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Abstract—This paper presents a modelling approach for the
timing behavior of real-time embedded systems (RTES) in early
design phases. The model focuses on multicore processors —
accepted as the next computing platform for RTES - and in
particular it predicts the contention tasks suffer in the access
to multicore on-chip shared resources. The model presents the
key properties of not requiring the application’s source code
or binary and having high-accuracy and low overhead. The
former is of paramount importance in those common scenarios in
which several software suppliers work in parallel implementing
different applications for a system integrator, subject to different
intellectual property (IP) constraints. Our model helps reducing
the risk of exceeding the assigned budgets for each application
in late design stages and its associated costs.

I. INTRODUCTION

During the early design phases (EDP) of an RTES, critical
decisions are taken including the processor to use and the time
budget assigned to each application (task'). These decisions
affect not only subsequent designs phases (i.e. the design plan)
but also the final delivered product.

The EDP are characterized by the uncertainties (i.e. lack
of information) in terms of functional and non-functional
properties/requirements of the system. During the EDP, the
set of tasks that implement a given functionality is preliminary
and so are their timing requirements, which are bounded with
early estimates. On the one hand, overestimating those timing
requirements helps removing the uncertainties but may result
in an over-designed system with a lot of spare (lost) capacity.
On the other hand, underestimation may lead to changes in the
task structure in the late design phases (LDP) of the system,
which are hard and costly to implement.

This situation is compounded by the use of multicores as
the reference computing platform for future RTES. When a
task (7;) runs on a multicore, its execution time — and hence
its execution time estimates — does not only depend on 7; itself
but also on 7;’s co-runner tasks. This is so because 7;’s access
delay to shared hardware resources depends on the load its co-
runners put on those resources. This heavily limits the ability
of individual software suppliers to provide accurate bounds
to their tasks’ non-functional behavior (timing). Further in the
embedded-system domain, integrators (e.g. original equipment
manufacturer or OEM) increasingly incorporate in their prod-
ucts applications coming from different software suppliers,
which complicates deriving tight timing estimates. This is
caused by the fact that, usually, suppliers keep the IP rights of

UIn this paper we use the terms fask and application indistinctly. Instances
of tasks, which are usually periodic, are called jobs.
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their software, preventing the source code from being shared
among them or with the OEM.

In the scope of this paper we focus on the scenario in
which the target computing platform is known. In the case
of the space domain, the NGMP [7] is a strong candidate
for European Space Agency’s future missions and it will be
maintained for years. We assume that each supplier is provided
a virtualized environment, such as those based on GMV’s AIR
for the space and avionics domains [27]. Such an approach
does not only allow developing and testing the functional
behavior of applications in a fast manner, but also allows each
supplier to develop several applications in parallel without the
need to purchase a physical board for each of them. This
approach is followed by several OEMs including the European
Space Agency for several projects [15].

Contribution. While virtualized environments allow func-
tional testing, they fail to provide timing estimates of the ex-
ecuted applications. In this paper we propose an approach for
providing, during the EDP, fast and accurate timing estimates
of tasks’ execution time when the target (virtual) hardware
comprises multicores. Our proposal extends virtualized envi-
ronments with a light-weight timing model that i) provides
high accuracy and low overhead; and ii) does not require code
or binaries to be shared among software suppliers, which helps
keeping the confidentiality on their developed software. Hence,
our proposal simplifies and speeds up the process of getting
timing estimates during the EDP when the target (virtualized)
computing platform is a multicore integrating software from
different providers.

We realize our model for the Cobham Gaisler NGMP
processor [4][7], acknowledged as a potential on-board multi-
core platform for future European Space Agency’s missions.
We show how our model achieves high-accuracy in terms
of predicting multicore contention on execution time, while
requiring much shorter time to execute than full-fledged timing
models. For EEMBC Automotive benchmarks and several
benchmarks from the European Space Agency the average
inaccuracy is only 19% with an average time to compute
contention of less than 0.2 seconds.

II. BACKGROUND AND PROBLEM STATEMENT

In single-core integrated-architectures (such as IMA [1] in
avionics and AUTOSAR [6] in automotive) early in the design
the OEM assigns a CPU quota (budget) to each software
supplier — together with the functionality to perform. In terms
of timing, OEMs usually implement budgets via time partition-
ing: time is split into windows each of which is assigned to a
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different application, and hence to its corresponding supplier.
From the supplier point of view, other than some overheads
due to context switches, time analysis of its applications
can be done in isolation. Interestingly, the interaction in I/O
resources can be handled via forcing that the I/O operations
of an application occur during its assigned window or during
a specific period designated for that purpose (e.g. at the
end of each time window in the context of cyclic-executive
scheduling). Hence, single-core CPUs allow each supplier
to easily design applications to fit in its assigned quota or
negotiate with the OEM a larger quota. This can occur during
the EDP, which reduces the cost of any change that is required
on the timing or functional behavior of the system.
Multicores complicate this approach because the timing
behavior of an application depends on its co-runners. Con-
ceptually, the execution time of an application in a multicore
(et™*€) can be broken down into two components as follows:

