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Abstract

Indoor localization systems occupy a significant role to track objects during their life

cycle, e.g., related to retail, logistics and mobile robotics. These positioning systems use

several techniques and technologies to estimate the position of each object, and face several

requirements such as position accuracy, security, coverage range, energy consumption and

cost. This master thesis describes a real-world scenario implementation, based on Blue-

tooth Low Energy (BLE) beacons, evaluating a Hybrid Indoor Positioning System (H-IPS)

that combines two RSSI-based approaches: Multilateration (MLT) and Fingerprinting

(FP). The objective is to track a target node, assuming that the object follows a linear

motion model. It was employed Kalman Filter (KF) to decrease the positioning errors of

the MLT and FP techniques. Furthermore a Track-to-Track Fusion (TTF) is performed

on the two KF outputs in order to maximize the performance. The results show that the

accuracy of H-IPS overcomes the standalone FP in 21%, while the original MLT is outper-

formed in 52%. Finally, the proposed solution demonstrated a probability of error < 2 m

of 80%, while the same probability for the FP and MLT are 56% and 20%, respectively.

Keywords: Fingerprinting; Multilateration; Indoor Positioning System; Kalman Filter-

ing; Sensor Fusion.
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Resumo

Os sistemas de localização de ambientes internos desempenham um papel importante

na localização de objectos durante o seu ciclo de vida, como por exemplo os relacionados

com o varejo, a logística e a robótica móvel. Estes sistemas de localização utilizam várias

técnicas e tecnologias para estimar a posição de cada objecto, e possuem alguns critérios

tais como precisão, segurança, alcance, consumo de energia e custo. Esta dissertação

de mestrado descreve uma implementação num cenário real, baseada em Bluetooth Low

Energy (BLE) beacons, avaliando um Sistema Híbrido de Posicionamento para Ambientes

Internos (H-IPS, do inglês Hybrid Indoor Positioning System) que combina duas aborda-

gens baseadas no Indicador de Intensidade do Sinal Recebido (RSSI, do inglês Received

Signal Strength Indicator): Multilateração (MLT) e Fingerprinting (FP). O objectivo é

localizar um nó alvo, assumindo que o objecto segue um modelo de movimento linear.

Foi utilizado Filtro de Kalman (FK) para diminuir os erros de posicionamento do MLT

e FP, além de aplicar uma fusão de vetores de estado nas duas saídas FK, a fim de

maximizar o desempenho. Os resultados mostram que a precisão do H-IPS supera o FP

original em 21%, enquanto que o MLT original tem um desempenho superior a 52%. Fi-

nalmente, a solução proposta apresentou uma probabilidade de erro de < 2 m de 80%,

enquanto a mesma probabilidade para FP e MLT foi de 56% e 20%, respectivamente.

Palavras-chave:Fingerprinting; Multilateração; Sistema de Localização para Ambientes

Internos; Filtro de Kalman; Fusão de Sensores.
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Chapter 1

Introduction

The value of the data plays a crucial role in the digital transition era, being noticed

a huge amount of devices connected to Internet, aiming to exchange, share and store

data, using Internet of Things (IoT) technologies. In fact, as estimated by Cisco Sys-

tems, Inc (CISCO), the number of connected objects to Internet will be 29.3 billion in

2023 [1]. The real interest behind the IoT are the capabilities it offers, promising to cre-

ate a world where all objects are connected to the Internet and communicate with each

other with minimal human intervention [2], [3]. The principal goal is to design a better

world for humanity, where the surrounding objects recognize what the users desire, their

preferences, and what their needs are, fulfilling all these factors automatically without an

explicit instruction [4]. The IoT allows the interconnection between people and objects,

anytime, anywhere, interacting with anything and anyone, over any path/network, and

any service [5]. Figure 1.1 illustrates this definition more clearly.

The remarkable IoT applications can be divided into three macro categories: industry,

environment and society [6]. Moreover, these principal topics can be classified in other

subtopics like transportation, healthcare, industrial automation, and emergency situa-

tions when the human’s decision is difficult. The IoT transforms traditional objects into

smart ones, where every specific application (vertical market) interacts with independent

services (horizontal market) through information flux gotten from sensors and actuators,
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Figure 1.1: Definition of the Internet of Things.

which communicates with each other [7]. This transformation is illustrated in Figure 1.2,

highlighting the notable potential of the IoT.

Application Domain 

Independent Services 

(Horizontal Market)

Transportation

Vehicles

School

Market

Industry

Smart home

Agriculture

Healthcare

Raw data 

to the cloud

Actions based 

on analytics

Figure 1.2: The overall picture of IoT emphasizing the vertical markets and the horizontal
integration between them.

In this context, the data collection is performed employing a significant plethora of
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sensors that can make measurements in diverse types of variables, and uses IoT technolo-

gies to transmit the acquired information to Internet applications, typically forming a

Wireless Sensor Network (WSN) [8]. The collected data may be analysed using Artificial

Intelligence algorithms to extract knowledge, e.g., related to monitoring, diagnosis, pre-

diction, optimization and planning, contributing to improve the systems’ performance,

decision-making tasks and people’s life quality.

As presented in Figure 1.3, several applications, e.g., logistics, retail and mobile

robotics, require data containing information related to the localization of objects, such

as materials products, devices and people, demanding a dynamic association of the item

position in the environment [6]. This localization process should consider the use of a

variety of sensors to track the position of the objects and IoT technologies to transmit

the information flow to other devices and applications.
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Figure 1.3: Application areas of Localization services.

In localization applications smart devices, such as cell phones, tablets and watches are

generally used as source of location data [6]. The accuracy of these systems is dependent

on the scenario in which they are implemented, from centimeters in gaming, to meters in

indoor geolocation, to tens of meters for broadcasting advertisements in shopping malls

or supermarkets [9].

Another possible application is localization for robotic platforms, where a variety

of rolling and flying ground robots of different models can be employed in warehouse
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management, manufacturing, military missions, security, delivery, aerial photography and

health [9]. Therefore, the information of robot’s location is primordial. The accuracy

requirements of moving robots vary according to context, size, and environment and can

range from millimeters operating inside the human body, to a few meters for indoor areas

and tens of meters for outdoor environments [10].

Hospitals present several possibilities to employ a location system, then providing

safety, security, and also improving efficiency in the working environment [11]. Doctors

can track their patients, besides it is possible to locate commonly used equipment and spe-

cialized tools, such as defibrillators to an emergency situation and surgery apparatus [12],

[13].

From the importance of knowing the location of an object or person, combined with the

concept of IoT comes the idea of Indoor Positioning System (IPS), which is a particular

localization system aiming to locate objects or living beings inside an indoor setting [14].

Across indoor environments, the application of Global Navigation Satellite System

(GNSS) is impaired since the satellites signals are subjected to a strong attenuation when

crossing obstacles like walls, which are common in indoor settings [15]. Therefore, the

popular outdoor solutions such as Global Positioning System (GPS), GLONASS, and

COMPASS, do not obtain a good performance in indoor applications [16]. Additionally,

these solutions present a high energy consumption and economic cost, besides this type

of system usually gets a weak accuracy, with errors ranging around five meters, while for

indoor applications the recommended average error is around one meter [11], [17].

In order to connect and communicate a plethora of sensors employed in a localization

system, many options of wireless technologies are available in the market. The remark-

able and commonly used technologies on IPS are: Wi-Fi, Radio Frequency Identification

(RFID), Zigbee, Ultra Wide Band (UWB) and Bluetooth [18]. Before choosing a wireless

technology some important factors need to be noticed such as cost, energy consumption,

baud rate and transmission range [19]. It is relevant to know that each technology pos-

sesses advantages and drawbacks when employed in localization, so it depends on each

context and objective of the system.
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These technologies are also named Radio Frequency (RF) based systems and are the

most adopted for localization because they cover a wider area with low-cost hardware [18].

Its signals are able to cross obstacles such as walls and human bodies, leading to a

greater coverage area and suffering less attenuation when compared to satellite, in ad-

dition, the existing infrastructure can be reused, which reduces the cost of deployment in

some cases [20]. These wireless technologies can be classified according to their operating

frequency, which reflects on their coverage capabilities and resistance to obstacles [18].

Comparing the listed technologies, Wi-Fi and Bluetooth possess compact size and

low-cost devices. While Wi-Fi is a strong candidate due to Access Point (AP) availability

inside buildings, the implementation of these APs was done with signal range coverage

in mind rather than location implementations [11]. In terms of energy consumption, the

latest version of Bluetooth, the Bluetooth Low-Energy (BLE) is more efficient compared

to other technologies such as Wi-Fi and Zigbee [18].

Recent advances on low power wireless technologies have revolutionized number of de-

vices in the market. The BLE beacon based devices, for instance, are generally small, low

cost, and configurable, what affords broadcasting data packets, also known as beacons [8].

This device offers the benefit of completely wireless hardware, which does not need an

external power supply, furthermore, due to the compact size and availability of the BLE

protocol in most mobile gadgets, these systems can be easily deployed and scalable, signif-

icantly with no impact on the infrastructure of the environment, what makes the beacon

device a popular choice for IPS [21]. The beacons are very short-duration packets, which

are either data or advertisement messages and can be received by all nearby BLE-enabled

devices [11], [22]. Through the information of this data packet it is possible to obtain the

signal intensity value, which can be employed in positioning algorithms to estimate the

beacon transmitter location [23].

The BLE-based indoor location implementations mainly employ the following meth-

ods: radio propagation modelling and Fingerprinting (FP) [24]. In the first case, from

a radio propagation model it is possible to calculate the distance between an unknown
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point and the AP. After, it is able to estimate the position, solving a system of equa-

tions through Ordinary Least Squares (OLS) method, such as in the Trilateration and

Multilateration (MLT) techniques [19].

