168 research outputs found

    A bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and Kalman filtering

    Get PDF
    Indoor Positioning Systems (IPS) using Bluetooth Low Energy (BLE) technology are currently becoming real and available, which has made them grow in popularity and use. However, there are still plenty of challenges related to this technology, especially in terms of Received Signal Strength Indicator (RSSI) fluctuations due to the behaviour of the channels and the multipath effect, that lead to poor precision. In order to mitigate these effects, in this paper we propose and implement a real Indoor Positioning System based on Bluetooth Low Energy, that improves accuracy while reducing power consumption and costs. The three main proposals are: frequency diversity, Kalman filtering and a trilateration method what we have denominated “weighted trilateration”. The analysis of the results proves that all the proposals improve the precision of the system, which goes up to 1.82 m 90% of the time for a device moving in a middle-size room and 0.7 m for static devices. Furthermore, we have proved that the system is scalable and efficient in terms of cost and power consumption. The implemented approach allows using a very simple device (like a SensorTag) on the items to locate. The system enables a very low density of anchor points or references and with a precision better than existing solutionsPeer ReviewedPostprint (published version

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Low-cost indoor localization system combining multilateration and Kalman filter

    Get PDF
    Indoor localization systems play an important role to track objects during their life-cycle in indoor environments, e.g., related to retail, logistics and mobile robotics. These positioning systems use several techniques and technologies to estimate the position of each object, and face several requirements such as position accuracy, security, range of coverage, energy consumption and cost. This paper describes a practical implementation of a BLE (Bluetooth Low Energy) based localization system that combines multilateration and Kalman filter techniques to achieve a low cost solution, maintaining a good position accuracy. The proposed approach was experimentally tested in an indoor environment, with the achieved results showing a clear low cost system presenting an increase of the estimated position accuracy by 10% for an average error of 2.33 metersThis work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope UIDB/05757/2020.info:eu-repo/semantics/publishedVersio

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    Practical implementation of a hybrid indoor localization system

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáIndoor localization systems occupy a significant role to track objects during their life cycle, e.g., related to retail, logistics and mobile robotics. These positioning systems use several techniques and technologies to estimate the position of each object, and face several requirements such as position accuracy, security, coverage range, energy consumption and cost. This master thesis describes a real-world scenario implementation, based on Bluetooth Low Energy (BLE) beacons, evaluating a Hybrid Indoor Positioning System (H-IPS) that combines two RSSI-based approaches: Multilateration (MLT) and Fingerprinting (FP). The objective is to track a target node, assuming that the object follows a linear motion model. It was employed Kalman Filter (KF) to decrease the positioning errors of the MLT and FP techniques. Furthermore a Track-to-Track Fusion (TTF) is performed on the two KF outputs in order to maximize the performance. The results show that the accuracy of H-IPS overcomes the standalone FP in 21%, while the original MLT is outperformed in 52%. Finally, the proposed solution demonstrated a probability of error < 2 m of 80%, while the same probability for the FP and MLT are 56% and 20%, respectively.Os sistemas de localização de ambientes internos desempenham um papel importante na localização de objectos durante o seu ciclo de vida, como por exemplo os relacionados com o varejo, a logística e a robótica móvel. Estes sistemas de localização utilizam várias técnicas e tecnologias para estimar a posição de cada objecto, e possuem alguns critérios tais como precisão, segurança, alcance, consumo de energia e custo. Esta dissertação de mestrado descreve uma implementação num cenário real, baseada em Bluetooth Low Energy (BLE) beacons, avaliando um Sistema Híbrido de Posicionamento para Ambientes Internos (H-IPS, do inglês Hybrid Indoor Positioning System) que combina duas abordagens baseadas no Indicador de Intensidade do Sinal Recebido (RSSI, do inglês Received Signal Strength Indicator): Multilateração (MLT) e Fingerprinting (FP). O objectivo é localizar um nó alvo, assumindo que o objecto segue um modelo de movimento linear. Foi utilizado Filtro de Kalman (FK) para diminuir os erros de posicionamento do MLT e FP, além de aplicar uma fusão de vetores de estado nas duas saídas FK, a fim de maximizar o desempenho. Os resultados mostram que a precisão do H-IPS supera o FP original em 21%, enquanto que o MLT original tem um desempenho superior a 52%. Finalmente, a solução proposta apresentou uma probabilidade de erro de < 2 m de 80%, enquanto a mesma probabilidade para FP e MLT foi de 56% e 20%, respectivamente

    Sensor fusion of IMU and BLE using a well-condition triangle approach for BLE positioning

