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Shared Virtual Memory (SVM) is an effort to provide a mechanism for a dis-

tributed system, such as a cluster, to execute shared memory parallel programs.

Unfortunately, SVM has performance problems due to its underlying distributed

architecture. Recent developments have increased performance of SVM by re-

ducing communication. Unfortunately this performance gain was only possible

by increasing programming complexity and by restricting the types of programs

allowed to execute in the system.

Validity resolution is the process of resolving the validity of a memory object

such as a page. Current SVM systems use synchronous or deferred validity resolu-

tion techniques in which user processing is blocked during the validity resolution

process. This is the case even when resolving validity of false shared variables.

False-sharing occurs when two or more processes access unrelated variables stored

within the same shared block of memory and at least one of the processes is

writing. False sharing unnecessarily reduces overall performance of SVM systems



because user processing is blocked during validity resolution although no actual

data dependencies exist.

This thesis presents Asynchronous Validity Resolution (AVR), a new approach

to SVM which reduces the performance losses associated with false sharing while

maintaining the ease of programming found with regular shared memory parallel

programming methodology. Asynchronous validity resolution allows concurrent

user process execution and data validity resolution. AVR is evaluated by com-

paring performance of an application suite using both an AVR sequentially con-

sistent SVM system and a traditional sequentially consistent (SC) SVM system.

The results show that AVR can increase performance over traditional sequen-

tially consistent SVM for programs which exhibit false sharing. Although AVR

outperforms regular SC by as much as 26%, performance of AVR is dependent

on the number of false-sharing vs. true-sharing accesses, the number of pages in

the program’s working set, the amount of user computation that completes per

page request, and the internodal round-trip message time in the system. Overall,

the results show that AVR could be an important member of the arsenal of tools

available to parallel programmers.
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Chapter 1

INTRODUCTION

Cluster based computing has become increasingly popular due to the availability of

low cost off-the-shelf computer components. Advances in technology have allowed

clusters composed of off-the-shelf hardware to perform similarly to expensive mod-

ern shared-memory supercomputers. Hence, clusters are attractive platforms for

production and research. The problem is that clusters have a distributed-memory

architecture and distributed-memory programming, i.e. message passing, is more

difficult than shared-memory programming. In the distributed-memory program-

ming paradigm, the programmer must manage data flow across processors by us-

ing explicit messaging constructs. In contrast, the shared-memory programming

paradigm allows common areas of memory to be accessed by multiple processors,

such that shared information can be passed by reference. Shared Virtual Memory

(SVM) is an effort to provide a shared memory programming paradigm over a

distributed memory architecture.



A memory consistency model of a shared-memory multiprocessor provides a

formal specification of how the memory system will appear to the programmer,

eliminating the gap between the behavior expected by the programmer and the

actual behavior of the system [2]. Caching is a mechanism which serves to pro-

vide locality to a processing unit. A cache consistency model, sometimes called a

cache coherence model, is a specification which ensures that the view of memory

maintained across all caches allows the correct execution of programs. Shared Vir-

tual Memory emulates shared memory cache consistency in a distributed memory

system. A SVM employs a memory consistency model, such as Sequential Con-

sistency (SC) [32], to ensure the proper execution of programs in the distributed

system. Unfortunately, consistency in a distributed system has considerable per-

formance costs. These costs are related to the number of messages required to

synchronize distributed memories [12]. Consistency costs are a barrier to SVM

performance since consistency maintenance occurs inline in relation to user pro-

cessing. This means that a process must block while permission to a memory

object is requested and received. The database community, when referring to

transaction processing, classifies this process as synchronous validity checking if

the permission request occurs inline before transaction processing. If the permis-

sion request is performed inline after transaction processing, it is called deferred

validity checking. Synchronous validity checking is a pessimistic approach which

has been observed to have a high cost of consistency [12]. Deferred validity check-

ing works well with transactions, but has problems when applied to SVM. It re-

quires extra effort on behalf of the programmer for correct program execution in

SVM. Deferred validity checking in SVM requires global synchronization of mem-
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ory accesses which introduces a performance bottleneck and limits the amount of

parallelism in a program’s execution.

This thesis proposes the use of asynchronous uakdity resolution (AVR) in se-

quentially consistent SVM. Asynchronous validity resolution is a semi-optimistic

protocol, analogous to asynchronous validity checking, in which computation over-

laps the communication request for memory access permission. Asynchronous va-

lidity resolution is of interest because it has the capability of reducing the effect

of false-sharing. False-sharing occurs when two or more processors access vari-

ables located on the same block of memory and at least one of the processors is

writing. Typically, the false-shared block of memory is an operating system level

page structure. Asynchronous validity resolution allows a process to continue with

computation using potentially invalid data while permission to access the memory

location is sent and received. When access permission is received and the SVM

determines that the data is false-shared, computation can continue. If the SVM

determines that the data is not false-shared, the requesting process must rollback

to the state at the time of the invalid memory access. Implementation of AVR

involves time and storage space overhead. Process checkpointing, memory page

comparisons, and rollbacks are required to be performed. Although this approach

has substantial overhead, it improves the performance of sequential consistency

SVM for some applications by reducing the negative performance effects that are

inherent to the SVM design. Specifically, AVR increases performance for appli-

cations which have high ratio of false-shared to true-shared memory accesses and

applications which perform a large amount of user computation relative to the

time required for memory resolution.
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1.1 Shared Virtual Memory

Message passing and shared-memory are two parallel programming models that

provide mechanisms for data to be shared among processes. The message passing

model is the most versatile, because it can be used with both shared-memory

multiprocessors and distributed systems. The caveat is that the message passing

model is difficult to program, since the communication layer is visible to the pro-

grammer. The shared-memory paradigm, an extension of uniprocessor program-

Nehvork
Distributed System

\

Processor #l Processor #2 Processor #3 . . .

Shared Memory Multiprocessor Absuaction

Figure 1.1: Shared Memory Abstraction

ming methodology, provides an intuitive and easy programming model. Unfortu-

nately, the shared-memory model does not extend readily to distributed systems.

Shared Virtual Memory is an effort to provide a shared memory programming

model with message passing performance characteristics in a distributed environ-

ment .
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Figure 1.2: Shared Virtual Memory[20]

Shared Virtual Memory was first proposed in 1986 by Kai Li [35]. Shared

Virtual Memory provides an abstraction of shared memory architecture (Figure

1.1) and emulates caching in cache-coherent multiprocessors 1341. In the cache-

coherent multiprocessor architecture, caches provide local access to a global ad-

dress space. In SVM, local memory acts as a cache of a global virtual address

space. See Figure 1.2. Memory consistency is maintained by using consistency

mechanisms, similar to those used in cache-coherent multiprocessors. Each node

has a page table with an entry for each page of global virtual address space. En-

tries can either be valid or invalid. A valid entry signifies that the global page is

cached in local memory and maps the global address to the address of the local

cached page. An invalid entry signifies that the page has never been cached or

5



that the cached page is invalid. A page fault occurs when attempting to access an

invalid page. The SVM system is responsible for memory consistency and must

respond to page faults by fetching new copies of pages from remote sources.

The following sections outline some fundamental concepts of shared virtual

memory such as caching and granularity. The later sections, starting with Section

1.4, provide an overview of the major advancements in the SVM field describing

research efforts centered on memory consistency models, consistency protocols,

architectural support mechanisms, and application support methodologies.

1.2 Cache Consistency

Optimal multiprocessing in a shared memory system requires some mechanism,

such as caching, to provide locality. Caching allows multiple processing units

to concurrently access replicated shared memory objects. The cache consistency

mechanism controls concurrent access to the shared memory objects such that

the allowed order of memory operations provides for the correct execution of

programs. The database community has dissected cache consistency into four

main categories[l2]. They are invalid access prevention, write validity checking,

write permission duration, and remote update action.

Invalid access prevention denotes how the consistency algorithm maintains the

caches. In detection based algorithms, the cache is validated before performing an

operation. In avoidance based algorithms, the cache is maintained in an up-to-date

state. Avoidance based algorithms tend to perform better in small systems. Their

performance degrades as system size and number of messages increases. Clearly,

6



the use of a page table in an SVM is a detection based mechanism, since the entry

in the page table is tested for validity. Pre-fetching is a type of avoidance, since

it acts to cache pages before they are required for use.

Synchronous Asynchronous Deferred

PF = Page Validity Check RU = Receive Updated Page
RP = Request Page Update SU = Send Updated Page
RR = Receive RP UP = User processing

Figure 1.3: Validity Checking

Write validity checking is the process of obtaining write permission from the

concurrency control, the server of the memory object. Write validity checking, as

shown in Figure 1.3, has been subdivided into three categories called synchronous,

asynchronous, and deferred. Synchronous Validity Checking means that the pro-

cess obtains write permission prior to transaction processing. Deferred Validity

Checking is the opposite of synchronous write declaration with write declaration

occurring at the point when the transaction commits. Asynchronous Validity

Checking is the process when write validity checking occurs concurrently with

transaction processing. Synchronous write validity checking is referred to as pes-

simistic, while deferred validity checking is referred to as optimistic. The main

disadvantage to the pessimistic approach is a higher cost of consistency than that

of the optimistic approach [12]. The disadvantage of the optimistic approach is the

7



late detection of data conflicts which cause a transaction abort. In the database

domain, the choice between synchronous and deferred methods is a trade-off in

the number of messages sent and the transaction abort rate [12]. Asynchronous

validity checking seeks to minimize the cost of consistency and to discover con-

flicts earlier in the transaction execution. Although programs usually are not

described in terms of transactions, nearly all SVM systems use a process sim-

ilar to synchronous validity checking where write permission is received before

the write occurs. The system which this dissertation proposes is asynchronous

validity resolution (AVR). AVR is different from asynchronous validity checking

because AVR allows a program to use data that is marked as invalid while data

validity resolution occurs. Additionally, AVR does not require a program to be

broken into distinct transactions.

Write duration is the length of time for which write permission is given to

a cached object. Write duration can be inter-transactional or intratransactional.

Intertransactional write duration means that write permissions, unless revoked by

the server, do not have to be reacquired for a series of transactions which use the

same cached objects. Intratransactional write duration means that the cached

object is only valid for the lifetime of the caching transaction. Write duration in

SVM is defined by the pattern of sharing. Write permission usually only extends

to the lifetime of the process with some type of writeback occurring at the end of

execution.

Remote update action refers to how the updates are handled in the system.

Propagation of the update means that the update is installed at each remote site.

Invalidation means that old remote copies are marked as invalid. As the number

8



of nodes in the system increases, the messages required for the propagation of up-

dates degrades overall system performance considerably. In general, invalidation

tends to perform much better than propagation, except in a fixed single-writer

multiple-reader configuration [9]. Invalidation is typically used in SVM systems

because the pattern of memory access in unknown and the cost of communication

within the system is high. Invalidation makes page acquisition demand-based and

minimizes unnecessary overhead for the writing process.

In distributed client-server transaction processing, avoidance based algorithms

using deferred write declaration, intertransactional caching, and a dynamic update

action perform better than other algorithms using different combinations of fea-

tures. Although SVMs present a different environment than database transaction

processing, SVMs may benefit from application of some of these cache consistency

techniques.

1.3 Granularity and Fragmentation

Granularity refers to the size of the shared memory blocks used in the system.

Common granularities are byte, word, page or complex data type (object). Granu-

larity size has many trade-offs and is an important issue, since it effects the overall

performance of the system. Applications have inherent memory sharing patterns

and memory access granularity determined by algorithm design. Use of an SVM

with a mismatched granularity causes the program to have an induced memory

sharing pattern [22]. Small granularity creates additional directory overhead and

increased message traffic, but reduces the potential for false-sharing. False-sharing

9



Page of Memory

Processor #l Processor #2

A=3 B=2

Figure 1.4: False-Sharing

occurs when two or more processes use disjoint sets of variables that are stored in

the same block of memory and at least one of the processors is writing (see Figure

1.4). False-sharing is a cause of the ping-pong effect in which a page of memory

is repetitively sent from one processor to another with only a minimal amount

of work actually being done. False-sharing, in synchronous validity resolution,

results in a process having to block on a page fault until an updated page is ob-

tained. This burdens the system with unnecessary performance loss, since parallel

processing cannot occur even though no actual sharing is taking place. Fragmen-

tation occurs when a page is fetched in response to a fault on a single word of

memory. Fragmentation breaks a processing unit’s locality of reference. Locality

of reference is the affinity for some working set of data objects. In general, large

granularity has reduced directory overhead and provides locality of reference for

a processing unit, but introduces a greater potential for false sharing.

10
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Figure 1.5: Consistency Models and Protocols (adapted from [20])

In practice, the choice of sharing size usually reflects what is implemented on

the platform, typically a page of memory. Small granularities, such as words or

cache lines, are rarely used due to high overhead except in systems with some

hardware support. Many efforts in the SVM community have been aimed at

reducing the negative effects of false sharing. These efforts will be discussed in

later sections.

1.4 Consistency Models

The consistency model is the underlying specification of how memory operations

are handled in the system. It guarantees a consistent view of memory that matches

programmer expectations. Figure 1.5 shows an abridged historical view of SVM

11



research involving memory consistency models and protocols. Some of these mod-

els and protocols will be discussed in later sections.

