
Random Modulo: a New Processor Cache Design
for Real-Time Critical Systems

Carles Hernandez‡, Jaume Abella†, Andrea Gianarro‡, Jan Andersson‡,
Francisco J. Cazorla†,?

†Barcelona Supercomputing Center (BSC-CNS), Barcelona (Spain)
‡Cobham Gaisler, Gothenburg (Sweden)

?Spanish National Research Council (IIIA-CSIC), Barcelona (Spain)

ABSTRACT
Cache memories have a huge impact on software’s worst-case
execution time (WCET). While enabling the seamless use
of caches is key to provide the increasing levels of (guaran-
teed) performance required by automotive software, caches
complicate timing analysis. In the context of Measurement-
Based Probabilistic Timing Analysis (MBPTA) – a promis-
ing technique to ease timing analyis of complex hardware
– we propose Random Modulo (RM), a new cache design
that provides the probabilistic behavior required by MBPTA
and with the following advantages over existing MBPTA-
compliant cache designs: (i) an outstanding reduction in
WCET estimates, (ii) lower latency and area overhead, and
(iii) competitive average performance w.r.t conventional caches.

1. INTRODUCTION
The complexity of on-board computing systems in cars

has steadily increased in recent years due to the innova-
tion in their electronics and software components. On-board
software in the automotive industry already comprises more
than 100 millions lines of code [8] and it is expected to fur-
ther increase in the foreseeable future. To execute the re-
quired software functionalities timely, more complex hard-
ware comprising high-performance features is required.

Timing verification of automotive software is a critical
step of software testing process. Worst-Case Execution Time
(WCET) estimates should be sound and tight, but this is
challenged by complex hardware. In particular, cache mem-
ories, which are ubiquitous in processor designs, have high
potential to decrease WCET, but are one of the most diffi-
cult resources to time analyze [19]. In particular, cache risk
patterns [20] (crp) are cache-induced sources of execution
time variability difficult to capture in the WCET estimates.
While nowadays automotive software does not use caches
extensively, caches are key enablers of future automotive ap-
plication’s required performance (e.g., for autonomous driv-
ing), and need to be made timing-analysis friendly.

The most extended timing analysis practice relies on col-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© ACM. ISBN .

DOI:

lecting software’s execution time on the target hardware un-
der different stressing conditions taking the high water mark
(hwm) across all runs. In order to account for the uncer-
tainty, an engineering factor is added to the hwm. Trigger-
ing the worst conditions in the presence of complex hardware
involves deriving tests in which architectural low-level fac-
tors such as memory placement and the resulting cache lay-
outs are exercised in stressing conditions. Controlling these
micro-architectural effects is usually beyond the reach of end
users, which reduces the confidence on the engineering factor
and hence, on the WCET estimates.

Measurement-based probabilistic timing analysis (MBPTA)
[9] has emerged recently to deal with complex hardware fea-
tures and provide WCET estimates with increased confi-
dence. To that end MBPTA combines i) time-randomized
hardware features (such as caches) whose bad timing be-
haviours naturally emerge as more measurements are taken;
and ii) probabilistic/statistical analysis that allows mod-
elling the probability of several events to align resulting in
high execution time. For the cache, MBPTA usually builds
on top of random placement [16] (combined with random-
replacement) that maps addresses randomly to cache sets
across program runs. This allows deriving the probability
of capturing at analysis time crp in which a high number of
objects are mapped to the same set. Further, random place-
ment provides independence between the address of objects
in memory and their cache set placement, so the end user
only needs to control the number of runs (tests) to perform
– dictated by MBPTA – but not how program objects are
allocated in memory – and the resulting cache layouts – in
each run [7]. This is in contrast to conventional determin-
istic cache placement (either modulo or based on any fixed
hash function [12, 25]) in which crp are triggered by the way
in which program’s data and code are loaded in memory – to
a large extent out of the control of the end user – which may
lead to arbitrarily high execution times not accounted for in
the WCET estimates. In this context, this paper makes the
following contributions:
À We make an in-depth analysis of the existing Random-
Placement policy that is based on a hash function (hRP).
Our results show that hRP, even when a program uses few
contiguous cache lines, those lines can be (randomly) mapped
to the same cache set with a non-negligible probability, which
increases WCET estimates. While this problem does not
happen in conventional modulo-based caches, since contigu-
ous addresses are mapped to different sets, modulo-placement
caches are not amenable to MBPTA.
Á We propose Random Modulo (RM ), an alternative ran-

montse aragues
Texto escrito a máquina
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1145/2897937.2898076

