@ https://ntrs.nasa.gov/search.jsp?R=19940025365 2020-06-16T14:54:57+00:00Z
NASA-CR-195760

January 1994 UILU-ENG-94-2201
CRHC-94-01

Center for Reliable and High-Performance Computing

J/ N e i T A
p—"
4
-

e NN
< S
-

ol

CHECKPOINT-BASED
FORWARD RECOVERY

USING LOOKAHEAD EXECUTION
AND ROLLBACK VALIDATION
IN PARALLEL AND
DISTRIBUTED SYSTEMS

(NASA-CR-195760) CHECKPOINT-BAS
ED N94-29869
JllﬂSheng LOﬂg FCRWARD RECOVERY USING LOOKAHEAD °
EXECUTION AND ROLLBACK VALIDATION
IN PARALLEL AND DISTRIBUTED SYSTEMS Unclas

PhTD. Thesis, 1992 (Illinois
Univ.) 166 p

G3/62 0003765

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

SECURTTY CLASSIFICATION OF THIS PACE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

3. OISTRIBUTION/ AVAILABILUTY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-94-2201 (CRHC-94-01)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(If applicable)

N/A

63. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

7a. NAME Of MONITORING ORGANIZATION
Office of Naval Research g nasa

6¢c. ADORESS (Gty, State, and ZIP Code)
1101 W. Springfield Ave.

7b. ADORESS (City, State, and ZIP Code)
800 N. Quincy St.

Ames Research Ctr
Moffett Field, CA

Arlington, VA 22217

Urbana, IL 61801 Arlington, VA 22217
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT (NSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ’ (If appilicable) .
) 7a NO0014-91-J-1283 NASA NAG 1-613
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TAS WORK UNIT
800 N. Quincy St. 7h ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Checkpoint-Based Forward Recovery Using Lookahead Execution
and Rollback Validation in Parallel and Distributed Systems

12. PERSONAL AUTHOR(S)
LONG, Junsheng

13a. TYPE OF REPORT 13b. TIME COVERED

FROM TO

Technical

14. OATE OF REPORT (Year, Month, Dsy) [IiS. PAGE COUNT
94-01-28 163

Pa———
——

16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB-GROUP

18. SUBIECT TERMS (Continue on reverse if necessary and identify by block number)

checkpointing, evolutionary, checkpoint placement, roll-
back, lookahead, distributed systems, forward recovery

recovery and checkpoint comparison for error detection.

average redundancy than NMR.

19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel
and distributed systems. The approach uses replicated tasks executing on different processors for forward

To reduce overall redundancy, this approach employs

a lower static redundancy in the common error-free situation to detect error than the standard N Module
Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses
some extra redundancy for recovery. To reduce the run-time recovery overhead, lookahead processes are
used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct
lookahead processes without rollback of the whole system. Both analytical and experimental evaluation
have shown that this strategy can provide a nearly error-free execution time even under faults with a lower

(continued on back)

20. OISTRIBUTION/ AVAILABILITY Of ABSTRACT

Bl uncLassifieounumited [saMe As ReT.] OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

223. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

0D FORM 1473, 34 Mar

83 APR edition may be used until exhausted.
All other editions are obsolets.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

CHECKPOINT-BASED FORWARD RECOVERY
USING LOOKAHEAD EXECUTION AND ROLLBACK VALIDATION
IN PARALLEL AND DISTRIBUTED SYSTEMS

BY
JUNSHENG LONG

B.S., Beijing University, 1982
M.S., University of Arizona, 1986
M.S., University of Arizona, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of [llinois at Urbana-Champaign, 1992

Urbana, Illinois

TRROENING PATE BANK NOYV FiME)

iii
CHECKPOINT-BASED FORWARD RECOVERY

USING LOOKAHEAD EXECUTION AND ROLLBACK VALIDATION
IN PARALLEL AND DISTRIBUTED SYSTEMS

Junsheng Long, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1992
Jacob A. Abraham and W. Kent Fuchs, Advisors

This thesis studies a forward recovery strategy using checkpointing and optimistic ex-
ecution in parallel and distributed systems. The approach uses replicated tasks executing
on different processors for forward recovery and checkpoint comparison for error detection.
To reduce overall redundancy, this approach employs a lower static redundancy in the com-
mon error-free situation to detect error than the standard N Module Redundancy scheme
(NMR) does to mask off errors. For the rare occurrence of an error, this approach uses
some extra redundancy for recovery. To reduce the run-time recovery overhead, lookahead
processes are used to advance computation speculatively and a rollback process is used to
produce a diagnosis for correct lookahead processes without rollback of the whole system.
Both analytical and experimental evaluation have shown that this strategy can provide a
nearly error-free execution time even under faults with a lower average redundancy than
NMR.

Using checkpoint comparison for error detection calls for a static checkpoint placement
in user programs. Checkpoint insertions based on the system clock produce dynamic check-
points. A compiler-enhanced polling mechanism using instruction-based time measures is

utilized to insert static checkpoints into user programs automatically. The technique has

iv
been implemented in a GNU CC compiler for Sun workstations. Experiments demon-
strate that the approach provides stable checkpoint intervals and reproducible checkpoint
placements with performance overhead comparable to a previous compiler-assisted dynamic
scheme (CATCH).

Obtaining a consistent recovery line is another issue to consider in this forward recovery
strategy. Checkpointing concurrent processes independently may lead to an inconsistent
recovery line that causes rollback propagations. In this thesis, an evolutionary approach to
establish a consistent recovery line with low overhead is also described. This approach starts
a checkpointing session by checkpointing each process locally and independently. During
the checkpoint session, those local checkpoints may be updated, and this updating drives
the recovery line evolve into a consistent line. Unlike the globally synchronized approach,
the evolutionary approach requires no synchronization protocols to reach a consistent state
for checkpointing. Unlike the communication synchronized approach, this approach avoids
excessive checkpointing by providing a controllable checkpoint placement. Unlike the loosely
synchronized schemes, this approach requires neither message retry nor message replay

during recovery.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisors, Professors Abraham
and Fuchs, for their support, patience, and guidance throughout this thesis research. It is
Professor Abraham who gave me the opportunity to pursue my graduate study at Illinois.
After Professor Abraham left for the University of Texas at Austin, Professor Fuchs took
me under his wing.

I would also like to thank Professors Iyer, Banerjee, Wah, and Ng for serving on
my committee, and all of my colleagues at the Center for Reliable and High-Performance
Computing in the Coordinated Science Laboratory for their friendship and assistance. In
particular, I wish to thank David Blaauw, Prakash Narain, Hongchao Dong, Yi-min Wang,
Bob Janssens, and Vicki McDaniel.

Finally, I would like to thank my wife, Susan, for her love, understanding and encour-
agement throughout my graduate study. I am also grateful to my parents for their support
and guidance throughout my life.

This research was supported in part by the Department of the Navy and managed by
the Office of the Chief of Naval Research under Contract N00014-91-J-1283, and in part by
the National Aeronautics and Space Administration (NASA) under Contract NAG 1-613,
in cooperation with the Illinois Computer Laboratory for Aerospace Systems and Software

(ICLASS).

TABLE OF CONTENTS

CHAPTER

INTRODUCTION e e e

1.1.
1.2.
1.3.

1.4.

Error Recovery e
Motivation e e e e e e e
Objective e
1.3.1. Forward recovery using lookahead execution and rollback validation
1.3.2. Implementation and experimentation in a distributed system
1.3.3. Compiler-assisted static checkpoint insertion
1.3.4. Evolutionary approach to concurrent checkpointing
Thesis Overview« . e e e e

2. FORWARD RECOVERY USING LOOKAHEAD EXECUTION
AND ROLLBACK VALIDATION

3.

2.1.
2.2.

2.3.
2.4.
2.5.

Introduction e e e
Computation and System Model
2.2.1. Computation and system
2.2.2. Computationtask
2.23. Checkpoint o i
2.2.4. Checkpoint test
Fault Model e
Recovery Using Optimistic Execution and Rollback Validation
Scheme Design Considerations
2.5.1. Lookahead and rollback scheduling
2.5.2. Test information e
2.5.3. Stateinformation o oo

2.5.4. Graceful degradation
ANALYTICAL EVALUATION e i e
3.1. Performance Metrics v o« o v i it i e e e e
3.2. Basic Assumptions e

3.3.

Recovery Schemes Using Comparison Tests
3.3.1. Alternative recovery schemes
3.3.2. DMR-F-1: Forward recovery with one rollback validation

3.3.3. DMR-F-2: Forward recovery with two rollback validations

3.3.4. TMR-F: Triple module redundancy
3.3.5. DMR-B-1: Backward recovery with one rollback process

3.3.6. DMR-B-2: Backward recovery with two rollback processes

3.3.7. Discussiono e e e e e e e e e
3.3.8. Comparisono v e e e e e

vi

PAGE

(<23, B, B I A N

10
10
11
11
12
12
13
15
15
17
18
18

20
20
21
22
22
23
26
28
29
31
31
34

4,

3.3.9. Overheadimpact
3.3.10. File server impact e
3.3.11. Optimal checkpoint placement
3.4. Self-Testable Scheme
3.5. Graceful Performance Degradation Scheme
3.6. SUmMmMAary i e e e e e e e e e

EXPERIMENTAL EVALUATION
4.1. Introduction
4.2. Host Environment
4,3. Basic Problems e e
4.4. Checkpoint Construction
4.4.1. Checkpoint structure
4.4.2. Checkpoint operations
4.4.3. Restartability o oo
4.4.4. Comparability 0 oL
4.5. Voter and Recovery Management
4.6. Experiments
4.6.1. Benchmark programs
4.6.2. Checkpoint placement
4.6.3. Errorinjection e
4.6.4. Program characteristics oL
4.6.5. Error detection by checkpoint comparison
4.6.6. Performanceresults
4.7, SUMMATY .« « ¢ v v v e e e b e e e e e e e e e e

COMPILER-ASSISTED STATIC CHECKPOINT INSERTION
5.1. Introduction
5.2. Checkpoint Insertion Problem
5.2.1. Checkpoint operations
5.2.2. Checkpoint interval maintenance
5.3. Static Checkpoint Insertion
5.3.1. Instruction-based time measure
5.3.2. Checkpoint insertion schemes
5.3.3. SLFC determination v v v i
5.4. Implementation and Experimental Evaluation
5.4.1. Base compiler and insertion filter
5.4.2, Benchmark programs
5.4.3. Checkpoint intervals
5.4.4. Checkpoint interval maintenance overhead
5.4.5. Profiling and SLFC selection
5.4.6. Comparison with CATCH
5.5, SUMMATY . . v v v v v e e e e e e e e e e e e e e

vii

37
39
40
41
43
47

49
49
50
50
51
51
52
52
54
54
56
56
57
59
59
60
62
68

70
70
72
72
73
76
76
81
81
84
84
84
88
92
95
96
97

6. EVOLUTIONARY CONCURRENT CHECKPOINTING

6.1.

Introduction e e e e e e e e e e e e e e e e

6.1.1. Inconsistent recovery line and rollback propagation

6.2.

6.1.2. Previous approaches oo
Evolutionary Checkpointing
6.2.1. Computation model

6.2.2. Approach
6.2.3. Detailed description o o oL

6.3.
6.4.

COITECENESS & v v v v v v e
Performance Considerations v v v i e

6.4.1. Convergencetime.
6.4.2. Run-timeoverhead oL,
6.4.3. Memoryoverhead

6.5.

Applications to Shared-Memory Systems

6.5.1. Recovery in cache-based multiprocessor systems
6.5.2. Shared virtual memory system
6.6. SUMMATY v v v v et et e e e e e e e

7. CONCLUSIONS . . . o e e e e e e e e e
7.1 SUMMATY . . v v o o v vt e e e e e e e e e e e e

7.2.

Al
A2,

Discussion and Future Research
7.2.1. Forward recovery in parallel and distributed systems
7.2.2. Compiler-assisted static checkpoint insertion
7.2.3. Evolutionary concurrent checkpointing

A3. TMR-F . . e

Ad.
A5,
A.6.
AT

DMRB-2 .. oot [
Self-Testable Scheme oo
Graceful Performance Degradation Scheme

REFERENCES o e e

viii

99

99

99
100
103
103
106
107
114
117
117
118
121
121
122
126
129

130
130
132
132
133
134

135
135
136
139
141
143
145
146

148

153

LIST OF TABLES

Table

2.1. Recovery Scheme Classification.

3.1. Five Schemes Using Checkpoint Comparison Test.
3.2. Analytical Evaluation Summary: DMR-F-1.
3.3. Analytical Evaluation Summary: DMR-F-2.

3.4. Analytical Evaluation Summary: TMR-F.
3.5. Analytical Evaluation Summary: DMR-B-1.
3.6. Analytical Evaluation Summary: DMR-B-2.
3.7. Analytical Evaluation Summary: Self-Testable Scheme.
3.8. Analytical Evaluation Summary: Graceful Degradation Scheme.
4.1. Overhead Measurements. ottt
4.2. Error Detection Through Checkpoint Comparison.
5.1. Four Static Checkpoint Insertion Schemes.
5.2. Benchmark Characteristics.
5.3. Checkpoint Interval Maintenance (Sun 3).
5.4. Interrupt Driven Dynamic Scheme (Sun 3).
5.5. Checkpoint Interval Maintenance (Sun4).
5.6. Checkpoint Interval Maintenance Overhead (Sun3).
5.7. Checkpoint Interval Maintenance Overhead (Sun4).
5.8. SL-SL Profiling Summary. oo
5.9. SL-SL Results for Nonprofiled Data Sets.

5.10. Run-Time Overhead (%) Comparison: Static vs. Dynamic Schemes.

17

22

27

28

29

30

32

42

45

58

61

82

88

89

91

91

93

95

96

96

97

6.1. Hypercube Program Traces.

6.2. Communication Characteristics of Hypercube Traces.

xi

LIST OF FIGURES

Figure Page
2.1. Lookahead Execution and Rollback Validation. 14
3.1. Comparison: Relative Execution Time.. 34
3.2. Comparison: Number of Processors. 35
3.3. Comparison: Number of Checkpoints. 35
3.4. Overhead Impact on Execution Time. 38
3.5. Overhead Impact on Number of Processors. 38
3.6. Overhead Impact on Number of Checkpoints. 39
3.7. Impact of a Central File Server on Execution Time. 40
3.8. Optimal Checkpoint Placement. 41
3.9. Self-Testable Scheme: R, Comparison. 43
3.10. Self-Testable Scheme: N, Comparison. 44
3.11. Degraded Scheme: R, Comparison. 46
3.12. Degraded Scheme: N, Comparison.. 46
3.13. Degraded Scheme: N, Comparison. 47
4.1. Checkpoint Placement Using Selected Loop Count. 58
4.2. Relative Execution Time During the Day. 62
4.3. Relative Execution Time During the Night. 63
4.4. Difference in Execution Time. L 63
4.5. Number of Processors During the Day. 65
4.6. Number of Processors During the Night. 66

4.7. Number of Checkpoints During the Day. 66

4.8.

4.9.

5.1.

5.2.

5.3.

5.4.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

Number of Checkpoints During the Night. .

Voter Processing Overhead.

Interrupt Driven Checkpoint Insertion in UNIX.

Polling-based Checkpoint Insertion in UNIX.

Heuristic SLFC Selection Algorithm.
Base Compiler and Its Checkpoint Insertion

Rollback Propagation.

..................

Filter.

..................

Local Variables and Operations at Each Process Node.

Sender Algorithm.
Receiver Algorithm.

Checkpoint Session and Recovery Lines. . .

..................

..................

Example of a Message Bypassing a Checkpoint Session.

Average Number of Checkpoint Updates per Session.

Scheme Comparison: Checkpoint Frequency

Scheme Comparison: Total Checkpoint Size

...................

67

67

75

77

85

86

100

107

108

109

110

113

125

127

127

CHAPTER 1.

INTRODUCTION

1.1. Error Recovery

Error recovery is to remove all errors resulting from a'fault in a system. There are
two basic approaches to error recovery: backward and forward. Backward recovery removes
errors by restoring a previous state of a system regardless of the current state (e.g, dis-
carding the current erroneous state altogether). The state restoration approach simulates
the reversal of time during recovery. Backward techniques are suitable for the unantici-
pated errors, since all current errors are simply discarded by rolling back to a previously
saved state. Checkpointing and rollback comprise the most common backward recovery
technique in practice [1-6]. During checkpointing, the system state is saved in a checkpoint.
During recovery, the current state is discarded and the computation is restarted from the
last checkpoint. Checkpointing time and reprocessing time due to rollback are the major
components of recovery overhead. The validation of an error-free state or a checkpoint is
very important for a successful rollback recovery.

Forward recovery removes errors by manipulating some portion of the current (erro-
neous) state and generating a valid new next state. Forward recovery does not go back in
time during recovery. However, this approach depends on either an error correction mech-

anism or an error masking mechanism. The error correction mechanism requires accurate

error damage assessment and prediction, and specific knowledge about error correction for
a particular system [7]. The error detection and correction codes, and the correctable data
structures are examples of the error correction-based forward recovery schemes (8,9]. The
error masking mechanism uses a static massive redundancy and majority voting, such as in
the standard NMR (N Module Redundacy).

Considerable research has been devoted to checkpoint-based backward recovery schemes
[1-4,7]. Few published efforts are known concerning checkpoint-based forward recovery
which do not depend on a specific error correction mechanism or massive redundancy. In
this thesis, such a checkpoint-based forward recovery strategy is studied for parallel and dis-
tributed systems. This approach exploits the inherent redundancy in today’s performance-
oriented parallel and distributed systems. It requires neither a specific knowledge about
error correction nor a complete NMR for error masking. It performs checkpoint validation

through checkpoint comparison.

1.2. Motivation

Fault tolerance is an integrated part for systems that require high reliability and

availability. The following observations about fault-tolerant computing are made:

e Fault tolerance usually degrades the overall performance of the system. Redundancy
has been known as the heart of any fault-tolerant techniques [7]. The redundancy can
be either space redundancy which uses extra processing elements or time redundancy

which consumes additional processing time.

¢ Fault-tolerant systems with specially built hardware may be costly due to the eco-
nomics of scale. The advent of high-performance low-cost microprocessor and inter-
connection technology has helped spur the growth of parallel and distributed systems.
Most of today’s parallel and distributed systems employ (possibly massive) redun-
dancy for the purpose of high performance. If this inherent hardware redundancy can
be utilized for fault tolerance, these systems may support fault-tolerant operations in

a cost-effective fashion.

e Not every user requires fault tolerance. Given the reliability of today’s computing
systems, most applications are executed in such a short time that an error occurrence
is very unlikely. When designing fault-tolerant techniques, we do not want to penalize

those users who do not want fault tolerance.

e The overall performance degradation can be reduced by making common cases effi-
cient. Amdahl’s law implies that any reductions in overhead from the frequent situa-
tions at the expense of increased overhead for the infrequent situations may decease

the overall overhead [10].

o If a software approach can achieve the fault-tolerant objectives with an overhead
comparable to the special hardware approach, then the software approach should be
preferred because software is flexible to accommodate changes in technologies and can

provide the desirable user transparency.

We strongly feel that the development of fault-tolerant designs should take the above
observations into consideration with an emphasis on high performance and low cost. This

thesis is motivated to exploit the inherent redundancy in the existing performance-oriented

parallel and distributed systems for fast error recovery. Our focus is software and low

overhead techniques, and their evaluations through implementation and experimentation.

1.3. Objective

The objective of this thesis is to study a forward recovery strategy using optimistic ex-
ecution and rollback validation, and to examine the issues concerning this forward recovery
strategy such as performance evaluation, implementation, and experimentation. In addi-
tion, we want to study the practical issues such as compiler-assisted checkpoint insertions

and low-cost concurrent checkpointing.

1.3.1. Forward recovery using lookahead execution and rollback valida-
tion

Our approach to a general forward recovery in parallel and distributed systems is
to combine checkpointing with the replicated tasks that execute on different processors.
Optimistic execution of the replicating tasks facilitates forward recovery, while checkpoint
comparison is used to detect errors in computation (checkpoint validation). Compared
with the standard NMR approach, this strategy uses, on average, fewer processors and
can provide an execution time close to that of error-free execution. If one is willing to
replicate processes over different processors, our approach can be an attractive alternative
to achieve forward recovery in a parallel or distributed environment. The motivations behind
this forward recovery are to use existing redundancy in performance-oriented parallel and

distributed systems and to reduce the overhead of the common case.

1.3.2. Implementation and experimentation in a distributed system

We want to build our forward recovery strategy in a software tool. With this tool,
users can use it as they desire, without penalizing other users who do not. In addition,
we want to evaluate the effectiveness and performance of our forward recovery strategy
with experiments using real applications. Thus, we want to implement our strategy in a
distributed system. Our approach to this implementation is to identify the basic problerﬁs of
checkpointing in a real operating system and to develop a checkpoint library that separates
the process information from the operating system and that can be inserted into application

programs either manually or automatically by a compiler.

1.3.3. Compiler-assisted static checkpoint insertion

Our forward recovery strategy requires checkpoints to be inserted in user programs
at fixed locations. Employing hardware or not, any checkpoint insertion approaches based
on the system clock do not support such static checkpoint insertion. We want to develop
compiler-assisted techniques to insert static checkpoints with an overhead comparable to
the dynamic checkpoint insertion schemes, without requiring special hardware [11]. We
want the static checkpoint insertion techniques to be implemented as an option in a real

compiler and let users decide whether they want to use this option.

1.3.4. Evolutionary approach to concurrent checkpointing

Communication between concurrent processes makes checkpointing individual pro-
cesses independently inadequate because this inconsistent recovery line may lead to the

rollback domino effect [12]. The common concurrent checkpointing schemes often result in

large checkpointing overhead due to either extra message rounds or excessive checkpointing.
The global coordinated approach requires stopping execution and reaching an agreement
after rounds of messages [13,14]. The communication synchronized approach always main-
tains a consistent recovery line by synchronizing checkpointing with communication, and
thus produces uncontrollable checkpoint placements and possibly excessive checkpointig [15-
18]. The message logging-based schemes are the communication-synchronized checkpointing
schemes in which message logging is used as checkpoint operations to reduce checkpoint-
ing costs. They synchronize logging with every message and maintain the past message
exchange history to determine a consistent recovery line [19-26]. The loosely synchronized
approach needs either message retry or message replay from message logs. We want to
develop a concurrent checkpointing approach to produce controllable checkpoint intervals,
with limited run-time overhead and without complex message management during recov-
ery. We also want to apply our approach to shared-memory multiprocessor and distributed

virtual memory systems to avoid excessive checkpointing caused by the current schemes.

1.4. Thesis Overview

The three specific topics studied in this thesis are: 1) a general forward recovery
strategy in parallel and distributed systems, 2) compiler-assisted static checkpoint insertion,
and 3) an evolutionary approach to concurrent checkpointing.

In Chapter 2, we describe a checkpoint-based forward recovery approach in parallel
and distributed systems using optimistic execution. The replication of a task makes forward
recovery independent of the computation since the correct next new state is obtainable

from some error-free replica. Lookahead execution is scheduled to avoid reprocessing due

-1

to rollback. A rollback process serves as the diagnostic process to determine the correctly
scheduled lookahead.

Chapter 3 presents an analytical evaluation of our forward recovery strategy. Two
schemes derived from our recovery strategy are compared with three common recovery
schemes. We investigate the impacts of checkpointing and recovery overhead on recovery
performance, the impact of file servers and the optimal selection of an optimal checkpoint
interval.

In Chapter 4, an experimental evaluation of one of our recovery schemes is described.
This evaluation is based on an implementation in a Sun NFS network environment and a set
of realistic benchmarking programs. We will also describe how to separate process informa-
tion from operating system information to make a comparable and restartable checkpoint.
Experiments show that the forward recovery scheme can achieve a near error-free execution
time even under fault occurrences.

In Chapter 5, we describe the compiler-assisted techniques for static checkpoint inser-
tion. These techniques use an instruction-based time measure instead of a real-time clock
to space checkpoints. This insertion guarantees a static checkpoint location with respect
to program execution. That is, the checkpoint locations will not change in the program
execution even with the different runs. This property makes it possible to apply this tech-
nique to our forward recovery strategy which may require checkpoint comparison as the
error detection means. The checkpoint insertion techniques are implemented in a GNU C
compiler for SUN 3 and SPARC workstations.

Chapter 6 describes an evolutionary checkpointing for concurrent processes. With this

approach, individual processes are allowed to checkpoint independently at the start of a

checkpointing session. This initial recovery line may not be consistent. As the computation
executes, the processes update their local checkpoints when a communication arises. This
local checkpoint updating makes the inconsistent recovery line converge to a consistent one
when the checkpointing session ends. We also consider the performance and application of
our approach to shared-memory multiprocessor and distributed memory systems.

Finally, in Chapter 7, the results obtained in preceding chapters are summarized. The

potential areas of future research are also discussed.

CHAPTER 2.

FORWARD RECOVERY USING LOOKAHEAD EXECUTION
AND ROLLBACK VALIDATION

2.1. Introduction

Considerable research has been devoted to checkpoint-based backward recovery schemes
[1-4,7). There have also been techniques proposed which combine replication with voting
and checkpoint rollback recovery. The RAFT algorithm replicates the computation on two
processors to achieve error detection and rollback recovery [27,28]. If the results produced
by the replicated tasks do not match, the task is executed on other processors until a pair
of matched results is found. Checkpoint-based backward recovery has two drawbacks: an
execution time penalty due to checkpointing and rollback, and the problem of determin-
ing if a checkpoint is error free. Although placing checkpoints optimally can reduce the
execution time penalty to some extent, the computation lost by rollback is inherent [1-4].
One approach to validating a checkpoint is to validate the system state via concurrent error
detection or system diagnosis, before a checkpoint is taken {29,30]. Another is to simply
keep a series of consecutive checkpoints and perform multiple rollbacks when necessary [31].
In contrast to backward recovery, forward recovery attempts to reduce the lost computa-

tion by manipulating some portion of the current state to produce an error-free new state.

10

However, forward recovery generally depends on accurate damage assessment, a correction
mechanism, and sometimes massive redundancy (e.g., NMR) {7,8].

However, there is little published work on checkpoint-based forward recovery which
does not depend on a specific error correction mechanism or massive redundancy [32]. In
this chapter, we present a forward recovery strategy using checkpointing and optimistic exe-
cution for parallel and distributed systems. This approach exploits the inherent redundancy
in today’s performance-oriented parallel and distributed systems. It requires neither a spe-
cific knowledge about error correction in a particular computation nor a complete NMR
for error masking. It uses a limited static redundancy for error-free computations, for error
detection and for state information retention, and it also employs a dynamic redundancy
for recovery. On average, it uses a redundancy less than its NMR counterparts.

The following two sections describe the computation and system model, and fault
model used in this thesis. Section 2.4 describes our checkpoint-based forward recovery. The
subsequent section discusses the design parameters of a recovery scheme derived from our

basic strategy.

2.2. Computation and System Model

2.2.1. Computation and system

The system considered consists of homogeneous processing elements connected to each
other and to secondary storage by a network. The processing element can be either a
computer node in a distributed system or a CPU node in a multiprocessor system. The

network can be a LAN for a distributed system or a general connection network for a parallel

11

system. We assume that the necessary checkpoints are retained on a reliable secondary

storage and are accessible through the interconnection network.