Pl P2

i
I

X=y=Al=AZ=O

X=1 y=2
*1=y AZ=x

Figure 1.6: Sequential Consistency

1.4.1 Sequential Consistency

Strict consistency is a uni-processor consistency model which is the basis for se-

quential consistency, a multiprocessor consistency model. Strict consistency de-

fines what most programmers intuitively expect: A read operation returns the

value of the most recent write operation. Sequential Consistency (SC) is strict

consistency applied to multi-programming. In SC, the result of any execution ap-

pears as some interleaving of the memory operations of the individual nodes when

executed on a multi-threaded sequential machine. Figure 1.6 shows the possible

outcomes in sequential consistency given a set of memory operations.

Sequential Consistency [32] was the first model used for SVM implementation

[35]. SC is an extension of strict consistency that offers a simple parallel program-

ming model which follows common uni-processor methodology. SC has barriers

to performance, since every write can result in an invalidation and every read can

12



result in a page fault. This means that the protocol overhead can be high relative

to the computation.

1.4.2 Processor Consistency

In processor consistency, writes issued by an individual processor are seen in

order by all processors. Writes by two different processors, however, can be seen

differently. Processor consistency is weaker than SC because different processors

can observe a different ordering of writes.

1.4.3 Weak Consistency

Weak Consistency (WC) methods allow caches to become inconsistent and uti-

lize synchronization operations to define synchronization points within programs.

Weak consistency was introduced by Adve and Hill [3] in 1990. Weak Consis-

tency methods aggregate consistency events and perform coherence operations

at specific user defined synchronization points within the program. The overall

effect is that network traffic can be minimized in WC. Weak Consistency relies

on the programmer to properly label programs with synchronization operations.

These synchronization operations are fence operations that act to separate con-

flicting sets of memory operations. Synchronization operations are guaranteed to

be sequentially consistent. Thus, by properly labeling a program, sequentially

consistent execution can be enforced.

13
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Figure 1.7: Release Consistency

1.4.4 Release Consistency

Release Consistency (RC) [14] is an effort to lower the cost of coherence. Release

consistency is an extension of weak consistency which utilizes two types of syn-

chronization operators: Acquire and Release. An Acquire operation is performed

when a process wants access to a shared memory object. A Release operation is

performed when a process “gives up” a shared memory object. These operations

have two roles. The first is that of a barrier where synchronization of all shared

data objects occurs. The second role is that of a lock. Acquires and Releases are

guaranteed to be processor consistent. Figure 1.7 shows the two possible outcomes

in a Release Consistent two processor execution. Note that variables in the two

nodes are not made consistent unless synchronization operations are used.

RC reduces the frequency of coherence operations beyond that of Weak Con-

sistency, because synchronization in RC only occurs between sharing processors.

This reduces the negative effects of false sharing. The drawback is that in order
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to use RC, programs must be data-race free and be properly labeled, which means

that the programmer must use explicit synchronization.

RC was the basis for Eager Release Consistency (ERC) [lo] and Lazy Release

Consistency (LRC) [25][26] protocols. ERC and LRC are described in Section 2.4.
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Figure 1.8: Entry Consistency

1.4.5 Entry Consistency

Entry Consistency (EC) ]9] is a memory model which is more relaxed than Release

Consistency. EC is more relaxed because it limits the data to which the synchro-

nization is applied. In EC, there are two levels of synchronization. The first is

identical to that of RC where global synchronization occurs. The second level

provides a method for synchronization of a smaller set of data objects. In this

level, the programmer explicitly binds data objects to synchronization variables.

At the synchronization event, only the data which is bound to the synchronization

variable is made consistent. The overall effect is a reduced message traffic which
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allows for greater performance with some types of data distributions. See Figure

1.8 for an example of Entry Consistency.

A negative aspect of EC is that it places a greater burden on the programmer

than RC, since the programmer must explicitly associate data to synchronization

variables.

1.4.6 Scope Consistency

Scope Consistency (ScC) [23][20] is similar to entry consistency. In ScC, however,

not all data objects need to be explicitly bound to synchronization variables. ScC
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Figure 1.9: Scope Consistency

uses synchronization variables which define a scope, such that a data binding is

achieved dynamically when write access to the data occurs within that scope. See

Figure 1.9. The ScC model is less complex than EC to program, but is at least

as complex as RC and in some cases more complex than LRC [20].
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1.5 Protocols

1.5.1 Generalized SC Protocols

A protocol provides a global view of how the SVM system works. Stumm and Zhou

[47] describe four general SC algorithms as central server, migration, read replica-

tion, and full replication. Although these algorithms were originally designed in

the context of a sequentially consistent distributed shared memory model, they

have been applied to other consistency models. Choice of an optimal algorithm

for an SVM system will depend on a number of architectural and implementa-

tion features, such as amount of memory, per message communication costs, and

computational ability. One negative aspect of SC protocols is the tendency for

a ping-pong effect as pages or permissions migrate repeatedly between sharers.

The ping-pong effect can be so severe that memory accesses are never allowed to

complete [38]. A solution shown to address this problem is to assign each page

a delta value, the minimum amount of time that the page must be resident [13].

The delta value is typically based on the amount of time the hardware requires

to perform one memory operation. The four protocols are discussed below.

Central Server

The central server algorithm, shown in Figure 1.10, is based on client-server ar-

chitecture. In this algorithm, a central node, sometimes called the home node,

controls access to globally accessible memory. Caching does not occur in this al-

gorithm. Instead messages that contain a request type and data are sent between

the client and server. The server responds to a read request by sending the data
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Figure 1.10: Central Server

at the requested location. A server responds to a write request by writing the

data contained in the client message to the requested location. The ordering of

operations can be provided by the natural sequencing produced by the intercon-

nect or by a system of logical clocks. The central server algorithm has the obvious

problem that the server performs all memory operations and can be a bottleneck

to system performance.

Migration

In migration, data is shipped to the local memory of the accessing process. See

Figure 1.11. Migration is a single-reader/single-writer protocol with at most one

copy of each page in the system at any given time. When a process wants to

access a page, it must query remote nodes for the location of the page. There

are two mechanisms used to minimize the cost of the query. One is to store page

directory information on a designated server. The other is to allow sharers to
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Figure 1.11: Migration

store, as hints, some information about previously seen pages, such as the page’s

destination address. These hints can help to lower the cost of finding the page.

Read Replication

Read replication, shown in Figure 1.12, is a multiple-readers/single-writer pro-

tocol. In read replication, concurrent read access is allowed. Shared pages of

memory can be replicated with read-only permission at each process. Only a

single writer is allowed in the system. In order to keep the replicated copies con-

sistent, an owning process must keep track of the state of the replicated copies.

The owner must ensure that a page with write permission is invalidated before

giving read or write permission to another process. Similarly, the owner must

invalidate all read-only copies before giving write permission. Systems can either

scatter or migrate ownership in the system to alleviate performance limitations.
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Full Replication

Full replication, shown in Figure 1.13, is a multiple-readers/multiple-writers al-

gorithm. It allows concurrent reads and writes. In full replication, a mechanism

must be used to ensure a global ordering of operations. This can be accomplished

by using an implementation based on system of distributed clocks or by using a

server implementation similar to the central server algorithm. With a system of

distributed clocks each node maintains its own updates. This can be costly with

respect to message traffic. Using a centralized server introduces a bottleneck,

since all write operations must be scheduled by the server.
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1.5.2 Optimistic Protocol

TORiS [31] is an optimistic central-server full replication algorithm. The pri-

mary components of TORiS are shown in Figure 1.14. TORiS defines a trans-

action to be a set of read and write operations bracketed by begin-transaction

and end- transaction operations. Transactions are two-phase with active and

commitment phases. A transaction is active after executing begin- transaction

and before executing end- transaction. Memory operations of the transaction are

logged during the active phase. The commitment phase begins at the point of the

end- transaction operation. A sequence number n is assigned by the central server

at the onset of the commitment phase. A transaction commit or abort marks the

end of the commitment phase. A transaction A with sequence number n commits

when no concurrently executing transaction with a sequence number smaller than

n has modified any of the data that transaction A accessed. Transaction A aborts

when the opposite occurs.
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TORiS differs from regular sequential consistency methods since it determines

a posteriori if a transaction has accessed invalid data. Hence, TORiS uses deferred

validity resolution. TORiS minimizes communication since consistency messages

occur at the end of a transaction and not with each memory object access.

1.5.3 Reduced Granularity Protocols

Much work has been done in the area of fine-grain SVM. Fine-grain approaches re-

duce the size of the shared object in an effort to reduce the amount of false sharing

and fragmentation. Blizzard-S [43] and Shasta [45] are two fine-grain SVMs which

function by first scanning executables for memory operations and then modify-

ing the executables to include coherence and synchronization functionality. This

approach has the advantage that source code is not always available and false
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sharing is eliminated, but has the disadvantage that there may be an increase in

the number of messages required for synchronization.

Other efforts are aimed at reducing false sharing and message overhead. JIA-

JIA [17] divides a shared page into blocks. A faulting processor is only required

to fetch the invalid blocks and not the entire shared page. BOPS [41] adapts the

shared object granularity to application requirements during program execution.

MultiView [21] uses the concept of a view. A view is a region of shared mem-

ory. Views of different sizes can be used such that large and small granularity

sharing is allowed in the system. Small views can be composed into larger views

and large views can be decomposed into multiple small views, thus providing a

sharing granularity best suited for the application.

1.5.4 Lazy Protocols

A release based protocol can be lazy in two respects. Lazy propagation means

that the invalidations are propagated from one process to another on demand

when the second process performs an Acquire operation. Lazy application means

that invalidations are queued at the destination node and applied when the node

performs its next Acquire operation. Lazy propagation minimizes coherence over-

head since updates are sent to only those processes requiring the modifications.

Lazy application can reduce the number of page misses which occur between the

time invalidations are received and the next Acquire operation.

Eager Release Consistency (ERC) [6] [ 101 is a release consistent protocol which

propagates updates as soon as they are made and applies updates as soon as they

are received. ERC is not a lazy protocol, but was a basis for the development of
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other lazy protocols. Delayed consistency [ll] eagerly propagates modifications,

but uses lazy application. Lazy Release Consistency (LRC) [25] is a page-based

multiple writer protocol that uses lazy propagation and lazy application. It min-

imizes network traffic by packaging each update as a d$ a comparison between

new modified memory and old memory.

1.5.5 Home-Based Protocols

Home-based protocols utilize one or more central nodes for bookkeeping, perform-

ing page modifications, and servicing page requests. Home-based protocols have

advantages. Home-based protocols minimize the amount of information that needs

to be stored, since modifications can be applied immediately and discarded. In

some circumstances, home-based protocols require fewer messages since requests

from remote nodes can be serviced by one round trip to the home node. Another

advantage of home-based protocols is that memory operations performed at the

home node do not require remote data operations. There are two main disadvan-

tages to home based systems. One is that home-based systems typically send an

entire page even if the faulting process needs to modify a single word. The second

is that assignment of homes can yield a wide range of performance.

Home-based Scope Consistency [23] and Home-based LRC [20][50] are two

home-based protocols.
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1.5.6 Adaptive Protocols

There are two main types of adaptive protocols. The first, Adaptive Writer Proto-

cols, adapt between single writer and multiple writer protocols. Adaptive LRC [l]

is a version of LRC which adapts on a per page basis between a single writer and

multiple writer protocol. At runtime during a synchronization point, the sharing

pattern of each page is examined. If write-write sharing is not detected, then the

protocol switches from multiple-writer to single-writer for that page. Single writer

LRC [27] eliminates the need for diffs and the extra coherence messages required

with regular LRC.

The second type of adaptive protocols are Adaptive Migration Protocols.

Adaptive Migration Protocols adaptively migrate homes or threads. These mi-

gration methods seek to optimize the amount of local operations, minimize the

amount of network traffic, and load balance the system. JIAJIA [15], incorporates

home migration into home-based scope consistency. It adaptively migrates home

pages according to the application sharing pattern. Orion [39], is an adaptive

home-based LRC SVM system which uses home migration and dynamic adap-

tation between write-invalidation and write-update protocols. Orion’s dynamic

write protocol adaptation is based on the collection of memory access information

at the home nodes and aims at lowering network costs while providing high data

availability. Write invalidate methods are generally less costly since messages are

shorter. Write update methods have greater network costs, but minimize page

misses.

Thread migration is a strategy for load balancing a distributed system. Mi-

gration of a thread from an overburdened node to an idle or minimally burdened
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node can boost overall performance. On the other hand, it may be beneficial to

migrate sharing threads to the same node, such as a multiprocessor node, to take

advantage of hardware and operating system memory management. This strategy

also reduces the amount of network overhead between the two sharers. How to

choose which threads to migrate to a location in a release consistent system is an

active field of research. One approach is to minimize the total number of shared

pages between any two nodes [48]. This is based on the idea that the amount of

network traffic for maintenance is dependent on the number of sharers. Cohesion

[33] is a thread-migratory SVM that incorporates this strategy. Additionally, in

order to determine if migration of a thread to a remote node is beneficial, Cohe-

sion determines the page-sharing pattern between the thread and all local threads

and the page-sharing pattern between the thread and all threads on the remote

node. If the number of local sharers is greater than the number of remote sharers,

migration will not be beneficial.