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina



dom cache design suitable for MBPTA. The proposed de-
sign employs a new random placement policy that retains
most of the advantages of modulo placement by avoiding
conflicts across contiguous addresses while still meeting the
requirements of MBPTA. With the proposed cache design
the placement of objects is randomized by performing a ran-
dom permutation of the original index bits in such a way
that consecutive addresses are placed in non-adjacent posi-
tions in the cache but cannot create crp as long as cache
capacity is not exceeded. By retaining spatial locality RM
makes WCET estimates to be only slightly worse than av-
erage execution time values.
Â We perform, for the first time, an ASIC evaluation and
FPGA implementation on a LEON3 processor of both hRP
and RM random placement policies.

Our results show that RM achieves MBPTA compliance
for which we confirm that probabilistic properties assessed
with the corresponding independence and identical distribu-
tion tests [9] are passed. In terms of WCET estimates ob-
tained with MBPTA for EEMBC Automotive benchmarks [21],
results with RM improve those with hRP. In particular, RM
obtains WCET estimates 43% tighter on average (and up
to 62%) than hRP . ASIC-based results show that the RM
module requires 10× lower area than that for hRP, and re-
duces 27% the delay of hRP. The same behavior has been
observed in the FPGA prototype. Overall, RM contributes
to the MBPTA ecosystem with a hardware low-complexity
cache design that tightens WCET estimates, while keeping
MBPTA compliance properties. This ultimately helps en-
abling a wider use of cache in automotive microcontrollers.

2. BACKGROUND
In ISO26262 timing testing and verification is one of the

goals of the software unit design and implementation stage.
While ISO26262 does not enforce specific methods, in this
paper we focus on measurement-based analysis – the most
common practice in industry [27]. Despite potential bene-
fits in WCET reduction of caches, they generate uncertainty
since, in general, for end users is difficult control memory
mapping and its associated impact on cache and execution
time. This exacerbates in the presence of integrated envi-
ronments (such as AUTOSAR), where software may easily
come from different providers and is integrated incremen-
tally. How the modules of one software supplier interact
with other modules, user-level libraries and OS functions is
hard to determine. This puts a serious burden on the end
user to ensure that memory mappings leading to patholog-
ical cache layouts (i.e. cache layouts resulting in high miss
counts and execution time) are captured in the executions
performed at analysis time. This difficulty is the reason why
automotive microcontrollers, as a way to minimize timing
verification costs, incorporate scratchpad memories like the
AURIX [13], and/or allow configuring memory devices to be
used as cache or RAM [14]. However, in the long-term en-
abling caches is of paramount importance to reduce WCET
estimates and provide high guaranteed performance due to
scalability and portability concerns with scratchpads.

MBPTA for Automotive Systems. MBPTA process
starts by collecting several execution time measurements –
typically in the order of few hundreds – of the program under
analysis on top of a MBPTA-compliant hardware/software
platform. Those measurements are used as input for Ex-

Execution Time

P
ro

b
a
b
ili

ty

Figure 1: EVT projection (pWCET) in log. scale

treme Value Theory (EVT) [18], which is a powerful statis-
tical method to approximate the tail of a distribution. In
our case, the tail of the distribution corresponds to high ex-
ecution times. Then, the probabilistic WCET (pWCET) is
the execution time value of the obtained distribution that is
exceeded with a given arbitrarily low probability. The ex-
ceedance probability is chosen to be low enough according
to the application domain standards. For instance, if a pro-
gram can be run up to 10 times per second (so up to 36,000
times per hour), we can use an exceedance threshold of 10−14

per run, which guarantees that failures per hour are below
10−8 as required by ASIL-D in ISO26262. Figure 1 shows
an illustrative pWCET curve in which a cutoff probability
of 10−7 (per hour) and the corresponding pWCET estimate
are selected. Note that the pWCET curve is shown as a
complementary cumulative distribution function (CCDF).