2.2.2. Computation task

A task is an independent computation and it can be a group of related subtasks. A
task is divided into a series of sequential subcomputations by checkpoints. The execution of
a subcomputation is called a computation session, while the checkpointing period is a check-
pointing session. A checkpoint interval is defined as the execution time of a computation
session.

A process is the task running on a processing element. A process can be replicated
on different processors. This replication can be physical or logical. A physical replication
is the execution of the same task on another processor, while a logical replication is the
execution of different software versions or recovery blocks for the same computation on
another processor. The physical replication is used to tolerate physical faults, whereas the

logical is used to tolerate software faults [12,33].

2.2.3. Checkpoint

A checkpoint consists of two types of information: the current process state for process
restart and the test information for process state (checkpoint) validation. They are called
the state and test portions of a checkpoint, respectively. These two may or may not be
separate entities within a checkpoint. If the checkpoint is the complete run-time image of
the process, the test portion can be the image itself or the signature of the image. The

latter is a case of separate state and test portions. Both the state and the test portions of

12

a checkpoint are saved in the reliable secondary storage in this thesis. Each state portion
in a checkpoint is a complete (consistent) recovery line if the computation is a group of

concurrent processes (we will discuss this in detail in Chapter 6).

2.2.4. Checkpoint test

A test to detect an erroneous state or checkpoint can be a comparison test or a self-
test. In a comparison test, the test portions of the checkpoints for the same computation
are compared. If they are identical, the test indicates a valid checkpoint, and an erroneous
one, otherwise. This implies that the probabilities of the two test portions being identical
as a result of one or two erroneous processes are negligible. If the test portion alone can
detect errors in a checkpoint, this test is said to be a self-test such as in some cases of
algorithm-based fault tolerance techniques [34,35]. A majority voting test is simply an
extension of the comparison test. The checkpoints generated from different processors for
the same computation should produce the same test portion if a comparison test is used.
Without sacrificing clarity, we often use checkpoint comparison for the comparison test of
a checkpoint and a restart from a checkpoint for the restart from the state portion of a

checkpoint.

2.3. Fault Model

This thesis deals with the faults that cause an error in a process and result in an
erroneous checkpoint. However, faults in the processor interconnection network or the
secondary storage may neither be detectable nor recoverable in our approach. To tolerate

software faults, the logical replication of processes is necessary. The replication must be

13

either an alternative version of the same task in the N-version programming or an alternative
recovery block [12,33,36,37]. For physical faults, either physical or logical replication can

be employed. The physical replication is a straightforward approach.

2.4. Recovery Using Optimistic Execution and Rollback Validation

Two essential features of our forward recovery strategy are lookahead execution to
reduce the computation loss due to recovery and rollback validation to diagnose the correctly
scheduled lookaheads. These concepts are illustrated in Figure 2.1. In the RAFT scheme, a
task is replicated and executed concurrently on two different processors [27,28]. At the end
of one computation session, two checkpoints are produced by the replicated process pair.
A voter process compares the newly generated but uncommitted checkpoints to determine
if the process state is error free. If the two checkpoints are identical, the system state is
valid. Either of the checkpoints can be committed for the past computation session, and
the process pair advances to the next session.

If the uncommitted checkpoints disagree, then the checkpoints contain an erroneous
state. Instead of rolling back, two identical task processes are started from the uncommitted
checkpoints on two additional processors. This optimistic scheduling is called lookahead
execution. Meanwhile, another task process rolls back to the last committed checkpoint
on a fifth processor. After a checkpoint interval, A, a diagnosis checkpoint is produced
by the rollback (validation) process. This checkpoint is compared to the two disagreeing
(uncommitted) checkpoints. If there is a match, the error-free checkpoint is identified. The
process pair that was executed ahead from the disagreeing erroneous checkpoint and the

rollback validation process are terminated. The correct checkpoint is then committed and

14

Erroneous checkpoint

————————

Checkpoint__,.
- Inten‘::l Lookahead execution (incorrect)

T Fault Correct checkpoint

Normal execution [F_ - ——— =
1 Lookahead execution (correct)

;: >— - eman e e - ->
Committed Rollback
—_ - e a» G b S .- e
checkpoint Validation

D Diagnosis checkpoint

Figure 2.1. Lookahead Execution and Rollback Validation.

the incorrect checkpoints are removed. In this strategy, the two additionally scheduled
lookaheads make it possible not to roll back the whole system when there is an error during
lookahead executions. In this case, the lookahead pair from the newly verified checkpoint
is treated as the normal pair. This pair can start a new round of lookahead and rollback
validation without rolling back the whole system.

This recovery strategy is indeed a forward recovery one. In fact, the state of the
computation task in the duplex system is the tuple of two individual states of the replicated
process pair. If one of these two individual states is erroneous, our approach uses the
redundant state (the one that is error free) to generate the next valid state by scheduling
an additional process from this redundant state without reprocessing the past computation
session. Therefore, this recovery strategy is forward. Clearly, this recovery strategy depends

on no error correction or error masking mechanism.

15

Compared to the static redundancy of three processors for TMR. this strategy uses
two processors for the common error-free situation and a dynamic redundancy of five for
the rare occurrence of an error. The potential for forward recovery lies in the fact that there
should be at least one correct process (thus, one valid checkpoint) during the normal run,
since the lookahead execution from this valid checkpoint advances the computation without
rollback. However, rollback may not be avoidable when the diagnosis checkpoint does not
agree with either of the two uncommitted disagreeing checkpoints, since all lookahead runs

may be incorrect.

2.5. Scheme Design Considerations

Our forward recovery strategy is a general approach to forward recovery using check-
pointing for parallel and distributed systems. Many schemes can be derived from this general
strategy. In this section, we examine the design parameters for a particular recovery scheme

based on our forward recovery strategy.

2.5.1. Lookahead and rollback scheduling

With respect to lookahead and rollback scheduling, there are four parameters in de-
signing a specific recovery scheme based on the approach described. The first is the number
of replicated processes in the normal run, which we call base (redundancy) size. The larger
the base size, the more potential there is for forward recovery, since it is likely to have an
error-free checkpoint for successful lookaheads. The second is the validation size or the
number of processes used for rollback validation; the third is the validation depth or the

number of retries of the rollback validation process if a rollback validation fails to diagnose

16

the disagreeing checkpoints. We can use either a larger validation size or a larger validation
depth to increase the diagnosis success rate. In the case of a larger validation depth, the
rollback validation success rate is increased by using time redundancy. The fourth is the
lookahead size or the number of lookahead processes scheduled.

A forward recovery scheme is recursive if its valida_tion depth is unlimited. In this case,
the processes executed ahead may spawn their children of lookahead and validation tasks
unboundedly, as the validation retries increase. This recursive scheme can maximally utilize
the forward recovery capability of the lookahead execution, and rollback probability can
potentially reach its lower bound. If the probability of multiple failures during a checkpoint
period is very small, then it is unlikely that recursive validation and lookahead process
spawning will be required. A nonrecursive scheme is an approximation of its recursive
counterpart. In fact, it is the corresponding recursive scheme with all validation retries
greater than the validation depth truncated.

If its base size is 2m + 1 for some integer m, a recovery scheme can also have forward
recovery through error masking and majority voting. For non-(2m + 1) base sizes, lookahead
size decides whether a scheme has forward recovery capability or not. If its lookahead size
is equal to its base size, this scheme is forward recovery through optimistic execution. If the
processor resource is limited, limiting the lookaheads scheduled (lookahead size < base size)
leads to a graceful performance degradation with a limited forward recovery capability. At
one extreme, the recovery scheme degenerates into a normal rollback scheme such as RAFT

if the lookahead size is zero [27,28].

17

Table 2.1. Recovery Scheme Classification.

b=2m+1 forward recovery via error masking
Lookahead Size, [
=0 0<li<b [=0b
Base nonrecursive nonrecursive nonrecursive
Size n backward limited forward forward
(b) b=2m Validation no lookahead | limited lookahead | full lookahead
Size recursive recursive recursive
o0 backward limited forward forward
no lookahead | limited lookahead | full lookahead

The concepts of base size, validation size and depth, and lookahead size can be used
to describe other recovery schemes as well. Table 2.1 presents a classification of nonerror-
correction based recovery schemes. For example, a traditional triple module redundancy
(TMR) scheme can be characterized with a base size of 3, rollback size and depth of zero,
and a lookahead size of zero, since it schedules neither rollback validation nor lookaheads. It
simply rolls back to the last committed checkpoint during recovery and uses error masking

for forward recovery.

2.5.2. Test information

The test information available plays an important role in selecting the test mechanism.
If the test is self-testable, we can eliminate the rollback validation in Figure 2.1 since the
voter task can identify the correct process state by simply testing the checkpoint directly
without using rollback validation. In addition, the lookahead execution scheduled from the
erroneous checkpoint can also be eliminated. The resulting lookahead scheduling simply
restarts a replicated process from the newly verified error-free checkpoint. If there is no

knowledge about how to detect error based on the test portion of a checkpoint, a comparison

18

test on the test portions of two checkpoints may be used. In this case, both rollback

validation and lookahead executions are necessary.

2.5.3. State information

The state information in a checkpoint greatly affects the size of a checkpoint and thus
the checkpointing overhead. The state information varies from computation to computation.
If the state information spreads all over the process space, the identification and extraction
of this state information can be very difficult or may be time-consuming. In this case,
the complete run-time image of the process can be a good alternative as the state portion
of a checkpoint. If the state information is stored only in several variables in the process
space, we can extract these state variables as the state portion of a checkpoint. In recovery
blocks and N-version programming, the input data can serve as the state portion of a
checkpoint if we choose a recovery block or a version of algorithm implementation as a
computation session. The input and output between recovery blocks or versions provide
the natural boundary for checkpointing. In the algorithm-based fault-tolerant schemes, it
is also possible to use the input data and intermediate results as the state information if
we can decompose the whole algorithm into several subalgorithms and each subalgorithm

is treated as a computation session.

2.5.4. Graceful degradation

In our recovery strategy, the lookahead scheduling may not be possible due to the
limited processors available. In this case, a graceful degradation can be achieved in a natural

manner in our strategy by selecting lookahead size < base size (Table 2.1). If there is only

19

one available process for lookahead execution, we can randomly make a guess by selecting
an uncommitted checkpoint for the lookahead scheduling. We will have a 50 percent chance
to obtain correctly scheduled lookahead. Thus, we trade some forward recovery capability
for process resource. If there is no process for lookahead, our scheme is naturally degraded

into the common rollback schemes [27,28] in which only the validation process is scheduled.

20

CHAPTER 3.

ANALYTICAL EVALUATION

3.1. Performance Metrics

In this thesis, we have considered two types of performance measures for a recovery
scheme derived from our strategy: recovery time and recovery resource requirements. We
have not considered the traditional fault-tolerant measures such as reliability and availability
for two reasons. First, the recovery we have considered is per computation-based. Second, in
our recovery schemes, the computation is guaranteed to finish given the available resources,
such as processors.

Let T. be the expected execution time of the computation task under consideration

and Ty the error-free execution time. The performance measures examined are

o Number of Checkpoints, N.: the average number of checkpoints stored in the system
or -71‘_,«[03 N.(t)dt. The maximal instantaneous N(t) reflects the maximal storage

requirement.

e Number of Processors, N,: the average number of processors used by the system or
T% Jo© Np(t)dt. It describes the processor redundancy required by a recovery scheme.

The maximal instantaneous N,(t) reflects the maximal processor requirement.

21

e Relative Erecution Time, R.: the ratio of the expected execution time (T.) over the
error-free execution time (Tp). This measure normalizes the effect of the execution
time of different computations. If R, is close to one, the execution time will be close

to the error-free execution time, demonstrating the effectiveness of forward recovery.

3.2. Basic Assumptions

In our analytical and experimental evaluation, three types of overhead are considered:
checkpoint time (t;), process restart time (t,) and checkpoint testing time (t¢). For purposes
of analysis, constant éheckpoillt intervals and overheads are used. Each processor has a
constant probability of failure, py, during one computation session (A +tx) with or without
restart and checkpoint test. This assumption implies two requirements. The first is a
Poisson distribution for the failure distribution, while the second is t; € A + ¢ and ¢, <
A + t; since the proba,b.ility of failure over [0,A + tx] is required to be equal to that over
[0,A 4 tx +t: +t,.]. The typical test time t; and restart time t, are in the order of a fraction
of a second and the checkpoint interval A on the order of minutes or hours.

In order to consider the impact of the centralized file server that handles checkpoint
files, we assume that t; and ¢, are approximately n-fold, when the n processes access their
checkpoint files at the same time. This assumption enables us to study the impact of a
file server by adjusting tx and ¢,, since both restart time ¢, and checkpoint time t; will be
increased due to the file accesses to a single server. The increase in t, and t; may not be
proportional to the number of processes that access the same file. However, a checkpoint
file usually contains many blocks. A fair server policy guarantees that the n processes finish

their access to the checkpoint file at approximately the same time. We also assume that

22

checkpoint comparison is performed by a voter process on a host that can access the file

system locally, and thus t; is not changed.

3.3. Recovery Schemes Using Comparison Tests

3.3.1. Alternative recovery schemes

We examine two alternative schemes derived from our proposed recovery strategy and
three other common schemes. These five recovery schemes are characterized in Table 3.1.
The DMR-F-1 and DMR-F-2 are nonrecursive schemes derived from our forward recovery
strategy. Their rollback validation is limited to one try with one or two rollback validation
processes. The TMR-F is the common TMR forward recovery scheme using error masking
and majority voting. It starts with three processes and votes on three checkpoints. If there
is no matched pair, it schedules no rollback validation process and simply restarts from the
last committed checkpoint.

The DMR-B-1 and DMR-B-2 are recursive rollback schemes modified from the RAFT

algorithms [27,28]. Two processors are used for the normal execution. If the checkpoints

Table 3.1. Five Schemes Using Checkpoint Comparison Test.

DMR-F-1: anonrecursive forward recovery scheme with base size = 2, validation
size = 1, validation depth = 1 and lookahead size = 2.

DMR-F-2: a nonrecursive forward recovery scheme with a base size = 2 valida-
tion size = 2, validation depth = | and lookahead size = 2.

TMR-F: a triple module redundancy forward recovery scheme using error-
masking with base size = 3, validation size = 0, validation depth =
0 and lookahead size = 0.

DMR-B-1: validation size = 1, validation depth = oo and lookahead size = 0.

DMR-B-2: a recursive backward recovery scheme with base size = 2, validation
size = 2, validation depth = oo and lookahead size = 0.

23

match after checkpointing, the execution advances to the next computation session. If there
is no matched checkpoint pair, the computation rolls back repeatedly with one or two pro-
cesses until a matched checkpoint pair is obtained. Our reason to compare our nonrecursive
forward recovery schemes to the recursive rollback schemes is that the nonrecursive schemes
are the first-order approximation of the corresponding recursive forward recovery ones. The
recursive ones give the best performance among all their approximate derivations. That
is, we compare our schemes to the corresponding rollback schemes with the best possible

performance.

3.3.2. DMR-F-1: Forward recovery with one rollback validation

In this scheme, a lookahead is successful if the validation task is error free and there
is a correct uncommitted checkpoint. Otherwise, a rollback is performed. The probability

of a successful lookahead is
pi = 2pg(1 = py).
The probability of rollback is
pr = 20%(1—py) + P}
Let there be an average of { successful lookaheads and r rollbacks in the task execution.

Based on the assumption of the constant probability of failure in a computation session, we

can expect

{ l
b= m=U+l+r n+r’

r r

Pr = (n=-D+1+r - n+r

24

which lead to

np,
1 - Pr

In a successful lookahead, the task execution includes one restart time (t.) for scheduling
lookahead tasks and 2.5 checkpoint comparisons for the checkpoint validation (2.5¢;). For
a rollback, two session times (i.e., 2(A + tx)) are wasted: one for the original execution
pair and one for the lookahead period. Two restarts also result (one for the lookaheads and
one for the rollback to the previously committed checkpoint). In addition, there are three
checkpoint comparisons for the checkpoint validation. Thus, the expected execution time

can be given as

T. = n(A+t)+1(t+250)+r(A+t +t+)+ (A + 8 + 8+ 2¢)
2 2p, 2.5 3
= n(A+tk)<1+'__z‘)r—)+ntrpl+ Pry pp 22Dt 2Pr
1 -p, 1 -p, 1—p,
Therefore,

2p- pi+2pr i 2.5p+3pr U
1-p, 1=-p, A+t l-p, A+t

T,
e=_=1
R To +

There is one (the committed) checkpoint during the normal execution run. Two additional
(uncommitted) checkpoints are present during a lookahead/validation operation. At the
end of the A for the rollback validation, there are eight checkpoints, one committed and
seven uncommitted (one for the validation process, two for the normal process pair and four

for the lookahead processes). Thus,

/O " N1t

Therefore,

No=14+2-PFPr_ Lo

n(A + ti) + 31(t, + t;) + 81(1.5t,)

+r(A+ ty +)+ 3r(A + te + b +) + 87(21,)

T, + 9T, PLEPr L ong PLYPr oy,
1-p- 1-p, l1-pr

P+ pr t, .6.25p1 + 8p, 14

(l_pr)Re (1_pr)ReA+tk (1_Pr)Re A+tk.
Similarly,
T. ,
/ No(0)dt = 2n = D)(A +tx) + 20ty + 5I(A + te + o + 1.58)
0
+2r(A + t + 4+ b)) + 57(A + t + 8+ 2t)
= 2T, +3T0111+_pr + 3nt, 2 +pr +3mtw,
1 = p, 1-pr l1-p,
P+ pr pt+pr i 1.5p + 2pr 1
N, = 243 +3 .
P (1-p,)R. (L=p,)Re A+t (L—pr)Re A+t

6.25p; + 8pr

25

If a centralized file server serializes file accesses, both the restart (¢,) and checkpoint

times (tx) will be increased because of the serialized file accesses of checkpointing and

restart. According to our previous assumption about the centralized file server, the restart

time will be threefold since one rollback validation and two lookahead processes read the

last committed checkpoint file at the same time. The checkpoint time is 2t for the normal

pair of task replications and 5t; for the lookahead period {four for lookahead and one for

rollback). Thus, the relative execution time with a file server system of limited speed can

be shown as

26

2p 5/3p, 3t. . 2.5p+3p. ¢ . 3t
R.(fs) =142 4Pt /3p pi+3p, ptpr 3t
1 -p, 1-p, A+ 2t 1-p, A+ 2t 1-pr A+ 2

Similarly,

- Pt pr Pt Pr 3t
Nelfs) = 120 SR 79) T 0= pRJ9) B + 24
+2 625[)[+ 8pr tt + 2 Pt + Pr 3tk

(1 = pr)Re(fs) A + 2t (1"Pr)Re(f5)A+2tk‘

P1+Pr P1+Pr 3tr
Npo(fs) = 2+3 +3
P(f (1_pr)Re (1"'pr)ReA+2tk
151)1 + Zpr 1y P+ pr 3tk

+3

+3(1"Pr)ReA+2tk (1_pr)RcA+2tk.

The above results are summarized in Table 3.2. Given py, R, is a linear function of
relative overhead factors: Z—flft—k and Zﬁ-‘ﬁ These overhead coefficients reflect the contribu-
tions their corresponding overheads have to the scheme performance (degradation). The
constant term in R, is the corresponding performance for an error-free execution, while
the second term reflects the inherent rollback in DMR-F-1. The smaller this term is, the
more effective is the forward recovery. Except for an extra factor (1/R.) appearing in the
overhead coefficients, N, and N, have a pattern similar to R.. The impact of a centralized

file server for checkpoint storage is reflected through the increased coefficients for ¢, and

the presence of the additional overhead term for ¢.

3.3.3. DMR-F-2: Forward recovery with two rollback validations

In DMR-F-2, the forward recovery is successful if one of the uncommitted checkpoints

is correct and at least one of the validation checkpoints is correct. Unlike DMR-F-1, the

27

Table 3.2. Analytical Evaluation Summary: DMR-F-1.

Re 1+ lzpr + mt’;”fr A:{tk + 2.511;1-;?;, A-t;t,,

Y| e st R
maz(N,)

No 2+ 30%55m + 3(1"-‘35'& ain + 3050k 54n

maz(N,) 5

5/3pr .
(fs) 1+12Pr +P1+/P 3t, +25p1+3pr t +2(pr 3t

1-pr A+42 1-pr A42 —pr A4+2t;
pitpr +pr 3ty
Ne(fs) L+ 2(1—pr)5e(fs) + 2050k A+
+2 625P(+3pr + 2 +pr
(1 pr)Re(fsj A+2tk ‘ ‘ﬁ ii.!' A+2tk
pitpr pitpr 3t
Np(fs) 2 + 3(1 Lprp)Re + 3(1 ‘pr%Re A+2tk

1. 5m+2gr pitpr 3ty
+3 A+2tk + 3(1 Pr)Re A+2tk

rollback distance of DMR-F-2 varies if the rollback validation fails. It is one A if both of
the original tasks fail and the validation pair succeeds. In this case, the checkpoints by
the validation pair are correct and can be committed. The rollback can start from them
instead of from the last committed checkpoint. Otherwise, the rollback distance is 2As. Let
[, s, r be the average number of successful lookaheads, one-A rollbacks and 2-A rollbacks,

respectively. Their corresponding probabilities are

p o= 2(1-ppps(l-p?),

pi(1 - ps)?,

Ps

o = 2L pylpspl+ 0} (201 - pp)ps + 9.

28

Table 3.3. Analytical Evaluation Summary: DMR-F-2.

Bst2pr Pi+2p.+2pr 3.5p;+5ps+5pr
T, n(A + t) (1+ 2220) 4 e, 2tZ2etdee 4y, SO0EIRtS:
pst2pr prt2ps+2pr ¢t 3.5pi+5ps+5pr __ 1
Rc 1+ 1-pr + 1-pr A*{’-.tk + 1-pr A4ty
opitpstpr | opiHPstPr _ i 11p;+21.5ps+21.5pr _t;
N, 1+ 2SR + 2R 51, T 2 (1=p k. B4k
maz(N,) 9
+ps+pr +pr _tr 2.5p;+5.5p;+5.5pr __t;
Np 2+ 4BEREe 4 qRHR e e 4 AR R
maz(Np) 6
ps+2pr Pl+5/3ps+5/3pr 3tr
Rc(fs) 1+ 1-pr + l1-pr A+2t
3.5p1+5ps+5pr 14 pitpstpr 3ty
+ 1-pr A+2t + 1-pr A+2t
+ps+pr +pstpr _ _ 3tr
Nc(fs) 1+ QTL%Rl_p, jfaj + 2(1—p,§ﬁjfs$ A+2tx
11p;+21.5p,4+21.5p, t; +ps+pr 3ty
2B T aany + 2T RTS) B on
+ps+pr +ps+pr _3t,
Np(fs) 2+4El—p:-iRe +4EI—Prj£e A+2t
2.5p1+5.5ps+5.5pr __ t¢ pitps+pr _ 3ti
+4 (1"Pr)Re A+2tk + 4 (1—P,~)Re A+2tk

Since the analysis of DMR-F-2 is very similar to that for DMR-F-1 except for DMR-

F-2 using an extra process for rollback validation, we summarize the resulting formulas for
DMR-F-2 in Table 3.3. The detailed analysis can be found in Appendix A. The results are

similar to those of DMR-F-1.

3.3.4. TMR-F: Triple module redundancy

In TMR-F, the trio of replicated tasks continues when there is no erroneous checkpoint
at the end of A. If there is a match in checkpoints, TMR-F performs a forward recovery via
masking off the erroneous checkpoint. If all checkpoints are different, a rollback is scheduled.

The rollback probability is given as

29

Table 3.4. Analytical Evaluation Summary: TMR-F.

T. n(A+tk)(1+T;Lpr) +ntrf;";+nt:1—3fﬁ
R, L+ 25+ 25 i+ 1:?;; o
N, 1+ g i
maz(N,;) 4
N, 3
maz(Ny) 3
Re(fs) 1+ lf;)r + 1frpr Ai—%zk + 13—10;:r A‘f’x-?ﬁTk
Nc(fs) L+ oty 5
Np(fs) 3

pr = 3p% - 2p}.

The results of our analysis for TMR-F are summarized in Table 3.4. The detailed
derivations are given in Appendix A. For TMR-F, R, follows a pattern similar to DMR-F-1
and DMR-F-2. However, N. has no inherent rollback term, since TMR-F always has one
committed checkpoint during either normal computation sessions or rollback sessions, and
three additional checkpoints at the end of each session for the duration of the checkpoint

test time (3t;).

3.3.5. DMR-B-1: Backward recovery with one rollback process

In this scheme, there is no forward recovery. If there is an error in either of the two

original replicated processes, the computation session rolls back repeatedly until there is a

30

Table 3.5. Analytical Evaluation Summary: DMR-B-1.

T, n(A+t) (1482 e iz 4 oy pie
pr(10-15p;+18p5 -7p%) 4
e 2(1-p;)° A+ix
ptle | pt 23 py(10-15p,;+18p3—7p3)
R. 1+ 1-pg +AS -py ZS+tk 2(1-py)? ! A-oftk
P1 +32% 2] +4p2 P1 +32% 2P1 +4p2 tr
Ne [1+ 1-py) t 1-py] [~-py) + 1-py](A+tk)Re
+8 2]+6E.’qf 3/2p1+3p 9py4+3 t
[1- Pf)g T -ps) + 11P1 * + pl2 Pz] mt;)Re
maz(N;) 00
Np 1 + _ + e A+tk
maz(Ny) 2
A
Re(fs) SiacBe + Aiz,,‘
A+t
Ne(fs) asayiVet CESTRI NG
A4ty
Ny(fs) Airk N + TR

match in the uncommitted checkpoints produced by both the original process pair and the
rollback processes [27,28]. Two situations can cause a rollback: (1) there is one error-free
checkpoint produced by the original process pair and the rollback iterations need only to
generate another correct checkpoint; (2) both checkpoints are erroneous for the original
process pair run, and the rollback iterations need to produce two valid checkpoints. The
corresponding probabilities are p; = 2ps(1 —pys) and p; = p}, respectively. The analysis

of DMR-B-1 is given in detail in Appendix A. The summary is presented in Table 3.5.

31
3.3.6. DMR-B-2: Backward recovery with two rollback processes

Like DMR-B-1, this scheme employs the recursive rollback to find a pair of matched
checkpoints. However, they differ in that DMR-B-2 uses two rollback tasks whereas DMR-
B-1 uses one. For the detailed analysis, refer to Appendix A. The summary is given in

Table 3.6.

3.3.7. Discussion

According to Tables 3.2-3.6, R., V, or N, can be generally expressed in terms of the

relative overhead factors as shown below:

t, t, £
= 6
m=ctat b VIR TRy

where ¢ is a constant, m € {R., N¢, N,} and t} is either 2¢; or 3tx. The constant c reflects
the error-free performance, while a is the performance degradation due to rollbacks in the
schemes we considered. The smaller « is for a forward recovery scheme, the more effective
the scheme is in terms of reducing the execution time degradation. In this thesis, a is called
the coefficient of the overhead due to rollback. This rollback overhead can not be eliminated
and depends only on the failure probability, py. The expression ¢+« represents the inherent
performance of a particular scheme, since all eliminatable overheads are removed (i.e., the
zero overhead situation). The factors of 3, v, and 6 are the overhead coefficients for process
restart, checkpoint comparison test and checkpointing.