1.6 Architectural Support

1.6.1 Broadcast and Multicast Protocols

Use of broadcast or multicast capable network hardware devices and libraries

minimizes network traffic because they replace multiple messages with a single

message. Brazos [42] is an example of a Scope Consistent SVM which uses both a

multicast and point-to-point communication protocol. Multicast, as Speight and

Bennett [42] describe, does lead to two problems. The first problem is useless

multicast traffic. In this situation, a process receives multicast updates for pages
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they are no longer actively accessing. Upon receiving the updates, the process

is interrupted, thereby reducing the amount of useful computation. Brazes min-

imizes the effect of useless multicast traffic with a copyset reduction algorithm.

This algorithm involves a counter for each page that is decremented when a use-

less update is received. If the counter reaches zero, the process is removed from

the sender’s copyset at the next synchronization point. If the process accesses

the data, the counter is reset. The value of the counter is configured based on an

application-specific history mechanism.

The second problem is multicast conflicts. A multicast conflict occurs when a

multicast update for a page arrives while waiting for a response to a request for

updates. In this situation, there is an extra conflicting copy of an update. Brazos’

solution to the multicast conflict problem is to store the duplicate updates and

at the next barrier transfer the updates to the sending processor. For each page,

the sending processor determines which nodes received useless updates. This set

of nodes becomes the page’s copyset. Subsequent updates are multicast to nodes

only within the copyset.

The resolution of the two multicast-based problems helps Brazos provide a dy-

namic write protocol on a per page basis. When only one process has membership

in the copyset of a particular page, the page is handled using a write-invalidation

protocol. With two or more sharers, multicast is utilized and the page is handled

using a write update protocol.
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1.6.2 Network Support and SMP Clusters

Network devices capable of performing memory operations are the basis for re-

search in the area of remote operations. Coupled with high speed interconnects,

these types of network interfaces can be used to improve performance of SVM

systems. Digital’s Memory Channel and the custom network interface of the

SHRIMP [4] multicomputer are examples of memory-mapping communication

devices. Automatic Update Release Consistency (AURC) [19] is a SVM system

which has been used on the SHRIMP multicomputer. In AURC, the memory bus

is monitored for write operations. These write operations are then automatically

propagated in hardware to remote memory locations. Cashmere [29] is a similar

system that uses memory channel. Cashmere does not use an automatic remote

write mechanism like AURC. Instead, a remote write is performed on demand for

each shared local write.

Use of Symmetric Multi-processor (SMP) nodes with SVM systems has ap-

peared in recent work [7] [S]. These efforts are an attempt to capitalize on hard-

ware coherence and synchronization while maintaining memory consistency across

the entire cluster. The results of the work show that SMP nodes perform better

than uniprocessor nodes and that increasing the size of the SMP nodes further

increases performance.
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1.7 Application Support

1.7.1 Compiler Transformations and Instrumentation

Compiler transformations are useful tools for providing transparency, reusabilty,

and increased performance. Compiler modifications to source can reduce the

amount of false sharing, the amount of synchronization, and overall performance

of the system. Jeremiassen and Eggers [24] have used compile time data trans-

formations to reduce the number of false-sharing misses in SVM systems. They

have modified Parafrase-2, a source-to-source restructurer, to incorporate algo-

rithms that reduce the amount of false sharing. Specifically, Parafrase-2 analyzes

parallel source code, generates information about cross-processor memory refer-

ence patterns, identifies data structures that may be false shared at runtime, and

transforms these data structures to eliminate false sharing. Two fundamental

transformations are used. The first is to cluster together data that is accessed

primarily by one processor. This ensures that a high degree of availability is

maintained for data with processor locality. The second is to arrange data such

that shared data structures with no processor locality do not fall in the same cache

lines. This transformation minimizes the cost of coherency overhead for shared

data.

There is substantial work in the area of synchronization-reducing compiler

transformations. Barrier synchronization can be the worst form of synchroniza-

tion because barriers are global in nature. Potential computation time is lost as

processors already in a barrier become idle and wait for the slowest processor

to enter the barrier. Also as computation is spread out across more processors,
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the frequency of barriers increases, thus decreasing the amount of useful com-

putation. Han, Tseng, and Keleher [16] researched SVM barrier synchronization

elimination for compiler-parallelization. The main thrust of their work is to uti-

lize LRC and replace barriers with nearest-neighbor synchronization translations.

Communication of memory coherence information in SVM systems often occurs

within a barrier region. In some barriers, communication only takes place between

neighboring processors. Nearest neighbor synchronization allows a process to syn-

chronize with only those neighbor processes with which it communicates coherence

information. In nearest neighbor replacement, a process sends a notification mes-

sage to each of its neighbors. After the neighbors receive the notification and after

the two processes have transfered any pending coherence information, the neigh-

bors send a message in response to the notification. Receipt of responses from

all the neighbors releases the process to continue computational work. Nearest

neighbor replacements have the ability to balance the system by decreasing the

amount of processor idle time. Another benefit of nearest neighbor replacements

is the elimination of the serial bottleneck of global barrier managers.

Compiler Assisted Software DSM (CAS-DSM) [36] is a recent effort aimed at

eliminating operating system involvement in segmentation violations. The major-

ity of SVM systems rely on hardware mechanisms to detect local memory faults.

These faults, in the form of segmentation violation signals (SEGV), are handled

by costly operating system or SVM system SEGV handler routines. CAS-DSM

instruments source code in a way that helps avoid the segmentation violation. In

essence, CAS-DSM equips the source with aggressively optimized prefetch func-

tionality. This is a sensible approach since the overhead required for testing for
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invalid data and possibly prefetching in user code is less than the overhead expense

of the operating system or SVM SEGV handlers.

Another approach at the compiler level is the use of Aspect-Oriented Program-

ming (AOP) [37]. Aspect-Oriented Programming [30] is a programming method-

ology where different aspects of a program, such as synchronization and memory

management, are specified separately from the base program. Aspects are woven

into a base program to create source that has aggregate functionality. Mentre,

Metayer, and Priol’s work proposes a base program consisting of a high level

SVM abstraction and aspects consisting of different implementation choices. The

aspects are transformed into automatons which can be dynamically loaded at run-

time in order to optimize SVM performance for a particular application sharing

pattern.

1.7.2 Transparency

Shasta [44] is a SVM system which tackles the problem of transparency. Shasta

is a fine-grain SVM system that provides the tools to execute applications com-

piled for hardware shared-memory systems. These applications include a large

number of commercial binaries that are available in the software market. Shasta

transparently executes binaries by outfitting the binary code with appropriate

memory coherence functionality. Shasta scans the binary executable for load and

store operations and inserts code that checks during runtime whether the required

data is local and in the proper state. Shasta minimizes the overhead of checks

by recognizing that groups of memory operations can be satisfied by a single

check. Memory checks eliminate operating system page fault resolution. Also,
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Shasta incorporates polling as a replacement for interrupt based SVM messaging.

Interrupts are costly since they involve hardware and operating system layers.

Shasta researchers have noted that two of the largest problems with this type

of approach are the correct support of the instruction set architecture and the

provision of operating system services, other than memory-management, in the

distributed system.

1.8 Thesis

This dissertation is an evaluation of a new protocol called Asynchronous Validity

Resolution. It centers around three claims:

Claim 1.1 Asynchronous Validity Resolution (AVR) decreases the

negative effects of false-sharing that are found in regular Sequential

Consistency.

Claim 1.2 Asynchronous Validity Resolution (AVR) does not require

a different programming methodology than that of regular Sequen-

tial Consistency.

Claim 1.3 Asynchronous Validity Resolution (AVR) has best perfor-

mance in loosely coupled systems that have relatively high com-

munication costs.

False-sharing burdens processes with extra induced coherence costs. Reducing

false-sharing by decreasing granularity is an obvious solution. Unfortunately,

smaller granularity means more shared objects, more directory overhead, and
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more message traffic. Also, in order to use hardware and operating system ser-

vices, many Shared Virtual Memory sharing granularities are matched to the

hardware and operating system page size requirements. Thus, use of small gran-

ularity may not be optimal, if hardware and operating system support is lost.

Some relaxed consistency protocols eliminate false sharing, but not without

limitations. Programs with data races, such as chaotic programs, cannot be run

on relaxed memory model SVM systems. Also, programs destined for execution

on relaxed memory model systems must be written to include synchronization

primitives. In some protocols, explicit binding of synchronization to variables

is required. In other words, the implementation details of the memory consis-

tency model have bubbled-up from lower levels into user application space. The

programming methodology required by relaxed memory models is middle-ground

between the traditional sequentially consistent shared memory parallel program-

ming paradigm and the message passing programming paradigm. Sequentially

Consistent shared memory parallel programming is an intuitive step from regular

uni-processor programming methodology. Thus, it makes sense to study shared

virtual memory in the context of sequentially consistent shared memory program-

ming.

The traditional shared memory parallel programming paradigm is only avail-

able on sequentially consistent SVM systems and sequential consistency protocols

suffer from high communication overhead and false sharing. Kreiger and Stumm

[31] proposed an approach to this problem with TORiS. TORiS uses optimistic

write declaration in a multiple-writer sequentially consistent protocol, requires the

programmer to define transactions within the program, and sequences memory
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operations on a per transaction basis. TORiS uses transactions to define consis-

tency events. This has two caveats. The first is that transactions larger than one

memory operation disallow certain orderings of memory operations. The second

is that TORiS suffers from the same programming complexity problem that is

found with relaxed consistency models. Thus, TORiS doesn’t offer a reduction in

communication costs and false sharing while maintaining a sequentially consistent

shared memory parallel programming paradigm.

SVM protocols, with the exception of TORiS, have used synchronous validity

resolution techniques. Synchronous validity resolution techniques ensure that a

page is valid before performing memory operations, but leave the faulting process

in a blocked state while the page fault is resolved. Unfortunately if the page is

false-shared, the process loses valuable computational time waiting for completion

of indirectly related coherence operations. These coherence operations, such as

write permission requests, can have considerable costs since they may involve

a large number of sharers and a large number of messages. Current trends in

hardware show that processor speeds are increasing relative to communication

speeds, which suggests that the amount of computation lost due to blocking is also

increasing. Overall, the amount of lost computation due to synchronous validity

resolution can be substantial. Asynchronous Validity Resolution (AVR) is a new

approach to the problem. AVR reduces the effects of false sharing by overlapping

communication with computation. AVR is based on a read-replication sequential

consistency protocol [40] and does not require explicit communication primitives,

transaction boundary operations, or any other protocol programming constructs.
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The base sequentially consistent protocol is a read-replication SVM protocol

that is similar to an SGI Origin 2000 cache consistency protocol. As with all

read-replication protocols, this protocol has a relatively high overhead on certain

operations, such as a write request on a shared read-only page. In general, AVR

provides the greatest benefit for write request operations on pages that are cached

in read-only state on multiple remote nodes. These types of requests involve the

greatest number of messages and highest overall network costs. High network

costs allow more user operations to complete asynchronously. AVR also increases

performance for write request operations on a pages cached in read-write state on

a remote node. The success of AVR in an application is a function of the amount

of false sharing in the application, the cost of SVM overhead, and the cost of

coherence overhead.

1.9 Contributions

The contributions of this dissertation are the design, implementation, and eval-

uation of asynchronous validity resolution protocol. The claims made in Section

1.8 are validated.

Claim 1.2 states that AVR does not require specialized programming method-

ology. This claim is validated by designing and implementing an AVR system

which uses regular shared-memory programming methodology. A programming

suite is then implemented using the AVR protocol.

Claim 1.1 and Claim 1.3 address the performance characteristics of AVR.

Claim 1.1 states that AVR decreases the negative effects of false sharing that
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are found in regular sequential consistency while claim 1.3 states that AVR will

have best performance in loosely coupled systems that have relatively high com-

munication costs. These two claims are validated through a set of experiments and

analysis of those experiments. AVR and SC are implemented in a modularized

SVM, called CVM, which provides a control environment for testing protocols. A

suite of applications is chosen for use as a test bed for performance analysis of

AVR and SC.

The results show that four components influence the performance of AVR.

They are the number of false-sharing vs. true-sharing accesses, the number of

pages in the program’s working set, the amount of user computation that com-

pletes per page access, and the round-trip message time. In order for AVR to

outperform SC, the average round-trip message time must be greater than the

average amount of time required to checkpoint and perform user computation.

Additionally, the average amount of time to perform user computation must be

longer than the average amount of time required to resolve the checkpoint. The

amount of false-sharing and true-sharing, characteristics of program memory ac-

cess patterns, also are factors of performance. True-sharing reduces performance

in all SVM systems because it reduces the amount of parallelism. In AVR, how-

ever, true-sharing causes additional performance loss in the form of protocol over-

head from processor rollbacks. False-sharing is the basis for performance gains

in AVR, since the net effect of AVR is to allow different processors simultaneous

access to false-shared pages. AVR performs well if the false-shared gains outweigh

the true-shared losses. Overall, AVR met the expectations and satisfied the claims

of the dissertation.

