
NASA-CR-i95760

January 1994 UILU-ENG-94-220 i

CRHC-94-01

Center for Reliable and High-Performance Computing

J

I&&i

CHECKPOINT-BASED
FORWARD RECOVERY
USING LOOKAHEAD EXECUTION
AND ROLLBACK VALIDATION
IN PARALLEL AND
DISTRIBUTED SYSTEMS

Junsheng Long
(NASA-CR-195760) CHECKPOINT-BASED

FORWARD RECOVERY USING LOOKAHEAD

EXECUTION AND ROLLBACK VALIDATION

IN PARALLEL AND DISTRIBUTED SYSTEMS

Ph.D. Thesis, 1992 (Illinois

Univ.) 166 p

G3162

N94-29869

Unclas

0003765

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

https://ntrs.nasa.gov/search.jsp?R=19940025365 2020-06-16T14:54:57+00:00Z

SECURIfY CIJ_SSIFIC...AFION OF THiS _AGE

1

la. REPORT SECURITY CLASSIFICATION

Unclassi f led

2a. SECURITY CLASSIFICATION AUTHORITY

2b. OECL.ASSiFICATION / OOWNGR._DING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-94-2201 (CRHC-94-OI)

6=.NAME OF PERFORMING ORGAN_a_TION 16b.
Coordinated Science Lab IUniversity of Illlnois

k. ADDRESS(Or/, State, _nd Z_ Code)

ii01 W. Springfield Ave.

Urbana, IL 61801

8,1. NAME OF FUNOINGISPONSORING

ORGANIZATION

7a

8c. ADDRESS (G'ty, State, and ZlP Code)

800 N. Quincy St.

Arlington, VA 22217 7b.

1 1. TITLE (Include ._cur/liy Classification)

REPORT DOCUMENTATION PAGE

OFFICE SYMBOL

(/f ap_icab/e)

N/A

I Eb. OFFICE SYMBOL
(If ,lalaiicJble)

lb. RESTRICTIVE MARKINGS'

None

3. OISTRIBUTION/AVAILABIUTY OF REPORT

Approved for public release;

distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7,1. NAME OF MONITORING ORGANIZATION

Office of Naval Research

7b. ADORESS(Oty, SMte, and_PCode)

800 N. Quincy St.

Arlington, VA 22217

& NASA

Ames Research Ctr

Moffett Field, CA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NO0014-9 l-J- 1283

10. SOURCE OF FUNDING NUMBERS

ELEMENT NO.

NASA NAG 1-613

WORK UNIT

ACCESSION NO.

Checkpoint-Based Forward Recovery Using Lookahead Execution

and Rollback Validation in Parallel and Distributed Systems

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT

Technical

16. SUPPLEMENTARY NOTATION

LONG, Junsheng

13b. TIME COVERED
FROM 14. DATE OF REPORT O'ear,_Dmy) kS. PAGE COUNTTO 94-01-28 | 163

17. COSATI CODES I 18. SUBJECT TERMS (Continue on reverse if necessity #rid idel_fy by bloct number)

FIELD I GROUP I SUB-GROUP I checkpointing, evolutionary, checkpoint placement, roll-I i back, lookahead, distributed systems, forward recovery

!9. ABSTRACT (Continue on reverse if rl_essary and identify by block number)

This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel

and distributed systems. The approach uses replicated tasks executing on different processors for forward

recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs
a lower static redundancy in the common error-free situation to detect error than the standard N Module

Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses

some extra redundancy for recovery. To reduce the run-time recovery overhead, lookahead processes are

used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct
lookahead processes without rollback of the whole system. Both analytical and experimental evaluation
have shown that this strategy can provide a nearly error-free execution time even under faults with a lower
average redundancy than NMR.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

[] UNCLASSIFIED/UNLIMITED C_ SAME AS RPT.

22a. NAME OF RESPONSIBLE INDIVIDUAL

(continued on back)

21. ABSTRACTSECURITYCLASSIFICATION

| Unclassified 122c. OFFICE SYMBOLO DTIC USERS J22b. TELEPHONE (Include Area COde)

I I

83 APR edition may be used until exhausted. SE(_JRITY _I.AS$1FICATION OF THIS PAGE
All other editions are obsolete.

UNCLASSIFIED

00 FORM 1473, 84 MAR

CHECKPOINT-BASED FORWARD RECOVERY

USING LOOKAHEAD EXECUTION AND ROLLBACK VALIDATION

IN PARALLEL AND DISTRIBUTED SYSTEMS

BY

JUNSHENG LONG

B.S., Beijing University, 1982

M.S., University of Arizona, 1986

M.S., University of Arizona, 1987

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1992

Urbana, Illinois

CHECKPOINT-BASED FORWARD RECOVERY

USING LOOKAHEAD EXECUTION AND ROLLBACK VALIDATION

IN PARALLEL AND DISTRIBUTED SYSTEMS

iii

Junsheng Long, Ph.D.

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1992

Jacob A. Abraham and W. Kent Fuchs, Advisors

This thesis studies a forward recovery strategy using checkpointing and optimistic ex-

ecution in parallel and distributed systems. The approach uses replicated tasks executing

on different processors for forward recovery and checkpoint comparison for error detection.

To reduce overall redundancy, this approach employs a lower static redundancy in the com-

mon error-free situation to detect error than the standard N Module Redundancy scheme

(NMR) does to mask off errors. For the rare occurrence of an error, this approach uses

some extra redundancy for recovery. To reduce the run-time recovery overhead, lookahead

processes are used to advance computation speculatively and a rollback process is used to

produce a diagnosis for correct lookahead processes without rollback of the whole system.

Both analytical and experimental evaluation have shown that this strategy can provide a

nearly error-free execution time even under faults with a lower average redundancy than

NMR.

Using checkpoint comparison for error detection calls for a static checkpoint placement

in user programs. Checkpoint insertions based on the system clock produce dynamic check-

points. A compiler-enhanced polling mechanism using instruction-based time measures is

utilized to insert static checkpoints into user programs automatically. The technique has

iv

been implemented in a GNU CC compiler for Sun workstations. Experiments demon-

strate that the approach provides stable checkpoint intervals and reproducible checkpoint

placements with performance overhead comparable to a previous compiler-assisted dynamic

scheme (CATCH).

Obtaining a consistent recovery line is another issue to consider in this forward recovery

strategy. Checkpointing concurrent processes independently may lead to an inconsistent

recovery line that causes rollback propagations. In this thesis, an evolutionary approach to

establish a consistent recovery line with low overhead is also described. This approach starts

a checkpointing session by checkpointing each process locally and independently. During

the checkpoint session, those local checkpoints may be updated, and this updating drives

the recovery line evolve into a consistent line. Unlike the globally synchronized approach,

the evolutionary approach requires no synchronization protocols to reach a consistent state

for checkpointing. Unlike the communication synchronized approach, this approach avoids

excessive checkpointing by providing a controllable checkpoint placement. Unlike the loosely

synchronized schemes, this approach requires neither message retry nor message replay

during recovery.

ACKNOWLEDGMENTS

I wouldlike to expressmy sinceregratitudeto my thesisadvisors,ProfessorsAbraham

andFuchs,for their support,patience,andguidancethroughoutthis thesisresearch.It is

ProfessorAbrahamwho gavemetheopportunity to pursuemy graduatestudy at Illinois.

After ProfessorAbrahamleft for the Universityof Texasat Austin, ProfessorFuchstook

meunderhiswing.

I would also like to thank ProfessorsIyer, Banerjee,Wah, and Ng for servingon

my committee,andall of my colleaguesat the Centerfor Reliableand High-Performance

Computingin the CoordinatedScienceLaboratoryfor their friendshipand assistance.In

particular, I wish to thankDavidBlaauw,PrakashNarain,HongchaoDong,Yi-min Wang,

BobJanssens,andVicki McDaniel.

Finally,I wouldlike to thankmy wife,Susan,for herlove,understandingandencour-

agementthroughoutmy graduatestudy. I amalsogratefulto my parentsfor their support

andguidancethroughoutmy life.

This researchwassupportedin part by the Departmentof the Navyandmanagedby

the Officeof the Chiefof NavalResearchunderContractN00014-91-J-1283,andin part by

the NationalAeronauticsand SpaceAdministration(NASA) underContractNAG 1-613,

in cooperationwith the Illinois ComputerLaboratoryfor AerospaceSystemsandSoftware

(ICLASS).

vi

TABLE OF CONTENTS

CHAPTER PAGE

.

.

.

INTRODUCTION

1.1. Error Recovery

1.2. Motivation

1.3. Objective

1.3.1. Forward recovery using lookahead execution and rollback validation

1.3.2. Implementation and experimentation in a distributed system . .

1.3.3. Compiler-assisted static checkpoint insertion
1.3.4. Evolutionary approach to concurrent checkpointing

1.4. Thesis Overview

FORWARD RECOVERY USING LOOKAHEAD EXECUTION

AND ROLLBACK VALIDATION

2.1. Introduction

2.2. Computation and System Model

2.2.1. Computation and system

2.2.2. Computation task

2.2.3. Checkpoint

2.2.4. Checkpoint test
2.3. Fault Model

2.4. Recovery Using Optimistic Execution and Rollback Validation

2.5. Scheme Design Considerations
2.5.1. Lookahead and rollback scheduling

2.5.2. Test information

2.5.3. State information

2.5.4. Graceful degradation

ANALYTICAL EVALUATION

3.1. Performance Metrics

3.2. Basic Assumptions

3.3. Recovery Schemes Using Comparison Tests

3.3.1.

3.3.2.

3.3.3.

3.3.4.

3.3.5.

3.3.6.

3.3.7.

3.3.8.

Alternative recovery schemes

DMR-F-I: Forward recovery with one rollback validation

DMR-F-2: Forward recovery with two rollback validations . . .

TMR-F: Triple module redundancy
DMR-B-I: Backward recovery with one rollback process

DMR-B-2: Backward recovery with two rollback processes . . .

Discussion

Comparison

9

9

10

10

11

11

12

12

13

15

15

17

18

18

20

20

21

22

22

23

26

28

29

31

31

34

vii

3.4.

3.5.

3.6.

3.3.9. Overhead impact

3.3.10. File server impact

3.3.11. Optimal checkpoint placement
Self-Testable Scheme

Graceful Performance Degradation Scheme

Summary

. EXPERIMENTAL EVALUATIO N

4.1. Introduction

4.2. Host Environment

4.3. Basic Problems

4.4. Checkpoint Construction

4.4.1. Checkpoint structure

4.4.2. Checkpoint operations

4.4.3. Restartability

4.4.4. Comparability

4.5. Voter and Recovery Management

4.6. Experiments

4.6.1. Benchmark programs

4.6.2. Checkpoint placement

4.6.3. Error injection

4.6.4. Program characteristics

4.6.5. Error detection by checkpoint comparison
4.6.6. Performance results

4.7. Summary

5. COMPILER-ASSISTED STATIC CHECKPOINT INSERTION

5.1. Introduction

5.2. Checkpoint Insertion Problem
5.2.1. Checkpoint operations

5.2.2. Checkpoint interval maintenance

5.3. Static Checkpoint Insertion

5.3.1. Instruction-based time measure

5.3.2. Checkpoint insertion schemes
5.3.3. SLFC determination

5.4. Implementation and Experimental Evaluation

5.4.1. Base compiler and insertion filter

5.4.2. Benchmark programs

5.4.3. Checkpoint intervals

5.4.4. Checkpoint interval maintenance overhead

5.4.5. Profiling and SLFC selection

5.4.6. Comparison with CATCH

5.5. Summary

37

39

40

41

43

47

49

49

50

50

51

51

52

52

54

54

56

56

57

59

59

60

62

68

70

70

72

72

73

76

76

81

81

84

84

84

88

92

95

96

97

Vlll

6. EVOLUTIONARY CONCURRENT CHECKPOINTING

6.1. Introduction

6.1.1. Inconsistent recovery line and rollback propagation

6.1.2. Previous approaches

6.2. Evolutionary Checkpointing

6.2.1. Computation model

6.2.2. Approach

6.2.3. Detailed description

6.3. Correctness

6.4. Performance Considerations

6.4.1. Convergence time
6.4.2. Run-time overhead

6.4.3. Memory overhead

6.5. Applications to Shared-Memory Systems

6.5.1. Recovery in cache-based multiprocessor systems

6.5.2. Shared virtual memory system

6.6. Summary

7. CONCLUSIONS

7.1. Summary
7.2. Discussion and Future Research

7.2.1. Forward recovery in parallel and distributed systems

7.2.2. Compiler-assisted static checkpoint insertion

7.2.3. Evolutionary concurrent checkpointing

APPENDIX A. ANALYTICAL DERIVATIONS

A.1. DMR-F-1

A.2. DMR-F-2

A.3. TMR-F

A.4. DMR-B- 1

A.5. DMR-B-2

A.6. Self-Testable Scheme

A.7. Graceful Performance Degradation Scheme

REFERENCES

99

99

99

I00

103

103

106

107

114

117

117

118

121

121

122

126

129

130

130

132

132

133

134

135

135

136

139

141

143

145

146

148

VITA .. 153

LIST OF TABLES

ix

Table

2.1.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

4.1.

4.2.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

Recovery Scheme Classification

Five Schemes Using Checkpoint Comparison Test

Analytical Evaluation Summary: DMR-F-1

Analytical Evaluation Summary: DMR-F-2

Analytical Evaluation Summary: TMR-F

Analytical Evaluation Summary: DMR-B-1

Analytical Evaluation Summary: DMR-B-2

Analytical Evaluation Summary: Self-Testable Scheme

Analytical Evaluation Summary: Graceful Degradation Scheme

Overhead Measurements

Error Detection Through Checkpoint Comparison

Four Static Checkpoint Insertion Schemes

Benchmark Characteristics

Checkpoint Interval Maintenance (Sun 3)

Interrupt Driven Dynamic Scheme (Sun 3)

Checkpoint Interval Maintenance (Sun 4)

Checkpoint Interval Maintenance Overhead (Sun 3)

Checkpoint Interval Maintenance Overhead (Sun 4)

SL-SL Profiling Summary

SL-SL Results for Nonprofiled Data Sets

5.10. Run-Time Overhead (7o) Comparison: Static vs. Dynamic Schemes

Page

17

22

27

28

29

3O

32

42

45

58

61

82

88

89

91

91

93

95

96

96

97

x

6.1. Hypercube Program Traces

6.2. Communication Characteristics of Hypercube Traces

119

120

LIST OF FIGURES

xi

Figure

2.1. LookaheadExecutionand RollbackValidation.................

3.1. Comparison:RelativeExecutionTime......................

3.2. Comparison:Numberof Processors.......................

3.3. Comparison:Numberof Checkpoints......................

3.4. OverheadImpact on ExecutionTime......................

3.5. OverheadImpact on Numberof Processors...................

3.6. OverheadImpact on Numberof Checkpoints..................

3.7. Impactof a CentralFile Serveron ExecutionTime..............

3.8. Optimal CheckpointPlacement.........................

3.9. Self-TestableScheme:Re Comparison

3.10. Self-Testable Scheme: Nc Comparison

3.11. Degraded Scheme: Re Comparison

3.12. Degraded Scheme: Np Comparison

3.13. Degraded Scheme: Nc Comparison

4.1. Checkpoint Placement Using Selected Loop Count

4.2. Relative Execution Time During the Day

4.3. Relative Execution Time During the Night

4.4. Difference in Execution Time

4.5. Number of Processors During the Day

4.6. Number of Processors During the Night

4.7. Number of Checkpoints During the Day

Page

14

34

35

35

38

38

39

40

41

43

44

46

46

47

58

62

63

63

65

66

66

xii

4.8. Numberof CheckpointsDuring the Night....................

4.9. VoterProcessingOverhead............................

5.1. Interrupt DrivenCheckpointInsertionin UNIX................

5.2. PoUing-basedCheckpointInsertionin UNIX..................

5.3. HeuristicSLFCSelectionAlgorithm.......................

5.4. BaseCompilerandIts CheckpointInsertionFilter...............

6.1. RollbackPropagation...............................

6.2. LocalVariablesandOperationsat EachProcessNode.............

6.3. SenderAlgorithm.................................

6.4. ReceiverAlgorithm................................

6.5. CheckpointSessionandRecoveryLines.....................

6.6. Exampleof a MessageBypassinga CheckpointSession............

6.7. AverageNumberof CheckpointUpdatesperSession..............

6.8. SchemeComparison: Checkpoint Frequency

6.9. Scheme Comparison: Total Checkpoint Size

67

67

75

77

85

86

100

107

108

109

110

113

125

127

127

CHAPTER 1.

INTRODUCTION

1.1. Error Recovery

Error recoveryis to removeall errorsresultingfrom a fault in a system.Thereare

twobasicapproachesto error recovery:backwardandforward.Backwardrecoveryremoves

errorsby restoringa previousstateof a systemregardlessof the current state (e.g, dis-

cardingthe currenterroneousstatealtogether).The state restorationapproachsimulates

the reversalof time during recovery.Backwardtechniquesaresuitablefor the unantici-

patederrors,sinceall currenterrorsaresimply discardedby rolling back to a previously

savedstate. Checkpointingand rollbackcomprisethe most commonbackwardrecovery

techniquein practice[1-6]. Duringcheckpointing,thesystemstateissavedin a checkpoint.

During recovery, the current state is discarded and the computation is restarted from the

last checkpoint. Checkpointing time and reprocessing time due to rollback are the major

components of recovery overhead. The validation of an error-free state or a checkpoint is

very important for a successful rollback recovery.

Forward recovery removes errors by manipulating some portion of the current (erro-

neous) state and generating a valid new next state. Forward recovery does not go back in

time during recovery. However, this approach depends on either an error correction mech-

anism or an error masking mechanism. The error correction mechanism requires accurate

errordamageassessmentand prediction,andspecificknowledgeabout error correctionfor

a particular system[7]. Theerrordetectionandcorrectioncodes,andthe correctabledata

structuresareexamplesof the error correction-basedforwardrecoveryschemes[8,9]. The

errormaskingmechanismusesastatic massiveredundancyand majority voting, suchasin

the standardNMR (N Module Redundacy).

Considerable research has been devoted to checkpoint-based backward recovery schemes

[1-4,7]. Few published efforts are known concerning checkpoint-based forward recovery

which do not depend on a specific error correction mechanism or massive redundancy. In

this thesis, such a checkpoint-based forward recovery strategy is studied for parallel and dis-

tributed systems. This approach exploits the inherent redundancy in today's performance-

oriented parallel and distributed systems. It requires neither a specific knowledge about

error correction nor a complete NMR for error masking. It performs checkpoint validation

through checkpoint comparison.

1.2. Motivation

Fault tolerance is an integrated part for systems that require high reliability and

availability. The following observations about fault-tolerant computing are made:

• Fault tolerance usually degrades the overall performance of the system. Redundancy

has been known as the heart of any fault-tolerant techniques [7]. The redundancy can

be either space redundancy which uses extra processing elements or time redundancy

which consumes additional processing time.

• Fault-tolerantsystemswith speciallybuilt hardwaremay be costly due to the eco-

nomicsof scale.The adventof high-performancelow-costmicroprocessorand inter-

connectiontechnologyhashelpedspurthegrowthof parallelanddistributedsystems.

Most of today's paralleland distributedsystemsemploy(possiblymassive)redun-

dancyfor thepurposeof highperformance.If this inherenthardwareredundancycan

beutilized for fault tolerance,thesesystemsmaysupportfault-tolerantoperationsin

a cost-effectivefashion.

• Not everyuserrequiresfault tolerance. Given the reliability of today'scomputing

systems,mostapplicationsareexecutedin sucha short time that anerroroccurrence

isveryunlikely.Whendesigningfault-toleranttechniques,wedonot wantto penalize

thoseuserswhodonot wantfault tolerance.

• The overall performancedegradationcanbe reducedby making common cases effi-

cient. Amdahl's law implies that any reductions in overhead from the frequent situa-

tions at the expense of increased overhead for the infrequent situations may decease

the overall overhead [10].

• If a software approach can achieve the fault-tolerant objectives with an overhead

comparable to the special hardware approach, then the software approach should be

preferred because software is flexible to accommodate changes in technologies and can

provide the desirable user transparency.

We strongly feel that the development of fault-tolerant designs should take the above

observations into consideration with an emphasis on high performance and low cost. This

thesis is motivated to exploit the inherent redundancy in the existing performance-oriented

paralleland distributed systemsfor fast error recovery.Our focus is softwareand low

overheadtechniques,andtheir evaluationsthroughimplementationand experimentation.

1.3. Objective

The objective of this thesis is to study a forward recovery strategy using optimistic ex-

ecution and rollback validation, and to examine the issues concerning this forward recovery

strategy such as performance evaluation, implementation, and experimentation. In addi-

tion, we want to study the practical issues such as compiler-assisted checkpoint insertions

and low-cost concurrent checkpointing.

1.3.1. Forward recovery using lookahead execution and rollback valida-
tion

Our approach to a general forward recovery in parallel and distributed systems is

to combine checkpointing with the replicated tasks that execute on different processors.

Optimistic execution of the replicating tasks facilitates forward recovery, while checkpoint

comparison is used to detect errors in computation (checkpoint validation). Compared

with the standard NMR approach, this strategy uses, on average, fewer processors and

can provide an execution time close to that of error-free execution. If one is willing to

replicate processes over different processors, our approach can be an attractive alternative

to achieve forward recovery in a parallel or distributed environment. The motivations behind

this forward recovery are to use existing redundancy in performance-oriented parallel and

distributed systems and to reduce the overhead of the common case.

5

1.3.2. Implementation and experimentation in a distributed system

We want to build our forwardrecoverystrategy in a softwaretool. With this tool,

userscan useit asthey desire,without penalizingother userswho do not. In addition,

we want to evaluatethe effectivenessand performanceof our forward recoverystrategy

with experimentsusingreal applications.Thus, wewant to implementour strategy in a

distributedsystem.Our approachto this implementationis to identifythebasicproblemsof

checkpointingin a realoperatingsystemandto developa checkpointlibrary that separates

theprocessinformationfrom theoperatingsystemandthat canbeinsertedinto application

programseithermanuallyor automaticallyby a compiler.

1.3.3. Compiler-assisted static checkpoint insertion

Our forward recoverystrategyrequirescheckpointsto be insertedin userprograms

at fixedlocations.Employinghardwareor not, ally checkpointinsertionapproachesbased

on the systemclockdo not supportsuchstatic checkpointinsertion. We want to develop

compiler-assistedtechniquesto insert static checkpointswith anoverheadcomparableto

the dynamiccheckpointinsertionschemes,without requiring specialhardware[11]. We

want the static checkpointinsertiontechniquesto be implementedas anoption in a real

compilerandlet usersdecidewhethertheywant to usethis option.

1.3.4. Evolutionary approach to concurrent checkpointing

Communicationbetweenconcurrentprocessesmakescheckpointingindividual pro-

cessesindependentlyinadequatebecausethis inconsistentrecoveryline may lead to the

rollback domino effect [12]. The common concurrent checkpointing schemes often result in

largecheckpointingoverheaddueto eitherextramessageroundsor excessivecheckpointing.

The global coordinatedapproachrequiresstoppingexecutionand reachingan agreement

after roundsof messages[13,14].Thecommunicationsynchronizedapproachalwaysmain-

tains a consistentrecoveryline by synchronizingcheckpointingwith communication,and

thusproducesuncontrollablecheckpointplacementsandpossiblyexcessivecheckpointig[15-

18].Themessagelogging-basedschemesarethecommunication-synchronizedcheckpointing

schemesin whichmessageloggingis usedascheckpointoperationsto reducecheckpoint-

ing costs. They synchronizeloggingwith everymessageand maintain the past message

exchangehistory to determinea consistentrecoveryline [19-26].Thelooselysynchronized

approachneedseither messageretry or messagereplayfrom messagelogs. We want to

developa concurrentcheckpointingapproachto producecontrollablecheckpointintervals,

with limited run-timeoverheadand without complexmessagemanagementduring recov-

ery. Wealsowantto applyour approachto shared-memorymultiprocessoranddistributed

virtual memorysystemsto avoidexcessivecheckpointingcausedby the current schemes.

1.4. Thesis Overview

The three specific topics studied in this thesis are: 1) a general forward recovery

strategy in parallel and distributed systems, 2) compiler-assisted static checkpoint insertion,

and 3) an evolutionary approach to concurrent checkpointing.

In Chapter 2, we describe a checkpoint-based forward recovery approach in parallel

and distributed systems using optimistic execution. The replication of a task makes forward

recovery independent of the computation since the correct next new state is obtainable

from some error-free replica. Lookahead execution is scheduled to avoid reprocessing due

to rollback. A rollbackprocessservesasthe diagnosticprocessto determinethe correctly

scheduledlookahead.

Chapter3 presentsan analyticalevaluationof our forward recoverystrategy. Two

schemesderivedfrom our recoverystrategyare compared with three common recovery

schemes. We investigate the impacts of checkpointing and recovery overhead on recovery

performance, the impact of file servers and the optimal selection of an optimal checkpoint

interval.

In Chapter 4, an experimental evaluation of one of our recovery schemes is described.

This evaluation is based on an implementation in a Sun NFS network environment and a set

of realistic benchmarking programs. We will also describe how to separate process informa-

tion from operating system information to make a comparable and restartable checkpoint.

Experiments show that the forward recovery scheme can achieve a near error-free execution

time even under fault occurrences.

In Chapter 5, we describe the compiler-assisted techniques for static checkpoint inser-

tion. These techniques use an instruction-based time measure instead of a real-time clock

to space checkpoints. This insertion guarantees a static checkpoint location with respect

to program execution. That is, the checkpoint locations will not change in the program

execution even with the different runs. This property makes it possible to apply this tech-

nique to our forward recovery strategy which may require checkpoint comparison as the

error detection means. The checkpoint insertion techniques are implemented in a GNU C

compiler for SUN 3 and SPARC workstations.

Chapter 6 describes an evolutionary checkpointing for concurrent processes. With this

approach, individual processes are allowed to checkpoint independently at the start of a

checkpointing session. This initial recovery line may not be consistent. As the computation

executes, the processes update their local checkpoints when a communication arises. This

local checkpoint updating makes the inconsistent recovery line converge to a consistent one

when the checkpointing session ends. We also consider the performance and application of

our approach to shared-memory multiprocessor and distributed memory systems.

Finally, in Chapter 7, the results obtained in preceding chapters are summarized. The

potential areas of future research are also discussed.

CHAPTER 2.

FORWARD RECOVERY USING LOOKAHEAD EXECUTION

AND ROLLBACK VALIDATION

2.1. Introduction

Considerable research has been devoted to checkpoint-based backward recovery schemes

[1-4, 7]. There have also been techniques proposed which combine replication with voting

and checkpoint rollback recovery. The RAFT algorithm replicates the computation on two

processors to achieve error detection and rollback recovery [27,28]. If the results produced

by the replicated tasks do not match, the task is executed on other processors until a pair

of matched results is found. Checkpoint-based backward recovery has two drawbacks: an

execution time penalty due to checkpointing and rollback, and the problem of determin-

ing if a checkpoint is error free. Although placing checkpoints optimally can reduce the

execution time penalty to some extent, the computation lost by rollback is inherent [1-4].

One approach to validating a checkpoint is to validate the system state via concurrent error

detection or system diagnosis, before a checkpoint is taken [29,30]. Another is to simply

keep a series of consecutive checkpoints and perform multiple rollbacks when necessary [31].

In contrast to backward recovery, forward recovery attempts to reduce the lost computa-

tion by manipulating some portion of the current state to produce an error-free new state.

10

However,forwardrecoverygenerallydependsonaccuratedamageassessment,a correction

mechanism,andsometimesmassiveredundancy(e.g.,NMR) [7,8].

However,there is little publishedworkon checkpoint-basedforwardrecoverywhich

doesnot dependon a specificerror correctionmechanismor massiveredundancy[32]. In

this chapter,wepresentaforwardrecoverystrategyusingcheckpointingandoptimisticexe-

cutionfor parallelanddistributedsystems.Thisapproachexploitsthe inherentredundancy

in today'sperformance-orientedparalleland distributedsystems.It requiresneithera spe-

cific knowledgeabout error correctionin a particular computationnor a completeNMR

for errormasking.It usesa limited static redundancyfor error-freecomputations,for error

detectionand for stateinformation retention,and it alsoemploysa dynamicredundancy

for recovery.On average,it usesa redundancylessthan its NMR counterparts.