et™u = et*°lo 1 At (1)

where et*°! is the execution time of the application in
isolation and At is the execution time increase the application
suffers due to contention in the access to multicore shared
resources. While suppliers have confidence on the estimates
derived for et®°!°, the same cannot be said about At since it
depends on co-runners the supplier does not know, and might
not be allowed to know due to IP restrictions. Several studies
show that At can be as high as et*°l° [19][20], so it can
have a great impact on the scheduling plan defined by the
OEM to determine the budget and the specific time windows
given to each application. If violations to assigned budgets are
discovered during the LDP this may require costly application
re-coding, changing the scheduling plan or even changing or
adding more multicore CPUs if there are not enough computa-
tion capabilities to guarantee the execution of all the required
functionalities. This, of course, may significantly increase the
overall product (system) cost and time-to-market. Therefore,
obtaining early and tight estimates of At is of great help to
reduce the risk of LDP changes. There is a general consensus
in the literature [11][14] that during the EDP accuracy of
the timing estimates is not the only metric to consider, with
tight upper-bounding estimates being rather required for LDP.
Instead, the speed to obtaining those estimates plays a key role
to allow engineers to explore a vast set of design choices in
a timely manner. However, no particular figure is reported for
the required accuracy in timing predictions during the EDP,
which in our view is end-user dependent. In the context of
multicores, it has been reported that the impact of contention
in execution time can be as high as 20x for some kernels and as
high as 5.5x for some EEMBC Automotive benchmarks [13].
In this respect, we deem the accuracy results obtained by our
approach, which ranges between 0.6x and 1.4x, as sufficiently
high to verify the scheduling plan during the EDP.

In the context defined in this paper, each software supplier
is provided with a virtual machine (VM) that mimics the
functional behavior of the target hardware, the NGMP in our
case. This allows the supplier to develop and validate the
functionality of its software. Each VM can be attached a tim-
ing simulator of the underlying multicore processor to derive
timing estimates including the impact of contention. The main
problem of this approach is that timing simulators incur a high
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timing overhead: virtualization incurs performance penalties
that are as low as few percentage points and can range up to
1x-2x slowdown depending on the virtualization technology
and whether the host’s ISA is the same as the simulated ISA.
Instead, full-fledged timing simulators can be much slower
because for each simulated instruction the timing simulator
executes hundreds or even thousands of native instructions
to model the delays incurred by the simulated instruction
on the simulated CPU, cache, interconnection network, etc.
This may lead to slowdowns in the 100x-1000x range. This
is undesirable, for software suppliers who, despite willing
to obtain timing estimates for their applications, cannot pay
this overhead in the speed of the VM. Our approach i)
controls time overhead by performing a characterization of
each application in isolation, that despite being a slow process
it is performed only once per application; and ii) speeds up the
much more frequent computation of contention. Furthermore,
detailed timing simulators require information about co-runner
tasks that is unlikely to be available due to IP restrictions.

We focus on measurement-based timing analysis techniques.
While a discussion of when static or measurement-based
timing analysis approaches are convenient is out of the scope
of this paper, it is a fact that different industries for different
systems (functions) use both [28][3]. Hence, research on both
techniques is needed so both are able to support multicore tim-
ing analysis in early and late phases of the system design. Our
reference architecture is the Cobham Gailser Next-Generation
Multipurpose Processor (NGMP) [7], sketched in Figure 1.
The NGMP comprises four LEON4 cores, each core having
a private instruction cache (iL1) and data cache (dL1), and a
global (shared) unified second level cache (uL2). Cores and
caches are connected with a bus. A memory controller acts as
interface between the processor cores and memory.

III. OUR APPROACH

In this section we present how the overall approach works,
while in subsequent sections we detail its main steps. We build
on an example with cyclic executive scheduling, widely used
in many domains such as avionics and automotive — though
our proposal is valid for other scheduling approaches. Cyclic
executives divide time into major cycles (mac), which are
further divided into minor cycles (mic). In each mic, several
jobs are executed in a non-preemtable manner. Each job is
required to finish in a mic (also called frame). Usually, mics
have the same duration to simplify implementation. While
the jobs executed in each mic may vary making those mics
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Fig. 2. Application steps of our approach.

different, all macs are identical. That is, each mac has exactly
the same sequence of mics and set of jobs called in each mic.
Despite its static nature, due to its simplicity a cyclic executive
is often the preferred scheduling solution in real-time systems
in domains such automotive and avionics in which the ARINC
653 standard recommends its use for partitions [2].