For R., the overhead coefficients, a, 3, ¥ and é are related only to py. For N, and N,
the coefficients also include a factor of R%' Normally, the relative overheads are very small,

and we can approximate R, with the zero-overhead R.. This approximation, in fact, gives

Table 3.6. Analytical Evaluation Summary: DMR-B-2.

pi(Pi+ps+2) pr(p}+ps+2)
Tc Tl(A + tk) [l + il_p!;t1+p!;5] + ntril—p,iil+Pj5!

2 4p;+3 6+2p;—p}
+nt; [‘“’f T30 2 T PI (1%,

ps(pf+ps+2) pr(p%+ps+2) 4
R. 1+ (1-ps)(1+py)? + ’*'(1--1)1)(1+1z’;)2 A+t
6+2p;-p3
2 4ps+3 1 ty
+ [4pf(l+Pf)J(l‘P])! TP Tep)T | Btie
N 1+ ps(6+5p,+3p2=3p5+pY)| | | ps(6+5p,+3p7-3p5+p}) o
¢ (T+p))(1=p()? Re (+p))(1-ps)?Re Att
p,(137+10p,-16p}-22pj+19p;+4pj-4pj t,
(T—p)¥(1+p)t B+ty
maz(N,;) 00
N, 2
maz(Np) 2
py(p5+ps+2) Pr(Ph+ps+2) gp
R(fs) L+ o ytee? ¥ T=p (045,07 Bt2t
6+2py~p?
2 4PL+3 / f tt
+ [4pf(1+P/) (1-py) + Py (1+pf)? | A+2t
Nofs) | [14 PLOHSroni S tp)] L pr(SHSR tO O ey
€ (14p7)(1-py)? Re (1+p7)(1-ps)?R. A+t
+p,(137+10p,-—16p}-22p§+19p}+4p}-4p5! ty
(1—-ps P (1+ps)! A+t

Ny(fs) 2

32

33

the upper bound for e, 3, ¥ and § in N, and N, since the presence of ¢,, t; and ¢, increases
R.. Therefore, N, and N, are approximately a linear function of overhead factors. The
overhead coefficients represent the contribution of their corresponding overhead factors to
the performance degradation. The larger the coefficient for an overhead factor, the more
important this overhead factor is with respect to performance degradation.

For the noncentralized file server situation, § is zero. The checkpoint time, tx, does not
appear as an overhead factor because an error-free execution time that includes checkpoint
time, n(A + ti), is used as the base for our performance measures. In fact, the overhead
coefficient for the checkpoint time is ¢ + o if the checkpointless error-free execution time is
used as the base for our performance measures. For example, R. can be redefined as the

T,

ratio of the expected execution time over the checkpointless error-free execution time, 3£,

. T .
instead of oyt That is,

t t, t
=c+a+(c+a)Kk+ﬁZ+7—At-.

Checkpointing overhead is inherent in any checkpoint-based scheme since checkpoint time
is always included in the execution whether a fault occurs or not. For this reason, we did
not use the checkpointless error-free time as the base for our performance measure. To
minimize the impact of checkpoint overhead, the checkpoint interval or frequency should
be determined optimally.

The performance degradation due to a centralized file server is reflected in two ways.
The first is the increased overhead caused by the file access serialization. For example, an

approximate factor of 3 appears for the restart overhead term, A—i\—r't_k in R.(fs). The second

34

1.2}-

+ DMA-F-1

— Zero overhead

+ 5% Overhead

Relative
Exec. Time
Re
1.1

ccccc

0.06 0.08

Probability of Failure, py

Figure 3.1. Comparison: Relative Execution Time.

is the nonzero overhead coefficient for checkpoint time (&) because of the extra checkpointing

activities by the lookahead and rollback validation processes during recovery.

3.3.8. Comparison

In order to compare the five schemes we described above, R., N,, and N, are plotted
in Figures 3.1, 3.2 and 3.3. The solid curves depict the zero-overhead case (i.e., the inherent
performance, ¢ + a), whereas the dotted curves depict the case with 5% overheads (e.g.,
ty, t, and t, are 5% of A + tj, respectively). The range of failure probability considered is
limited within [0, 0.1], since typical environments are unlikely to have high failure rates.

In Figure 3.1, the expected execution time for DMR-F-1 and DMR-F-2 is comparable
to that for TMR-F. In fact, their execution times are nearly the same as the error-free

execution time. The execution times for the rollback schemes (DMR-B-1 and DMR-B-2)

3.2
e = < = < - < -
28 + DMR-F-1 — Zero overhead oo
x DMRA-F-2 v 5%Overhesd .- ol

0 0.02 0.04 0.06 0.08 0.1
Probabillity of Failure, ps

Figure 3.2. Comparison: Number of Processors.

1.6
+ DMA-F-1 — Zero overhead -*
x DMR-F:2 +++ 5% Overhead ,. gL
1.4
Number of
Checkpoints
Ne
1.2

|
0 0.02 0.04 0.06 0.08 0.1
Probability of Faliure, ps

Figure 3.3. Comparison: Number of Checkpoints.

35

36

can be as high as 20% more than the error-free execution time. The increase in R, with
ps shows that rollback is still possible in TMR-F, DMR-F-1 and DMR-F-2, even though
these schemes can perform forward recovery. The relative execution time, R., for DMR-F-
2, is larger than that for DMR-F-2 because there are more rollback validation failures in
DMR-F-1.

The average number of processors used for DMR-F-1 and DMR-F-2 is less than that of
TMR (Figure 3.2). Using more than three processors dynamically for the infrequent error
situation enables DMR-F-1 and DMR-F-2 to reduce the overall processor redundancy. As
expected, the rollback schemes, DMR-B-1 and DMR-B-2, use on average fewer précessors
than the others. For DMR-B-1, N, decreases with p; because only one processor is used
during recovery.

The number of checkpoints increases with py for all schemes except TMR-F. For TMR-
F, N. is close to one; N, for DMR-F-1 and DMR-F-2 is slightly higher than that for
DMR-B-1 and DMR-B-2. It seems contradictory to the fact that more checkpoints would
be accumulated during recovery for DMR-B-1 and DMR-B-2. However, DMR-B-1 and
DMR-B-2 do have a smaller N. than DMR-F-1 and DMR-F-2 because they have a longer
execution time than DMR-F-1 and DMR-F-2 due to rollbacks. The difference in N. may
be insignificant, since most modern systems usually have a large secondary storage for the
checkpoint files.

As expected, the presence of overhead increases R.. Both DMR-F-1 and DMR-F-2 still
have an execution time close to the error-free execution time (within 5% for DMR-F-2 and
10% for DMR-F-1). For DMR-F-1 and DMR-F-2, N,, is increased less than 1% because the

extra processors are used only during recovery. For TMR-F and DMR-B-2, N, is constant,

37

since both schemes always use three and two processors, respectively, during both normal

execution and recovery.

3.3.9. Overhead impact

As discussed in Section 3.3.7, the overhead coefficients reflect the importance of the.
corresponding overheads with respect to performance degradation. The impact of check-
point overhead is determined by c¢ + a and depicted in Figures 3.1, 3.2 and 3.3 as the
zero-overhead curves. The impact of checkpoint overhead on R. for DMR-F-1, DMR-F-2
and TMR-F is smaller than that for DMR-B-1 and DMR-B-2. This is because the rollback
reduction in DMR-F-1, DMR-F-2 and TMR-F leads to fewer checkpointing sessions in com-
putation (Figure 3.1). For DMR-F-1 and DMR-F-2, N,, is more sensitive to the checkpoint
overhead than that for TMR-F. DMR-B-1 and DMR-B-2 as indicated by a positive slope
in Figure 3.2. The static redundancy employed in TMR-F and DMR-B-2 is reflected by
the flat slopes in Figure 3.2. Except for TMR-F, the sensitivity of N. to the checkpoint
overhead is reflected by the relatively steep slopes in Figure 3.3.

Figures 3.4, 3.5 and 3.6 compare the overhead coefficients of restart time and check-
point comparison time. The solid curves represent the impact of t,; the dotted ones depict
the impact of t;. For N, and N, the overhead coefficients such as a, 8 and v may not be
independent of tx, t, and t; due to the presence of R, in these coefficients. In Figures 3.5
and 3.6, we used the ideal zero-overhead result for R, conservatively since R, with overhead
is bigger than without overhead.

The impact of the comparison time ¢; is more than twice of that of the restart time

t.. This suggests that any reduction in comparison time will result in a bigger gain in

0.7~ + DMR-F-1 — Restart Time
x DMA-F-2 <+ Comparlson Time R
-'... .A.-.
O TMRF LI
0.5 oA
Overhead O DMR-B-1 e L
CO:glc'l;ms a DMR-B-2 d - &
e $-
0 0.02 0.04 0.06 0.08 0.1
Probability of Failure, ps
Figure 3.4. Overhead Impact on Execution Time.
2= k
+ DMRA-F-1 == Restart Time .
ux.
x DMR-F-2 +++ Comparison Time]
.
151 O TMR-F e
Overhead O DMR-B-1 ,.
Coefficlents
for Ny 1= a DMR-B-2 ..x'.

0 0.02 0.04 0.06 0.08 0.1
Probability of Failure, ps

Figure 3.5. Overhead Impact on Number of Processors.

38

35 - 39

.) _-':ﬁ
L DMR-F-1 — Restart Time -.,." '.g:;l
«x DMR-F-2 .-+ ComparisonTime .- g
» otal
2.5
O TMRF . e
na
» . Lyt
O DMR-B-1 B
Overhead 2~ A -
Coefficients A DMR-B-2 ._x' ._g:: o
for N, 1.5
* - o
2 aa e
. : -
0.5 et
............... 3
h
.1

g
0 0.02 0.04 0.06 0.08

Probability of Failure, ps
Figure 3.6. Overhead Impact on Number of Checkpoints.

performance improvement than will an equal reduction in restart time. In Figure 3.4, ¢,
and t, affect R, for DMR-F-2 and DMR-B-2 more than R, for other schemes. The TMR-F
scheme is insensitive to both ¢, and t;. Figure 3.5 shows that N, is affected by ¢, and ¢{; more
for DMR-F-1 and DMR-F-2 than for other schemes because they employ extra processors
during recovery. The number of checkpoints for all schemes except TMR-F is sensitive to

the overheads (Figure 3.6).

3.3.10. File server impact

The impact of a centralized file server is depicted in Figure 3.7 for a case with 5 %
relative overhead. The solid curves are for the centralized server case, while the dotted
ones are for the noncentralized server case. The impact of a centralized file server for
TMR-F, DMR-B-1, and DMR-B-2 is not as significant as that for DMR-F-1 and DMR-

F-2, since there are additional checkpoint operations and restarts by the lookahead and

1.25 40

+ DMR-F-1 - Central file server

1.2 <+« Noncentral file server

1.15
Relative

Exec. Time

R,
1.1

1.05

0 002 0. 0.06 0.08 0.1
Probability of Failure, p;

Figure 3.7. Impact of a Central File Server on Execution Time.
rollback validation processes during recovery for DMR-F-1 and DMR-F-2. Restart time
and checkpoint time increase as a result of the file access serialization by the centralized
server., Meanwhile, an extra overhead term for t; appears in R, N, and N, (Tables 3.2 and

3.3).

3.3.11. Optimal checkpoint placement

The formulas for T, in Tables 3.2 and 3.3 can be used to minimize the impact of
checkpoint time on execution time by selecting the proper checkpoint interval or frequency.
If the checkpoint interval is too long, the execution loss due to reprocessing increases the
execution time, while the checkpointing overhead increases the execution time with fre-
quent checkpointing. Figure 3.8 shows the expected execution time under different failure

rates and overhead costs for DMR-F-1. The optimal checkpoint frequency can be obtained

41

Basic Execution Time = 1000 units
A = failure rate
tx = checkpoint overhead

1300

Expected
Exec. Time
Te

Checkpoint Frequency

Figure 3.8. Optimal Checkpoint Placement.

by either numerical or graphical means, given a failure rate, task computation time, and
overhead costs such as checkpoint time, restart time, and comparison time.

Note in Figure 3.8 that for a low checkpointing overhead, the execution time curve
near the bottom is rather flat. This suggests that an accurate checkpoint interval is not
necessary since a few additional checkpoints still give a near optimal solution. For small
failure rates, the checkpoint interval is usually large or checkpoint frequency is small. This
observation agrees with the previous studies on optimal checkpoint placement for other

recovery schemes [1-4].

3.4. Self-Testable Scheme

If a checkpoint is self-testable, errors in the checkpoint can be detected by using
this checkpoint alone. During recovery, the lookahead scheduling can be reduced to only

scheduling a replicated process from the correct checkpoint identified by the self-testable

42

Table 3.7. Analytical Evaluation Summary: Self-Testable Scheme.

T. n(A+tk)(1+Tf'7) + nt, BEB: 4 np, BAZPe
R | e e s
N 1+ 2(1_:’:')’2: A‘t;tk + 2(1-2::)& Ai't,,
maz(N.) 3
Ny 2
maz(Np) D)

test. This leads to the elimination of both the rollback validation process and the lookahead

processes from the erroneous checkpoint. For the purpose of comparison, we consider a self-

test scheme with a base size of two in the following.

This scheme uses two replicated processes for the computation sessions. At the end of

a checkpoint session, the test portions from the two newly produced checkpoints are tested.

If one checkpoint is tested as erroneous, a new replicated process is restarted from the error-

free checkpoint and the original erroneous process is terminated. The correct checkpoint is

committed. If both checkpoint are tested as erroneous, a rollback is performed. Therefore,

the probabilities of a successful lookahead and of rollback are, respectively,

Y4

Pr

It

2ps(1 - py)

p}.

In Table 3.7, R., N, and N, are summarized. (For details see Appendix A) For the

self-testable scheme, R, is similar to that for DMR-F-1 and DMR-F-2 (Figure 3.9). This

scheme also compares favorably to TMR-F (Figure 3.9): it has a shorter execution time

than TMR-F. With 5% overhead, the self-testable scheme is still comparable to TMR-F,

1.1 : 43

1.08 |- + DMR-F1 — Zerooverhead .
x DMR-F-2 +++ 5% Overhead
-l.
1.06|- o TMRF '
Relative
Exec. Time O Seli-Testable o)y

R
1.04

1.02

;e oo 0.06 0.08 0.1
Probability of Failure, py
Figure 3.9. Self-Testable Scheme: R. Comparison.
even though it is more sensitive to the overhead than TMR-F. The self-testable scheme uses
two static processors during both normal computation and recovery. However, N. does not
have the term for inherent rollback. This is because the number of checkpoints is always one
for either normal execution or recovery except for the short period during the checkpoint
testing when it is three. This explains why N, for the self-testable scheme is insensitive to

the overhead, similar to that for TMR-F (Figure 3.10).

3.5. Graceful Performance Degradation Scheme

Compared to TMR-F, the extra processors required during recovery by our strategy
may not always be available. A graceful degradation in forward recovery can be achieved
by using the limited lookahead scheduling. For example, we can schedule one lookahead
process instead of two. Although this compromises the performance, it does not render our

strategy a useless one.

1.6 44

+ DMR-F-1 — Zero overhead x
x DMA-F-2 <+« §%Overhoad o
o TMR-F e
1.4 o
. O Self Testable o
Number of
Checkpoints

Ne

0 0.02 0.04 0.06 0.08 0.1
Probability of Fallure, py

Figure 3.10. Self-Testable Scheme: N. Comparison.

In the following, we demonstrate the graceful degradation caused by the limited looka-
head scheduling with DMR-F-1. We assume that the lookahead scheduling is to select ran-
domly one lookahead process for one of the two uncommitted checkpoints. The analysis for
this degradation scheme is similar to that of DMR-F-1. In fact, they are the same except
that half of the successful lookahead executions in DMR-F-1 become unsuccessful and re-
sult in rollbacks due to the misscheduled lookahead execution in this degradation scheme.

Therefore, the probabilities of a successful lookahead and a rollback are, respectively,

1
pr = 2pla

1
pre = prt Epla

where p; and p, are the probabilities of successful lookahead and rollback for DMR-F-1,

respectively (Section 3.3.2). This reduction in successful lookahead and increase in rollback

45

Table 3.8. Analytical Evaluation Summary: Graceful Degradation Scheme.

Te n(A + tk) (1 + 12p:1) + ntrpr+2p:; + ntt 2.5p{l+3p:1
=Pyt 1-p. 1=p.s
2p, s ppr+2p. ¢, 2.5p+3p,.r ty

Rc 1+ 1-p,s + 1-p. A+t + 1—p,. A+t
P+t pr+prgl tr 4.75p;+6p,.r ¢,
Ne L+ 20 R 205 R 540 T 2 i=p,)R B+
maz(N,.) 6
pir+p,t P+t t, 1.5py+2p.s t;
NP 2 + il—p,.::ne + il—p,.;ﬁg A4ty + (1—p,.1)Re A4ty
maz(Np) 3

cause a reduction in performance, compared to DMR-F-1. Table 3.8 summarizes the results
of our analysis.

Figure 3.11 compares this degraded scheme with DMR-F-1, DMR-B-1 and a non-
recursive version of DMR-B-1. The DMR-B-1 scheme is a recursive rollback scheme that
gives the best possible performance among all of its nonrecursive derivations. Both DMR-
F-1 and its degraded scheme are nonrecursive. The nonrecursive DMR-B-1 is simply a
DMR-F-1 without lookahead scheduling. Clearly, this degraded DMR-F-1 gives a longer
execution time than DMR-B-1, although its degraded performance is still between those of
DMR-F-1 and the nonrecursive DMR-B-1. This suggests that DMR-F-1 should be switched
to either DMR-B-1 or the degraded recursive version of DMR-F-1, if the processor available
is limited at the time of recovery. The improvement in .V, and N, can be seen in Figures 3.12
and 3.13. In fact, the performance of the degraded scheme lies between those of DMR-F-1

and DMR-B-2.

1.3 A Nonrecursive DMR-B-1
+ DMR-F-1 — Zero overhead
x Degraded +++ 5% Overhead
Relative 12~ O DMR-B-1
Exec. Time
R
11
1 rf Y]
0 0.02 0.04 0.06 0.08 0.1
Probability of Failure, p;
Figure 3.11. Degraded Scheme: R. Comparison.
2.8
+ DMR-F-1 — Zero overhead
2-5 p— et L d
x Degraded «++ 5% Overhead ,,
24
Number of
Processors
Ny
2.2
2

1.8 I L
0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, p

Figure 3.12. Degraded Scheme: N, Comparison.

46

1.5

47

+ DMR-F-1 — Zero overhead E

14— Coxt
x Degraded s+~ 5% Overhead :
9 DMR-B-1 K

1.3

Number of
Checkpoints
Ne

1.2

11

| |
0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, py

Figure 3.13. Degraded Scheme: N. Comparison.

3.6. Summary

In this chapter, we have shown the following analytical results:

Our forward recovery schemes (DMR-F-1 and DMR-F-2) can achieve a nearly error-

free execution time with an average redundancy less than three.

o Checkpoint time is the inherent overhead in the five schemes we considered as in any
checkpoint-based schemes. It is proportional to the sum of the error-free result and

the inherent rollback term (a). It can be minimized by placing checkpoints optimally.

o Checkpoint test time is more important than restart time (y >). Any improvement
due to a reduced test time gains more in performance than that due to a reduced

restart time.

o The presence of a centralized file server increases restart time and checkpoint time.

It also results in an additional degradation in performance.

48

o If a self-testable test is available, our forward recovery scheme can achieve a shorter

execution time and a lower static processor redundancy than TMR-F.

e With limited processor resources, our schemes can obtain a reduced forward recovery
gracefully. Furthermore, the performance of our recovery schemes can be naturally

degraded to those of rollback ones.

49

CHAPTER 4.

EXPERIMENTAL EVALUATION

4.1. Introduction

In this chapter, we discuss our DMR-F-1 implementation for a distributed system.
The objective is to investigate the feasibility of DMR-F-1 for distributed systems and to
measure the performance overheads in an actual implementation. We selected DMR-F-1 for
three reasons: (1) DMR-F-1 is representative for our recovery strategy; (2) DMR-F-1 is very
sensitive to overhead (Section 3.3.9); and (3) DMR-F-1 can be easily extended into other
schemes such as DMR-F-2. Our distributed implementation utilizes the ease of availability
of workstations, and it can be generalized to the message passing-based parallel systems
such as hypercubes and connection machines. The memory shared parallel systems may
have a common mode of failure with the shared memory. If the processes that share the
memory space are treated as a computation entity, our implementation may be applied in
this case as well.

In our implementation, a checkpoint is the running image of a process. The test and
state portions of a checkpoint are not separate entities. The test mechanism is simply a
comparison of two checkpoint files. This selection of checkpoint structure and test gives
potentially maximal checkpoint and test times. It also requires no knowledge about error

and may handle possibly a wide range of failures.

50

4.2. Host Environment

Our implementation environment consists of a Sun 3/280 server and a pool of 12
Sun 3/50 diskless workstations. The server provides a Sun NFS transparent access to
remote file systems under SunOS 4.0. A voter task for the checkpoint comparison and
recovery initiation is also run on this server. All checkpoints are kept by the server. The
Sun 3/50 workstations are used as the processing units. This setting makes it possible to
evaluate the impact of the centralized file server on DMR-F-1. This is an entirely user level

implementation with no kernel modifications required.

4.3. Basic Problems

Two problems have to be overcome for any recovery schemes that use checkpoint
comparison: the remote restartability and comparability of a checkpoint. That is, a task
must be able to be restarted from a checkpoint produced on other nodes, and a checkpoint
produced on a node must be identical to any checkpoint from any other nodes if both
are correct and for the same computation. The former is required for process replication
(lookahead execution), while the latter is needed for checkpoint validation.

Due to different workloads at each node, the processing speed may vary on each node.
In our recovery scheme, the task execution time is determined by the slowest process in
the replicated process pair. The mismatch in processing speed (or workload) prolongs the
completion of the task computation. It also causes the problem of uncommitted checkpoints

accumulating in the file system.

51

4.4. Checkpoint Construction

4.4.1. Checkpoint structure

A checkpoint used in our implementation is a snapshot of a process run-time image
at the time of checkpointing. There has been considerable research concerning checkpoint
construction in UNIX [11,38-40]. Smith implemented a mechanism for checkpoint construc-
tion in UNIX for the purpose of process migration [38]. His checkpoint is an executable file
generated by a checkpoint operation. It contains the text segment, the data segment, as
well as the stack segment of the process state. The stack segment is treated as a part of the
data segment. The processor state (e.g., registers) is saved by a setjmp() system call. The
restart of the checkpointed process is simply the reexecution of this executable file on an-
other processor. Li and Fuchs developed a checkpointing scheme for their compiler-assisted
checkpoint insertion techniques [11}. Their checkpoint is a data file that contains the data
segment and partial stack segment of the checkpointed process. The checkpoint is intended
for use in the same shell process on the same machine.

Our checkpoint structure is a superset of that of Li and Fuchs. In addition to having
the complete stack and data segments, our checkpoint also contains a segment for the file
1/0 output data during that checkpoint interval. The inclusion of the file output as a part
of a checkpoint makes checkpoint comparison effective for error detection (described later).
The process registers are saved as a part of the stack. The omission of the text segment is
possible because the original executable file is already available through NFS. There is no

need to transfer the executable file to perform a remote restart.

52
4.4.2. Checkpoint operations

The checkpoint/restart operations include three routines: _checkpoint(), _restart(),
and _terminate(). They are all user level and can be placed into user applications either

manually or automatically by a compiler [11]. The routines are described as follows:

e _checkpoint() is placed in user application programs. When executed, it saves the proces-
sor state on the stack, stores both data and stack segments in a data file and signals

to the voter that a new checkpoint has been generated.

o _restart() is inserted in main() as the first thing to execute. It checks with the voter if
there is a checkpoint from which to start. If there is a checkpoint, it reads in and
restores the data and stack segments, and resumes from the checkpoint; otherwise, it

does a normal return.

o _terminate() is inserted before every ezit(). When executed, it signals to the voter that

the task has terminated.

4.4.3. Restartability

The virtual and uniform memory layout of UNIX in homogeneous machines provides
the basis for the restart of a checkpointed process on a remote node. However, some
user process information is usually kept in kernel for efficiency. A checkpoint without this
information may not be restartable even for the same kernel. One example is the file /O
information in the file descriptor table in the kernel. When a process terminates or aborts,

this information is cleared by the kernel. Restarting a process from a checkpoint without

53

reestablishing this information in another kernel makes a local file descriptor in a user
program meaningless.

To make a checkpoint remotely restartable, the user information kept in the kernel has
to be extracted during checkpointing and reestablished to the new kernel at restart [38,39].
A set of library routines was developed for file /O operations. The library keeps extra data
as a part of the checkpoint, such as file name, access mode, and file position, associated
with the opened files. During checkpointing, all file buffers are flushed for opened files,
and the file positions are updated and stored in the checkpoint. During a restart, those
files are reopened and repositioned according to the previously saved information in the
checkpoint. In this manner, the attributes of file I/O can be saved and restored easily across
the network. These file I/O routines together with _checkpoint(), _restart(), _terminate()
comprise the checkpoint library. Using compiler-assisted techniques, these file I/O routines
can be substituted transparently for their corresponding calls to the standard I/O library
in user programs [11].

Even with the complete information of a user process state, the checkpoint may still not
be restartable. In UNIX, some state attributes are kernel-dependent. They cannot be saved
and carried across kernels (i.e., nodes) in a sensible fashion {38,39]. Examples are process
group, signal received, the value of the real-time clock, and any children the process may
have spawned with fork(). Similar to CONDOR and Smith, our current implementation
assumes that for restartability a program may not use or depend on those kernel-dependent
attributes that have partial information internal to the operating system other than file

1/0.

54

4.4.4. Comparability

The kernel-dependent attributes also cause checkpoints to be incomparable, even if
these checkpoints are all valid. For example, the value of the real-time clock for different
kernels may be different, since these clocks are seldom synchronized. The valid checkpoints
from the same execution on different nodes may not be the same if the program has these
attributes as a part of its memory space.

For those kernel-dependent attributes, we enforce the following restrictions to make the
checkpoint comparable: we can eliminate the use of variables to store such kernel-specific
attributes, or carefully place them in local variables (on the stack) whose scope does not
include a checkpoint operation, or clear these variables before checkpointing. Fortunately,
most numeric applications seldom use kernel-dependent values except file [/0O, and thus

meet the restrictions we put on checkpoint restartability and comparability.

4.5. Voter and Recovery Management

In our DMR-F-1 implementation, the checkpoint comparison and recovery initiation
are managed by a voter process running on a Sun NFS server. Our current implementation
assumes that the voter is reliable. During a checkpoint operation, the communication
between the voter and the tasks being executed uses the Internet sockets. At each processing
node, there is a simple RPC-based (Remote Procedure Call) daemon process that schedules
or terminates a task in that processing node on behalf of the voter. Originally, a rsh call
from the voter was used for scheduling and killing a task on a remote node. However, we

found the performance overhead of a rsh call to be unacceptable. Therefore, the voter

55

was designed in such a way that it can schedule and terminate a remote task, compare
checkpoints, and initiate a restart across a network.

The voter is invoked with the name of the task program to be executed and its argu-
ments. The voter then schedules two replicated processes for this program and waits for
messages from the scheduled tasks. When a task process is initiated, the call to _restart()
sends a register.msg to the voter. Upon receiving it, the voter sends back a checkpoint
file name if recovery is needed. Otherwise, the voter replies with no checkpoint and the
task does a normal start. When a task makes a checkpoint with _checkpoint(), the voter
receives a checkpoint_msg. The voter either advances to the next checkpoint interval or does
a lookahead/validation operation, depending on whether the checkpoint comparison fails or
not. When a task is terminated, the voter receives an ezit_msg. If all replicated tasks have
exited, the voter terminates.