In the second approach, a scene analysis is done independent of angle or distance,

collecting information or features from a scene or observation and then estimating the

position of an object in an unknown point by matching or comparing the collected infor-

mation with another in an existing database [20]. This collected feature is also known as

fingerprint, which represents unique information in the setting, e.g., the received signal

intensity [18]. From these fingerprints, it is able to estimate the location of objects by

matching online measurements of the same characteristic collected before, comparing with

the nearest possible location that corresponds to the saved values in the database [16].

Although these techniques can be employed in indoor environments, some challenges

may affect the radio wave propagation in a location service, one of them is the presence

of numerous obstacles that attenuate the signal [24]. Furthermore, this non-linearity and

random effects caused by external factors, which are not covered in equations or models,

may decrease the accuracy of the system [18].

The emerge of the smart age increased the demand for a reliable and efficient IPS,

so the purpose of this work is to evaluate an indoor localization scheme in a real-world

scenario, aiming at decreasing uncertainty and improving the accuracy of positioning

estimates. Therefore, a set of localization techniques and an optimization tool, also known

as stochastic filtering, will be used.

1.1 Introduction to the Problem

For Indoor Positioning Systems typically based on wireless technologies, the signals

received and transmitted are susceptible to amplitude attenuation by the transmission

medium. The main influencing factors are: shadowing, path loss and multipath [25].

The pathway between transmitter and receiver may be blocked by multiple obstacles
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such as walls, buildings, people and furniture. The signal variation due to absorption,

reflection or diffraction of the wave by obstacles is namely known as shadowing [20]. A

signal transmitted through a wireless channel is subjected to a random variation due

to shadowing phenomena, this event can be considered as a random Gaussian variable

with zero mean and standard deviation that attempts to represent the shadowing effects

present in the real scenario, following a Log-normal distribution [19].

The path loss is related to the distance, is the reduction in power density of an elec-

tromagnetic wave as it propagates through space [25]. This attenuation is represented by

a factor namely path loss exponent, which varies according the environment, its typical

range value is between 2 to 6 dB [26]. Since it depends on the distance between the

transmitter and the receiver, the longer the distance the higher the attenuation, and the

greater the signal’s fading effect.

The fading is the deviation of the attenuation that a signal experiences propagating on

multipath. The fading varies with geographical position, time and radio frequency [25].

The multiple ways that the signal propagates between transmitter and receiver, can create

either destructive or constructive interference, amplifying or attenuating the signal power

at the receiver [19].

Since a signal propagated over a wireless channel is subject to interference and exhibits

random behavior, this affects the position estimates coming from the localization algo-

rithms. The signal fluctuations caused by these phenomena will reflect in the calculation

of the distance estimate for the case of MLT, for example, while for FP it will influence

the fingerprint saved in the database during the offline stage and make it difficult to accu-

rately compare the values measured over the online phase. In both cases, it will introduce

errors into the system and consequently decrease its accuracy.

In order to mitigate these drawbacks, a stochastic filter can be implemented over the

collected measures, which provide an improvement in the Signal-to-Noise Ratio (SNR)

and minimize the signal variation [21]. Furthermore, the filtering process also improves

the accuracy of an IPS, decreasing the system’s estimate error [24].

Each localization technique has its respective limitations and disadvantages, e.g., the
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MLT is in charge of a model that is an abstraction of reality, which ends up not bringing

a faithful characterization of the phenomena to which the signal propagation is subject.

The FP, on the other hand, depends on a characterization of the environment, leading to

the technique being somewhat fixed, making any change and the construction of a generic

system difficult. On the face of it, the intended solution will integrate both methods

(MLT + FP) resulting in a hybrid system in terms of positioning algorithm. In addition,

the Kalman filter (KF) will be implemented in order to mitigate the random behavior

of the signal for each isolated technique aiming to reduce the positioning error. Finally,

a third filter will be inserted into the system by combining the two positions estimated

from each algorithm through a sensor fusion method, in order to reach a better accuracy.

The objective is to achieve a low-cost positioning system solution, reaching an accuracy

level higher than those presented by each technique isolated and performing experiments

in a real-world scenario aiming to evaluate it.

1.2 Motivation

The fast growth of wireless communications and mobile devices has prompted a

significant development of location-based applications [27]. In this context, the number

of location systems has increased, as well as the investment in this type of market. Some

of the benefited areas that employ this system are the health sector, industry, transport,

engineering, robotics, security, and a number of other branches [14]. In order to satisfy the

user’s necessities, all the information about the items and people needs to be independent,

providing a generalization capability to the positioning applications [24].

The implementation of an IPS needs to take into consideration that compared to an

outdoor application the challenge and complexity increases, due to the numerous obstacles

and the fluctuations that a signal undergoes propagating in a wireless channel. Therefore,

it is extremely important that the system is reliable and accurate, ensuring interconnec-

tivity between user and objects. For instance in WSNs, location is an extremely essential

factor and is implemented in many fields, such as in food companies where it is necessary

8



to carefully monitor the temperature of the food and know the location of each product in

the warehouse, allowing sensor nodes to execute an appropriate decision, thus preventing

the spoiling of the goods [25].

Some of the remarkable scenarios that the purposeful location system can be used are:

(i) locating objects in warehouse applications, helping a company contributor or a robot

locate products inside the building. (ii) Locating people inside a building, such as in a

hospital, facilitating the process of locating a doctor or a patient. (iii) Customer location

within a mall or supermarket to attract attention, for example, when a store needs to

promote a new product while people are near its location. In addition, the store can send

out advertisements about its offerings and indicate where the products are within the

store.

1.3 Objectives

1.3.1 Overall Objective

The main objective of this work is to design and implement a Hybrid Indoor Positioning

System (H-IPS) in a real-world scenario, aiming at a low-cost solution and improving the

accuracy of the system by applying stochastic filtering on the estimates of RSSI-based

techniques (multilateration and fingerprinting) and implementing sensor fusion between

both methods.

1.3.2 Specific Objectives

The previous referred main objective can be divided in the following sub-objectives:

• Search information about state of art about FP and MLT techniques, as well as

sensor fusion and KF;
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• Develop a positioning system employing FP technique;

• Develop a positioning system employing MLT technique;

• Evaluate the localization systems in a real-world scenario using BLE technology;

• Implement a KF and evaluate its performance operating with each previous local-

ization method;

• Perform sensor fusion over the results from previous techniques;

• Compare and evaluate the results from each method combination of the system;

• Compare the system performance with the simulated system.

1.4 Publications

This work has generated a paper entitled "Low-Cost Indoor Localization System Com-

bining Multilateration and Kalman Filter" that was presented in the 30th IEEE Interna-

tional Symposium on Industrial Electronics (ISIE2021) [28], helded in the Kyoto, Japan,

20-23 June 2021, and published in the proceedings of the conference.

1.5 Document Structure

Apart from this introduction, the dissertation contains four more chapters. The

Chapter 2 presents the literature review and describes the localization techniques. The

purposed solution is presented in the Chapter 3 showing the system model, the testbed

and the developed algorithms. In the Chapter 4 the results are shown, compared and

evaluated. Finally, Chapter 5 rounds the master thesis up with the conclusions and

points out the future work.
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Chapter 2

Literature Review

The localization represents the tasks such as tracking the user’s position, planning

routes and guiding the user through the route to reach the desired destination [15]. Gen-

erally, localization requires a technical infrastructure, support of multiple contexts and

an appropriate and accurate topographic representation of the scenario. For outdoor

contexts, these requirements have been achieved over the years by the development of

GPS [29]. Although, GPS cannot be used in indoor contexts due to the fact that the sig-

nal is compromised by obstacles and its implementation is expensive [20]. Therefore, as

illustrated in the Figure 2.1, indoor localization has more challenges than outdoor local-

ization due to obstacles, the characteristic of the signal propagating in a wireless channel,

and noise surrounding the environment [18].
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Target Node

Figure 2.1: Impact of indoor environments on the propagation of a signal in a wireless
channel.

A localization system originally is composed by three main stages [30], [31]: (i) Dis-

tance Estimation, (ii) Position Computation and (iii) Localization Algorithm. The dis-

tance estimation phase is responsible for estimating the relative distances / angles between

the APs and the object also known as the Target Node (TN), using measurement tech-

niques. Whereas the unknown coordinates are calculated in the position computation

stage based on the available information of distances / angles and positions of the APs.

The final step is the main part of the localization system, the localization algorithm, which

determines how the information related to the position and distance is manipulated to

allow most or all the objects to estimate their positions precisely. In addition, localization

algorithm may embed other algorithms, in order to reduce possible errors and refine the

position estimate.

The distance can be estimated through three conventional methods, including the

Angle of Arrival (AoA), the Time of Flight (ToF), and the Received Signal Strength

Indicator (RSSI). The location systems based on RSSI, typically adopt that the signal is

transmitted according to a propagation model, from the RSSI values collected allow to

obtain the distance between the APs, also known as anchor nodes, and the object [19].

Nevertheless, the models adopted in the system must consider that the transmitted and
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received signal is subject to radio frequency transmission effects, such as shading and

multipath [26]. These phenomena cause fluctuations in the RSSI value and can alter the

direction and phase of the wave during its propagation in the medium, which consequently

influences the AoA method. The signal also varies over time and any obstacle can interfere

with the temporal values used by the ToF technique [20]. Additionally, devices in the

environment that operate in the same frequency range may interfere with each other,

causing information loss [24].

In settings where the target moves and periodically communicates with the access

points, it is possible to embedded solutions in order to improve the accuracy of the

system [21]. Particularly in RSSI-based systems, it is possible to include in the IPS

output a solution called Kalman Filter. This is a real-time estimator approach that

handles measurement noise to track the status of randomly disturbed dynamic systems.

It follows a physical model to provide its predictions and correct them, obtaining in the

end estimates with less positioning error [32].

Positioning techniques, stochastic filtering, as well as sensor fusion will be explained

in more detail in the following sections.