36



Chapter 2

ASYNCHRONOUS VALIDITY

RESOLUTION

2.1 Motivation and Background

Sequential consistency (SC) was the basis for the first work in the SVM field.

Sequential consistency is defined as follows:

A system is sequentially consistent if the global ordering of op-

erations is such that each processor executes its operations in some

sequential order and each processor views the operations of the other

processors in some global sequential order as specified by the program.

In SC, any read operation returns the value of the most recent write operation as

long as it doesn’t violate program order. This global ordering requirement creates
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considerable consistency overhead in SVM systems. The problem is compounded

by false sharing. False sharing occurs when unrelated memory accesses fall on

a shared memory object, such as a page. False sharing means that consistency

events are required for the memory object although there is no actual data sharing

occurring.

Newer relaxed consistency models, such as Lazy Release Consistency, Entry

Consistency, and Scope Consistency, have been used to provide improved per-

formance over SC by reducing consistency overhead. Unfortunately, these newer

memory models have two caveats: they cannot be used with programs that contain

data races and they require more programming effort than SC.

In relaxed consistency (RC), synchronization defines consistency points. Mem-

ories are not consistent unless synchronization constructs (i.e. locks and barriers)

are used. Hence, the requirement in RC that programs be data race free. Data

races are often considered bugs, but are used for some programs including chaotic

programs. The use of inconsistent memories in RC, allows RC protocols to reduce

or eliminate false-sharing by performing page comparisons in a multiple writer

configuration. In contrast to RC, SC allows programs with data races, but suffers

from false sharing.

SC is an extension of the memory architecture and cache coherence mecha-

nisms found in regular uni-processor machines. Likewise, the SC parallel pro-

gramming paradigm is an extension of the programming methodology of regular

uni-processor machines. SC programming is an intuitive step from traditional

regular uniprocessor programming. In contrast, RC programming varies in diffi-

culty. At a minimum, the RC programmer must use proper synchronization to
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provide consistency for shared variables. This is not substantially different from

SC programming, except for some programs, such as those using task queues

[26]. Recent RC methods require significantly more programming effort than SC

because they require variables to be bound to synchronization variables. This pro-

gramming methodology approaches the complexity required by message passing

programming interfaces in which the programmer must specify the communication

parameters.

Asynchronous Validity Resolution (AVR) is an extension of SC designed to

improve performance by overlapping computation with communication. In AVR,

a memory object is used by the user program while the SVM system simultane-

ously verifies the memory object’s validity. AVR reduces the effects of consistency

overhead, especially overhead related to false-sharing. AVR utilizes the program-

ming methodology of regular SC. It allows data races and does not require explicit

coherence operations.

2.2 Protocol

Asynchronous Validity Resolution is an extension of Sequential Consistency. AVR

provides overlapped communication and computation while preserving Sequential

Consistency. Overlapping communication and computation means that poten-

tially invalid data is used while data validity is resolved. Data validity resolution

occurs in shared virtual memory systems when a page fault occurs. From the ap-

plication viewpoint, all memory is accessible. Use of potentially invalid memory

by the application triggers a page fault by the operating systems and/or underly-
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ing hardware. Subsequently, a SVM fault handler routine is called which resolves

the invalid access. Validity resolution is the process of sending a page request and

receiving an updated page from another SVM node. SVM nodes may be either

remote hosts or local threads in a SMP configuration. Current SVM systems use

synchronous data validity resolution. In synchronous validity resolution a page

request is sent by the SVM fault handler in response to a page fault, the SVM

system waits until the reply to the page request is received, and then copies the

newly received updated page into local memory. The SVM marks the page as

valid and returns from the fault handler. User processing in synchronous validity

resolution is blocked during the entire data validity resolution interval. AVR dif-

fers by allowing the fault handler to return and user processing to continue while

data validity is resolved.

Figure 2.1: Validity Resolution Interval

In AVR, the validity resolution interval has three phases as shown in Figure

2.1. The first phase includes the initial page fault, sending of the request message,

and process checkpointing. The second phase is the phase in which user process-
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ing on potentially invalid data occurs. The final phase is the period where user

processing stops, the reply is received, and dependency checking occurs. The AVR

configuration allows user processing to occur while messages are sent and received

across the network. Dependency checking, the process of determining if valid data

was used during the second phase of the resolution interval, is performed once an

updated page is received. Dependency checking has two possible consequences:

The first is that valid data was used which means that all operations that were

performed are valid and the process can continue with user processing. The sec-

ond is that invalid data was used which means that all operations performed are

invalid and the user process must return, or rollback, to its state at the point of

the original page fault. Valid data must be used in order to provide sequential

consistency in the SVM system. Hence, the requirement for a process thread to

rollback to a previous point in execution.

2.3 S y s t e m

The AVR concept was implemented using a modularized application layer SVM

system called the Coherent Virtual Machine (CVM) [28]. CVM is a library of

functions which provide the functionality of a WM. The structure of CVM allows

SC and AVR to be tested in the same environment. The AVR protocol was incor-

porated into CVM and was developed for use with the Linux operating system on

Intel hardware. The AVR implementation was based on an existing sequentially

consistent protocol.
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A memory page is an operating system level memory management structure. A

page is the smallest sized memory block for which access can be controlled. Page

size is platform dependent. The default for the Intel/Linux platform is 4096 bytes.

SVM systems that are page based, such as CVM, must use page sizes that are a

multiple of the platform dependent page size. Page based SVM systems mimic the

cache architecture and mechanisms that are present in shared memory multipro-

cessors. Memory consistency in the distributed SVM system is analogous to cache

coherency in the shared memory architecture. In CVM, memory consistency and

local access permissions for shared memory are controlled by a memory consis-

tency protocol module. The protocol module provides the functionality required

to make the distributed memories behave as a single physical memory. The CVM

SC consistency module allows sequential execution of the user program in the
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distributed system. It controls caching of shared pages and retrieval of updated

pages from remote hosts. See Figure 2.2.

Pages are objects in the CVM implementation. Every node has a page ob-

ject that corresponds to each page in the global shared memory address space.

Page objects provide the additional implementation features necessary for physical

pages in local memory to be consistent with their corresponding pages in remote

nodes. A page object includes a pointer to the actual page in local memory, a

copyset, an owner, a manager, and a state. The copyset is the set of nodes which

have valid copies of the page in memory. The owner is the node that has the most

recent valid copy of the page in local memory. The manager is the node that

keeps track of the page’s current owner and is determined in the setup routines

before user processing. A valid copy of each page is present in the system at all

times.

In the SC module implementation, each page exists in memory in a particular

state which dictates the type of access allowed on the page. As shown in Figure

2.2, these states are invalid, read-only, or read-write. The read-only state marks

the page as readable, but not writable. The page is readable and writable in the

read-write state. In the invalid state, the page is not accessible. The invalid state

implies that either the page has never been in local memory, has been written

over with a different page due to space limitations, or was demoted from another

state as a result of an incoming write request from a remote host. The SC system

is a multiple-reader/single-writer system which means that multiple processes can

simultaneously read from the same shared page, but only one process is allowed

to write to a page at any given time.
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A read or write operation performed by the user process triggers a page fault,

if it operates on a memory location that does not have the required access per-

mission. The SVM system responds to the page fault by sending a page request

message to either the owner or the manager of the page. The faulting node is

the requester. The requester can be the page’s owner if and only if the page fault

is a write fault and the page is cached in read-only state. If the requester is the

manager of the page and not the owner, the request is sent to the owner. If the

requester is not the manager, the request is sent to the manager. If the manager

is not the owner, it forwards the request to the current owner of the page. The

manager also changes the copyset for the page to show that the requester is now

the owner of the page. This ensures that the manager always has the current

copyset for the page and always knows which node is the owner. The current

owner receives the request from the manager. It changes the copyset for the page

and changes the local permissions for the page to reflect the request. The current

owner replies to the requester by sending the page and a copy of the copyset. The

current owner is now no longer the owner. The requester, once receiving the reply,

copies the new page and the new copyset into memory and marks itself as the new

owner of the page. The requester always becomes the owner, even when the page

is read-only cached in multiple nodes. If the initial request is a read request, then

the new owner returns to user processing with the page in a read-only state. If the

initial request is a write request, the new owner sends invalidation messages to all

nodes, excluding itself, listed in the page’s copyset. The receivers of invalidations,

mark the page as invalid, and reply with acknowledgement messages. Once all ac-

knowledgment messages are received, the new owner changes the copyset to reflect
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the invalidations, marks the page as read-write and returns to user processing. If

the initial page fault is a write fault and the faulting node is currently the owner

of the page, the faulting node needs to only perform the invalidation phase of the

fault resolution. Waiting for all invalidation replies ensures that all nodes have a

consistent view of memory.

Messages are assigned sequence numbers to allow reliable communication such

that messages sent between any two processes are guaranteed to arrive in the

order that they are sent. Each page has a delta value and a message queue. The

delta value is used to reduce the ping-pong effect that occurs in page-based SVM

systems. It is the minimum amount of time that a page is required to be resident

in memory and is used to ensure that at least one operation completes before a

remote node can obtain access to the page. The message queue is used to delay

incoming messages that request pages that are in their delta interval.

Data validity resolution in the SC implementation is pessimistic. User pro-

cessing is blocked until the new page is copied into memory and the faulting node

has received the appropriate reply messages to guarantee consistency.

2.3.2 A V R

The AVR implementation is based on the SC implementation. The main difference

between the two protocols is that data validity resolution in AVR is optimistic and

in SC it is pessimistic. AVR is optimistic because the user process is allowed to

continue execution immediately after the request message is sent. It optimistically

assumes that the data is valid. The benefit of an optimistic approach is enhanced

performance due to overlapped computation and data validity resolution. The
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caveat to the approach is that the user process may use data which is invalid.

Use of potentially invalid data requires mechanisms that allow for process check-

pointing, process rollback, memory operation logging, message queueing, and page

twin comparison. The AVR implementation utilizes these mechanisms in the SC

framework. The sections below describe the implementation issues of AVR.

Save stack
with CPU

s t a t e ,,nI_ I_ mm
:

.: :
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Twin Local
Variables
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Make shared

Figure 2.3: Checkpointing

2.3.3 Checkpointing

The use of potentially invalid data and the possibility of the user process having to

return to a previous point in execution means that the protocol must checkpoint

the user process state at the point of the initial invalid data access. The checkpoint

is the saved process state which includes all the necessary information for the

process to return from a point later in execution to a point previous in execution.

See Figure 2.3. The necessary process state structures are the CPU registers, the
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stack, the local variables, and the shared global variables (the SVM pages). The

CPU registers are saved by saving the stack, and thus the sigcontext structure,

from within the fault handler. The stack is copied into a static structure that

grows to accommodate different size stacks. The local variables are saved by

making twins. Shared global variables are contained in SVM pages. The process

of making twins of SVM pages is not performed initially, but is deferred to the

point of first access within the checkpointed interval. Initially each SVM page

that currently has write permission is made readable such that writing to the

page triggers a page fault. The page fault results in the execution of the segv

handler which makes a twin of the page and sets the permission of the page to

its original writable state. Thus, twins are only made for pages which are written

during the checkpointed state. Twins do not need to be made for pages that have

read-only permission, since reads do not modify variables. Handling of shared

pages in this fashion means that the working set of pages can be minimized to

only those which are modified, hence allowing remote access to unmodified pages

to be granted.

2.3.4 Memory Mechanisms

The checkpoint page is a page for which the process does not have appropriate

permission. Access of this page generates a page fault and causes delivery of a

segv signal which is handled by the system’s fault handler. The fault handler

calls routines which send the update request message and perform checkpointing.

After the request message is sent and the process is checkpointed, the handler

uses mprotect() to set page access permissions for the checkpoint page. Access
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permissions are set based whether the initial page fault was a read fault or a

write fault. Before returning for user processing, the handler sets the trap flag

by altering the sigcontext structure in the stack. The trap flag is a processor

mechanism used for debugging. It is used in AVR to help provide operation

logging. When the trap flag is set, the processor has a debug exception after each

operation. The operating system responds to this exception by sending a trap

signal to the SVM. The trap handler in the SVM receives the trap signal and

performs memory operation logging. The trap handler and segv handler of the

SVM work in conjunction to provide operation logging. The checkpoint page is

kept in an unreadable state. A fault on this page triggers a segv signal which

results in the execution of the handler. The handler sets the page permission to

either read or write accessible depending on the original page fault that marked

the beginning of the checkpointed interval. It also sets the trap flag and returns to

user processing. Since the trap flag is set, the user process has a debug exception

immediately after the re-execution of the faulting operation. The debug exception

causes execution of the trap handler which logs the type and location of the

memory access. The trap handler sets the page permission to unreadable to

allow for future logging and returns to user processing. The page is kept in an

unreadable state thereby allowing multiple accesses to be logged.