In a distributed environment, the processing speed of processing nodes may vary due
to differences in hardware and workload. This mismatch in processing speed causes the
replicated tasks to lag behind one another. Therefore, the task completion time is prolonged
since it is a function of the slowest of the replicated pair. In addition, the uncommitted
checkpoints produced by the faster task can accumulate in the file system. In a distributed
environment, a checkpoint may be a natural place for migrating processes and redistributing
workload. We added a simple mechanism in the voter algorithm to adjust the performance
of the replicated task executions. If the voter detects a growth by two in the checkpoint

count for a task, the two replicated tasks are switched to other nodes.

56

4.6. Experiments

4.6.1. Benchmark programs

Two criteria for selecting programs are adopted in our experiments: (1) representative-
ness across different checkpoint sizes and (2) ease for checkpoint placements. Checkpoint
size is very important since it determines the overheads such as checkpoint time, restart
time and comparison time. The structure of most scientific programs (an obvious main
loop) can give a nearly equal checkpoint spacing by a simple manual technique (see Sec-
tion 4.6.2). Four scientific and two SPEC benchmark programs with different checkpoint

sizes were selected for our experiments [41]. They are described as follows:

convlv: is the FFT algorithm for finding the convolution of 1024 signals with one
response. The length of each signal was 256 bytes. The length of the
response was 99 bytes. The size of the entire data set was over 1 megabyte
(M) but the size of the memory-resident data set was only a few kilobytes
(K).

ludemp: is an LU decomposition algorithm that decomposes 100 randomly gener-
ated matrices with size uniformly distributed from 50 to 60. Although it
has a larger data set (2.4 M) than that of rsimp, this program occupies less
main memory because memory is reused, i.e., a memory block is allocated
before a new matrix is read in and is deallocated after the result is written
out.

matrix300: is a SPEC bench program. It performs various matrix multiplications, in-
cluding transposes using Linpack routines SGEMV, SGEMM and SAXPY,
on matrices of order 300. It produces no output during computation and
has large resident data in memory (2.2 M).

nasaT: is a modified version of NASA Ames FORTRAN kernels from SPEC. It
consists of seven floating-point intensive modules. The original version uses
a large memory and generates heavy paging activities on a NFS server that
cause lengthier execution on diskless workstations than it would be on a
single machine (44 hours vs. 4 hours). We changed some array dimensions
so that paging would not delay our experiments (250 K data and about 2
hour execution). There is no data output during execution.

57

rkf: is the Runge-Kutta-Fehlberg method for solving the ordinary differential
equation ¥’ = z + y, y(0) = 2 with step size 0.25 and error tolerance
5 x 10~7. A table of function values was generated for z = 0 to 1.5 every
0.0001. This is a computation-intensive program with a small data set.

rsimp: is the revised Simplex method for solving the linear optimization problem
for the BRANDY set from the Argonne National Laboratory. One charac-
teristic of this program is its large memory-resident data set (about 1 M).
There is no file output during execution.

4.6.2. Checkpoint placement

The checkpoint validation test using checkpoint comparison in DMR-F-1 requires that
the checkpoints compared must be produced from the same computation. That is, the
checkpoints inserted have to have fixed locations in the program execution. The checkpoints
inserted by the Li and Fuchs’ CATCH may be changed for different execution runs of the
same computation, since their approach is based on polling the real-time clock. For more
details, see Chapter 5. For now we use a simple polling method based on a selected loop
count to insert checkpoints in user programs. Since this method does not depend on the
real-time clock, it can insert checkpoints that are fixed in the program execution. This
method is depicted in Figure 4.1. The overhead caused by maintaining and testing loop
count is likely to be negligible, since the loop we selected is often the significant loop in a
program. During execution, the number of loop iterations is usually small; thus the insertion
overhead is also small.

With the selected loop count method, -checkpoint() is inserted manually to maintain
roughly a constant checkpoint interval. Table 4.1 shows that this insertion scheme gives
an adjustable check};oint interval by choosing a proper threshold with a small variance.

Our observation on the optimal checkpoint placement in Section 3.3.11 suggested that the

optimal checkpoint interval is typically very large and insensitive to small displacement for

58

int threshold = certain_value;
int count = 0;
_restart();

while (expr) {
// major work here
if ((count = (count+1) % threshold) == 0)

_checkpoint();
}

_terminate();

Figure 4.1. Checkpoint Placement Using Selected Loop Count.

Table 4.1. Overhead Measurements.

Programs # ckp ckp-size ckp-time cmp-time ckp.interval exec_time
Name (per run) (data/stack/file) (std. dev.) (std. dev.) (std. dev.) (w/o. ckp)

(in bytes) (in sec) (in sec) (in sec) (in sec)

convlv 128 75950 0.2172 0.1608 13.917 1809.22
(66196/1554/8200) (0.3411) (8.6302¢-3) (0.90787) (1781.42)

ludemp 50 121510 0.2408 0.2030 20.626 1043.38
(71708/1550/48252) (3.428e-2) (1.8224e-2) (2.1092) (1031.34)

matrix300 150 2219446 5.8714 8.6157 239.777 37092.88
(2217652/1794/0) (0.6949) (0.2338) (26.729) (36206.30)

nasal 49 351614 0.7672 0.9660 131.46 6611.44
(349788/1826/0) (0.1347) (5.683e-2) (28.22) (6573.00)

rkf 88 51777 0.1477 0.1492 29.7202 2638.58
(46972/1734/3071) (2.563e-2) (7.2498e-3) (1.0840) (2625.58)

rsimp 59 995314 2.411 3.8286 42.8063 2713.04
(991676/3638/0) (0.3767) (0.21893) (8.6359) (2568.38)

59

DMR-F-1. Therefore, this small variance in checkpoint interval due to the selected loop

count insertion still gives the optimal or near optimal solution.

4.6.3. Error injection

In our experiments, errors are injected into checkpoints to study the recovery behavior
of the programs. An error is injected into a checkpoint by randomly flipping bits in the data
or stack segment of the checkpoint. This type of error is intended to model the changes in
variables due to possible errors in memory and in data manipulation (ALU). We avoid the
injection of run-time errors because it may result in an incomparable checkpoint.

The probability of a node failure during a checkpoint interval in our experiments, py, is
constant as we assumed in Chapter 3. The range of py is selected as [0, 0.1]. Each program

is run five times for each failure probability to obtain the average measures.

4.6.4. Program characteristics

The overhead measures we considered consist of the checkpoint size (ckp_size), check-
pointing time (ckp-time), and checkpoint comparison time (cmp-time). Other measures
of interest are the checkpoint interval (ckp-int) and the error-free execution time with
and without checkpointing. The restart time of a task is of about the same order as the
checkpointing time in magnitude and is not listed explicitly. Table 4.1 summarizes these
overhead measures for each program. The checkpoint size consists of three parts: data seg-
ment, stack segment and the file output during the checkpoint interval. Programs Rsimp
and matrix300 give examples of a large checkpoint. Most applications we examined have

checkpoints of size (64-350 K). The stack size is small in all six programs. This is not

60
unexpected for scientific applications in which the calling depth is rather limited. The file
output size can be large in some applications (e.g., convlv).

In Table 4.1, both ckp_time and cmp_time do not include the processing time for
the file output portion of the checkpoint. For ckp_time, the file output portion is already
written to disk during execution; thus, it is not necessary to rewrite this portion to the
checkpoint. Three variables in a checkpoint are enough to locate this file output portion
(file name, starting position and length for each output file). The small standard deviation
in the checkpoint interval indicates that the selected loop count insertion of _checkpoint()
has produced a nearly constant checkpoint placement. We have found that checkpoint
time, comparison time and restart time are highly correlated. Since file I/O operations
are the major part of checkpointing (write), checkpoint comparison and restart (read), the
overhead costs such as checkpoint time, comparison time and restart time can be expected

to be proportional to the size of the checkpoint files.

4.6.5. Error detection by checkpoint comparison

The effectiveness of checkpoint comparison is studied for the six selected programs. To
avoid the interference of run-time error injection with checkpoint comparability, a random
bit or word error is injected in the previous checkpoint to model a transient error occurrence
during its subsequent checkpoint interval. Then one task is started from this erroneous
checkpoint and another task from the error-free checkpoint. The checkpoints produced by
the two tasks after one checkpoint interval are compared. A mismatch indicates a detected
error. Table 4.2 summarizes the results for 101 injected random errors. The number of errors

detected is categorized by where the error is detected: the data, stack and the file output

61

Table 4.2. Error Detection Through Checkpoint Comparison.

bit-wise errors word-wise errors
Program # Errors Detected # # Errors Detected #
data stack file abort | Missed || data stack file abort | Missed
convly 68 3 30 0 0 71 0 30 0 0
ludecmp 43 0 58 0 0 37 3 59 2 0
matrix300 { 101 0 - 0 0 100 0 - 1 0
nasa7 87 0 - 0 14 87 0 - 0 14
rkf 78 1 22 0 0 76 3 22 0 0
rsimp 99 0 - 2 0 98 0 - 2 1

segments of the checkpoints. The abortion of the task due to an error in the checkpoint can
be treated as a special case of error detection by sending an abortion signal to the voter
explicitly.

The errors detected by checkpoint comparison account for the majority of injected
errors that occurred (about 98%) for all programs except nasa7. If the file output during the
checkpoint interval is not included in the checkpoint structure, 22 to 59% of the errors would
not be detected (rkf, convlv and ludecmp). Some errors were missed in our experiments.
In this case, we have a valid file output during execution and a valid checkpoint at the
end; the missed errors are actually masked off and cause no problems with respect to
correct executions. This case occurs when an error is in a dead variable and this variable
is reinitialized later. A close look at the checkpoint placement for nasa7 reveals that a
new array of about 11% of the total checkpoint size is computed during the checkpoint
interval. The 14 missed errors were probably inserted into the new array space and were
overwritten during the computation. In sum, the checkpoint structure provided an effective

error detection tool for the programs we studied.

1.5 62

— predicted: no cost + matrix300
14— «++ predicted: cost * nasa7
O conviv o rkf
1.3~ A ludemp x rsimp
Relative
Exec. Time
R, 1.2 FLY

0 0.05 0.1 0.15
Probability of Failure, ps

Figure 4.2. Relative Execution Time During the Day.

4.6.6. Performance results

Each program was run five times for each p; in order to obtain the average measures.
The execution time in our experiments is actually the program response time. It includes
the system, user and blocking times. The analytical predictions for the relative execution
time, number of processors, and number of checkpoints are also included in Figures 4.2,
4.3 and 4.4 to compare against our experimental results (Chapter 3). The voter processing
overhead is the time spent in the voter program minus the checkpoint comparison time and
divided by the checkpoint interval.

The data were collected for two workload conditions: daytime (10 AM to 6 PM) and
nighttime (10 PM to 8 AM). During the day, the workload among our workstations was
uneven and the NFS server was busy. During the night, our workstations and the NFS

server were lightly loaded.

1.5
— predicted: no cost + matrix300
14— -+« predicted: cost * pasa7
O conviv o rd
13- A ludemp x relmp
Relative
Exec. Time
Re
1.2} X
18

0 * 0.05 0.1 0.15
Probability of Failure, ps

Figure 4.3. Relative Execution Time During the Night.

60— O conviv x rsimp
A ludemp o ki
* nasa’

Exec_time 40—

Increase A
(day vs. night) 8 o 2

(%) A o

8
20—
* x g x
]

[»] x . * E
0]] L
0 0.05 0.1

Probability of Failure, py

Figure 4.4. Difference in Execution Time.

63

64

In Figures 4.2 and 4.3, the relative execution time is plotted for each of the six programs
under two different workload conditions. The relative execution time for the programs with
a moderate checkpoint size (ludemp, convlv, nasa7 and rkf) is close to the analytical
zero-overhead prediction (solid curve), since the overheads for those program are very small
compared to their checkpoint intervals. The relative execution time for the program with
large checkpoints (matrix300 and rsimp) fits well with the analytical prediction under a
centralized file server (the dotted curve, assuming an overhead level of rsimp). This in-
crease in execution time for large checkpoints can be explained by the fact that matrix300
and rsimp are likely to be blocked due to its large file I/O operations during checkpointing
and comparison. In fact, the limited speed of the NFS file handling and our use of the file
server for managing checkpoints centrally resulted in a performance bottleneck. The paging
activities from the replicated processes also contribute to the increase in execution time.
The relative execution time increases significantly for high error rates due to the heavy file
server activities during checkpointing and comparison of checkpoints. This suggests that a
reduction in checkpoint size, an increase in file system speed, or other noncentralized server
implementations may improve the relative execution over that of our current implementa-
tion. In addition, a reduction in comparison time may significantly reduce the execution
time of DMR-F-1 (Section 3.3.9).

The relative execution time fluctuates more for the daytime condition than that for
the night. The execution time is longer in the day runs than in the night (Figure 4.4). This
reflects the fact that the workload is heavier and more likely to change during the day than

during the night.

35 65

— predicted: no cost + matrix300
+« predicted: cost * nasa7
3l O conviv o i
A ludemp x rsimp
Number of
Processors
N
25
g | I
0 0.05 0.1 0.15

Probability of Failure, p
Figure 4.5. Number of Processors During the Day.

For the ps we considered, the number of processors used, Np, is less than the three
that TMR requires, although DMR-F-1 uses two more processors momentarily during
lookahead/validation operations. As anticipated in Section 3.3.8, N, is quite insensitive
to the workload distribution conditions and checkpoint size (Figures 4.5 and 4.6).

The number of checkpoints, N., is highly sensitive to the workload and checkpoint
size, as a result of the checkpoint accumulation in the file system due to uneven processor
speed, especially for the programs with large checkpoint sizes (Figures 4.7 and 4.8). Without
switching the task executions on the nodes that have different processing speed, N, averaged
6.95 in five runs for convlv. In one of these runs, N, reached 18.45. With the switch
mechanism mentioned in the previous section, N, is limited to about 2 or 3. The simple
switch rule we used in the voter limits N, by redistributing the workload.

In Figure 4.9, the average processing overhead for the voter is plotted. The overhead is

small compared to the checkpoint interval, and increases as the failure probability increases.

35

— predicted: no cost + matrix300
+« predicted: cost * nasa7
3 g conviv o rif
A ludemp x rsimp
Number of
Processors
N
25—
W ! |
0 0.05 0.1 0.15
Probability of Failure, pr
Figure 4.6. Number of Processors During the Night.
6
— predicted: no cost + matrix300
5 -+ - predicted: cost * nasal
Q conviv o rk
41 A udemp x rsimp
Number of
Checkpoints
Nc T < x x
3 *

0 0.05 0.1 0.15
Probability of Failure, py

Figure 4.7. Number of Checkpoints During the Day.

67

6
~ predicted: no cost + matrix300
5 +++ predicted: cost * nase?
a conviv o rid
4 A lkdemp x rsimp
Number of
Checkpoints
Ne
3
+
¥
T ————
...... e
,]
0 0.05 0.1 0.15
Probability of Failure, ps
Figure 4.8. Number of Checkpoints During the Night.
300
O conviy * nasa7
a4 ludemp o rkf
200 |— + matrix300 x rsimp
Voter x
Overhead + x
(msec.) *
* ¥
100}) .
* *
a 3 8
g]
! | |
0 0.05 0.1 0.15

Probability of Fallure, p

Figure 4.9. Voter Processing Overhead.

4

68

Large checkpoints also increase this overhead due to the waiting time for file /O during

checkpoint comparison.

4.7. Summary

In this chapter, we have described a distributed implementation of DMR-F-1. There
is no universal way in UNIX to obtain a restartable and comparable checkpoint structure
because of either the user information kept in the kernel for efficiency or the machine-
dependent information. Our DMR-F-1 implementation was evaluated with six benchmark

programs. The experiments have shown:

¢ Checkpoint comparison is effective means of error detection and checkpoint validation
in our experiments. The file output during a computation session should be included

as a part of the checkpoint for this computation session.

o The overheads, such as checkpoint time, restart time and comparison time, are highly

correlated to the checkpoint file size.

e The experimental results agree with the analytical predictions given in Section 3.3.2.
For moderate checkpoint sizes (64-350 K), the experimental results are close to that
of the deal zero-overhead case; the average execution time is reasonably close to the
error-free execution time. For large checkpoint sizes, the experimental results are close

to what the analytical model predicts.

¢ For moderate checkpoint sizes, the checkpoint and comparison times are small, com-

pared to the checkpoint interval. For large checkpoint sizes, these overheads have

69

an important impact on performance due to the centralized file server used in our

implementation.

¢ The workload also has an important impact on the number of checkpoints and the
execution time. The former resulted from the uneven distribution of the workload

and the latter from both workload distribution and workload level.

e The average number of processors used in our forward recovery scheme is less than

TMR.

70

CHAPTER 5.

COMPILER-ASSISTED STATIC CHECKPOINT INSERTION

5.1. Introduction

Error recovery using checkpointing and rollback is a common strategy in fault-tolerant
systems because it can handle unanticipated errors [7]. Considerable theoretical research
has been devoted to determining optimal checkpoint intervals [1-6]. A practical problem
in implementing checkpointing and rollback recovery is the maintenance of the desirable
checkpoint interval. Checkpoints may be static in the sense that they are at fixed locations
in a program or they may be dynamic such that their locations in a program may vary, as
a function of time or system behavior. Although dynamic checkpoints can be implemented
with existing hardware interrupt support (system clock), they are not reproducible. Static
checkpoints must rely on either the insertion of checkpoints before program execution or
the monitoring of program behavior during execution. Reproducible checkpoint intervals,
as obtained with static checkpoints, can be used for debugging [42-45] or error detection
by means of checkpoint comparison with replicated processes [46,47].

Cha.ndy and Ramamoorthy have developed a scheme for application-level checkpoint
insertion, given a computation sequence, execution time, checkpoint time and restart time
[48]. Their scheme is a graph-theoretic method to determine the optimal locations for

checkpoint placement. Toueg and Balaoglu, and Upadhyaya and Saluja followed a similar

71l

approach [2,49,50]. Li and Fuchs have studied techniques for checkpoint placement at the
compiler level (CATCH) {11]. Checkpoint subroutines are transparently inserted in the
user program by the compiler. Li’s CATCH is a dynamic checkpoint insertion scheme.
To maintain the desirable checkpoint interval, the real-time clock is polled to decide if a
checkpointing call is due. This polling code is called a potential checkpoint in their paper.
To reduce excessive polling at these potential checkpoints, a leverage count is inserted in
loop bodies. The potential checkpoint is activated once the leverage count is greater than a
threshold value. Polling the real-time clock can result in different checkpoint locations for
different execution runs of the same computation due to the clock granularity (one second
in Unix) and the workload on the system.

This chapter presents a compiler-assisted approach for static checkpoint insertion.
Instead of fixing the checkpoint locations before program execution, a compiler-enhanced
polling mechanism is utilized to maintain both the desired checkpoint intervals and re-
producible checkpoint locations. Instruction-based time measures are used to track the
computation progress and thus checkpoint intervals. These measures produce static check-
points by eliminating the real-time clock. This approach has been implemented in a GNU
CC compiler for Sun 3 and Sun 4 (SPARC) processors [51]. Experiments demonstrate
that our approach provides for scalable checkpoint intervals and reproducible checkpoint
placements with a performance overhead that is less than that of the previously presented
compiler-assisted dynamic scheme (CATCH).

Section 5.2 describes the problem of compiler-assisted checkpoint insertion. Section 5.3
presents the concept of instruction-based time measure and four static insertion schemes.

Section 5.4 discusses our implementation and experimental results.

72

5.2. Checkpoint Insertion Problem

There are two basic problems in inserting checkpoints in a user program: how to design
a set of operations to accomplish checkpointing and recovery, and how to maintain a desired
checkpoint interval. Optimal checkpoint intervals may be the desired checkpoint spacing

[1-6).

5.2.1. Checkpoint operations

Compiler-assisted checkpoint insertion requires a set of checkpoint operations to ac-
commodate checkpointing, to restart from a checkpoint and to perform checkpoint cleanup
at the end of the computation. In Chapter 4, we have discussed a checkpoint library that
provides such a set of checkpoint operations for UNIX. These operations (subroutines) can
be divided into two categories.

The operations that perform recovery and checkpointing are the basic operations, since
they are required no matter what the operating system may be. The compiler actually
inserts the basic operations into the user program. In the checkpoint library developed in
Chapter 4, _restart() provides a recovery entry point in the user program. It is usually
inserted in the beginning of the user program. If a recovery from a checkpoint is needed,
it restores the system state and resumes execution from this state. The _checkpoint() call
creates a checkpoint when executed; _terminate() clears the checkpoints at the end of the
computation as the last operation in the user program. In UNIX, _restart() may be inserted
as the first line in the main() routine, while _terminate() is inserted before every ezit() call.

A _checkpoint() is inserted wherever a checkpoint is desired in the user program.

73

The interface operations are operating system specific, and they often assist the basic
operations to accomplish checkpointing and recovery. The interface operations are usually
substituted for some routines in the user program by the compiler. For example, _fopen()
in the file I/O interface routines described in Chapter 4 is used to separate the process state
from the operating system kernel to obtain a remotely startable checkpoint. It takes the
same arguments as fopen(), stores these arguments in the user space and then calls the true
fopen(). During recovery, these retained arguments can be used to reopen the file without
asking the kernel to roll back. During compilation, the compiler simply substitutes -fopen()
for each occurrence of fopen() in the user programs.

In the following, we will not consider the problem of checkpoint operations further,

since we already studied this problem in detail in Chapter 4.

5.2.2. Checkpoint interval maintenance

Maintaining desirable checkpoint intervals by a compiler requires a time measure for
describing checkpoint intervals and a mechanism to insert a checkpoint operation in the user
program. Using the elapsed time of a computation as the time measure leads to dynamic
checkpoints (CATCH). This is because the elapsed time for a computation often varies from
execution to execution due to resource sharing with other computations. Static checkpoint
insertion needs a time measure that is independent of the real-time clock and that describes
checkpoint interval in terms of computation progress. In Section 5.3.1, we will introduce
instruction-based measures that satisfy both requirements.

Ideally, the compiler should insert checkpoint operations into the user program prior

to the program execution. There are three difficulties in doing so. First, the exhaustive

74

search for all possible execution paths in a program to determine checkpoint locations is
computationally intractable in general. Second, to calculate the execution length along a
particular path may be impossible due to the lack of information at compilation time (e.g.,
data sensitive loop bounds) [52]. Third, each path may require a different set of checkpoint
locations. It is possible to have many insertions on a common path, but this leads to
redundant insertions.

As a result, the checkpoint interval is maintained by either an interrupt driven mech-
anism or a polling mechanism. Figure 5.1 presents an interrupt driven scheme for UNIX-
based systems. The system interrupt initiates checkpointing requests, based on the system’s
real-time clock. Upon receiving a time-out interrupt, a checkpointing operation is executed
as a part of the interrupt service. Using this interrupt driven mechanism, the compiler-
assisted insertion is trivial. The compiler needs only to insert restart() at the beginning of
the main() and cleanup() before every ezit(). No explicit insertion of checkpoint() is nec-
essary. This interrupt driven insertion can maintain desirable checkpoint intervals at a low
cost, since the hardware interrupts can initiate checkpointing requests efficiently. However,
the interrupt mechanism based on the real-time clock generally cannot guarantee a specific
checkpoint location in a program, and thus it is a dynamic insertion.

The polling mechanism, when activated, tests whether a checkpoint is needed given the
desired checkpoint interval. If a checkpoint is needed, the checkpointing operation (routine)
is executed. This is called a polling point in this thesis. Using the polling mechanism, the
compiler has to deal with two problems: the polling point placement and the management
of the execution time since the last checkpoint (Figure 5.2). For a polling mechanism to

be successful, the overhead resulting from the time measure maintenance and checkpoint

#include <signal.h>

int checkpoint()

/* make a checkpoint here */

/* schedule the next checkpoint operation */
signal (SIGALRM, checkpoint);
alarm(the_desired_checkpoint_interval);

/% Check if there is a checkpoint to restart. If yes,

/* read in checkpoint and restore system state. Othervise,

/* schedule the next checkpoint operation
signal (SIGALRM, checkpoint);
alarm(the_desired_checkpoint_interval);

/* recovery emtry point & start checkpoint
/* interrupt. No explicit checkpoint() is
/* needed.

/% clean up checkpoints

{

}

int restart()

{
/* do nothing.

}

main()

{
restart();
cleanup();
exit(0);

}

*/
*/
*/

*/

»/
*/
*/

»/

Figure 5.1. Interrupt Driven Checkpoint Insertion in UNIX.

75

76

polling should be reasonably small. In CATCH, the real-time clock is used for the polling
measure and loop iteration is used for the polling location. Using the real-time clock as the
polling measure leads to a dynamic insertion, since the workload in the environment and
the blocked operations in user programs can affect the polling decision in different execution

runs.

5.3. Static Checkpoint Insertion

5.3.1. Instruction-based time measure

The essence of checkpoint and rollback recovery is to save the previously finished
computation and to avoid restart from the beginning every time under the presence of
faults. The elapsed time for a computation is not suitable to describe the progress of the
computation precisely, since the computation time usually changes with the system load
because of the resource sharing between processes in the system. Therefore, maintaining
checkpoint intervals using the elapsed time of the computation leads to dynamic checkpoints,
such as in CATCH. For static checkpoint insertion, the computation progress measure
should be independent of the real-time clock and depend only on the computation itself.
The instruction-based time measure introduced below is such a measure.

The sequence of instructions that has been executed by a computation is called a trace
in this thesis. Let T be a trace of a program execution such that T={I,l,...,[j,...}
where I; is the j-th instruction executed in this trace. A subsequence s of a trace T is
called a subtrace of trace T’ (denoted as s C T'). A measure m on a trace T is said to be a

instruction-based time measure if m(s;) < m(sz), given 8; C 389, and 8;,3, C T.

#include <signal.h>
/% on-11ly time measure accumulation %/
void update_time_measure(measure)

int measure;

{

}

/® measure is calculated by the compiler and is a constant */
measure_since_last_checkpoint += measure;

void polling_point()

{

}

i? (measure_since_last_checkpoint >= measure_threshold) {
checkpoint(); /¢ explicit checkpoint() call is needed */
}

void checkpoint()

{
}

/* make a checkpoint here =/

void restart()

{

}

main()

{

/# Check if there is a checkpoint to restart. If yes, *»/
/* read in checkpoint and restore system state. Othervise, =/
/* do nothing. =/
restart(); /s recovery entry point & start checkpoint ./

/* interrupt. =/

update_time_measure(measure);

polling_point(); /# polling point inserted here. »/
cleanup(); /* clean up checkpoints »/
exit(0);

Figure 5.2. Polling-based Checkpoint Insertion in UNIX.

77

78

There are two properties associated with the definition of the instruction-based mea-
sure. First, it describes the progress of computation in terms of instruction traces. That is,
an instruction-based time measure is a monotonously nondecreasing measure with respect
to the instruction sequence in a computation trace, given a common starting instruction. If
both subtraces start from the same instruction, a large value of m implies a longer computa-
tion than does a small m. Second, there is a time elapse for executing a subtrace s C T such
that m(s) = m. This time elapse is called the execution time of traces with a measure of m
and is denoted as t(m(s)) or simply ¢(m). In this chapter, the value of m(s) is sometimes
called the trace size of s for short.