MBPTA has been evaluated on multicores comprising last-
level caches and shared buses, shared memory controllers [15,
24]. Further MBPTA has been positively assessed in the
context of avionics case study [26].

3. RANDOMIZED MODULO
All random placement policies build on top of a pseudo-

random number generator (prng) to generate a new (pseudo-
random) seed on demand. In [5] authors present a prng that
i) provides enough randomness to pass MBPTA probabilistic
tests; ii) has low implementation costs; and iii) is compliant
with SIL3 in IEC-61508 (which ISO26262 bases on). In this
paper we use and implement this prng.

Every time the program is executed a new seed is gener-
ated leading to a new random mapping function correspond-
ing to a cache layout. Different cache layouts cause different
cache conflicts among memory addresses, resulting in differ-
ent execution times. The number of possible cache layouts is
given by Su, where S is the number of sets and u the num-
ber of distinct memory addresses. On every seed change,
the cache sets to which the addresses are mapped change
as well, so cache contents must be flushed for consistency
purposes. The exact point at which cache contents are to
be flushed has to be determined considering the overhead
due to cache flushing and the desired unit of analysis (tim-
ing entity). A simple approach that minimizes the overhead
due to cache flushing is run to completion, which has been
regarded as convenient in the avionics domain [26] and can
be applied seamlessly at the granularity of runnables, tasks
or software components in automotive.

3.1 Hash-Based Random Placement (hRP)
hRP is the only existing hardware random placement im-

plementation meeting MBPTA requirements [16]. hRP, which
uses a parametric hash function to determine the index to ac-



(a) Cache with hRP

(b) XOR-based Hash function

Figure 2: Hash-function RP (hRP) implementation.

cess cache sets, produces a unique index for a given memory
address and random seed. hRP maps addresses to sets with
homogeneous probabilities so that an address is mapped to
a particular set with probability 1/S, where S stands for
the number of cache sets. In the context of MBPTA, an
homogenous address-to-set distribution is desired although
not strictly necessary. The only requirement is that the map-
ping is carried out probabilistically, so an address has a given
probability to be mapped to any set – although that prob-
ability can change across sets – and the probability distri-
bution at analysis time matches that during operation. In
general, uniformly mapping address to cache sets typically
reduces cache conflicts and hence pWCET estimates.

Implementation. Figure 2 shows the hash function inte-
gration in the cache (a) and a possible implementation of the
parametric hash function (b). The hash function is placed
just before accessing the cache memory contents (both data
and tags) and uses all address bits except the offset ones to
generate the index that is used to access the cache. For 32-
bit addresses and 32-byte cache lines, the 5 lowest bits are
discarded. Assuming a S-entry cache, the hash receives the
27 upper address bits and a random seed (referred to as RII )
to generate an index of N = log2S bits. The hash function
is constructed using rotate blocks and 2-input XOR-gates to
combine the output of rotate blocks to generate a cache in-
dex. In order to minimize cache conflicts, the hash uniformly
maps addresses to cache sets.

In-depth Analysis of hRP . Programs exploit spatial
locality by accessing code and data stored nearby recently
accessed code and data such as, for instance, the instructions
in a loop (typical in control-like applications) and the access
to the stack (e.g. local variables) in a function.

Interestingly, with modulo placement, when those data/code
are smaller than the cache way size, they do not collide in the
same set, since addresses are mapped to consecutive cache
sets. However, hRP gives each address the same probability
to go to any set, so even for small address footprints there is
a non-null probability that a subset of them (even all them)
go to the same set. The net result is an increase in the num-
ber of potential cache conflicts that can occur with non-
negligible probability and so an increase in WCET. With
modulo placement, whenever addresses accessed are consec-
utive and they span across several cache ways but still fit
in cache, they can be still accommodated in cache reduc-
ing the number of conflicts. Meanwhile, with hRP cache

Figure 3: Random Modulo (RM) implementation.

conflicts increase with the size of the accessed data, even if
the data fit in cache. Only when data do not fit in cache
modulo placement can lead to systematic crp for consecutive
memory addresses, whereas hRP may perform better with
meaningful probability [23].