A. Application Process

Our approach builds upon the concept of an execution
profile (EP) which encapsulates for each task information
about its resource usage. The process to apply our approach
involves the steps of generating the EP for each task and then
combining several EPs — in accordance with a scheduling plan
— by means of a contention model to derive At, see Figure 2.

EP generation @. The EP is generated once per new
release of each application, for which it is considered that the
application usage of resources can significantly vary. Since in
every new release of the application it performs its required
functionalities more precisely, the EP generated for every new
release better represents the actual use of resources of the final
version of the application.

EP generation requires, as a first step, adding instrumenta-
tion code in the VM to extract information from the application
execution. In particular, for every executed instruction infor-
mation such as its opcode, program counter, etc. is extracted.
This information is then processed to produce an EP that
summarizes the execution information of the application, and
reveals no functional information of the application, keeping
its functionality confidential. While this process can be slow,
it is performed just once for every application release (more
details in Section IV).

Contention modelling via EP mixing. At the core of
our approach we find the Contention Model (or CM), which
combines (mixes) the EP of those applications that co-run in
the multicore to predict At, see @ in Figure 2.

The OEM distributes the scheduling plan to every supplier
together with the EP of all applications. This allows each
supplier to determine those applications that are co-runners
of its own ones. Each supplier uses the CM to estimate At
(@) for each of its applications. At for each application along
its corresponding et*°'° is sent back to the OEM. If there is no
violation of the budgets (®), the scheduling plan is deemed as
valid (®). On the contrary, the OEM can increase the budget
given to a supplier — if some slack is available — or change
the scheduling plan. On its side, the supplier can also try to
reduce the CPU requirements of its application (®).

As an illustrative example, Figure 3 shows a cyclic-
executive based scheduling plan provided by the OEM from
where each supplier can determine the co-runners of its
application in each minor cycle (mic). For instance, in micy
applications A and B interact with C' in the multicore so it
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Fig. 3. EP usage to derive At

is required to derive Atl, Ath and At}, where At} corre-
sponds to At of application A in mic,. If both et’y"“ 4 et’5"¢
and ety“ fit in a mic, no change to the schedule (for this
first mic) is required. The same process is repeated for all
mics. Interestingly, in micg if et3"¢ > et’}"¢ then E suffers
no contention from D, i.e. At3, = 0. It is worth noting that
in the first iteration of this process between the OEM and
the suppliers, the OEM creates a scheduling plan assuming
no contention or a nominal contention based on its previous
experience. This initial value is refined through the different
iterations of our approach.

B. Histogram-based approach for contention modelling

Standard processor simulators keep the state of the modeled
hardware in software data structures. The most clear example
is cache memories that are usually modelled with bidimen-
sional tables. Each cell, usually modelled with a struct,
keeps information of a cache line including the LRU bits, valid
bits, the data, etc. On the event of an access, data structures
are searched and their internal state is appropriately updated,
which is a time-consuming process.

In order to reduce simulation speed, we instead keep no in-
formation about the execution history and model each instruc-
tion in isolation. We use the information in the EPs of the task
under analysis and the contender tasks to predict their timing
behavior. In particular, we use distributions (histograms) to
build a representative scenario so that the timing behavior of
the instruction approximates that of the real execution. In the
EP, the application’s profile data such as frequency of access to
the caches and hit rates are stored as distributions (histograms)
rather than average values. Histograms are easy to capture and
require relatively low space in the EP. Further, histograms help
improving our model’s accuracy, which we illustrate with the
following example.

Let us assume that we want to model the impact on tasks 7
and 73, execution time when they share a single-entry cache.
Further, assume that all of 7;’s accesses go to a given address
and 75,’s accesses go to a different address. Cache hits take
1 cycle and misses 10 cycles. In this scenario, consecutive
accesses from the same task result in hits and interleaved
accesses among tasks result in misses since tasks evict each
other’s data from cache. For the purpose of this example
further assume as input data for the model 7;’s and 7,’s
distribution of time between consecutive accesses (i.e. the time
since an accesses is performed in cache until the following
one is sent). These histograms, which are respectively called
T} and T}, are as shown in Figure 4(a): every 73, access is sent
to cache 4 cycles after the last one completed, while 50% of
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Fig. 4. Example of use of the histogram-based modelling approach

7; Tequests are sent one cycle after the previous one and the
other 50% every 7 cycles after the previous one completes.

Average. If we use information about average both 7; and
Th, are assumed to send one request to the cache at the same
rate of every 4 cycles. As a result all accesses would interleave
and be misses. If 7; performs 100 accesses, its predicted
execution time would be 1,000 cycles. This fails to capture
the fact that 7; has a bimodal distribution, which means that
the number of requests from 7; among requests of 7;, varies:
it can be 0, 1, 2 or 3 and hence some accesses can be hits.