However, the execution time of a trace size, m, may not be the same even when the
execution is run on the same machine. For example, subtrace s; = {I;, [i+1,...,fi+x} and
subtrace s3 = {I;, [i+1,- - -, Lit+k, li+k+1} may have the same measure by the definition above
even with 8; C s;. Generally, sy and s; will result in a different execution time. We can
model the execution time of a trace size with t(m) = t, + T,, where t,, is a constant for
the expected execution time and T, is a random variable for the variation in execution
time. The constant ¢, can be used as the time measure for computation progress, while the
random T, can be viewed as the accuracy of the instruction-based measure with respect to
elapsed time.

There are many possible instruction-based time measures. We will now describe four
of them. They generate a time measure for checkpoint interval maintenance with potentially

different accuracies.

79

o Instruction cycle count: The instruction cycle count (ICC) is defined as the to-
tal number of cycles for individual instructions in a trace. It is an instruction-
based time measure. In fact, for any subtraces of sy = {I;, [i}1,- .., Ji+x} and s

= {LiyLig1y- - -y ks Tivkt1y - - oy Tigktj }» we have

J
ICC(s2) = ICC(s1)+ Z cycles(Iipk4n) > ICC(81).

n=1

The ICC measure can generate an accurate execution time. As a matter of fact, the
deviation in execution time for ICC will be within the number of cycles for the longest
instruction in a trace. If ICC is used for the checkpoint interval measurement, the
resulting interval can be accurate within one instruction if a checkpoint can be inserted
at any instruction boundary. However, this measure is architecture dependent as an

instruction may have different execution cycles in different architecture.

o Instruction count: The instruction count (IC) is the number of instructions in a trace.
Clearly the instruction count is an instruction-based time measure. Given an IC value,
the trace execution time varies with the set of instructions in a trace. If the trace
is large enough to have a representative mix of different instructions, the variance
in execution time may be small. For a RISC machine, IC may be a very accurate
time measure because of the uniform instruction cycle count (e.g., one instruction
per cycle). Compared to the typical checkpoint interval, a few extra instructions in
a trace will not affect the trace execution time in a noticeable way. In this case, IC
can serve as a very good time measure for checkpoint intervals if a checkpoint can be

inserted at the instruction boundary.

80

o Loop/function count: The loop/function count (LFC) is the number of loop iterations
and functions in a trace. It can be shown that LFC is also an instruction-based time
measure. The LFC measure changes only at a loop iteration or a function entry/exit
point, and it does not distinguish between the individual instructions within a loop
iteration. The execution time, given an LFC value, is potentially less accurate than
that for ICC or IC. Different programs may have different loop sizes and thus different
execution times. As will be shown, the number of instructions within one loop iteration
is typically small. Compared to the checkpoint interval, the variation in the trace
execution time caused by ignoring the instructions in a loop iteration is negligible.
For LFC, a checkpoint may be inserted at a loop iteration boundary, a function entry
point or exit point. Both IC and LFC are architecture independent since they do not

depend on the execution cycles of particular instructions.

e Selected loop/function count: The selected loop/function count (SLFC) is the number
of iterations for some loops selected. The selection of a particular SLFC affects the
accuracy of the instruction-based measure with respect to execution time. If the
selected loops spread over the whole execution trace evenly, the SLFC may generate a
stable execution time (small 7,). Otherwise, T, may be very large. The major loops
in scientific programs may be good candidates for SLFC, since they are likely to be

executed throughout the computation [47].

Ideally, ICC provides the most accurate time measure for a checkpoint interval. How-
ever, it may require the knowledge of the instruction set of a particular architecture and

may consume more time in obtaining the ICC values. Moreover, the large size of an optimal

81

checkpoint interval implies that the accuracy produced by the instruction cycle count is un-
necessary since it results in very little changes in the realized checkpoint interval. Although
LFC and SLFC are potentially less accurate than ICC and IC with respect to the trace
execution time, they can be calculated with low cost. The accuracy may still be acceptable
if the checkpoint interval contains many loop iterations so that a stable mix of instructions

is executed in each checkpoint interval.

5.3.2. Checkpoint insertion schemes

We use a polling mechanism with instruction-based time measures to accomplish the
static checkpoint insertion. The compiler calculates the instruction-based time measure
along an execution path. These statically calculated values for the time measure are accu-
mulated in a counter during the program execution on the fly. The accumulated counter
gives the time measure since the last checkpoint. Based on the location of the time measure
accumulation and polling points, the four schemes we have implemented are described in

Table 5.1.

5.3.3. SLFC determination

In order to implement the SL-SL scheme, a method for selecting loops for SLFC was
developed. Our approach is profile-based. Probe routines are placed into a program by
the compiler. These probes collect the trace information during program profiling. The
information collected is used to aid the loop selection for the SLFC measure. Once SLFC is
determined, the compiler places static checkpoints in the program according to the SLFC

measure.

82

Table 5.1. Four Static Checkpoint Insertion Schemes.

B-B: This scheme measures the instruction count (IC). The code for both the
time measure accumulation and polling is inserted in each basic block in
the program. A basic block is a sequence of consecutive instructions in
which the program control enters at the top and leaves from the bottom
with no branches or halts inside. Basic blocks in this thesis are described
in terms of RTL instructions.

B-L: In this scheme, the time measure is the instruction count. The time mea-
sure accumulation code is inserted in each basic block, while that for polling
is placed in each loop.

L-L: Is scheme uses the loop/function count as the time measure. The code
for time measure accumulation and polling is inserted in each loop and
function.

SL-SL: In this scheme, the time measure is the selected loop/function count
(SLFC). The code for the time measure accumulation and polling is in-
serted only in the selected loops/functions.

There are two problems involved in selecting an SLFC measure: (1) to identify a set of
loops that tend to appear throughout the execution trace, and (2) to determine a threshold
value for each selected loop. This threshold value is important as the on-the-fly accumulated
SLFC value is compared against this threshold value at each polling point in order to make
a checkpoint decision. During profiling execution, each probe records the loop/function ID
and calculates the frequency of occurrences of this loop in a checkpoint interval. If a set of
loops can be found such that every checkpoint interval contains at least one loop from this
loop set, this loop set may be a candidate for SLFC. The frequency associated with each
loop for a checkpoint interval can be used as the threshold value for the loop.

Given a program and its profile data, the SLFC selection can be formulated as a cover
set problem in a weighted bipartite graph. The checkpoint intervals and loop/function IDs
are two sets of vertices. If a loop appears in a checkpoint interval, there is an edge between

the checkpoint interval vertex and the loop vertex. The frequency of the loop occurrences

83

in the checkpoint interval is the weight for this edge. The cover range of a loop vertex is
the set of all of the checkpoint interval vertices that are connected to the loop vertex. An
SLFC cover set is a set of the loops such that their cover range contains all of the checkpoint
interval vertices.

There are four criteria for selecting a good SLFC cover set that gives a stable checkpoint

interval with a small polling overhead:

e Minimal overlapping: The overlapping of cover ranges for two selected loops may
result in unstable checkpoint intervals due to the interference of their possibly different

threshold values.

e Minimal cover set: The size of an SLFC cover set is directly related to the code size
overhead as the code inserted is proportional to the size of the cover set. Given that
code size is not a problem for most applications, this criterion may be discounted

during the selection of an SLFC cover set.

e Minimal average frequency: The average frequency for a loop in the SLFC cover set
is used as the threshold value, for this loop, in our current implementation. A higher
frequency leads to more frequent execution of the inserted checkpoint polling code for

this loop and thus a higher run-time overhead.

e Uniform Frequency: This calls for a small variance in the frequencies for a loop in
the SLFC cover set. As checkpointing is delayed for small frequency edges and is too
frequent for large frequency edges, large variance in frequency weights results in a

more unstable checkpoint interval.

84

Although finding a minimal cover set is NP-complete, finding a cover set with minimal
and uniform frequency can be mapped into the problem of finding a minimal total weight
cover set. In the current implementation, a heuristic algorithm is used to combine all of these
criteria for SLFC selection (Figure 5.3). This heuristic is a greedy algorithm with different
priorities for cover range, frequency average, and frequency variance. It selects loop vertices
with large cover ranges and small frequencies under constraints of small relative frequency

variance and little overlap for the selected loops.

5.4. Implementation and Experimental Evaluation

5.4.1. Base compiler and insertion filter

The base compiler that was selected to implement our static checkpoint insertion is
the GNU CC compiler version 1.40 for Sun 3 and Sun SPARC. We used an implementation
similar to CATCH. A register transfer language (RTL) level filter is placed between parsing
and object code generation (Figure 5.4). The advantage of a checkpoint insertion filter is
that the insertion is an independent module that is added to the base compiler and does not
change the base compiler if the checkpoint insertion is not required. The choice of a register

transfer level insertion is aimed at achieving an architecture independent implementation.

5.4.2. Benchmark programs

Six benchmark programs were used to examine our static insertion technique. Our

objective was to study the effectiveness of the checkpoint interval maintenance in terms of

‘select
(1] the number of checkpoint intervals that a loop
covers as the primary key (in decreasing order);
[2] the average frequency of a loop as the secondary
Xey (in increasing order); and
[3] the relative standard deviation in frequency
for a loop (std. dev./average) as the third
ey (in increasing order).
sort the vertices according to the above keys.

cover_set = NULL;

/* set for no overlapping cover range %/
overlapping_size = 0;

while (size(cover_set) < desired_coverage) do

{
for each vertex v in the sorted loop_set do
{
/% select a v vith uniform frequency »/
it (freq_variance(v) > threshold) continue;
it (size(cover_range(v) and cover_set) <= overlapping_size)
add v to cover_set;
it (size(cover_set) >= desired_coverage) break;
}
/* relax the overlapping constraint a little */
overlapping_size++;
it (no changes in cover_set) break;
}

Figure 5.3. Heuristic SLFC Selection Algorithm.

85

86

Source Pre- Source Lex. Token RTL
al or 1 Analyser 3 Parse
Progrem Program

Code RTL
1 generator pff—eme—= | Optimizer
Assembly
code
Excutable code

34 Assembler

Figure 5.4. Base Compiler and Its Checkpoint Insertion Filter.

1. The average checkpoint interval and its variance (¢, and T, in Section 5.3.1). This
gives the effectiveness of an instruction-based time measure for checkpoint interval
maintenance. A small variance implies that the instruction-based measure is accurate

with respect to execution time.

2. Scalability of the checkpoint interval with respect to the instruction-based time mea-
sure threshold, for checkpoint polling tests. Linearity in the checkpoint interval with

respect to the polling threshold allows for accurate prediction of the desired threshold.

3. The overhead for checkpoint interval maintenance due to the compiler-assisted tech-
nique. This overhead results from the time measure accumulation and checkpoint
decision making at polling points. The time measure accumulation overhead depends
upon the frequency of updating the time measure counter, and the polling overhead

depends upon the frequency of executing the polling points. If the time measure

87

counter is updated sparsely or very few polling points are inserted, the checkpoint

interval may become inaccurate. On the other hand, a high frequency of checkpoint

polling and time measure accumulation leads to a high run-time overhead. Compila-

tion time is ignored in this thesis since it is incurred only once and it is usually very

small. Other overhead factors such as checkpoint time, that are not related to check-

point insertions, are not considered in this chapter. In fact, checkpoint time is more

related to the checkpoint size than to the checkpoint interval maintenance [11,47].

4. Code size. This reflects the space overhead due to code insertions.

Of the six benchmark programs examined, four are scientific applications in which

loops are large and the calling depth is small. The other two programs contains a number

of small loops and a large calling depth. The six benchmark programs are as follows:

convlv:

espresso:

li:

ludcemp:

rkf:

rsimp:

is an FFT algorithm that finds the convolution of 1024 signals with one
response [11,47].

is a SPEC integer program for Boolean function minimization, developed
at the University of California at Berkeley [41]. It contains short loops and
recursive functions.

is a Lisp interpreter solving the 8-queen problem. It is a SPEC integer
program developed by Sun Microsystems [41].

is an LU decomposition algorithm that decomposes 100 randomly gener-
ated matrices of uniformly distributed size between 50 and 60 [11,47].

uses the Runge-Kutta-Fehlberg method for solving the ordinary differential
equation y’ = z+y, y(0) = 2 with step size 0.25 and error tolerance 5x 1077,
This is a floating-point intensive program with large loop bodies [11,47].

is the revised Simplex method, for solving the linear optimization problem
for the BRANDY set, from the Argonne National Laboratory [11,47].

88

Table 5.2. Benchmark Characteristics.

Static Basic Block Dynamic Basic Block

Program | Total number Avg. size | Total number Avg. size

(ins./block) (108) (ins./block)
convlv 128 5.9 13.5 9.9
rkf 33 4.7 43 7.6
ludcmp 96 3.5 20.9 5.0
rsimp 185 3.1 73.0 46
espresso 9018 3.1 108.6 2.9
li 3077 2.4 149.3 2.3

Table 5.2 describes the structure of the six programs in terms of the basic blocks. The
block size is the number of the RTL instructions in a basic block. The static program infor-
mation is collected from the program during compilation, while the dynamic information
is collected from profiling during execution. The fact that convlv and rkf have large loop
bodies is reflected in their large dynamic basic block sizes. Similarly, espresso and li have
small loop bodies (and thus small dynamic basic blocks). The basic block size has an im-
portant impact on the performance overhead required for checkpoint interval maintenance.
Smaller basic blocks result in a higher maintenance cost in B-B and B-L as the ratio of the

inserted code to the basic block size is high.

5.4.3. Checkpoint intervals

Table 5.3 summarizes the checkpoint intervals generated on a Sun 3/50 diskless work-
station. The threshold value, L, is the number of RTL instructions that are executed before
the next checkpoint for B-B‘a.nd B-L, and the number of loop iterations for L-L and SL-SL.

For all six programs, the checkpoint interval generated is linearly scalable. The L value
is program specific due to the different block structures in different programs. For the same

L, the floating-point programs (e.g., rfk.) generate longer checkpoint intervals than do

Table 5.3. Checkpoint Interval Maintenance (Sun 3).
Interval Average Standard Deviation

Program | Scheme L (sec) (sec)
L[5L 10L L 5L 10L
B-B 500,000 15| 7.7 15.4j 0.0209 [0.0355 | 0.0528
convlv B-L 500,000 [1.4 | 7.2} 14.7 | 0.0347 | 0.0768 | 0.1040
L-L 50,000 | 7.8 | 23.8| 47.7 | 0.0654 | 0.1168 | 0.1535
SL-SL 50,000 | 4.8 | 23.7 | 47.7 1 0.0960 | 0.2287 | 0.3427
B-B 500,000 [5.1 |25.3| 50.7] 0.5713 | 2.4046 | 4.3954
rkf B-L 500,000 | 5.0 | 24.7 | 49.7 || 0.5684 | 2.3988 | 4.3822
L-L 50,000 | 8.2 | 40.7 | 81.4} 1.0644 | 3.9855 | 6.9957
SL-SL 50,000 | 8.1]396| 768 | 0.6678 | 1.4292 | 4.6366
B-B 500,000 [1.4 72| 144 0.1734 | 0.1552 | 0.1976
ludemp B-L 500,000 [1.3} 6.7 13.5| 0.1642 | 0.1556 | 0.2017
L-L 50,000 | 2.0 | 10.1 | 20.1 | 0.1146 | 0.1287 | 0.1969
SL-SL 50,000 19| 95| 18.7 | 0.1825 | 0.4040 | 0.3159
B-B 500,000 [1.3} 6.3 | 12.6 [0.0228 { 0.0820 | 0.1601
rsimp B-L 500,000 [1.2} 5.9 | 12.1 | 0.0204 | 0.0651 | 0.2833
L-L 500,000 | 15.3 | 76.7 | 154.4 || 0.2102 | 1.0541 | 1.8698
SL-SL | 500,000 | 15.2 | 76.0 | 151.8 {| 0.3683 | 0.7133 | 0.2399
B-B 500,000 f 0.8 | 4.2 8.3 {| 0.0043 | 0.0474 | 0.1492
espresso B-L 500,000 [0.8 4.0 7.9] 0.0218 | 0.2284 | 0.6066
L-L 500,000 | 4.9 | 24.0| 48.1 | 1.6159 | 6.0640 | 10.7311
SL-SL | 500,000 | 3.9 | 17.8| 37.3 || 3.5543 | 8.5735 | 13.9470
B-B 500,000 | 1.2 | 59| 11.8| 0.0002 0.0007 | 0.0007
i B-L 500,000 | 0.9 4.6 9.5 | 0.0031 | 0.0005 ; 0.5168
L-L 500,000 | 7.3 |37.0| 72.5| 0.0187 | 0.3404 | 0.0344
SL-SL | 500,000 | 6.1 {29.1 583 | 0.3896 | 0.1070 | 0.1564

89

90

the integer benchmarks (espresso and li). The linear scalability of the checkpoint interval
makes it possible to produce a consistent checkpoint interval across different programs. For
example, the first few polling points can compare the targeted checkpoint interval with
those generated under the initial L. If they disagree, L can be adjusted according to this
linearly scalable relationship to obtain the desired checkpoint interval.

The standard deviation in the checkpoint interval reflects the accuracy of the interval as
maintained by the instruction-based measure. Table 5.3 compares the standard deviations
of all the four schemes. Generally, the standard deviations are less than one third of their
corresponding checkpoint intervals. Statistically, the actual checkpoint interval would most
likely be within two or three standard deviations of the average interval. As mentioned
previously, small changes in checkpoint frequency from the optimal frequency have little
effect on the performance of the optimal solution [1-6]. Therefore, this small variation
in the generated checkpoint interval will still ensure a near optimal interval. Using the
loop iteration count in L-L and SL-SL does not noticeably decrease the checkpoint interval
accuracy. This may result from the large threshold L value, since the large number of
loop iterations between checkpoints likely leads to a stable mixture of instructions for each
checkpoint interval. As a comparison, Table 5.4 shows a program-independent checkpoint
interval as maintained by the dynamic interrupt scheme described in Section 5.2.

The results for L-L and SL-SL on a Sun 4 SPARC IPC are given in Table 5.5. The
checkpoint interval for the programs with many floating-point operations and large loop
bodies (rkf and convlv) is significantly larger than for those with smaller loop bodies.
The integer programs, especially espresso and li, generated comparable intervals. This

suggests that L is less program specific for integer programs in a RISC machine than in a

Table 5.4. Interrupt Driven Dynamic Scheme (Sun 3).

Threshold Average Average | Standard | Exec. time

Program value number of | interval | deviation | overhead
(sec) checkpoints (sec) (sec) (%)
convlv 5 64.6 4.9 0.069 0.2
rkf 5 81.0 5.0 0.048 0.1
ludcmp 5 51.0 49 0.107 0.2
rsimp 5 146.2 5.0 0.056 0.1
espresso 5 41.2 4.9 0.089 0.0
li 5 672.5 5.0 0.022 0.2

Table 5.5. Checkpoint Interval Maintenance (Sun 4).

Interval Average | Standard Deviation

Program | Scheme L (sec) (sec)
L | 5L 10L L 5L 10L
convlv L-L 50,000 | 0.4 | 2.1 4.2 || 0.0139 | 0.0412 | 0.0709
SL-SL 50,000 | 0.4} 2.1 4.2 || 0.0119 | 0.0258 | 0.0363
rkf L-L 50,000 | 1.1 3.5 10.9 ([0.2189 | 0.8943 | 1.6498
SL-SL 50,000 | 1.1 | 5.4 10.8 || 0.2323 | 0.9276 | 1.6498
ludemp L-L 50,000 [0.3 1.3 2.5 || 0.0256 | 0.0289 { 0.3707
SL-SL 50,000 | 0.2 { 1.2 2.3 || 0.0290 | 0.0515 | 0.0449
rsimp L-L 500,000 [1.9 9.5 19.0 [0.0227 | 0.0575 | 0.0918
SL-SL | 500,000 | 1.8 | 8.9 17.8 || 0.0628 | 0.1975 | 0.3587
espresso L-L 500,000 [1.1 | 5.3 10.5 {{ 0.2490 | 0.9836 | 1.8720
SL-SL | 500,000 | 0.9 | 4.0 8.3 {| 0.7575 | 1.8839 | 2.9514
I L-L 500,000 { 1.9 | 9.7 19.4 1] 0.0074 | 0.0090 | 0.0297
SL-SL | 500,000 { 1.7 | 8.3 16.5 || 0.0182 | 0.0319 | 0.0463

92

CISC machine, as the frequency of almost one instruction-per-cycle improves the accuracy
of instruction count or loop count as a measure of execution time. However, the SUN
SPARC checkpoint intervals for the integer benchmarks (espresso and li) are in the same
order of magnitude as the floating-point programs with comparable loop sizes, while the
SUN 3 checkpoint intervals for the same integer programs are one order of magnitude
smaller. The increased checkpoint intervals for espresso and li on SUN SPARC can be
explained by the lack of support for integer multiplication and division on SUN SPARC
[53]). In fact, integer multiplication and division are implemented through software traps,
and are frequently used for address manipulations in the integer benchmarks we examined.
The discrepancies in checkpoint intervals between programs with intensive floating-point
operations and those with intensive integer operations still exist for SUN SPARC, since the
SPARC IPC implementation supports the floating-point through an off-chip floating-point

unit.

5.4.4. Checkpoint interval maintenance overhead

In Table 5.6, the execution overhead in B-B and B-L is generally around 20% for
programs with moderate basic block size (convlv, ludemp, rkf and rsimp) and more
than doubles the execution time for programs with small basic block size (< 3 for espresso
and li). This is expected since the instruction-based measure is updated in each basic
block. A smaller basic block results in a larger updating code with respect to the block size,
and thus larger insertion overhead. In B-B, the checkpoint polling point is also inserted in
each basic block. The B-B scheme has roughly twice as much overhead as the B-L scheme.

The large value for the polling threshold L and small block size imply that the polling

Table 5.6. Checkpoint Interval Maintenance Overhead (Sun 3).

Execution # of RTL | Executable | Text seg.
Program | Scheme time insns. size size
(sec) (%) (%) | (XK) (%) |(K) (B)
hline original | 360.3 790 32 16
B-B 4144 15.0 1274 613 | 40 25 24 50
convlv B-L 388.8 7.9 959 214 | 40 25| 24 50
L-L 367.5 2.0 848 73| 40 25| 24 50
SL-SL 363.6 0.9 811 27| 40 25| 24 50
original 416.4 188 24 8
B-B 434.7 4.4 331 76.1) 24 0 8 0
rkf B-L 430.6 34 235 256.0| 24 0 8 0
L-L 424.4 1.9 202 7.5] 24 0 8 0
SL-SL 417.8 0.3 198 56 | 24 0 8 0
original 245.2 414 24 8
B-B 3174 295 809 954 | 32 33| 16 100
ludemp B-L 297.1 212 560 353 | 32 33| 16 100
L-L 265.5 8.3 477 152 | 24 0 8 0
SL-SL 245.2 0.0 437 56 | 24 0 8 0
original | 678.2 724 24 8
B-B 8434 244 1488 105.5 32 33 16 100
rsimp B-L 796.7 175 1011 396 | 32 33| 16 100
L-L 732.0 7.9 852 17.7| 32 33| 16 100
SL-SL 678.5 0.0 764 55] 24 0| 16 100
original 217.5 35621 176 152
B-B 517.7 138.0 || 71611 101.0 { 440 150 | 408 168
espresso B-L 418.6 92.4 || 47005 32.0 | 328 86 | 296 95
L-L 312.5 43.7 || 38708 8.7 | 208 18 | 176 16
SL-SL 218.7 0.5 jj 36340 2.0 | 184 5| 160 5
original | 3330.2 10459 104 80
B-B 8152.0 144.8 || 22860 118.6 | 200 92 | 168 110
Ii B-L 6481.2 94.6 || 14736 40.9 | 160 54 | 128 60
L-L 4429.3 33.0 |} 11763 12.5] 120 15| 88 10
SL-SL | 3343.7 0.4 || 10595 1.3 | 104 0| 80 0

at each basic block is unnecessary if a fine-grained checkpoint interval is not targeted. If
additional hardware is available, an interrupt-driven mechanism can be used to eliminate
the high overhead in B-B and B-L. In fact, a hardware instruction (cycle) count register can
be added as part of the process context. It can be decremented whenever an instruction is

executed. Once it reaches zero, an interrupt for checkpointing can obtain a static checkpoint

without any polling overhead.

94

The execution overhead for L-L is relatively small for programs with large loop sizes.
However, L-L may still result in high polling overhead for programs with small loops
(espresso and 1li). The profile-based SL-SL produces the smallest execution overhead of
the four schemes, by polling only at the selected loops. In fact, the overhead is less than
one percent of the execution time.

The increase in program size on a SUN 3 due to code insertion is presented in Table 5.6.
The executable file size and text segment in the executable file are aligned at an 8K page
boundary. Thus, the increases in the executable and text segment sizes may not reflect
the true code overhead accurately. The number of RTL instructions in a program may
be a better indicator for describing the code size overhead. The space overhead follows
the general pattern in the execution time overhead. The L-L scheme typically has a code
overhead of 20% on a Sun 3/50, while SL-SL has a mere 5% code size overhead.

Similar results for L-L and SL-SL on a Sun SPARC IPC are given in Table 5.7. The
execution overhead is reduced (by almost a half) for integer benchmark programs (espresso
and 1i) and increased for the floating-point programs for L-L. This reflects that SUN SPARC
RISC provides an effective support for most integer operations and the off-chip floating-
point operations. The execution time overhead for SL-SL is again less than 1% of the total
execution time. The space overhead for L-L on a Sun SPARC IPC is slightly increased
due to the relatively large RISC code size compared to the non-RISC code size. The space

overhead for SL-SL is less than 4% of program size.

Table 5.7. Checkpoint Interval Maintenance Overhead (Sun 4).

Execution # of RTL | Executable | Text seg.
Program | Scheme time insn. size size

(sec) (%) %) [(K) #) | (K &)

original 28.6 1297 40 24
convlv L-L 298| 4.5 1401 8.0 40 0 24 0
SL-SL 286 | 0.1 1308 09| 40 0f 24 0

original 54.5 312 24 8
rkf L-L 55.6 | 2.1 337 8.0 24 0 8 0
SL-SL 548 | 0.6 323 35| 24 0 8 0

original 311 638 24 8
ludcmp L-L 340 | 9.2 742 163 | 32 33| 16 100
SL-SL 31.3| 0.5 649 1.7] 32 33| 16 100

original 83.7 1114 32 16
rsimp L-L 94.11 12.1 1309 17.5| 32 0} 16 0
SL-SL 8391 0.0 1125 10| 32 0 16 0

original 44.7 46810 256 232
espresso L-L 56.0 | 25.1 || 51572 10.2 | 304 19 | 272 16
SL-SL 448 | 0.1 [{ 46821 0.0 | 272 6 | 240 5

original | 939.2 13796 144 112
i L-L 1087.2 | 15.8 || 16137 17.0 | 168 17 | 128 14
SL-SL 944.0 | 0.5) 13807 0.1] 152 6| 112 0

5.4.5. Profiling and SLFC selection

95

In our profiling experiments, the minimal coverage that was selected for the SLFC

selection algorithm was 90%. Table 5.8 indicates that our algorithm identifies only one

loop/function polling point for each of the six programs we considered. Tables 5.3 and 5.6

have shown that this SLFC selection is effective in reducing overhead and producing stable

checkpoint intervals. The coverage factor for espresso is less than 100%. This is because

our algorithm stops after the resulting coverage is greater than the minimal coverage (90%).