The followingtwo sectionsdescribethe computationand systemmodel,and fault

modelusedin this thesis.Section2.4describesourcheckpoint-basedforwardrecovery.The

subsequentsectiondiscussesthe designparametersof a recoveryschemederivedfrom our

basicstrategy.

2.2. Computation and System Model

2.2.1. Computation and system

Thesystemconsideredconsistsof homogeneousprocessingelementsconnectedto each

other and to secondarystorageby a network. The processingelementcan be either a

computernodein a distributedsystemor a CPU node in a multiprocessor system. The

network can be a LAN for a distributed system or a general connection network for a parallel

11

system. We assume that the necessary checkpoints are retained on a reliable secondary

storage and are accessible through the interconnection network.

2.2.2. Computation task

A task is an independent computation and it can be a group of related subtasks. A

task is divided into a series of sequential subcomputations by checkpoints. The execution of

a subcomputation is called a computation session, while the checkpointing period is a check-

pointing session. A checkpoint interval is defined as the execution time of a computation

session.

A process is the task running on a processing element. A process can be replicated

on different processors. This replication can be physical or logical. A physical replication

is the execution of the same task on another processor, while a logical replication is the

execution of different software versions or recovery blocks for the same computation on

another processor. The physical replication is used to tolerate physical faults, whereas the

logical is used to tolerate software faults [12,33].

2.2.3. Checkpoint

A checkpoint consists of two types of information: the current process state for process

restart and the test information for process state (checkpoint) validation. They are called

the state and test portions of a checkpoint, respectively. These two may or may not be

separate entities within a checkpoint. If the checkpoint is the complete run-time image of

the process, the test portion can be the image itself or the signature of the image. The

latter is a case of separate state and test portions. Both the state and the test portions of

12

a checkpointaresavedin the reliablesecondarystoragein this thesis.Eachstateportion

in a checkpointis a complete(consistent)recoveryline if the computationis a groupof

concurrentprocesses(wewill discussthis in detail in Chapter6).

2.2.4. Checkpoint test

A test to detectanerroneousstateor checkpointcanbea comparisontest or a self-

test. In a comparisontest, the test portionsof the checkpointsfor the samecomputation

arecompared.If they areidentical,the test indicatesavalid checkpoint,andanerroneous

one,otherwise.This impliesthat the probabilitiesof the two test portionsbeingidentical

asa result of oneor two erroneousprocessesarenegligible.If the test portion alonecan

detecterrors in a checkpoint,this test is said to be a self-testsuchas in somecasesof

algorithm-basedfault tolerancetechniques[34,35]. A majority voting test is simply an

extensionof the comparisontest. The checkpointsgeneratedfrom differentprocessorsfor

the samecomputationshouldproducethe sametest portion if a comparisontest is used.

Without sacrificingclarity,weoftenusecheckpointcomparisonfor the comparisontestof

a checkpointand a restart from a checkpointfor the restart from the state portion of a

checkpoint.

2.3. Fault Model

This thesis deals with the faults that cause an error in a process and result in an

erroneous checkpoint. However, faults in the processor interconnection network or the

secondary storage may neither be detectable nor recoverable in our approach. To tolerate

software faults, the logical replication of processes is necessary. The replication must be

13

eitheranalternativeversionof thesametaskin theN-versionprogrammingoranalternative

recoveryblock [12,33,36,37].For physicalfaults,either physicalor logicalreplicationcan

beemployed.The physicalreplicationis a straightforwardapproach.

2.4. Recovery Using Optimistic Execution and Rollback Validation

Two essential features of our forward recovery strategy are lookahead execution to

reduce the computation loss due to recovery and rollback validation to diagnose the correctly

scheduled lookaheads. These concepts are illustrated in Figure 2.1. In the RAFT scheme, a

task is replicated and executed concurrently on two different processors [27, 28]. At the end

of one computation session, two checkpoints are produced by the replicated process pair.

A voter process compares the newly generated but uncommitted checkpoints to determine

if the process state is error free. If the two checkpoints are identical, the system state is

valid. Either of the checkpoints can be committed for the past computation session, and

the process pair advances to the next session.

If the uncommitted checkpoints disagree, then the checkpoints contain an erroneous

state. Instead of rolling back, two identical task processes are started from the uncommitted

checkpoints on two additional processors. This optimistic scheduling is called lookahead

execution. Meanwhile, another task process rolls back to the last committed checkpoint

on a fifth processor. After a checkpoint interval, A, a diagnosis checkpoint is produced

by the rollback (validation) process. This checkpoint is compared to the two disagreeing

(uncommitted) checkpoints. If there is a match, the error-free checkpoint is identified. The

process pair that was executed ahead from the disagreeing erroneous checkpoint and the

rollback validation process are teHnil_ated. The correct checkpoint is then committed and

14

_Checkpolnt___
Interval

T "-Normalexecution

Fault

Err°ne°Ur_i heckp°int
mImIg II_l)

IfJ Lookahead execution (Incorrect)

.. Correct chec=int

I I Lookahead execution (correct)

Committed_.4,.t Rollbackcheckpoint Validation

DDiagnosis checkpoint

Figure 2.1. Lookahead Execution and Rollback Validation.

the incorrect checkpoints are removed. In this strategy, the two additionally scheduled

lookaheads make it possible not to roll back the whole system when there is an error during

lookahead executions. In this case, the lookahead pair from the newly verified checkpoint

is treated as the normal pair. This pair can start a new round of lookahead and rollback

validation without rolling back the whole system.

This recovery strategy is indeed a forward recovery one. In fact, the state of the

computation task in the duplex system is the tuple of two individual states of the replicated

process pair. If one of these two individual states is erroneous, our approach uses the

redundant state (the one that is error free) to generate the next valid state by scheduling

an additional process from this redundant state without reprocessing the past computation

session. Therefore, this recovery strategy is forward. Clearly, this recovery strategy depends

on no error correction or error masking mechanism.

15

Compared to the static redundancy of three processors for TMR, this strategy uses

two processors for the common error-free situation and a dynamic redundancy of five for

the rare occurrence of an error. The potential for forward recovery lies in the fact that there

should be at least one correct process (thus, one valid checkpoint) during the normal run,

since the lookahead execution from this valid checkpoint advances the computation without

rollback. However, rollback may not be avoidable when the diagnosis checkpoint does not

agree with either of the two uncommitted disagreeing checkpoints, since all lookahead runs

may be incorrect.

2.5. Scheme Design Considerations

Our forward recovery strategy is a general approach to forward recovery using check-

pointing for parallel and distributed systems. Many schemes can be derived from this general

strategy. In this section, we examine the design parameters for a particular recovery scheme

based on our forward recovery strategy.

2.5.1. Lookahead and rollback scheduling

With respect to lookahead and rollback scheduling, there are four parameters in de-

signing a specific recovery scheme based on the approach described. The first is the number

of replicated processes in the normal run, which we call base (redundancy) size. The larger

the base size, the more potential there is for forward recovery, since it is fikely to have an

error-free checkpoint for successful lookaheads. The second is the validation size or the

number of processes used for rollback validation; the third is the validation depth or the

number of retries of the rollback validation process if a rollback validation fails to diagnose

16

the disagreeing checkpoints. We can use either a larger validation size or a larger validation

depth to increase the diagnosis success rate. In the case of a larger validation depth, the

rollback validation success rate is increased by using time redundancy. The fourth is the

lookahead size or the number of lookahead processes scheduled.

A forward recovery scheme is recursive if its validation depth is unlimited. In this case,

the processes executed ahead may spawn their children of lookahead and validation tasks

unboundedly, as the validation retries increase. This recursive scheme can maximally utilize

the forward recovery capability of the lookahead execution, and rollback probability can

potentially reach its lower bound. If the probability of multiple failures during a checkpoint

period is very small, then it is unlikely that recursive validation and lookahead process

spawning will be required. A nonrecursive scheme is an approximation of its recursive

counterpart. In fact, it is the corresponding recursive scheme with all validation retries

greater than the validation depth truncated.

If its base size is 2m + 1 for some integer m, a recovery scheme can also have forward

recovery through error masking and majority voting. For non-(2rn + 1) base sizes, lookahead

size decides whether a scheme has forward recovery capability or not. If its lookahead size

is equal to its base size, this scheme is forward recovery through optimistic execution. If the

processor resource is limited, limiting the lookaheads scheduled (lookahead size < base size)

leads to a graceful performance degradation with a limited forward recovery capability. At

one extreme, the recovery scheme degenerates into a normal rollback scheme such as RAFT

if the lookahead size is zero [27, 28].

17

Table2.1. RecoverySchemeClassification.

Ba_e

Size

(b)

b = 2m + 1 forward recovery via error masking
Lookahead Size, l

b= 2m Validation

Size

O0

l=O

nonrecursive

backward

no lookahead

recursive

backward

no lookahead

0<l<b

nonrecursive

limited forward

limited lookahead

recursive

limited forward

limited lookahead

l=b

nonrecursive

forward

full lookahead

recursive

forward

full lookahead

The concepts of base size, validation size and depth, and lookahead size can be used

to describe other recovery schemes as well. Table 2.1 presents a classification of nonerror-

correction based recovery schemes. For example, a traditional triple module redundancy

(TMR) scheme can be characterized with a base size of 3, rollback size and depth of zero,

and a lookahead size of zero, since it schedules neither rollback validation nor lookaheads. It

simply rolls back to the last committed checkpoint during recovery and uses error masking

for forward recovery.

2.5.2. Test information

The test information available plays an important role in selecting the test mechanism.

If the test is self-testable, we can eliminate the rollback validation in Figure 2.1 since the

voter task can identify the correct process state by simply testing the checkpoint directly

without using rollback validation. In addition, the lookahead execution scheduled from the

erroneous checkpoint can also be eliminated. The resulting lookahead scheduling simply

restarts a replicated process from the newly verified error-free checkpoint. If there is no

knowledge about how to detect error based on the test portion of a checkpoint, a comparison

test on the test portionsof two checkpointsmay be used.

validationandlookaheadexecutionsarenecessary.

18

In this case, both rollback

2.5.3. State information

The state information in a checkpoint greatly affects the size of a checkpoint and thus

the checkpointing overhead. The state information varies from computation to computation.

If the state information spreads all over the process space, the identification and extraction

of this state information can be very difficult or may be time-consuming. In this case,

the complete run-time image of the process can be a good alternative as the state portion

of a checkpoint. If the state information is stored only in several variables in the process

space, we can extract these state variables as the state portion of a checkpoint. In recovery

blocks and N-version programming, the input data can serve as the state portion of a

checkpoint if we choose a recovery block or a version of algorithm implementation as a

computation session. The input and output between recovery blocks or versions provide

the natural boundary for checkpointing. In the algorithm-based fault-tolerant schemes, it

is also possible to use the input data and intermediate results as the state information if

we can decompose the whole algorithm into several subalgorithms and each subalgorithm

is treated as a computation session.

2.5.4. Graceful degradation

In our recovery strategy, the lookahead scheduling may not be possible due to the

limited processors available. In this case, a graceful degradation can be achieved in a natural

manner in our strategy by selecting lookahead size < base size (Table 2.1). If there is only

19

oaeavailableprocessfor lookaheadexecution,wecanrandomlymakea guessby selecting

anuncommittedcheckpointfor the lookaheadscheduling.Wewill havea 50percentchance

to obtain correctlyscheduledlookahead.Thus,we tradesomeforwardrecoverycapability

for processresource.If thereis noprocessfor lookahead,ourschemeis naturally degraded

into thecommonrollbackschemes[27,28]in whichonlythevalidationprocessisscheduled.

CHAPTER 3.

2O

ANALYTICAL EVALUATION

3.1. Performance Metrics

In this thesis, we have considered two types of performance measures for a recovery

scheme derived from our strategy: recovery time and recovery resource requirements. We

have not considered the traditional fault-tolerant measures such as reliability and availability

for two reasons. First, the recovery we have considered is per computation-based. Second, in

our recovery schemes, the computation is guaranteed to finish given the available resources,

such as processors.

Let T_ be the expected execution time of the computation task under consideration

and To the error-free execution time. The performance measures examined are

• Number oJ: Checkpoints, No: the average number of checkpoints stored in the system

or _ fT_ Nc(t)dt. The maximal instantaneous No(t) reflects the maximal storage

requirement.

• Number of Processors, Np: the average number of processors used by the system or

foTe Np(t)dt. It describes the processor redundancy required by a recovery scheme.T,

The maximal instantaneous Np(t) reflects the maximal processor requirement.

21

• Relative Execution Time, Re: the ratio of the expected execution time (Te) over the

error-free execution time (To). This measure normalizes the effect of the execution

time of different computations. If Re is close to one, the execution time will be close

to the error-free execution time, demonstrating the effectiveness of forward recovery.

3.2. Basic Assumptions

In our analytical and experimental evaluation, three types of overhead are considered:

checkpoint time (tk), process restart time (t_) and checkpoint testing time (tt). For purposes

of analysis, constant checkpoint intervals and overheads are used. Each processor has a

constant probability of failure, p f, during one computation session (A + tk) with or without

restart and checkpoint test. This assumption implies two requirements. The first is a

Poisson distribution for the failure distribution, while the second is tt << A + tk and t_ <<

A + tk since the probability of failure over [0,A + tk] is required to be equal to that over

[0,A + tk + tt + t_]. The typical test time tt and restart time t_ are in the order of a fraction

of a second and the checkpoint interval ,.X on the order of minutes or hours.

In order to consider the impact of the centralized file server that handles checkpoint

files, we assume that tk and t_ are approximately n-fold, when the n processes access their

checkpoint files at the same time. This assumption enables us to study the impact of a

file server by adjusting tk and t_, since both restart time t_ and checkpoint time tk will be

increased due to the file accesses to a single server. The increase in t_ and tk may not be

proportional to the number of processes that access the same file. However, a checkpoint

file usually contains many blocks. A fair server policy guarantees that the n processes finish

their access to the checkpoint file at approximately the same time. We also assume that

22

checkpointcomparisonis performedby a voter processon a host that canaccessthe file

systemlocally,andthus tt is not changed.

3.3. " Recovery Schemes Using Comparison Tests

3.3.1. Alternative recovery schemes

We examine two alternative schemes derived from our proposed recovery strategy and

three other common schemes. These five recovery schemes are characterized in Table 3.1.

The DMR-F-1 and DIVIR-F-2 are nonrecursive schemes derived from our forward recovery

strategy. Their rollback validation is limited to one try with one o1"two rollback validation

processes. The TMR-F is the common TMR forward recovery scheme using error masking

and majority voting. It starts with three processes and votes on three checkpoints. If there

is no matched pair, it schedules no rollback validation process and simply restarts from the

last committed checkpoint.

The DMR-B-1 and DMR-B-2 are recursive rollback schemes modified from the RAFT

algorithms [27,28]. Two processors are used for the normal execution. If the checkpoints

Table 3.1. Five Schemes Using Checkpoint Comparison Test.

DMR-F-I: a nonrecursive forward recovery scheme with base size = 2, validation

size = 1, validation depth = 1 and lookahead size = 2.

DMR-F-2: a nonrecursive forward recovery scheme with a base size = 2 valida-

tion size = 2, validation depth = 1 and lookahead size = 2.

TMR-F: a triple module redundancy forward recovery scheme using error-

masking with base size = 3, validation size = 0, validation depth =

0 and lookahead size = 0.

DMR-B-I: validation size = 1, validation depth = oo and lookahead size = 0.

DMR-B-2: a recursive backward recovery scheme with base size = 2, validation

size = 2, validation depth = oo and lookahead size = 0.

23

matchaftercheckpointing,theexecutionadvancesto thenextcomputationsession.If there

is nomatchedcheckpointpair, thecomputationrolls backrepeatedlywith oneor two pro-

cessesuntil a matchedcheckpointpairisobtained.Our reasonto compareournonrecursive

forwardrecoveryschemesto therecursiverollbackschemesis that thenonrecursiveschemes

arethefirst-orderapproximationof thecorrespondingrecursiveforwardrecoveryones.The

recursiveonesgivethe best performanceamongall their approximatederivations.That

is, wecompareour schemesto the correspondingrollbackschemeswith the bestpossible

performance.

3.3.2. DMR-F-I: Forward recovery with one rollback validation

In this scheme,a lookaheadis successfulif the validationtask is error freeandthere

is a correctuncommittedcheckpoint.Otherwise,a rollbackis performed.The probability

of a successfullookaheadis

The probabilityof rollbackis

Pt = 2p/(1 - p/)2.

= 2p}(1-pi + p}.

Let there be an average of l successful lookaheads and r rollbacks in the task execution.

Based on the assumption of the constant probability of failure in a computation session, we

can expect

Pl =

l l

(n-l)+l+r n+r

r r

(n-l)+l+r n+r

24

which lead to

npl
l -

1 - p_'

npr
r

1 - p,.

In a successful lookahead, the task execution includes one restart time (G) for scheduling

lookahead tasks and 2.5 checkpoint comparisons for the checkpoint validation (2.5tt). For

a rollback, two session times (i.e., 2(A + tk)) are wasted: one for the original execution

pair and one for the lookahead period. Two restarts also result (one for the lookaheads and

one for the rollback to the previously committed checkpoint). In addition, there are three

checkpoint comparisons for the checkpoint validation• Thus, the expected execution time

can be given as

Te = n(A+tk)+l(t_+2.Stt)+r(A+tk+h+t_)+r(A+tk+t_+2tt)

2pr) Pl+2P_ +ntt2"5pt+3Pr= +,,.t,. l-p,.

Therefore,

Te 2pr Pl + 2pr tr 2.5p1 + 3pr tt

Re- To - 1+ 1-pT + 1-pT A+tk + 1-p_ A+tk"

There is one (the committed) checkpoint during the normal execution run. Two additional

(uncommitted) checkpoints are present during a lookahead/validation operation. At the

end of the A for the rollback validation, there are eight checkpoints, one committed and

seven uncommitted (one for the validation process, two for the normal process pair and four

for the lookahead processes). Thus,

25

g_(t)dt n(A + tk) + 31(tr + tt) + 81(1.5tt)

+r(A + tk + tr) + 3r(A + tk + tr + tt) + 8r(2tt)

P_ _+ 6.25ptP._Z + 8p,.
Te + 2To P_''_ + 2nt_ + 2ntt

t- Pr 1 - Pr 1 - Pr

Therefore,

No=l+2 Pt + Pr + 2 Pt + P,- t, + 2 6.25pt + 8p_ tt
(1-p_)Re (1-p_)R_A+tk (1-p_)R¢ A+tk

Similarly,

foT` Np(t)dt = 2(n - l)(A + tk) + 21tt + 5I(A + tk + tr + 1.5tt)

+2r(A + tk + t_ + tt) + 5r(A + tk + tr + 2tt)

_ Pt + Pr + 3nt_Pt + P_ + 3nit 1.5pt + 2p_
= 2T_+o,0T_-p_ 1-p---_ 1-p_

Pt + P_ 3 Pt + P_ t_ 1.5pt + 2p, tt
Np = 2+3(_-__p_-R + (1-p_)R_A+tk +3(1--p_)ReA+tk"

If a centralized file server serializes file accesses, both the restart (t_) and checkpoint

times (tk) will be increased because of the serialized file accesses of checkpointing and

restart. According to our previous assumption about the centralized file server, the restart

time will be threefold since one rollback validation and two lookahead processes read the

last committed checkpoint file at the same time. The checkpoint time is 2tk for the normal

pair oftask replications and 5tk for the lookahead period (four for lookahead and one for

rollback). Thus, the relative execution time with a file server system of limited speed can

be shown as

26

= 1+
2p_ Pt + 5/3p_ 3t_ 2.5pt + 3p_ tt Pi + P_ 3tk

1 - p_ + 1 - p_ A + 2t-------'_k+ 1 - p_ A + 2t-------_k+ 1 - p_ A + 2tk"

Similarly,

No(f s)
Pt + P_ Pt + P_ 3t_

1+ 2(1 _ p,)RAfs) + 2(1 - p_)R_(fs) A + 2tk

2 6.25pt + 8p_ tt Pt + Pr 3tk
(1 - p_)R_(fs) A + 2tk + 2(1 - p_)Re(fs) A + 2ta'

Np(fs)
Pt + P_ Pi + P_ 3t_

2+3(1 pr)Re +3(- 1 - p_)R_ A + 2tk

+3 1.5pt + 2pr tt Pt + P_ 3tk
(1 p_)R_ A + 2t------_+ 3 (- 1 - p_)Re A + 2tk

The above results are summarized in Table 3.2. Given PI, Re is a linear function of

relative overhead factors: t_k_ and tt These overhead coefficients reflect the contribu-
A+t k A+tk "

tions their corresponding overheads have to the scheme performance (degradation). The

constant term in Re is the corresponding performance for an error-free execution, while

the second term reflects the inherent rollback in DMR-F-1. The smaller this term is, the

more effective is the forward recovery. Except for an extra factor (1/Re) appearing in the

overhead coefficients, Np and Nc have a pattern similar to Re. The impact of a centralized

file server for checkpoint storage is reflected through the increased coefficients for t_ and

the presence of the additional overhead term for tk.

3.3.3. DMR-F-2: Forward recovery with two rollback validations

In DMR-F-2, the forward recovery is successful if one of tile uncommitted checkpoints

is correct and at least one of the validation checkpoints is correct. Unlike DMR-F-1, the

27

Table3.2. AnalyticalEvaluationSummary:DMR-F-1.

T_

Re

N_

max(N¢)

i_

raax(Np)

Re(/s)

N_(fs)

Np(fs)

2_2__] +P_123_+ ntt2.?,+3P rn(A+tk)(l+ 1-p_] + nt_ 1-p_ -p

i -3L 2pr "4- pt+2pr tr "4- 2.Spl+3pr tt
l-pr l--pr A+tk 1--pr _+tk

+ r ¢)6.25pl+8pr tt
(1-pr)R, A+tk

8

3_ + r 1.Spt+2pr tt2 + (_-p_)n_ + 3_ tAr- + 3A+tk (1-pr)Re A+tk

5

l+3L__+vl+s/3p_ 3_t _ t, + +p_LT__3tk
1--pr l--pr A+2tk "_- 1--pr A+2tk 1--pr A+2tk

P_+Pr + 2 v_+p, 3t,
1 + 2(l_p_)Re(fs) (1-pr)Re(fs) A+2tk

2 6.25pf+Spr tt 2 P_+P_ 3tk
(1-p,-)R_(]'s) A+2tk + (1-p,-)Re(]s) A+2tk

3 pl+v_ 3 pt+p_ 3t_
2 +, (1-pr)R_ + (1-pr)R_A+2tk

u vt+v_ 3tk
+3_ t---k--A+2tk+ _'(1-p_)R¢ a+2tk

rollback distance of DMR-F-2 varies if the rollback validation fails. It is one A if both of

the original tasks fail and the validation pair succeeds. In this case, the checkpoints by

the validation pair are correct and can be committed. The rollback can start from them

instead of from the last committed checkpoint. Otherwise, the rollback distance is 2As. Let

l, s, r be the average number of successful lookaheads, one-A rollbacks and 2-A rollbacks,

respectively. Their corresponding probabilities are

Pt = 2(1 - pl)pl(1 - p21),

Ps "- P_(1 -- ,Of)2,

= 2(1-ps)pJ +p) p)pj+

28

Table 3.3. Analytical Evaluation Summary: DMR-F-2.

T,

R_

Nc

max(No)

g.

max(gp)

R_(fs)

Nc(fs)

Np(fs)

n(A + tk) (1 + ,+ea2,3_l_pr/ + ntr p_+2p,+2prl_pr+ nh3"sw+sp*+SVrl-p_

1 + ,+P_z¢_3_+ pt+2p,+2pr tr + 3.Spt+5ps+5pr tt
1 --pr 1 --pr A+tk 1 --pr A+tk

2 pt+ps+p_ 2_ t_ 11p|+21.Sps+21.5p,-1 + 0-p_)R_ + (1-p,)a_ _x+t_ + 2 O-p,)a. A+tk

9

4 + + 42"sp +5'sp.+s'sp *-u-2 + (1-n_)R, (_-p_)a. A+tk

6

1 + p_+2pr + pl+5/3ps+5/3p_ 3t_
l--pr 1--pr &+2tk

+ 3.Spl+Sps+Spr tt jr_ Pl+Ps+pr 3tk
1--p_ A+2t_ 1--pr &+2tk

1 + 2 pl+p,+pr Pl+Ps+Pr 3tr
(1-p_)R,(.fs) + 2(I-p,)R,(Is) A+2tk

2 IIPt+21"sP'+21'sP_ tt + 2 m+Ps+P_ 3t_
(1-pr)Re(fs) A+2tl, (1-pr)Re(]s) A+2tk

2 + (1-pr)Re + _(1-pr)Re A+2tk

2.5pl+5.Sp., +5.5pr tt + 4PI+P_+Pr 3tk
+4 (l-pr)R, A+2tk (1-p,)R, &+2tk

Since the analysis of DMR-F-2 is very similar to that for DMR-F-1 except for DMR-

F-2 using an extra process for rollback validation, we summarize the resulting formulas for

DMR-F-2 in Table 3.3. The detailed analysis can be found in Appendix A. The results are

similar to those of DMR-F-1.

3.3.4. TMR-F: Triple module redundancy

In TMR-F, the trio of replicated tasks continues when there is no erroneous checkpoint

at the end of A. If there is a match in checkpoints, TMR-F performs a forward recovery via

masking off the erroneous checkpoint. If all checkpoints are different, a rollback is scheduled.

The rollback probability is given as

29

Table3.4. AnalyticalEvaluationSummary:TMR-F.

T_

R,

gc

maz(Nc)

Np

ma_(g_)

Re(fs)

No(f s)

Np(fs)

.(_ + t,,)(1+ -_-_ + nt _L + -t, L-_1--Pr] r 1--Pr

1 + Pr "4- pr 3tr 3pr tt
1--pr 1--pr A+tk "dl- 1--pr A+tk

9r

1 + _----!l-- A+t_

4

1+_2__+_2x__ 3t_ + 3--_-r----tL--
l--pr 1--pr A+3tk 1--pr A+3tk

9yr tt
1 + (1-p_)a,(ls) &+3tk

3

p_ = 3p_- 2p)

The results of our analysis for TMR-F are summarized in Table 3.4. The detailed

derivations are given in Appendix A. For TMR-F, Re follows a pattern similar to DMR-F-1

and DMR-F-2. However, Nc has no inherent rollback term, since TMR-F always has one

committed checkpoint during either normal computation sessions or rollback sessions, and

three additional checkpoints at the end of each session for the duration of the checkpoint

test time (3tt).

3.3.5. DMR-B-I: Backward recovery with one rollback process

In this scheme, there is no forward recovery. If there is an error in either of the two

original replicated processes, the computation session rolls back repeatedly until there is a

3O

Table3.5. AnalyticalEvaluationSummary:DMR-B-1.

T_

max(No)

Np

max(Np)

Re(f s)

No(f s)

Np(fs)

n(A + tk) (1 + m+2p2] + nt+ax2._1-p I) 1-pl

p1(lo-15pl+xsp}-rp}) t__u__
+ntt 2(1_pI)_ a+tic

+at.t__ t.._t_ + P111°-xsPl+lsP}-rP})-_-tu-1 + +at_f..tm+ l-p I &+tic 2(1-Pl)2 A+tic1 -pl

1 + _ + + + (a+t.)R,(1-p/) l-p! J "_e L(l-p/) l-p! l

+ + + 3/2pl+3p2 "4- _] tt
t(l-p/) _ (l-pl) l-p/ 2]

oo

1+_-_+ _+ t--!L-Re A+tk

2

_+tkR
&+2tic-_e "4- &+2tic

+
• , c (A+2tic)R,(ys)

z_+tklv 2tk
&+2t_ "'P -1- (A+2tk)Re(]s)

match in the uncommitted checkpoints produced by both the original process pair and the

rollback processes [27,28]. Two situations can cause a rollback: (1) there is one error-free

checkpoint produced by the original process pair and the rollback iterations need only to

generate another correct checkpoint; (2) both checkpoints are erroneous for the original

process pair run, and the rollback iterations need to produce two valid checkpoints. The

corresponding probabilities are Pl = 2py(1 -PI) and P2 = P}, respectively. The analysis

of DMR-B-1 is given in detail in Appendix A. The summary is presented in Table 3.5.

31

3.3.6. DMR-B-2: Backward recovery with two rollback processes

Like DMR-B-1, this schemeemploysthe recursiverollbackto find a pair of matched

checkpoints.However,they differ in that DMR-B-2usestwo rollbacktaskswhereasDMR-

B-1 usesone. For the detailedanalysis,refer to AppendixA. The summaryis givenin

Table3.6.