At implementation level, modulo placement does not need
to store index bits to select the cache set since they are
known implicitly. However, this relation is not preserved for
hRP, which hence needs to store index bits in the tag ar-
ray. Another drawback due to introducing the parametric
hash function is the potential impact it has on the proces-
sor’s critical path as all accesses to the cache go through the
parametric hash function before accessing the cache, and
such function consists of a level of rotate blocks and a cas-
cade of XOR-gates of non-negligible depth (see Figure 2).

3.2 Random Modulo (RM) Placement
RM placement aims at obtaining the randomization prop-

erties of hRP while exploiting spatial locality as the modulo
placement function does. RM exploits spatial locality by
removing conflicts among addresses belonging to the same
cache segment : Let CWb be the size in bytes of a cache
way and let assume cache comprising S = 8 sets, W = 2
ways and with a cache line of 32 bytes. This results in
CWb = 8 × 32 = 256 bytes. All addresses that have the
same cache-way alignment are said to belong to the same
cache segment. That is, given two addresses A and B, if
bA/CWbc = bB/CWbc they are in the same cache segment.

Let us now assume that addresses A and B belong to
the same cache segment and that with modulo are mapped
to different sets kA and kB , respectively. RM creates a
randomization of the index bits such that (in every run)
with a seed seedi, A is mapped to any (random) set lA =
setseedirm (A) and B to lB = setseedirm (B) and lA and lB are
necessarily different:

setmod(A) 6= setmod(B) ∧
bA/CWbc = bB/CWbc → setseedirm (A) 6= setseedirm (B) ∀ seedi

RM makes a random permutation of the address index
bits that is driven by a combination of a random seed (changed
across runs) and the upper bits of the address. This removes
the dependence among memory mapping and cache layout,
and further ensures that the index permutation covers prob-
abilistically during the analysis phase cache conflicts that
reflect the conflicts that can occur at operation. Moreover,
unlike hRP, RM exploits spatial locality, improving average
performance and pWCET estimates w.r.t. hRP.

Implementation. Figure 3 shows a schematic of the RM
integration in a cache design. RM introduces a hardware
component that performs the permutation of the N -bit in-
dex. An efficient permutation of an arbitrary length index
can be performed using a permutation network. When us-
ing a 8-bit Benes network 20 bits are required to drive the



actual permutation of the index bits. These bits are ob-
tained by combining the upper address bits and the bits of
the random seed. In particular upper address bits include all
address bits (32 in our case) excluding offset (5 in our case)
and index ones (8 in our case). Address upper bits and the
random seed can be combined in several ways as far as it
is preserved that small changes in address upper bits lead
to different index permutations. In our implementation we
concatenate the 19 upper address bits with the uppermost
bit of the random seed and XOR them with the following 20
bits of the random seed, thus introducing almost only the
delay of a XOR gate in the critical path.
– Delay reduction: With RM the extra delay added to access
the cache is drastically decreased w.r.t. hRP. With RM
index bits go directly through the permutation network pass
transistors and overall delay is mainly determined by how
upper address bits and the seed bits are combined to drive
the index bits permutation.
– Area reduction: hRP needs to store index bits in the tag
array because any pair of addresses can be placed in the
same set for some seeds. In the case of RM those addresses
within the same cache segment cannot be placed in the same
set by construction and, therefore, hit/miss outcome can be
determined by comparing uppermost address bits only (ex-
cluding the 8 index bits in our case). As a result, if the cache
is write-through, RM does not need to store index bits, as
in regular modulo-indexed caches. However, for write-back
caches, as dirty lines may need to be written back on an evic-
tion index bits are also needed to build the complete address.
Nevertheless, most processor designs targeting safety criti-
cal applications typically rely on the use of write-through
first-level caches [4][6].