Histogram. With the approach based on histograms, for ev-
ery 7; access we derive the time since the last access according
to its histogram. To that end we define a random variable X
modelling frequencies in the histogram as probabilities. For
instance, T is the random variable capturing the distribution
of cycles between consecutive 7;’s accesses.

We refer to a realization of the random variable (distribu-
tion) X as z, i.e. the name of the random variable but in
lower case. Hence, t; is one particular value obtained from
the distribution 7). For instance, to obtain ¢{; we generate a
random number () between 0 and 1, so r € [0, 1). Given that
the time between accesses for 7; is 1 or 7 cycles with 50%
probability each, ¢; is 1 or 7 as follows:

|

This process for obtaining one value from a random vari-
able, which can be performed for histograms with any number
of points and density, is called realization. We represent it as
x = rand(X), that for the case of the time between accesses
is tj = rand(Tj).

Coming back to the example in Figure 4, the histogram
based approach results in 7; and 75, experiencing hits and
misses — as it would be expected based on their frequency
of access. To obtain the predicted execution time for 7;, we
perform several runs of the model. In each run, the access
delay of each access is obtained by performing one realization
of T; (e.g., t; = 7) and as many as needed of 7T}, to determine
how many accesses of 7, occurred since the previous access
of 7;. The estimate obtained for the execution time distribution
for 7; is as shown in Figure 4(b). We observe that the resulting
distribution captures the fact that the alignment between tasks’
accesses impacts each task’s execution time. The average
execution time is 779 cycles instead of 1,000 as with the
average-based model.

Our results in Section VI show for real benchmarks that
taking averages instead of considering the histogram leads to
high inaccuracies since accesses interleave systematically in
the same way despite the fact that, in reality, they interleave

(r<0.5)
(r>0.5)

1 cycle if
7 cycles if

TABLE I
BASIC NOTATION.
Symbol Description Comments
TS; Time between 7;’s access to the same Set Apply to each cache: iL1(i),
K s di FT." h dL1(d) and uL2(u) for the
i tack distance of 7;’s access to cache NGMP, e.g., Ki; and K,
E; sEt distance of 7;'s access to cache are the stack distance of
F] H: Hit Rate of ;s access to cache the access to iL1 ul2
S J respectiv.
8 d,- Set dispersion of 1',-’5 accesses to cache
A2 Increment in miss count in ul2 that 7; suffers
’ due to its contender tasks
etf‘”" Execution Time estimate for 7; in isolation
et}-"'z Exec. Time estimate for 1; factoring in Am}"‘z
etj™ Execution Time estimate for 7; in multicore All increments are caused
= At; Time increment 7; suffers in multicore by 7;’s contender tasks
bt ALBUS Time n fers due to bus shari accesses to the different
] A ime increment 7; suffers due to bus sharing hardware shared resources
; At}m‘M Time increment T; suffers due to mem. sharing
Q.
g At}‘LLZ Time increment ; suffers due to L2 sharing
= - —
(»zl:busj"L2 Time task 7; uses the bus factoring in Am,’-2
ubus;‘L2 Ii’s utilization of the bus factoring in Am;z
ubus,;, | Utilization of the bus of 7;’s contender tasks
abus Availability (percentage of cycles) of the bus for
J 7; when running with its contenders
- Mot Total instruction count of 7;
£ 28 i i N
%8 Lnix Percentage of instructions of each type for 7;
= 3
n, Number of instructions of type y
toa Time between accesses @A;and @A;_4
k?@ﬂ? Stack distance of access@4, in singlecore
g) R Stack distance of access@A4,; in multicore
g At%“‘ Time increment an access suffers in the bus
§ at Number of intermediate accesses T;, generates
N @Al between @4, and @4;_,
o
o AKE Increment in @A,’s set distance caused by the
@Al intermediate accessed generated by T,
Atr({vﬂlem Time increment an access suffers in memory
instruction L, Latency of the instructions of type y
] s Number of sets in cache Apply to each cache level,
S e.g. 54 is the number of
e w Number of ways in cache dL1 sets

in many different ways. Instead, histogram-based interleaving
captures tasks’ access interleaving much more accurately.

C. Restricted Access Interleaving Information

A key element in our approach is that we assume no
information about the distribution (over time) of the accesses
of a given program to hardware resources. For instance, for 7
in Figure 4(a) we know 50% of the accesses are sent 1 cycle
after the previous completes and the other 50% 7 cycles. Our
model does not record, for instance, information about whether
those accesses concentrate on the initial phase of the execution
of the program or at the end, that is, how they interleave with
other task instructions. If we assume that 7; and 75, run in
parallel it could be the case that all 7; accesses occur before
those of 7, so in reality they are not going to suffer inter-task
contention in cache. Likewise, we do not record information
about whether 7; accesses of the different types interleave.