Logging memory locations for read and write operations is required for sequen-

tial consistency. Read logging is necessary to determine if a dependency exists

between the local read operation and any remote write operation. A dependency

signals that the memory location is true-shared. In sequential consistency, a read

must return the value of the most recent write, hence a dependency indicates that
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the read used invalid data and that a rollback is required. Writes are logged for

two reasons: To determine dependencies in large atomic operations and to make

sure correct values are copied from the remote page. Large atomic operations are

atomic operations which have two memory operations, such as add z,mem. There

are three phases to add z,mem: The memory location mem is read, 2 is added

to the value of mem, and the resulting sum is written to memory location mem.

The Intel specification [18] cites that if mem is unreadable, then a write fault oc-

curs even though the read phase of the operation precedes the write phase of the

operation. Hence, write operations must be logged in order to determine if read

dependencies exist for these types of operations. Write operation logs are also

necessary to ensure that values from the remote page are copied into memory cor-

rectly. The checkpoint page is the only page for which data validity is uncertain,

hence it is the only page for which logging is required. The checkpoint page has

an outstanding fault and an outstanding request during the checkpoint-resolution

interval.

2.3.5 Message Handling

AVR uses two message queues: The delta queue and the protocol queue. The delta

queue is used in conjunction with the delta value to avoid ping-pong behavior. The

protocol queue is used during data validity resolution to delay request messages

that would otherwise place the system into an inconsistent state. These messages

are either requests for the checkpoint page or requests for modified SVM pages.

Messages are dequeued from the protocol queue once validity of the data has
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been determined. It is possible that a message can be dequeued from the protocol

queue and subsequently queued in the delta queue.

Polling and interrupt handling are two strategies for handling incoming mes-

sages. Generally interrupt handling is the more expensive method because inter-

rupts require context switches and execution of a message handler. CVM uses

polling for replies. A reply is a message that is a response to a request. Examples

of requests are page requests, lock-acquire requests, and barrier-entry messages.

Polling as the method for handling replies is required in the CVM. Use of inter-

rupt based handling gives rise to reentrancy problems, which can only be solved

by separating the SVM and user process threads of execution. Regardless of the

implementation problem, polling for replies is ideal for both SC and AVR pro-

tocols. It is ideal for SC because the user process is blocked until the reply is

received. In AVR, the same logic can be applied to all replies except page request

replies. Intuitively, an incoming request reply signals the end of the second phase

of the resolution interval. In practice however, the interrupt tends to occur while

already in the third phase of resolution thereby adding unnecessary overhead to

message handling. All the programs studied performed at par or better when

polling was used to handle replies. Nodes use the select() function call to poll for

reply messages.

Incoming request messages from remote nodes in CVM are handled differently

than replies. These messages are handled using the I/O interrupt mechanisms of

the operating system. Use of interrupt based handling allows for the immediate

response to incoming requests. Use of polling means that the system avoids costly

interrupt overhead. Unfortunately polling can limit performance because requests
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can only can be answered when the user process has a page fault or timer event.

If a node receives a request then there is a page-level dependency between the

requesting node and the receiving node. This is a page-level dependency because

the page may not have an actual data dependency, but a current copy of the

page is required at the requesting node to ensure memory consistency. Validity

resolution of the data on the requesting node cannot complete without resolution

of the dependency, hence delay in the reply can dilate the resolution interval on the

requesting node. Tests show for all the programs studied, polling as a method for

handling requests dilates resolution intervals and severely degrades performance.

The communication module of CVM provides network services. User Data-

gram Protocol (UDP), a component of TCP/IP, is the transport layer. Reliability

is assured by the communication module which tracks sequence numbers for re-

quests and replies. CVM does not use a global message sequencing system. Each

node uses two sockets for each other node in the system. One socket is for in-

coming requests and outgoing replies, the second is for outgoing requests and

incoming replies. Each node is responsible for generating sequence numbers for

messages that use the second socket, the outgoing request and incoming reply

socket. Hence, each node is responsible for maintaining sequence numbers for

n - 1 nodes, where n is number of nodes in the system. Sequence numbers are

gap-free. Using a timer and sequence numbers ensures communication reliability.

2.3.6 Timers, Locks, and Barriers

Timers are used in message reliability and to aid in the implementation of the

delta value. The communication timer aids in message reliability by triggering
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resends when replies are not received. The delta value is the length of time that a

newly received page is forced to stay resident in memory. It is used to reduce the

ping-pong effect and is typically set to be the amount of time to perform a single

memory operation. It is set to 15 microseconds in CVM. This is approximately

the amount of time it takes for the segv handler to return to user processing and

the user process to perform the operation. All incoming request messages for

the newly received page are queued during the delta interval. The delta timer

is set when the page is copied into memory. It expires when the page has been

resident for the length of time described by the delta value. Expiration of the

timer results in the execution of a timer handler which dequeues and forwards the

queued messages to the appropriate message handler.

In Linux, each process is allowed one real-time timer. The timer in CVM

is currently implemented as an object which manages the timer events for the

delta and the communication timers. Unfortunately, this configuration results in

additional overhead in the form of conditionals, math operations, and system calls

that would not be present if multiple timers were allowed.

CVM provides mechanisms for locks and barriers. Locks and barriers are syn-

chronization operations that imply true sharing. Locks provide mutual exclusion.

Barriers are fence operations which separate memory operations occurring prior

to the barrier from memory operations occurring after the barrier. Due to the

relationship of these synchronization operations to memory consistency, AVR per-

forms any outstanding validity resolution actions prior to a lock acquire or barrier

entry operation. Asynchronous validity resolution mechanisms are disabled until

the lock release or barrier exit operation.
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2.3.7 Dependency Checking and Rollbacks

Dependency checking occurs in the third phase of the resolution interval. The

transition from the second phase to the third phase is marked by three possible

events. The first event is a page fault resulting from the user process attempting to

access a page that does not exist in memory with the required access permissions.

This also includes write access to a checkpoint page that has read-only permis-

sion. The second possible event is that the deadlock avoidance counter limit is

reached. The deadlock avoidance counter is a tool used to monitor and detect

the condition when multiple processors are waiting for messages from each other.

The deadlock avoidance counter is set to zero when the process is checkpointed

and is incremented each time there is a page fault on the checkpoint page. When

the counter reaches its maximum value and there is a queued request message,

the third phase begins. The maximum value for the counter can be set by a

command line parameter, but defaults to 30 page faults. This value provided the

overall lowest execution times for all the programs tested. A timer-based approach

to deadlock avoidance was tested, but was shown to degrade overall performance.

Degraded performance was caused by timer object overhead and the overhead

resulting from additional interrupts. The final possible event leading to entry into

the third phase of the resolution interval is the case where a new request has been

received that indicates that the reply is in the requester’s buffer. One of these

three events must occur for the transition to the third phase of the resolution

interval. Experimentation shows that, in all the applications tested, the primary

influence on the length of the user processing interval is the occurrence of the

first event, a fault on an inaccessible page, thus indicating that pre-fetching may
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increase performance. Pre-fetching, however, is not studied in this work, but is

indicated as a possible avenue of future research.

If the third phase of the resolution interval is reached by the occurrence of the

second situation and the reply is not in the incoming message buffer, a rollback is

automatically performed. The second situation indicates that the system may be

in a deadlock state, such that its request is queued by some other remote process.

The system must rollback in order to allow the queued request message(s) to

dequeue. Once the user process has returned to its original state, it will page fault

on invalid data and checkpoint again since a reply to its request was not received.

If a reply is found in the incoming message buffer, resolution will proceed in the

manner required by the first and third situations.

In the first and third events of the second phase of resolution, the system will

poll until it receives the reply. The reply will, in most cases, include the most

recent copy of the page. Comparison of this page with the active checkpoint page,

the checkpoint page’s twin, and the operation log will determine if a rollback is

required. A rollback is required if a dependency exists between incoming data

and data that was used. Conflicts with the read entries in the log and the new

page indicate that a rollback is necessary. The new page is written over the

active checkpoint page except in locations marked by write entries in the log.

If a rollback is not required, the process checkpoint, operation log, and page

twins are deleted and the system returns to user processing. Memory objects,

which include SVM pages and local storage, are returned to their original access

permissions. If a rollback is required, active memory objects are replaced with

the previously saved and unaltered twins. Page permissions are returned to their
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original states. The process is returned to its original point in execution by copying

the saved stack over the current stack and then changing the stack pointer. The

stack is a process object that shrinks and grows. Its size at any given point

depends on the process’s function call depth and the number of local variables.

The previously saved stack may be larger than the stack existing immediately

prior to rollback. Since functions use the stack for storage of local variables and

as storage of reference information for other variables, it is necessary to change

how the stack is handled for the function call which performs the rollback. If the

older stack is larger, the stack pointer must be set to point at a position that

is above the incoming older stack. This modification along with use of global

variables ensures that the rollback function operates correctly and the process

can be returned to its previous state in program execution.

2.4 Correctness

In terms of the AVR system, correctness is considered to be the ability to provide

sequentially consistent execution of user programs. There are two central issues

important to correctness in AVR. They are message sequencing and page resolu-

tion. With regard to messaging, the AVR system is correct in its execution. The

AVR module was adapted from the SC module. The SC module has been shown to

be sequentially consistent because the order of messages is guaranteed[26]. AVR

does not disturb this ordering. Messages, from any given remote node, are de-

livered in the order they are received. Thus relative to messaging, AVR executes

correctly.
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Page resolution is an important consideration to the idea of correctness. The

mechanisms of AVR ensure that, upon receipt of a reply containing an updated

page, data dependencies are identified and that new data elements are copied over

old data elements. The updated page is compared to the page twin and the oper-

ation log. This comparison identifies invalid data which has been accessed during

user program execution. Access of invalid data indicates that the process must

rollback, since information regarding intra-process dependencies is not present. If

no invalid accesses are identified, the updated page is copied over the active page

except in locations that were modified during the resolution interval. The page

resolution mechanisms ensure that data dependencies are identified and that a

rollback is performed when dependencies exist between local and corresponding

remote memory locations. These mechanisms coupled with message sequencing

mechanisms guarantee sequential consistency and correctness of AVR.

2.5 Limitations

There are two groups of limitations relevant to the AVR implementation. They

are limitations with respect to the types of programs that can be used and limi-

tations with respect to the implementation itself. The AVR implementation does

not allow for proper handling of program structures such as those related to sock-

ets and file I/O. Programs which use these types of structures must use AVR

function calls which disable and re-enable the asynchronous validity resolution

capabilities of the system. These issues have not been addressed in the AVR

implementation since they are not critical to AVR research. Moving the AVR im-
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plementation into the operating system layer and adding consistency functionality

to the operating system resource functions would eliminate the need for the pro-

grammer to explicitly use the AVR functions required by the current middleware

implementation.

The performance of the implementation is limited by the logging and timer

mechanisms. The performance of the logging mechanisms are limited because

the size of memory which a memory operation operates on cannot be readily

determined. This is viewed as a result of a processor architecture limitation since

adequate debug registers could provide this information when a page fault occurs.

Without size information, AVR must assume that the faulting reference is for the

largest memory object specified by the processor architecture. The largest memory

object is the largest amount of memory that can be referenced by one operation.

In Intel architecture the largest memory object is 80 bits. Without the ability to

determine the size of a referenced location, AVR must assume that the reference

is for the largest possible object. Hence, the operation log may not represent

the true granularity of memory references and may incorrectly indicate that there

is true-sharing during validity resolution. AVR is currently implemented on Intel

architecture and uses eight bytes as the minimum size of log entry. Intel’s extended

80 bit memory operations are rarely generated by compilers and because of this

were not addressed in the AVR system implementation. Slight modification of the

logging mechanisms would be required to include these operations in the system.

The timer mechanism limitation has already been partially discussed. This

is a limitation imposed by the Linux operating system. Each process in Linux

is allowed three timers. Only one, however, functions as a traditional wall-clock
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timer. In order to use this one timer to time multiple events, a large amount of

overhead in the form of interrupts, math operations, and system calls is added

to the system. Timer object overhead degrades performance of the AVR system.

The timer limitation could be removed if either the SVM system was moved into

the kernel or if Linux processes were allowed additional timers.

2.6 Summary

AVR is a protocol for providing concurrent validity resolution and user processing.

The AVR implementation is an extension of SC that provides concurrency while

maintaining sequentially consistent execution. The AVR implementation does

have some limitations related to the test platform. In general, however, the AVR

CVM implementation correctly captures the AVR concept and is suitable for

testing a wide range of programs.
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Chapter 3

PERFORMANCE

This chapter presents an evaluation of the Asynchronous Validity Resolution

(AVR) protocol. AVR was implemented in the Coherent Virtual Machine (CVM)

system. Ten programs were used in the evaluation: Two molecular dynamics

simulations (Water, Spatial), a lower-upper block matrix decomposition (LU),

a volume renderer (Volrend), a ray tracing program (Raytrace), a Fast Fourier

Transform (FFT) , an eddy current simulation (Ocean), a radix sort (Radix), a ma-

trix multiply (Matmul), a Jacobi relaxation (Jac), and a Gauss-Seidel relaxation

(Gauss).