The 100% coverage is still possible but our algorithm did not continue any further.

The key to a successful profiling is to use a representative data set during profiling.

There are four sets of data for espresso. We used the first set (bca.in) as the profile data.

Table 5.8. SL-SL Profiling Summary.

Analysis time
Program | Loop | Cover | Threshold | Coverage (sec)
set set set (%) Sun 3 | Sun 4
convlv | {0-14} | {14} {15} 100 1.9 0.8
rkf {0-2} {1} {7100} 100 0.4 0.1
ludemp | {0-14} {4} {39} 100 3.5 1.5
rsimp {0-29} | {20} {10} 100 1.4 0.6
espresso | {0-783} | {621} {910} 94.2 10.1 4.3
i {0-388} | {156} {13} 100 72.8 32.9
Table 5.9. SL-SL Results for Nonprofiled Data Sets.
Sun 3 Sun 4
Data set | Scheme [Interval | Exec. time || Interval | Exec. time
10L (sec) 10L (sec)
bca.in original 217.5 44.7
SL-SL 37.3 218.7 8.3 44.8
cps.in original 269.1 57.7
SL-SL 17.7 269.5 3.8 57.7
ti.in original 323.9 69.9
SL-SL 10.1 324.3 2.2 70.0
tial.in original 554.6 113.9
SL-SL 26.1 555.5 5.3 114.4

96

Table 5.9 compares the resﬁlts for the program profiled on bca.in and run with three non-
profiled data sets. The execution overhead for SL-SL is still less than 1%. The checkpoint
interval for the profiled data set is 37.3 sec on Sun 3. However, the checkpoint interval
ranges from 26.0 to 10.1 sec for the nonprofiled data sets. This indicates that bca.in may
not be the representative data set for the four data sets, and it highlights the need for

representative profiling data in using the profile-based SLFC selection.

5.4.6. Comparison with CATCH

With respect to overhead, the L-L scheme is very close to the basic CATCH [11].

The L-L run-time overhead is essentially the same as that for maintaining the potential

97

Table 5.10. Run-Time Overhead (%) Comparison: Static vs. Dynamic Schemes.

Static Insertion Dynamic Insertion
Program | L-L SL-SL CATCH Interrupt
Basic | Trained | Driven

convlv 2.0 0.9 4.8 14 0.2
rkf 1.9 0.3 2.7 0.8 0.1
ludemp 6.8 0.0 8.2 3.8 0.2
rsimp 7.9 0.0 13.2 5.2 0.1
espresso | 43.7 0.5 54.7 9.9 0.0
i 33.0 0.4 34.8 6.1 0.2

checkpoint leverage in CATCH. The extra overhead for CATCH is in polling the real-time
clock. The results for SL-SL are comparable to those for the trained CATCH, as both
use the profile-based approach. In the trained CATCH, the cover set is selected based on
coverage and checkpoint size with no regard to the threshold value determination and non-
overlapping of cover ranges. Table 5.10 compares L-L and SL-SL with their corresponding
CATCH schemes. The interrupt-driven dynamic scheme is also presented. Generally, the
overhead for our static schemes (L-L and SL-SL) is less than that for the dynamic CATCH.
The overhead for SL-SL is comparable to that for the interrupt-driven dynamic approach,

without using extra hardware support.

5.5. Summary

In this chapter, a compiler-assisted approach for static checkpoint insertion has been
presented. This approach uses an instruction-based measure to describe checkpoint intervals
in terms of computation progress. The instruction-based measure is independent of the

real-time clock, although it has a time attribute related to the program execution. This

98

relationship between computation progress and execution time makes it possible to use an
instruction-based measure for checkpoint interval maintenance.

Four different schemes, based on this approach, have been implemented and evaluated.
Experiments show that our static method can generate a stable and scalable checkpoint
interval. The overhead for the basic block-based schemes, such as B-B and B-L, is very high
without hardware support. The loop iteration count scheme (L-L) can obtain a comparable
checkpoint interval as B-B and B-L, with a reasonable overhead. The block size of a program
has a significant impact on insertion overhead for our schemes. The profile-based SL-SL
scheme can effectively reduce both the run-time overhead as well as the space overhead.
In fact, this scheme can produce scalable and stable checkpoint intervals with an overhead
comparable to that for the hardware interrupt scheme. This requires only a representative
data set for accurate prediction of program run-time behavior. Overall, our experiments
recommend the loop iteration count schemes (L-L and SL-SL) as reasonable choices for
static checkpoint insertion. Both have a smaller run-time overhead than the corresponding

CATCH schemes.

99

CHAPTER 6.

EVOLUTIONARY CONCURRENT CHECKPOINTING

6.1. Introduction

6.1.1. Inconsistent recovery line and rollback propagation

In parallel and distributed computations, there are many concurrent processes that
communicate with each other. A recovery line in this case is a set of local checkpoints, one
for each process. If a process prior to its local checkpoint communicates with a process that
already took its local checkpoint, this communication is said to cross the corresponding
recovery line. Communication across a recovery line leads to rollback propagations (7,12,
13]. In Figure 6.1, message M1 crosses the recovery line, {C12, C13}, and M2 crosses
the recovery line {C13, C23}. Process 1 rolls back to C13 when an error is encountered.
However, process 2 has to roll back to C22 since process 1 after its rollback needs m2 from
process 2. The phenomenon that rollback to a recovery line causes the system to roll back
to another recovery line is called rollback propagation. In its extreme, rollback propagation
can force the system to roll back in a domino fashion [7,12,13]. In this thesis, a recovery
line is said to be consistent if there is no communication across the recovery line. Therefore,
a consistent recovery line can eliminate rollback propagation by guaranteeing that there is

no communication across the recovery line.

100

roilback 2 rollback 0

-
-
td

s
e 4
~1/c13

-
LYY 2

roliback 3 roliback 1
Figure 6.1. Rollback Propagation.

6.1.2. Previous approaches

Independent checkpointing allows individual processes to take their local checkpoint
without any coordination between processes [54]. This approach cannot guarantee a consis-
tent recovery line and often requires keeping multiple recovery lines. Rollback propagations
are allowed. In contrast, coordinated checkpointing tries to obtain a consistent recovery
line and eliminate rollback propagation.

One approach to obtaining a consistent recovery line is to stop computation and syn-
chronize the concurrent processes at an agreed upon point in time [13,14,17]. In some
tightly coupled systems it is possible to synchronize processors instantaneously [17]. How-
ever, typically this global synchronization requires rounds of message exchanges. An alter-
native is to synchronize checkpointing with communication [15,17,19,55]. Whenever two
processes communicate, checkpointing can be invoked in both processes. The recovery line

is always consistent since there is no communication across the corresponding checkpoints.

101

During recovery, only the individual process encountering the error rolls back, because
the faulty process has not communicated since its last checkpoint. In the communication-
synchronized approach, checkpointing frequency is fixed and is dependent on communication
patterns.

Message logging is often used to reduce the cost of checkpoint operations [19-21].
Instead of resending past messages during recovery, message logs are replayed to produce
them. Optimistic logging [22-26], which can be viewed as the communication-synchronized
checkpointing with deferred logging operations, is often used. Deferred logging often requires
complex methods to keep message dependence information for uncommitted message logs
and to manage interleaving message retries and message replays during recovery.

Chandy and Lamport have shown that the global state of a distributed system consists
of both states of individual processes and communication channels [56]. They proposed
to save individual process states locally by checkpointing and to save the channel states
by logging the messages sent before the sending processes save their process states. A
special marker message is broadcast to all other processes after the local process makes its
checkpoint. Provided a FIFO channel, all messages before the marker message from the
process are the ones that need to be logged. The number of broadcast messages required is
N. This approach has been applied to concurrent checkpointing in distributed systems [57-
59]. With a bounded communication latency and loosely synchronized clocks, the special
marker messages can be eliminated [60,61]. However, restoring the original message order
after rollback often requires a mechanism to determine when to replay from message logs
and when to retry messages due to the interleaving of logged messages and normal messages

during checkpointing.

102

This chapter describes an evolutionary approach to concurrent checkpointing. In this
approach computation periodically enters a checkpoint session, where a consistent recovery
line evolves. A checkpoint session can be initiated at any computation point. Upon receiving
notification of the start of a checkpoint session, each process independently takes a local
checkpoint. The initial recovery line, made up of the local checkpoints, may .be inconsistent
since no attempt has been made to prevent communication across it. As computation
progresses, the local checkpoints are updated whenever there is a communication between
processes, as in the communication-synchronized approach. This local checkpoint updating
causes the recovery line to evolve into a consistent recovery line. At the end of the checkpoint
session a consistent recovery line is guaranteed and its checkpoints can be committed. The
resulting global recovery line requires that all processes roll back to their previous checkpoint
if an error occurs. The frequency of checkpoint sessions can be controlled, depending on
the performance and reliability requirements of the system.

Our approach does not specify the mechanism by which individual checkpoints are
taken. It attempts to reduce the overhead in coming to an agreement about a consistent
recovery line. Therefore, it is useful only in systems where the overhead of synchronization
between processors dominates the overhead of taking individual checkpoints. Other limi-
tations to our approach are the requirements that communication is synchronized between
processors and that communication latency is bounded. Many systems conform to these
requirements, and ones that do not can usually be modified to conform.

The following section describes the assumptions, key ideas, and key techniques of our
evolutionary checkpointing algorithm. The subsequent two sections discuss the correctness

and performance considerations of our algorithm. Section 6.5 describes the application of

103

our algorithm to rollback error recovery in both shared-memory and distributed memory

computer systems.

6.2. Evolutionary Checkpointing

6.2.1. Computation model

The computation considered in this chapter consists of a number of concurrent pro-
cesses that communicate through messages over a network. This model is extended later
to a cache-based shared-memory system by viewing a memory access to nonlocal data as a
message from the source processor that provides the data to the destination processor that
receives the data.

In our communication model, messages are assumed to be synchronized: the sender
is blocked until an acknowledge message is received from the receiver. Most lower layers of
network models naturally provide and implement acknowledge mechanisms (e.g., Ethernet).
Reliable communication requires acknowledge messages even at high levels. In distributed-
memory systems and network file servers, the read/write requests are in fact implemented
with remote procedure calls (RPC) or synchronized messages [62]. Multiprocessor systems
also meet this assumption since read/write accesses are atomic and synchronized. The
assumption provides two advantages. First, checkpointing of a message sender can be
requested by the message receiver during> a checkpoint session if necessary. Second, this
checkpointing request can be piggybacked on the acknowledgment at low additional cost.

Christian, and Tong et al. use a bounded communication latency to remove the special

checkpointing marker messages in Chandy’s checkpointing scheme [56,60,61]. In this thesis,

104

we use a similar bounded communication latency for our evolutionary checkpoint scheme
to determine a consistent recovery line without exchanging extra messages. We denote the
communication upper bound as A in this chapter.

In general, communication latency is nondeterministic at the user level due to message
size, processes that are not ready to communicate, and underlying network characteristics.
A two-layer approach can be used to achieve a bounded communication latency. A message
server can be inserted below the user-level process. The user process sends and receives
messages only through its message server. The user-level messages can be asynchronous
and unbounded in communication latencies. However, the message server divides messages
into packets to remove the uncertainty in communication latency due to message size. In
many networks, proper techniques such as priority preemptive scheduling can guarantee
a deterministic communication response for the message server [63,64]. In some systems,
the message server is a natural component such as the cache controller in shared-memory
multiprocessors, and the pager in distributed-memory systems [15,65]. Another approach
that can be used to obtain a bounded communication latency is the time-out mechanism.
Even if the communication latency is unbounded, messages are delivered within a small
threshold with a high probability [61]. The messages with a communication delay larger
than the time-out threshold can be detected and treated as a performance failure [61].

A computation is divided into alternating checkpoint-free and checkpoint sessions. A
checkpoint is a snapshot of the process state at the time of checkpointing. The operation of
our scheme does not depend on the manner in which the checkpoints are taken, as long as
the computation state at the checkpoint can be restored. Since in a checkpoint session only

the last checkpoints taken on each processor are guaranteed to form a consistent recovery

105

line, the intermediate checkpoints can be generated in local memory and do not have to
written out to a stable or backup storage. Thus, checkpoint updating can be accomplished
quickly by marking the process state unmutable [15,17,45]. The final checkpoints still need
to be copied to stable storage. If the overhead of waiting for this copying to occur is too
high, another process can be scheduled to do the copy, without blocking the computation
[45]. We therefore assume the checkpoint operation time during a checkpoint session to be
negligible compared to the communication delay upper bound.

A checkpointing coordinator broadcasts a ckp_start message to initiate a checkpoint
session and a ckp_end message to terminate this checkpoint session. This checkpointing
coordinator can be one of the participating concurrent processes. Our recovery algorithm
can handle errors that cause missing ckp_start or ckp-end messages. The need to broadcast
the ckp-end messages can be eliminated by a local timer at each process. If the local clocks
are loosely synchronized with a small shift, using local clocks to signal ckp.start and ckp_end
is possible, similar to other schemes in the literature [60,61].

The point of time at which a process enters a checkpoint session is its entry point to
the checkpoint session. Similarly, the time at which a process exits a checkpoint session is
its exit point to the checkpoint session. The set of the entry points for a checkpoint session
form the checkpoint session entry line and the set of exit points for a checkpoint session
form the checkpoint session exit line. The reception points of ckp.start and ckp_end form

the initial entry line and exit line for the checkpoint session.

106

6.2.2. Approach

In our approach, rollback propagation is eliminated by obtaining a consistent recovery
line every time a checkpoint is taken. To obtain a consistent recovery line our approach

guarantees the following conditions:

o There is at least one local checkpoint for each process, and thus a recovery line, during

a checkpoint session.
o This recovery line converges to a consistent one as the computation progresses.

e There are no messages exchanged across the entry line or exit line. Inside the check-

point session, messages do not cross the current potentially consistent recovery line.

To fulfill these requirements, our checkpointing schemes makes use of the following

techniques:

e Upon entering a checkpoint session, every process immediately takes a checkpoint.
This guarantees that there always exists a recovery line from the beginning of the

session.

e To eliminate messages crossing the checkpoint session entry line, the initial entry

points are adjusted to include crossing messages in the checkpoint session.

¢ Toremove messages crossing the exit line, the initial exit points are adjusted to ezclude

crossing messages from the checkpoint session.

¢ Inside the checkpoint session, checkpointing is synchronized with communication.
Both the receiver and sender of a message take a new local checkpoint immediately af-

ter the communication. This communication synchronized checkpoint updating leaves

107

local variables and operation for each node:

ckp_num: checkpoint number (time stamp);
ckp_session: checkpointing in session flag
0 - not in a checkpointing session
>0 - ckp_num currently in session
checkpoint(n): make a local checkpoint with checkpoint number n
enter_ckp_session() // enter a checkpoint session
{ ckp_num++; ckp_session = ckp_num;
checkpoint (ckp_num);
}

Augmented message format:

message : <ckp_num, ckp_session, normal message>;
ack: acknowledge: <ckp_num, normal acknowledge>
ckp_num - 0 : no need to checkpoint
>0: makes a checkpoint with
checkpoint number ckp_num.

Figure 6.2. Local Variables and Operations at Each Process Node.

the exchanged message behind the recovery line and makes the recovery line evolve

towards a consistent line.

o To avoid messages completely bypassing the checkpoint session, ckp_end is signalled

2 A after ckp_start.

6.2.3. Detailed description

Figure 6.2 describes the local data structures needed to implement evolutionary check-
pointing 1. Figures 6.3 and 6.4 describe the detailed algorithms for the message sender and

receiver, respectively, for our checkpointing scheme.

!The appended checkpointing information such as the checkpoint number can be eliminated if the delivery
of ckpstart and ckp-end is reliable, since using mismatches in checkpoint numbers to detect the missing
ckpstart and ckp-end messages is not necessary.

ack = send_message(msg);
it (ack.ckp_num > 0) { // need to make a local checkpoint
it (ckp_num + 1 == ack.ckp_num) {
// receiver already passed the entry line
// advance local checkpoint entry point to now
enter_ckp_session();
} else if (ckp_num == ack.ckp_num) {
// both sender and receiver in checkpointing session
checkpoint (ckp_num);
} else { // detect performance fault or missing ckp_start
// or ckp_end msgs (Lemma 3).
error();
}
} else if (ack.ckp_num == 0) { // no need for local checkpointing
it (ckp_session != 0) {
// receiver already exits its session
// adjust its checkpoint exit point to now.
ckp_session = 0;

}
} else // impossible by the ack format
error();

Figure 6.3. Sender Algorithm.

108

When a ckp_start is received,

it (ckp_start.ckp_num == ckp_num+i &k ckp_session == 0)
enter_ckp_session(); // a new ckp_session

else if (ckp_start.ckp_num == ckp_num &k ckp_session == 1)
// ignore it; its entry point has been adjusted before.

else error(); // detect missing ckp_start/end msgs.

When a ckp_end is received,

it (ckp_end.ckp_num == ckp_num) {

if (ckp_session == 1) ckp_session = 0; // exit the session
// else ignore it; its exit point has been adjusted before.

} else error(); // detect missing ckp_start/end msgs.
vhen a message is received,

it (ckp_session) { // checkpointing in session
if (msg.ckp_num + 1 == ckp_num) {
// sender yet to enter checkpointing session;
ack_back(ckp_num); // ask sender to checkpoint
checkpoint (ckp_num) ;
} else if (msg.ckp_num == ckp_num) {
// both sender and receiver in the ckp session;
it (msg.ckp_session == ckp_num) {
// sender still in checkpointing session;
// both update their local checkpoints.

ack_back(ckp_num);
checkpoint (ckp_num) ;

} else {
// sender exited the session; no checkpoint update.
ack_back(0);

}

} else // detects missing ckp_start/end msgs
error();

} else { // out of the checkpointing session

it (ckp_num == msg.ckp_num) {
// both sender and receiver out of the session;
// no local checkpointing asked for the sender.
ack_back(0);

} else if (ckp_num+1 == msg.ckp_num) {
// receiver yet to enter the checkpointing session;
// advance the local entry point to now.
ckp_num++;
ckp_session = ckp_num;
ack_back{(ckp_num);
checkpoint (ckp_num) ;

} else // performance fault or ckp_start/end missing:

// msg crosses the ckp session (lemma 3).

error();

Figure 6.4. Receiver Algorithm.

109

110
\ Exit point adjustment
Process 1 . C11 c12 c13 -

pr—— — _ —
Q0 i

"\ m4
\ / Entry point adjustment
Process2 '/ ___. .{
iOe21 Oc22 HMe2s
Entryline /
g / m3
Process 3

iU ca\l caz Beas

® >
§.ca1

@ Reception point of ckp_start [] Overwritten local checkpoint
< Reception point of ckp_end B current local checkpoint
Figure 6.5. Checkpoint Session and Recovery Lines.

6.2.3.1. Entering a checkpoint session

Upon receiving the ckp_start signal from the checkpointing coordinator, a process
enters the checkpoint session and takes a local checkpoint by saving its process state. The
different session entry points of the processes form the session entry line. The initial set of
local checkpoints provides a potentially inconsistent initial recovery line. For example, the
initial recovery line {C11, C21, C31, C41} in Figure 6.5 is not consistent since if process 2

is restarted from C21, it will not resend message m2, while if process 1 is restarted from

C11, it will wait for this message.

6.2.3.2. Adjusting the entry points

If a process that has not entered the checkpoint session exchanges a message with a

process already in the checkpoint session, it will not wait for the ckp_start to enter the

111

checkpoint session. Instead it marks its entry point as if it has received the ckp_start before
the message exchange and takes its initial checkpoint right after the exchange. When the
ckp_start is subsequently received, it is ignored. The adjustment of an entry point from
the ckp_start reception point is demonstrated in Figure 6.5 where message m1 crosses the
original entry line (the ckp_start reception line). By moving the entry point of process 4 to
the point of communication, m1 is included in the checkpoint session. Therefore, process 4
makes its initial checkpoint C41 while process 3 updates its local checkpoint C31 with C32

at the request piggybacked on the acknowledge from process 4.

6.2.3.3. Updating local checkpoints

If a message is exchanged between two processes inside a checkpoint session, the re-
ceiver updates its local checkpoint to the current state. Meanwhile, it also piggybacks a
request to the sender to update its local checkpoint on the acknowledge of the message.
In Figure 6.5, the message m3 between processes 2 and 3 leads to the updating of C21
and C32, to C22 and C33, respectively. This checkpoint updating makes the recovery line
evolve to a consistent one by including the exchanged message in the checkpointed state.
For example, when process 2 updates C21 with C22 and process 3 updates C32 with C33,
they include m3 in the checkpointed state. The new recovery line {C12, C22, C33, C41} is
consistent.

In our scheme, a sender takes a local checkpoint only when the acknowledge from the
receiver requires it to. During a checkpoint session, local checkpointing is synchronized with

the computation, as in the communication-synchronized schemes [15-18]. Our approach

112

can be viewed as a scheme that samples, during checkpoint sessions, a small fraction of

checkpoints made by the communication-synchronized schemes.

6.2.3.4. Adjusting the exit points

When a process is in a checkpoint session and receives a ckp_end, it exits the checkpoint
session. If the process exchanges a message with a process that has exited the checkpoint
session, the process marks its exit point immediately and ignores the subsequently received
ckp_end. No checkpoint updating is performed. In this manner, the message exchange
is ezcluded from the checkpoint session. It can be proven that when the processes reach
the exit line, the current local checkpoints form a consistent recovery line. Message m3
in Figure 6.5 illustrates a case of exit point adjustment. Message m5 crosses the original
exit line (the ckp.end reception line). When process 1 finds out that the receiver of m5
is already outside the checkpoint session, it immediately moves its exit point to the point
of communication and exits the checkpoint session. In this manner, m5 is excluded from
the checkpoint session. When the last process leaves the checkpoint session, the exit line is
complete, and the set of current local checkpoints ({C13, C23, C33, C41} in the example

) comprises a consistent recovery line.

6.2.3.5. Avoiding bypassing messages

Provided that communication delay is bounded by A, broadcasting ckp-end 2A after
the ckp.start broadcast guarantees that no messages bypass the checkpoint session. That
is, there is no message that originates before a checkpoint session and is received after the

checkpoint session, such as message m4 in Figure 6.6. If a message were allowed to bypass

113

m2 Extt line

< C

‘Missed checkpoints

m3
Process3 /
& < = g
\[Jecar M caz c34
M Entry fine Checkpolnt here?
Process4 TTTTeeeal
Sc >
fca
O Reception point of ckp_start [] Local checkpoints
< Reception point of ckp_end @ current local checkpoints

Figure 6.6. Example of a Message Bypassing a Checkpoint Session.

the checkpoint session, some checkpoints of the resulting recovery line might be missing. For
example, process 3 interacts with process 2 after passing its exit point but before receiving
m4 from process 4. Process 3 has already exited the checkpoint session, thus the exit point
of process 2 is adjusted and the local checkpoints are not updated to C24 and C33. Even
if we let process 3 update its local checkpoint after receiving m4, the missing checkpoints
(C24, C33) make the current recovery line ({C12, C23, C34, C41}) inconsistent, since there

is a message exchange across the exit line (m3).

6.2.3.6. Handling Missing Checkpointing Messages

Missing ckp_start and ckp_end messages can be detected by the evolutionary algorithms
in Figures 6.3 and 6.4. Suppose process j missed a ckp_start message for a checkpoint session.

If it communicates with another process already in the checkpoint session, this missing

114

ckp_start does not affect the checkpointing algorithm, since this message is ignored due to
the entry point adjustment. If process j receives a ckp-end message, its local checkpoint
number is mismatched with the checkpoint number in the ckp_end message. This detects a
missing ckp.start. In general, mismatches in the local checkpoint number and the checkpoint

number in messages detects errors in message delivery in the evolutionary scheme.

6.3. Correctness

There exist an entry line and an exit line for each checkpoint session. Every process
receives a ckp_start message for each checkpoint session. The only time the entry point is
not the reception point of the ckp_start is when the entry point has been adjusted to an
earlier point due to a message exchange between a process that is yet to enter the checkpoint
session with another process already in the checkpoint session. Thus there is always an entry
line at or before the ckp_start reception line. Similarly, there is always a session exit line at
or before the ckp_end reception line. Since the ckp_end is broadcast 2A after the ckp_start,
the ckp_end will be received by each process after the ckp_start. If the ckp-end reception
point is the exit point for a process, the exit point is behind its corresponding ckp.start
reception point and thus its entry point. If the exit point has been adjusted, the process
must be in the checkpoint session when the adjustment occurs, and the exit point will not
be adjusted ahead its entry point. Thus, the exit line is always behind the corresponding
entry line. Therefore,

Lemma 1: Given the algorithm in Figures 6.3 and 6.4, there is an entry line followed

by an exit line for each checkpoint session.

115

We will show that there is a recovery line after an entry line. That is, every process
will have a local checkpoint after this line. Upon receiving a ckp.start, a process either
makes a local checkpoint or ignores this ckp_start. According to the algorithm, the process
ignores a ckp_start only when its entry point has been adjusted to an earlier time than the
ckp_start reception point. As a part of its entry point adjustment, a local checkpoint is
made for this process. This proves the following lemma.

Lemma 2: Given the algorithm in Figures 6.3 and 6.4, there is a recovery line after
the last process passes the entry line of a checkpoint session.

Lemma 1 and Lemma 2 imply that there is a recovery line when the last process passes
the exit line. Before we show that this recovery line is consistent, we first prove a lemma
which assures that the minimum time difference between the entry point for one process
and the exit point for any other process is at least one A. This condition assures that no
messages bypass the checkpoint session. That is, a message originated before a checkpoint
session will not be received after the checkpoint session and vice versa. Let (s;,e;) be the
pair of the entry time for process i and the exit time for process j for the same checkpoint
session.

Lemma 3: Given the algorithm in Figures 6.3 and 6.4, e; — 3; > A for any (s;,¢€;)
and ¢ # j.

Proof: Let (s;,e;) be the pair with the minimum difference among all the possible
pairs. There are only two cases possible. (1) e; is the time of ckp_end reception by process
j. According to Lemma 1, s; is either the reception time of the ckp_start at process i or an
earlier point than the reception time due to an entry point adjustment. Therefore, we need

only to prove that the time difference between €; and the reception time of the ckp_start at

116

process i is greater than A. Since any message will be delivered within A and the ckp_end
is broadcast 2A after the ckp.start, no process will receive a ckp_start later than one A
after the broadcast of ckp_start, and no process will receive a ckp_end before 2A after the
broadcast of ckp_start. Therefore, e; — 3; > A. (2) e; is not the time of ckp-end reception
by process j. This case occurs only when process j receives a message from a process (e.g.,
process k) that passed the exit line when process j was still in the checkpoint session (i.e.,
it is yet to receive the ckp-end). According to the algorithm, j will adjust its exit point
from its ckp_end reception point. This case is impossible. Otherwise, e; cannot be in the
minimum pair of (s, e;), since process k has passed the exit line before process j (ex < ¢;).
This contradicts that (s;,e;) is the smallest pair of all the possible pairs that include (s;, ex).
a

A recovery line is consistent if all messages sent before (after) a consistent recovery
line are received before (after) this line. That is, there are no message exchanges across a
consistent recovery line. This guarantees that any rollback will not need to cross this line
and thus eliminates the domino effect of rollback propagation.

Theorem 1: Given the algorithms in Figures 6.3 and 6.4, the set of the current local
checkpoints forms a consistent recovery line when the last process exits a checkpoint session.