Applicability. With RM cache-segment alignment must
be maintained between analysis and operation: all addresses
fitting in a cache segment in the experiments carried out at
analysis, must remain in a segment at operation. This can
be easily achieved when the RTOS memory page (or simply
page) size is a multiplier of the cache segment size. This is al-
ready assumed by MBPTA to ensure conflicts at operation
have been considered during the analysis phase. Further-
more, the real-time operating system (RTOS) may typically
move objects (e.g. program binaries, stack frames, etc.) of
programs and libraries across pages, but without changing
their alignment w.r.t. page boundaries, thus meeting the
requirements of hRP and RM. In fact this assumption has
already been proven compatible with complex avionics case
studies [26].

RM can be safely used for first level caches whose way
size (i.e. cache segment size) is typically equal or smaller
than the page size. If the way size is larger than the page
size, which may be the case for second level (L2) caches
(e.g., 128KB, 256KB), then RM can be used if the RTOS
preserves page alignment at that granularity. For instance,
if the cache way size is k times larger than the page size,
the RTOS should maintain the alignment of pages at k ×
page size bytes granularity to safely apply MBPTA. If this
cannot be guaranteed by the RTOS, then hRP can be used
in the L2 instead.

MBPTA compliance. RM achieves MBPTA-compliance
by breaking the dependence among memory mapping and
cache layouts. In every run, any of the potential cache lay-
outs can be randomly selected with RM. This gives each
cache layout a probability of occurrence as needed by MBPTA.
Existing techniques can be used to ensure that enough runs
are performed at analysis time so that probabilistic repre-
sentativeness is achieved [1]. Moreover, as shown in the

Table 1: ASIC & FPGA implementation results.
Area Delay/Frequency
RM hRP RM hRP

ASIC
45nm TSMC 336.6um2 3514.7um2 0.46ns 0.59ns

FPGA
Stratix IV

72%
occupation

80%
occupation 100Mhz 80MHz

results section, RM also passes independence and identical
distribution (i.i.d.) tests as required to apply EVT.

4. EVALUATION
In this section we show results obtained with an ASIC

evaluation and a FPGA implementation of both hRP and
RM. Many different processor architectures with different
ISA have been found suitable for high-integrity automotive
applications [13, 14]. For the evaluation of our proposal we
choose a freely available RTL implementation of the LEON3
processor architecture that allows us to achieve a high tech-
nology readiness level. LEON3 has both instruction and
data private 16KB 4-way L1 caches. We feature a 4-way
128KB shared L2 cache partitioned across the 4 cores.

We have used EEMBC Automotive Benchmark Suite [21]
to analyze the performance that can be achieved with the
proposed cache design. This is a well-known suite that mim-
ics some real-world automotive critical functionalities. Fur-
ther, in order to better analyze the benefits of RM over
hRP we have also used a synthetic kernel application that
accesses a vector with a data footprint that we have varied
to (i) make it fit in L1 (8KB), (ii) not to fit in L1 but to
fit in L2 (20KB), and (iii) not to fit neither in L1 nor in L2
(160KB). These benchmarks traverse the whole vector in a
loop 50 times.

4.1 Implementation Results
We present implementation results in two flavors: ASIC-

based area and delay synthesis results for hRP and RM
modules in isolation; and FPGA-based results of area over-
head and maximum operating frequency in a Stratix-IV FPGA
prototype. Implementation results are shown in Table 1.

ASIC. For the ASIC results we have synthetized RM and
hRP modules required to perform the random placement in
a 128-set cache analogous to the instruction cache of the tar-
geted processor. The synthesis is carried out using a 45nnm
technology library from TSMC with Synopsys DC. ASIC-
based results show that the RM module requires 10× lower
area than the hRP one, and reduces around 27% the delay
of the parametric hash function.