2.1 Distance Estimation Techniques

Most of the frequently applied techniques in the localization context are based on

the received signal strength indicator (RSSI), Time of Arrival (ToA), Time Difference of

Arrival (TDoA), and Angle of Arrival (AoA). Among all options, RSSI is the most popular

and simplest method since no extra hardware is necessary, implementation complexity is

low and time synchronization between devices is unrequired. [11], [18].

In the following subsections, these conventional techniques will be explained in detail,

comparing their performance and justifying the choice of RSSI for the implementation at

hand.
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2.1.1 Time of Flight

ToF methods, such as ToA or TDoA, can convert signal propagation time into distance,

based on the speed of the wave propagation (u = 3× 108 m/s) between transmitter and

receiver through synchronized time references [20], as illustrated in Figure 2.2. In ToA

the bandwidth is extremely important, when a signal’s bandwidth is not wide enough,

the ToA measurement may result in wide error range distance. If the receiver has 1 GHz

bandwidth, the receiver resolution will be about 1× 10−9 s, resulting in a maximum error

of 0.3 m. While using 10 MHz bandwidth, the resolution will be about 1 × 10−7 s and

the maximum error will be around 30 m [33].

Figure 2.2: ToA-based localization.

Differently from ToA technique, which uses the absolute signal propagation time,

TDoA employs the difference in signals propagation times from different transmitters,

measured at the receiver [14]. A TDoA measurement is composed by the difference

between two ToA measurements, so through three ToA measurements it is possible get

two TDoA measurements [18]. The TDoA from at least three transmitters is requested to

calculate the location of the target as the intersection of three (or more) hyperboloids [14],

as represented in Figure 2.3.
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Figure 2.3: TDoA-based localization.

All sensors, including TN, need to be synchronized in ToA, since all the transmitted

packets have a timestamp, while in TDoA just the APs need to have synchronized clocks.

Moreover, the synchronism required for both methods implies on additional hardware,

increasing the system’s implementation cost [11].

2.1.2 Angle of Arrival

AoA determines the position by taking angular data of that object with respect to the

orientation of the transmitters, as illustrated in Figure 2.4. Basically, AoA calculation

works on an antenna array on one sensor node, which needs a minimum of three reference

nodes coordinated in order to determine the position of the receiver [16].

15



AP1

AP2
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Figure 2.4: AoA-based localization.

AoA typically obtains the angle data using radio array techniques and can estimate

by employing directional or multiple antennas. In multiple aerials, works by analyzing

the phase or time variation among the signals at different array items that have detected

locations regarding TN. In directional antennas, this acts by calculating the RSSI ratio

between many directional aerials that are carefully placed to achieve similarity among

their major beams [24]. In addition, AoA requires an exact antenna design, complex

hardware and must be calibrated in order for an accurate positioning estimation [11].

2.1.3 Received Signal Strength Techniques

The RSS is an indication of the actual signal power level at the receiver’s antenna,

usually measured in decibel-milliwatts (dBm) or milliWatts (mW) [14]. In RSS-based

systems the higher is the RSSI level, the stronger is the radio signal and closer is the

target. Furthermore, the radio components report the current RSSI value each time a

valid packet arrives [25]. As represented in Figure 2.5, this method relates the received

signal’s intensity with a reference distance, so that the distance between AP and TN can

be calculated. In addition, when the signal strength becomes higher, the measurement is

more reliable, incurring in better accuracy [11].
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Figure 2.5: RSSI-based localization. Adapted from [14].

RSS technique is popular and simple since it requires no additional hardware and is

available on any device that utilize any type of wireless communication technology [25].

In order to the high potential of indoor tracking applications, low cost, low complexity

implementation and a plethora of devices that can be used, RSSI is a suitable option [34].

The RSSI parameter can also be measured from periodic broadcasted signals like beacons

from a BLE device or even from unicast packets [19].

The RSSI technique can be classified in two main ways: a range-based and range-free

approach. The first approach is based on mapping the radio propagation losses to dis-

tance according to the propagation model. Through the model, it is possible to obtain

the corresponding distance between AP and TN from the transmitted signal. Just iso-

late the term of the distance in the chosen model and solve the achieved mathematical

equation [24]. The main problem with this way is the difficulty of choosing which indoor

propagation model is more suitable [19]. The RSSI allows to calculate propagation losses,

since the signal intensity is inversely proportional to the distance of its shift in the prop-

agation medium. The disadvantage of this approach is the precision and flexibility of the

environment, when using three reference points in trilateration technique, although it is

possible to improve it employing the distance from multiple reference points, employing
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Multilateration technique [35]. The MLT is a technique to determine a device position

through a set of reference points which have known locations, based on the measured

distances between the anchor and TN [23].

The range-free approach use fingerprinting techniques (radio map) for localization, so

that it does not require angle or distance measurements to find the position. The finger-

printing is composed by a database which contains a measurements series in strategical

positions, in order to build a radio map of the environment that relates the position with

its respective RSSI signature. The range-free approach reaches a greater accuracy com-

pared to a range-based, but requires an exhaustive characterization of the environment.

Moreover, it is very susceptible to changes, which triggers the need of a new characteri-

zation round [24].

2.1.3.1 Path-loss Model and Distance Calculation

The distance between AP and TN can be determined through a path-loss model.

Considering the distance between transmitter and receiver as dn, the RSSIn (in dBm) in

the nth AP can be calculated through the log-normal propagation model as [26]:

RSSIn = RSSIn,d0 − 10α log10 (dn/d0) +Xσ, (2.1)

where the dn is the distance between the APn and the TN, the RSSIn,d0 is the RSSI

value (in dBm) at APn when the target is at a reference distance d0, the parameter α

corresponds to the path loss exponent and Xσ ∼ N (0, σ2) represents the shadowing effect

(in dB).

A signal propagating on a wireless channel varies according the logarithm of the dis-

tance that the signal travels. In addition, the RSSI value is affected mainly by some

inherent characteristics of the device model like construction aspects, as well as the an-

tenna orientation. In indoor environments that are complex and susceptible to reflection,

refraction and obstacles to the signal, the RSSI value has an even bigger error due to the
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high momentary fluctuation of the signal level, which affects the system accuracy [18].

2.2 Localization Techniques

Among all existing wireless technologies, WLAN, also known as Wi-Fi is one of the

most conventional choices for indoor location applications [11]. This is due to its avail-

ability, since all mobile devices now support this technology, and also to its ability to

reuse the infrastructure already in place, not requiring any extra hardware, being able to

use the access points previously installed for communication in environments [24]. On the

other hand, Wi-Fi has a high energy consumption when employed in tracking applications,

which ends up decreasing the battery life of the devices used for this purpose [11], [36].

In addition, the scanning time for the protocol is very long, about 3-4 s, which results in

a low refresh rate and ends up causing positioning losses [24].

Another possibility could be an RFID-based system, which uses electromagnetic trans-

missions to transfer and gather data from a transmitter (RFID tag) to a compatible RF

circuit (RFID reader) [20]. Tags can be active, passive, or semi-active. Active tags provide

a range of up to 100 m, which is very useful for long-range locations, nevertheless achieving

this large-scale coverage requires high power consumption and financial investment [18].

Passive tags have a limited range within 1-2 m and operate without any battery, they are

smaller, lighter, and cheaper than active tags [37]. Passive tags are an alternative to the

traditional barcode, especially in situations where the tag is not in the line of sight of the

reader, however, due to its limited coverage it becomes unviable for IPS and the cost of

the reader is significantly high [14].

Zigbee is also a promising candidate for location-based applications and is known to

be a simple, low-power, and secure protocol [11]. Devices that utilize this technology

are capable to manage their own data and avoid data loss using Carrier-Sense Multiple

Access/Collision Avoidance (CSMA/CA). In addition, these devices are designed with

some options such as power detection and link characteristics, which allows working with
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RSSI-based methods [18]. Zigbee allows reaching long distances through its mesh network

configuration to achieve the target, being favorable for sensor localization in WSNs. How-

ever, this protocol is unavailable on most devices, such as Wi-Fi, making it necessary to

use extra hardware, which is in fact not recommended for indoor localization applications

as it makes implementation more expensive [14].

UWB is also a widely used alternative in localization, this technology works by trans-

mitting pulses with a duration of fewer than 1 ns, using a low duty cycle value between 1 to

1000. This allows the UWB signal to be transmitted in multiple frequency bands, resulting

in an accurate solution for indoor localization and tracking [16]. This technology provides

immunity to interference due to its different signal types and radio spectrum, allowing it

to penetrate a variety of obstacles and also has a wide data rate, low power consump-

tion, and multipath protection. UWB devices are centered on line-of-sight modifications,

which allows accuracies of the order of centimeters to be achieved in a localization sys-

tem [18]. However, a UWB-based localization system faces several challenges in achieving

such precise positioning values, requiring sampling rate limits, device synchronization,

shadow effects caused by the human body and antenna phase axis variation. A UWB

implementation provides an accurate solution but requires a complex infrastructure and

high financial investment [24].

One of the most popular options for IPS is Bluetooth Low-Energy (BLE), which uses

short-range radio with minimal power consumption to operate over long periods of time,

with coverage of 70 to 100 m and a transmission rate of 24 Mbit/s with consumption rang-

ing from 0.01 mW to 10 mW [7]. BLE is available on most devices, such as smartphones,

and when compared to technologies such as Zigbee and Wi-Fi, has a higher efficiency

in terms of power consumption, a low level of implementation complexity, and a better-

transmitted power per bit ratio [18]. But like Wi-Fi, it occupies the 2.4 GHz frequency

band known as Industrial, Scientific and Medical (ISM), which can lead to interference

in BLE channels [22]. In indoor location services, this technology has BLE beacon-based

devices operating in a GAP configuration, which allows for configuration and operation

modes such as scanning or advertising (non-connectable messages), and initialization and
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management (connectable messages). Operating in this configuration, the devices can

function as either masters or slaves, where the masters receive advertising from the slaves

by scanning BLE advertising channels [38].