The evaluation of AVR has two elements: a direct comparison of execution

times, an analysis of AVR in the context of application sharing patterns. AVR

is compared to a traditional sequentially consistent protocol (SC) such as that

used on the SGI Origin2000 supercomputer. The evaluation of AVR does not

include a comparison to the relaxed SVM protocols such as Release Consistency

or to explicit message passing protocols. These protocols either follow different
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programming paradigms or impose restrictions on the types of programs allowed

to execute in the SVM system. Both SC and AVR use the traditional parallel

programming paradigm that is found in shared memory architectures such as the

SGI Origin2000. This style of programming is an intuitive extension of regular

uniprocessor programming which does not require explicit cache synchronization

operations. The design of AVR targets performance limiting problems of SC while

maintaining ease of programming. The comparison of AVR to SC is a measure of

performance gain that can be achieved by altering sequential consistency protocol

design. Four of the eleven programs perform better using AVR.

The behavior of AVR is analyzed with regard to application sharing patterns.

Application sharing patterns are related to the frequency of checkpointing and

necessity of process rollback. Sharing patterns also are related to the type of

checkpoints made in the system and the overall resolution interval times.

3.1 Experimental Environment

3.1.1 Hardware Platform

The experimental platform is a 32 processor / 16 node Beowulf [46] cluster. Each

node has dual 600 MHz Pentium III processors and 512 MB of main memory.

Nodes are connected with 100 Mb switched Ethernet.
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3.1.2 Basic Operation Costs

The basic system level costs relevant to the evaluation are the times required to

perform memory protection, page twining, operation logging, and to send a peer

to peer message in the network. The cost of performing an mprotect system call is

20 microseconds. Mprotect system calls are used to provide operation logging and

for protection of pages which have write permission during the resolution interval.

The cost of making a twin of a page is 43 microseconds. Twins are made for the

checkpoint page during the first phase of the resolution interval. Twins are also

made for read-write pages that are accessed during the checkpoint interval. The

cost of trapping a memory operation is 78 microseconds per memory operation.

The cost for logging a memory operation is the cost of the trap in addition to

the cost of one mprotect system call. These three base operating costs influence

the percent of user work that can be accomplished during the resolution interval

and the overall length of time of the resolution interval. The peer-to-peer network

time for a 4192 byte message, a typical message size in CVM, is 1.4 milliseconds.

The network time is the available time for asynchronous user processing.

3.2 Application Suite

Eleven programs were selected for this study: Water, Spatial, LU, Raytrace, Vol-

rend, FFT, Ocean, Radix, Matmul, Jacobi, and Gauss. Water, Spatial, LU,

Raytrace, Volrend, FFT, Ocean, and Radix were taken from the SPLASH-2[49]

suite of applications. The SPLASH-2 program suite is a set of scientific, engineer-

ing, and graphics programs that exhibit a wide range of data sharing patterns
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and were written for hardware cache-coherent machines with cache-line granular-

ity. These programs were selected because they are well studied and provide a

diverse pattern of memory sharing. The other programs were written explicitly

for this work and were selected because they comprise two computational cores of

examples of scientific code which needs to be parallelized by researchers in many

fields. Together, the two groups of programs provide an application suite which

is representative of common parallel programs. Use of this suite adds validity to

the evaluation of AVR. Table 3.1 gives a brief description of each program along

with its inherent memory sharing pattern.

Table 3.1: Application Sharing Patterns

The experimental suite of programs shows a diverse pattern of memory access.

This is desirable for testing a page-based shared virtual memory system. Each

application has an inherent sharing pattern, the pattern specified by the program-

mer. A page based SVM often will impose a different sharing pattern because a

page is the smallest memory object that can be shared between processors. This is

called the induced sharing pattern. The induced and inherent patterns of sharing
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for an application can be the same in some circumstances such as when problem

decompositions fall on page boundaries or when application objects are individ-

ually malloced. Typical patterns of sharing are lP-1C (one producer with one

consumer), lP-MC (one producer with multiple consumers), and Migratory [22].

lP-1C is a pattern in which one processor writes a location that is read by another

single processor. Migratory access is usually lP-1C access that occurs consecu-

tively across the processors in the system. Variables requiring mutual exclusion

are typically accessed in a migratory fashion.

False-sharing and fragmentation are characteristics of SVM systems. False-

sharing occurs when two or more processes use logically unrelated data that are

stored on a common page of memory and at least one processor performs a write

operation on that data. When a page is false-shared, it is sent back and forth

between participating processors. This ping-pong effect degrades performance

of the SVM system. Fragmentation occurs when a processor fetches an entire

page, but only requires access to part of the page. An application’s pattern of

memory access determines whether the application will suffer from false-sharing

and fragmentation imposed by the page granularity of the SVM. In regard to

the size of a page, memory access can be considered to be fine-grained, medium-

grained, or coarse-grained [22]. Fine-grained access is a set of read or write accesses

that operate on a region of memory much smaller than a page. Medium-grained

access is a set of read or write accesses that operate on a region of memory which

is larger than that of fine-grained access, but is also smaller than the size of a

page. Access that operates on entire pages is considered coarse-grained. Fine-

grained and medium-grained write access signify false-sharing while fine-grained
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and medium-grained read access signifies fragmentation. Coarse-grained access is

page sized and, therefore, does not result in fragmentation or false-sharing. In

some programs, the access granularity is dependent on the size of the input and

the number of processors used in computation.

The applications in the experimental suite provide a wide range of application

sharing patterns and access granularities. They are ideal tools for evaluation of a

shared virtual memory system.

3.2.1 Water

Water is a molecule simulation which uses an array for storage of the individual

molecules. The molecules are partitioned in a simple n/p block format. The

majority of computation in Water occurs in its force calculation phase, an O(n2)

algorithm, which displays a course-grained lP-MC access pattern. Water also has

a less dominant migratory memory access pattern in which each processor must

update molecules assigned to other processors. Updates are made using locks

leading to a lP-1C access pattern. The amount of false sharing and fragmentation

depends on the alignment of partitions to page boundaries.

3.2.2 Spatial

Spatial solves the same problem as water, but uses a different partitioning scheme.

Spatial is O(n) and is a more efficient algorithm [49]. The simulation domain is

broken into 3-D cells which are assigned to individual processors. The molecules

in each of the cells are stored one per page and are elements in a linked-list
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data structure. The simulation requires communication from each molecule to all

other molecules that are within a cut-off radius. The domain decomposition is

advantageous since processors only need to communicate with processors assigned

with adjacent cells. During the simulation, molecules can migrate between cells

thus requiring the use of a lock to protect the linked list structures. For large

problems the access pattern is mostly lP-1C. For small problems, it is mostly

lP-MC [22].

3.2.3 LU Decomposition

LU decomposition is a blocked factorization of a dense matrix. It operates by

creating a NlcN array of BxB blocks for a nxn matrix such that n = NB. Each

block is page aligned and allocated contiguously in memory eliminating false-

sharing and fragmentation. Blocks are assigned to processors in a 2-D scatter

decomposition. Memory accesses in LU are coarse grained and follow a lP-MC

scheme.

3 . 2 . 4  Raytrace

Raytrace is a computer graphics application which renders a three dimensional

scene using ray tracing. A ray is traced from a central point, the eye, through each

pixel of the image plane into the image scene where it may strike a scene object.

The process is recursive such that each contact with an object generates new rays

which are stored in a ray tree. The result is that each pixel in the plane has a

ray tree. The pixels in the plane are partitioned among processors in contiguous

65



blocks. Distributed task queues which employ task stealing are implemented. The

data accesses are very unpredictable in this application [49]. Access to scene data

in Raytrace is fragmented (OP-MC). Task queue and pixel writing are fine-grained

with frequent false-sharing. Raytrace is also marked by page level fragmentation

(MP-MC)[22].

3.2.5 Volrend

Volrend is a three dimensional computer graphics rendering program. It is similar

to Raytrace and uses a ray casting technique. It works from an image plane

and includes distributed task queues. A ray is shot through a pixel in the image

plane into a 3-D scene. Unlike Raytrace, the rays do not reflect. Instead, color

for a pixel in the image plane is determined by sampling and interpolating along

the ray’s linear path. Memory accesses are irregular and input-dependent [49].

Volrend has a relatively small set of read-only data compared to that in Raytrace.

False sharing and fragmentation occur in Volrend.

3.2.6 FFT

FFT is a Fast Fourier Transform algorithm. Two fi x Jn matrices are used

to store n points to be transformed and n roots of unity points. Each processor

is assigned contiguous sets of rows in each matrix. Communication in the kernel

occurs as every processor transposes a  z  matrix from every processor

including itself. Write access is coarse. Read access granularity depends on the
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size of n and p. Fragmentation can occur, but only when  is not a multiple

of page size. False-sharing does not occur.

3.2.7 Ocean

Ocean is a simulation of ocean movements based on eddy and boundary currents.

The domain is partitioned into grids. Read operations on borders of adjacent par-

titions represent the communication. Write access is coarse since each processor

writes only to its own partition. Read granularity is fine if occurring on a column

border, medium or coarse if occurring on a row border. The access pattern is

generally lP-1C. Ocean suffers from fragmentation, but not false sharing.

3.2.8 Radix

Radix is an iterative sorting algorithm which performs one iteration for every digit

in the keys. The set of keys is block partitioned to the processors. Each processor

generates a histogram based on its n/p keys. Each processor’s histogram is merged

into a global histogram which is then used by all the processors to permute the

keys into a global destination array. The permutation of the keys is irregular and

accesses are fine to medium granularity thereby leading to false-sharing. Read

access is coarse grained.

3.2.9 Matmul

Matmul is the textbook matrix multiply program. It performs multiplication of

two n z n matrices using a row based partition. Matrix multiply is a central com-
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ponent in many matrix operations. Matmul uses coarse-grained read accesses and

medium-grained write accesses. It exhibits false sharing, but not fragmentation.

3.2.10 Jacobi

Jacobi is an iterative matrix solution method for Ax = B. In each iteration a new

zi is computed based on values of the old zi-1. At the end of each iteration, the

new values are copied into the old array. The number of iterations is controlled

by monitoring the difference between new values and old values. If the difference

is less than some tolerance, iteration is halted. The number of iterations required

for the method to converge to a solution is dependent upon the data. The Jacobi

routine used for the study was modified to produce ten iterations regardless of

convergence. Jacobi exhibits false sharing.

3.2.11 Gauss

Gauss is the Gauss-Seidel method, a modification of Jacobi iteration. In Gauss-

Seidel, the new values of zi are used as they are computed. Unlike Jacobi, array

x is read and written as new values are computed resulting in a heightened ping-

pong effect. Gauss suffers from false sharing and fragmentation depending on

the size of the n/p partitions. Gauss was modified for this study to produce 10

iterations.
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3.2.12 Diversity

These eleven applications are diverse in their memory access patterns and granu-

larity. Since the design of AVR focuses on the reduction of costs associated with

false-sharing in SC, only programs which suffer from false-sharing are expected to

perform better using AVR. Volrend, Raytrace, Jacobi, Gauss, and Matmul pro-

duce false sharing and are expected to perform well. Radix also produces false

sharing, but is known to perform poorly in SVM due to the need for frequent

communication[22].  FFT and Ocean exhibit fragmentation, but not false sharing.

Water, Spatial, and LU do not exhibit fragmentation or false sharing and hence

would not be expected to benefit from AVR. FFT, Ocean, Water, Spatial, and

LU have been included in this study for completeness.

The size of the inputs used in the experimentation are listed in Table 2.

Program Input

Table 3.2: Application Input Sizes
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3.3 Results

3.3.1 Timings

Experimental Procedure

The application suite was tested using a Beowulf computational cluster. Although

each node in the cluster offered dual CPUs, only one CPU per node was used in the

experiments in order to minimize the effects of operating system context switching

and the effects attributable to assignment of specific tasks to processors located

on common nodes. Each program in the application suite was run thirty times

using SC in 2, 4, 8, and 16 CPU configurations and thirty times using AVR in 2,

4, 8, and 16 CPU configurations. Measurements such as execution time, lengths

of resolution intervals, and number of sigios were collected and averaged for each

configuration of program, protocol, and processor count. For each program in the

application suite, the 2 processor SC measurements were compared with the 2

processor AVR measurements, the 4 processor SC measurements were compared

with the 4 processor AVR measurements, the 8 processor SC measurements were

compared with the 8 processor AVR measurements, and the 16 processor SC

measurements were compared with the 16 processor AVR measurements. These

comparisons were performed using a two-tailed t-test. The null hypothesis of

equivalence was rejected at the 0.05 level for these comparisons. The results of

the comparisons are not shown here.