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesGPS has been a de-facto standard for outdoor positioning. For indoor positioning different systems exist. But there is no general solution to fit all situations. A popular choice among service provider is BLE-based IPS. BLE-has low cost, low power consumption, and tit is are compatible with newer smartphones. These factors make it suitable for mass market applications with an estimated market of 10 billion USD by 2020. Although, BLEbased IPS have advantages over its counterparts, it has not solved the position accuracy problem yet. More research is needed to meet the position accuracy required for indoor LBS. In this thesis, two ways for accuracy improvement were tested i) a new algorithm for BLE-based IPS was proposed and ii) fusion of BLE position estimates with IMU position estimates was implemented. The first way exploits a concept from control survey called well-conditioned triangle. Theoretically, a well-conditioned triangle is an equilateral triangle but for in practice, triangles whose angles are greater than 30° and less than 120° are considered well-conditioned. Triangles which do not satisfy well-condition are illconditioned. An estimated position has the least error if the geometry from which it is estimated satisfy well-condition. Ill-conditioned triangle should not be used for position estimation. The proposed algorithm checked for well-condition among the closest detected beacons and output estimates only when the beacons geometry satisfied well-condition. The proposed algorithm was compared with weighted centroid (WC) algorithm. Proposed algorithm did not improve on the accuracy but the variance in error was highly reduced. The second way tested was fusion of BLE and IMU using Kálmán filter. Fusion generally gives better results but a noteworthy result from fusion was that the position estimates during turns were accurate. When used separately, both BLE and IMU estimates showed errors in turns. Fusion with IMU improved the accuracy. More research is required to improve accuracy of BLE-based IPS. Reproducibility self-assessment (https://osf.io/j97zp/): 2, 2, 2, 1, 2 (input data, prepossessing, methods, computational environment, results)

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    RSSI based self-adaptive algorithms targeting indoor localisation under complex non-line of sight environments

    Get PDF
    Location Based Services (LBS) are a relatively recent multidisciplinary field which brings together many aspects of the fields of hardware design, digital signal processing (DSP), digital image processing (DIP), algorithm design in mathematics, and systematic implementation. LBS provide indirect location information from a variety of sensors and present these in an understandable and intuitive way to users by employing theories of data science and deep learning. Indoor positioning, which is one of the sub-applications of LBS, has become increasingly important with the development of sensor techniques and smart algorithms. The aim of this thesis is to explore the utilisation of indoor positioning algorithms under complex Non-Line of sight (LOS) environments in order to meet the requirements of both commercial and civil indoor localisation services. This thesis presents specific designs and implementations of solutions for indoor positioning systems from signal processing to positioning algorithms. Recently, with the advent of the protocol for the Bluetooth 4.0 technique, which is also called Bluetooth Low Energy (BLE), researchers have increasingly begun to focus on developing received signal strength (RSS) based indoor localisation systems, as BLE based indoor positioning systems boast the advantages of lower cost and easier deployment condition. At the meantime, information providers of indoor positioning systems are not limited by RSS based sensors. Accelerometer and magnetic field sensors may also being applied for providing positioning information by referring to the users’ motion and orientation. With regards to this, both indoor localisation accuracy and positioning system stability can be increased by using hybrid positioning information sources in which these sensors are utilised in tandem. Whereas both RSS based sensors, such as BLE sensors, and other positioning information providers are limited by the fact that positioning information cannot be observed or acquired directly, which can be summarised into the Hidden Markov Mode (HMM). This work conducts a basic survey of indoor positioning systems, which include localisation platforms, using different hardware and different positioning algorithms based on these positioning platforms. By comparing the advantages of different hardware platforms and their corresponding algorithms, a Received Signal Strength Indicator (RSSI) based positioning technique using BLE is selected as the main carrier of the proposed positioning systems in this research. The transmission characteristics of BLE signals are then introduced, and the basic theory of indoor transmission modes is detailed. Two filters, the smooth filter and the wavelet filter are utilised to de-noise the RSSI sequence in order to increase localisation accuracy. The theory behind these two filter types is introduced, and a set of experiments are conducted to compare the performance of these filters. The utilisation of two positioning systems is then introduced. A novel, off-set centroid core localisation algorithm is proposed firstly and the second one is a modified Monte Carlo localisation (MCL) algorithm based system. The first positioning algorithm utilises BLE as a positioning information provider and is implemented with a weighted framework for increasing localisation accuracy and system stability. The MCL algorithm is tailor-made in order to locate users’ position in an indoor environment using BLE and data received by sensors locating user position in an indoor environment. The key features in these systems are summarised in the following: the capacity of BLE to compute user position and achieve good adaptability in different environmental conditions, and the compatibility of implementing different information sources into these systems is very high. The contributions of this thesis are as follows: Two different filters were tailor-made for de-nosing the RSSI sequence. By applying these two filters, the localisation error caused by small scale fading is reduced significantly. In addition, the implementation for the two proposed are described. By using the proposed centroid core positioning algorithm in combination with a weighted framework, localisation inaccuracy is no greater than 5 metres under most complex indoor environmental conditions. Furthermore, MCL is modified and tailored for use with BLE and other sensor readings in order to compute user positioning in complex indoor environments. By using sensor readings from BLE beacons and other sensors, the stability and accuracy of the MCL based indoor position system is increased further

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified
    corecore