There are several reasons behind this choice. (i) Keeping
time-dependent distribution information would increase the
size of EP, since we could not summarize it in a histogram
but we would need to keep the exact sequence of accesses
and how they interleave over time. This would also result
in more complex and time-consuming modelling. (ii) This
approach would also affect time composability [23][22] since
provided contention bounds would be specific to how requests
interleave, which changes when tasks suffer any type of shift.

Since our model aims at predicting the worst-case con-
tention among tasks, not the average, whenever two tasks
partially overlap in the scheduling plan we pessimistically




increase their et”""¢ assuming they fully overlap and hence,
suffer continuously high contention. Despite this adds some
pessimism, it simplifies EP and makes the CM lighter — which
is critical since the CM is used in an iterative manner to adjust
the scheduling plan, so it has to incur a small slowdown.

D. Notation and Parameters

The main parameters used for our model are those in Table I.
We introduce some of them in this section, while others are
presented as they are used. In Table I, starting bottom up, we
observe that parameters provide cache, per-instruction, per-
access information and per-task information. The latter is fur-
ther broken down into cache, time and instruction information
of the task. For cache information of the task we use the
convention metric — cache — task: metric are the initials of
the metric described (in capital letters to mean it is a random
variable, i.e. histogram); cache is cache initial, that for the
NGMP is 7 for the instruction cache, d for the data cache and
u for the unified L2 cache. Finally task is the task id that is
added as subindex. For instance, Kd; is the stack distance of
the accesses to dLL1 of task 7;. When we talk about a cache
in general we omit the cache initial, e.g Kj.

We introduce some of Table I's parameters via the example
sequence in Figure 5. For each access we report its address,
accessed cache set and the time in which it happens.

o Time between accesses to the same set (I'S) captures
the time between accesses targeting the same set. For
instance, accesses #2 and #8 to addresses @D and QF
respectively, are consecutive accesses to set 1 (setq).
They occur in cycles 4 and 25 respectively, which results
in a time between accesses to the same set of 21 cycles.

o Set distance (E) for a given set set; is the number
of other sets (different than set; but not necessarily
unique) accessed since the last time set; was accessed.
For instance, access #2 in Seql accesses set;, which
is accessed again by access #8. In between there are 5
accesses to sets different than set;, hence set distance
equals 5 for #8.

o Stack distance (K). The stack distance of an access QA;
is defined as the number of unique (i.e. non-repeated)
addresses mapped to the same set where @A; is mapped
and that are accessed between @QA; and the previous
access to it, i.e. @A;_;. Note that stack distance is
similar to the concept of reuse distance, though the latter
does not break down accesses per set. For instance, in
Seql the accesses to setg are (AABCBAAABC) with
stack distances (co0coc0120012) respectively. The stack
distance of a task 7; (K;) is built from the stack distances
of its accesses.

It is worth noting that common eviction cache policies
such as LRU have the stack property [18], which determines
whether a given address is still in cache. For LRU, the focus
of this paper, each set in a cache can be seen as an LRU stack
with lines sorted based on their last access cycle. The first line
of the LRU stack is the Most Recently Used (MRU) and the
last is the LRU. Interestingly, i) the position of a line in the
LRU stack defines its stack distance; ii) those accesses with
a stack distance smaller than or equal to the number of cache
ways (w) result in a hit and vice versa; and iii) the sensitivity
of the access of 7; to be evicted from cache by accesses of a
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contending task 7, depends on its stack distance: the higher
it is, the higher its sensitivity.

The process followed to collect these parameters from the
execution of a given task is described in the next Section.

IV. EP GENERATION AND FORMAT

The time modeling process starts with the collection of
relevant data that represent the main traits of an application —
when running the application on an instrumented VM — and
their post-processing. The result of the processing is an EP per
application, which is used by the contention model to predict
At for each application under a given schedule.

We use several pieces of information to model multicore
contention. They are based on the appreciation that multicore
designs for real-time systems comprise a relatively simple —
usually in-order — execution pipeline, with some local caches
and a global shared cache, as it is the case for the NGMP.

The process to generate the EP starts by instrumenting the
VM so it outputs for every emulated instruction its opcode,
program counter and data address (for memory operations).
Most VM provide functions (APIs) to access the information
of each executed instruction including its Program Counter,
destination address (in case it is a memory operation), accessed
registers including their values, operation code, etc. These
functions are invoked right after the execute() function of the
VM that emulates its behavior in the simulated machine, i.e.
LEON4 in our case. The VM instrumentation is activated so
that for each instruction of the application — or selected parts
of it (e.g. excluding the initialization code) — this information
is extracted. While the overall process is slow, it is done just
once for every new release of the application.

From these ‘raw data’, a cache simulator and an instruction
processing module are used to generate the EP, see Figure 6.

In our case we use a state-of-the-art multi-level cache sim-
ulator that is highly parametrizable including cache line size,
number of ways, number of sets, placement and replacement
policy, inclusion policy, etc. Below we list the fields in the EP
of each application and explain how they are derived.