Location systems require a technology that offers secure transmission, accuracy &

precision, low cost, low complexity, scalability, low power consumption, and robustness.

The BLE protocol satisfies the following system requirements: low power consumption,

low complexity, low cost, robustness (the system can work even if one AP fails), and

compactness [7], [38]. Therefore, BLE was chosen as the technology adopted in our

proposed solution.

The following subsections are intended to explain the frequently employed localization

techniques when a BLE-based localization system is implemented.

2.2.1 Trilateration

The trilateration method exploits the geometric properties of triangles to estimate the

position of the target node. Through RSSI it is possible to estimate the relative distance

between the APs and the TN, these distances are obtained from the calculation of the

attenuation of the transmitted signal [20], according (2.1). The anchors represent the

receivers of the system and need to be configured to receive the packets continuously in

order to avoid information loss. Thus, allowing the transmitter positioned at the unknown

location to be detected and to send its packets containing the RSSI values. The RSSI

values are converted to an estimated distance dn between APn and TN as [24],

dn = d010(RSSIn,d0−RSSIn)/(10α). (2.2)

As presented in Figure 2.6, the distance between AP and TN is related to the received

power. For 2D measurements, through two equations, there will be two possible solutions.

In order to achieve a unique solution, three equations are required; the intersection of these

equations will determine the location of the target node [18]. Being the TN coordinates
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Figure 2.6: Example of Trilateration, considering the circles as the distances between TN
and each AP. The area resulting from the intersection among the APs is the estimated
location where the node is located.

(x, y), and the APs (AP1, AP2 and AP3) coordinates, are (x1, y1), (x2, y2) and (x3, y3)

respectively, the intersection of the three circles with radius d1, d2 and d3, achieved from

equation (2.2), represents the estimated position of the TN.

The geometric properties between anchors and node can be represented by the follow-

ing system of equations [19]:

d1 =
√

(x− x1)2 + (y − y1)2, (2.3)

d2 =
√

(x− x2)2 + (y − y2)2, (2.4)

d3 =
√

(x− x3)2 + (y − y3)2. (2.5)

Solving the equations the location of the target (x, y) will be reached a unique solution,

where two will be basic equations and the third is a linear combination from the other

ones. The result is inferred based on the distances obtained using least square techniques.
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2.2.2 Multilateration

Multilateration is an extension of the trilateration method with more than three RPs

(N > 3) to estimate the target position. A RF multilateration method estimates the TN

location using the strength of the signals received from many non-collocated and non-

collinear transmitters [24]. The estimated distances between an APn and TN located in

(x, y), can be calculated as [18]:

dn =
√

(x− xn)2 + (y − yn)2. (2.6)

The signal intensity measured from all of anchors in the environment are used to

convert the signal power in distance through equation (2.2). Considering d̂n ' dn, where

d̂n is the estimated distance from (2.2) and dn the euclidean distance from (2.6), equating

both terms, squaring and subtracting the Nth equation of the nth equation, which N

is the total amount of APs and n = 1, 2, 3, ...N , reordering the terms, reaching a linear

function in x and y [35]:

−x2
n − y2

n + x2
N + y2

N + (d̂n)2 − (d̂N)2 =

x(−2xn + 2xN) + y(−2yn + 2yN). (2.7)

Representing all terms in the form of a linear system of equations b = Ap, where p
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is the coordinate vector, as [35]:



−x2
1 − y2

1 + x2
N + y2

N + (d̂1)2 − (d̂N)2

−x2
2 − y2

2 + x2
N + y2

N + (d̂2)2 − (d̂N)2

...

−x2
N−1 − y2

N−1 + x2
N + y2

N + (d̂N−1)2 − (d̂N)2


=



−2x1 + 2xN −2y1 + 2yN
−2x2 + 2xN −2y2 + 2yN

... ...

−2xN−1 + 2xN −2yN−1 + 2yN


x
y

 . (2.8)

Since {d̂n}Nn=1 may present errors due to shadowing effect, the estimate position p̂MLT

is determined using a standard least-squares approach [35]:

p̂MLT = p̂ = (ATA)−1ATb, (2.9)

in order to minimize ∑N
n=1(dn − d̂n)2.

The multilateration method has errors in the estimates, due to the uncertainty in

distance calculation between anchor and target. This inaccuracy in estimation is due to

several factors, including simplifications and uncertainties in signal propagation models,

multipath losses or fading, and the complexity of indoor environments in maintaining LoS

with APs [24].

2.2.3 Fingerprinting

In IPS, the FP localization is a recurrent method aiming at increasing position ac-

curacy using range-free information in a building structure, reducing the hardware com-

plexity and undesirable influence of multipath effect [20]. The FP technique finds a

correlation based on RSSI values and normally is formulated in two phases: the offline
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phase (training/calibration) and online phase (testing/localization) [18].

2.2.3.1 Offline Phase

In the training phase, the spatial-temporal RSS data of each AP location is collected

and stored in a database as coordinates of the current location, creating a radio map

of the area. Therefore, for each fingerprint, a unique RSSI value and its location in

the environment must be collected, segmenting the entire area into a grid with unique

characteristics for each point of interest (also called Reference Point (RP)) on the map [39].

A set of measurements is required in order to achieve an average value for each mea-

sured point. Figure 2.7 shows a technique overview, presenting the both phases of the

method. Each measured point has its respective set of characteristics associated with

their coordinates and received signal power in that point. These dataset will be available

in a database, containing information from each RP [22].

2.2.3.2 Online Phase

The built database in the offline step is used in the testing phase for comparing and

recognizing the RSSIs collected from unknown locations, these processes are performed

between the measured RSSI values and the closest RPs for position estimations [39]. The

estimated position will be linked to the best suitable fingerprint or the geometric mean

of the positions of K fingerprints close the TN.

In order to compare and recognize the RSSI measured values with database a local-

ization algorithm is required, a typical choice is a deterministic algorithm, being the most

widely adopted options: the Nearest Neighbour (NN) algorithm, which uses just one RP

to estimate the TN position [40]; the k-Nearest Neighbour (KNN) being k the number

of RPs considered in order to build a polygon which centroid will be the result estima-

tion [18]. Finally, the Weighted k-Nearest Neighbour (WKNN) which applies the KNN

algorithm with a weight employed in the neighbors, attributing different weight values for

each RP in the environment [41].
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Figure 2.7: Fingerprinting-based positioning method overview.
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The KNN algorithm is the typical choice since it does not need lot of data to work

with, has low complexity and the accuracy is equivalent to modern techniques [39]. KNN

algorithm is a deterministic approach, i.e., based on fixed known values, it is an instance-

based learning method and memorizes all training data. Basically, a deterministic algo-

rithm will find the optimal similarity between the new measurements of testing data and

the database of the FP offline phase [14]. KNN uses the shortest distance between the

RPs registered on database (RSSIm,n) and the target position (RSSIn), this algorithm

employs the Euclidean distance as following equation [42]:

Dm =

√√√√ N∑
n=1

(RSSIn −RSSIm,n)2, (2.10)

whereDm is the distance between the set of RSSI value from RPm of the database, and the

current RSSI measured from the tracked target by APn, which leads to a set of distances

D = {D1, ..., Dm, ..., DM}, with |D| = M . The M distances are classified in ascending

order and the k first points will be selected for calculating the estimated position, so

that the estimated position is denoted as p̂FP = (x̂FP , ŷFP ). Nevertheless, the principal

disadvantage of FP-based IPS is the fact that the approach works only in the previously

characterized area and any change in the environment can impact the method, making it

necessary to carry out a recharacterization.

However, some modern solutions have emerged in order to provide easy construction

of radio maps, consuming less time, with little effort, and reduced human workload. A

Crowdsourcing-based FP system proposed by [43], where the user can get the RSSI values

via a smartphone while performing their routine tasks, in order to subsequently employ

this collected data in the radio map construction process. In addition, an automatic

database update was developed at [44], in which a mobile robot was configured to acquire

the RSSI in the environment while moving through the area.

Unfortunately, most of these new solutions require extra hardware or increase the com-

putational cost. A typical methodology employed to smooth the problems with multipath

interference in indoor environments, which causes a variation in the received signal level
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introducing errors in the measurements, are the stochastic filters, such as Kalman Filter

and Particle Filter or Sequential Monte Carlo. These methods provide an improvement

to the system mitigating the positioning error introduced by this phenomenon [34].

2.3 Stochastic Filtering Techniques

There are many stochastic filtering process options, such as Bayesian Filter (BF),

Particle Filter (PF), KF and extended Kalman Filter (EKF) [24]. These approaches

linear & non-linear are typically employed in IPS aiming to compensate the cumulative

positioning error and they can also to attenuate the noise measurements [27], [40]. The

filtering process may aid in obtaining a continuous trajectory and decrease the estimation

error [24].

In state-space models, the tracking problem can be solved by Bayesian tracking, which

employs the Bayesian filter. The principal idea of this filter is aimed at a continuous

estimation of positioning, considering a situation of a complex indoor environment [45].

There are solutions as [46] that describe systems able to mix LoS and NLoS scenarios. As

discussed in [47], it is also possible to combine linear and non-linear models to estimate

the position through a BF by mixing data from a dead reckoning and UWB.

Particle Filter is an iterative estimation method, which can use human motion data, ra-

dio map information, and RSSI measurements recorded by APs [24]. The PF algorithm is

based on the state equation method that allows solving nonlinear filtering problems [45]. A

low-cost PF-based solution is proposed by [48], which solves the pedestrian map-matching

problem by accurate positioning and tracking using a smartphone Microelectromechanical

System (MEMS) sensors jointly PF.