3.3.7. Discussion

Accordingto Tables3.2-3.6,Re, Np or Nc can be generally expressed in terms of the

relative overhead factors as shown below:

tr tt t_k
! 'm=c+ + zyTZ + 7a--TZ+ +

where c is a constant, m E (Re, No, Np} and t_ is either 2tk or 3tk. The constant c reflects

the error-free performance, while c_ is the performance degradation due to rollbacks in the

schemes we considered. The smaller _ is for a forward recovery scheme, the more effective

the scheme is in terms of reducing the execution time degradation. In this thesis, a is called

the coefficient of the overhead due to rollback. This rollback overhead can not be eliminated

and depends only on the failure probability, p/. The expression c÷_ represents the inherent

performance of a particular scheme, since all eliminatable overheads are removed (i.e., the

zero overhead situation). The factors of 8, 7, and _f are the overhead coefficients for process

restart, checkpoint comparison test and checkpointing.

For Re, the overhead coefficients, a, 8, 7 and _ are related only to p/. For Np and No,

the coefficients also include a factor of 1W," Normally, the relative overheads are very small,

and we can approximate R_ with the zero-overhead Re. This approximation, in fact, gives

32

Table3.6. AnalyticalEvaluationSummary:DMR-B-2.

T.

RE

NC

max(No)

Np

max(Np)

R¢(fs)

N_(fs)

p11p}+p1+21' pl(p}+p1+2)
n(A + tk) 1 + (l_p/)(l+pl)2 ' + ntr (l_pl)(l+p/)2

+nh 4p} 4p1+3 6+2p/-p}](l+pj)3(l_p/)2 + P! (l+pf)_ J

p1(p}+p1+2) pI(p}+pJ+ 2)
1 + (l_p/)ll+v/)_ + +(l_pD(l+p/)_ A+tk

+ 4P}(l+p/p(l--pD2 +Pl (1+p/)_ A+tk

(1.+-p_)(1 -pl}2 _e "t- (l+p3l)(l_pl)21_e A_Ft k

(l--p ,)3(1+pl)4 A+tt¢

O0

2

2

vj(p}+vj+2) v/(v}+v1+:)
1 + (l_p/)(_+vj)_ + (I_v/)(I+pD_ _x+2tk

+ 4p} 4Pi+3 6+2p/-p_ tt(l+p/)3(l_vt)_ + PI (l+p/)_ A+2tk

+
(l+p})(1-p/) 2 j N "_ (l+pal)(1-Pl)2Re A+tk

t (1- Pl)3 (1 +p!)4 A+tt¢

Np(fs) 2

33

the upperboundfor a, fl, 7 and ti in Np and No, since tile presence of t_, tt and tk increases

Re. Therefore, Np and Nc are approximately a linear function of overhead factors. The

overhead coefficients represent the contribution of their corresponding overhead factors to

the performance degradation. The larger the coefficient for an overhead factor, the more

important this overhead factor is with respect to performance degradation.

For the noncentralized file server situation, 6 is zero. The checkpoint time, tk, does not

appear as an overhead factor because an error-free execution time that includes checkpoint

time, n(A + tk), is used as the base for our performance measures. In fact, the overhead

coefficient for the checkpoint time is c + _ if the checkpointless error-free execution time is

used as the base for our performance measures. For example, Re can be redefined as the

ratio of the expected execution time over the checkpointless error-free execution time, n-T_,

R'_ Te T_ A + tk Re A + tk tk t_ h= -- = = _ c + + (c + +/3 z +nA A + tk A A

Checkpointing overhead is inherent in any checkpoint-based scheme since checkpoint time

is always included in the execution whether a fault occurs or not. For this reason, we did

not use the checkpointless error-free time as the base for our performance measure. To

minimize the impact of checkpoint overhead, the checkpoint interval or frequency should

be determined optimally.

The performance degradation due to a centralized file server is reflected in two ways.

The first is the increased overhead caused by the file access serialization. For example, an

approximate factor of 3 appears for tile restart overhead term, _ in Re(fs). The second,x+tk

instead of T_ That is,
A+tk "

34

RelaUve
Exe¢.Time

R.
1.1

+ DMFI.F.1

x DMR-F-2

O TMR-F

a OMR-B-1

DMR-B-2

i

.°,

Zerooverhead

5 % Overhead

1(
0 0.02 0.04 0.06 0.08 0.1

Probabilityof Failure,I_

Figure 3.1. Comparison: Relative Execution Time.

is the nonzero overhead coefficient for checkpoint time ((_) because of the extra checkpointing

activities by the lookahead and rollback validation processes during recovery.

3.3.8• Comparison

In order to compare the five schemes we described above, Re, Np, and Nc are plotted

in Figures 3.1, 3.2 and 3.3. The solid curves depict the zero-overhead case (i.e., the inherent

performance, c + a), whereas the dotted curves depict the case with 5% overheads (e.g.,

tk, t, and tt are 5% of A + tk, respectively). The range of failure probability considered is

limited within [0, 0.1], since typical environments are unlikely to have high failure rates.

In Figure 3.1, the expected execution time for DMR-F-1 and DMR-F-2 is comparable

to that for TMR-F. In fact, their execution times are nearly the same as the error-free

execution time. The execution times for the rollback schemes (DMR-B-1 and DMR-B-2)

35

Numberof
Processors

Np

Zerooverhead

5 % Ovedlead

I I I
0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, I_

Figure 3.2. Comparison: Number of Processors.

1"61 ..
+,°'

+ DMFI-F.1 -- Zerooverhead ._""

I x DMR-F-2 • • • 5%Overhead .'"' ..

1.4'-- a D_D1 "_'," "i o T_-F _ ..' '_ ..._::,,:,,i

,_'" . :.:""
... ..:._"

. ..".'::!_!!!:'"

1.2 - _ii_'," I '_!:''....:_,:_

"";";;".d ;;'"

I ---'_----o++----- J-_----+----.--.+-...... _ +...... _ _ ?

Numberof
Checkpoints

N©

0 0.02 0.04 0.06 0.08 0.1

Probabilityof Failure,I_

Figure 3.3. Comparison: Number of Checkpoints.

36

can be as high as 20% more than the error-free execution time. The increase in Re with

Pl shows that rollback is still possible in TMR-F, DMR-F-1 and DMR-F-2, even though

these schemes can perform forward recovery. The relative execution time, Re, for DMR-F-

2, is larger than that for DMR-F-2 because there are more rollback validation failures in

DMR-F-1.

The average number of processors used for DMR-F-1 and DMR-F-2 is less than that of

TMR (Figure 3.2). Using more than three processors dynamically for the infrequent error

situation enables DMR-F-1 and DMR-F-2 to reduce the overall processor redundancy. As

expected, the rollback schemes, DMR-B-1 and DMR-B-2, use on average fewer processors

than the others. For DMR-B-1, Np decreases with Pl because only one processor is used

during recovery.

The number of checkpoints increases with P/for all schemes except TMR-F. For TMR-

F, Nc is close to one; Nc for DMR-F-1 and DMR-F-2 is slightly higher than that for

DMR-B-1 and DMR-B-2. It seems contradictory to the fact that more checkpoints would

be accumulated during recovery for DMR-B-1 and DMR-B-2. However, DMR-B-1 and

DMR-B-2 do have a smaller Nc than DMR-F-1 and DMR-F-2 because they have a longer

execution time than DMR-F-1 and DMR-F-2 due to rollbacks. The difference in N¢ may

be insignificant, since most modern systems usually have a large secondary storage for the

checkpoint files.

As expected, the presence of overhead increases Re. Both DMR-F-1 and DMR-F-2 still

have an execution time close to the error-free execution time (within 5% for DMR-F-2 and

10% for DMR-F-1}. For DMR-F-1 and DMR-F-2, Np is increased less than 1% because the

extra processors are used only during recovery. For TMR-F and DMR-B-2, Np is constant,

37

sinceboth schemesalwaysusethreeand two processors,respectively,during both normal

executionand recovery.

3.3.9. Overhead impact

As discussedin Section3.3.7,the overheadcoefficientsreflect the importanceof the

correspondingoverheadswith respectto performancedegradation.The impactof check-

point overheadis determinedby c + a and depicted in Figures 3.1, 3.2 and 3.3 as the

zero-overhead curves. The impact of checkpoint overhead on Re for DMR-F-1, DMR-F-2

and TMR-F is smaller than that for DMR-B-1 and DMR-B-2. This is because the rollback

reduction in DMR-F-1, DMR-F-2 and TMR-F leads to fewer checkpointing sessions in com-

putation (Figure 3.1). For DMR-F-1 and DMR-F-2, Np, is more sensitive to the checkpoint

overhead than that for TMR-F, DMR-B-1 and DMR-B-2 as indicated by a positive slope

in Figure 3.2. The static redundancy employed in TMR-F and DMR-B-2 is reflected by

the flat slopes in Figure 3.2. Except for TMR-F, the sensitivity of Nc to the checkpoint

overhead is reflected by the relatively steep slopes in Figure 3.3.

Figures 3.4, 3.5 and 3.6 compare the overhead coefficients of restart time and check-

point comparison time. The solid curves represent the impact of t,; the dotted ones depict

the impact of tt. For Np and No, the overhead coefficients such as a,/3 and 7 may not be

independent of tk, t, and tt due to the presence of Re in these coefficients. In Figures 3.5

and 3.6, we used the ideal zero-overhead result for Re conservatively since Re with overhead

is bigger than without overhead.

The impact of the comparison time tt is more than twice of that of the restart time

t_. This suggests that any reduction in comparison time will result in a bigger gain in

38

Overhead

Coefficients

for R•

0.7

0.5

0.3

0.1

- + OMR-F.1 _ Restart Time

,°'

x DMR-F-2 ... Comparison Time ._" ..."

0 TMR-F ..._ "ii I

o I ,•

r, DIII_-B-1 ." ..' .,_""
j• I ji °

o'
,._° .. °,,_,"

a DMR.B-2 .'"'a'" .." ,
,._(•" ,,* i ,,.p •" ,,,,"

o • ,,• ,,,• ,Gle e
• • • ,, co,

,_..:,, .,'t ,, ,,.,_ ,,. r'J,,"

,," .,'t'" o.d"' , J],'"

,._' .,'" ,,_," ' , J2,"

,,'",'_'.." "" ,12" ' ' ' '

• " ." i.P" o.''
._., ,o .Q,,

--:._. .;3..'
• _':."._

0 0.02 0.04 0.06 0.08 0.1

Probability of Failure, I_

Figure 3.4. Overhead Impact on Execution Time.

Overhead

Coefficients

for Np

1.5

0.5

n •"

+ DI_-F-1 m Restart Time ..""

x DMR.F.2 ... CompadeonTIme .."

o TMR-F ..'
o °

o DMR-B-1 _.'

°,
•°

, DMR-B-2 ..."

°, °,,

,_" ,,,..p • •" "

,14""" ,ll o_°`°l

B ° , o,,,.pD_

_ "°l°° , o ,,41 • o'" ,,,,,, /'ll- °° °°

0.02 0.04 0.06 0.08 0.1

Probability of Failure, I_

Figure 3.5. Overhead Impact on Number of Processors.

Overhead
Coefficients

for N©

3.5

2.5

1.5

0.5

G
0

• "" 1

..." ...::,
+ DMR-F-1 _ RestartTirno _'" _]:::.'"

o." .."

x DMR-F-2 ... CompadsonTime ..' p::.'
._" ..'_

• .°o..

© TMR.F .."" P'::"
.. ..:_" ...'"

,_" .';." ..l'""

- a DMR.B-1 ...'" ..._P:'" ..._,..

DMR-B-2 _'" _::'" '_'"

_ ..." .::::'" ._,.."
._." .._:""

• .o'." ._,'

-- ,_ .""'.'_:::'" ._,.'"'_:;Yl "
-- .'l el v_ w'

._,," ..., '- __ _ . _

0.02 0.04 0.06 0.08 0.1

Probabilityof Failure,pt

Figure 3.6. Overhead Impact on Number of Checkpoints.

39

performance improvement than will an equal reduction in restart time. In Figure 3.4, t_

and tt affect Re for DMR-F-2 and DMR-B-2 more than Re for other schemes. The TMR-F

scheme is insensitive to both tr and tt. Figure 3.5 shows that Np is affected by t_ and tt more

for DMR-F-1 and DMR-F-2 than for other schemes because they employ extra processors

during recovery. The number of checkpoints for all schemes except TMR-F is sensitive to

the overheads (Figure 3.6).

3.3.10. File server impact

The impact of a centralized file server is depicted in Figure 3.7 for a case with 5 %

relative overhead. The solid curves are for the centralized server case, while the dotted

ones are for the noncentralized server case. The impact of a centralized file server for

TMR-F, DMR-B-1, and DMR-B-2 is not as significant as that for DMR-F-1 and DMR-

F-2, since there are additional checkpoint operations and restarts by the lookahead and

1.1!
Relative

Exec. Time

P,,
1.'

+ DMR-F-1

x DMR-F.2

o TMR.F

a DMR.B.1

A DMR.B-2

Centralfib server

• •. Noncentralfileserver

4O

1.05

1
0 0.02 0.04 0.06

Probability of Failure, I_

Figure 3.7. Impact of a Central File Server on Execution Time.

rollback validation processes during recovery for DMR-F-1 and DMR-F-2. Restart time

and checkpoint time increase as a result of the file access serialization by the centralized

server. Meanwhile, an extra overhead term for tk appears in Re, Np and Nc (Tables 3.2 and

3.3).

3.3.11. Optimal checkpoint placement

The formulas for Te in Tables 3.2 and 3.3 can be used to minimize the impact of

checkpoint time on execution time by selecting the proper checkpoint interval or frequency.

If the checkpoint interval is too long, the execution loss due to reprocessing increases the

execution time, while the checkpointing overhead increases the execution time with fre-

quent checkpointing. Figure 3.8 shows the expected execution time under different failure

rates and overhead costs for DMR-F-1. The optimal checkpoint frequency can be obtained

1300

Expected
Exec. Tlme

To

1150

IOO0
0

BasicExecutionTime= 1000 units

_. = failure rate

;_=510-4
tF-5

_---1 °
- "> _ __...._._....._- tk=2.5

.......... t_1
I I I I I I
5 10 15 20 25 30

CheckpointFrequency

Figure 3.8. Optimal Checkpoint Placement.

41

by either numerical or graphical means, given a failure rate, task computation time, and

overhead costs such as checkpoint time, restart time, and comparison time.

Note in Figure 3.8 that for a low checkpointing overhead, the execution time curve

near the bottom is rather fiat. This suggests that an accurate checkpoint interval is not

necessary since a few additional checkpoints still give a near optimal solution. For small

failure rates, the checkpoint interval is usually large or checkpoint frequency is small. This

observation agrees with the previous studies on optimal checkpoint placement for other

recovery schemes [1-4].

3.4. Self-Testable Scheme

If a checkpoint is self-testable, errors in the checkpoint can be detected by using

this checkpoint alone. During recovery, the lookahead scheduling can be reduced to only

scheduling a replicated process from the correct checkpoint identified by the self-testable

42

Table3.7. AnalyticalEvaluationSummary:Self-TestableScheme.

Re

Nc

max(No)

Np

max(Np)

test. This leads to the elimination of both the rollback validation process and the lookahead

processes from the erroneous checkpoint. For the purpose of comparison, we consider a self-

test scheme with a base size of two in the following.

This scheme uses two replicated processes for the computation sessions. At the end of

a checkpoint session, the test portions from the two newly produced checkpoints are tested.

If one checkpoint is tested as erroneous, a new replicated process is restarted from the error-

free checkpoint and the original erroneous process is terminated. The correct checkpoint is

committed. If both checkpoint are tested as erroneous, a rollback is performed. Therefore,

the probabilities of a successful lookahead and of rollback are, respectively,

pt = 2pf(1-p/)

Pr = P}.

In Table 3.7, Re, Np and Nc are summarized. (For details see Appendix A) For the

self-testable scheme, Re is similar to that for DMR-F-1 and DMR-F-2 (Figure 3.9). This

scheme also compares favorably to TMR-F (Figure 3.9): it has a shorter execution time

than TMR-F. With 570 overhead, the self-testable scheme is still comparable to TMR-F,

1.1 43

1.08

1.06
Relative

Exec.Time
R.

1.04

1.02

0

..';

°*

-- + DMR.F.1 -- Zero overhead ""
.t."

**°"

x DMR-F-2 ... 5%Overhead ..

_1=**

-- o TMI:I.F ..

***l* *'* '

a Sell-Testable ...'_' .._

** _(.o

*'(" ..°"

"'" """ ._.'".i'"_° °,°,_,**°°'°'_'

._._. _FII t

..-:::."" _: _"C_.'_ _
,,,,,:,;."

oed a -- _.. z..z,_=i_'r'__. *** *"

,,,t;_:_'"'_"--_"_'"" -'-'_''':_ . _ 3--- I
0.02 0.04 0.06 0.08 0.1

Probabilityof Failure, pf

Figure 3.9. Self-Testable Scheme: Re Comparison.

even though it is more sensitive to the overhead than TMR-F. The self-testable scheme uses

two static processors during both normal computation and recovery. However, Nc does not

have the term for inherent rollback. This is because the number of checkpoints is always one

for either normal execution or recovery except for the short period during the checkpoint

testing when it is three. This explains why Nc for the self-testable scheme is insensitive to

the overhead, similar to that for TMR-F (Figure 3.10).

3.5. Graceful Performance Degradation Scheme

Compared to TMR-F, the extra processors required during recovery by our strategy

may not always be available. A graceful degradation in forward recovery can be achieved

by using the limited lookahead scheduling. For example, we can schedule one lookahead

process instead of two. Although this compromises the performance, it does not render our

strategy a useless one.

1.6 44

Numberof
Checkpoints

N_

1.4

1.2

,

0

o....°'°'

+ DMR-F.I _ Zerooverhead

x DMR-F-2 .. • $ % Overhead ,""
,o o,'°"

• I , rll, *o TMR.F ..." ..
ol,X

-- o SellTestable "" .. '_'"

° .° _,po"
._ o"

o,' rip .°

i_'l°"_"

..:_.::.'"

..... _, _ _ JL...... _.,...... • ,A,,,,,,a,,sal::n:':::: ',

0.02 0.04 0.06 0.08 0.1

Probabilityof Failure,pf

Figure 3.10. Self-Testable Scheme: Nc Comparison.

In the following, we demonstrate tile graceful degradation caused by the limited looka-

head scheduling with DMR-F-1. We assume that the lookahead scheduling is to select ran-

domly one lookahead process for one of the two uncommitted checkpoints. The analysis for

this degradation scheme is similar to that of DMR-F-1. In fact, they are the same except

that half of the successful lookahead executions in DMR-F-1 become unsuccessful and re-

sult in roUbacks due to the misscheduled lookahead execution in this degradation scheme.

Therefore, the probabilities of a successful lookahead and a rollback are, respectively,

1

p,., = p,. +-_pt,

where Pt and p, are the probabilities of successful lookahead and rollback for DMR-F-1,

respectively (Section 3.3.2). This reduction in successful lookahead and increase in rollback

45

Table3.8. AnalyticalEvaluationSummary:GracefulDegradationScheme.

Re

Nc

ma (Nc)

Np

max(Np)

n(A + t_) (1 + 2P--_-d-_+ nt, p_'+2p_' +ntt 2"Svv+3pr'1-Pr'] 1-Pr' 1-pr t

1 + _ + p_,+2p_, t_../_ + 2.5p|,+3P r,
1 -pr* 1 --prt A-t-tk 1 --pr I A-t-tk

2 P|'+Pr' 9 P_+P_ tr 24"75p|'+6Pr ' _.k_._
1 + (l-p.,)R. + "(l-p.,)R. A+tk -{- (l-pr,)R. A+tk

6

I'5p|I+2Pr'3.¢._p,,+p_, t.../_.. +
2 + "_ (1-pr,)Re A+tk (1-pr,)Re A+tk

3

cause a reduction in performance, compared to DMR-F-1. Table 3.8 summarizes the results

of our analysis.

Figure 3.11 compares this degraded scheme with DMR-F-1, DMR-B-1 and a non-

recursive version of DMR-B-1. The DMR-B-1 scheme is a recursive rollback scheme that

gives the best possible performance among all of its nonrecursive derivations. Both DMR-

F-1 and its degraded scheme are nonrecursive. The nonrecursive DMR-B-1 is simply a

DMR-F-1 without lookahead scheduling. Clearly, this degraded DMR-F-1 gives a longer

execution time than DMR-B-1, although its degraded performance is still between those of

DMR-F-1 and the nonrecursive DMR-B-1. This suggests that DMR-F-1 should be switched

to either DMR-B-1 or the degraded recursive version of DMR-F-1, if the processor available

is limited at the time of recovery. The improvement in Np and Nc can be seen in Figures 3.12

and 3.13. In fact, the performance of the degraded scheme lies between those of DMR-F-1

and DMR-B-2.

46

Relative
Exec.Time

R.

1.3

1.2

1.1

0

A No_recursiveDMA-B-1

+ DMR-F-1 -- Zerooverhead

x Degraded ... ,S% Overhead

Q DMR-B-1

0.02

Figure 3.11.

Probabilityof Failure,I_

Degraded Scheme: R_ Comparison.

.o

2.4
Numberof
Processors

Np
2.2

1.8
0

+ DMR-F-1 -- Zero overhead

x Degraded .. • 5 % Overhead

o DMR.B-1

I I I
0.02 0.04 0.06 0.08

Probabilityof Failure,I_

Figure 3.12. Degraded Scheme: Np Comparison.

0.1

1.5 47

1.3
Numberof

Checkpoints
N©

1.2

+ DMR.F.1

x Oegraded

o OMR-B-1

Zerooverhead

.. • 5%Overheed

1 I I I
0 0.02 0.04 0.06 0.08 0.1

Probabilityof Failure,I_

Figure 3.13. Degraded Scheme: Nc Comparison.

3.6. Summary

In this chapter, we have shown the following analytical results:

• Our forward recovery schemes (DMR-F-1 and DMR-F-2) can achieve a nearly error-

free execution time with an average redundancy less than three.

• Checkpoint time is the inherent overhead in the five schemes we considered as in any

checkpoint-based schemes. It is proportional to the sum of the error-free result and

the inherent rollback term (a). It can be minimized by placing checkpoints optimally.

• Checkpoint test time is more important than restart time (7 > _). Any improvement

due to a reduced test time gains more in performance than that due to a reduced

restart time.

* The presence of a centralized file server increases restart time and checkpoint time.

It also results in an additional degradation in performance.

48

• If a self-testable test is available, our forward recovery scheme can achieve a shorter

execution time and a lower static processor redundancy than TMR-F.

• With limited processor resources, our schemes can obtain a reduced forward recovery

gracefully. Furthermore, the performance of our recovery schemes can be naturally

degraded to those of rollback ones.

CHAPTER 4.

49

EXPERIMENTAL EVALUATION

4.1. Introduction

In this chapter, we discuss our DMR-F-1 implementation for a distributed system.

The objective is to investigate the feasibility of DMR-F-1 for distributed systems and to

measure the performance overheads in an actual implementation. We selected DMR-F-1 for

three reasons: (1) DMR-F-1 is representative for our recovery strategy; (2) DMR-F-1 is very

sensitive to overhead (Section 3.3.9); and (3) DMR-F-1 can be easily extended into other

schemes such as DMR-F-2. Our distributed implementation utilizes the ease of availability

of workstations, and it can be generalized to the message passing-based parallel systems

such as hypercubes and connection machines. The memory shared parallel systems may

have a common mode of failure with the shared memory. If the processes that share the

memory space are treated as a computation entity, our implementation may be applied in

this case as well.

In our implementation, a checkpoint is the running image of a process. The test and

state portions of a checkpoint are not separate entities. The test mechanism is simply a

comparison of two checkpoint files. This selection of checkpoint structure and test gives

potentially maximal checkpoint and test times. It also requires no knowledge about error

and may handle possibly a wide range of failures.

5O

4.2. Host Environment

Our implementationenvironmentconsistsof a Sun3/280 serverand a pool of 12

Sun 3/50 disklessworkstations. The serverprovidesa Sun NFS transparentaccessto

remotefile systemsunder SunOS4.0. A voter task for the checkpointcomparisonand

recoveryinitiation is alsorun on this server.All checkpointsarekept by the server.The

Sun3/50 workstationsareusedasthe processingunits. This settingmakesit possibleto

evaluatethe impactof thecentralizedfile serveron DMR-F-1.This isanentirelyuserlevel

implementationwith nokernelmodificationsrequired.

4.3. Basic Problems

Two problems have to be overcome for any recovery schemes that use checkpoint

comparison: the remote restartability and comparability of a checkpoint. That is, a task

must be able to be restarted from a checkpoint produced on other nodes, and a checkpoint

produced on a node must be identical to any checkpoint from any other nodes if both

are correct and for the same computation. The former is required for process replication

(lookahead execution), while the latter is needed for checkpoint validation.

Due to different workloads at each node, the processing speed may vary on each node.

In our recovery scheme, the task execution time is determined by the slowest process in

the replicated process pair. The mismatch in processing speed (or workload) prolongs the

completion of the task computation. It also causes the problem of uncommitted checkpoints

accumulating in the file system.

51

4.4. Checkpoint Construction

4.4.1. Checkpoint structure

A checkpointusedin our implementationis a snapshotof a processrun-time image

at the time of checkpointing. There has been considerable research concerning checkpoint

construction in UNIX [11,38-40]. Smith implemented a mechanism for checkpoint construc-

tion in UNIX for the purpose of process migration [38]. His checkpoint is an executable file

generated by a checkpoint operation. It contains the text segment, the data segment, as

well as the stack segment of the process state. The stack segment is treated as a part of the

data segment. The processor state (e.g., registers) is saved by a setjmp() system call. The

restart of the checkpointed process is simply the reexecution of this executable file on an-

other processor. Li and Fuchs developed a checkpointing scheme for their compiler-assisted

checkpoint insertion techniques [11]. Their checkpoint is a data file that contains the data

segment and partial stack segment of the checkpointed process. The checkpoint is intended

for use in the same shell process on the same machine.

Our checkpoint structure is a superset of that of Li and Fuchs. In addition to having

the complete stack and data segments, our checkpoint also contains a segment for the file

I/O output data during that checkpoint interval. The inclusion of the file output as a part

of a checkpoint makes checkpoint comparison effective for error detection (described later).

The process registers are saved as a part of the stack. The omission of the text segment is

possible because the original executable file is already available through NFS. There is no

need to transfer the executable file to perform a remote restart.

52

4.4.2. Checkpoint operations

The checkpoint/restartoperationsinclude three routines: _checkpointO, _restart(},

and _terminate(}. They are all user level and can be placed into user applications either

manually or automatically by a compiler [11]. The routines are described as follows:

• _checkpoint(} is placed in user application programs. When executed, it saves the proces-

sor state on the stack, stores both data and stack segments in a data file and signals

to the voter that a new checkpoint has been generated.

• _restart(} is inserted in main(} as the first thing to execute. It checks with the voter if

there is a checkpoint from which to start. If there is a checkpoint, it reads in and

restores the data and stack segments, and resumes from the checkpoint; otherwise, it

does a normal return.

• _terminate(} is inserted before every exit(}. When executed, it signals to the voter that

the task has terminated.

4.4.3. Restartability

The virtual and uniform memory layout of UNIX in homogeneous machines provides

the basis for the restart of a checkpointed process on a remote node. However, some

user process information is usually kept in kernel for efficiency. A checkpoint without this

information may not be restartable even for the same kernel. One example is the file I/O

information in the file descriptor table in the kernel. When a process terminates or aborts,

this information is cleared by the kernel. Restarting a process from a checkpoint without

53

reestablishingthis information in anotherkernelmakesa local file descriptorin a user

programmeaningless.

Tomakeacheckpointremotelyrestartable,the userinformationkept in the kernelhas

to beextractedduringcheckpointingandreestablishedto the newkernelat restart [38,39].

A setof library routines was developed for file I/O operations. The library keeps extra data

as a part of the checkpoint, such as file name, access mode, and file position, associated

with the opened files. During checkpointing, all file buffers are flushed for opened files,

and the file positions are updated and stored in the checkpoint. During a restart, those

files are reopened and repositioned according to the previously saved information in the

checkpoint. In this manner, the attributes of file I/O can be saved and restored easily across

the network. These file I/O routines together with _checkpoint(), _restart(), _terminate()

comprise the checkpoint library. Using compiler-assisted techniques, these file I/O routines

can be substituted transparently for their corresponding calls to the standard I/O library

in user programs [11].