1) Instruction count: For each task we keep the total number
of instructions it executed N¢otqr-

2) Per-type instruction count: We keep the number of instruc-
tions of each type (n,) in the task. This can be obtained from
the opcode of each instruction. It follows that Zyey Ny =
Ntotal, Where ) is the set of all instruction types.

3) Instruction mix. I;, provides the distribution of instruc-
tions across types, i.e. ny/notqr for each type y.

4) Per-type instruction latencies. It provides information about
the latency of each different type of instruction (l,). This
information can be derived by benchmarking [12] or can be
found in the user manuals provided by the chip vendor. The
information provided covers the core latency of operations
and the latency of the local caches, global caches and the
main memory for load/store operations. We differentiate the



Accessmumber [ T [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [0 [T [ 12 [ B[] T15]16]17
address @A @D @A @B @F @C @B @E @A @A @F @A @B @E @C @A @F
accessed set sO sl sO sO s2 sO sO sl sO sO s2 sO sO sl sO sO s2
time 1 4 10 14 16 20 22 25 32 36 40 41 43 50 56 58 60
TS, 0 0 9 4 0 6 2 21 10 4 24 5 2 25 13 2 20
E; 00 00 1 0 00 1 0 5 1 0 5 1 0 5 1 0 5
K; o0 [eS) 0 [e'S) ) [e%S) 1 [e's) 2 0 0 0 1 0 2 2 0
Fig. 5. Access Sequence Seq! generated by a task 7
TABLE 11 TABLE III
OPERATION TYPES IN THE NGMP AND THEIR ASSUMED LATENCIES SPECIFIC INFORMATION IN THE EXECUTION PROFILE
_ _ _ Hij,Hd;j, Huj | cache hit rates (miss rates derived as (1 — Hx;))
__operation type | jitter | min-max latency | Assumed latency TSu; Time between accesses going to the same set in ul.2
int. short latency | NO 1 1 Ku; uL2 stack distance of 7; (including all data accesses)
int. long latency | YES 1-35 35 Euj uL2 set distance of 7; (including all data accesses)
control | NO 1 1 Lz Percentage of instructions of each type
fp. short latency | NO 4 4 Ntotal Ny Total and per-type instruction count
fp. long latency | YES 16-25 25 ly Nominal back-end latency per instruction type
et?"lo 7;’s execution time in isolation

following instruction types ())) since they are common in
several RISC architectures: integer short latency (e.g., add,
cmp), integer long latency (e.g., idiv, imult), control (e.g.,
bne), floating point short latency (e.g., fpadd, fpmult),
floating point long latency (e.g., fpdiv and fpsqrt) and
memory operations (e.g., 1d and st). Some of these types can
be further divided. For instance, the floating point long latency
type can be split into divisions (fpdiv) and square roots
(fpsgrt) since the execution time of these two instruction
types can be quite different.

It is noted that each instruction instance may suffer variabil-
ity in its execution time due to two factors. First, input-data
dependence that occurs when instructions such as floating-
point division take variable latency depending on the partic-
ular values (input-data) operated. And second, pipeline state
dependence: in this case, a given instruction may have variable
latency depending on its predecessor instructions. In our aim
to model the worst-case we handle these sources of jitter by
assuming as the latency for every type an upperbound to those
latencies. This provides an upperbound to the execution of
the instruction. This incurs relatively low inaccuracy while
keeping the model simple and fast. For the NGMP, which
has mostly a stall-free pipeline, so removing pipeline-state
dependences, Table II shows the latency we assume in our
model for every instruction type.

5) Local caches information: For the local caches, our cache
simulator provides the hit rate. In particular for each 7; we
keep Hi; and Hd,;.

6) Global caches information: As for the local caches, we
record information on the hit rate of the application for the
global caches, i.e. Hu; for the NGMP.

7) Inter-access latency: For every core instruction executed
we have its latency /,,. For instruction and cache accesses the
cache simulator is used to determine whether they hit/miss in
the different cache levels, for which we have an associated
latency. With this information, for every two accesses to ul2
we can predict the execution time of the instructions between
them, and hence we can derive the time between consecutive
accesses. The histogram (7'Swu;) is derived by counting how
many times each latency occurs between two consecutive ul.2
accesses to the same set.

8) Kuj and Eu;: From the cache simulator it is straightfor-
ward to derive stack distance and set distance since we have
the memory operations accessing uL.2 and the set they access.