KF and EKF are recursive Bayesian Filters, which have been employed to sequentially

investigate positioning in tracking systems [24]. The KF allows to employ linear and

quadratic models in real-time, improving performance in indoor positioning and naviga-

tion applications. It provides an accurate position estimation using a precise measurement
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model and Gaussian distribution of measurement noise [32]. However, the traditional KF

uses Gaussian models to solve linear problems and being not recommended for non-linear

applications [45]. On the other hand, the EKF is aimed at nonlinear processes, being

widely used in probabilistic mapping problems in Simultaneous Localization and Map-

ping (SLAM) [24]. However, EKF requires an updated-time sensor data and for truly

known mapping between the target and the AP [49].

Comparing the previously mentioned approaches, the traditional KF is the main choice

for the proposed implementation as it allows working with linear motion models, is reduced

complexity, and requires a lower computational cost in relation to EKF or PF.

Considering hardware limitations like memory, energy consumption and processing

capability, KF proves be the most effective at reducing noise and improving indoor location

accuracy [21]. The KF is typically employed in a time-discrete system. Considering some

knowledge regarding the target motion model and including a Gaussian noise, the typical

KF can produce effective results, especially for the linear motion model [50].

A frequently approach adopted in IPS is to apply KF over the RSSI measurements, in

order to decrease the uncertainty, and then implement the localization algorithm. In [51] a

BLE-based IPS is proposed, which a KF is employed filtering the signal’s RSSI increasing

the accuracy of the estimated position by the trilateration method. Reaching 0.53 m

average error in a (5× 5) m static scenario.

In [52] it was proved that a KF in an IPS enhances the precision up to 78.9%, show-

ing an inexpensive solution. It was tested in three different configurations, allowing a

smoothing of the surrounding noise in the environment, which is reflected in fluctuations

of the signal power.

2.3.1 Kalman Filter

The Kalman Filter is a statistical method adopted due to its ability to reduce the

overall uncertainty. It uses a series of measurements observed over time which contains
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random noise and produces estimations that tend to be more accurate by the fact of

taking into account the past states and the covariance error. Furthermore, the Kalman

Filter is usually employed in navigation and trajectory optimization applications [52].

In this way, the estimated position p̂j from the localization algorithm is exploited as an

input to the Kalman Filter that considers a linear motion model to smooth the positioning

error introduced by this previous localization technique, providing an enhancement of the

system accuracy.

The linear motion model for example, assumes that the TN moves in the environment

with a constant velocity in both axis, so the position varies a linear pattern. Thus, the

state vector xk is defined as a vector containing the true values of the state variables at

the moment k, as represented in equation (2.11) [23]:

xk =
[
x(k) y(k) ẋ(k) ẏ(k)

]T
, (2.11)

where x(k), y(k), ẋ(k) and ẏ(k) are respectively the location coordinates and velocity in

x and y directions.

The measurement function is governed by the linear stochastic difference equation [32]:

zk = Hkxk + vk, (2.12)

where Hk ∈ Rj×p is the measurement model that is related to the state with the esti-

mation and vk ∈ Rj×1 ∼ N (0,R) represents the measurement noise, being R ∈ Rj×j

the covariance matrix. The KF estimates a process using the feedback control, where

the filter estimates the process state in a moment, getting the feedback through the mea-

surements [32]. The KF process can be separated in two groups, namely the time update

(which is responsible for the prediction) and measurement update (i.e. related to the

correction or maintenance) [34], as presented in Figure 2.8.
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Measurement Update (correction)

1) Compute the Kalman Gain

^ ^ ^

2) Update estimate with measurement zk

3) Update the error covariance

Time Update (prediction)

1) Estimates the next state

^ ^

2) Estimates the next error covariance

^Initial estimates ;

= pĵ

^p̂j+KF = ;

Figure 2.8: Kalman Filter Algorithm.

2.3.1.1 Time Update

The state variables from equation (2.11) are updated projecting forward the current

state and estimating the error covariance to obtain the next state [32], [34]. In this

model, x̂−k+1 ∈ Rp×1 is the a priori estimation at the moment k+ 1, given the a posteriori

estimation at the moment k, Ak ∈ Rp×p is the state transition model following the uniform

movement (relating to states k and k+1), P−k+1 ∈ Rp×p is a priori error covariance matrix

that projects ahead the estimations at the instant k + 1 given the a posteriori error

covariance matrix at the instant k, Qk = qIj ∈ Rj×j is the covariance matrix of the

transition model and q ∈ R.

2.3.1.2 Measurement Update

This stage adjusts the prediction projected via the measurement at the current mo-

ment, that is a combination from the prediction and measurements in order to refine the
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estimation [32], [34]. In this model, Kk ∈ Rp×j is the Kalman Gain that is responsible

to adjust the balance between the prediction and the current measurement, x̂k represents

a posteriori state estimation given the measurements up to time k, zk ∈ Rj×1 is the real

measurement at moment k and Pk is the a posteriori error covariance matrix at moment

k.

Through the described mechanism, the output contains state variables with lower error

levels when compared to the system measurements. Considering a tracking or position-

ing system, such information may be coordinates, velocity and trajectories of the target

object [45].

2.4 Fusion of Localization Techniques

The combination of localization techniques is a recurrent tool in applications which

need a system with more accuracy. In [39] a fusion using trilateration and FP techniques

was implemented, providing an improvement to the system of 25% compared with FP

technique standalone reaching an accuracy of 1.8 m. The proposed solution employs a

path-loss model leading an estimate position that will be used as input to the KNN algo-

rithm, which will search and compare with the fingerprints in database using a 2 m radius

through trilateration estimate, in order to restrict the searching process and accelerate

the KNN algorithm.

In order to decrease the influence of the interference, the authors in [27] developed an

IPS with adaptive multilateration, which employs inertial sensing and adaptative ranging

in a BLE infrastructure. A PF was used to combine the all information and improve the

estimate result, reaching around 20% of enhancement.

MLT and FP are methods dependent of the number of anchors in the area. Proba-

bilistic methods, on the other hand, are based on the Probability Density Function (PDF)

of unknown variables by providing more accurate results with statistical framework [24].
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Therefore, probabilistic methods besides considering the output of deterministic tech-

niques (MLT & FP), provide mathematical treatment in order to merge the information

reaching a better result [34]. Finally, the KF is an example of a tool that can be employed

in IPS, in order to combine two position estimates achieving third information devoting to

compensate the weak from the previous techniques applied. In [23] a hybrid IPS (H-IPS)

that combines MLT and FP was presented, employing a KF based on uniform motion

in order to improve the positioning error for each traditional method. In addition, their

system provides a sensor fusion using KF called Track-to-track Fusion which takes the

outputs from the original KF and combines the estimations achieving at the final a better

accuracy. The proposed system outperformed the MLT 54% and the FP by 46%.

2.4.1 Sensor Fusion using KF

Increased performance and reliability requires a intelligent combination of data from

multiple sensors leading to a less uncertain information about the desired state. The

data fusion aim to produce a model or representation of the system handling a set of

independent data sources, providing a perception of the external environment [53].

The combination of the information from the sensors and following estimation of the

state of the scenario need to be done correctly, in order to reduce the uncertainty. A

common application of data fusion techniques is the estimation of target position from

multiple measurements from a single or multiple sensors [53].

Two essential processes are involved in positioning contexts: data association and

state estimation. State estimation concerns the optimal estimation of position, velocity,

acceleration, or angular position of the target [53]. The most popular and widely applied

state estimator algorithm is the Kalman Filter [32].

The Kalman Filter became an attractive tool in data fusion problems and track fusion

problems, in [54] is employed to collision avoidance and object recognition in autonomous

vehicle context. It have been extensively applied to robot localization, guidance and
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navigation, as [55]. IPS is another field that can also use KF for data fusion applica-

tions, [56] presents a solution combining Wi-Fi and inertial sensors to provide a more

accurate tracking system.

The conventional state-vector fusion and measurement fusion are two modalities based

on KF data fusion [53], [57]. The conventional measurement fusion has lower estimation

error in settings that sensors communicate each time they receive measurements or the

process noise is zero, but a higher computational cost is required [58].

There are two principal methods for measurement fusion. The first just merge the

measurements from two or more sensors into a new measurement vector [58]. The second

approach is devoted to weight the individual measurements from each sensor and then

track the fused measurements through a Kalman Filter obtaining an estimate of the state

vector [59]. Since the measurements noise is independent for the sensors, the fusion process

is a recursive form for a minimum mean square estimate [53].

In real-world scenarios targets are tracked by a plethora of sensors, the process in-

volved in associating the tracks of the same target is a correlation problem, this is often

solved employing a track fusion [53]. The combination of distinct information sources

through sensor fusion results in a unique output which has lower uncertainty than each

individual source. One of the widely used track fusion method is the track-to-track fusion

algorithm [53], as illustrated in Figure 2.9.
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Figure 2.9: The track-to-track fusion algorithm. Adapted from [53].
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This method performs the state vector fusion combining the estimated states x̂1
k and x̂2

k

of sensors 1 and 2, respectively, in order to produce a new estimate state vector x̂k, the new

fused state vector is generated given the following static linear estimation equation [53]:

x̂k = x̂1
k +

[
P1
k −P12

k

] [
P1
k + P2

k −P12
k −P21

k

]−1 (
x̂2
k − x̂1

k

)
, (2.13)

where Pm
k is the covariance matrix regarding the state vector from the fusion x̂mk , being

m the index of different sensors (m = 1, 2). P12
k =

(
P21
k

)T
is the cross covariance matrix

between x̂1
k and x̂2

k. The cross covariance matrix can be obtained from following recursive

equation:

P12
k =

(
Ip −K1

kH1
k

)
Ak−1P12

k−1AT
k−1

(
Ip −K2

kH2
k

)T
+
(
Ip −K1

kH1
k

)
vk−1Qk−1v

T
k−1

(
Ip −K2

kH2
k

)T
, (2.14)

being K1
k and K2

k the Kalman Gain for sensors 1 and 2 respectively, at the moment k.