Even with the complete information of a user process state, the checkpoint may still not

be restartable. In UNIX, some state attributes are kernel-dependent. They cannot be saved

and carried across kernels (i.e., nodes) in a sensible fashion [38,39]. Examples are process

group, signal received, the value of the real-time clock, and any children the process may

have spawned with fork(). Similar to CONDOR and Smith, our current implementation

assumes that for restartability a program may not use or depend on those kernel-dependent

attributes that have partial information internal to the operating system other than file

I/O.

54

4.4.4. Comparability

The kernel-dependent attributes also cause checkpoints to be incomparable, even if

these checkpoints are all valid. For example, the value of the real-time clock for different

kernels may be different, since these clocks are seldom synchronized. The valid checkpoints

from the same execution on different nodes may not be the same if the program has these

attributes as a part of its memory space.

For those kernel-dependent attributes, we enforce the following restrictions to make the

checkpoint comparable: we can eliminate the use of variables to store such kernel-specific

attributes, or carefully place them in local variables (on the stack) whose scope does not

include a checkpoint operation, or clear these variables before checkpointing. Fortunately,

most numeric applications seldom use kernel-dependent values except file I/O, and thus

meet the restrictions we put on checkpoint restartability and comparability.

4.5. Voter and Recovery Management

In our DMR-F-1 implementation, the checkpoint comparison and recovery initiation

are managed by a voter process running on a Sun NFS server. Our current implementation

assumes that the voter is reliable. During a checkpoint operation, the communication

between the voter and the tasks being executed uses the Internet sockets. At each processing

node, there is a simple RPC-based (Remote Procedure Call) daemon process that schedules

or terminates a task in that processing node on behalf of the voter. Originally, a rsh call

from the voter was used for scheduling and killing a task on a remote node. However, we

found the performance overhead of a rsh call to be unacceptable. Therefore, the voter

55

wasdesignedin sucha way that it call scheduleand terminatea remotetask, compare

checkpoints,andinitiate a restart acrossa network.

The voter is invokedwith the nameof the task programto beexecutedand its argu-

ments. The voter thenschedulestwo replicatedprocessesfor this programand waits for

messagesfrom the scheduledtasks.Whena taskprocessis initiated, the call to _restart()

sendsa register_msgto the voter. Upon receivingit, the voter sendsbacka checkpoint

file nameif recoveryis needed.Otherwise,the voter replieswith no checkpointand the

task doesa normalstart. Whena task makesa checkpointwith _checkpoint(),the voter

receivesa checkpoint_msg. The voter either advances to the next checkpoint interval or does

a lookahead/validation operation, depending on whether the checkpoint comparison fails or

not. When a task is terminated, the voter receives an exit_msg. If all replicated tasks have

exited, the voter terminates.

In a distributed environment, tile processing speed of processing nodes may vary due

to differences in hardware and workload. This mismatch in processing speed causes the

replicated tasks to lag behind one another. Therefore, the task completion time is prolonged

since it is a function of the slowest of the replicated pair. In addition, the uncommitted

checkpoints produced by the faster task can accumulate in the file system. In a distributed

environment, a checkpoint may be a aatural place for migrating processes and redistributing

workload. We added a simple mechanism in the voter algorithm to adjust the performance

of the replicated task executions. If the voter detects a growth by two in the checkpoint

count for a task, the two replicated tasks are switched to other nodes.

56

4.6. Experiments

4.6.1. Benchmark programs

Two criteria for selecting programs are adopted in our experiments: (1) representative-

ness across different checkpoint sizes and (2) ease for checkpoint placements. Checkpoint

size is very important since it determines the overheads such as checkpoint time, restart

time and comparison time. The structure of most scientific programs (an obvious main

loop) can give a nearly equal checkpoint spacing by a simple manual technique (see Sec-

tion 4.6.2). Four scientific and two SPEC benchmark programs with different checkpoint

sizes were selected for our experiments [41]. They are described as follows:

convlv:

ludcmp:

matrix300:

nasaT:

is the FFT algorithm for finding the convolution of 1024 signals with one

response. The length of each signal was 256 bytes. The length of the

response was 99 bytes. The size of the entire data set was over 1 megabyte

(M) but the size of the memory-resident data set was only a few kilobytes

(K).

is an LU decomposition algorithm that decomposes 100 randomly gener-

ated matrices with size uniformly distributed from 50 to 60. Although it

has a larger data set (2.4 M) than that of rsimp, this program occupies less

main memory because memory is reused, i.e., a memory block is allocated
before a new matrix is read in and is deallocated after the result is written

out.

is a SPEC bench program. It performs various matrix multiplications, in-

cluding transposes using Linpack routines SGEMV, SGEMM and SAXPY,

on matrices of order 300. It produces no output during computation and

has large resident data in memory (2.2 M).

is a modified version of NASA Ames FORTRAN kernels from SPEC. It

consists of seven floating-point intensive modules. The original version uses

a large memory and generates heavy paging activities on a NFS server that

cause lengthier execution on diskless workstations than it would be on a

single machine (44 hours vs. 4 hours). We changed some array dimensions

so that paging would not delay our experiments (250 K data and about 2

hour execution). There is no data output during execution.

57

rkf: is the Runge-Kutta-Fehlbergmethodfor solvingthe ordinary differential
equationy' = x + y, y(0) = 2 with step size 0.25 and error tolerance

5 x 10-T. A table of function values was generated for x = 0 to 1.5 every

0.0001. This is a computation-intensive program with a small data set.

rsimp: is the revised Simplex method for solving the linear optimization problem

for the BRANDY set from the Argonne National Laboratory. One charac-

teristic of this program is its large memory-resident data set (about 1 M).

There is no file output during execution.

4.6.2. Checkpoint placement

The checkpoint validation test using checkpoint comparison in DMR-F-1 requires that

the checkpoints compared must be produced from the same computation. That is, the

checkpoints inserted have to have fixed locations in the program execution. The checkpoints

inserted by the Li and Fuchs' CATCH may be changed for different execution runs of the

same computation, since their approach is based on polling the real-time clock. For more

details, see Chapter 5. For now we use a simple polling method based on a selected loop

count to insert checkpoints in user programs. Since this method does not depend on the

real-time clock, it can insert checkpoints that are fixed in the program execution. This

method is depicted in Figure 4.1. The overhead caused by maintaining and testing loop

count is likely to be negligible, since the loop we selected is often the significant loop in a

program. During execution, the number of loop iterations is usually small; thus the insertion

overhead is also small.

With the selected loop count method, _checkpoint() is inserted manually to maintain

roughly a constant checkpoint interval. Table 4.1 shows that this insertion scheme gives

an adjustable checkpoint interval by choosing a proper threshold with a small variance.

Our observation on the optimal checkpoint placement in Section 3.3.11 suggested that the

optimal checkpoint interval is typically very large and insensitive to small displacement for

58

main()

(

int threshold = certain_value;

int count = O;

_restart();

while (expr) {

// major work here

if ((count = (count+l) Z threshold) -= O)

_checkpoint();

}

_terminate();

...

Figure 4.1, Checkpoint Placement Using Selected Loop Count.

Table 4.1. Overhead Measurements.

Programs
Name

convlv

ludcmp

matrix300

nasa7

rkf

rsimp

ckp ckp_size ckp_time cmp_time ckp_interval exec_time

(per run) (data/stack/file) (std. dev.) (std. dev.) (std. dev.) (w/o. ckp)

(in bytes) (in sec) (in see) (in sec) (in sec)
128 75950 0.2172 0.1608 13.917

(66196/1554/8200) (0.3411) (8.6302_3) (0.90787)

50 121510 0.2408 0.2030 20,626

(71708/1550/48252) (3,428e-2) (1.8224e-2) (2.1092)

150 2219446 5.8714 8.6157 239.777

(2217652/1794/0) (0.6949) (0.2338) (26.729)

49 351614 0.7672 0.9660 131.46

(349788/1826/0) (0.1347) (5.683e-2) (28.22)

88 51777 0.1477 0.1492 29.7202

(46972/1734/3071) (2.563e-2) (7.2498e-3) (1.0840)

59 995314 2.411 3,8286 42.8063

(991676/3638/0) (0.3767) (0.21893) (8.6359)

1809.22

(1781.42)

1043.38

(1031.34)

37092.88

(36206.30)

6611.44

(6573.00)

2638.58

(2625.58)

2713.04

(2568.38)

59

DMR-F-1. Therefore, this small variance in checkpoint interval due to the selected loop

count insertion still gives the optimal or near optimal solution.

4.6.3. Error injection

In our experiments, errors are injected into checkpoints to study the recovery behavior

of the programs. An error is injected into a checkpoint by randomly flipping bits in the data

or stack segment of the checkpoint. This type of error is intended to model the changes in

variables due to possible errors in memory and in data manipulation (ALU). We avoid the

injection of run-time errors because it may result in an incomparable checkpoint.

The probability of a node failure during a checkpoint interval in our experiments, p/, is

constant as we assumed in Chapter 3. The range of p] is selected as [0, 0.1]. Each program

is run five times for each failure probability to obtain the average measures.

4.6.4. Program characteristics

The overhead measures we considered consist of the checkpoint size (ckp_size), check-

pointing time (ckp_time), and checkpoint comparison time (cmp_time). Other measures

of interest are the checkpoint interval (ckpint) and the error-free execution time with

and without checkpointing. The restart time of a task is of about the same order as the

checkpointing time in magnitude and is not listed explicitly. Table 4.1 summarizes these

overhead measures for each program. The checkpoint size consists of three parts: data seg-

ment, stack segment and the file output during the checkpoint interval. Programs Rsimp

and matrix300 give examples of a large checkpoint. Most applications we examined have

checkpoints of size (64-350 K). The stack size is small in all six programs. This is not

6o

unexpectedfor scientificapplicationsin whichthe callingdepthis rather limited. The file

output sizecanbelargein someapplications(e.g.,eonvlv).

In Table 4.1, both ckp_time and crop_time do not include the processing time for

the file output portion of the checkpoint. For ckp_time, the file output portion is already

written to disk during execution; thus, it is not necessary to rewrite this portion to the

checkpoint. Three variables in a checkpoint are enough to locate this file output portion

(file name, starting position and length for each output file). The small standard deviation

in the checkpoint interval indicates that the selected loop count insertion of _checkpoint()

has produced a nearly constant checkpoint placement. We have found that checkpoint

time, comparison time and restart time are highly correlated. Since file I/O operations

are the major part of checkpointing (write), checkpoint comparison and restart (read), the

overhead costs such as checkpoint time, comparison time and restart time can be expected

to be proportional to the size of the checkpoint files.

4.6.5. Error detection by checkpoint comparison

The effectiveness of checkpoint comparison is studied for the six selected programs. To

avoid the interference of run-time error injection with checkpoint comparability, a random

bit or word error is injected in the previous checkpoint to model a transient error occurrence

during its subsequent checkpoint interval. Then one task is started from this erroneous

checkpoint and another task from the error-free checkpoint. The checkpoints produced by

the two tasks after one checkpoint interval are compared. A mismatch indicates a detected

error. Table 4.2 summarizes the results for 101 injected random errors. The number of errors

detected is categorized by where the error is detected: the data, stack and the file output

61

Table4.2. Error DetectionThroughCheckpointComparison.

Program

convlv
ludcmp
matrix300
nasa7
rkf
rsimp

bit-wiseerrors word-wiseerrors
ErrorsDetected

data stack file abort
68 3 30 0
43 0 58 0
101 0 - 0
87 0 - 0
78 1 22 0
99 0 - 2

#
Missed

Errors Detected

0

0

0

14

0

0

data stack file abort

71 0 30 0

37 3 59 2

100 0 1

87 0 - 0

76 3 22 0

98 0 2

#
Missed

0

0

0

14

0

1

segments of the checkpoints. The abortion of the task due to an error in the checkpoint can

be treated as a special case of error detection by sending an abortion signal to the voter

explicitly.

The errors detected by checkpoint comparison account for the majority of injected

errors that occurred (about 98%) for all programs except nasaT. If the file output during the

checkpoint interval is not included in the checkpoint structure, 22 to 59% of the errors would

not be detected (rkf, convlv and ludcmp). Some errors were missed in our experiments.

In this case, we have a valid file output during execution and a valid checkpoint at the

end; the missed errors are actually masked off and cause no problems with respect to

correct executions. This case occurs when an error is in a dead variable and this variable

is reinitialized later. A close look at the checkpoint placement for nasa7 reveals that a

new array of about 11% of the total checkpoint size is computed during the checkpoint

interval. The 14 missed errors were probably inserted into the new array space and were

overwritten during the computation. In sum, the checkpoint structure provided an effective

error detection tool for the programs we studied.

Relative
Exe¢.Time

R,

1.5

1.4

1.3

1.2

predicted:no cost

... predicted:cost

n convlv

A ludcmp

+ matrix300

* nm_7

odd

°,°"
X Fliimp .°

o 4

o
.o

.o,*

÷ i., ,°'j°"

°,°,,4, x

- = _'"'" o _......o

,, o°'° X

• -- * 8

O.05 0.1 0.15

Probabilityof Failure,pt

Figure 4.2. Relative Execution Time During the Day.

62

4.6.6. Performance results

Each program was run five times for each Pl in order to obtain the average measures.

The execution time in our experiments is actually the program response time. It includes

the system, user and blocking times. The analytical predictions for the relative execution

time, number of processors, and number of checkpoints are also included in Figures 4.2,

4.3 and 4.4 to compare against our experimental results (Chapter 3). The voter processing

overhead is the time spent in the voter program minus the checkpoint comparison time and

divided by the checkpoint interval.

The data were collected for two workload conditions: daytime (10 AM to 6 PM) and

nighttime (10 PM to 8 AM). During the day, the workload among our workstations was

uneven and the NFS server was busy. During the night, our workstations and the NFS

server were lightly loaded.

63

RelaUve
Exec.Time

R,

1.5

1.4--

1.3-

1.2-

1.1-

predicted:no cost + matrix300

• .. predicted:cost * nasa7

a convlv odd

0

A ludcmp x rlJmp ..""

.,o

x ,•

÷ ••o

x .,.-'•" J

..._'" O

x ,''"

...''" $

x'"" _ _I

i•..• .°"

+ 0.05 0.1 0.15

Probabilityof Failure,I_

Figure 4.3. Relative Execution Time During the Night.

Increase
(day vs. night)

(%)

60

40-

20-

0

o convlv x mimp

A ludcmp o rid

* nua7

A

0

0

0
x

x _ x

0 x

I I I
0 0.05 0.1

Probabilityof Failure,I_

Figure 4.4. Difference in Execution Time.

64

In Figures4.2and4.3,therelativeexecutiontimeisplottedforeachof thesixprograms

undertwo differentworkloadconditions.Therelativeexecutiontime for the programswith

a moderatecheckpointsize(ludcmp, convlv, nasa7 and rkf) is closeto the analytical

zero-overheadprediction(solidcurve),sincetheoverheadsfor thoseprogramareverysmall

comparedto their checkpointintervals.The relativeexecutiontime for the programwith

largecheckpoints(matrix300 and rsimp) fits wellwith the analyticalpredictionundera

centrahzedfile server(the dotted curve,assumingan overheadlevelof rsimp). This in-

creasein executiontime for largecheckpointscanbeexplainedbythe fact that matrix300

andrsimp arelikely to beblockeddueto its largefile I/O operationsduringcheckpointing

and comparison.In fact, the limited speedof the NFSfile handlingandour useof the file

serverfor managingcheckpointscentrallyresultedin a performancebottleneck.The paging

activities from the replicatedprocessesalsocontributeto the increasein executiontime.

The relativeexecutiontime increasessignificantlyfor high error ratesdueto the heavyfile

serveractivitiesduringcheckpointingandcomparisonof checkpoints.This suggeststhat a

reductionin checkpointsize,an increasein file systemspeed,or othernoncentralizedserver

implementationsmayimprovethe relativeexecutionoverthat of our current implementa-

tion. In addition,a reductionin comparisontime may significantlyreducethe execution

time of DMR-F-1(Section3.3.9).

The relativeexecutiontime fluctuatesmorefor the daytimeconditionthan that for

the night. Theexecutiontime is longerin thedayrunsthan in the night (Figure4.4). This

reflectsthe fact that the workloadis heavierandmorelikely to changeduringthe daythan

during the night.

3.5 65

predicted:no cost + matrix300

• .. pmdlcted:cost * nua7

o convlv o rid
3-

ludcmp x rsimp

Numberof _*
Processors

Np'""

2.5 - .'""" _ *
,'" r-1

II q' ,

,,*' X

._ A
, •

2!
0 0.05 0.1 0.15

Probabilityof Failure,I_

Figure 4.5. Number of Processors During the Day.

For the p/ we considered, the number of processors used, Np, is less than the three

that TMR requires, although DMR-F-1 uses two more processors momentarily during

lookahead/validation operations. As anticipated in Section 3.3.8, Np is quite insensitive

to the workload distribution conditions and checkpoint size (Figures 4.5 and 4.6).

The number of checkpoints, No, is highly sensitive to the workload and checkpoint

size, as a result of the checkpoint accumulation in the file system due to uneven processor

speed, especially for the programs with large checkpoint sizes (Figures 4.7 and 4.8). Without

switching the task executions on the nodes that have different processing speed, Nc averaged

6.95 in five runs for convlv. In one of these runs, Nc reached 18.45. With the switch

mechanism mentioned in the previous section, Nc is limited to about 2 or 3. The simple

switch rule we used in the voter limits Nc by redistributing the workload.

In Figure 4.9, the average processing overhead for the voter is plotted. The overhead is

small compared to the checkpoint interval, and increases as the failure probability increases.

66

3.5

Numberof
Processors

Np

2.5

2!
0

-- predicted:no cost + matrix300

• ,. predicted:cost * nau7

o convlv o rid

A I.dcmp x mlmp

+ o.o .°*°''"

_ x
° °D 0

oQ'° 0

x .,°.'° A

0.05 0.1 0.15

Probabilityof Failure,I_

Figure 4.6. Number of Processors During the Night.

Numberof
Checkpoints

Nc

n

4-

i

-- predicted:no cost + moldx300

• .. predlcted:cost * nmm7

o convlv odd

A ludcmp x rsimp

1
0

X X

÷
Q rl

A
+ A 0

-- A , , 0
* ,.,,*°

.II,,,ei°i,,, ,,i''°"
,o°...o,

..°, __"" I

0.05 0.1

Probabilityof Failure,pf

Figure 4.7. Number of Checkpoints During the Day.

0.15

67

Numberof
Checkpoints

N_

IxedlctIKl: no cost + matrix300

1
0

... ixedlcted: cost * rim7

a convlv o rid

a ludcmp x mlmp

m

4-

x _. x
4-

F

-- O

O O , ,_ ,

O.05 0.1 0.15

Probabilityof Failure,I_

Figure 4.8. Number of Checkpoints During the Night.

300

20O

Voter
Overhead
(msec.)

100

o convlv * rim7

a ludcmp o rkf

+ matrix300 x rslmp

&

I I
0.05 0.1

Probabilityof Failure,I_

Figure 4.9. Voter Processing Overhead.

0.15

68

Large checkpoints also increase this overhead due to the waiting time for file I/O during

checkpoint comparison.

4.7. Summary

In this chapter, we have described a distributed implementation of DMR-F-1. There

is no universal way in UNIX to obtain a restartable and comparable checkpoint structure

because of either the user information kept in the kernel for efficiency or the machine-

dependent information. Our DMR-F-1 implementation was evaluated with six benchmark

programs. The experiments have shown:

• Checkpoint comparison is effective means of error detection and checkpoint validation

in our experiments. The file output during a computation session should be included

as a part of the checkpoint for this computation session.

• The overheads, such as checkpoint time, restart time and comparison time, are highly

correlated to the checkpoint file size.

• The experimental results agree with tile analytical predictions given in Section 3.3.2.

For moderate checkpoint sizes (64-350 K), the experimental results are close to that

of the deal zero-overhead case; the average execution time is reasonably close to the

error-free execution time. For large checkpoint sizes, the experimental results are close

to what the analytical model predicts.

• For moderate checkpoint sizes, the checkpoint and comparison times are small, com-

pared to the checkpoint interval. For large checkpoint sizes, these overheads have

69

an important impact on performancedue to the centralizedfile serverusedin our

implementation.

• The workload also has an important impact on the number of checkpoints and the

execution time. The former resulted from the uneven distribution of the workload

and the latter from both workload distribution and workload level.

* The average number of processors used in our forward recovery scheme is less than

TMR.

CHAPTER5.

7O

COMPILER-ASSISTED STATIC CHECKPOINT INSERTION

5.1. Introduction

Error recoveryusingcheckpointingandrollbackisa commonstrategyin fault-tolerant

systemsbecauseit canhandleunanticipatederrors [7]. Considerabletheoreticalresearch

hasbeendevotedto determiningoptimal checkpointintervals [1-6]. A practicalproblem

in implementingcheckpointingand rollbackrecoveryis the maintenanceof the desirable

checkpointinterval. Checkpointsmaybestatic in the sensethat they areat fixed locations

in a programor they maybedynamicsuchthat their locationsin a programmayvary,as

a functionof timeor systembehavior.Althoughdynamiccheckpointscanbeimplemented

with existinghardwareinterrupt support(systemclock),they arenot reproducible.Static

checkpointsmust rely on either the insertionof checkpointsbeforeprogramexecutionor

the monitoringof programbehaviorduringexecution.Reproduciblecheckpointintervals,

asobtainedwith static checkpoints,canbeusedfor debugging[42-45]or error detection

by meansof checkpointcomparisonwith replicatedprocesses[46,47].

Chandyand Ramamoorthyhavedevelopeda schemefor application-levelcheckpoint

insertion,givena computationsequence,executiontime, checkpointtime andrestart time

[48]. Their schemeis a graph-theoreticmethodto determinethe optimal locations for

checkpointplacement.TouegandBalaoglu,and Upadhyayaand Salujafolloweda similar

71

approach [2,49, 50]. Li and Fuchs have studied techniques for checkpoint placement at the

compiler level (CATCH) [11].

user program by the compiler.

Checkpoint subroutines are transparently inserted in the

Li's CATCH is a dynamic checkpoint insertion scheme.

To maintain the desirable checkpoint interval, the real-time clock is polled to decide if a

checkpointing call is due. This polling code is called a potential checkpoint in their paper.

To reduce excessive polling at these potential checkpoints, a leverage count is inserted in

loop bodies. The potential checkpoint is activated once the leverage count is greater than a

threshold value. Polling the real-time dock can result in different checkpoint locations for

different execution runs of the same computation due to the clock granularity (one second

in Unix) and the workload on the system.

This chapter presents a compiler-assisted approach for static checkpoint insertion.

Instead of fixing the checkpoint locations before program execution, a compiler-enhanced

polling mechanism is utilized to maintain both the desired checkpoint intervals and re-

producible checkpoint locations. Instruction-based time measures are used to track the

computation progress and thus checkpoint intervals. These measures produce static check-

points by eliminating the real-time clock. This approach has been implemented in a GNU

CC compiler for Sun 3 and Sun 4 (SPARC) processors [51]. Experiments demonstrate

that our approach provides for scalable checkpoint intervals and reproducible checkpoint

placements with a performance overhead that is less than that of the previously presented

compiler-assisted dynamic scheme (CATCH).

Section 5.2 describes the problem of compiler-assisted checkpoint insertion. Section 5.3

presents the concept of instruction-based time measure and four static insertion schemes.

Section 5.4 discusses our implementation and experimental results.

72

5.2. Checkpoint Insertion Problem

There are two basic problems in inserting checkpoints in a user program: how to design

a set of operations to accomplish checkpointing and recovery, and how to maintain a desired

checkpoint interval. Optimal checkpoint intervals may be the desired checkpoint spacing

[1-6].

5.2.1. Checkpoint operations

Compiler-assisted checkpoint insertion requires a set of checkpoint operations to ac-

commodate checkpointing, to restart from a checkpoint and to perform checkpoint cleanup

at the end of the computation. In Chapter 4, we have discussed a checkpoint library that

provides such a set of checkpoint operations for UNIX. These operations (subroutines) can

be divided into two categories.

The operations that perform recovery and checkpointing are the basic operations, since

they are required no matter what the operating system may be. The compiler actually

inserts the basic operations into the user program. In the checkpoint library developed in

Chapter 4, _restart() provides a recovery entry point in the user program. It is usually

inserted in the beginning of the user program. If a recovery from a checkpoint is needed,

it restores the system state and resumes execution from this state. The _checkpoint() call

creates a checkpoint when executed; _terminate() clears the checkpoints at the end of the

computation as the last operation in the user program. In UNIX, _restart() may be inserted

as the first line in the main() routine, while _terminate() is inserted before every exit() call

A _checkpoint() is inserted wherever a checkpoint is desired in the user program.

73

Theinterfaceoperations are operating system specific, and they often assist the basic

operations to accomplish checkpointing and recovery. The interface operations are usually

substituted for some routines in the user program by the compiler. For example, _fopen 0

in the file I/O interface routines described in Chapter 4 is used to separate the process state

from the operating system kernel to obtain a remotely startable checkpoint. It takes the

same arguments as fopen O, stores these arguments in the user space and then calls the true

fopen O. During recovery, these retained arguments can be used to reopen the file without

asking the kernel to roll back. During compilation, the compiler simply substitutes _fopen 0

for each occurrence of fopen 0 in the user programs.

In the following, we will not consider the problem of checkpoint operations further,

since we already studied this problem in detail in Chapter 4.

5.2.2. Checkpoint interval maintenance

Maintaining desirable checkpoint intervals by a compiler requires a time measure for

describing checkpoint intervals and a mechanism to insert a checkpoint operation in the user

program. Using the elapsed time of a computation as the time measure leads to dynamic

checkpoints (CATCH). This is because the elapsed time for a computation often varies from

execution to execution due to resource sharing with other computations. Static checkpoint

insertion needs a time measure that is independent of the real-time clock and that describes

checkpoint interval in terms of computation progress. In Section 5.3.1, we will introduce

instruction-based measures that satisfy both requirements.

Ideally, the compiler should insert checkpoint operations into the user program prior

to the program execution. There are three difficulties in doing so. First, the exhaustive

74

searchfor all possibleexecutionpaths in a programto determinecheckpointlocationsis

computationallyintractablein general.Second,to calculatethe executionlength alonga

particularpathmaybeimpossibledueto the lackof informationat compilationtime (e.g.,

datasensitiveloopbounds)[52].Third, eachpathmayrequirea differentsetof checkpoint

locations. It is possibleto havemany insertionson a commonpath, but this leadsto

redundantinsertions.

As a result,the checkpointinterval ismalntalnedby eitheran interrupt drivenmech-

anismor a polling mechanism.Figure5.1presentsan interrupt driven schemefor UNIX-

basedsystems.Thesysteminterrupt initiatescheckpointingrequests,basedon thesystem's

real-timeclock.Uponreceivinga time-out interrupt, a checkpointing operation is executed

as a part of the interrupt service. Using this interrupt driven mechanism, the compiler-

assisted insertion is trivial. The compiler needs only to insert restart() at the beginning of

the main() and cleanup() before every exit(). No explicit insertion of checkpoint() is nec-

essary. This interrupt driven insertion can maintain desirable checkpoint intervals at a low

cost, since the hardware interrupts can initiate checkpointing requests efficiently. However,

the interrupt mechanism based on the real-time clock generally cannot guarantee a specific

checkpoint location in a program, and thus it is a dynamic insertion.

The polling mechanism, when activated, tests whether a checkpoint is needed given the

desired checkpoint interval. If a checkpoint is needed, the checkpointing operation (routine)

is executed. This is called a polling point in this thesis. Using the polling mechanism, the

compiler has to deal with two problems: the polling point placement and the management

of the execution time since the last checkpoint (Figure 5.2). For a polling mechanism to

be successful, the overhead resulting from the time measure maintenance and checkpoint

75

#include <signal.h>

int checkpoint()

{
/* make a checkpoint here ./

/* schedule the next checkpoint operation */

signal(SIGALRM, checkpoint):

alarm(the_desired_checkpoint_interval);

int restart()

/* Check if there is a checkpoint to restart. If yes, */

/, read in checkpoint and restore system state. Otherwise, ,/

/, do nothing. */

/e schedule the next checkpoint operation

signaI(SIGALRM, checkpoint);

alarm(the_desired_checkpoint_interval);

./

main()

restart(); /* recovery entry point & start checkpoint */

/* interrupt. No explicit checkpoint() is */

/* needed. ,/

cleanup(); /, cleanup checkpoints ,/

exit(O);

Figure 5.1. Interrupt Driven Checkpoint Insertion in UNIX.