FPGA. In the FPGA prototype we compare the result of
integrating either RM or hRP in all cache memories in the
processor (IL1 and DL1 in each of the 4 cores, and the shared
L2). The same trend as for the ASIC evaluation is observed
in the case of the FPGA prototype. The baseline design is
synthetized to operate at 100MHz, the maximum achievable
frequency of the prototype. The delay introduced by hRP
penalizes the targeted operating frequency, which needs to
be decreased down to 80MHz. In terms of area occupancy,
integrating hRP in all caches increases logic occupancy from
70% to 80%. With RM no degradation of the board oper-
ating frequency is required. Further RM increases the logic
occupancy only by 2 percentage points, from 70% to 72%.

As explained in the implementation part in Section 3.2,
area and delay reduction come from the fact that RM uses
passgates mostly, whereas hRP requires more complex logic.



Table 2: WW and KS results for EEMBC bench-
marks, which are identified by their initials.

A2 BA BI CB CN MA PN PU RS TB TT
WW 0.04 0.63 0.12 1.25 0.03 0.04 0.4 0.04 1.4 0.2 0.04
KS 0.9 0.06 0.05 0.08 0.46 0.13 0.06 0.06 0.05 0.09 0.76

(a) RM vs hRP (b) RM vs DET

Figure 4: RM pWCET results normalized to hRP
results(a); and hwm in a deterministic setup (b).

4.2 MBPTA compliance
We assess MBPTA compliance by checking whether the

execution time observations obtained when RM is used, are
i.i.d. Each EEMBC benchmark was run 1,000 times with
different seeds collecting an execution time measurement
in each case. We apply the Wald-Wolfowitz (WW) inde-
pendence test [9] and the two-sample Kolmogorov-Smirnov
(KS) identical distribution test [9]. For a 5% significance
level (a typical value for this type of tests) for the WW test
results below 1.96 prove independence. For the KS values
above 0.05 indicate identical distribution. Table 2 shows
that both tests are passed corroborating the MBPTA com-
pliance of RM. We also applied and passed the ET [11] test
for Gumbel convergence testing.

4.3 pWCET estimates: RM vs hRP
Following the MBPTA application methodology [9], we

derived pWCET curves when running EEMBCs on the FPGA
board. We consider two hardware setups: (1) DL1 and IL1
implementing hRP and (2) DL1 and IL1 implementing RM.
For the L2 we use hRP in all cases. Figure 4(a) shows the
pWCET estimates obtained for RM w.r.t. those for hRP. In
particular we compare hRP and RM for a cutoff probabil-
ity of 10−15 as it is valid for the highest criticality levels in
both avionics and automotive. Similar results are obtained
for 10−12 that can be used for functions not in the highest
criticality levels. We observe that RM consistently provides
tighter pWCET estimates than hRP for all EEMBCs rang-
ing from 62% tighter pWCET estimates for a2time to 25%
tighter for pntrch, with an average reduction of 43%.

Understanding the benefits of RM over hRP . As
presented in Section 3, unlike hRP, RM exploits spatial lo-
cality resulting in a lower number of misses than hRP since
consecutive memory addresses are ensured not to be mapped
to the same set. This prevents some crp that happen with
hRP in which many program addresses can be mapped to
the same set. This is better illustrated in Figure 5(a) and
(b) that show the probability density functions of the ex-
ecution times collected for the synthetic benchmark when
it has a 20KB footprint. RM shows much lower variabil-
ity than hRP. RM execution times do not exceed 720,000
cycles. Conversely, for hRP, although most measurements
are in a similar range as for RM, there is a number of cases
where many lines are mapped into few sets leading to abun-
dant conflicts that increase execution time noticeably (be-
yond 1,200,000 cycles). A similar effect occurs when the
footprint of the synthetic benchmark varies. For 8KB foot-
prints the effect reduces since almost all data fits in cache,

(a) RM (b) hRP

(c) pWCET

Figure 5: Probability density functions and pWCET
estimates for hRP and RM.

while for a 160KB footprint the effect is more prominent
since the footprint exceeds the L2 cache partition (128KB).

The net result is that pWCET values are tighter for RM
than for hRP as shown in Figure 5(c) for the 20KB synthetic
kernel. pWCET estimates are obtained with the MBPTA
method described in [9]. Due to the higher execution times
occurring with hRP, the pWCET curve for hRP is far be-
yond that of RM, thus proving that RM allows obtaining
much lower pWCET estimates regardless of the target ex-
ceedance probability threshold.

