Sensor fusion of IMU and BLE using a well-condition triangle approach for BLE positioning

Abstract

Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesGPS has been a de-facto standard for outdoor positioning. For indoor positioning different systems exist. But there is no general solution to fit all situations. A popular choice among service provider is BLE-based IPS. BLE-has low cost, low power consumption, and tit is are compatible with newer smartphones. These factors make it suitable for mass market applications with an estimated market of 10 billion USD by 2020. Although, BLEbased IPS have advantages over its counterparts, it has not solved the position accuracy problem yet. More research is needed to meet the position accuracy required for indoor LBS. In this thesis, two ways for accuracy improvement were tested i) a new algorithm for BLE-based IPS was proposed and ii) fusion of BLE position estimates with IMU position estimates was implemented. The first way exploits a concept from control survey called well-conditioned triangle. Theoretically, a well-conditioned triangle is an equilateral triangle but for in practice, triangles whose angles are greater than 30° and less than 120° are considered well-conditioned. Triangles which do not satisfy well-condition are illconditioned. An estimated position has the least error if the geometry from which it is estimated satisfy well-condition. Ill-conditioned triangle should not be used for position estimation. The proposed algorithm checked for well-condition among the closest detected beacons and output estimates only when the beacons geometry satisfied well-condition. The proposed algorithm was compared with weighted centroid (WC) algorithm. Proposed algorithm did not improve on the accuracy but the variance in error was highly reduced. The second way tested was fusion of BLE and IMU using Kálmán filter. Fusion generally gives better results but a noteworthy result from fusion was that the position estimates during turns were accurate. When used separately, both BLE and IMU estimates showed errors in turns. Fusion with IMU improved the accuracy. More research is required to improve accuracy of BLE-based IPS. Reproducibility self-assessment (https://osf.io/j97zp/): 2, 2, 2, 1, 2 (input data, prepossessing, methods, computational environment, results)

    Similar works