76

polling should be reasonably small. In CATCH, the real-time clock is used for the polling

measure and loop iteration is used for the polling location. Using the real-time clock as the

polling measure leads to a dynamic insertion, since the workload in the environment and

the blocked operations in user programs can affect the polling decision in different execution

runs.

5.3. Static Checkpoint Insertion

5.3.1. Instruction-based time measure

The essence of checkpoint and rollback recovery is to save the previously finished

computation and to avoid restart from the beginning every time under the presence of

faults. The elapsed time for a computation is not suitable to describe the progress of the

computation precisely, since the computation time usually changes with the system load

because of the resource sharing between processes in the system. Therefore, maintaining

checkpoint intervals using the elapsed time of the computation leads to dynamic checkpoints,

such as in CATCH. For static checkpoint insertion, the computation progress measure

should be independent of the real-time clock and depend only on the computation itself.

The instruction-based time measure introduced below is such a measure.

The sequence of instructions that has been executed by a computation is called a trace

in this thesis. Let T be a trace of a program execution such that T={I1,I2,...,Ij,...}

where I 1 is the j-th instruction executed in this trace. A subsequence s of a trace T is

called a subtrace of trace T (denoted as s C T). A measure m on a trace T is said to be a

instruction-based time measure if re(s1) <_ m(s2), given sl _Cs2, and sl, s2 C_T.

77

$include <8iEnal.h>

/e on-fly time measure accunulation */

void update_tine_measure(neasure)

int nee.sure;

{
/e measure is calculated by the conpilerand is a constant e/

neasure_since_last_checkpoint += neasure;

}
void polling_point()

if (measure_since_last_checkpoint >- neasure_threshold) {

checkpoint(); /, explicit checkpoint() call is needed */

}
}

void checkpoint()

/e aake a checkpoint here s/

}

void restart()

/e Check if there is a checkpoint to restart. If yes, */

/e read in checkpoint and restore systen state. Othervise, */

/* do nothing. */

}

nain()
{

restart(); /* recovery entry point k start checkpoint e/

/* interrupt. */

update_tine_neasure(neasure);

polling_point(); /* polling point inserted here. ,/

cleanup(); /e clean up checkpoints */

exit(O);

Figure 5.2. Polling-based Checkpoint Insertion in UNIX.

78

There are two properties associated with the definition of the instruction-based mea-

sure. First, it describes the progress of computation in terms of instruction traces. That is,

an instruction-based time measure is a monotonously nondecreasing measure with respect

to the instruction sequence in a computation trace, given a common starting instruction. If

both subtraces start from the same instruction, a large value of m implies a longer computa-

tion than does a small m. Second, there is a time elapse for executing a subtrace s C_T such

that re(s) = m. This time elapse is called the execution time of traces with a measure of m

and is denoted as t(m(s)) or simply t(m). In this chapter, the value of re(s) is sometimes

called the trace size of s for short.

However, the execution time of a trace size, m, may not be the same even when the

execution is run on the same machine. For example, subtrace sl = {Ii, Ii+l,...,/i+k} and

subtrace s2 = {Ii, Ii+1,..., Ii+_, li+k+l} may have the same measure by the definition above

even with sl C_s2. Generally, sl and 82 will result in a different execution time. We can

model the execution time of a trace size with t(m) = t u + T,, where t_ is a constant for

the expected execution time and T_ is a random variable for the variation in execution

time. The constant t_ can be used as the time measure for computation progress, while the

random Tv can be viewed as the accuracy of the instruction-based measure with respect to

elapsed time.

There are many possible instruction-based time measures. We will now describe four

of them. They generate a time measure for checkpoint interval maintenance with potentially

different accuracies.

79

• Instruction cycle count: The instruction cycle count (ICC) is defined as the to-

tal number of cycles for individual instructions in a trace. It is an instruction-

based time measure. In fact, for any subtraces of $1 "-- {//,h+l,-..,/i+k} and s2

= {h, h+l,...,//+k, h+k+l,..., h+k+j}, we have

J

ICC(s2) = ICC(sl) + _ cycles(Ii+k+,,) > ICC(sl).
rL----.1

The ICC measure can generate an accurate execution time. As a matter of fact, the

deviation in execution time for ICC will be within the number of cycles for the longest

instruction in a trace. If ICC is used for the checkpoint interval measurement, the

resulting interval can be accurate within one instruction if a checkpoint can be inserted

at any instruction boundary. However, this measure is architecture dependent as an

instruction may have different execution cycles in different architecture.

• Instruction count: The instruction count (IC) is the number of instructions in a trace.

Clearly the instruction count is an instruction-based time measure. Given an IC value,

the trace execution time varies with the set of instructions in a trace. If the trace

is large enough to have a representative mix of different instructions, the variance

in execution time may be small. For a ttISC machine, IC may be a very accurate

time measure because of the uniform instruction cycle count (e.g., one instruction

per cycle). Compared to the typical checkpoint interval, a few extra instructions in

a trace will not affect the trace execution time in a noticeable way. In this case, IC

can serve as a very good time measure for checkpoint intervals if a checkpoint can be

inserted at the instruction boundary.

8O

• Loop/function count: The loop/function count (LFC) is the number of loop iterations

and functions in a trace. It can be shown that LFC is also an instruction-based time

measure. The LFC measure changes only at a loop iteration or a function entry/exit

point, and it does not distinguish between the individual instructions within a loop

iteration. The execution time, given an LFC value, is potentially less accurate than

that for ICC or IC. Different programs may have different loop sizes and thus different

execution times. As will be shown, the number of instructions within one loop iteration

is typically small. Compared to the checkpoint interval, the variation in the trace

execution time caused by ignoring the instructions in a loop iteration is negligible.

For LFC, a checkpoint may be inserted at a loop iteration boundary, a function entry

point or exit point. Both IC and LFC are architecture independent since they do not

depend on the execution cycles of particular instructions.

• Selected loop/function count: The selected loop/function count (SLFC) is the number

of iterations for some loops selected. The selection of a particular SLFC affects the

accuracy of the instruction-based measure with respect to execution time. If the

selected loops spread over the whole execution trace evenly, the SLFC may generate a

stable execution time (small Ta). Otherwise, Ta may be very large. The major loops

in scientific programs may be good candidates for SLFC, since they are likely to be

executed throughout the computation [47].

Ideally, ICC provides the most accurate time measure for a checkpoint interval. How-

ever, it may require the knowledge of the instruction set of a particular architecture and

may consume more time in obtaining the ICC values. Moreover, the large size of an optimal

81

checkpointinterval impliesthat theaccuracyproducedby theinstructioncyclecountis un-

necessarysinceit resultsin very little changesin the realizedcheckpointinterval. Although

LFC and SLFC arepotentiallylessaccuratethan ICC and IC with respectto the trace

executiontime, they caubecalculatedwith low cost.Theaccuracymaystill be acceptable

if the checkpointintervalcontainsmanyloopiterationssothat a stablemix of instructions

is executed in each checkpoint interval.

5.3.2. Checkpoint insertion schemes

We use a polling mechanism with instruction-based time measures to accomplish the

static checkpoint insertion. The compiler calculates the instruction-based time measure

along an execution path. These statically calculated values for the time measure are accu-

mulated in a counter during the program execution on the fly. The accumulated counter

gives the time measure since the last checkpoint. Based on the location of the time measure

accumulation and polling points, the four schemes we have implemented are described in

Table 5.1.

5.3.3. SLFC determination

In order to implement the SL-SL scheme, a method for selecting loops for SLFC was

developed. Our approach is profile-based. Probe routines axe placed into a program by

the compiler. These probes collect the trace information during program profiling. The

information collected is used to aid the loop selection for the SLFC measure. Once SLFC is

determined, the compiler places static checkpoints in the program according to the SLFC

measure.

82

Table5.1. FourStatic CheckpointInsertionSchemes.

B-B: This scheme measures the instruction count (IC). The code for both the

time measure accumulation and polling is inserted in each basic block in

the program. A basic block is a sequence of consecutive instructions in

which the program control enters at the top and leaves from the bottom
with no branches or halts inside. Basic blocks in this thesis are described

in terms of RTL instructions.

B-L: In this scheme, the time measure is the instruction count. The time mea-
sure accumulation code is inserted in each basic block, while that for polling

is placed in each loop.

L-L: Is scheme uses the loop/function count as the time measure. The code

for time measure accumulation and polling is inserted in each loop and

function.

SL-SL: In this scheme, the time measure is the selected loop/function count

(SLFC). The code for the time measure accumulation and polling is in-

serted only in the selected loops/functions.

There are two problems involved in selecting an SLFC measure: (1) to identify a set of

loops that tend to appear throughout the execution trace, and (2) to determine a threshold

value for each selected loop. This threshold value is important as the on-the-fly accumulated

SLFC value is compared against this threshold value at each polling point in order to make

a checkpoint decision. During profiling execution, each probe records the loop/function ID

and calculates the frequency of occurrences of this loop in a checkpoint interval. If a set of

loops can be found such that every checkpoint interval contains at least one loop from this

loop set, this loop set may be a candidate for SLFC. The frequency associated with each

loop for a checkpoint interval can be used as the threshold value for the loop.

Given a program and its profile data, the SLFC selection can be formulated as a cover

set problem in a weighted bipartite graph. The checkpoint intervals and loop/function IDs

are two sets of vertices. If a loop appears in a checkpoint interval, there is an edge between

the checkpoint interval vertex and the loop vertex. The frequency of the loop occurrences

83

in the checkpoint interval is the weight for this edge. The cover range of a loop vertex is

the set of all of the checkpoint interval vertices that are connected to the loop vertex. An

SLFC cover set is a set of the loops such that their cover range contains all of the checkpoint

interval vertices.

There are four criteria for selecting a good SLFC cover set that gives a stable checkpoint

interval with a small polling overhead:

• Minimal overlapping: The overlapping of cover ranges for two selected loops may

result in unstable checkpoint intervals due to the interference of their possibly different

threshold values.

• Minimal cover set: The size of an SLFC cover set is directly related to the code size

overhead as the code inserted is proportional to the size of the cover set. Given that

code size is not a problem for most applications, this criterion may be discounted

during the selection of an SLFC cover set.

• Minimal average frequency: The average frequency for a loop in the SLFC cover set

is used as the threshold value, for this loop, in our current implementation. A higher

frequency leads to more frequent execution of the inserted checkpoint polling code for

this loop and thus a higher run-time overhead.

Uniform Frequency: This calls for a small variance in the frequencies for a loop in

the SLFC cover set. As checkpointing is delayed for small frequency edges and is too

frequent for large frequency edges, large variance in frequency weights results in a

more unstable checkpoint interval.

84

AlthoughfindingaminimalcoversetisNP-complete,findingacoversetwith minimal

anduniform frequencycanbe mappedinto the problemof findinga minimal total weight

coverset. In thecurrentimplementation,a heuristic algorithm is used to combine all of these

criteria for SLFC selection (Figure 5.3). This heuristic is a greedy algorithm with different

priorities for cover range, frequency average, and frequency variance. It selects loop vertices

with large cover ranges and small frequencies under constraints of small relative frequency

variance and little overlap for the selected loops.

5.4.

5.4.1.

Implementation and Experimental Evaluation

Base compiler and insertion filter

The base compiler that was selected to implement our static checkpoint insertion is

the GNU CC compiler version 1.40 for Sun 3 and Sun SPARC. We used an implementation

similar to CATCH. A register transfer language (RTL) level filter is placed between parsing

and object code generation (Figure 5.4). The advantage of a checkpoint insertion filter is

that the insertion is an independent module that is added to the base compiler and does not

change the base compiler if the checkpoint insertion is not required. The choice of a register

transfer level insertion is aimed at achieving an architecture independent implementation.

5.4.2. Benchmark programs

Six benchmark programs were used to examine our static insertion technique. Our

objective was to study the effectiveness of the checkpoint interval maintenance in terms of

85

"select

[1] the number of checkpoint intervals that a loop

covers as the prieary key (in decreasing order);

[2] the average frequency of a loop as the secondary

key (in increasing order); and

[3] the relative standard deviation in frequency

for a loop (std. dev./average) as the third

key (in increasing order).

sort the vertices according to the above keys.

cover_set - BULL;

/* set for no overlapping cover range */

overlappiv__size = O;

vhile (size(cover_set) < desired_coverage) do

(
for each vertex v in the sorted loop_set do

/* select a v eithuniforifrequency e/

if (freq_variance(v) > threshold) continue;

if (size(cover_range(v) and cover_set) <- overlapping_size)

add v to cover_set;

if (size(cover_set) >- desired_coverage) break;

/* relax the overlapping constraint a little */

overlapping_size++;

if (no changes in cover_set) break;

Figure 5.3. Heuristic SLFC Selection Algorithm.

86

Analyser
processor I Program

Token

generntor Optimizer

Aimmbly
code

I
I
I

V
ILl iL
::::i::::i::i::::::::i::::::::::::i::::::::i::i:::::::::::.::::::::iii

DI_ Aloomblm' J J I Excutabl* code-I i r

Figure 5.4. Base Compiler and Its Checkpoint Insertion Filter.

1. The average checkpoint interval and its variance (t_ and Ta in Section 5.3.1). This

gives the effectiveness of an instruction-based time measure for checkpoint interval

maintenance. A small variance implies that the instruction-based measure is accurate

with respect to execution time.

2. Scalability of the checkpoint interval with respect to the instruction-based time mea-

sure threshold, for checkpoint polling tests. Linearity in the checkpoint interval with

respect to the polling threshold allows for accurate prediction of the desired threshold.

3. The overhead for checkpoint interval maintenance due to the compiler-assisted tech-

nique. This overhead results from the time measure accumulation and checkpoint

decision making at polling points. The time measure accumulation overhead depends

upon the frequency of updating the time measure counter, and the polling overhead

depends upon the frequency of executing the polling points. If the time measure

87

counter is updated sparsely or very few poring points are inserted, the checkpoint

interval may become inaccurate. On the other hand, a high frequency of checkpoint

poring and time measure accumulation leads to a high run-time overhead. Compila-

tion time is ignored in this thesis since it is incurred only once and it is usually very

small. Other overhead factors such as checkpoint time, that are not related to check-

point insertions, are not considered in this chapter. In fact, checkpoint time is more

related to the checkpoint size than to the checkpoint interval maintenance [11,47].

4. Code size. This reflects the space overhead due to code insertions.

Of the six benchmark programs examined, four are scientific applications in which

loops are large and the calling depth is small. The other two programs contains a number

of small loops and a large calling depth. The six benchmark programs are as follows:

convlv:

espresso:

li:

ludcmp:

rkf:

rsimp:

is an FFT algorithm that finds the convolution of 1024 signals with one

response [11,47].

is a SPEC integer program for Boolean function minimization, developed

at the University of California at Berkeley [41]. It contains short loops and

recursive functions.

is a Lisp interpreter solving the 8-queen problem. It is a SPEC integer

program developed by Sun Microsystems [41].

is an LU decomposition algorithm that decomposes 100 randomly gener-

ated matrices of uniformly distributed size between 50 and 60 [11,47].

uses the Runge-Kutta-Fehiberg method for solving the ordinary differential

equation y_ = x+y, y(0) = 2 with step size 0.25 and error tolerance 5× 10 -z.

This is a floating-point intensive program with large loop bodies [11,47].

is the revised Simplex method, for solving the linear optimization problem

for the BRANDY set, from the Argonne National Laboratory [11,47].

88

Table 5.2. Benchmark Characteristics.

Program

convlv

rkf

ludcmp

rsimp

espresso
li

Static Basic Block

Total number Avg. size

(ins./block)
128 5.9

33 4.7

96 3.5

185 3.1

9018 3.1

3077 2.4

Dynamic Basic Block

Total number Avg. size

(106) (ins./block)

13.5 9.9

4.3 7.6

20.9 5.0

73.0 4.6

108.6 2.9

149.3 2.3

Table 5.2 describes the structure of the six programs in terms of the basic blocks. The

block size isthe number of the RTL instructions in a basic block. The staticprogram infor-

mation iscollected from the program during compilation, while the dynamic information

iscollected from profilingduring execution. The fact that convlv and rkf have large loop

bodies isreflectedin theirlarge dynamic basic block sizes.Similarly,espresso and Iihave

small loop bodies (and thus small dynamic basic blocks). The basic block size has an im-

portant impact on the performance overhead required for checkpoint interval maintenance.

Smaller basic blocks resultin a higher maintenance cost in B-B and B-L as the ratio of the

inserted code to the basic block sizeis high.

5.4.3. Checkpoint intervals

Table 5.3 summarizes the checkpoint intervals generated on a Sun 3/50 diskless work-

station. The threshold value, L, is the number of RTL instructions that are executed before

the next checkpoint for B-B and B-L, and the number of loop iterations for L-L and SL-SL.

For all six programs, the checkpoint interval generated is linearly scalable. The L value

is program specific due to the different block structures in different programs. For the same

L, the floating-point programs (e.g., rfk.) generate longer checkpoint intervals than do

89

Table 5.3. Checkpoint Interval Maintenance (Sun 3).

Program

convlv

rkf

ludcmp

rsimp

espresso

li

Scheme

B-B
B-L

L-L

SL-SL

B-B

B-L
L-L

SL-SL

B-B

B-L
L-L

SL-SL

B-B

B-L

L-L

SL-SL
B-B

B-L

L-L
SL-SL

B-B

B-L
L-L

SL-SL

L

500,000
500,000

50,000

50,000

500,000

500,000
50,000

50,000

500,000
500,000

50,000

50,000

500,000

500,000

500,000

500,000

500,000
500,000

500,000

500,000
500,000

500,000

500,000

500,000

Interval Average Standard Deviation

(see) (see)
L 5L 10L L 5L 10L

1.5 7.7 15.4 0.0209 0.0355 0.0528
1.4 7.2 14.7 0.0347 0.0768 0.1040

7.8 23.8 47.7 0.0654 0.1168 0.1535

4.8 23.7 47.7 0.0960 0.2287 0.3427

5.1 25.3 50.7 0.5713 2.4046 4.3954
5.0 24.7 49.7 0.5684 2.3988 4.3822

8.2 40.7 81.4 1.0644 3.9855 6.9957

8.1 39.6 76.8 0.6678 1.4292 4.6366

1.4 7.2 14.4 0.1734 0.1552 0.1976

1.3 6.7 13.5 0.1642 0.1556 0.2017

2.0 10.1 20.1 0.1146 0.1287 0.1969

1.9 9.5 18.7 0.1825 0.4040 0.3159

1.3 6.3 12.6 0.0228 0.0820 0.1601

1.2 5.9 12.1 0.0204 0.0651 0.2833

15.3 76.7 154.4 0.2102 1.0541 1.8698

15.2 76.0 151.8 0.3683 0.7133 0.2399
0.8 4.2 8.3 0.0043 0.0474 0.1492

0.8 4.0 7.9 0.0218 0.2284 0.6066

4.9 24.0 48.1 1.6159 6.0640 10.7311

3.9 17.8 37.3 3.5543 8.5735 13.9470

1.2 5.9 11.8 0.0002 0.0007 0.0007
0.9 4.6 9.5 0.0031 0.0005 0.5168

7.3 37.0 72.5 0.0187 0.3404 0.0344

6.1 29.1 58.3 0.3896 0.1070 0.1564

9O

the integer benchmarks (espresso and li). The linear scalability of the checkpoint interval

makes it possible to produce a consistent checkpoint interval across different programs. For

example, the first few polling points can compare the targeted checkpoint interval with

those generated under the initial L. If they disagree, L can be adjusted according to this

linearly scalable relationship to obtain the desired checkpoint interval.

The standard deviation in the checkpoint interval reflects the accuracy of the interval as

maintained by the instruction-based measure. Table 5.3 compares the standard deviations

of all the four schemes. Generally, the standard deviations are less than one third of their

corresponding checkpoint intervals. Statistically, the actual checkpoint interval would most

likely be within two or three standard deviations of the average interval. As mentioned

previously, small changes in checkpoint frequency from the optimal frequency have little

effect on the performance of the optimal solution [1-6]. Therefore, this small variation

in the generated checkpoint interval will still ensure a near optimal interval. Using the

loop iteration count in L-L and SL-SL does not noticeably decrease the checkpoint interval

accuracy. This may result from the large threshold L value, since the large number of

loop iterations between checkpoints likely leads to a stable mixture of instructions for each

checkpoint interval. As a comparison, Table 5.4 shows a program-independent checkpoint

interval as maintained by the dynamic interrupt scheme described in Section 5.2.

The results for L-L and SL-SL on a Sun 4 SPARC IPC are given in Table 5.5. The

checkpoint interval for the programs with many floating-point operations and large loop

bodies (rkf and convlv) is significantly larger than for those with smaller loop bodies.

The integer programs, especially espresso and li, generated comparable intervals. This

suggests that L is less program specific for integer programs in a RISC machine than in a

91

Table 5.4. Interrupt Driven Dynamic Scheme (Sun 3).

Program

convlv

rkf

ludcmp

rsimp

espresso
li

Threshold

value

Average
number of

checkpoints
64.6

81.0
51.0

146.2

41.2
672.5

Average
interval

Standard

deviation

4.9

5.0

4.9

5.0
4.9

5.0

0.069

0.048

0.107

0.056

0.089

0.022

Exec. time

overhead

(%)
0.2

0.I

0.2

0.I

0.0

0.2

Table 5.5. Checkpoint Interval Maintenance (Sun 4).

Program Scheme L

convlv L-L 50,000

SL-SL 50,000

rkf L-L 50,000

SL-SL 50,000

ludcmp L-L 50,000

SL-SL 50,000

rsimp L-L 500,000

SL-SL 500,000

espresso L-L 500,000
SL-SL 500,000

li L-L 500,000

SL-SL 500,000

_tervalAverage

(sec)
L 5L 10L

0.4 2.1 4.2

0.4 2.1 4.2

1.1 5.5 10.9
1.1 5.4 10.8

0.3 1.3 2.5

0.2 1.2 2.3

1.9 9.5 19.0
1.8 8.9 17.8

1.1 5.3 10.5

0.9 4.0 8.3

1.9 9.7 19.4

1.7 8.3 16.5

Standard Deviation

(sec)
L 5L IOL

0.0139 0.0412 0.0709

0.0119 0.0258 0.0363

0.2189 0.8943 1.6498
0.2323 0.9276 1.6498

0.0256 0.0289 0.3707

0.0290 0.0515 0.0449

0.0227 0.0575 0.0918
0.0628 0.1975 0.3587

0.2490 0.9836 1.8720

0.7575 1.8839 2.9514

0.0074 0.0090 0.0297

0.0182 0.0319 0.0463

92

CISC machine, as the frequency of almost one instruction-per-cycle improves the accuracy

of instruction count or loop count as a measure of execution time. However, the SUN

SPARC checkpoint intervals for the integer benchmarks (espresso and li) are in the same

order of magnitude as the floating-point programs with comparable loop sizes, while the

SUN 3 checkpoint intervals for the same integer programs are one order of magnitude

smaller. The increased checkpoint intervals for espresso and li on SUN SPARC can be

explained by the lack of support for integer multiplication and division on SUN SPARC

[53]. In fact, integer multiplication and division are implemented through software traps,

and are frequently used for address manipulations in the integer benchmarks we examined.

The discrepancies in checkpoint intervals between programs with intensive floating-point

operations and those with intensive integer operations still exist for SUN SPARC, since the

SPAKC IPC implementation supports the floating-point through an off-chip floating-point

unit.

5.4.4. Checkpoint interval maintenance overhead

In Table 5.6, the execution overhead in B-B and B-L is generally around 20% for

programs with moderate basic block size (convlv, ludcmp, rkf and rsimp) and more

than doubles the execution time for programs with small basic block size (< 3 for espresso

and li). This is expected since the instruction-based measure is updated in each basic

block. A smaller basic block results in a larger updating code with respect to the block size,

and thus larger insertion overhead. In B-B, the checkpoint polling point is also inserted in

each basic block. The B-B scheme has roughly twice as much overhead as the B-L scheme.

The large value for the polling threshold L and small block size imply that the polling

93

Table 5.6. Checkpoint Interval Maintenance Overhead (Sun 3).

Program

hline

convlv

rkf

ludcmp

rsimp

espresso

li

Scheme

original
B-B

B-L

L-L

SL-SL

original
B-B
B-L

L-L

SL-SL

original
B-B
B-L

L-L

SL-SL

original
B-B

B-L
L-L

SL-SL

original
B-B

Execution

time

(%)
360.3

414.4 15.0

388.8 7.9

367.5 2.0

363.6 0.9

416.4

434.7 4.4
430.6 3.4

424.4 1.9

417.8 0.3

245.2
317.4 29.5

297.1 21.2

265.5 8.3

245.2 0.0

678.2

843.4 24.4
796.7 17.5

732.0 7.9

678.5 0.0

217.5

517.7 138.0

of RTL
insns.

(%)
790

1274 61.3
959 21.4

848 7.3

811 2.7

188
331 76.1

235 25.0
202 7.5

198 5.6

414

809 95.4

560 35.3

477 15.2

437 5.6

724

1488 105.5
1011 39.6

852 17.7

764 5.5

35621

71611 101.0

Executable

size

(K) (%)
32
40 25

40 25

40 25

40 25

24

24 0
24 0

24 0

24 0

24

32 33
32 33

24 0

24 0

24
32 33

32 33

32 33

24 0

176

440 150

B-L

L-L

SL-SL

original
B-B
B-L

L-L

SL-SL

418.6 92.4
312.5 43.7

218.7 0.5

3330.2

8152.0 144.8
6481.2 94.6

4429.3 33.0

3343.7 0.4

47005 32.0
38708 8.7

36340 2.0

10459

22860 118.6
14736 40.9

11763 12.5

10595 1.3

328

208

184

86

18

5

104

200 92
160 54

120 15

104 0

Text seg.
size

(K) (%)
16

24 50

24 50
24 50

24 50

8
8 0

8 0

8 0

8 0

8
16 100

16 100

8 0

8 0

8

16 100

16 100

16 100

16 100

152
408 168

296 95

176 16

160 5

80
168 110

128 60

88 10

80 0

at each basic block is unnecessary if a fine-grained checkpoint interval is not targeted. If

additional hardware is available, an interrupt-driven mechanism can be used to eliminate

the high overhead in B-B and B-L. In fact, a hardware instruction (cycle) count register can

be added as part of the process context. It can be decremented whenever an instruction is

executed. Once it reaches zero, an interrupt for checkpointing can obtain a static checkpoint

without any polling overhead.

94

The execution overhead for L-L is relatively small for programs with large loop sizes.

However, L-L may still result in high polling overhead for programs with small loops

(espresso and li). The profile-based SL-SL produces the smallest execution overhead of

the four schemes, by polling only at the selected loops. In fact, the overhead is less than

one percent of the execution time.

The increase in program size on a SUN 3 due to code insertion is presented in Table 5.6.

The executable file size and text segment in the executable file are aligned at an 8K page

boundary. Thus, the increases in the executable and text segment sizes may not reflect

the true code overhead accurately. The number of RTL instructions in a program may

be a better indicator for describing the code size overhead. The space overhead follows

the general pattern in the execution time overhead. The L-L scheme typically has a code

overhead of 20% on a Sun 3/50, while SL-SL has a mere 5% code size overhead.

Similar results for L-L and SL-SL on a Sun SPARC IPC are given in Table 5.7. The

execution overhead is reduced (by almost a half) for integer benchmark programs (espresso

and li) and increased for the floating-point programs for L-L. This reflects that SUN SPARC

RISC provides an effective support for most integer operations and the off-chip floating-

point operations. The execution time overhead for SL-SL is again less than 1% of the total

execution time. The space overhead for L-L on a Sun SPARC IPC is slightly increased

due to the relatively large RISC code size compared to the non-RISC code size. The space

overhead for SL-SL is less than 4% of program size.

95

Table 5.7. Checkpoint Interval Maintenance Overhead (Sun 4).