Proof: According to Lemmas 1 and 2, there is a recovery line when the last process
exits a checkpoint session. Suppose a process receives a message after this exit line. The
sender cannot be in the state prior to the checkpoint session, since the sender has yet to pass
its entry point and thus its exit point. This implies that the exit line is still incomplete.
The sender cannot be in the checkpoint session either; otherwise, the algorithm requires

the receiver to ask the sender to adjust its exit point to exclude the message exchange

117

from this checkpoint session. Therefore, the sender must be after its exit point. Suppose
a process sends a message after the exit line. The receiver cannot be in the state prior to
the checkpoint session; otherwise, this gives an incomplete exit line. The receiver cannot
be in the checkpoint session either, since the algorithm will adjust the receiver’s exit point
to exclude the message from this checkpoint session. Thus, the receiver must have passed
the exit line. Therefore, there is no message exchange across the exit line, and the recovery
line after the exit line is consistent. Since there is no local checkpoint updating after the

exit line, this consistent line remains until the next checkpoint session. O

6.4. Performance Considerations

6.4.1. Convergence time

We define the convergence time of our evolutionary checkpointing scheme as the time
for a potentially inconsistent recovery line to evolve into a consistent recovery line. This
parameter determines the minimum length of a checkpointing session. More importantly,
it also affects the overhead involved in our scheme since the longer the convergence time,
the more local checkpoint updating is likely. The following theorem gives an upper bound
on the convergence time of our algorithm.

Theorem 2: Given the algorithm in Figures 6.3 and 6.4, the convergence time of the
recovery line during a checkpointing session is less than 3 A.

Proof: According to the algorithm, the first process enters the checkpointing session
upon receiving a ckp_start, which occurs no earlier than the ckp_start broadcasting time.

The last process to receive a ckp.end will receive it no later than 3 A after the ckp_start

118

broadcast since ckp_end is broadcast 2 A after ckp_start, and ckp_end will be delivered to
every process within A. According to the proof of Lemma 1, the exit line forms before the
ckp_end reception line because the exit point is either the reception point of a ckp-end or
at an earlier time than the reception point due to the exit point adjustment. Theorem 1
guarantees a consistent recovery line after all processes pass the exit line. Therefore, there
is a consistent recovery line no later than 3 A after the ckp_start is broadcast. Thus the

convergence time is less than 3 A. O

6.4.2. Run-time overhead

The expected run-time overhead (Ck) can be simply expressed in terms of the frequency
of checkpoint sessions (n), checkpointing time per session (C,), rollback probability (p-) and

recovery overhead (C,) as

Cr = nC, + np.C,

Ca = Cinit + Nupdatccupdate

where Cin;: is the checkpoint cost of the initial checkpoint made at the entry of a checkpoint
session; Nypdate and Cupdate are the frequency and the overhead of local checkpoint updating
respectively. The first term, nC,, in C} represents the checkpointing overhead, while the
second term, np,C,, is the recovery overhead.

Given the frequency (n) and length (convergence time) of checkpoint sessions, the
checkpointing overhead, C,, depends on the frequency and overhead of local checkpoint
updating. The number of times that a local checkpoint is updated is computation specific.

Every time a message is sent or received inside a checkpoint session, the local checkpoint

119

has to be updated. Given the limited convergence time, the number of updates is likely to
be limited.

To determine the number of checkpoint updates that can be expected in a distributed
memory system we traced the communication patterns of eight parallel programs on an
8-node Intel IPSC/2 hypercube (Table 6.1). We took random snapshots of the computation
with lengths varying from 10 to 500 msec. On the IPSC/2, message latency averages about 1
msec/K [66]. Our snapshot lengths therefore represent conservative estimates of the session
lengths that could be chosen for the IPSC/2. For every program and snapshot length we
performed 1000 random trials.

Table 6.2 shows the frequency of messages (which corresponds to the number of check-
point updates) for different session lengths. For the numerical programs (fft, mult, gauss,
gr and navier), the average number of messages transmitted or received is less than 3.
However, the number of messages in a particular checkpoint session can be as high as 244
(qr). Typically messages in the hypercube occur in bursts when data are distributed to

and collected from the nodes. If this is the case, compiler-assisted techniques that detect

Table 6.1. Hypercube Program Traces.

Execution Message
Program Description Time # recvs. # sends avg. size
(msec) (bytes)
fit fast Fourier transform 51363 110 60 97.7K
mult matrix multiplication 4160 48 43 18.5K
gauss Gauss elimination 47222 6764 2706 622.8
qr QR factorization 3590 4105 4098 508.9
navier fluid flow simulator 21315 118 118 22.7
tester circuit test generator 123339 13215 10786 264.3
cell circuit cell placement 50645 42619 42764 31.7
router VLSI channel router 435648 | 371700 371650 18.9

120

Table 6.2. Communication Characteristics of Hypercube Traces.

Session Messages Session Messages
Trace | length [max average || Trace length | max average
(meec) | # # (meec) | # #

10 1 0.12 10 4 0.11

It 50 2 0.12 {| navier 50 4 0.11
100 2 0.12 100 5 0.12

500 3 0.13 500 10 0.13

10 4 0.05 10 15 0.34

mult 50 4 0.06 || tester 50 44 0.98
100 4 0.06 100 67 1.57

500 4 0.07 500 [100 4.16

10 10 0.33 10 32 2.05

gauss 50 40 0.81 || cell 50 | 104 7.76
100 80 1.056 100 | 149 13.48

500 | 243 2.24 500 [451 28.21

10 7 0.90 10 30 2.56

qr 50 30 1.92 || router 50 | 123 10.58
100 58 1.85 100 | 213 21.10

500 | 244 2.34 500 | 505 100.55

communication bursts in programs and plan checkpoint session accordingly could be used
to decrease the number of checkpoints in a session [11,67].

The overhead of updating a local checkpoint varies with the checkpointing mechanism
used. If a new complete state is saved as the checkpoint update, Cyp4qte is the same as the
initial checkpoint cost, Cini: [11,47]. If only the change in state since the last checkpoint
is needed to update the checkpoint (e.g., flushing dirty pages in a virtual memory system),
Cupdate is likely to be smaller than Cinie [15]. If local checkpoint updating is implemented
with logging messages, Cypdate is the cost of message logging. In the above hypercube
example, message logging may be appropriate for high message density programs such as
router.

Recovery overhead, C,, is related to the reprocessing time after recovery, which on the

average is one-half of the checkpoint interval. Studies on checkpoint placement have shown

121

that the rollback probability, p,, is typically small enough to ensure low recovery overhead
(np,C,) compared to checkpointing overhead (nC,), even when the checkpoint interval
and/or recovery cost are large. Schemes with an inherent high checkpoint frequency fail
to take advantage of the benefits of making checkpoint intervals large. In the evolutionary
approach, the checkpoint interval can be chosen as large as necessary to reduce checkpointing

overhead [3-6].

6.4.3. Memory overhead

The storage requirement for the evolutionary checkpointing is two global checkpoints,
one for the last committed checkpoint and one for the current working buffer for the un-
committed checkpoint. For virtual memory-based systems, the working buffer can be set
copy-on-write to the committed checkpoint. The working space is split with the committed
checkpoint only when a modification is needed. After the current checkpoint is committed,

the space for the old committed checkpoint can be switched to the working space.

6.5. Applications to Shared-Memory Systems

Recently there has been an active research interest in recoverable shared-memory and
shared virtual memory computer systems [15-18,68-70]. Both globally synchronized and
communication-synchronized approaches have been applied to these systems. The main
drawback of these schemes is uncontrollable checkpointing [18]. In this section we will

demonstrate how evolutionary checkpointing can be adopted to these situations.

122

6.5.1. Recovery in cache-based multiprocessor systems

In cache-based systems, cache-based rollback error recovery can be used to recover
from transient processor errors [71]. In this recovery scheme, the checkpoint state is kept
in the main memory, those dirty cache blocks that have not been modified since the last
checkpoint, and the processor registers. A processor takes a checkpoint whenever it is
necessary to replace a dirty block in its cache. At a checkpoint, the processor registers
are saved, and all dirty cache blocks are marked unchangeable. Unchangeable lines may be
read, but have to be written back to memory before being written. Rollback is accomplished
by simply invalidating all cache lines except the unchangeable lines, restoring the processor
registers, and restarting the computation.

Whu et al. proposed a cache-based recovery method for shared-memory multiprocessor
systems using the communication-synchronized approach [15]. A communication is an access
to a dirty cache block from the private cache of another processor. Communication between
processors induces a checkpoint on the source processor. The destination processor does
not need to be checkpointed, since if it rolls back it can always acquire a new copy of the
transmitted data from the source processor. The effect is similar to message logging, in
that the data received are available again after an eventual rollback. Ahmed et al. have
proposed a globally synchronized checkpointing strategy for cache-based error recovery in
multiprocessors [17]. They assume that a checkpoint operation can be synchronized among
all processors and takes only one cycle.

These cache-based schemes have the disadvantage that the frequency of unavoidable

checkpoints, due to replacement of dirty lines, is high [18]. However, the overhead in taking

123

a checkpoint is very low. Therefore cache-based recovery is applicable to updating the
checkpoints during the checkpoint session in our evolutionary scheme in which checkpointing
activities are for only a very short period.

To apply our approach to cache-based recovery, we first map our system model to the
shared-memory multiprocessor model. The cache controllers serve as the message servers
of our model. Caches behave as the normal caches for checkpoint free computations, and
as Wu’s caches during checkpoint sessions. A communication is a read or a write access to
a nonlocal cache. Communication in multiprocessors is synchronized since the processor is
blocked until data are accessed. The memory access time, and therefore the communication
time, is also bounded.

A global interrupt can be used as the mechanism to generate the ckp_start and ckp_end
signals 2. This global interrupt sets or clears the local flag ckp_session at each processor as
if a ckp_start or ckp_end is broadcast. During checkpoint sessions, the checkpoint operation
is synchronized with communication such as in Wu’s scheme 3. The checkpoint session can
be short since the convergence time is only 3 times the maximum access time to a block
present in another processor’s cache. At the end of the session, the checkpoint is committed,
and the cache is switched from checkpointing operation to normal operation.

A shadow paged memory is needed because the state changes between checkpoint

sessions can not overwrite the committed checkpoint [16]. A copy of the memory space is

2Since the global interrupts can usually be assumed to be delivered reliably and no error detection for
mismatching checkpoint session numbers is necessary, the extra checkpointing information appended to each
message required by the evolutionary algorithms (Figures 6.2, 6.3 and 6.4) can be eliminated.

*In a remote memory access, a source processor that provides data and a destination processor that
initiates the access request can be distinguished. The checkpoint operation at the destination processor
can be eliminated since the source processor backs up the data requested in its local checkpoint and the
destination processor can retry the access and acquire the data from the checkpoint.

124

used for the committed checkpoint and another for the temporary working spacing. The
unchangeable cache blocks are written back to the checkpoint pages when they are replaced
from the caches. A copy-on-write mapping of the working pages to the checkpoint pages
may save memory and avoid unnecessary memory copying. A rollback simply invalidates
all cache blocks except unchangeable blocks and restarts all processors from the committed
checkpoint.

Five parallel program traces from an 8-processor Encore Multimax 510 were used
to evaluate this evolutionary scheme [18]. Program tgen is a test generator; fsim is a
fault simulator; pace is a circuit extractor; phigure is a global router, and gravsim is
an N-body collision simulator. Each benchmark program runs for about 10 seconds. At
least 80 million references are traced in each applications [18]. The caches used are 64 K
two-way set associate caches with 32-byte blocks. To apply our evolutionary scheme, we
need to estimate the maximum access time for the Encore Multimax 510. The longest
access is the cache miss that acquires the bus last when all processors have a miss. Since
a 32-byte block takes 320 nsec (nanosecond) to fetch, the longest access is 8 x 320 or 1.28
usec (microsecond) [72]. Thus, A = 1.28 usec. The processor is rated at 8.5 MIPS;
the maximum number of instructions executed during A is about 8.5 x 8 x 1.28 or 87.04.
Therefore, the convergence time for the Multimax 510 is about 3.84 usec or 262 instructions.
We used the number of references to determine the session length. We simulated five
different session lengths of around 262 instructions: 10, 50, 100, 500, and 1000 instructions.
The interval between checkpointing sessions for the evolutionary scheme can be set at any
value. For our evaluation we set it at one million references. As a comparison, we evaluated

the cache-based schemes of Wu et al. and Ahmed et al.

125

(59) (54)

st Session Length

1 ()

(0 (0) (U)I(O) (O (0)(DE

gravsim pace phigure fsim tgen all traces

Figure 6.7. Average Number of Checkpoint Updates per Session.

The number of checkpoint updates that need to be performed during a checkpoint
session depends on the amount of communication in the program. Figure 6.7 presents the
average and maximum number of updates observed during a checkpoint session for each of
the programs. For all but the largest session lengths in fsim and tgen, the average number
of updates is at most one. For the longer sessions in fsim and tgen, the average is driven
up by a few sessions with many updates. For all traces combined, however, even with a
session length of 1000, the average number of updates is only around 2.5. We also found
that the checkpoint size for an checkpoint update is either one or two. This indicates that
local checkpoint updating only produces a limited run-time overhead.

A comparison can be made between the average checkpoint frequency for the evolu-
tionary scheme and the other cache-based schemes. It should be noted that the checkpoint

frequency for the evolutionary scheme can be controlled by adjusting the interval between

126

sessions, while the checkpointing frequency for the other schemes is predetermined by the
communication patterns of the applications we traced. For the evolutionary schemes we
consider both the initial checkpoints in the session and the further updates to calculate
the average frequency. The checkpoint frequencies are plotted in Figure 6.8. For a session
interval of one million and a session length of 500, the checkpoint frequency varies between
1 and 2.5 per million accesses. On the other hand, the frequency for the globally synchro-
nized scheme varies between 1.7 and 1500 per million accesses, and the frequency for the
communica,tic;n-synchronized scheme varies between 200 and 1000 per million references.
The overhead of cache-based checkpointing depends on the number of cache blocks that
are marked unchangeable (the checkpoint size) since extra cycles are needed to write these
blocks back before they can be used. Figure 6.9 presents the sum of the sizes for all check-
points during the execution of the program. This total checkpoint size is about an order
of magnitude smaller for the evolutionary scheme than for the other schemes 4. All the
data show that the evolutionary scheme can provide checkpointing with a more controllable

frequency and at a lower cost than previous schemes.

6.5.2. Shared virtual memory system

A shared virtual memory system supports a shared-memory programming model in
a distributed computer environment [62]. An interprocessor memory access may be imple-
mented as an RPC (synchronized message) over a network. A communication synchronized

checkpointing scheme similar to those for multiprocessor systems was proposed by Wu and

It may be worth noticing that the total checkpoint size is basically determined by the number of check-
point sessions and the size of the initial checkpoints in each checkpoint session, since the number and size
of checkpoint updates in the evolutionary scheme are limited. The number of checkpoint sessions can be
controlled with proper placements of checkpoint sessions.

Checkpoint Scheme
ol Wu etal
10 Abmed of ol.
Evolutionary (for 500 reference seesion data)
1w
checkpoints
per w0 [
million refs.
10 [
+
gravsim pace phigure fsim tgen all traces
Figure 6.8. Scheme Comparison: Checkpoint Frequency.
Checkpoint Scheme
ot Wu etsl
Ahmed of 8l
Evolutionary
10 |
total
checkpoint
size s
0
(blocks)
10}
w0}

gravsim pace

phigure fsim tgen all traces

Figure 6.9. Scheme Comparison: Total Checkpoint Size.

127

128

Fuchs [16]. In such a system, the virtual memory is shared, cached in the main memory
of individual processing nodes, and backed up on a stable storage. A checkpoint opera-
tion consists of flushing all dirty pages and saving processor registers to the stable storage.
Whenever there is a remote access to a dirty page, the source processor takes a checkpoint.
The checkpoint operation at the destination processor is eliminated since the source pro-
cessor logs the requested page as a part of its checkpoint. If the destination processor rolls
back, it can access the logged page from the checkpoint. Since the system is expected to
be recoverable after node crashes, a shadow page system is used to accommodate the last
committed virtual space (checkpoint) and the working space between checkpoints.

Similar to the multiprocessor case, our evolutionary scheme can be mapped to the
distributed virtual memory case to provide controllable checkpointing. In this case, the
message server is the pager process, and communication is a remote access to a dirty page. A
checkpoint operation is performed at the source node during checkpoint sessions. A remote
memory access is synchronized as the result of the RPC mechanism. Communication delay
is likely to be bounded since page size is limited and the network is usually dedicated to the
system. The timeout mechanism in RPC will further ensure the communication bound.

A global interrupt for the ckp.start and ckp_end broadcasting is not possible in a
distributed-memory system, thus we need to use message broadcasting for ckp_start and
ckp-end. To reduce the cost of flushing dirty pages, checkpoint operations may mark the
local dirty pages unchangeable in memory. The marked pages are committed after the
checkpoint session ends. A recovery simply restarts all processes from the recovery line.

Unlike the multiprocessor case, the shadow pages needed for our evolutionary scheme are

129

already used in the Wu and Fuchs scheme. Thus, our scheme incurs no additional memory

overhead.

6.6. Summary

In this chapter we have presented an evolutionary checkpointing strategy for concurrent
processes. This checkpointing scheme starts from a potentially inconsistent recovery line by
checkpointing individual processes independently. Local checkpoints are updated whenever
there is communication during the checkpoint session. This local checkpoint updating
makes the recovery line evolve into a globally consistent recovery line. We showed that the
convergence time from an inconsistent recovery line to a consistent one is three times the
maximal communication latency upper bound.

We verified the low overhead of our evolutionary scheme by measurements on different
computer systems. Unlike globally synchronized checkpointing schemes, our evolutionary
scheme requires no global synchronization protocols. The evolutionary approach provides
controllable checkpointing in contrast to the communication synchronized schemes. The
trace-based evaluation has shown that our scheme can achieve low-cost checkpointing at a
controllable interval for error recovery in multiprocessors and distributed virtual memory
systems. However, our scheme is limited by the requirement of synchronous communication
with a bounded latency. In the systems with low overhead synchronization mechanisms,
our scheme may not be necessary, since a global synchronization scheme may be simpler to

implement than our approach.

130

CHAPTER 7.

CONCLUSIONS

7.1. Summary

This thesis has studied a checkpoint-based forward recovery strategy for parallel and
distributed systems. The replication of a task in this strategy makes forward recovery
independent of the computation, since the correct next new state is obtainable from some
error-free replica even when some other replicas go astray. Optimistic execution is used
for fast recovery without reprocessing due to rollback. To identify the correct replica, a
rollback (validation) task is scheduled to generate a diagnostic checkpoint.

In Chapter 2, a general description of this forward recovery strategy was presented. We
also discussed the design parameters of a forward recovery scheme based on this strategy.
Base size indicates the minimal processor redundancy used by a scheme. Scheduling depth
describes the limit on the retries of the rollback validation. It implicitly determines how
many of the past uncommitted checkpoints will be kept. The recursive schemes keep all
uncommitted checkpoints and can utilize all of the forward recovery potentials in a scheme.
The nonrecursive schemes approximate their recursive counterparts with limited retries.
Rollback size describes the processor redundancy used by rollback validation. It is related
to the success rate of rollback validation. The schemes derived from our forward recovery

strategy can handle the performance degradation both naturally and gracefully.

131

Chapter 3 presented an analytical evaluation of our forward recovery strategy, while
Chapter 4 gave an experimental evaluation based on a distributed implementation. It has
been shown that the recovery schemes based on our forward recovery strategy can achieve a
near error-free execution under faults and use an average redundancy less than TMR. These
schemes can also be designed to handle graceful degradation. The checkpointing overhead i§
inherent in any checkpoint-based schemes and has to be minimized by placing checkpoints
optimally. The comparison test time is more significant than the restart time in a scheme
using comparison tests. The centralized file server affects the performance of a particular
scheme through serialized file accesses.

A compiler-assisted technique was studied in Chapter 5. This technique can insert
static checkpoints in user programs in a user transparent manner. The heart of the static
checkpoint insertions is the instruction-based time measure for checkpoint maintenance.
This measure can describe the progress of computation and have a relationship with the
execution time of this computation. The interrupt-driven mechanism can obtain a consistent
checkpoint interval with low overhead but does require hardware support. The polling
mechanism can also generate a stable and scalable checkpoint interval. The scheme based
on loop iteration count is more favorable than other basic block-based schemes.

Chapter 6 described an evolutionary approach to concurrent checkpointing with low
overhead. This approach avoids rollback propagation by establishing a consistent recovery
line (checkpoint). It starts with an inconsistent recovery line consisting of independently
made local checkpoints. The local checkpoints are updated during the checkpoint session
such that the recovery line evolves to a consistent one. This approach requires no check-

pointing coordination or logging. We have proven that the convergence time to a consistent

132

recovery line can be very short. This approach can be applied to cache-based multiprocessor
and distributed-memory systems to eliminate the excessive checkpointing induced by the

common communication-induced checkpoint schemes.

7.2. Discussion and Future Research

7.2.1. Forward recovery in parallel and distributed systems

There are several issues that we have not studied in detail and that are worth further
investigation. First, how can our schemes be implemented in parallel systems such as
shared-memory systems? The implementation in a message-passing parallel system can be
very similar to our implementation in the distributed environment. The major difficulty
with shared-memory systems is the common failure mode of the main memory.

Second, the incorporation of N-version programming or recovery blocks needs to be
studied further for software fault tolerance. The variable execution in a program version
or recovery block may affect the analytical predictions based on the constant execution
time (Section 3.2). Another problem is the usually limited number of program versions or
recovery blocks. A recursive scheme may run out of alternatives before a valid checkpoint
is obtained.

Third, other alternatives to construct checkpoints are also important, since the check-
point size is the key factor that determines the overheads such as checkpoint, restart and
comparison times. The run-time image of a process as a checkpoint is very conservative,

since many variables in the process space are usually not state variables for this process.

Any error in these nonstate variables should not be detected as a bad checkpoint since

133

they have no bearing on computation. However, any checkpoints based on state variable

extraction may require specific knowledge about the computation the process performs.

7.2.2. Compiler-assisted static checkpoint insertion

The checkpoint insertions at the intermediate code level (e.g., the register transfer lan-
guage) may not be the best place in which to achieve an architecture-independent insertion.
For the loop count based static scheme, implementing it at the source level has two advan-
tages. First, the insertion boundary in source code is clearly defined and thus this scheme
can be easily implemented at the source language level. Second, the inserted checkpoint
operations are visible to a source level symbolic debugger, while the intermediate inserted
code may confuse the debugger.

The interrupt-driven mechanism for checkpoint interval maintenance needs further
study to achieve a static checkpoint insertion. For example, a hardware instruction count
register can be added as part of the process context. It is decremented when an instruction is
executed. Once it reaches zero, an interrupt of checkpointing can obtain a static checkpoint
at an instruction boundary with no overhead for polling checkpoints.

There is a more important question regarding the static checkpoints in parallel and
distributed computations. If the answer is positive, the undeterministic nature of these
computations makes it very difficult to generate a reproducible checkpoint or recovery line

if it is possible. We need to investigate the mechanisms that can accomplish this task.

134

7.2.3. Evolutionary concurrent checkpointing

During a checkpointing session, a message exchange between processes results in a
local checkpoint update for both the sender and receiver in our current scheme. Other
alternatives are possible if nondeterministic executions are allowed. For example, reading
a dirty block from a nonlocal cache may be treated as a message exchange in a cache-
based multiprocessor system [15]. In this case, only a local checkpoint update at the source
processor is required. However, this also leads to nondeterministic execution. Another
similar case is writing to a dirty block in a nonlocal cache.

In this thesis, our evolutionary checkpointing will benefit from further studies that
evaluate this approach in terms of implementation and experiments, especially the perfor-
mance evaluation against other approaches such as communication synchronized schemes.
In addition, the detailed applications of our approach to cache-based multiprocessor and
distributed-memory systems need to be studied further. Another possibility is to use a
software approach to implement our approach in the cache-aided error recovery schemes in
shared-memory multiprocessor systems. For example, Intel 860 has a cache flush instruc-
tion which can be used to take a checkpoint. The question is, “Is it possible to implement
the evolutionary approach purely in software?” If not, what minimal hardware support is

needed?

135

APPENDIX A.

ANALYTICAL DERIVATIONS

A.1. DMR-F-1

In Chapter 3, we gave an analysis of DMR-F-1 based on the probabilities of successful

lookaheads and rollbacks, using a simple ratio analysis (i.e., Triﬁ and 15). In this section,
we demonstrate that this analysis is correct by obtaining the same result using the con-
ventional method: the recursive equation. If an error occurs, DMR-F-1 behaves differently
in the last checkpoint interval. Since no lookahead execution is possible for this interval,
a rollback is always required during recovery. An n-session computation consists of n-1
lookaheadable sessions followed by a rollbackable session. Duda has an excellent analysis
for this rollback situation [4]. Besides, the performance degradation contribution of the last
rollbackable session is proportional to ;1‘-, while that of the n-1 lookaheadable sessions is to
-";—1. The approximation of an n-session computation with an n lookaheadable sessions is
adequate even for a moderate n. Therefore, our analysis focuses on the situation of an n
lookaheadable sessions.

Let T, be the expected execution time for an n-session (lookaheadable) computation.
Let p; and p, be the probabilities of successful lookahead and rollback in DMR-F-1, respec-

tively. Thus,

136

4

A+t +Thoy, 1—-p—pr

To = § A+te+t,+2.5+Tao1, B

| 28+ 2t 4+ 2t + 36+ Tny

Thus,

Tn = (1=-p—p A+t +Ta1) +2(A+ e + 1 + 2.5t + Tha)
+p-(24A + 2t + 2t, + 3t + Ty).
In other words,

i
1-p,

T, = (A+t)+ (t,.+2.5tt)+lf' (2A + 2ty + 2t, + 3t,) + Tno1.

pr

Solving this equation with the initial condition, Tp = 0, we have

np,
1- Pr

npi
1-p,

T, = n(A+)+ (2A + 2tx + 2t + 3t,).

(tr + 2-5tt) +

This is exactly the result in Section 3.3.2 with T, = T;,.

A.2. DMR-F-2

In DMR-F-2, tree situations can happen with respect to the computation progress
if there is at least an erroneous checkpoint produced during the normal paired execution.
First, the computation is recovered through successful lookaheads. This is the case in
which one of the uncommitted checkpoints is correct and at least one of the two diagnosis
checkpoints is correct. Second, the computation rolls back one session and finishes in the

next session. In this case, both of the original tasks fail and the validation pair succeeds.

137

The checkpoints generated by the validation pair are correct and can be committed. Third,
the computation rolls back two sessions and makes no progress at all. This is when the
rollback validation also fails, and no valid checkpoint can be identified. Let [, s, r be the
average number of successful lookaheads, one session rollbacks and two session rollbacks,

respectively. Their corresponding probabilities are

= 2(1-psps(1-p}),

ps = p}(1-ps)?,
pr = 21-pp}+ 05 (20 -prips + p}) .