AVR Average SC Average AVR Variance SC Variance T-Test
5.42 5.52 0.03 0.05 0.0005

Table 3.3: Water 4 CPU 100 Run Test Case Data
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An additional 4 processor test case experiment of 100 runs of Water using

SC and 100 runs of Water using AVR was also performed. The null hypothe-

sis of equivalence for average execution times for SC and AVR for this 100 run

experiment was tested, and subsequently rejected, with the two-tailed t-test. Re-

sults are reported in Table 3.3. Based on the statistical significance testing of the

Water application, and the similarly low variance in the performance of all the

algorithms, we believe that a direct comparison between the 30 run averages in

the other algorithms is sufficient.
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Figure 3.1: Water time vs. #processors

Water

AVR performs 3% better than SC for the Water application. See Figure 3.1. This

was unpredicted since true-sharing occurs on all SVM pages. AVR performance
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Figure 3.2: Spatial time vs. #processors

is due to overlapped write validity resolution with computation and the ability of

the protocol to revert to regular SC when true-sharing is detected. In the AVR

four processor configuration, invalidation checkpoint and resolution costs were 452

microseconds. SC invalidation costs were 723 microseconds. This means that in

contrast to SC, AVR provides an additional 271 microseconds per invalidation

for user computation. Performance gains due to invalidations offset the costs of

true-sharing rollbacks in the 4 and 8 processor configurations, but not in the 2

and 16 processor configurations. In the two processor configuration, the number

of rollbacks is greater due to larger working sets, thus negating the invalidation

cost savings. In the 16 processor configuration, the number of per processor

invalidations decreases by 75% while the number of rollbacks only decreases by
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23%. The cost savings from the total number of invalidations is not large enough

to recoup the losses from rollbacks.

Spat ial

AVR performs on par with SC for Spatial (Figure 3.2). Performance is due to

overlapped computation with invalidation message handling. In the spatial imple-

mentation of the water simulation, each molecule is allocated on a separate page.

Spatial does not suffer from false sharing due to method of storage.

LU Decomposition

Figure 3.3 shows execution times for LU. AVR performed on par with SC for

the LU kernel. Although 93% of all checkpoints required a rollback in the four
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processor runs, AVR produced an execution time equivalent to SC. AVR perfor-

mance is attributed to a relatively low cost to checkpoint and performance gains

in invalidation handling. The cost of performing a checkpoint can be measured

by examining the number of memory protection system calls required to protect

writable pages and the number of page twins that need to be made for the set

of protected pages. In LU, 36 pages per checkpoint, not including the checkpoint

page, required access protection. Out of 1017 checkpoints only 429 pages were

twin-ed. The total number of invalidations in both the SC and AVR systems

was 1178. Invalidation resolution intervals in SC were measured to be 318 mi-

croseconds. The protocol overhead for an invalidation in both SC and AVR is

61 microseconds. The remaining time, 257 microseconds, is the sum of the wire

time for the request, the wire time for the reply, and the time spent handling the
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invalidation request on the remote node. AVR capitalizes on this wait time by

allowing user processing, while SC blocks.

Raytrace

AVR performed better then SC for all processor counts for both the data sets.

Execution times for SC were up to 35% longer than those using the AVR proto-

col. See Figure 3.4 for the teapot data. Fastest times were produced using two

processors. Both protocols slowed at processor counts greater than two due to an

increase by 50% in the frequency of locking. In the two processor runs, where the

difference in execution times was greatest, AVR used only 66% of the messages

and sigios required by SC. Additionally, the length of time spent in sigio events

in AVR is 43% less than the amount of time spent in sigio events in SC. Ray-

trace has little true-sharing, explaining why less than 2% of checkpoints resulted

in a rollback. AVR performance is due to a larger number of operations being

completed per page fault, which reduces the number of messages that need to be

sent and increases the proportion of local invalidations. The overall result is a

reduction in the ping pong effect that is found in SC.

Volrend

Volrend performs well using AVR. The fastest times were 4.5% better than SC in

the 16 processor configuration. See Figure 3.5. Overlapped communication and

computation reduces the performance penalty of increased contention for shared

memory that is found in SC for runs using 8 or more processors. Average validity

resolution times in AVR are half the length of those in SC. Volrend is a task
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queue based program, like Raytrace, that utilizes locks to protect the queues.

AVR requires 30% fewer lock messages and 11% fewer total messages than SC.

At 16 processors, AVR averages 23 mprotects and 0.2 twins per checkpoint. One

percent of all checkpoints result in rollbacks.

FFT

The best execution times for FFT were observed in the 16 processor runs (Figure

3.6). The execution time for SC was 50% of that for AVR. The average number

of rollbacks was 16813 or 56% of the number of checkpoints. The average time

to create a checkpoint in AVR is 2583 microseconds while the average time to

resolve a page fault in SC is 1859 microseconds. The performance of FFT in

AVR is limited due to the number of mprotects required to protect the working
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set of pages. On average, 57 pages per checkpoint in FFT are needed to be

protected from modification. The memory protection system call, mprotect, was

called 101 times per checkpoint to perform the protection operation. Twelve

of the protected pages are written and twin-ed during the resolution interval.

The cost of executing mprotects and twin-ing causes resolution intervals to be

long. Long resolution intervals lead to long barrier events since it takes longer

for the distributed memories to become consistent. AVR spent 4 times longer

than SC in each barrier event. Overall, the costs required to maintain consistency

in FFT outweighs any performance gains provided by overlapped communication

and computation.
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Ocean

As shown in Figure 3.7, SC execution times for Ocean were 4.5% better than those

for AVR. AVR performance is poor due to the number of pages that need to be

protected from access during each checkpoint. In the two processor run, there are

an average of 1250 pages which require protection, 83 mprotect system calls, and

2.3 pages which require twins for each checkpoint. The page protection overhead

in AVR is greater than the average validity resolution interval in SC.

Radix

Execution times for Radix are shown in Figure 3.8. SC outperforms AVR in Radix.

False-sharing occurs in Radix, but true-sharing dominates. AVR performance is
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low due to the pattern of sharing, the low computational complexity per false-

shared memory operation, the size of logging granularity requirement and to a

large number of write accesses being identified as true-sharing.

In radix, a global array of keys is divided up across processors. Each processor

works on its own array segment and develops a histogram describing how to

arrange its assigned keys. The arrangement is an ordering based on a particular

digit in the keys. Each processor then writes its keys to locations in the global

array, by comparing its locally generated histogram to the histograms of the other

processors. This process iterates until all digits have been examined. True-sharing

and false-sharing exist in Radix. True-sharing occurs as each processor reads its

segment from the global array. AVR cannot improve on SC for these operations

other than to overlap invalidation with computation. The true sharing pattern
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ensures that a processor will need to perform one or more rollbacks, if its assigned

segment in the global array is written to by some other processor. In the 16

processor runs AVR performs rollbacks for 6.5% of the number of checkpoints.

This number is substantially smaller than it could be, since AVR is configured to

revert to SC on pages with a true-shared history. False-sharing occurs when the

updated keys are written to the global array. AVR is designed to work well in

this type of access, but cannot live up to its potential because the computational

complexity of the write operations is low. The operations complete successfully

and rollbacks are not required, but the overhead of resolving the data validity

outweighs the gain generated by performing the operations. The average number

of operations is 4 for every checkpoint and the average AVR validity resolution

interval is 2340 microseconds. Each checkpoint in Radix requires the protection

of 35 pages and the generation of 1.1 twins. The average validity resolution

interval in SC is 2060 microseconds. The difference in resolution intervals is 280

microseconds, yet a write operation takes less than 1 microsecond to complete.

The logging granularity requirement is a factor for the performance of AVR

and is discussed in an earlier section. The requirement is basically that for any

memory operation 8 bytes need to be logged as used regardless of the number

of bytes the operation actually used. Radix is an integer based program and

uses only 4 bytes per access on the Intel architecture. Hence, some memory

locations in Radix are incorrectly being marked as having a data dependency,

thereby increasing the probability of a page being treated as true-shared rather

than false-shared. The requirement to handle write accesses as a read-write pair

increases the number of accesses identified as true-sharing.
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The operations which write ordered keys into the global array are on pages

which are false-shared in the system and are the cause of 30494 dirty/write faults

and 7655 dirty/write checkpoints in the 16 processor runs. As discussed in the

memory mechanisms section, write operations are logged as read operations due

to the existence of instructions which perform atomic read and write operation

pairs on memory. Since, the writes are treated as reads and the memory locations

on which the write operations act indicate that there are data dependencies, the

pages are incorrectly treated as true-shared. Overall, performance of AVR for the

Radix program is limited by implementation requirements.
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Figure 3.9: Matmul time vs. #processors
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Mat mu1

AVR outperforms SC for Matmul. See Figure 3.9. The amount of false-sharing in

Matmul depends on the size of the problem and the number of processors used.

Two data sizes were tested: 1024~1024 and 101321013. See Table 3.4 and Table

3.5 for those results.

Table 3.4: Matmul 1024x1024 Timing Data

Processors 2 4 8 16
AVR 111.61s 60.28s 32.89s 19.33s
SC 127.33s 66.83s 34.67s 18.84s

% gain for AVR 12.34 9.80 5.13 -2.60
False-shared pages 1 3 7 15

Table 3.5: Matmul 1013x1013  Timing Data

The larger data set, 1024~1024, does not exhibit any false-sharing for the

chosen processor counts. The 101321013 size data set exhibits false-sharing as

shown in the Table 3.5. The performance gains of AVR for the larger data set is

due to overlapped validity resolution with computation as each processor acquires

its working set of pages from the page manager. False-sharing occurs in the

smaller data set and is a cause for contention in the system. The smaller data

set has longer times due to false-sharing and the number of read shared pages in

the system. Runs using these two data sets show that the smaller data set has a

larger number of queued messages, a greater number of twins per checkpoint, a
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greater amount of time spent in sigio, and 2.5% more pages which need protection

per checkpoint. These differences are a result of the added contention placed on

the system due to the data partitions not being page aligned.
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Jacobi

AVR did not provide any improvement in performance over SC for Jacobi Iteration

(Figure 3.10). The design of Jacobi ensures that the majority of working-set pages

are cached in read-only state. The pages used to store the new unknown array

are write shared and not read-write shared, avoiding large message traffic from

invalidation messages. SC validity resolution intervals for Jacobi are up to 63%

shorter than that of AVR for runs using less than 16 processors. Less than 2%

of checkpoints resulted in rollbacks in runs up to 16 processors. False sharing

83



occurs in the new unknown array as new values are calculated and updates to

each page are written by more than one processor. The pages containing the new

and old arrays of unknowns are true-shared as the new values are used in the next

iteration.
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Figure 3.11: Gauss time vs. #processors

Gauss

Gauss-Seidel is similar to Jacobi, except that only one array of unknowns is used

and it is both read and written during computation. As shown in Figure 3.11,

the best time for Gauss was 11.35 seconds with two processors using SC. AVR

took 101 seconds. AVR does not perform well in the two processor configura-

tion because the checkpointing overhead exceeds the time required to send and

receive a message from a remote host. The checkpoint overhead is large because
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the working set is large. The time to send and receive a message is relatively

small because copysets are small and message forwards do not occur. The overall

effect is long resolution intervals, a decrease in the amount of computation per

interval, an increase in the number of messages, and an increase in the number

of queued messages. Read resolution intervals in AVR were 4959 microseconds

in length. Read resolution intervals in SC were only 1245 microseconds. The

number of messages sent in AVR was 39204, while the number of messages sent

in SC was 7557. The number of messages in AVR is greater because the amount

of computation per page fault is small. The number of queued messages in AVR

was 9587, which indicates that the receipt of incoming messages was the cause

of entry into the ending phase for 25% of resolution intervals. The effects of

long resolution intervals, a decrease in amount of computation per interval, the

increase in the number of messages, and the increase in the number of queued

messages is cyclic. Long intervals result in the queuing of messages, which in turn

results in the decrease of the length of the second phase of the resolution interval.

Less computation per interval gives rise to additional messaging, which leads to

extensive sigio interrupts and message queueing.

AVR performed better than SC for all processor counts greater than two. SC

performance was lower due to extremely long resolution intervals and a high num-

ber of messages sent. In some cases SC resolution intervals were 2 times longer

than those in AVR. AVR required 20000 fewer messages then SC. False-sharing

occurs on pages which store the unknown array. AVR performs well because the

overlapped communication and computation allows different processors to simul-

taneous use shared pages. Rollbacks totaled less than 1% of all checkpoints. The
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results from Gauss exemplify the false-sharing problem that occurs with SC. SC

performance is poor because the false-shared pages ping-pong between processors

such that multiple page faults occur as read operations are made in the calcula-

tion of the new values of the unknown array. This does not occur in AVR, since

the read operations occur optimistically and are validated upon receipt of the

updated page. The net result for AVR is that, because the pages are false-shared,

more operations complete per page fault than in SC. Hence, better performance

of the AVR protocol. True-sharing occurs in Gauss in both the calculation of new

array values and in the tolerance comparison phase which is protected by a lock.

Although all pages which contain the array of unknowns are true-shared, only 1

page per processor is marked as a true-shared page. This is because accesses are

staggered and data resolution has pre-fetching capability where values not used

yet are updated to reflect operations which have been performed remotely. AVR

uses regular SC to perform consistency resolution inside locks. Thus, AVR avoids

the checkpoint and rollback performance penalty that would otherwise occur as a

result of the true shared memory access.

Figure 3.12: SC Resolution Interval
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3.3.2 Discussion

The analysis of AVR would not be complete without a discussion of validity res-

olution interval properties. A resolution interval is the time it takes for invalid

data to become valid. Figure 3.12 shows a resolution interval for sequential con-

sistency. Figures 3.13 and 3.14 show resolution intervals for non-rolling back

AVR and rolling-back AVR, respectively. In SC user processing is blocked while

messages traverse the network and the remote node performs the computation

necessary for the remote request. In SC, Figure 3.12, this interval is marked as

Net. The Op segment, also shown in Figure 3.12, is the time required to perform

the operations dependent on the data resolution.