Program

convlv

rkf

ludcmp

rsimp

espresso

li

Execution _ of RTL Executable
Scheme time insn. size

(see) (%) (%) (K) (%)

original 28.6 1297 40
L-L 29.8 4.5 1401 8.0 40 0

SL-SL 28.6 0.1 1308 0.9 40 0

original 54.5 312 24
L-L 55.6 2.1 337 8.0 24 0

SL-SL 54.8 0.6 323 3.5 24 0

original 31.1 638 24
L-L 34.0 9.2 742 16.3 32 33

SL-SL 31.3 0.5 649 1.7 32 33

original 83.7 1114 32
L-L 94.1 12.1 1309 17.5 32 0

SL-SL 83.9 0.0 1125 1.0 32 0

original 44.7 46810 256
L-L 56.0 25.1 51572 10.2 304 19

SL-SL 44.8 0.1 46821 0.0 272 6

original 939.2 13796 144
L-L 1087.2 15.8 16137 17.0 168 17

SL-SL 944.0 0.5 13807 0.1 152 6

Text seg.
size

(K) (%)
24

24 0

24 0

8

8 0

8 0

8

16 100

16 100

16

16 0

16 0

232

272 16

240 5

112
128 14

112 0

5.4.5. Profiling and SLFC selection

In our profiling experiments, the minimal coverage that was selected for the SLFC

selection algorithm was 90%. Table 5.8 indicates that our algorithm identifies only one

loop/function polling point for each of the six programs we considered. Tables 5.3 and 5.6

have shown that this SLFC selection is effective in reducing overhead and producing stable

checkpoint intervals. The coverage factor for espresso is less than 100%. This is because

our algorithm stops after the resulting coverage is greater than the minimal coverage (90%).

The 100% coverage is still possible but our algorithm did not continue any further.

The key to a successful profiling is to use a representative data set during profiling.

There are four sets of data for espresso. We used the first set (bca.in) as the profile data.

96

Table 5.8. SL-SL Profiling Summary.

Program

convlv

rkf

ludcmp

rsimp

espresso
li

Loop
set

{0-14}
{0-2}
{0-14}
{0-29}
{0-783}
{0-388}

Cover

set

Threshold

set
Coverage

(_)

Analysis time

(see)
Sun 3

{14}

{1}
{4}
{20}
{621}
{156}

{15}
{7100}

{39}

{I0}

{91o}
{13}

100

100

100

100

94.2

100

1.9

0.4

3.5

1.4

10.1

72.8

Sun 4

0.8

0.1

1.5

0.6

4.3

32.9

Table 5.9. SL-SL Results for Nonprofiled Data Sets.

Data set Sche me

Sun 3

Interval

IOL

Exec. time

(sec)
Interval

IOL

Sun 4

Exec. time

(sec)
bca.in original 217.5 44.7

SL-SL 37.3 218.7 8.3 44.8

cps.in original 269.1 57.7
SL-SL 17.7 269.5 3.8 57.7

ti.in original 323.9 69.9
SL-SL 10.1 324.3 2.2 70.0

tial.in original 554.6 113.9
SL-SL 26.1 555.5 5.3 114.4

Table 5.9 compares the results for the program profiled on bca.in and run with three non-

profiled data sets. The execution overhead for SL-SL is still less than 1%. The checkpoint

interval for the profiled data set is 37.3 sec on Sun 3. However, the checkpoint interval

ranges from 26.0 to 10.1 sec for the nonprofiled data sets. This indicates that bca.in may

not be the representative data set for the four data sets, and it highlights the need for

representative profiling data in using the profile-based SLFC selection.

5.4.6. Comparison with CATCH

With respect to overhead, the L-L scheme is very close to the basic CATCH [11].

The L-L run-time overhead is essentially the same as that for maintaining the potential

97

Table 5.10. Run-Time Overhead (%) Comparison: Static vs. Dynamic Schemes.

Static Insertion

Program L-L SL-SL CATCH
Basic Trained

convlv 2.0 0.9 4.8 1.4

rkf 1.9 0.3 2.7 0.8

ludcmp 6.8 0.0 8.2 3.8

rsimp 7.9 0.0 13.2 5.2

espresso 43.7 0.5 54.? 9.9
li 33.0 0.4 34.8 6.1

Dynamic Insertion

Interrupt
Driven

0.2

0.1

0.2

0.1

0.0

0.2

checkpoint leverage in CATCH. The extra overhead for CATCH is in polling the real-time

clock. The results for SL-SL are comparable to those for the trained CATCH, as both

use the profile-based approach. In the trained CATCH, the cover set is selected based on

coverage and checkpoint size with no regard to the threshold value determination and non-

overlapping of cover ranges. Table 5.10 compares L-L and SL-SL with their corresponding

CATCH schemes. The interrupt-driven dynamic scheme is also presented. Generally, the

overhead for our static schemes (L-L and SL-SL) is less than that for the dynamic CATCH.

The overhead for SL-SL is comparable to that for the interrupt-driven dynamic approach,

without using extra hardware support.

5.5. Summary

In this chapter, a compiler-assisted approach for static checkpoint insertion has been

presented. This approach uses an instruction-based measure to describe checkpoint intervals

in terms of computation progress. The instruction-based measure is independent of the

real-time clock, although it has a time attribute related to the program execution. This

98

relationship between computation progress and execution time makes it possible to use an

instruction-based measure for checkpoint interval maintenance.

Four different schemes, based on this approach, have been implemented and evaluated.

Experiments show that our static method can generate a stable and scalable checkpoint

interval. The overhead for the basic block-based schemes, such as B-B and B-L, is very high

without hardware support. The loop iteration count scheme (L-L) can obtain a comparable

checkpoint interval as B-B and B-L, with a reasonable overhead. The block size of a program

has a significant impact on insertion overhead for our schemes. The profile-based SL-SL

scheme can effectively reduce both the run-time overhead as well as the space overhead.

In fact, this scheme can produce scalable and stable checkpoint intervals with an overhead

comparable to that for the hardware interrupt scheme. This requires only a representative

data set for accurate prediction of program run-time behavior. Overall, our experiments

recommend the loop iteration count schemes (L-L and SL-SL) as reasonable choices for

static checkpoint insertion. Both have a smaller run-time overhead than the corresponding

CATCH schemes.

CHAPTER6.

99

EVOLUTIONARY CONCURRENT CHECKPOINTING

6.1. Introduction

6.1.1. Inconsistent recovery line and rollback propagation

In parallel and distributed computations, there are many concurrent processes that

communicate with each other. A recovery line in this case is a set of local checkpoints, one

for each process. If a process prior to its locM checkpoint communicates with a process that

already took its local checkpoint, this communication is said to cross the corresponding

recovery line. Communication across a recovery line leads to rollback propagations [7, 12,

13]. In Figure 6.1, message M1 crosses the recovery line, {C12, C13}, and M2 crosses

the recovery line {C13, C23}. Process 1 rolls back to C13 when an error is encountered.

However, process 2 has to roll back to C22 since process 1 after its rollback needs m2 from

process 2. The phenomenon that rollback to a recovery line causes the system to roll back

to another recovery line is called rollback propagation. In its extreme, rollback propagation

can force the system to roll back in a domino fashion [7,12, 13]. In this thesis, a recovery

line is said to be consistent if there is no communication across the recovery line. Therefore,

a consistent recovery line can eliminate rollback propagation by guaranteeing that there is

no communication across the recovery line.

100

rollback 2 rollback 0

I=1 Ctf""" "" "" ""

/C13 "•

C12 "'-,,

_ _ Error
P2

• e °'" ° ° checkpoint

1:21 .,, _J_ C23 ..,'""

rollback 3 rollback 1

Figure 6.1. RoUback Propagation.

6.1.2. Previous approaches

Independent checkpointing allows individual processes to take their local checkpoint

without any coordination between processes [54]. This approach cannot guarantee a consis-

tent recovery line and often requires keeping multiple recovery lines. Rollback propagations

are allowed. In contrast, coordinated checkpointing tries to obtain a consistent recovery

line and eliminate rollback propagation.

One approach to obtaining a consistent recovery line is to stop computation and syn-

chronize the concurrent processes at an agreed upon point in time [13,14,17]. In some

tightly coupled systems it is possible to synchronize processors instantaneously [17]. How-

ever, typically this global synchronization requires rounds of message exchanges. An alter-

native is to synchronize checkpointing with communication [15, 17, 19,55]. Whenever two

processes communicate, checkpointing can be invoked in both processes. The recovery line

is always consistent since there is no communication across the corresponding checkpoints.

101

During recovery, only the individual process encountering the error rolls back, because

the faulty process has not communicated since its last checkpoint. In the communication-

synchronized approach, checkpointing frequency is fixed and is dependent on communication

patterns.

Message logging is often used to reduce the cost of checkpoint operations [19-21].

Instead of resending past messages during recovery, message logs are replayed to produce

them. Optimistic logging [22-26], which can be viewed as the communication-synchronized

checkpointing with deferred logging operations, is often used. Deferred logging often requires

complex methods to keep message dependence information for uncommitted message logs

and to manage interleaving message retries and message replays during recovery.

Chandy and Lamport have shown that the global state of a distributed system consists

of both states of individual processes and communication channels [56]. They proposed

to save individual process states locally by checkpointing and to save the channel states

by logging the messages sent before the sending processes save their process states. A

special marker message is broadcast to all other processes after the local process makes its

checkpoint. Provided a FIFO channel, all messages before the marker message from the

process are the ones that need to be logged. The number of broadcast messages required is

N. This approach has been applied to concurrent checkpointing in distributed systems [57-

59]. With a bounded communication latency and loosely synchronized clocks, the special

marker messages can be eliminated [60, 61]. However, restoring the original message order

after rollback often requires a mechanism to determine when to replay from message logs

and when to retry messages due to the interleaving of logged messages and normal messages

during checkpointing.

102

This chapter describes an evolutionary approach to concurrent checkpointing. In this

approach computation periodically enters a checkpoint session, where a consistent recovery

line evolves. A checkpoint session can be initiated at any computation point. Upon receiving

notification of the start of a checkpoint session, each process independently takes a local

checkpoint. The initial recovery line, made up of the local checkpoints, may be inconsistent

since no attempt has been made to prevent communication across it. As computation

progresses, the local checkpoints are updated whenever there is a communication between

processes, as in the communication-synchronized approach. This local checkpoint updating

causes the recovery line to evolve into a consistent recovery line. At the end of the checkpoint

session a consistent recovery line is guaranteed and its checkpoints can be committed. The

resulting global recovery line requires that all processes roll back to their previous checkpoint

if an error occurs. The frequency of checkpoint sessions can be controlled, depending on

the performance and reliability requirements of the system.

Our approach does not specify the mechanism by which individual checkpoints are

taken. It attempts to reduce the overhead in coming to an agreement about a consistent

recovery line. Therefore, it is useful only in systems where the overhead of synchronization

between processors dominates the overhead of taking individual checkpoints. Other limi-

tations to our approach are the requirements that communication is synchronized between

processors and that communication latency is bounded. Many systems conform to these

requirements, and ones that do not can usually be modified to conform.

The following section describes the assumptions, key ideas, and key techniques of our

evolutionary checkpointing algorithm. The subsequent two sections discuss the correctness

and performance considerations of our algorithm. Section 6.5 describes the application of

103

our algorithm to rollback error recovery in both shared-memory and distributed memory

computer systems.

6.2.

6.2.1.

Evolutionary Checkpointing

Computation model

The computation considered in this chapter consists of a number of concurrent pro-

cesses that communicate through messages over a network. This model is extended later

to a cache-based shared-memory system by viewing a memory access to nonlocal data as a

message from the source processor that provides the data to the destination processor that

receives the data.

In our communication model, messages are assumed to be synchronized: the sender

is blocked until an acknowledge message is received from the receiver. Most lower layers of

network models naturally provide and implement acknowledge mechanisms (e.g., Ethernet).

Reliable communication requires acknowledge messages even at high levels. In distributed-

memory systems and network file servers, the read/write requests are in fact implemented

with remote procedure calls (RPC) or synchronized messages [62]. Multiprocessor systems

also meet this assumption since read/write accesses are atomic and synchronized. The

assumption provides two advantages. First, checkpointing of a message sender can be

requested by the message receiver during a checkpoint session if necessary. Second, this

checkpointing request can be piggybacked on the acknowledgment at low additional cost.

Christian, and Tong et al. use a bounded communication latency to remove the special

checkpointing marker messages in Chandy's checkpointing scheme [56, 60, 61]. In this thesis,

104

weusea similarboundedcommunicationlatencyfor our evolutionary checkpoint scheme

to determine a consistent recovery line without exchanging extra messages. We denote the

communication upper bound as A in this chapter.

In general, communication latency is nondeterministic at the user level due to message

size, processes that are not ready to communicate, and underlying network characteristics.

A two-layer approach can be used to achieve a bounded communication latency. A message

server can be inserted below the user-level process. The user process sends and receives

messages only through its message server. The user-level messages can be asynchronous

and unbounded in communication latencies. However, the message server divides messages

into packets to remove the uncertainty in communication latency due to message size. In

many networks, proper techniques such as priority preemptive scheduling can guarantee

a deterministic communication response for the message server [63,64]. In some systems,

the message server is a natural component such as the cache controller in shared-memory

multiprocessors, and the pager in distributed-memory systems [15,65]. Another approach

that can be used to obtain a bounded communication latency is the time-out mechanism.

Even if the communication latency is unbounded, messages are delivered within a small

threshold with a high probability [61]. The messages with a communication delay larger

than the time-out threshold can be detected and treated as a performance failure [61].

A computation is divided into alternating checkpoint-free and checkpoint sessions. A

checkpoint is a snapshot of the process state at the time of checkpointing. The operation of

our scheme does not depend on the manner in which the checkpoints are taken, as long as

the computation state at the checkpoint can be restored. Since in a checkpoint session only

the last checkpoints taken on each processor are guaranteed to form a consistent recovery

105

line, the intermediate checkpoints can be generated in local memory and do not have to

written out to a stable or backup storage. Thus, checkpoint updating can be accomplished

quickly by marking the process state unmutable [15,17, 45]. The final checkpoints still need

to be copied to stable storage. If the overhead of waiting for this copying to occur is too

high, another process can be scheduled to do the copy, without blocking the computation

[45]. We therefore assume the checkpoint operation time during a checkpoint session to be

negligible compared to the communication delay upper bound.

A checkpointing coordinator broadcasts a ckp_start message to initiate a checkpoint

session and a ckp=end message to terminate this checkpoint session. This checkpointing

coordinator can be one of the participating concurrent processes. Our recovery algorithm

can handle errors that cause missing ckp_start or ckp_end messages. The need to broadcast

the ckp_end messages can be eliminated by a local timer at each process. If the local clocks

are loosely synchronized with a small shift, using local clocks to signal ckp_start and ckp_end

is possible, similar to other schemes in the literature [60,61].

The point of time at which a process enters a checkpoint session is its entry point to

the checkpoint session. Similarly, the time at which a process exits a checkpoint session is

its exit point to the checkpoint session. The set of the entry points for a checkpoint session

form the checkpoint session entry line and the set of exit points for a checkpoint session

form the checkpoint session exit line. The reception points of ckp=start and ckp_end form

the initial entry line and exit line for the checkpoint session.

106

6.2.2. Approach

In our approach, rollback propagation is eliminated by obtaining a consistent recovery

line every time a checkpoint is taken. To obtain a consistent recovery line our approach

guarantees the following conditions:

• There is at least one local checkpoint for each process, and thus a recovery line, during

a checkpoint session.

• This recovery line converges to a consistent one as the computation progresses.

• There are no messages exchanged across the entry line or exit line. Inside the check-

point session, messages do not cross the current potentially consistent recovery line.

To fulfill these requirements, our checkpointing schemes makes use of the following

techniques:

• Upon entering a checkpoint session, every process immediately takes a checkpoint.

This guarantees that there always exists a recovery line from the beginning of the

session.

• To eliminate messages crossing the checkpoint session entry line, the initial entry

points are adjusted to include crossing messages in the checkpoint session.

• To remove messages crossing the exit line, the initial exit points are adjusted to exclude

crossing messages from the checkpoint session.

• Inside the checkpoint session, checkpointing is synchronized with communication.

Both the receiver and sender of a message take a new local checkpoint immediately af-

ter the communication. This communication synchronized checkpoint updating leaves

107

local variables and operation for each node:

ckp_nmn: checkpoint number (time stamp);

ckp_session: chsckpointing in session flag

0 - not in a chsckpointing session

>0 - ckp_numcurrsntly in session

checkpoint(n): make a local checkpoint with checkpoint nmaber n

enter_ckp_session() // enter a checkpoint session

{ ckp_nma++; ckp_sesslon = ckp_num;
checkpoint (ckp_nu) ;

}

Aupented message forlat:

message : <ckp_num, ckp_session, normal message>;

ack: acknoeledge: <ckp_num, normal acknoeledge>

ckp_nua- 0 : no need to checkpoint
>0: makes a checkpoint with

checkpoint nunber ckp_nun.

Figure 6.2. Local Variables and Operations at Each Process Node.

the exchanged message behind the recovery line and makes the recovery line evolve

towards a consistent line.

• To avoid messages completely bypassing the checkpoint session, ckp_end is signalled

2 A after ckp_start.

6.2.3. Detailed description

Figure 6.2 describes the local data structures needed to implement evolutionary check-

pointing 1. Figures 6.3 and 6.4 describe the detailed algorithms for the message sender and

receiver, respectively, for our checkpointing scheme.

1The appended checkpointing information such as the checkpoint number can be eliminated if the delivery

of ckp_staxt and ckp_end is reliable, since using mismatches in checkpoint numbers to detect the missing

ckp_start and ckp_end messages is not necessary.

108

ack - send_message(msg) ;

if (ack.ckp_nma > O) { // need to make a local checkpoint

if (ckp_num + 1 --ack.ckp_ntm) {

// receiver already passed the entry line

// advance local checkpoint entry point to noe

ent er_ckp_session() ;

} else if (ckp.nma =-= ack.ckp_num) {

// both sender and receiver in checkpointing session

checkpoint (ckp_nma) ;

} else { // detect performance fault or missing ckp_start

// or ckp_end msgs (Lemma 3).

error();
}

} else if (ack.ckp_num -_ O) { // no need for local checkpointing

if (ckp_seseion != O) {

// receiver already exits its session

// adjust its checkpoint exit point to noe.

ckp_session = O;

}
} else // impossible by the ack format

error() ;

Figure 6.3. Sender Algorithm.

109

When a ckp_start is received,

if (ckp_start.ckp_nun--- ckp_nun+l tt ckp_ssasion--- O)

enter_ckp_seasion(); // a nee ckp_session

else if (ckp_start.ckp_ntm== ckp_nuiJ_k ckp_session == 1)

// ignore it; its entry point has been adjusted before.

else error(); // detect missing ckp_start/endnsgs.

When a ckp_snd is received,

if (ckp_end.ckp_nun== ckp_nun) {

if (ckp.session == 1) ckp_session = O; // exit the session

// else ignore it; its exit point has been adjusted before.

} else error(); // detect missing ckp_start/end nsgs.

• hen a message is received,

if (ckp_ssssion) { // checkpointing in session

if (msg.ckp_nun+ 1 -- ckp_nun) {

// sender yet to enter checkpointing session;

ack_back(ckp_nun); // ask sender to checkpoint

checkpoiut(ckp_nun);

} else if (msg.ckp_nun=- ckp_nma) {

// both sender and receiver in the ck'p session;

if (msg.ckp_sassion == ckp_nun) {
// sender still in checkpointing session;

// both update their local checkpoints.

ack_back(ckp_nun);

checkpoint(ckp_nun);

} else {

// sender exited the session; no checkpoint update.

ack_back(O);

}
} else // detects missing ckp_start/endmsgs

error();

} else { // out of the checkpointing session

if (ckp_nuna ug.ckp_nun) (

// both sender and receiver out of the session;

// no local checkpointing asked for the sender.

ack_back(O);

} else if (ckp_nun+l == nsg.ckp_nun) {

// receiver yet to enter the checkpointing session;

// advance the local entry point to nov.

ckp_nun++;

ckp_session " ckp_nun;

ack_back(ckp_nun);

checkpoint(ckp_ntm);

} else // performance fault or ckp_start/end missing:

// nsg crosses the ckp session (leema 3).

error();

Figure 6.4. Receiver Algorithm.

Process I ", Cll C12 C13
i

I D /i
t /m2 m4

! / Entry point adJustnum

Procesll 2 Ill/....

!Ocl /Oci2 Icl3Entry line i

s _

Proca_,8

C31 C32 'C33

,,. ,\ ml Entry polnt adjustment

Pro.. 4 " "",_i" "_'"-.

I..C41

.... . int adJu_ment

mS

Exit IIn

• Reception point of ckp_stert [7 Overwritten local checkpoint

• Reception point of ckp_end II Current local checkpoint

110

Figure 6.5. Checkpoint Session and Recovery Lines.

6.2.3.1. Entering a checkpoint session

Upon receiving the ckp_start signal from the checkpointing coordinator, a process

enters the checkpoint session and takes a local checkpoint by saving its process state. The

different session entry points of the processes form the session entry line. The initial set of

loca_ checkpoints provides a potentially inconsistent initial recovery line. For example, the

initial recovery line {Cll, C21, C31, C41} in Figure 6.5 is not consistent since if process 2

is restarted from C21, it will not resend message m2, while if process 1 is restarted from

Cll, it will wait for this message.

6.2.3.2. Adjusting the entry points

If a process that has not entered the checkpoint session exchanges a message with a

process already in the checkpoint session, it will not wait for the ckp_start to enter the

111

checkpoint session. Instead it marks its entry point as if it has received the ckp_start before

the message exchange and takes its initial checkpoint right after the exchange. When the

ckp_start is subsequently received, it is ignored. The adjustment of an entry point from

the ckp_start reception point is demonstrated in Figure 6.5 where message ml crosses the

original entry llne (the ckp_start reception line). By moving the entry point of process 4 to

the point of communication, ml is included in the checkpoint session. Therefore, process 4

makes its initial checkpoint C41 while process 3 updates its local checkpoint C31 with C32

at the request piggybacked on the acknowledge from process 4.

6.2.3.3. Updating local checkpoints

Ifa message isexchanged between two processesinsidea checkpoint session,the re-

ceiverupdates itslocalcheckpointto the currentstate.Meanwhile, italsopiggybacks a

request to the sender to update itslocalcheckpointon the acknowledge of the message.

In Figure 6.5,the message m3 between processes2 and 3 leads to the updating of C21

and C32, to C22 and C33, respectively.This checkpointupdating makes the recoveryline

evolveto a consistentone by includingthe exchanged message in the checkpointed state.

For example, when process2 updates C21 with C22 and process3 updates C32 with C33,

they includem3 in the checkpointedstate.The new recoveryline{C12, C22, C33, C41} is

consistent.

In our scheme, a sender takesa localcheckpointonly when the acknowledge from the

receiverrequiresitto. During a checkpointsession,localcheckpointingissynchronizedwith

the computation, as in the communication-synchronized schemes [15-18]. Our approach

112

can be viewed as a scheme that samples, during checkpoint sessions, a small fraction of

checkpoints made by the communication-synchronized schemes.

6.2.3.4. Adjusting the exit points

When a process is in a checkpoint session and receives a ckp_end, it exits the checkpoint

session. If the process exchanges a message with a process that has exited the checkpoint

session, the process marks its exit point immediately and ignores the subsequently received

ckp_end. No checkpoint updating is performed. In this manner, the message exchange

is excluded from the checkpoint session. It can be proven that when the processes reach

the exit llne, the current local checkpoints form a consistent recovery line. Message m5

in Figure 6.5 illustrates a case of exit point adjustment. Message m5 crosses the original

exit line (the ckp_end reception line). When process 1 finds out that the receiver of m5

is already outside the checkpoint session, it immediately moves its exit point to the point

of communication and exits the checkpoint session. In this manner, m5 is excluded from

the checkpoint session. When the last process leaves the checkpoint session, the exit line is

complete, and the set of current local checkpoints ({C13, C23, C33, C41} in the example

) comprises a consistent recovery line.

6.2.3.5. Avoiding bypassing messages

Provided that communication delay is bounded by A, broadcasting ckp_end 2A after

the ckp_start broadcast guarantees that no messages bypass the checkpoint session. That

is, there is no message that originates before a checkpoint session and is received after the

checkpoint session, such as message m4 in Figure 6.6. If a message were allowed to bypass

113

Proce_ 1 ,

C12

...YI']_I'I !1/__. M,__, oheckpoint:

...--" /"' t,'\ I "'-"
ProcessrJ

Process 4

|-.c,,
0 Reception point of okp_start D Local checkpoints

<:] Reception point of okp..end l Current local checkpoints

Figure 6.6. Example of a Message Bypassing a Checkpoint Session.

the checkpoint session, some checkpoints of the resulting recovery llne might be missing. For

example, process 3 interacts with process 2 after passing its exit point but before receiving

m4 from process 4. Process 3 has already exited the checkpoint session, thus the exit point

of process 2 is adjusted and the local checkpoints are not updated to C24 and C33. Even

if we let process 3 update its local checkpoint after receiving m4, the missing checkpoints

(C24, C33) make the current recovery llne ({C12, C23, C34, C41}) inconsistent, since there

is a message exchange across the exit llne (m3).

6.2.3.6. Handling Missing Checkpointing Messages

Missing ckp_start and ckp_end messages can be detected by the evolutionary algorithms

in Figures 6.3 and 6.4. Suppose process j missed a ckp_start message for a checkpoint session.

If it communicates with another process already in the checkpoint session, this missing

114

ckp_staxt does not affect the checkpointing algorithm, since this message is ignored due to

the entry point adjustment. If process j receives a ckp_end message, its local checkpoint

number is mismatched with the checkpoint number in the ckp_end message. This detects a

missing ckp_staxt. In general, mismatches in the local checkpoint number and the checkpoint

number in messages detects errors in message delivery in the evolutionary scheme.

6.3. Correctness

There exist an entry line and an exit line for each checkpoint session. Every process

receives a ckp_start message for each checkpoint session. The only time the entry point is

not the reception point of the ckp_start is when the entry point has been adjusted to an

earlier point due to a message exchange between a process that is yet to enter the checkpoint

session with another process already in the checkpoint session. Thus there is always an entry

line at or before the ckp_start reception line. Similarly, there is always a session exit line at

or before the ckp_end reception llne. Since the ckp_end is broadcast 2A after the ckp_start,

the ckp_end will be received by each process after the ckp_start. If the ckp_end reception

point is the exit point for a process, the exit point is behind its corresponding ckp_start

reception point and thus its entry point. If the exit point has been adjusted, the process

must be in the checkpoint session when the adjustment occurs, and the exit point will not

be adjusted ahead its entry point. Thus, the exit line is always behind the corresponding

entry line. Therefore,

Lemma 1: Given the algorithm in Figures 6.3 and 6.4, there is an entry line followed

by an exit line for each checkpoint session.

115

We will show that there is a recovery line after an entry llne. That is, every process

will have a local checkpoint after this line. Upon receiving a ckp_start, a process either

makes a local checkpoint or ignores this ckp_start. According to the algorithm, the process

ignores a ckp_start only when its entry point has been adjusted to an earlier time than the

ckp_start reception point. As a part of its entry point adjustment, a local checkpoint is

made for this process. This proves the following lemma.

Lemma 2: Given the algorithm in Figures 6.3 and 6.4, there is a recovery line after

the last process passes the entry line of a checkpoint session.

Lemma 1 and Lemma 2 imply that there is a recovery line when the last process passes

the exit llne. Before we show that this recovery line is consistent, we first prove a lemma

which assures that the minimum time difference between the entry point for one process

and the exit point for any other process is at least one A. This condition assures that no

messages bypass the checkpoint session. That is, a message originated before a checkpoint

session will not be received after the checkpoint session and vice versa. Let (si, ej) be the

pair of the entry time for process i and the exit time for process j for the same checkpoint

session.

Lemma 3: Given the algorithm in Figures 6.3 and 6.4, ej - si > A for any (si, ej)

and i ¢ j.

Proof: Let (8i,ej) be the pair with the minimum difference among all the possible

pairs. There are only two cases possible. (1) ej is the time of ckp_end reception by process

j. According to Lemma 1, si is either the reception time of the ckp_start at process i or an

earlier point than the reception time due to an entry point adjustment. Therefore, we need

only to prove that the time difference between ej and the reception time of the ckp_start at

116

process i is greater than A. Since any message will be delivered within A and the ckp_end

is broadcast 2A after the ckp_start, no process will receive a ckp_start later than one A

after the broadcast of ckp_start, and no process will receive a ckp_end before 2A after the

broadcast of ckp_start. Therefore, ej - si > A. (2) ej is not the time of ckp_end reception

by process j. This case occurs only when process j receives a message from a process (e.g.,

process k) that passed the exit line when process j was still in the checkpoint session (i.e.,

it is yet to receive the ckp_end). According to the algorithm, j will adjust its exit point

from its ckp_end reception point. This case is impossible. Otherwise, ej cannot be in the

minimum pair of (si, ej), since process k has passed the exit line before process j (ek < ej).