4.4 Deterministic baseline
WCET. MBPTA has already been compared against tech-

niques such as Static Deterministic Timing Analysis (SDTA)
and Measurement-Based Deterministic Timing Analysis (MB-
DTA) [2]. MBPTA pWCET estimates have been shown
to be competitive with the WCET estimates derived with
SDTA and MBDTA, while simplifying the analysis process [3].
A detailed comparison of MBPTA against other timing anal-
ysis techniques is beyond the scope of this paper. For com-
pletion purposes, in this paper we compare MBPTA with a
common industrial practice in safety-critical systems. This
approach has been used for single-core systems during decades.
It consists in collecting the high-water mark hwm of the ap-
plication running on the target platform. An upperbound
to the program execution time is derived by multiplying the
hwm by an engineering factor, usually set to 20% [26]. While
this 20% factor has been shown to work for simple archi-
tectures, it has not a scientific basis and the use of caches
challenges its confidence.

Figure 4(b) shows that pWCET estimates achieved with
RM are never higher than 7% w.r.t. to the hwm. In par-
ticular only a2time, cacheb and tblook provide pWCET
estimates between 1% and 7% higher than the hwm. All
other benchmarks are below 1%.

Overall, RM provides low pWCET estimates and higher
guarantees than current industrial practice for which the
20% engineering margin (on COTS hardware) does not rely
on strong solid arguments like those provided on top of
MBPTA-compliant architectures.

Average performance is important in real-time systems
to optimize non-functional metrics such as power and energy.
Our results (not depicted for space constraints) show that



RM is on average only 1.6% worse than modulo placement
with a maximum degradation of 8%. Hence, RM provides
competitive performance results of modulo while achieving
the MBPTA compliance of hRP with significant reductions
in WCET estimates.

5. RELATED WORK
Some attempts have been performed to remove patho-

logical cache access patterns by using cache indexing func-
tions other than the conventional modulo [12, 25]. However,
the behavior of all those cache designs is fully determinis-
tic, and therefore, whenever a given input set produces a
pathological access pattern, it will happen systematically
for such input set. Some cache designs implement random
replacement on set-associative caches [22, 6, 4]. Unfortu-
nately, they rely on deterministic placement functions, thus
not being MBPTA-compliant. Some authors developed a
user-level library to randomly allocate program’s objects in
memory across runs [17]. While software-only solutions can
be adopted in a shorter term than hardware solutions, they
deliver less tight pWCET estimates [17] and require recom-
piling software.

Some works [10] statistically model deterministic caches
timing behavior: these works assume that the observed vari-
ability in execution time has a random nature given for in-
stance by the ‘probability’ of each execution path. In our
context, this refers to the probability that each execution
path (and the cache behavior that it produces) has during
operation. However, it is challenging for an end user – if
at all possible – to assign probabilities to execution paths.
This would require the user to determine how many times
each execution path of the program would execute during
the lifetime of all the vehicles implementing that function-
ality. Randomized caches instead create a true randomized
behavior that remains unaltered at analysis and operation
making that analysis-time observations can be used to prob-
abilistically model operation time behavior [7]. In that line,
to the best of our knowledge, only hRP enables MBPTA-
compliance for set-associative caches. In this paper we prove
that our proposal, RM, outperforms hRP while still adher-
ing to the requirements of MBPTA.

6. CONCLUSIONS
Cache impact on program’s timing behavior is twofold.

On the one hand, cache can significantly reduce WCET esti-
mates by reducing the number of costly off-chip accesses. On
the other hand, however, cache challenges deriving tight and
sound WCET estimates, increasing the burden on the user
to perform stress tests that provide evidence that cache risk
patterns are captured. In order to attack these problems,
in the context of MBPTA, we introduce random modulo, a
new MBPTA-compliant placement function that offers av-
erage performance close to that of modulo placement. Ran-
dom modulo also drastically reduces WCET estimates, av-
erage performance and hardware overheads, including both
area and delay, in ASIC and FPGA implementations with
respect to hash random placement. It is also remarkable
that WCET estimates obtained with random modulo are
just 1.5% higher than the actual execution time on COTS
hardware, hence below the typical 20% engineering factor
used by industry.