The equation (2.13) presents a suboptimal solution due to the fusion be the opti-

mal solution for a linear estimator [60]. The advantage of this algorithm is a reduced

computational cost, which turns this method into an attractive option to combine state

vectors [53].

Another fusion method, is represented in Figure 2.10, which proposes that the resulting

vector of the fusion will be used as feedback of the system to a single stage predictor. The

output of the prediction step will be divided to two correction equations [53].
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Figure 2.10: The modified track-to-track fusion. Adapted from [53].
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In the modified state vector fusion, the prediction x̂−k+1 is combined with the measure-

ments z1
k and z2

k individually, generating two new state vectors x̂1
k and x̂2

k, whose will be

linked in the next iteration.

To summarize, in [53] when the fusion is applied in scenarios that the sensors or the

measures present similar units, the original algorithm performs better than the modified

solution. This happens because in the modified system there is an extra fusion procedure

step, where the information from dissimilar sensors is fused and used as feedback for

the subsequent stage of estimation, however, this process will not provide any new fused

information in similar sensors settings.

2.5 BLE Beacon

The advance in low-power wireless technologies has caused an evolution in wireless

communication devices, eliminating the hassles caused by traditional wired communi-

cation and allowing more dynamic data transmission between devices using air as the

propagation medium [8]. Among them there is the BLE beacon device that is generally

small and low cost wireless devices that work by repeatedly broadcasting packets to all

nearby devices in a range of about 100 m. In addition, beacon devices does not rely on

an external power source and are able to operate months or even years using a coin cell

battery, thanks to its low energy consumption [21], [61]. However, one of the limitations

imposed by the energy constraints is that the protocol operates under very small Protocol

Data Unit (PDU) for the advertising packets [8].

The beacon device was explored by Apple introducing the iBeacons and Google with

Eddystone in smartphones, which is used for localization within airports, malls, restau-

rants and supermarkets, where the area map is sent to the smartphone and the location

is estimated using the BLE [18]. The ease of integration between BLE beacons and

smartphones particularly, turns effective to diverse IoT applications, requiring less hu-

man workload to do several tasks [8], like opening a door through identifying proximity
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or locating some missed object inside a building.

A typical beacon-based system architecture is presented in Figure 2.11. After receiving

a message from iBeacon, the smartphone reports to a server or to the cloud in order to

identify the action associated with the received beacon. The action might be to send a

discount coupon, to open a door or to display something on a monitor through the user’s

proximity of a specific location [14].

iBeacon

Figure 2.11: Typical architecture for iBeacon based systems. Adapted from [14]

.

Both the companies Apple and Google, work on the embedded information in the

PDU and proposed their respective exclusive beacon technology [8]. Due to the limited

PDU, beacon devices are only suitable to send small messages. The BLE-beacon symbol

rate is up to 1 Mbit/s and an advantage is that is not necessary to pair the Bluetooth

devices, since it is possible to just listen to the advertisement messages [8].

BLE beacon-based solutions are popular when compared to other existing solutions.

The key factors are they low production cost, ease of deployment, and easy accessibility

to users. Wi-Fi based solutions have limitations such as the number of APs and their

inflexibility in deployment, Wi-Fi was first designed to signal coverage and not for localiza-

tion applications. In [22] has been proved that BLE solution performs better than Wi-Fi

based IPS, depending on deployment configurations and operation parameters, such as

the BLE-beacons device deployment density, advertising interval and transmission power.
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Setting up 19 beacons in an office, the authors achieved <2.6 m error 95% of the time in

a beacon density of 30 m2, beating the <8.5 m error achieved using Wi-Fi.

In IPS three remarkable factors are essential to be minded: the arrangement of the

transmitters and receivers, the RSSI analysis and the wireless technology, that will be

used in the implementation [19].

There are two possible forms of arrangement, the first in which the anchors transmit

the beacons to the sensor tags to be located, and the other where the access points

receive the signals from the target to be tracked [19]. In the proposed solution the second

arrangement was adopted due to its low power consumption, fast response time, and

reduced message volume when compared to the first option.

Regarding the RSSI analysis, the average of the readings was used to reduce the effect

of the fast fading. It was preferred to work with the RSSI in order to avoid the need

for synchronism and the low complexity of implementation. Therefore, two techniques

were selected, namely FP and MLT, which allow the use of this indicator for positioning

purposes. Both techniques end up introducing positioning errors in their estimates, errors

caused by the model used in the method, the algorithm employed by the technique, the

signal itself, and constructive aspects of the devices used in the implementation. To

overcome these barriers a filtering process was introduced, which uses a KF to improve

the quality of the estimates and increase the reliability of the results.

In the wireless technology concern, BLE was adopted because it has the lowest power

consumption among other options, reduced complexity, availability, easy scalability, does

not require extra hardware, and the low-cost presented by devices based on this type of

technology [14], [38].
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Chapter 3

Proposed Solution

Aiming at implementing a low-cost H-IPS solution while presenting low power con-

sumption and better accuracy, a BLE-based approach was selected, that combines MLT,

FP and KF techniques to smooth the statistical noise and reduce the position error. In

addition, the track-to-track fusion (TTF) was employed combining the estimates from FP

and MLT, producing a hybrid estimate position providing an accuracy enhancement.

The goal is to predict a TN position, which follows a linear motion model, i.e, constant

velocity. The arrangement in which the APs receive the beacons, containing the RSSI

values, transmitted by the TN was adopted. This arrangement was chosen because it

provides low power consumption, shorter response time, and lower complexity. However

if the opposite architecture was selected where the AP would represent the transmitter

and the target the receiver, the sensor tag would have to be constantly available to listen

to the transmitters and to respond to them, which would increase the level of messages,

update time and power consumption (reducing the battery life of the beacon device).

The beacon device sends data packets which is subjected to multipath, shadowing and

fading effects [26]. The fast-fading effect can be mitigated by averaging a huge amount of

RSSI measurements [22]. As presented in Figure 3.1, the proposed system is composed by

the following modules: distance calculation, database construction, position estimation,

improving accuracy and sensor fusion.
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AP1 AP2 APn

pH-IPS
^

Figure 3.1: H-IPS model scheme proposed employing KF and TTF algorithm. Adapted
from [23].

3.1 Distance Calculation

The RSSI coming from the beacon messages forwarded by the TN is denoted as

RSSIn, where each RSSI measurement will be used by the localization algorithms (FP

and MLT) in order to estimate the target’s position. In this stage of the solution, the

distance between target object and the AP is estimated through (2.2). This distance

corresponds to the radius established between object and the N anchors, that will be

used in the MLT technique to estimates the TN position. To estimate the distance

between the transmitter and receiver, the path loss model was adopted because of its ease

in representing the propagation of a signal taking into account all the effects it is subject

to. In addition, this model does not require any synchronism for calculation purposes,

which is no longer the case with time-of-flight-based methods.
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3.2 Position Estimation

In order to estimate the TN position, two RSSI-based approaches will be considered:

MLT and FP, which will be detailed in the following subsections.

3.2.1 Multilateration

The MLT technique uses the estimated distance from section 3.1, in which the in-

tersection of all the circles formed by the set of radius corresponds to the area which

contains the estimated position p̂MLT , which is obtained through the minimization of∑N
n=1(dn − d̂n)2 using a standard least-squares method.

First of all, to implement the MLT technique is necessary to measure the RSSIn,d0 for

each AP. Therefore, is extremely important ensure that the TN is positioned correctly at

a distance d0 from the anchor. Finally, is RSSIn,d0 obtained by averaging enough single

measurements. This calibration is important, since an inefficient measurement will be

reflected in the radius calculation, which then affects the position estimation in the least

squares method.

MLT is a popular, low-complexity method, selected because it does not require extra

hardware or a high computational cost. The Algorithm 1 demonstrates the MLT technique

implementation, which was introduced in the subsection 2.2.2.

Algorithm 1: Multilateration
Input: RSSIn, d0, α, RSSIn,d0

Output: p̂MLT

1 begin
2 Initialization;
3 for n=1:1:N do
4 Estimate the distance between TN and APn by (2.2);
5 Apply standard least square method in the system as (2.8);
6 return p̂MLT ;
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3.2.2 Database Construction

For the FP technique it is necessary to build a database in the offline phase containing

the measurements RSSIm,n, representing a received signal intensity by {APn}Nn=1, which a

BLE-beacon device has sent in M RPs equidistant locations {RPm}Mm=1, when positioned

in (xm, ym) coordinates inside the Area of Interest (AoI).

The output of the offline phase is composed by the identification of the APn and

RPm, linking their respective locations (xn, yn) and (xm, ym), as well as the measurement

RSSIm,n associating ∀n ∈ {1, ..., N}, ∀m ∈ {1, ...,M} [42]. The database needs to be

connected to the APs so that they can estimate TN in online phase.

In this step, the scene is divided into a grid of RPs, where each RP is visited manually

ensuring the reliability of the measurement and aiming to get a better characterization of

the signal in the environment. All collected fingerprints will design a signal map of the

scene. Finally, ensuring a good characterization of the environment will lead to better

accuracy in the FP technique.

3.2.3 Fingerprinting

After the FP database is built as described in section 3.2.2, in the online phase the

TN sends beacons. The RSSI values received by each AP are grouped in a set of readings

and compared with the database stored values. Then an algorithm based on Euclidean

distance is applied, calculating the distance between the RSSI stored in the database

(RSSIm,n) and the current value measured from TN (RSSIn), as equation (2.10) [42].