This contradicts that (si, ej) is the smallest pair of all the possible pairs that include (si, ek).

[]

A recovery llne is consistent if all messages sent before (after) a consistent recovery

line are received before (after) this line. That is, there are no message exchanges across a

consistent recovery line. This guarantees that any rollback will not need to cross this line

and thus eliminates the domino effect of rollback propagation.

Theorem 1: Given the algorithms in Figures 6.3 and 6.4, the set of the current local

checkpoints forms a consistent recovery line when the last process exits a checkpoint session.

Proof: According to Lemmas 1 and 2, there is a recovery line when the last process

exits a checkpoint session. Suppose a process receives a message after this exit line. The

sender cannot be in the state prior to the checkpoint session, since the sender has yet to pass

its entry point and thus its exit point. This implies that the exit line is still incomplete.

The sender cannot be in the checkpoint session either; otherwise, the algorithm requires

the receiver to ask the sender to adjust its exit point to exclude the message exchange

117

from this checkpoint session. Therefore, the sender must be after its exit point. Suppose

a process sends a message after the exit line. The receiver cannot be in the state prior to

the checkpoint session; otherwise, this gives an incomplete exit line. The receiver cannot

be in the checkpoint session either, since the algorithm will adjust the receiver's exit point

to exclude the message from this checkpoint session. Thus, the receiver must have passed

the exit llne. Therefore, there is no message exchange across the exit line, and the recovery

line after the exit line is consistent. Since there is no local checkpoint updating after the

exit line, this consistent line remains until the next checkpoint session.

6.4. Performance Considerations

6.4.1. Convergence time

We define the convergence time of our evolutionary checkpointing scheme as the time

for a potentially inconsistent recovery line to evolve into a consistent recovery line. This

parameter determines the minimum length of a checkpointing session. More importantly,

it also affects the overhead involved in our scheme since the longer the convergence time,

the more local checkpoint updating is likely. The following theorem gives an upper bound

on the convergence time of our algorithm.

Theorem 2: Given the algorithm in Figures 6.3 and 6.4, the convergence time of the

recovery line during a checkpointing session is less than 3 A.

Proof: According to the algorithm, the first process enters the checkpointing session

upon receiving a ckp_start, which occurs no earlier than the ckp_start broadcasting time.

The last process to receive a ckp_end will receive it no later than 3 A after the ckp_start

118

broadcast since ckp_end is broadcast 2 A after ckp_start, and ckp_end will be delivered to

every process within A. According to the proof of Lemma 1, the exit line forms before the

ckp_end reception line because the exit point is either the reception point of a ckp_end or

at an earlier time than the reception point due to the exit point adjustment. Theorem 1

guarantees a consistent recovery line after all processes pass the exit line. Therefore, there

is a consistent recovery line no later than 3 A after the ckp_start is broadcast. Thus the

convergence time is less than 3 A. []

6.4.2. Run-time overhead

The expected run-time overhead (C_) can be simply expressed in terms of the frequency

of checkpoint sessions (n), checkpointing time per session (Us), rollback probability (Pr) and

recovery overhead (C_) as

Ck = nCs + np,.C,.

Co = Ci.i, + N,,pd,,,.C,,pa,.,.

where Cinit is the checkpoint cost of the initial checkpoint made at the entry of a checkpoint

session; Nupdate and Cupaate are the frequency and the overhead of local checkpoint updating

respectively. The first term, nC,, in Ck represents the checkpointing overhead, while the

second term, nprCr, is the recovery overhead.

Given the frequency (n) and length (convergence time) of checkpoint sessions, the

checkpointing overhead, C,, depends on the frequency and overhead of local checkpoint

updating. The number of times that a local checkpoint is updated is computation specific.

Every time a message is sent or received inside a checkpoint session, the local checkpoint

119

has to be updated. Given the limited convergence time, the number of updates islikelyto

be limited.

To determine the number of checkpoint updates that can be expected in a distributed

memory system we traced the communication patterns of eight parallel programs on an

8-node IntelIPSC/2 hypercube (Table 6.1). We took random snapshots of the computation

with lengths varying from 10 to 500 msec. On the IPSC/2, message latency averages about 1

msec/K [66].Our snapshot lengths therefore represent conservative estimates of the session

lengths that could be chosen for the IPSC/2. For every program and snapshot length we

performed 1000 random trials.

Table 6.2 shows the frequency of messages (which corresponds to the number of check-

point updates) for differentsession lengths. For the numerical programs (fit,mult, gauss,

qr and navier), the average number of messages transmitted or received is less than 3.

However, the number of messages in a particular checkpoint session can be as high as 244

(qr). Typically messages in the hypercube occur in bursts when data are distributed to

and collected from the nodes. If this is the case, compiler-assisted techniques that detect

Table 6.1. Hypercube Program Traces.

Program

fit

mult

gauss

qr
navier
tester

cell

router

Description

fastFouriertransform

matrix multiplication
Gauss elimination

QR factorization

fluidflow simulator

circuittestgenerator

circuitcellplacement

VLSI channel router

Execution

Time

(ms,c)
51363

4160

47222

3590

21315
123339

50645

435648

Message

II0 60 97.7K

48 43 18.5K

6764 2706 622.8

4105 4098 508.9

118 118 22.7

13215 10786 264.3

42619 42764 31.7

371700 371650 18.9

recvs. # sends avg. size

(bytes)

120

Table 6.2. Communication Characteristics of Hypercube Traces.

Trace

tft

mult

gauss

qr

Session Messages

length max average

(m c) # #
10 1 0.12

50 2 0.12

100 2 0.12
500 3 0.13

10 4 0.05

50 4 0.06

100 4 0.06

500 4 0.07

10 10 0.33

50 40 0.81
100 80 1.05

500 243 2.24

10 7 0.90
50 30 1.92

100 58 1.85

500 244 2.34

Trace

navier

tester

cell

router

Session

length

(msec)
10

5O

100
500

10
50

100

500

10

50

100

500

10

50
100

500

Messages

max average

#
4 0.11

4 0.11

5 0.12

10 0.13

15 0.34

44 0.98

67 1.57

100 4.16

32 2.05

104 7.76
149 13.48

451 28.21

30 2.56

123 10.58
213 21.10

505 100.55

communication bursts in programs and plan checkpoint session accordingly could be used

to decrease the number of checkpoints in a session [11,67].

The overhead of updating a local checkpoint varies with the checkpointing mechanism

used. If a new complete state is saved as the checkpoint update, C,_pd_,te is the same as the

initial checkpoint cost, Cinit [11,47]. If only the change in state since the last checkpoint

is needed to update the checkpoint (e.g., flushing dirty pages in a virtual memory system),

C_,pda_e is likely to be smaller than C_,_t [15]. If local checkpoint updating is implemented

with logging messages, Ct,pda_e is the cost of message logging. In the above hypercube

example, message logging may be appropriate for high message density programs such as

router.

Recovery overhead, Cr, is related to the reprocessing time after recovery, which on the

average is one-half of the checkpoint interval. Studies on checkpoint placement have shown

121

that the rollback probability, p_, is typically small enough to ensure low recovery overhead

(np_Cr) compared to checkpointing overhead (nCs), even when the checkpoint interval

and/or recovery cost are large. Schemes with an inherent high checkpoint frequency fall

to take advantage of the benefits of making checkpoint intervals large. In the evolutionary

approach, the checkpoint interval can be chosen as large as necessary to reduce checkpointing

overhead [3-6].

6.4.3. Memory overhead

The storage requirement for the evolutionary checkpointing is two global checkpoints,

one for the last committed checkpoint and one for the current working buffer for the un-

committed checkpoint. For virtual memory-based systems, the working buffer can be set

copy-on-write to the committed checkpoint. The working space is split with the committed

checkpoint only when a modification is needed. After the current checkpoint is committed,

the space for the old committed checkpoint can be switched to the working space.

6.5. Applications to Shared-Memory Systems

Recently there has been an active research interest in recoverable shared-memory and

shared virtual memory computer systems [15-18,68-70]. Both globally synchronized and

communication-synchronized approaches have been applied to these systems. The main

drawback of these schemes is uncontrollable checkpointing [18]. In this section we will

demonstrate how evolutionary checkpointing can be adopted to these situations.

122

6.5.1. Recovery in cache-based multiprocessor systems

In cache-based systems, cache-based rollback error recovery can be used to recover

from transient processor errors [71]. In this recovery scheme, the checkpoint state is kept

in the main memory, those dirty cache blocks that have not been modified since the last

checkpoint, and the processor registers. A processor takes a checkpoint whenever it is

necessary to replace a dirty block in its cache. At a checkpoint, the processor registers

are saved, and all dirty cache blocks are marked unchangeable. Unchangeable lines may be

read, but have to be written back to memory before being written. Rollback is accomplished

by simply invalidating all cache lines except the unchangeable lines, restoring the processor

registers, and restarting the computation.

Wu et al. proposed a cache-based recovery method for shared-memory multiprocessor

systems using the communication-synchronized approach [15]. A communication is an access

to a dirty cache block from the private cache of another processor. Communication between

processors induces a checkpoint on the source processor. The destination processor does

not need to be checkpointed, since if it rolls back it can always acquire a new copy of the

transmitted data from the source processor. The effect is similar to message logging, in

that the data received are available again after an eventual rollback. Ahmed et al. have

proposed a globally synchronized checkpointing strategy for cache-based error recovery in

multiprocessors [17]. They assume that a checkpoint operation can be synchronized among

all processors and takes only one cycle.

These cache-based schemes have the disadvantage that the frequency of unavoidable

checkpoints, due to replacement of dirty lines, is high [18]. However, the overhead in taking

123

a checkpoint is very low. Therefore cache-based recovery is applicable to updating the

checkpoints during the checkpoint session in our evolutionary scheme in which checkpointing

activities are for only a very short period.

To apply our approach to cache-based recovery, we first map our system model to the

shared-memory multiprocessor model. The cache controllers serve as the message servers

of our model. Caches behave as the normal caches for checkpoint free computations, and

as Wu's caches during checkpoint sessions. A communication is a read or a write access to

a nonlocal cache. Communication in multiprocessors is synchronized since the processor is

blocked until data are accessed. The memory access time, and therefore the communication

time, is also bounded.

A global interrupt can be used as the mechanism to generate the ckp_start and ckp_end

signals 2. This global interrupt sets or clears the local flag ckp_session at each processor as

if a ckp_start or ckp_end is broadcast. During checkpoint sessions, the checkpoint operation

is synchronized with communication such as in Wu's scheme 3. The checkpoint session can

be short since the convergence time is only 3 times the maximum access time to a block

present in another processor's cache. At the end of the session, the checkpoint is committed,

and the cache is switched from checkpointing operation to normal operation.

A shadow paged memory is needed because the state changes between checkpoint

sessions can not overwrite the committed checkpoint [16]. A copy of the memory space is

2Since the global interrupts can usually be assumed to be delivered reliably and no error detection for
mismatching checkpoint session numbers is necessary, the extra checkpointing information appended to each
message required by the evolutionary algorithms (Figures 6.2, 6.3 and 6.4) can be eliminated.

3In a remote memory access, a source processor that provides data and a destination processor that
initiates the access request can be distinguished. The checkpoint operation at the destination processor
can be eliminated since the source processor backs up the data requested in its local checkpoint and the
destination processor can retry the access and acquire the data from the checkpoint.

124

used for the committed checkpoint and another for the temporary working spacing. The

unchangeable cache blocks are written back to the checkpoint pages when they are replaced

from the caches. A copy-on-write mapping of the working pages to the checkpoint pages

may save memory and avoid unnecessary memory copying. A rollback simply invalidates

all cache blocks except unchangeable blocks and restarts all processors from the committed

checkpoint.

Five parallel program traces from an 8-processor Encore Multimax 510 were used

to evaluate this evolutionary scheme [18]. Program tgen is a test generator; fsim is a

fault simulator; pace is a circuit extractor; phigure is a global router, and gravsim is

an N-body collision simulator. Each benchmark program runs for about 10 seconds. At

least 80 million references are traced in each applications [18]. The caches used are 64 K

two-way set associate caches with 32-byte blocks. To apply our evolutionary scheme, we

need to estimate the maximum access time for the Encore Multimax 510. The longest

access is the cache miss that acquires the bus last when all processors have a miss. Since

a 32-byte block takes 320 nsec (nanosecond) to fetch, the longest access is 8 × 320 or 1.28

]_sec (microsecond) [72]. Thus, A -- 1.28 _sec. The processor is rated at 8.5 MIPS;

the maximum number of instructions executed during A is about 8.5 × 8 × 1.28 or 87.04.

Therefore, the convergence time for the Multimax 510 is about 3.84 #sec or 262 instructions.

We used the number of references to determine the session length. We simulated five

different session lengths of around 262 instructions: 10, 50, 100,500, and 1000 instructions.

The interval between checkpointing sessions for the evolutionary scheme can be set at any

value. For our evaluation we set it at one million references. As a comparison, we evaluated

the cache-based schemes of Wu et al. and Ahmed et al.

125

N_ a

(11)

(o) (R(o)(1]

gmvslm pace

(12)

phlgum fsim tgen llll trices

Figure 6.7. Average Number of Checkpoint Updates per Session.

The number of checkpoint updates that need to be performed during a checkpoint

session depends on the amount of communication in the program. Figure 6.7 presents the

average and maximum number of updates observed during a checkpoint session for each of

the programs. For allbut the largestsessionlengths in fslm and tgen, the average number

of updates isat most one. For the longer sessions in fsim and tgen, the average isdriven

up by a few sessions with many updates. For all traces combined, however, even with a

session length of 1000, the average number of updates is only around 2.5. We also found

that the checkpoint size for an checkpoint update iseither one or two. This indicates that

local checkpoint updating only produces a limited run-time overhead.

A comparison can be made between the average checkpoint frequency for the evolu-

tionary scheme and the other cache-based schemes. Itshould be noted that the checkpoint

frequency for the evolutionary scheme can be controlled by adjusting the interval between

126

sessions, while the checkpointing frequency for the other schemes is predetermined by the

communication patterns of the applications we traced. For the evolutionary schemes we

consider both the initial checkpoints in the session and the further updates to calculate

the average frequency. The checkpoint frequencies axe plotted in Figure 6.8. For a session

interval of one million and a session length of 500, the checkpoint frequency varies between

1 and 2.5 per million accesses. On the other hand, the frequency for the globally synchro-

nized scheme varies between 1.7 and 1500 per million accesses, and the frequency for the

communication-synchronized scheme vaxies between 200 and 1000 per million references.

The overhead of cache-based checkpointing depends on the number of cache blocks that

are marked unchangeable (the checkpoint size) since extra cycles are needed to write these

blocks back before they can be used. Figure 6.9 presents the sum of the sizes for all check-

points during the execution of the program. This total checkpoint size is about an order

of magnitude smaller for the evolutionary scheme than for the other schemes 4. All the

data show that the evolutionary scheme can provide checkpointing with a more controllable

frequency and at a lower cost than previous schemes.

6.5.2. Shared virtual memory system

A shared virtual memory system supports a shaxed-memory programming model in

a distributed computer environment [62]. An interprocessor memory access may be imple-

mented as an RPC (synchronized message) over a network. A communication synchronized

checkpointing scheme similar to those for multiprocessor systems was proposed by Wu and

4It may be worth noticing that the total checkpoint size is basically determined by the number of check-
point sessions and the size of the initial checkpoints in each checkpoint session, since the number and size
of checkpoint updates in the evolutionaxy scheme axe limited. The number of checkpoint sessions can be
controlled with proper placements of checkpoint sessions.

127

checkpoints

per

million rehl.

,o'

lO3

lO

gravslm pace phlgure

Figure 6.8. Scheme Comparison: Checkpoint Frequency.

total

checkpoint

elze

(bk_k@

10 r

lO¢

lO5

10 4

10 5

.pace phlgure fslm tgen all traces

Figure 6.9. Scheme Comparison: Total Checkpoint Size.

128

Fuchs [16]. In such a system, the virtual memory is shared, cached in the main memory

of individual processing nodes, and backed up on a stable storage. A checkpoint opera-

tion consists of flushing all dirty pages and saving processor registers to the stable storage.

Whenever there is a remote access to a dirty page, the source processor takes a checkpoint.

The checkpoint operation at the destination processor is eliminated since the source pro-

cessor logs the requested page as a part of its checkpoint. If the destination processor rolls

back, it can access the logged page from the checkpoint. Since the system is expected to

be recoverable after node crashes, a shadow page system is used to accommodate the last

committed virtual space (checkpoint) and the working space between checkpoints.

Similar to the multiprocessor case, our evolutionary scheme can be mapped to the

distributed virtual memory case to provide controllable checkpointing. In this case, the

message server is the pager process, and communication is a remote access to a dirty page. A

checkpoint operation is performed at the source node during checkpoint sessions. A remote

memory access is synchronized as the result of the RPC mechanism. Communication delay

is likely to be bounded since page size is limited and the network is usually dedicated to the

system. The timeout mechanism in RPC will further ensure the communication bound.

A global interrupt for the ckp_start and ckp_end broadcasting is not possible in a

distributed-memory system, thus we need to use message broadcasting for ckp_start and

ckp_end. To reduce the cost of flushing dirty pages, checkpoint operations may mark the

local dirty pages unchangeable in memory. The marked pages are committed after the

checkpoint session ends. A recovery simply restarts all processes from the recovery line.

Unlike the multiprocessor case, the shadow pages needed for our evolutionary scheme are

129

alreadyusedin the Wu andFuchsscheme.Thus,our schemeincursnoadditionalmemory

overhead.

6.6. Summary

In this chapter we have presented an evolutionary checkpointing strategy for concurrent

processes. This checkpointing scheme starts from a potentially inconsistent recovery line by

checkpointing individual processes independently. Local checkpoints are updated whenever

there is communication during the checkpoint session. This local checkpoint updating

makes the recovery line evolve into a globally consistent recovery line. We showed that the

convergence time from an inconsistent recovery line to a consistent one is three times the

maximal communication latency upper bound.

We verified the low overhead of our evolutionary scheme by measurements on different

computer systems. Unlike globally synchronized checkpointing schemes, our evolutionary

scheme requires no global synchronization protocols. The evolutionary approach provides

controllable checkpointing in contrast to the communication synchronized schemes. The

trace-based evaluation has shown that our scheme can achieve low-cost checkpointing at a

controllable interval for error recovery in multiprocessors and distributed virtual memory

systems. However, our scheme is limited by the requirement of synchronous communication

with a bounded latency. In the systems with low overhead synchronization mechanisms,

our scheme may not be necessary, since a global synchronization scheme may be simpler to

implement than our approach.

CHAPTER 7.

130

CONCLUSIONS

7.1. Summary

This thesis has studied a checkpoint-based forward recovery strategy for parallel and

distributed systems. The replication of a task in this strategy makes forward recovery

independent of the computation, since the correct next new state is obtainable from some

error-free replica even when some other replicas go astray. Optimistic execution is used

for fast recovery without reprocessing due to rollback. To identify the correct replica, a

rollback (validation) task is scheduled to generate a diagnostic checkpoint.

In Chapter 2, a general description of this forward recovery strategy was presented. We

also discussed the design parameters of a forward recovery scheme based on this strategy.

Base size indicates the minimal processor redundancy used by a scheme. Scheduling depth

describes the limit on the retries of the rollback validation. It implicitly determines how

many of the past uncommitted checkpoints will be kept. The recursive schemes keep all

uncommitted checkpoints and can utilize all of the forward recovery potentials in a scheme.

The nonrecursive schemes approximate their recursive counterparts with limited retries.

Rollback size describes the processor redundancy used by rollback validation. It is related

to the success rate of rollback validation. The schemes derived from our forward recovery

strategy can handle the performance degradation both naturally and gracefully.

131

Chapter 3 presented an analytical evaluation of our forward recovery strategy, while

Chapter 4 gave an experimental evaluation based on a distributed implementation. It has

been shown that the recovery schemes based on our forward recovery strategy can achieve a

near error-free execution under faults and use an average redundancy less than TMR. These

schemes can also be designed to handle graceful degradation. The checkpointing overhead is

inherent in any checkpoint-based schemes and has to be minimized by placing checkpoints

optimally. The comparison test time is more significant than the restart time in a scheme

using comparison tests. The centralized file server affects the performance of a particular

scheme through serialized file accesses.

A compiler-assisted technique was studied in Chapter 5. This technique can insert

static checkpoints in user programs in a user transparent manner. The heart of the static

checkpoint insertions is the instruction-based time measure for checkpoint maintenance.

This measure can describe the progress of computation and have a relationship with the

execution time of this computation. The interrupt-driven mechanism can obtain a consistent

checkpoint interval with low overhead but does require hardware support. The polling

mechanism can also generate a stable and scalable checkpoint interval. The scheme based

on loop iteration count is more favorable than other basic block-based schemes.

Chapter 6 described an evolutionary approach to concurrent checkpointing with low

overhead. This approach avoids rollback propagation by estabhshing a consistent recovery

line (checkpoint). It starts with an inconsistent recovery line consisting of independently

made local checkpoints. The local checkpoints are updated during the checkpoint session

such that the recovery line evolves to a consistent one. This approach requires no check-

pointing coordination or logging. We have proven that the convergence time to a consistent

132

recovery line can be very short. TMs approach can be applied to cache-based multiprocessor

and distributed-memory systems to eliminate the excessive checkpointing induced by the

common communication-induced checkpoint schemes.

7.2. Discussion and Future Research

7.2.1. Forward recovery in parallel and distributed systems

There are several issues that we have not studied in detail and that are worth further

investigation. First, how can our schemes be implemented in parallel systems such as

shared-memory systems? The implementation in a message-passing parallel system can be

very similar to our implementation in the distributed environment. The major dimculty

with shared-memory systems is the common failure mode of the main memory.

Second, the incorporation of N-version programming or recovery blocks needs to be

studied further for software fault tolerance. The variable execution in a program version

or recovery block may affect the analytical predictions based on the constant execution

time (Section 3.2). Another problem is the usually limited number of program versions or

recovery blocks. A recursive scheme may run out of alternatives before a valid checkpoint

is obtained.

Third, other alternatives to construct checkpoints are also important, since the check-

point size is the key factor that determines the overheads such as checkpoint, restart and

comparison times. The run-time image of a process as a checkpoint is very conservative,

since many variables in the process space are usually not state variables for this process.

Any error in these nonstate variables should not be detected as a bad checkpoint since

133

they have no bearing on computation. However, any checkpoints based on state variable

extraction may require specific knowledge about the computation the process performs.

7.2.2. Compiler-assisted static checkpoint insertion

The checkpoint insertions at the intermediate code level (e.g., the register transfer lan-

guage) may not be the best place in which to achieve an architecture-independent insertion.

For the loop count based static scheme, implementing it at the source level has two advan-

tages. First, the insertion boundary in source code is clearly defined and thus this scheme

can be easily implemented at the source language level. Second, the inserted checkpoint

operations are visible to a source level symbolic debugger, while the intermediate inserted

code may confuse the debugger.

The interrupt-driven mechanism for checkpoint interval maintenance needs further

study to achieve a static checkpoint insertion. For example, a hardware instruction count

register can be added as part of the process context. It is decremented when an instruction is

executed. Once it reaches zero, an interrupt of checkpointing can obtain a static checkpoint

at an instruction boundary with no overhead for polling checkpoints.

There is a more important question regarding the static checkpoints in parallel and

distributed computations. If the answer is positive, the undeterministic nature of these

computations makes it very difficult to generate a reproducible checkpoint or recovery line

if it is possible. We need to investigate the mechanisms that can accomplish this task.

134

7.2.3. Evolutionary concurrent checkpointing

During a checkpointing session, a message exchange between processes results in a

local checkpoint update for both the sender and receiver in our current scheme. Other

alternatives are possible if nondeterministic executions are allowed. For example, reading

a dirty block from a nonlocal cache may be treated as a message exchange in a cache-

based multiprocessor system [15]. In this case, only a local checkpoint update at the source

processor is required. However, this also leads to nondeterministic execution. Another

similar case is writing to a dirty block in a nonlocal cache.

In this thesis, our evolutionary checkpointing will benefit from further studies that

evaluate this approach in terms of implementation and experiments, especially the perfor-

mance evaluation against other approaches such as communication synchronized schemes.

In addition, the detailed applications of our approach to cache-based multiprocessor and

distributed-memory systems need to be studied further. Another possibility is to use a

software approach to implement our approach in the cache-aided error recovery schemes in

shared-memory multiprocessor systems. For example, Intel 860 has a cache flush instruc-

tion which can be used to take a checkpoint. The question is, "Is it possible to implement

the evolutionary approach purely in software?" If not, what minimal hardware support is

needed?

APPENDIX A.

135

ANALYTICAL DERIVATIONS

A.1. DMR-F-1

In Chapter 3, we gave an analysis of DMR-F-1 based on the probabilities of successful

lookaheads and rollbacks, using a simple ratio analysis (i.e., V_ and _+r)" In this section,

we demonstrate that this analysis is correct by obtaining the same result using the con-

ventional method: the recursive equation. If an error occurs, DMR-F-1 behaves differently

in the last checkpoint interval. Since no lookahead execution is possible for this interval,

a rollback is always required during recovery. An n-session computation consists of n-1

lookaheadable sessions followed by a roUbackable session. Duda has an excellent analysis

for this rollback situation [4]. Besides, the performance degradation contribution of the last

roUbackable session is proportional to _, while that of the n-1 lookaheadable sessions is to

n-_..!. The approximation of an n-session computation with an n lookaheadable sessions is
n

adequate even for a moderate n. Therefore, our analysis focuses on the situation of an n

lookaheadable sessions.

Let Tr, be the expected execution time for an n-session (lookaheadable) computation.

Let pt and Pr be the probabilities of successful lookahead and rollback in DMR-F-1, respec-

tively. Thus,

136

Tn

A + tk + Tn-1, 1 - pt - P_

A + tk + tr + 2.5tt + Trt-1, Pl

2A + 2tk + 2t, + 3tt + T,,, pr

Thus,

Tn (1 - Pt - pr)(A + t_ + Tn-1) dl" Pl(A "4- tk + t, + 2.5tt + Tn-,)

+p,(2A + 2tk + 2t, + 3tt + Tn).

In other words,

T,, = (A+tk)+l_--_(t,+2.5tt)+ _ (2A+2tk+2t,+3tt)+T,_-l.

Solving this equation with the initial condition, To = 0, we have

npl j lnPrprT,_ = n(A + tk) + 1---_(t_ + 2.5tt) + (2A + 2tk + 2t_ + 3tt).

This is exactly the result in Section 3.3.2 with Te = T_.

A.2. DMR-F-2

In DMR-F-2, tree situations can happen with respect to the computation progress

if there is at least an erroneous checkpoint produced during the normal paired execution.

First, the computation is recovered through successful lookaheads. This is the case in

which one of the uncommitted checkpoints is correct and at least one of the two diagnosis

checkpoints is correct. Second, the computation roUs back one session and finishes in the

next session. In this case, both of the original tasks fail and the validation pair succeeds.

137

The checkpoints generated by the validation pair are correct and can be committed. Third,

the computation rolls back two sessions and makes no progress at all. This is when the

rollback validation also fails, and no valid checkpoint can be identified• Let l, s, r be the

average number of successful lookaheads, one session rollbacks and two session rollbacks,

respectively. Their corresponding probabilities are

pl - 2(1-pl)pf(1-p_),

p, = p}(1-pf)2,

p, = 2(1- ps)p_p}+p}(2(1- p_)pf+ p}).