Acknowledgments
The research leading to these results has received funding
from the European Community under the FP7 PROXIMA

Project grant agreement no 611085, from the Ministry of
Science and Technology of Spain under contract TIN2015-
65316-P and the HiPEAC Network of Excellence. Carles
Hernández is jointly funded by the Spanish Ministry of Econ-
omy and Competitiveness (MINECO) and FEDER funds
through grant TIN2014-60404-JIN. Jaume Abella has been
partially supported by the MINECO under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.

7. REFERENCES
[1] J. Abella et al. Heart of gold: Making the improbable

happen to extend coverage in probabilistic timing analysis.
In ECRTS, 2014.

[2] J. Abella et al. On the comparison of deterministic and
probabilistic WCET estimation techniques. In ECRTS,
2014.

[3] J. Abella et al. WCET analysis methods: Pitfalls and
challenges on their trustworthiness. In SIES, 2015.

[4] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor
- LEON4-NGMP-DRAFT - Users Manual, 2011.

[5] I. Agirre et al. IEC-61508 SIL3 compliant pseudo-random
number generators for probabilistic timing analysis. In
DSD, 2015.

[6] ARM. ARM Cortex-R Series Processors Specification.
http://infocenter.arm.com/help/topic/com.arm.doc.set.
cortexr/index.html.

[7] F.J. Cazorla et al. Upper-bounding program execution time
with extreme value theory. In WCET Workshop, 2013.

[8] R.N. Charette. This car runs on code. In IEEE Spectrum
online, 2009.

[9] L. Cucu-Grosjean et al. Measurement-based probabilistic
timing analysis for multi-path programs. In ECRTS, 2012.

[10] Yun Liang et al. Cache modeling in probabilistic execution
time analysis. In DAC, 2008.

[11] M. Garrido and J. Diebolt. The ET test, a goodness-of-fit
test for the distribution tail. In MMR, 2000.

[12] A. González et al. Eliminating cache conflict misses
through XOR-based placement functions. In ICS, 1997.

[13] Infineon. AURIX - TriCore datasheet. highly integrated
and performance optimized 32-bit microcontrollers for
automotive and industrial applications, 2012.

[14] Texas Instruments. SoC Processor for Advanced Driver
Assist Systems, http://www.ti.com/product/tda2 edition.

[15] J. Jalle et al. Bus designs for time-probabilistic multicore
processors. In DATE, 2014.

[16] L. Kosmidis et al. A cache design for probabilistically
analysable real-time systems. In DATE, 2013.

[17] L. Kosmidis et al. Probabilistic timing analysis on
conventional cache designs. In DATE, 2013.

[18] S. Kotz and S. Nadarajah. Extreme value distributions:
theory and applications. World Scientific, 2000.

[19] B. Lesage et al. WCET analysis of multi-level
set-associative data caches. WCET Workshop, 2009.

[20] E. Mezzetti et al. Attacking the sources of unpredictability
in the instruction cache behavior. In RTNS, 2008.

[21] J. Poovey. Characterization of the EEMBC Benchmark
Suite. North Carolina State University, 2007.

[22] E. Quinones et al. Using randomized caches in probabilistic
real-time systems. In ECRTS, 2009.

[23] M. Slijepcevic et al. DTM: Degraded test mode for
fault-aware probabilistic timing analysis. In ECRTS, 2013.

[24] M. Slijepcevic et al. Time-analysable non-partitioned
shared caches for real-time multicore systems. In DAC,
2014.

[25] Z. Wang and R.B. Lee. A novel cache architecture with
enhanced performance and security. In MICRO, 2008.

[26] F. Wartel et al. Timing analysis of an avionics case study
on complex hardware/software platforms. In DATE, 2015.

[27] R. Wilhelm et al. The worst-case execution time problem:
overview of methods and survey of tools. In TECS, 7, 2008.