The non-rollback AVR interval (Figure 3.13) includes three segments relevant

to this discussion. The Cp segment is the amount of time required to save state.

The Op segment is the same as the Op segment in SC. The Res segment is the

resolution time required to undo the changes necessary to protect the process

state.

Figure 3.13: AVR Resolution Interval Without Rollback
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Comparing the two intervals gives the relationship that in order to improve

performance using AVR for resolution intervals that do not end in a rollback it

must be true that Cp + Op + Res < Net + Op. Hence, Cp + Res < Net and

Res < Op. The relationship indicates that the time used for checkpointing must

be less than the time required for messaging and remote processing and the time

required to resolve the checkpoint must be less than the the time spent performing

user computation. The performance gain of AVR, the length of time g, can be

described as g = Net + Op - (Cp + Op + Res) or g = Op - Res.

The rollback AVR interval (Figure 3.14) is different from the non-rollback

interval because there are two Op segments, a Rol segment, and no Res segment.

The Cp segment is the same as that shown in the non-rollback interval(Figure

3.13). The Rol segment is similar to the Res segment, but is longer because the

system needs to rollback the process and copy twins over active pages. The first

Op segment, Opl, is the length of time allowed for user processing. It is different

than 0~2 because the actual amount of computation depends on the validity of

the data and program flow. The second Op segment, 0~2, is equivalent to the Op

segments in the SC and non-rollback AVR intervals.

The rollback AVR interval can be approached in the same manner as the

non-rollback interval with the relationship given as Cp + Opl + Rol + Op <

Net + Op. Note the replacement of 0~2 with Op. Hence, Cp + Opl + Rol < Net,

Rol + Op < Op, and Rol < 0 must hold for AVR to perform better than SC.

Obviously, performance improvement over SC cannot occur in the AVR rollback

interval. The performance loss in the AVR rollback interval, the length of time 1,

can be described as 1 = Net + Op - (Cp + Opl + Rol + Op) or I = -Rol.
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Figure 3.14: AVR Resolution Interval with Rollback

Given the two AVR interval types, performance (P) for a sequence of intervals

relative to SC is P = G+L where G = Cg and L = Cl. Hence, P = Cg+C1

and P = C(Op-Res)-C(Rol). This analysis alone is not suitable for describing

performance of different parallel programs, but is suitable for describing identical

programs in the same environment.

Performance for AVR is varied. The test suite of programs can be separated

into four different groups each of which provides a characterization of AVR. The

first group is the set of programs for which there is no false-sharing or fragmen-

tation. These are Water, Spatial, and LU. In these programs, Res is sufficiently

small that Res < Op and g > 0 in invalidation intervals. Losses are minimized

due to the ability of AVR to use SC for page faults on true-shared pages. These

programs show that the optimistic approach to invalidation that AVR uses does

improve performance.

The second group of programs are FFT and Ocean. These programs do not

have false-sharing, but do have fragmentation. In these programs, Cp > Net. The

time required to save state information is greater than the message turn-around
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time. The programs have no false sharing and, therefore, have no opportunity for

performance gains from read and write resolution intervals. These programs also

have a high occurrence of rollbacks resulting in IL1 > 1 GI .

The third group of programs are Raytrace and Volrend. The programs have

false-sharing and fragmentation. In these programs, Cp + Res < Net and g > 0.

A large amount of computation is performed relative to the length of time required

for overhead. Performance loss due to AVR rollback intervals is small since fewer

than 2% of resolution intervals terminate with a rollback.

The fourth group of programs includes Radix, Matmul, Jacobi, and Gauss.

The programs exhibit a false-sharing pattern in which each processor writes to a

global object. These programs have performance gains from invalidation intervals

where Res < Op. These gains are particularly evident in Matmul because of

the large number of write accessed pages. Unfortunately, each of these programs

suffers when performing false-shared accesses because the accesses are computa-

tionally small relative to the overhead. Hence, Res > Op for false-shared accesses.

The programs are characterized by large working sets which require extensive pro-

tection calls and twin-ing. The high overhead results in Cp + Res > Net. This,

combined with poor false-shared access performance, outweighs the performance

gains of invalidation intervals in Radix, Jacobi and Gauss. AVR performs well in

Matmul using low processor counts, since Matmul has considerably more inval-

idation intervals and less false-shared accesses in those configurations. For this

group of programs, the number of false-shared accesses and the length of Net in-

creases with the number of processors, but Res gets smaller due to the decrease

in working set size resulting in improved performance of AVR relative to SC.
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The program suite is comprehensive in its memory use patterns. Experimental

results show that good performance of the AVR protocol occurs when the pro-

portion of false-sharing is high in the application, when the overhead cost of the

checkpoint is low relative to the round-trip message cost, and when the amount

of user processing is high relative to the round-trip message cost. The round-trip

message cost includes the time to send a request, the time for the remote node to

process the request, and the time for the reply to reach the original sender.

The proportion of false sharing relative to the amount of true sharing is in-

dicative of AVR performance. Although, the cost to perform a checkpoint for

false-shared and true-shared accesses can be the same, the cost to resolve the

checkpoint is less expensive for false-sharing processes which do not need to roll-

back. The exact costs are problem dependent and are related primarily to the

number of the working set of pages. Each rollback degrades performance by the

cost to resolve the checkpoint. Programs which have a relatively low proportion

of rollbacks will perform better than programs that have a high proportion of

rollbacks.

The number of working-set of pages is the primary factor with regard to the

amount of time required to checkpoint and resolve a checkpoint. Read-write

cached working pages must be protected from spurious writes. Protection could

involve as many system calls as there are pages to protect, depending on whether

the pages exist contiguously in memory. Pages which are protected during the

checkpoint will need to be unprotected at the end of the checkpoint. If the time

required to checkpoint is high relative to the round-trip message cost, the amount

of useful computation time is minimized and less work is accomplished per check-
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point. If the time to resolve the checkpoint is high and approaches the user com-

putation time, the benefit of optimism is lost. If both checkpoint and checkpoint

resolution times are long, the loss of performance is compounded. If working sets

are small, the opposite occurs. More user computational work can be performed

and AVR achieves larger performance gains as the time to resolve the checkpoint

decreases in proportion to the amount of user work. Overall, programs which have

small working sets perform better than programs that have large working sets.

The amount of user processing relative to the round trip message time is

directly related to the performance of asynchronous validity resolution. The re-

lationship of user processing to the size of the working set is discussed above.

There are other influences on the amount of user computation. They are the

number of interrupts and the execution flow pattern. Interrupts diminish the

amount of user processing by causing the operating system to preempt the user

process to run the interrupt handler. Sigios are interrupts caused by incoming

messages. Programs that require a large number of messages have a reduction in

the amount of user computation per checkpoint. False sharing is a direct cause

for increased messages since false sharing leads to the ping-pong effect. The flow

of the user program execution determines the amount of user computation. Pro-

gram flow is bounded by the locality of memory objects. A checkpointed process

that attempts to access an inaccessible page must resolve its current checkpoint

before performing any validity resolution actions on the new page. A process

which has the task of writing a small number of bytes to a number of inaccessi-

ble pages may not have any performance gain from AVR unless the overhead of

resolving the checkpointing is small. In this situation the amount of user work
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is bounded and growth of working set size will determine overall performance.

In general, programs that operate contiguously in memory perform better than

programs that have scattered accesses and programs which have a high level com-

putational complexity per memory access perform better than those which have

low computational complexity per memory access.

3.3.3 Validation of Claims

The claims stated in Section 3 are validated by experimentation. The claims are

reiterated here:

Claim 1.1 Asynchronous Validity Resolution (AVR) decreases the

performance loss that is associated with false sharing in regular

sequential consistency.

The experiments show that AVR does reduce the performance loss of false-sharing

when overhead costs are low relative to the round-trip message time. AVR pro-

vides up to 26% better performance for some applications which exhibit false

sharing. However, AVR does not provide faster execution than SC for false-shared

applications that have a large number of true-shared accesses or a large number

of working-set pages per execution thread. The overall performance trend, how-

ever, is that as the amount of false sharing increases in the system by the use of

additional processors, so does the performance of AVR relative to SC.

Claim 1.2 Asynchronous Validity Resolution (AVR) does not require

a different programming methodology than that of regular sequen-

tial consistency.
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Claim 1.2 addresses the programming requirements necessary for consistency.

AVR does not require any additional methodology for programming to ensure

memory consistency. The implementation of AVR used for this dissertation is

a user space implementation which requires the user to insert special commands

around I/O functions. With additional work, not relevant to this thesis, AVR

could be implemented in the operating system layers and would not require ex-

plicit programming of these instructions.

Claim 1.3 Asynchronous Validity Resolution (AVR) has best perfor-

mance in loosely coupled systems that have relatively high com-

munication costs.

AVR performs best in applications which are loosely coupled and have relatively

high communication costs. Loosely coupled applications are those which have

little true sharing or few synchronization operations such as locks and barriers.

Locks and barriers indicate the presence of true sharing. Locks provide mutual

exclusion and sequentialize memory accesses. AVR reverts to SC within locks,

since use of optimism is unfounded in this context. Barriers are fence instructions

used to separate memory accesses occurring prior to the barrier from memory

accesses occurring after the barrier. The results of the experiments show that

AVR performs well when a program has a greater amount of false sharing relative

to true sharing. AVR does not perform well when true sharing dominates.

Experimentation shows that communication costs are important to the per-

formance of AVR. Communications costs are the round-trip message costs which

include the wire-time and the time for processing on the remote node. The ex-
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perimental results show that if the round trip message cost is high relative to the

protocol overhead costs, best performance of AVR is obtained.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This dissertation addressed barriers of performance in sequential consistency. Its

goal was to develop a method to reduce the effects of false sharing in sequential

consistency while maintaining ease of programming. This has been accomplished.

This thesis presents and evaluates a new SVM protocol, Asynchronous Validity

Resolution (AVR).

AVR was implemented in a modularized SVM system. AVR is based on regular

SC and its use does not require additional programming complexity beyond the

intuitive shared-memory programming methodology. AVR is capable of handling

common synchronization mechanisms such as locks and barriers.

A modularized SVM system was used in this study as a control for experi-

mentation with an existing SC protocol. AVR and SC were tested using a com-

prehensive suite of programs. Runtime statistics for AVR and SC were generated
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and analyzed. The results show that there are four components that are directly

related to the performance of AVR. They are the number of false-sharing vs. true-

sharing accesses, the number of pages in the program’s working set, the amount

of user computation that completes per access, and the round-trip message time.

In order for AVR to outperform SC, the average round-trip message time must

be greater than the average amount of time required to checkpoint and perform

user computation. Additionally, the average amount of time to perform user com-

putation must be longer than the average amount of time required to resolve the

checkpoint. Performance of AVR is dependent on the nature of the programs exe-

cution, since that is what determines the amount of true sharing and the amount

of false sharing. True sharing incurs a performance penalty in AVR. False sharing

is the basis for performance gains. AVR can only have good performance if the

false-shared gains outweigh the true-shared losses.

Overall, AVR met the expectations and satisfied the claims of the dissertation.

The results show that AVR could be an important member of the arsenal of tools

available to parallel programmers.

4.2 Future Work

AVR is a potential foundation block for future research in areas such as proto-

col modification, overhead reduction, fault tolerance, and integration. Potential

exploits in the protocol modifications of AVR are including multiple and simul-

taneous resolution actions. Simultaneous resolution events could result in the

increase of the overall amount of asynchronous user computation by amortizing
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the overhead costs. This protocol enhancement may also lead to prefetching effects

which could reduce communication.

Practical overhead reduction is a possible avenue for work. It is expected

to be worthwhile to move the implementation of AVR closer to the hardware.

An operating system layer AVR protocol would be able to capitalize on lower

overhead, kernel threading, access to all CPU registers, and use of multiple timers.

This would minimize the protocol overhead component and increase the available

time for user computation. Access to all CPU registers may allow for a more

precise logging mechanism which would reduce the number of rollbacks.

Fault tolerance is a field of interest in SVM research. Checkpointing is a

mechanism used to provide fault tolerance. Hence, fault tolerance would be a

natural extension of AVR. Fault tolerance is the ability for an execution to survive

loss of resources such as network connectivity. Adding fault tolerance to AVR

would allow threads to migrate or be reborn on different hosts to allow the program

to complete.

Another possible field of study is the integration of AVR concepts into pro-

gramming tools such that compiler-generated code can be tooled to have con-

structs which signal how a particular access should be handled. A true-shared

access might be handled using regular SC, while a false-shared access depending

on its complexity, might be handled by AVR. Applications can be generated that

tell the system how to handle the accesses, rather than the system choosing a

solution that is not optimal.

The research potential of AVR and AVR concepts is great. Pursuit of any

of the avenues listed will likely improve AVR performance while maintaining an
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intuitive programming style that does not limit types of applications which can

be used.
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