The results lead to a set of distances D = {D1, ..., Dm, ..., DM}, with |D| = M . The

TN estimated position, is denoted as p̂FP = (x̂FP , ŷFP ), hence is achieved through KNN

algorithm, which output will be the centroid p̂FP of the polygon composed by the k

nearby RPs with small Dm, i.e, the top k neighbours of the set D, which is organized in

an ascending order [39]. For this current implementation according to [62] was adopted
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a value k = 4 for the KNN, high values of k will contain a larger cumulative error, while

if a low value of k is adopted, the results will not contain enough information and the

position estimate will be unstable.

The FP technique is adopted because this approach allows a characterization of the

environment, being able to better deal with the random variables surrounding the en-

vironment, aiming to achieve high system accuracy. The Algorithm 2 presents the FP

technique implementation, as mentioned in subsection 2.2.3.

Algorithm 2: Fingerprinting
Input: k,RSSIn, RSSIm,n,∀n ∈ {1, ..., N} ,∀m ∈ {1, ...,M}
Output: p̂FP

1 begin
2 Initialization;
3 for m=1:1:M do
4 Calculate Dm through (2.10);
5 Add Dm in D vector;
6 Sort the vector D in ascending order;
7 Build a polygon with the RPs associated to the k small Dm;
8 if collinear points then
9 return mid point of the line;

10 else
11 return centroid of the constructed polygon;

3.3 Improving Accuracy

The estimated positions p̂MLT and p̂FP provided by MLT and FP standalone tech-

niques respectively, are applied in the input of two distinct KFs. The vector zk from each

filter has the coordinates of p̂MLT and p̂FP . Employing to the estimated position a linear

motion model, it is possible to mitigate the positioning error introduced by the original

localization techniques and improve the accuracy of the estimate. Therefore, two sec-

ond order filters without external control were designed. The following state vector was
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considered (2.11), resulting in a 2D output as p̂f+KF = (x̂f+KF , ŷf+KF ) , f ∈ {MLT,FP}.

This step of the proposed model aims at reducing the noise in order to improve the

position accuracy. It employs a series of measurements observed over time, containing a

statistical noise and produces estimations that tend to be more accurate by the fact of

taking into account the past states and the covariance error.

The Algorithm 3 shows the KF process, according to subsection 2.3.1.

Algorithm 3: Kalman Filter
Input: p̂f ,H,R,Q,A
Output: p̂f+KF

1 begin
2 Initialization;
3 zk = p̂f ;
4 xk ←

[
x(k) y(k) ẋ(k) ẏ(k)

]T
;

5 As represented in Figure 2.8:
6 Calculate x̂−k+1;
7 Calculate P−k+1;
8 Calculate Kk;
9 Insert zk vector to calculate x̂k;

10 Calculate Pk;
11 x̂−k+1 = x̂k;
12 return p̂f+KF ;
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3.4 Sensor Fusion

Finally, in order to get a better estimate position from the H-IPS proposed solution,

a fusion is developed between p̂MLT+KF and p̂FP+KF through TTF original algorithm

as (2.13), since to the sensor units are the same.

The TTF scheme was selected due to low computational cost, while showing better

performance than modified TTF techniques when employed on similar sensors. In addi-

tion, the fused state estimate is the optimal linear solution, and is by definition better than

individual KF state estimates [53]. The Algorithm 4 represents the TTF, as previously

illustrated in Figure 2.9.

Algorithm 4: Track-to-track fusion
Input: p̂MLT+KF , p̂FP+KF ,H,R,Q,A
Output: p̂H−IPS

1 begin
2 Initialization;
3 P 12

k|k = 0;
4 P 21

k|k = 0;
5 x̂H−IPS ← the results from (2.13);
6 return p̂H−IPS;
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Chapter 4

Implementation and Analysis of

Experimental Results

The proposed H-IPS was implemented and experimentally tested in a laboratory fa-

cility that hosts the development of R&D activities as illustrated in Figure 4.1, consisting

of an environment approximately 10 × 13 m, with several obstacles such as walls, office

desks, workbenches, partitions and robot stations, which configures an environment that

will affect the transmitted signal.

4.1 Implementation Setup

In this experimental setup, the target represents a transmitter that sends BLE adver-

tisements acting as a BLE-beacon device. Five APs were deployed in the environment,

acting as receivers, each one implemented in a Raspberry Pi (RPi) that is responsible to

listen to the BLE advertisements sent by the TN.
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Figure 4.1: Overview of the case study environment layout.

4.1.1 Implementation Hardware

The BLE-beacon device used is the iBKS105 model from Accent Systems (Figure 4.2),

which was configured to use iBeacon protocol, transmitting in a Transmit Power (Tx

Power) level of 0 dBm and an advertising interval of 100 ms sending non-connectable

data packets. For each time interval (i.e., the configurable time between advertisements),

this device transmits sequentially the beacon messages (non-connectable advertisements),

originally through three BLE channels (37, 38 and 39).
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Figure 4.2: BLE-Beacon device employed.

Regarding the receivers were adopted the Raspberry Pi 3 model B+ (Figure 4.3), the

APs were placed in certain positions in order to avoid loss of the line of sight with the

target and to facilitate access to electrical outlets. Four APs were fixed in the bounds

of the environment and one AP was fixed near the center of the laboratory space (all of

them placed approximately at the same height).

Figure 4.3: AP adopted in the implementation.

As the BLE protocol operates in the ISM frequency band, the same occupied by the

Wi-Fi, there may be interference between the two technologies, and the sniffer appears as

a solution to separate the BLE advertisement channels in order to read only the channel

that possesses less influence of the Wi-Fi presence, avoiding packet losses and possible

interference in the read values. Each RPi was used jointly with one Adafruit Bluefruit

LE Sniffer (Figure 4.4), responsible for sniffing the beacons sent by the sensor tag. The
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Adafruit module is a low-cost BLE device based on the Nordic nRF51822 chipset with a

RSSI measurement accuracy of ± 6 dB [63].

Figure 4.4: BLE sniffer used in the implementation.

The sniffer was configured to read a single channel due to the BLE’s characteristics

that occupies the same bandwidth of Wi-Fi (i.e. 2.4 GHz). Thus, the adopted solution

receives the beacons and just analyzes the channel 39 since its central frequency is not

affected by the Wi-Fi channels [22] as presented in Figure 4.5. Therefore, the RPis were

programmed in Python language using the Adafruit API to configure the sniffers. It

creates a socket connection identifying the MAC address of TN, and allows to listen to

the beacons from the sensor tag, in addition, a smaller window interval to read than the

target advertisement interval was set in order to avoid data packet losses. Finally, the

APs jointly with the sniffer were responsible to acquire all RSSI measurements and save

the readings in a file.
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Figure 4.5: 40 BLE channels and the three commonly WiFi channels that cause inter-
ference. The BLE advertising only occurs on channels 37, 38 and 39. Adapted from
[22].

4.1.2 Experimental Setting

The real-world setup is illustrated in Figure 4.6, each AP was placed on the wall

using a double-sided Velcro tape to facilitate the removal of the receiver, as represented

in Figure 4.6a. The beacon device was configured to an advertising interval of 100 ms

operating with iBeacon protocol, in according to [22] aiming to maintain a balance between

the energy consumption and the positioning update.

The tests were performed using a bench and a box as illustrated in Figure 4.6c, keeping

the same height as the office desks in order to decrease the shadowing effect of the objects

and simulate that the sensor tag was a card or a keychain. For the tests performed, the

beacon device was positioned over the measured positions, keeping the same orientation

of the antenna throughout the entire measurement, as represented in Figure 4.6d.
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(a) AP deployment. (b) RPs from FP database.

(c) Example of a developed test. (d) Beacon position.

Figure 4.6: Real-world scenario implementation.

4.2 System Parameters & Coding Implementation

For the implementation of the H-IPS, the following parameters were considered:

The number of samples over trajectory is 50 (Figure 4.7), since the KF needs a minimal

of samples to improve its covariance error matrix. Due to its recursive behavior, the

Kalman Filter at each iteration updates the error covariance matrix to calculate a new

gain in order to correct the model prediction, in addition, the measurements together

with the calculated gain achieve a better state estimate [32].
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Table 4.1: System parameters

Parameter Value
Path loss exponent (α) 3.227 ∗

Room length (l) 9.77 m
Room width (w) 13.45 m

Reference distance (d0) 1 m
RSSIn,d0 -59.0 dBm

Trajectory samples 50
Source: ∗(GOLDSMITH, 2005)
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Figure 4.7: True position in scenario l = 9.77 m and w = 13.45 m, with a PRs grid size
1× 1 m.

4.2.1 MLT Implementation

For MLT Technique, a calibration phase is extremely important, in order to determine

the RSSIn,d0 the TN was positioned at d0 = 1 m from each AP. Hence, 1000 packets were

collected from all APs and an average value was computed, achieving a RSSIn,d0 =

−59 dBm, as illustrated in Table 4.1. During the tests the presence of multipath effect

caused fluctuations in the RSSI.

To calculate the radius of the circles for the MLT technique, the path loss exponent

was adopted the value of α = 3.227, which was obtained experimentally in order to use
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a value that affords a better estimate. As indicated by the literature [26], a range of

α = 1.6− 3.5 for an office building on the same floor.

The following Python implementation was used to calculate the radius through the

measured RSSI values, employing the path-loss propagation model:

# Function responsible to estimate the distance

# between TN and AP through the measured RSSI.

def find_distance(TNRSSIdbm):

RSSI0dbm = -59.0 # RSSI in the d0 distance

s = 0 # Shadowing value in dB

n = 3.227 # Pathloss exponent value

d0 = 1.0 # Reference distance

width = 9.775 # Width

length = 13.45 # Length

dist_buffer = []

for i in range(5):

# Calculates the distance between TN and AP

dist = 10**(-((TNRSSIdbm[i]-RSSI0dbm+s)/(10*n))+np.log10(d0))

dist_buffer.append(dist)

return np.asarray(dist_buffer)

After the distance between the APs and TN is estimated, a least-square method was

employed in order to predict the position, minimizing the function cost_fun using the

Limited-Memory BFGS algorithm. The algorithm’s target is to minimize the function

over unconstrained the values of the real vector pos where cost_fun is a differential

scalar function.