9) Solo performance . In our environment, software suppliers
are provided with a virtualized environment (e.g. for the
SPARC based NGMP in our case) that runs on a host platform
(e.g. x86) where ets°l° _ that is the first addend in Equation 5
— cannot be derived. We derive et*°!° by applying a simple
approach in which for each instruction we add its front-end
(of the pipeline) latency and its back-end latency.

et‘;(’lo = Z [ny % (fend(y) + bend(y))]

yey

2

Instruction’s front-end latency depend on whether they

hit or miss in iL1 and uL2. For each of these scenarios
their associated latency is different. Whether an instruction
hits/misses in cache is provided by the cache simulator. For
core operations, such as add or mult, [, gives an estimate of
their execution time in the back-end. For memory operations
such as load or store, their back-end latency also depends
on whether they hit or miss in dL1 and ul.2.
Overall, the EP generation deploys a high-level cache sim-
ulator and some extra modules that process the information
coming from the instrumentation of the VM. As a result we
obtain an EP that is the input for contention modelling. The
information in the EP is summarized in Table III.

V. CONTENTION MODELING

In this section we explain the main elements of our con-
tention model as well as the assumptions on which it holds.

The main shared resources we consider in our target ar-
chitecture (see Figure 1) are the ul.2 cache, the bus and the
memory bandwidth. For the former we explain our contention
model in Section V-A and for the latter two in Section V-B.
Our model keeps no state information about executed instruc-
tions, i.e. it models each instruction in isolation.

First, the cache contention model predicts the increment in
number of misses that 7; suffers due to the contention created
by its co-runners, Am?m. Then it derives the execution
time increment (At¥"?) caused by those Am¥"? hits in the
execution in isolation that become misses due to its co-runners.

In a second step, we account for the impact on the bus and
the memory controller that each access suffers when accessing
those resources. The access latency of each uL2 hit is increased

by the contention on the bus:

muc

mue — lsolo

STon + At

3)



Likewise, the time it takes the memory to serve a uL2 miss

increases due to contention on the bus and memory:
muc

ul2m — li%lgm + Atgw + Atgem (4)

From the number of hits and misses in the private caches;
the increment in misses in the uL2; and hit and miss delays in
the access to the cache/memory (as presented in Equation 3
and Equation 4) we derive the overall execution time increase
due to the bus and the memory, called AtJBUS and Até” EM
respectively. With this, the overall execution time on multicore
is predicted as:

et = et 4 AtYP? + AtPUS £ ATEM(5)

A. Cache Contention Model

The whole modeling process starts by iterating on a loop
several times2, with each loop iteration modelling the duration
of one instruction. At the beginning of the iteration we define
the type of the instruction by performing a realization of
L. For that instruction, based on its type y, we obtain its
backend latency [,,. Then we perform one realization of Hi;
to determine whether the instruction hits in the iL1. If the
instruction is a memory operation, we determine whether it
hits in dL1 performing a realization of Hd;. If it is determined
that the instruction misses in iLL1 or dL1, we determine
whether it hits in uL2 by performing one realization of Hu,
for each iL1 and dL1 miss.

Hits in iL1 and dL1 are not affected by cache contention
since first level caches are private and non-inclusive. Inter-
estingly, uL2 misses are not affected either. Only ul.2 hits
can become misses due to evictions of contender tasks. Our
model does not keep execution history information across
instructions. Instead, the contention model for each uLL2 access
@A, of the task under analysis 7; determines the increase in
stack distance it suffers due to the accesses that contender
tasks injected since the last access to address @A, i.e. QA;_;.
Potentially, each such intermediate access can increase the
stack distance of @QA;. Overall, if @A;’s stack distance in

isolation (kf@"}“:) is smaller or equal to the number of uL.2 ways

(wy 2) and its multicore stack distance (kgjjf) becomes larger

than the number of ways, see Expression 6, then in single-core
@A, is a hit and in multicore it is a miss, increasing Am?.

sobo < wyrs) (k@4e > wyr2) (6)

(k@Al and

muc

The challenge lies on deriving kg7 To do so we estimate
the time between two consecutive accesses to the same address
@A and how many lines contenders fetch to that cache set
during that interval as follows: the accesses going to a given set
are spread over the different lines in that set. For a given access
@A, from 7; hitting in uL2 its stack distance — computed as

2Since a number of random variable realizations are performed for each
instruction to determine whether for each realization it hits or misses in each
cache level, whether it is interfered by co-runners, etc., latency may change
for each instruction realization, and so for the full application. In fact, the
execution time of the application is a Monte-Carlo process built upon many
Monte-Carlo processes (i.e. all realizations of histogram-based events for each
instruction). Thus, if applications execute tens of thousands of instructions,
iterating 100 times for each instruction already triggers millions of random
events for the whole application so that Monte-Carlo inaccuracy falls orders
of magnitude below the inaccuracy due to the simplifications of the model.

kilo = rand(Kuy) — provides the number of accesses from
7; (to that set) before @A is accessed again, i.e. the number of
accesses between @QA; _; and @QA;. By multiplying kf@ojﬁ and
the time between accesses to the same set tsu; = rand(TSu,)
we obtain tg{iﬁ, the time between @A, and the previous access
to the same address, i.e. @A4;_;.

