210 research outputs found

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202

    Improving early design stage timing modeling in multicore based real-time systems

    Get PDF
    This paper presents a modelling approach for the timing behavior of real-time embedded systems (RTES) in early design phases. The model focuses on multicore processors - accepted as the next computing platform for RTES - and in particular it predicts the contention tasks suffer in the access to multicore on-chip shared resources. The model presents the key properties of not requiring the application's source code or binary and having high-accuracy and low overhead. The former is of paramount importance in those common scenarios in which several software suppliers work in parallel implementing different applications for a system integrator, subject to different intellectual property (IP) constraints. Our model helps reducing the risk of exceeding the assigned budgets for each application in late design stages and its associated costs.This work has received funding from the European Space Agency under Project Reference AO=17722=13=NL=LvH, and has also been supported by the Spanish Ministry of Science and Innovation grant TIN2015-65316-P. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Execution time distributions in embedded safety-critical systems using extreme value theory

    Get PDF
    Several techniques have been proposed to upper-bound the worst-case execution time behaviour of programs in the domain of critical real-time embedded systems. These computing systems have strong requirements regarding the guarantees that the longest execution time a program can take is bounded. Some of those techniques use extreme value theory (EVT) as their main prediction method. In this paper, EVT is used to estimate a high quantile for different types of execution time distributions observed for a set of representative programs for the analysis of automotive applications. A major challenge appears when the dataset seems to be heavy tailed, because this contradicts the previous assumption of embedded safety-critical systems. A methodology based on the coefficient of variation is introduced for a threshold selection algorithm to determine the point above which the distribution can be considered generalised Pareto distribution. This methodology also provides an estimation of the extreme value index and high quantile estimates. We have applied these methods to execution time observations collected from the execution of 16 representative automotive benchmarks to predict an upper-bound to the maximum execution time of this program. Several comparisons with alternative approaches are discussed.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (grant agreement 611085). This study was also partially supported by the Spanish Ministry of Science and Innovation under grants MTM2012-31118 (2013-2015) and TIN2015-65316-P. Jaume Abella is partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013- 14717.Peer ReviewedPostprint (author's final draft

    Random Modulo: A new processor cache design for real-time critical systems

    Get PDF
    Cache memories have a huge impact on software's worst-case execution time (WCET). While enabling the seamless use of caches is key to provide the increasing levels of (guaranteed) performance required by automotive software, caches complicate timing analysis. In the context of Measurement-Based Probabilistic Timing Analysis (MBPTA) - a promising technique to ease timing analyis of complex hardware - we propose Random Modulo (RM), a new cache design that provides the probabilistic behavior required by MBPTA and with the following advantages over existing MBPTA-compliant cache designs: (i) an outstanding reduction in WCET estimates, (ii) lower latency and area overhead, and (iii) competitive average performance w.r.t conventional caches.Peer ReviewedPostprint (author's final draft

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Validating a timing simulator for the NGMP multicore processor

    Get PDF
    Timing simulation is a key element in multicore systems design. It enables a fast and cost effective design space exploration, allowing to simulate new architectural improvements without requiring RTL abstraction levels. Timing simulation also allows software developers to perform early testing of the timing behavior of their software without the need of buying the actual physical board, which can be very expensive when the board uses non-COTS technology. In this paper we present the validation of a timing simulator for the NGMP multicore processor, which is a 4 core processor being developed to become the reference platform for future missions of the European Space Agency.The research leading to these results has received funding from the European Space Agency under contract NPI 4000102880 and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems

    Get PDF
    The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Aplicabilidad de la Caracterización de Benchmarks a Modelos de Variabilidad

    Get PDF
    Los benchmarks utilizados para comparar el rendimiento de diferentes sistemas presentan una alta variabilidad que puede ser representada en modelos de variabilidad como los Feature Models. En este artículo presentamos los problemas de escalabilidad y complejidad de selección por objetivos de los Feature Models, y una posible solución, mostrando las ventajas de la caracterización de benchmarks (dada por sus cargas de trabajo). Para esta mejora formalizamos un modelo de caracterización de paquetes de cargas de trabajo para Feature Models, basándonos en ocho atributos abstractos (operaciones matemáticas, memoria, ...). Este modelo y sus ventajas son evaluados en el eco-asistente HADAS, junto a un benchmark PHP, y al benchmark de sistemas empotrados BEEBS, obteniendo una capacidad de selección más intuitiva, y un decremento en el tiempo de obtención de configuraciones válidas y sus métricas en HADAS, con respecto a la representación estándar.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore