed previously. The practical issues as®acivith constructing pre-
dictors are also discussed, with the conclusion that Prog?aunter based predictors
present fewer complications in implementation than presip proposed address based
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predictors.

It is concluded that checkpointing based on dependencecpimedis an effective
way of reducing inefficiency in speculative execution. Udsthe checkpoint mech-
anisms proposed, and placement policy based on dependesdietion, the bench-
marks evaluated show energy improvement of up to 14% , andivéverage. This is
achieved with a very small effect (1%) on execution time. @anng checkpointing
with synchronisation shows that synchronisation achievesgy improvements but at
a substantial cost in execution time.

The presence of intermediate checkpoints makes misspiecular less expensive.
This changes the tradeoffs in task selection. We believetinaakes the problem of
task selection easier since more aggressive speculatiohecperformed, and profile
based task pruning is less critical to performance thanemipus proposals.

8.2 Future Work

There are many avenues of future extension based on this.thHsese include im-
provements in dependence prediction, checkpointing pdaiad integrating with wider
systems.

The dependence prediction techniques evaluated in thésstde not use any in-
formation beyond the violation history for addresses arstruttions. The predictors
achieve good Sensitivity but fairly low Precision. Using manformation (context,
stride) for prediction may be able to improve predictor Fsiemn.

More sophisticated checkpointing policies may be able tprowe performance,
by taking into account detailed resource information, sakthe pressure on the spec-
ulative cache, or tracking task sizes to more intelligeatlgpt the size of tasks before
they are checkpointing.

Checkpointing can be combined with value prediction. Ritaay speculatively
used values can reduce the probability of dependence mpfgtbut can still have a
high cost in case of misprediction. This cost can be redugezhbckpointing when a
value is predicted.

Checkpointing and synchronisation can also be employedeasame time. For
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instance, if the dependence predictor can provide a cordedereasure, then synchro-
nisation is a better choice in the case where a dependencedisied with high confi-
dence. However, if a dependence is predicted with low conéidethen a checkpoint
can be placed. A more sophisticated system can take intauateéfects on the mem-
ory system, so that even if a dependence is predicted withdogfidence, the system
may continue checkpointed execution in order to obtain fieinem prefetching.

Checkpointing has repercussions on task selection. Anairidgure exploration
is establishing what changes need to be made to the taskigelatgorithm to get
optimum preformance.
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