Since the expected number of computations is n % r, we can expect the following:

l
Pl -- n+r

8

Ps --
n+r'

r

Pr -- n+r

In other words,

l npl
1- tyr

nps
8 -"

1 - pr

np_

1 - pr

For each successful lookahead execution, one restart and 3.5 checkpoint comparisons

are exercised, while two restarts and five comparisons are made for each of rollbacks. Thus,

138

T_ n(A + tk) + l(tr + 3.5tt) + s(A + tk + 2t_ + 5tt) + r(2A + 2tk + 2t_ + 5tt)

= n(A+tk)(l+Ps'l-2p')+ntrPt+2ps+2P_ +ntt3.Spt+Sp,+SP,1 Pr i- Pr 1 - Pr '

and thus the relativeexecutiontime

Te p, + 2pr Pl+ 2p, + 2pr tr 3.5pt+ 5p, + 5p, tt

Re = _oo=1+ 1-pr + 1-pr A+tk + 1-pr A+tk"

The only difference between DMR-F-2 and DMR-F1 is that DMR-F-2 uses one more proces-

sor (thus producing one more checkpoint) than DMR.-F-1 does during recovery. Following

a similarlinein the DMR-F-I analysiswe have

T°Nit)dr = (n -/)(A + tk) + 3/(A + t_ + t, + tt) + 9l(2.5tt)

+st_ + 3s(A + tk + t, + tt) + 9s(5tt)

+r(A + tk + tr) + 3r(A +tt¢ + t_ + tt) + 9r(5tt)

= Te + 2To pI + p" + p_ + 2ntr pt + p" + p_ + 2ntt llpt + 21.5ps + 21.5pr
1-p, 1 - p_ 1- p,

Therefore,

NC
? Pt + P, + P_ it Pt + P, + Pr tr

= 1 +- Tf:- 5£ A+
11pt + 21.5p,+ 21.5p_ tt

+2
(1 - pr)Re A + tk"

fo T" Np(t)dt 2(n -/)(A + tk) + 2ttt + 6/(A + tk + t_ + 2.5tt) + 2s(t, + tt)

+6s(A + tk + t, + 5tt) + 2r(A + tk + tr + tt) + 6r(A + tk + t, + 5tt)

= 2T_+4To pt+ps+pr +4nt, pt+ps+pr +4ntt2"5pt+5"5ps+5"5p _,
1 - Pr I -- Pr 1 -- Pr

139

and

Np = 2 Jr 4 p: "}"p, + pr 4pt + Ps "4"pr tr + 42.5pi + 5.5ps + 5.5pr tt
(I - p_)R_ + (I - p,)R_ A + tk (i - p,)R_ A + t_"

It can be shown that the following results for a single file server system:

R_(fs)
ps + 2pr Pl + 5/3ps + 5/3p, 3t,

1+ +
1 -pr 1 - p_ A + 2tk

3.5pt + 5ps + 5pr tt Pt + P, + Pr 3tk

+ 1 - p, A + 2t-------_k÷ 1 - Pr A + 2tk'

No(f s) 1 + 2 Pl + Ps + Pr + 2 Pi + Ps + P_ 3t_
(1 - p_)R_(fs) (1 - p_)R_(fs) A + 2tk

+211pl + 21.5ps + 21.5pr t_______L___t,, Pl + Ps + Pr 3tk
(1- p_)R_(fs) A + 2tk + z'(1L'-p-_R-_(-fs) A + 2tk '

and

Nn(fs)
. ,Pt+Ps+P, ,Pl+P,+P_ 3tr

+42.5p1 + 5.5ps + 5.Spr tt 4Pl + Ps + Pr 3tk
(1 -- p_)R_ A + 2t'---'-'--k+ (1 -- p,)R_ A + 2tk"

A.3. TMR-F

InTMR-F, the trioofreplicatedtaskscontinueswhen thereisno erroneouscheckpoint

atthe end of A. Ifthereisa match incheckpoints,TMR-F performs a forward recoveryvia

masking offtheerroneouscheckpoint.Ifallcheckpointsaredifferent,a rollbackisscheduled.

The rollbackprobabilityisgiven as

p, = 3p_ - 2p_.

The number of rollbacks, r, is expected to satisfy

The expected executiontime is

r
Pr --

nd-r'

npr
r --

1 - p_"

140

T, = n(A+tk)+r(A+tk+t,+3t_)

m I Pr) Prn(A+tk) 1+ 1--pr +ntrl-pr

Therefore, the relative execution time is

Te Pr Pr tr
Re - - 1+_+

To 1 - p_ 1 - p_ A + tk

3pr tt
+

1--p_A+t_"

For a single file server system, the restart time and checkpoint time are tripled for the

TMR-F scheme due to the file access by three processes at the same time. Thus,

Pr Pr 3tr
Re(/s) = i + _ +

1 - Pr 1 - prA+3tk

3pr tt
--+

1 -- prA+3tk"

The number of checkpoints is one (the most recently committed checkpoint) for the normal

pair and four for checkpoint validation. Therefore,

fo T'Ne(t)dt = n(A + tk) + 4r(3tt) + r(A + tk + t,)

= T_+6ntt_
PT"

1 - p_

and

Ne = 1 +
6pr tt

(1 - p_)Re A + tk"

Since tr do not appear in nc, the impact of the single file server is reflected indirectly

through Re:

No(/s) = 1 +
6pr tt

(1 - p,)Re(fs) A + 3gk"

The number of processors is always three. Thus,

= max(Np) = 3.

141

A.4. DMR-B-1

In this scheme, there is no forward recovery. If there is an error in any of the two orig-

inal replicated tasks, the task will be rolled back repeatedly until there is a match in the

uncommitted checkpoints produced by both the original task pair and the rollback tasks.

Two situations can cause a rollback: (1) there is one error-free checkpoint produced by the

original task pair and the rollback iterations need only to generate another correct check-

point; and (2) both checkpoints are erroneous for the original task pair run and the rollback

iterations need to produce two valid checkpoints. Their probabilities are Pl = 2pI(1 - Pl)

and P2 = P_, respectively. Let the/-th iteration of the rollback retries lead to a match in

checkpoints, and let s he the situation number. The conditional probability given a rollback

situation for i is then

p(i,s) =
i > 1,s = 1,

i>2, s=2.

Since all of the checkpoint compaxisons during the previous i - 1 iterations have failed for

a given i, the number of checkpoint comparisons can be calculated as

i-1 (i + 2)(i - 1)
l) = 2

j----1

The number of checkpoint comparisons for the i-th iteration is expected as 1.5 for situation

1 since there is a valid checkpoint among the first two uncommitted checkpoints (produced

by the original task pair) and _ for situation 2. Thus, the expected execution time is

[tt((iT_ = n(A+tk)+npl tt+_-'_ i(A+tk+tr)+ +2)(i--1)
i----1 2

142

{+np2 tt+_ i(A+tk+t_)+tt((i +2)(i-1)
i----2 2

n(A+tk)(l+Pl+22)1 -- + ntr pl "1-2p21- p.¢

p/(10- 15P1 + 18p}- 7p_) t,

+ntt 2(1 - pl) 2 A + tk'

and

Pl + 2192 _1 + 2p2 tr pl(lO- 15p/+ 18p_ - 7p_) t,
Re = 1 + + +

l-p! l-p/ A+tk 2(1--p1) 2 A+tk"

The number of checkpoints accumulates as the rollback iteration increases. For the j-th

iteration, there are j + 2 checkpoints. Thus,

f
i J 1.5(i+ 3)tt, s = 1

f N_(t,i,s)dt = _-_(j + 2)(A + tk + t, + t,) +

j=l [(i+3)2{i+l)tt, 8 : 2

(i + 1)i2--+2i](A+tk+tr)+[i(i+l)(i+2)"3 + i(i+l)] tt2

f
J 1.5(i+ 3)tt, s = 1

+

/ (i+3)(i+I)
2 _t, S ---- 2

Therefore,

foT` Nc(t)dt

and,

CO

---- n(A + t,)+ npl _= / N_(tli , 1)dip(i,1)+ np2 _i__1/ N_(t,i, 2)dtp(i,2)

NC --" [Pl + 3P2 2p_.1+__4_p2] 1 [/}1 + 3P2 2p_1_+4p2] tr
l+(l_py)2+ 1-py J R-:e-t-+ L---P_ + 1-pf J (A+tk)R_

k

2pl + 8P2 Pl + 6p2 3/2pl + 3p2 + 9Pl + 3P2 tt
+ t'_':p')"_ T (1-- pf) 2 + l--p/ 2 (A + tk)R_"

143

Similarly

1

N_ = I+E+
pl+p2 tk [Pl+3p2 P2 7pl+_P2.] tt

R_ _ _ tk ÷ LCTz'fjY_÷ l :ps + 2 j-_x_ tk"

If a single file server is used, the spontaneous file accesses occur only during executions of

the ta_k pair. During recovery, DMR-B-1 uses only one processor and has no bearings on

tk and t_. Thus,

A + tk p tk
R.(fs) = 5¥ K;.o_+ Zx+ 2t------;

A + tk tk
No(f s) A + 2tk) N` + +(A + 2t_)R,(fs)'

A + tk Np + 2tk
Np(fs) = A + 2tk (A + 2tk)Re(fs)"

A.5. DMR-B-2

Like DMR-B-1, this scheme employs the recursive rollback to find a pair of matched

checkpoints. However, they differ in that DMR-B-2 uses two rollback tasks whereas DMR-

B-1 uses one. If the task execution succeeds at the i-th iteration, three situations can

happen. (1) There axe no error-free checkpoints produced in the previous i - 1 iterations

and two error-free checkpoints at the i-th iteration; (2) there is a correct checkpoint during

the previous i- 1 iteration and one for the i-th iteration; and (3) there is a correct checkpoint

for the previous i - 1 iterations and two for the i-th iteration. It can be shown that the

probability of the task succeeding in the i-th iteration (i >_ 1) in situation s is

{ p_(i-1)(1- pS)2, s = I,

p(i,s)= 4(i- 1)p_(i-I)(1- p/)2, 8 2,

2(i- 1)p}i-3(1 - pl) 3, ,S 3.

144

To c_Iculatethe number of checkpointcomparisons needed for a given i,we need to

know the order in which we compare a checkpointagainsta setof checkpoints.We assume

that the checkpointsproduced axe storedin a listaccordingto theircreationtime. When a

new checkpointiscompared againstthe list,the order ofcomparison isfrom the firstto the

lastone in the list.It can be shown that the number of comparisons (nc)for a successful

execution of i iterations is

i-I [

nc(i,s) = _[4(j- 1) + 11+
3ffil

4(i-1)+1-6(i-1), s=l

2(i-1)+1/2, s=2

(i- 1)+ 1/2, s --3

= 2(i+1)i-7i+3+{

Thus, the expected execution time is

4i - 3, s = 1,

2i-3/2, S=2,

i- 1/2, s=3.

co 3

ny_ y_ [i(A + tk) + (i -- 1)t_ + ne(i,s)tt]p(i,s)
i----1 s=l

pf(p}Jffpf_"2)] pf(p}"4"_f"I-2)

[4pI + 3 6 + 2pI -p}l+,.,4p}(i+pf)3(1_pj),+P_ -fi-4__J

Re

p_(p}+ pl + 2) ps(p}+ p: + 2) t,
1+ (-]---__]_-(T¥_2+ -+(1-pl)(1+p/)2A + tl,

+
[4pi+3 6+2pf-p}] t,4p}(1+ p_)3(1_ p_)_+ Pf fi V_,_5_j A+ t_"

145

Similarly,

NC -- l+P$(6+5pI+3p2]-3P3¢+P_)] 1 P$(6+SpI+3PZy-3p_+P_)

p1(137 + lOp!- 16p_- 22p_ + 19p_ + 4p)-4p_ tt

4 (1 - pf)3(1 + p1)4 A q- tk'

Np - maz(Np) - 2.

tr

A+tk

Given the file server impact,

R_(fs) 1 + pI(p21 + p! + 2) +4 PI(P} + Pf + 2) 2t,
(1 - py)(1 + pI) 2 (1 - pl)(1 + py) 2 & + 2tk

4p! + 3 6 + 2pI - p} tt+ 4P}(l+p/)3(1 - pI) _ + p! (l+pf)2 A+2tk'

No(f s) []1+ PI(6+5pI+3P21-3p_+P_) 1
(i + _)(i - pl)_ R,(f,)

p/(6 + 5PI + 3p_ - 3p_ + p)) 2t,

(1 + p_)(1 - pl)2Re(fs) A + 2tk

pi(137+ lopj- 16p}- 22p_+ 19p}+ 4p)-4p___
(1 --p.t')3(1-{-p.t')4

Np(f s) = 2.

tt

A + 2tk'

A.6. Self-Testable Scheme

In this scheme, a test on a checkpoint is enough to validate this checkpoint, and thus no

rollback validation is needed. Let l and r be the expected number of successful lookaheads

and rollbacks, respectively. Thus,

Pl = 2p](1--p!),

p_ = p2i,

npt
l --

1 -- p_'

146

npr

1 -- p_

Unlike DMR-F-1 and DMR-F-2, the self-testable scheme rolls back only one computation

session when both checkpoints of the original task pair axe tested erroneous. Thus,

T, = n(A + tk) + t(t_ + tt) + r(A + tk + t_ + 2tt)

= n(A + tk) (1+ --
P" _ + nt, P---t+ P_

1 - Pr] 1 - p_

Pt + 2p_
+ ntt

1 - p_

Pr Pt + Pr tr Pt + 2pr tt
R_ = 1+--+ +

1-pr 1-p_ A+tk 1-p_ A+tk"

The number of checkpoints is one for both normal and look.ahead executions and three for

the checkpoint testing. Therefore,

fo T'Nc(t)dt = n(A+tk)+31tt+ltr+r(A+t_+tr)+3r(2tt)

= T_ + 2(/+ 2r)tt,

N_ = 1+2 pt +2pr tt
1-pr A+tk'

max(No) = 3.

Since no lookahead from the erroneous checkpoint is scheduled, the number of processors

used is still two during the lookahead execution. Then we have

Np = max(Np) = 2.

A.7. Graceful Performance Degradation Scheme

The analysis for the DMR.-F-1 degradation scheme is almost identical with that of

DMR-F-1. We are not going to repeat these formulas here but list the differences between

this degradation scheme and DMR-F-I:

147

• Theprobabilityof successful lookaheads is half of that for DMR-F-1, since half of the

lookaheads fail when the misscheduled lookahead process happens to be the correct

lookahead.

• The probability of rollback increases to include the additional failed lookaheads.

• The number of checkpoints during the checkpoint testing is six instead of eight in

DMR-F-1.

• The number of processors used is three during lookahead execution instead of five for

DMR-F-1.

148

REFERENCES

[1] P. L'Ecuyer and J. Mallenfant, "Computing optimal checkpointing strategies for roll-

back and recovery systems," IEEE Trans. Comput., Vol. 37, No. 4, pp. 491-496, April

1988.

[2] S. Toueg and 0. Babaoglu, "On the optimum checkpoint selection problem," SIAM J.

Comput., Vol. 13, pp. 630-649, Aug. 1984.

[3] C. M. Krishna, K. G. Shin, and Y.-H. Lee, "Optimization criteria for checkpoint place-

ment," CACM, Vol. 27, No. 6, No. 6, pp. 1008-1012, Oct. 1984.

[4] A. Duda, "The effects of checkpointing on program execution time," Information Pro-

cessing Letters, Vol. 16, pp. 221-229, 1983.

[5] E. Gelenbe and D. Derochette, "Performance of rollback recovery systems under inter-
mittent failures," CACM, Vol. 21, No. 6, No. 6, pp. 493-499, 1978.

[6] J. W. Young, "A first order approximation to the optimal checkpoint interval," CA CM,
Vol. 17, No. 9, pp. 530-531, Sept. 1974.

[7] P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice. Springer-

Verlag/Wien, 1990.

[8] D. J. Taylor and J. P. Black, "A locally correctable b-tree implementation," Comput.

J., Vol. 29, No. 3, pp. 269--276, June 1986.

[9] C.-C. J. Li, P. P. Chen, and W. K. Fuchs, "Local concurrent error detection and
correction in data structure using virtual backpointers," IEEE Trans. Comput., Vol. 38,

No. 11, No. 11, pp. 1481-1492, 1989.

[10] G. M. Amdahl, "Validity of the single processor approach to achieving large scale

computing capabilities," Proc. AFIPS Spring Joint Comput. Conf., pp. 483-485, April

1967.

[11] C. C. Li and W. K. Fuchs, "CATCH: Compiler-assisted techniques for checkpointing,"

Proc. 20th Int. Symp. Fault-Tolerant Comput., pp. 74-81, 1990.

[12] B. Randell, "System structure for software fault tolerance," IEEE Trans. Software

Eng., Vol. 1, No. 2, pp. 220-232, June 1975.

[13] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed

processes," Proc. IEEE 2nd Syrup. on Reliability in Distributed Software and Database

Syst., pp. 124-130, 1981.

149

[14] L. Lamport, "Time, clocks, and the ordering of events in a distributed system," CACM,

Vol. 21, No. 7, pp. 558-566, July 1978.

[15] K.-L. Wu, W. K. Fuchs, and J. H. Patel, "Error recovery in shared memory multi-

processors using private caches," IEEE Trans. Parallel and Distributed Syst., Vol. 1,

No. 2, No. 2, pp. 231-240, 1990.

[16] K.-L. Wu and W. K. Fuchs, "Recoverable distributed shared virtual memory," IEEE

Trans. Comput., Vol. 39, No. 4, pp. 460-469, April 1990.

[17] R. E. Ahmed, R. C. Frazier, and P. N. Marinos, "Cache-aided rollback error recovery

(caret) algorithms for shared-memory multiprocessor systems," Proc. 20th Int. Syrup.

Fault-Tolerant Comput., pp. 82-88, 1990.

[18] B. Janssens and W. K. Fuchs, "Experimental evaluation of multiprocessor cache-based

error recovery," Proc. Int. Conf. Parallel Processing, Vol. I, pp. 505-508, Aug. 1991.

[19] J. F. Bartlett, "A nonstop kernel," Proc. ACM 8th Syrup. Oper. Syst. Principles,

pp. 22-29, Dec. 1981.

[20] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault tolerance under
unix," ACM Trans. Comput. Syst., Vol. 3, No. 1, No. 1, pp. 63-75, Feb., 1985.

[21] M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication

mechanism," Proc. 9th Syrup. Oper. Syst. Principles, pp. 100-109, Oct., 1983.

[22] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed systems using optimistic
message logging and checkpointing.," J. Algorithms, Vol. 11, No. 3, pp. 462-491, Sept.

1990.

[23] T. T.-Y. Juang and S. Venkatesan, "Efficient algorithms for crash recovery in dis-
tributed systems," Proc. lOth Conf. Foundations of Software Technology and Theoret-

ical Comput. Sci., pp. 349-361, 1990.

[24] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," Proc. 11th
Int. Conf. Distributed Comput. Syst., pp. 454-461, May 1991.

[25] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging,"
Proc. 8th Syrup. Principles of Distributed Comput., Aug. 1989.

[26] R. E. Strom and S. A. Yemini, "Optimistic recovery in distributed systems," ACM

Trans. Comput. Syst., Vol. 3, No. 3, pp. 204-226, Aug. 1985.

[27] P. Agrawal, "RAFT: A recursive algorithm for fault-tolerance," Proc. Int. Conf. Par-

allel Processing, pp. 814-821, 1985.

[28] P. Agrawal and R. Agrawal, "Software implementation of a recursive fault-tolerance al-

gorithm on a network of computers," Proc. 13th Annual Syrup. Comput. Arch., pp. 65-

72, 1986.

150

[29] A. Tantawi and M. R.uschitzka, "Performance analysis of checkpointing strategies,"
ACM Trans. Comput. Syst., Vol. 2, No. 2, pp. 123-144, May 1984.

[30] S. Thanwastien, R. S. Pamula, and Y. L. Varol, "Evaluation of global rollback strategies

for error recovery in concurrent processing systems," Proc. 16th Int. Syrup. Fault-

Tolerant Comput., pp. 246-251, 1986.

[31] Y.-H. Lee and K. G. Shin, "Design and evaluation of a fault-tolerant multiprocessor

using hardware recovery blocks," IEEE Trans. Comput., Vol. 33, No. 2, No. 2, pp. 113-

124, 1984.

[32] N. H. Valdya and D. K. Pradhan, "Fault-tolerant design strategies for high reliability
and safety," Tech. Rep. Manuscript, Department of Electrical and computer Engineer-

ing, University of Massachusetts at Amherst, 1992.

[33] L. M. Chen and A. Avizienis, "N-version programming: A fanlt-tolerance approach to
reliability of software operation," Proc. 8th Int. Syrnp. Fault-Tolerant Cornput., pp. 3-9,

1978.

[34] J.-Y. Jou and J. A. Abraham, "Fault-tolerant matrix operation on multiple processor

systems using weighted checksums," SPIE Proc., Vol. 495, Aug. 1984.

[35] K.-tt. ttuang and J. A. Abraham, "Algorithm-based fault tolerance for matrix opera-
tions," IEEE Trans. Comput., Vol. 33, No. 6, pp. 518-528, June 1984.

[36] M. A. Vouk, A. M. Paradkar, and D. F. McAllister, "Modeling execution time of multi-

stage n-version fault-tolerant software," Proc. COMPSAC 90, pp. 505-511, 1990.

[37] K. H. Kim and H. O. Welch, "Distributed execution of recovery blocks: An approach
for uniform treatment of hardware and software faults in real-time applications," IEEE

Trans. Comput., Vol. 38, No. 5, No. 5, pp. 626-636, 1989.

[38] J. M. Smith, "Implementing remote fork() with checkpoint/restart," Tech. Committee
on Oper. Syst. Newsletter, Vol. 3, No. 1, No. 1, pp. 15-19, 1989.

[39] M. Litzkow, M. Livny, and M. Mutka, "CONDOR - A hunter of idle workstations,"
Proc. 8th int. Conf. Distributed Comput. Syst., 1988.

[40] D. J. Taylor and M. L. Wright, "Backward error recovery in a unix environment," Proc.

16th Int. Syrnp. Fault-Tolerant Comput., pp. 118-123, 1986.

[41] SPEC, SPEC Newsletter. Fremont, CA: SPEC, Feb. 1989.

[42] S. Feldman and C. Brown, "A system for program debugging via reversible execution,"

ACM SIGPLAN Notices, Workshop on Parallel and Distributed Debugging, Vol. 24,

No. 1, pp. 112-123, Jan. 1989.

[43] D. Pan and M. Linton, "Supporting reverse execution for parallel programs," ACM

SIGPLAN Notices, Workshop on Parallel and Distributed Debugging, Vol. 24, No. 1,

pp. 124-129, Jan. 1989.

151

[44] L. D. Wittie, "Debugging distributed c programs by real time replay," ACM SIGPLAN

Notices, Workshop on Parallel and Distributed Debugging, Vol. 24, No. 1, pp. 57-67,

Jan. 1989.

[45] K. Li, J. F. Naughton, and J. S. Plank, "Real-time, concurrent checkpoint for paral-

lel programs," Proc. 2nd ACM SIGPLAN Syrup. Principles and Practice of Parallel

Programming, pp. 79-88, March 1990.

[46] J. Long, W. K. Fuchs, and J. A. Abraham, "A forward recovery strategy using check-

pointing in parallel systems," Prac. Int. Conf. Parallel Processing, Vol. 1, pp. 272-275,
1990.

[47] J. Long, W. K. Fuchs, and J. A. Abraham, "Implementing forward recovery using
checkpointing in distributed systems," Proc. 2nd IFIP Working Conf. Dependable

Comput. for Critical Applications, pp. 20-27, Feb. 1991.

[48] K. M. Chandy and C. V. Ramamoorthy, "Rollback and recovery strategies for computer
programs," IEEE Trans. Comput., Vol. 21, No. 6, pp. 546-556, June 1972.

[49] J. S. Upadhyaya and K. K. Saluja, "A watchdog processor based general rollback

technique with multiple retries," IEEE Trans. Software Eng., Vol. 12, No. 1, pp. 87-

95, Jan. 1986.

[50] J. S. Upadhyaya and K. K. Saluja, "An experimental study to determine task size for
rollback recovery systems," IEEE Trans. Comput., Vol. 37, No. 7, pp. 872-877, July
1988.

[51] R. M. Stallman, "Using and porting gnu cc," Proc. 2nd Int. Conf. Comput. and Ap-

plications, 1990.

[52] A. C. Shaw, "Reasoning about time in higher-level language software," IEEE Trans.

Software Eng., Vol. 15, No. 7, pp. 875-889, July 1989.

[53] ROSS Technology, SPARC RISC User's Guide. ROSS Technology, Inc., 1990.

[54] B. Bhargava and S. R. Lian, "Independent checkpointing and concurrent rollback for
recovery - An optimistic approach," Prac. IEEE Syrup. Reliable Distributed Syst., pp. 3-

12, 1988.

[55] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault tolerance,"

Proc. ACM 9th Syrup. Oper. Syst. Principles, pp. 90-99, Oct. 1983.

[56] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of

distributed systems," ACM Trans. Comput. Syst., Vol. 3, No. 1, pp. 63-75, Feb. 1985.

[57] M. Spezialetti and P. Kearns, "Efficient distributed snapshots," Proc. 6th Int'l. Conf.

Distributed Comput. Syst., pp. 382-388, 1986.

[58] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems,"

IEEE Trans. Software Eng., Vol. 13, No. 1, pp. 23-31, Jan. 1987.

152

[59] K. Li, J. F. Naughton, and J. S. Plank, "Checkpointing multicomputer applications,"

Proc. lOth Symp. Reliable Distributed Syst., pp. 2-11, 1991.

[60] Z. Tong, R. Y. Kaln, and W. T. Tsai, "Rollback recovery in distributed systems using
loosely synchronized clocks," IEEE Trans. Parallel and Distributed Syst., Vol. 3, No. 2,

pp. 246-251, March 1992.

[61] F. Cristian, "A timestamp-based checkpoint protocol for long-lived distributed com-

putations," Proc. 10th Symp. Reliable Distributed Syst., pp. 12-20, 1991.

[62] K. Li, "IVY: A shared virtual memory systems for parallel computing," Proc. Int.

Conf. Parallel Processing, pp. 94-101, 1988.

[63] H. Tokuda, C. W. Mercer, Y. Ishil_wa, and T. E. Marchok, "Proiority inversions in
real-time communication," Proc. 10th IEEE Real-Time Syst. Syrup., Dec. 1989.

[64] H. Tokuda and C. W. Mercer, "ARTS: Adistributed real-time kernel," ACM Oper.

Syst. Rev., Vol. 23, No. 3, July 1989.

[65] K. Li and P. Hudak, "Memory coherence in shared virtual memory systems," Proc. 5th

ACM Symp. Principles Distributed Comput., pp. 229-239, 1986.

[66] J.-M. Hsu and P. Banerjee, "Hareware support for message routing in a distributed

memory multicomputer," Proe. Int. Conf. Parallel Processing, pp. 508-515, Aug. 1990.

[67] J. Long, W. K. Fuchs, and J. A. Abraham, "Compiler-assisted static checkpoint inser-
tion," Proc. 22th Int. Symp. Fault-Tolerant Comput., 1992.

[68] P. A. Bernstein, "Sequoia: a fault-tolerant tightly coupled multiprocessor for transac-

tion processing," IEEE Comput., Vol. 21, pp. 37-45, Feb. 1988.

[69] N. S. Bowen and D. K. Pradhan, "Vitual checkpoints: Architecture and Performance,"

IEEE Trans. Comput., Vol. 41, No. 5, May 1992.

[70] T. P. Ng, "Checkpointing in a virtual shared memory system," Tech. Rep. UIUCDCS-
R-91-1700, Department of Computer Science, University of Illinois, Dec. 1991.

[71] D. B. Hunt and P. N. Marinos, "A general purpose cache-aided rollback error recovery

(CARER) technique," Proc. 17th Syrup. Fault-Tolerant Comput., pp. 170-175, 1987.

[72] Encore Computer Corporation, Multimaz Technical Summary. Encore Computer Cor-

poration, Jan. 1989.

VITA

153

Junsheng Long received a B.S. degree in Geography in 1986 from Beijing University,

Beijing, China. He also received an M.S. degree in Watershed Management in 1986 and

an M.S. in Electrical Engineering in 1987 from the University of Arizona, Tucson, Arizona.

While pursuing his Ph.D. degree at the University of Illinois, he held a research assistantship

in the Center for Reliable and High-Performance Computing at the Coordinated Science

Laboratory from 1987 to 1992. He is a member of Phi Kappa Phi and a student member

of the IEEE Computer Society. Upon completing his Ph.D. degree, he will join the Depart-

ment of Computer Science, the University of North Carolina at Charlotte, as an assistant

professor. His research interests include parallel and distributed processing, object-oriented

programming, software engineering, and fault-tolerant computing.