Since the expected number of computations is n + r, we can expect the following:

l
n = n+r’
_]
Ps = ntr
_ r
= ¥
In other words,
| = np; ’
1-pr
_ nps
s = 1-pr’
= ————npr
1-pr

For each successful lookahead execution, one restart and 3.5 checkpoint comparisons

are exercised, while two restarts and five comparisons are made for each of rollbacks. Thus,

138

T, = n(A+te)+ It + 3.5t) + s(A + tie + 2ty + 58) + r(2A + 2ti + 2t + 5t¢)

+ ntt3-5pl + 5ps + Spr
1 - pf 1 - pr

k]

Ds +2pr) + ntrPl +2P, + 2pr

n(A + tx) (l-i- 17,

and thus the relative execution time

R = E = 1+P,+2Pr +pl+2pa+2pr ty 3-5pl+5pa+5pr t
¢ To 1-p, 1-p, A+t 1-p, A+t

The only difference between DMR-F-2 and DMR-F1 is that DMR-F-2 uses one more proces-
sor (thus producing one more checkpoint) than DMR-F-1 does during recovery. Following

a similar line in the DMR-F-1 analysis we have

/0 T N()dt = (n—D(A+te)+ A+t + 1 + 1) +91(2.58)
+st, + 33(A + ti + t. + t¢) + 93(5t;)
+r(A+te + 1) + 3r(A + te + 2, +) + 97(51)
= T4 TRl tf’p’: Pr | ot TP TP J{f’; Pr | gnt, 2LE 21'_5_”;r+ 2L.5pr,
Therefore,
A s = s

Te
/0 Ny(t)dt = 2(n =1)(A+te) + 2t + 61(A + th + £, + 2.5t) + 25(t, +)

+63(A + ti + tr + 5t;) + 2r(A + te + t. + 1) + 67(A + ti + t. + 5t;)

P+ ps + Pr

! pi+ps+pr
1-pr

+ 4nt, n 4ntt2'5m + 5.5p, + 5.5p;

= 2T.+ 4T,
1-pr 1-p,

?

139

and

P+ ps +pr + 42 +p,+pr 2.5p1 + 5.5p, + 5.5p, 1 -
(1 - p-)R. (1 —pr)Re A+t (l_pr)Rc A+t

N, = 2+4

It can be shown that the following results for a single file server system:

- ps+2p pi+5/3ps+5/3p, 3t
RBe(fs) = 1+ 1-p, * 1-p, A+ 2t

3.5 + 5ps +5pr L p+p,+p 3
1-p, A+ 2t 1-p, A+2t°

P+ ps + Pr Pi+Pps+pr 3t
N = 142
(f3) T AT Rfe) T - p)R.(f9) B + 2t
+211Pl + 21.5p, + 21.5p- 133 +2 pi+ ps + Pr 3tk
(l—p,.)Re(fs) A+ 2t (l—p,-)Re(fs)A-f-th’
and
_ D+ ps+Dr D+ ps+pr 3t
Mp(fe) = 2+ 40 R, VY A-pIR. B+ 20
+42.5pz +5.5p, + 5.5p, + 4p1 +ps+pr 3tk
(l_pr)Re A+2tk (l_pr)Re A+2tk.
A.3. TMR-F

In TMR-F, the trio of replicated tasks continues when there is no erroneous checkpoint
at the end of A. If there is a match in checkpoints, TMR-F performs a forward recovery via
masking off the erroneous checkpoint. If all checkpoints are different, a rollback is scheduled.

The rollback probability is given as
Pr= 3P.2f - 2??-

The number of rollbacks, r, is expected to satisfy

pr = ’

The expected execution time is

140

T. = n(A+t)+r(A+t+t, + 3t;)

Pr Pr 3pr
= n(A+t (1+———-)+nt +nt .
(A&+u) 1-p, "T-p @ t1-p,
Therefore, the relative execution time is
T. Dr DPr i 3p- i
R, = —=1 .
¢ To +l—p,-+1—p,-A+tk+1-—p,-A+tk

For a single file server system, the restart time and checkpoint time are tripled for the
TMR-F scheme due to the file access by three processes at the same time. Thus,

Pr + Pr 3tr + 3pr 12
1-p, 1-p,A+3t 1-p. A+3tx

R.(fs) = 1+

The number of checkpoints is one (the most recently committed checkpoint) for the normal

pair and four for checkpoint validation. Therefore,

Te
/0 Nut)dt = n(A+ tg) + 4r(3t) + (A + 1k + t,)
= Te + 6ntt Pr 3
1-p
and
Nc = 6p1' tt

1+ .

(1-p.)R. A+t
Since ¢, do not appear in nc, the impact of the single file server is reflected indirectly
through R.:

6p, t
(1 - Pr)Rc(fs) A+ 3t ’

N(fs) = 1+
The number of processors is always three. Thus,

Np, = maz(N,) = 3.

141

A.4. DMR-B-1

In this scheme, there is no forward recovery. If there is an error in any of the two orig-
inal replicated tasks, the task will be rolled back repeatedly until there is a match in the
uncommitted checkpoints produced by both the original task pair and the rollback tasks.
Two situations can cause a rollback: (1) there is one error-free checkpoint produced by the
original task pair and the rollback iterations need only to generate another correct check-
point; and (2) both checkpoints are erroneous for the original task pair run and the rollback
iterations need to produce two valid checkpoints. Their probabilities are p; = 2ps(1 — py)
and p; = p"}, respectively. Let the i-th iteration of the rollback retries lead to a match in
checkpoints, and let s be the situation number. The conditional probability given a rollback
situation for i is then

Py (L - pp),s i>1,s=1,

p(i,s) = '
G-Dp1-ps)? i22,8=2

Since all of the checkpoint comparisons during the previous 7 — 1 iterations have failed for

a given 1, the number of checkpoint comparisons can be calculated as

= G+2)(i-1)
i+1) = ~—2 2
j;() 5

The number of checkpoint comparisons for the i-th iteration is expected as 1.5 for situation
1 since there is a valid checkpoint among the first two uncommitted checkpoints (produced
by the original task pair) and 523 for situation 2. Thus, the expected execution time is

T, = n(A+tk)+np1{tt+§:[i(A+tk+t,)+tt(Qi—2—)§(i—_——l—)+1.5)]p(i|1)}

=1

142

+np2 {tz + i [i(A rtett) +aEE 2)2“ . i; 1)] P(i|2>}

=2

2 2
= n(A+t) (1 + %—;}ﬂ) +ut, L P2

l-Pf
+nt ps(10 — 15p; + 18p% — 7p})
t 2(1 - ps)? A+t
and
R, = 1+P1+2P2 n+2p2 1 pf(10—15pf+18p§_7p§) t,

1 - py l1-ps A+t 2(1-py)? A+t
The number of checkpoints accumulates as the rollback iteration increases. For the j-th

iteration, there are j + 2 checkpoints. Thus,

_ i 15(i+ 3)t, s=1
[Nttt = TG+ +t+t+t)+
j=1 !i+32!!f+1!tt, s = 2

[@m} (Att+t)+ [i(i+1;(i+2) .\ i(i;—l)] .

1.5(i+3)t, s=1
!1’+32Mi+1!tt, s=2

Therefore,

Te o0 x

/0 N(t)dt = n(A+t)+np Y / No(tli, 1)dtp(il1) + npe 3 / No(tli, 2)dtp(i[2)
1=1 =1
and,
_ 1t+3p2 | 2p1+4p2| 1 p1+3p2 | 2p1+4p; t
Ne = |1+ 2 B 2
(1-py) l-ps | Re (1-py) 1-ps | (A+t)R.

[21’1 +8p2 m+6p2 , 3/2p1+3p2 | I; +3;2 t;
(1-ps)® " (1-pg)? 1-py 2 (A+te)R.

143

Similarly

N = 14 LyBtm b P +3p2 P2 mtpf &
P R, R. A+ (l—pf)2 1-py 2 A+t

If a single file server is used, the spontaneous file accesses occur only during executions of
the tagk pair. During recovery, DMR-B-1 uses only one processor and has no bearings on

tx and t.. Thus,

A+t tk
Re(fs) = xRt xron
A+t L
Ne(fs) A+ th)Nc + +(A + 2tx)Re(fs)’
t
No(f) = Atte oo 2tk

A+2t 7 (A+2t)R(fs)

A.5. DMR-B-2

Like DMR-B-1, this scheme employs the recursive rollback to find a pair of matched
checkpoints. However, they differ in that DMR-B-2 uses two rollback tasks whereas DMR-
B-1 uses one. If the task execution succeeds at the i-th iteration, three situations can
happen. (1) There are no error-free checkpoints produced in the previous ¢ — 1 iterations
and two error-free checkpoints at the i-th iteration; (2) there is a correct checkpoint during
the previous i— 1 iteration and one for the i-th iteration; and (3) there is a correct checkpoint
for the previous ¢ — 1 iterations and two for the i-th iteration. It can be shown that the

probability of the task succeeding in the i-th iteration (¢ > 1) in situation s is

4

P - pp)?, s=1,

P9) =3 4= 1)pf - pp) s=2,

| 20 - 1)pF%(1-pg)?, s=3

144

To calculate the number of checkpoint comparisons needed for a given ¢, we need to
know the order in which we compare a checkpoint against a set of checkpoints. We assume
that the checkpoints produced are stored in a list according to their creation time. When a
new checkpoint is compared against the list, the order of comparison is from the first to the
last one in the list. It can be shown that the number of comparisons (n.) for a successful

execution of ¢ iterations is

'4(i—1)+1—6(z‘—-1), s=1
-1

ne(i,s) = S MG -D+1+4 2 -1)+1/2, s=2
1=1

| (i-1)+1/2, s=3

(
41 - 3, s=1,

= 2(i4+1)i-Ti4+3 + < 2i—~3/2, s=2,

{ i—1/2, s=3.
Thus, the expected execution time is

co 3

n Y Y [H(A + te) + (1 = 1t + (i,)te] p(i, s)

=1 s=1

T,

2 2 2 2
n(A + 1) [1+(pf(p,+1’f+)] pi(P% +ps+2)

T=p)L +p2] =P +ps)?

dps + 3 6 + 2p; - p?
+nt, |4p?
t[T+ A -pp2 P (Ut

ps(p} +ps+2) pr(p}+pr+2) 4,
(Q-pr)A+ps)? (A-pr)1+ps) A+t

4p; + 3 6+2ps —p3] ¢,
+ |4p? .
[Passt-pr2 TP +ps)? A+t

R, = 1+

145

Similarly,
N = ps(6+5p;+3p5 - 303 +p1)] 1 | pr(6+5pr +3pF —3p5+ 7)) ¢
‘ 1+ - ps)? R. A+m)1-p)?R. A+t
+pf(137 +10p; — 16p} — 22p3 + 19p} + 4p} — 405 ¢,
(1-ps)3(1 +ps)* A+t

N, = maz(N,) = 2.

Given the file server impact,

R(fs) = 1+ ps(p} +ps +2) pr(Pd+pr+2) 2,
) (A-pp)A+ps)? (A-ps)(1+ps)? B+ 2t
+ |42 4ps +3 p6+2p,-p§ t,
P+ pP=p2 "V (+pp? | A+2t

N.(fs) = [1 N ps(6+5ps +3p% — 3p7 +p})] 1
(1+7p3)(1 - py)? R.(fs)
ps(6+ 5py + 3p% — 3p7 +p}) 2,
(1+p3)(1 —ps)?Re(fs) A+ 2t
+pf(137 + 10py — 16p% — 22p + 19p} + 4p} — 40§ ¢, ’
(1-ps)3(+ps)? A + 2

|
i

Np(fs)

A.6. Self-Testable Scheme

In this scheme, a test on a checkpoint is enough to validate this checkpoint, and thus no
rollback validation is needed. Let ! and r be the expected number of successful lookaheads

and rollbacks, respectively. Thus,

m = 2pg(1-ps),

pPr = pfv

146

npr
1-pr

T -

Unlike DMR-F-1 and DMR-F-2, the self-testable scheme rolls back only one computation

session when both checkpoints of the original task pair are tested erroneous. Thus,

T, = n(A+te)+1(te +te) +7(A+ e + 1. +2t)

P+ pr +nttpl+2pr’
1-pr 1-pr

a(A + tg) (1 + I—f’—) + nt,

Dr

Pr + ptp i p+2pr 1
1-p, 1-p. A+t 1-p. A+t

R. = 1+

The number of checkpoints is one for both normal and lookahead executions and three for

the checkpoint testing. Therefore,

T.
/ Not)dt = n(A+tx)+ 30t + 1t + (A + ti + 1) + 37(28)
0

= T.+2(1+ 2r)t,,
¢ 1-p A+t ’
maz(N.) = 3.

Since no lookahead from the erroneous checkpoint is scheduled, the number of processors

used is still two during the lookahead execution. Then we have

N, = maz(N,) = 2.

A.7. Graceful Performance Degradation Scheme

The analysis for the DMR-F-1 degradation scheme is almost identical with that of
DMR-F-1. We are not going to repeat these formulas here but list the differences between

this degradation scheme and DMR-F-1:

147

The probability of successful lookaheads is half of that for DMR-F-1, since half of the
lookaheads fail when the misscheduled lookahead process happens to be the correct

lookahead.

The probability of rollback increases to include the additional failed lookaheads.

The number of checkpoints during the checkpoint testing is six instead of eight in

DMR-F-1.

The number of processors used is three during lookahead execution instead of five for

DMR-F-1.

148

REFERENCES

[1] P. L’Ecuyer and J. Mallenfant, “Computing optimal checkpointing strategies for roll-
back and recovery systems,” IEEE Trans. Comput., Vol. 37, No. 4, pp. 491-496, April
1988.

[2] S. Toueg and O. Babaoglu, “On the optimum checkpoint selection problem,” SIAM J.
Comput., Vol. 13, pp. 630-649, Aug. 1984.

[3] C. M. Krishna, K. G. Shin, and Y.-H. Lee, “Optimization criteria for checkpoint place-
ment,” CACM, Vol. 27, No. 6, No. 6, pp. 1008-1012, Oct. 1984.

[4] A. Duda, “The effects of checkpointing on program execution time,” Information Pro-
cessing Letters, Vol. 16, pp. 221-229, 1983.

[5] E. Gelenbe and D. Derochette, “Performance of rollback recovery systems under inter-
mittent failures,” CACM, Vol. 21, No. 6, No. 6, pp. 493-499, 1978.

[6] J. W. Young, “A first order approximation to the optimal checkpoint interval,” CACM,
Vol. 17, No. 9, pp. 530-531, Sept. 1974.

[7) P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice. Springer-
Verlag/Wien, 1990.

[8] D. J. Taylor and J. P. Black, “A locally correctable b-tree implementation,” Comput.
J., Vol. 29, No. 3, pp. 269-276, June 1986.

[9] C.-C. J. Li, P. P. Chen, and W. K. Fuchs, “Local concurrent error detection and
correction in data structure using virtual backpointers,” IEEFE Trans. Comput., Vol. 38,
No. 11, No. 11, pp. 1481-1492, 1989.

[10] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS Spring Joint Comput. Conf., pp. 483-485, April
1967.

[11] C. C. Li and W. K. Fuchs, “CATCH: Compiler-assisted techniques for checkpointing,”
Proc. 20th Int. Symp. Fault-Tolerant Comput., pp. 74-81, 1990.

[12] B. Randell, “System structure for software fault tolerance,” IFEFFE Trans. Software
Eng., Vol. 1, No. 2, pp. 220-232, June 1975.

[13] K. Tsuruoka, A. Kaneko, and Y. Nishihara, “Dynamic recovery schemes for distributed
processes,” Proc. IEEE 2nd Symp. on Reliability in Distributed Software and Database
Syst., pp. 124-130, 1981.

149

[14] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” CACM,
Vol. 21, No. 7, pp. 558-566, July 1978.

[15] K.-L. Wu, W. K. Fuchs, and J. H. Patel, “Error recovery in shared memory multi-
processors using private caches,” IEEE Trans. Parallel and Distributed Syst., Vol. 1,
No. 2, No. 2, pp. 231-240, 1990.

[16] K.-L. Wu and W. K. Fuchs, “Recoverable distributed shared virtual memory,” IEEFE
Trans. Comput., Vol. 39, No. 4, pp. 460-469, April 1990.

[17] R. E. Ahmed, R. C. Frazier, and P. N. Marinos, “Cache-aided rollback error recovery
(carer) algorithms for shared-memory multiprocessor systems,” Proc. 20th Int. Symp.
Fault- Tolerant Comput., pp. 82-88, 1990.

[18] B. Janssens and W. K. Fuchs, “Experimental evaluation of multiprocessor cache-based
error recovery,” Proc. Int. Conf. Parallel Processing, Vol. I, pp. 505-508, Aug. 1991.

[19] J. F. Bartlett, “A nonstop kernel,” Proc. ACM 8th Symp. Oper. Syst. Principles,
pp. 22-29, Dec. 1981.

[20] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, “Fault tolerance under
unix,” ACM Trans. Comput. Syst., Vol. 3, No. 1, No. 1, pp. 63-75, Feb., 1985.

[21] M. L. Powell and D. L. Presotto, “Publishing: A reliable broadcast communication
mechanism,” Proc. 9th Symp. Oper. Syst. Principles, pp. 100-109, Oct., 1983.

[22] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems using optimistic
message logging and checkpointing.,” J. Algorithms, Vol. 11, No. 3, pp. 462-491, Sept.
1990.

(23] T. T.-Y. Juang and S. Venkatesan, “Efficient algorithms for crash recovery in dis-
tributed systems,” Proc. 10th Conf. Foundations of Software Technology and Theoret-
ical Comput. Sci., pp. 349-361, 1990.

[24] T. T.-Y. Juang and S. Venkatesan, “Crash recovery with little overhead,” Proc. 11th
Int. Conf. Distributed Comput. Syst., pp. 454-461, May 1991.

[25] A. P. Sistla and J. L. Welch, “Efficient distributed recovery using message logging,”
Proc. 8th Symp. Principles of Distributed Comput., Aug. 1989.

[26] R. E. Strom and S. A. Yemini, “Optimistic recovery in distributed systems,” ACM
Trans. Comput. Syst., Vol. 3, No. 3, pp. 204-226, Aug. 1985.

[27] P. Agrawal, “RAFT: A recursive algorithm for fault-tolerance,” Proc. Int. Conf. Par-
allel Processing, pp. 814-821, 1985.

[28] P. Agrawal and R. Agrawal, “Software implementation of a recursive fault-tolerance al-
gorithm on a network of computers,” Proc. 13th Annual Symp. Comput. Arch., pp. 65—
72, 1986.

150

[29] A. Tantawi and M. Ruschitzka, “Performance analysis of checkpointing strategies,”
ACM Trans. Comput. Syst., Vol. 2, No. 2, pp. 123-144, May 1984.

[30] S. Thanwastien, R. S. Pamula, and Y. L. Varol, “Evaluation of global rollback strategies
for error recovery in concurrent processing systems,” Proc. 16th Int. Symp. Fault-
Tolerant Comput., pp. 246-251, 1986.

[31] Y.-H. Lee and K. G. Shin, “Design and evaluation of a fault-tolerant multiprocessor
using hardware recovery blocks,” IEEE Trans. Comput., Vol. 33, No. 2, No. 2, pp. 113-
124, 1984.

[32] N. H. Vaidya and D. K. Pradhan, “Fault-tolerant design strategies for high reliability
and safety,” Tech. Rep. Manuscript, Department of Electrical and computer Engineer-
ing, University of Massachusetts at Amherst, 1992.

[33] L. M. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach to
reliability of software operation,” Proc. 8th Int. Symp. Fault-Tolerant Comput., pp. 3-9,
1978.

[34] J.-Y. Jou and J. A. Abraham, “Fault-tolerant matrix operation on multiple processor
systems using weighted checksums,” SPIE Proc., Vol. 495, Aug. 1984.

(35] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix opera-
tions,” IEEE Trans. Comput., Vol. 33, No. 6, pp. 518-528, June 1984.

[36] M. A. Vouk, A. M. Paradkar, and D. F. McAllister, “Modeling execution time of multi-
stage n-version fault-tolerant software,” Proc. COMPSAC 90, pp. 505-511, 1990.

[37] K. H. Kim and H. O. Welch, “Distributed execution of recovery blocks: An approach
for uniform treatment of hardware and software faults in real-time applications,” IEEFE
Trans. Comput., Vol. 38, No. 5, No. 5, pp. 626-636, 1989.

[38] J. M. Smith, “Implementing remote fork() with checkpoint/restart,” Tech. Committee
on Oper. Syst. Newsletter, Vol. 3, No. 1, No. 1, pp. 15-19, 1989.

[39] M. Litzkow, M. Livny, and M. Mutka, “CONDOR - A hunter of idle workstations,”
Proc. 8th int. Conf. Distributed Comput. Syst., 1988.

[40] D.J. Taylor and M. L. Wright, “Backward error recovery in a unix environment,” Proc.
16th Int. Symp. Fault-Tolerant Comput., pp. 118-123, 1986.

[41] SPEC, SPEC Neuwsletter. Fremont, CA: SPEC, Feb. 1989.

[42] S. Feldman and C. Brown, “A system for program debugging via reversible execution,”
ACM SIGPLAN Notices, Workshop on Parallel and Distributed Debugging, Vol. 24,
No. 1, pp. 112-123, Jan. 1989.

[43] D. Pan and M. Linton, “Supporting reverse execution for parallel programs,” ACM
SIGPLAN Notices, Workshop on Parallel and Distributed Debugging, Vol. 24, No. 1,
pp. 124-129, Jan. 1989.

151

[44] L. D. Wittie, “Debugging distributed ¢ programs by real time replay,” ACM SIGPLAN
Notices, Workshop on Parallel and Distributed Debugging, Vol. 24, No. 1, pp. 57-67,
Jan. 1989.

[45] K. Li, J. F. Naughton, and J. S. Plank, “Real-time, concurrent checkpoint for paral-
lel programs,” Proc. 2nd ACM SIGPLAN Symp. Principles and Practice of Parallel

Programming, pp. 79-88, March 1990.

[46] J. Long, W. K. Fuchs, and J. A. Abraham, “A forward recovery strategy using check-
pointing in parallel systems,” Proc. Int. Conf. Parallel Processing, Vol. 1, pp. 272-275,
1990.

[47) J. Long, W. K. Fuchs, and J. A. Abraham, “Implementing forward recovery using
checkpointing in distributed systems,” Proc. 2nd IFIP Working Conf. Dependable
Comput. for Critical Applications, pp. 20-27, Feb. 1991.

[48] K. M. Chandy and C. V. Ramamoorthy, “Rollback and recovery strategies for computer
programs,” IEEE Trans. Comput., Vol. 21, No. 6, pp. 546-556, June 1972.

[49] J. S. Upadhyaya and K. K. Saluja, “A watchdog processor based general rollback
technique with multiple retries,” IEEE Trans. Software Eng., Vol. 12, No. 1, pp. 87—
95, Jan. 1986.

[50] J. S. Upadhyaya and K. K. Saluja, “An experimental study to determine task size for
rollback recovery systems,” IEEE Trans. Comput., Vol. 37, No. 7, pp. 872-877, July
1988.

[51] R. M. Stallman, “Using and porting gnu cc,” Proc. 2nd Int. Conf. Comput. and Ap-
plications, 1990.

[52] A. C. Shaw, “Reasoning about time in higher-level language software,” IFEE Trans.
Software Eng., Vol. 15, No. 7, pp. 875-889, July 1989.

[53] ROSS Technology, SPARC RISC User’s Guide. ROSS Technology, Inc., 1990.

[54] B. Bhargava and S. R. Lian, “Independent checkpointing and concurrent rollback for
recovery - An optimistic approach,” Proc. IEEE Symp. Reliable Distributed Syst., pp. 3-
12, 1988.

[55] A. Borg, J. Baumbach, and S. Glazer, “A message system supporting fault tolerance,”
Proc. ACM 9th Symp. Oper. Syst. Principles, pp. 90-99, Oct. 1983.

[56] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of
distributed systems,” ACM Trans. Comput. Syst., Vol. 3, No. 1, pp. 63-75, Feb. 1985.

[57] M. Spezialetti and P. Kearns, “Efficient distributed snapshots,” Proc. 6th Int’l. Conf.
Distributed Comput. Syst., pp. 382-388, 1986.

[58] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems,”
IEEE Trans. Software Eng., Vol. 13, No. 1, pp. 23-31, Jan. 1987.

152

[59] K. Li, J. F. Naughton, and J. S. Plank, “Checkpointing multicomputer applications,”
Proc. 10th Symp. Reliable Distributed Syst., pp. 2-11, 1991.

[60] Z. Tong, R. Y. Kain, and W. T. Tsai, “Rollback recovery in distributed systems using
loosely synchronized clocks,” IEEE Trans. Parallel and Distributed Syst., Vol. 3, No. 2,
pPp- 246-251, March 1992.

[61] F. Cristian, “A timestamp-based checkpoint protocol for long-lived distributed com-
putations,” Proc. 10th Symp. Reliable Distributed Syst., pp. 12-20, 1991.

[62] K. Li, “IVY: A shared virtual memory systems for parallel computing,” Proc. Int.
Conf. Parallel Processing, pp. 94-101, 1988.

[63) H. Tokuda, C. W. Mercer, Y. Ishikawa, and T. E. Marchok, “Proiority inversions in
real-time communication,” Proc. 10th IEEE Real-Time Syst. Symp., Dec. 1989.

[64] H. Tokuda and C. W. Mercer, “ARTS: Adistributed real-time kernel,” ACM Oper.
Syst. Rev., Vol. 23, No. 3, July 1989.

[65] K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,” Proc. 5th
ACM Symp. Principles Distributed Comput., pp. 229-239, 1986.

[66] J.-M. Hsu and P. Banerjee, “Hareware support for message routing in a distributed
memory multicomputer,” Proc. Int. Conf. Parallel Processing, pp. 508-515, Aug. 1990.

(67] J. Long, W. K. Fuchs, and J. A. Abraham, “Compiler-assisted static checkpoint inser-
tion,” Proc. 22th Int. Symp. Fault-Tolerant Comput., 1992.

[68] P. A. Bernstein, “Sequoia: a fault-tolerant tightly coupled multiprocessor for transac-
tion processing,” IEEE Comput., Vol. 21, pp. 37-45, Feb. 1988.

[69] N. S. Bowen and D. K. Pradhan, “Vitual checkpoints: Architecture and Performance,”
IEEFE Trans. Comput., Vol. 41, No. 5, May 1992.

[70] T. P. Ng, “Checkpointing in a virtual shared memory system,” Tech. Rep. UITUCDCS-
R-91-1700, Department of Computer Science, University of Illinois, Dec. 1991.

[71] D. B. Hunt and P. N. Marinos, “A general purpose cache-aided rollback error recovery
(CARER) technique,” Proc. 17th Symp. Fault-Tolerant Comput., pp. 170-175, 1987.

[72] Encore Computer Corporation, Multimaz Technical Summary. Encore Computer Cor-
poration, Jan. 1989.

153

VITA

Junsheng Long received a B.S. degree in Geography in 1986 from Beijing University,
Beijing, China. He also received an M.S. degree in Watershed Management in 1986 and
an M.S. in Electrical Engineering in 1987 from the University of Arizona, Tucson, Arizona.
While pursuing his Ph.D. degree at the University of Illinois, he held a research assistantship
in the Center for Reliable and High-Performance Computing at the Coordinated Science
Laboratory from 1987 to 1992. He is a member of Phi Kappa Phi and a student member
of the IEEE Computer Society. Upon completing his Ph.D. degree, he will join the Depart-
ment of Computer Science, the University of North Carolina at Charlotte, as an assistant
professor. His research interests include parallel and distributed processing, object-oriented

programming, software engineering, and fault-tolerant computing.