# Calculates the euclidean distance between each AP
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# and the estimated position

def dist_fun(APsLoc, pos):

res = []

for i in range(len(APsLoc)):

res.append(list((APsLoc[i, :] - pos) ** 2))

res = np.sqrt(np.sum(np.asarray(res), axis=1))

return res

def multilateracao(APsLoc, TNRSSIdbm):

# Calculates the distance through path-loss propagation model

dist_final = find_distance(TNRSSIdbm)

dist_final = np.transpose(dist_final)

pos_est_mlt = [] # Estimated position vector

APsLoc = APsLoc.to_numpy() # AP positions vector

# Calculates the error between the estimated distance

# and the path-loss propagation model

cost_fun = lambda pos: np.sum((dist_fun(APsLoc, pos)-dist_final)**2)

# Initial condition

cond_init = np.array([0.0, 0.0])

# Estimates the position minimizing the fuction cost_fun

location = scipy.optimize.minimize(

cost_fun, # The error function

cond_init, # The initial guess

method='l-bfgs-b', # The optimisation algorithm

options={

'ftol':1e-5, # Tolerance

'maxiter':1e+7 # Maximum iterations

54



})

position = location.x

pos_est_mlt.append(list(position))

return np.asarray(pos_est_mlt)

4.2.2 FP Implementation

In the Fingerprinting Technique the RPs are placed in a (1× 1) m grid as Figure 4.6b

in order to build the FP database. To populate the FP database, the RSSI from 1000

beacons from each RP were averaged during the offline phase, as well as in the testing

stage, in order to mitigate the fast-fading effect.

After building the database, in the online phase the KNN method was implemented

that searches the database for the corresponding position based on the measured RSSI,

leading to a matrix with a set of possible positions found.

# Search in the database the first KNNs lower MSEs

xy_hat = np.zeros((KNN,KNN))

for b in range(0,KNN):

# Seach the lower MSE

min_mse_value = min(database[:,nAPS+3])

# Search the corresponding position

min_mse_index = np.argmin(database[:,nAPS+3])

# Coordinate x of the lower MSE

xpos = database[min_mse_index,1]

# Coordinate y of the lower MSE

ypos = database[min_mse_index,2]

# Possible estimates matrix

xy_hat[:,b] = [min_mse_value,min_mse_index,xpos,ypos]
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# Replace the found value by 200

database[min_mse_index,nAPS+3] = 200

After achieved the possible positions, there are three possibilities: first the estimated

position is the origin, when the sum of the possible coordinates was null; second if the

possible points are not collinear, the corresponding estimated position will be the centroid

of the convex hull formed by these points. Finally, case the coordinates are collinear the

estimated position will be the average value of the points.

# Case the sum of the possible coordinates was null,

# the estimate will be (0,0)

if sum(x1) == 0 and sum(y1) == 0:

xest = 0

yest = 0

else:

# Case the points are not collinear,

# the estimate will be the centroid of the

# convex hull formed by these points

pos = np.array([x1,y1]).transpose()

if not pointsAreCollinear(pos):

hull = ConvexHull(pos)

cx = np.mean(hull.points[hull.vertices,0])

cy = np.mean(hull.points[hull.vertices,1])

xest = cx

yest = cy

# Case the points are collinear, the estimate

# will be the mean of the possible points

else:
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xest = np.mean(x1)

yest = np.mean(y1)

4.2.3 KF and TTF Implementation

As commented in subsection 2.3.1, the parametersR = rI2 andQ = qI4 corresponding

to the covariance matrices, where r, q ∈ R. In the KF tuning, each technique was adjusted

separated, the MLT was adopted q = 0.667 and r = 2 while FP was selected q =

0.00877 and r = 0.05, all of the values were achieved experimentally in order to reach

parameters that reduce the positioning error. For the MLT it was preferable to use a

higher uncertainty, trusting more in the system model, while in FP because of the offline

phase a lower uncertainty was adopted, relying more on the measurements. Aiming to

improve the system accuracy and mitigate the RSSI fluctuations, the KF was implemented

following a linear motion model:

hat_x_me = np.append(hat_x_me,Phi.dot(hat_x_ma[:,k].reshape(4,1)) +

np.random.normal(0,Q,1),axis=1)

P_me = Phi.dot(P_ma.dot(np.transpose(Phi))) + Q

K = P_me.dot(np.transpose(H).dot(np.linalg.inv(

H.dot(P_me.dot(np.transpose(H)))+R)))

hat_x_ma = np.append(hat_x_ma,(hat_x_me[:,k+1].reshape(4,1) +

K.dot(z[k,:].reshape(2,1)-H.dot(hat_x_me[:,k+1].reshape(4,1)))),

axis=1)

P_ma = P_me-K.dot(H.dot(P_me))

P_buffer.append(P_ma)

Finally, to get the maximum performance of the system the TTF was implemented

combining the FP and MLT methods according equation 2.13, considering the cross co-

variance matrices null. Reaching the optimal linear solution, being by definition better
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than the position estimate achieved employing just the technique standalone or the tech-

nique + KF.

pos_fusion.append(pos_FP_KF[k+1,:].reshape(4,1)+P_FP[k+1].dot(

np.linalg.inv(P_MLT[k+1]+P_FP[k+1])).dot((

pos_MLT_KF[k+1,:].reshape(4,1)-

pos_FP_KF[k+1,:].reshape(4,1))))

The implementation code is available in [64].

4.3 Evaluation of System Performance

The entire estimation process was implemented on a desktop platform, aiming to es-

timate the position of the sender according the information received by the access points,

i.e., the experimental tests considered an offline framework that allowed to test and eval-

uate the system performance, as illustrated in Figure 4.8. However, the developed system

can work with an online framework in a similar or in a different testbed, but it is necessary

a re-characterization of the environment in order to update the FP database.

From Figure 4.8 it is possible to compare the results obtained by each method (MLT,

FP and H-IPS) with the real trajectory, it is noted that the MLT technique presents the

largest values of distance from the true position, i.e. presenting a more significant error,

while FP and H-IPS achieved more accurate estimates. Although the Fingerprinting

performed better than the Multilateration, the fusion method turned out to be the most

accurate resulting in more reliable estimates and shorter distances from the true trajectory

points, providing a smaller positioning error.
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Figure 4.8: True position, H-IPS, MLT and FP, in scenario l = 9.77 m and w = 13.45 m,
with a PRs grid size 1× 1 m.

The proposed H-IPS performs better than standalone FP or MLT. MLT has the worst

performance among the schemes.

Table 4.2: System position average error (in meters)

Average positioning error

MLT 2.9991

FP 1.8121

MLT+KF 2.5341

FP+KF 1.4567

H-IPS 1.4307

The results presented in Table 4.2 are in accordance with [23], since the H-IPS performs

better than the other solutions, reaching an average error of approximately 1.43 m, which

represents an improvement of 52% over MLT original method and 21% in comparison to

FP standalone technique.

59



As illustrated in Figure 4.9, the probability that the proposed solution presents an

error < 2 m is 80%, while the same probabilities for the FP and MLT original techniques

are 56% and 20%, respectively.
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Figure 4.9: Cumulative Distribution Function (CDF) of distance error of the proposed
IPS.

As stated in [53], in scenarios where the sensors have the same units, the original TTF

works better than standalone techniques or even than Kalman Filtered techniques. Thus,

sensor fusion is a viable solution to enhance the system accuracy.

The proposed solution was based on BLE and uses RSSI techniques to estimate the

target position, providing a low complexity system when compared to other options, such

as time-based arrangements that employ synchronism between the devices or angle meth-

ods that apply extra hardware and require a thorough calibration. Moreover, the proposed

solution provides a low implementation cost where it uses inexpensive and commercially

available equipment, striking a total investment of hundreds of euros, while UWB-based

structures for example this value is around of thousands of euros.
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Chapter 5

Conclusion and Further Work

An IPS aims to locate an object inside a building, with the solutions being usually

based on applying techniques to calculate the distance between the object and several

APs, combined with optimization algorithms that allow a faster positioning estimation

and improve the accurate system. The main challenges addressed in this field are related

to combine low cost implementations with low energy consumption and good position

accuracy.

The IPS can be employed in a lot of scenarios and promotes the development of a

plethora of technologies, like the BLE-beacon devices. This device is extremely versa-

tile, being a interesting solution to warehouse and shopper solutions. The low-cost and

low complexity of BLE technologies are important factors that makes these devices so

attractive, increasing the user’s adoption.

Considering the all advantages of BLE protocol, in this implementation was selected

popular methods in localization solutions converting the RSSI values received from beacon

messages in distance. In addition, employing FP and MLT techniques, schocastic filtering

process and sensor fusion method, a notable enhancement was achieved, overcoming the

standalone techniques performance. Emerging a hybrid indoor system.

The results proved that the H-IPS increases the accuracy in 52% over MLT original

method and 21% in comparison to FP standalone technique. Finally, the probability of

the proposed solution presents a error < 2 m is 80%, while the same probability of error
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to FP and MLT original techniques is 56% and 20%, respectively.

Future work will devoted to include an external antenna in the APs, in order to improve

the signal reception, enhancing the performance of the MLT technique. Another point to

work on is a model to tuning the KF parameters in real-time, improving the accuracy of

the system and further mitigating the random variables surrounding by the environment.

Other possibility to explore could be to replace the MLT technique by another tech-

nique and compare the achieved results with other existing solutions, aiming to make

the system more adaptive. Finally, a crowdsourcing solution may be an interesting tool

to include in order to accelerate the calibration phase of FP, allowing easy update the

database and facilitating the re-characterization to scenario changes.
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