! I
taa, = tsuj X kg, O

As a second step, we compute the number of accesses 7;’s
contender tasks (i.e. 7, € ¢(7;)) introduce between @A; and
@A;_7 in the same ul2 set. To that end we use T'Swuy;, that
provides the time it takes 75, to send accesses to the same
set. By dividing ts@"i‘; and tsup = rand(T Suy) we obtain the
number of intermediate accesses injected by each contender
task 75, between A; and A;_1, see first addend in Equation 8.
When the 7' and tsuy, are not multipliers, 7, can generate
one extra access. This is determined by generating a random
number between 0 and tsuy,. If this number is lower than the
remaining time until the next 7, access, then we assume that
the contender was able to introduce one extra access.

solo solo

hoo = |leal in (| tal_mod tsup
daar = \;tsuh + mn rand(1,tsup) 1 (3

For instance, if tf@"i‘; = 30 and tsuy = 9, then “f‘z‘” =3.
Depending on how accesses align in time, one extra access
could occur during those tf@oﬁ{; = 30 cycles. If @QA;_; occurs
at cycle 0 and @A; at cycle 30, 7, accesses could occur for
instance at cycles 5, 14 and 23 (so al ,, = 3) or at cycles 2,
11, 20, 29 (so alt ,; = 4). This is taken into account with the
second addend in Equation 8.

Set collision distribution. We also consider whether con-
tender accesses can really interfere 7; accesses because they
span across several sets and thus, have low chances of inter-
fering 7; accesses. For instance, let us assume that 73, accesses
a single set, while 7; accesses a high number of cache sets.
For every 7; access, i.e. @A;, our previous model (Equation 8)
assumes that its stack distance is affected by 7, intermediate
accesses. In reality, however, 75, affects at most those accesses
mapped to one particular set.

To capture this effect we define set dispersion as the
probability that contenders’ intermediate accesses go to the
same set where @A; is mapped. To compute set dispersion we
average set distance from Euy,. This gives us an indication of
the number of sets used by 7. For instance, if it is 2, then
on average 7y, accesses two different sets. By dividing this by
the total number of sets su in cache we approximate the 7,’s
utilization of sets (i.e its dispersion), duy. Set dispersion is
used to decide whether all 7;,’s intermediate accesses among
@A; and @A;_1, i.e al 4, actually contend with @A4;.

The probability that those a?@ 4; accesses are mapped QA;’s
set in the uL2 is du;. Hence, there is probability P = 1 —duy,
they are not, in which case they do not contend with @A;.
Thus, a}é 4; 1s redefined as follows:

ho
G@Az—{

Increment in stack distance. All @ ,, intermediate ac-
cesses injected by each contender task 7, can increase @A;’s

stack distance, i.e kgjs. In reality the increase produced

al ,,(as in Eq. 8) rand(0,1) < dup, ©)
0 : rand(0,1) > duy



depends on the number of accesses generated by 7, and
their stack distance. In one extreme of the spectrum, when
all intermediate accesses have stack distance equal to zero
they go to the same cache block (line), so they increase kg'y;
just by one. In the other extreme, when all accesses go to
different addresses (blocks) their impact on the stack distance
is as high as the number of accesses. For instance, let us
assume that 7;, generates 4 accesses between @QA; and @A;_;.
If their stack distance is 0, they all access the same address
(e.g., BBBDB). If their stack distance is 1, then they access 2
different addresses (e.g., BC'BC). In particular, the number of
different addresses accessed by 73, is determined by the stack
distance (plus one), but never exceeding the total number of
al ,; intermediate accesses. Note that for each 73, access we
obtain its stack distance as rand(Kup,).

We take into account the impact of the accesses gener-
ated by 7, on @QA;’s stack distance (Ak% 47) as shown in
Equation 10. This equation assumes that all accesses have
the same stack distance. This simplification still builds upon
stack distance histograms, but reduces the cost of performing
a realization of Kuy, for each al! ,; intermediate access.

Ak 4

= min(al 4, rand(Kup) + 1) (10)

By accounting for the increase in the stack distance of ks@"j“;

caused by each 7, we derive its kgy:

Kok =kei + ) Ak

ThEC(T))

Y

Outcome. The addition of the stack distance of A; in
isolation (ks"l") and Aal ,, for each contender provides k& a;-
As expressed in Equation 6, if k‘“’l" is smaller or equal to the
number of uL2 cache ways and m“C is larger than the number
of ways, that particular access is predicted to be a hit when
7; runs in isolation and becomes a miss when it runs with its
contenders, increasing At;m.

B. Bus and memory (BM) and (MM)

The bus and memory contention models for the NGMP
take into account that bus accesses are not split3, so that the
bus contention model also captures contention tasks suffer in
memory. If bus transactions were split, allowing requests from
different tasks contend on the bus and in memory in parallel,
then the model should be duplicated for both resources.

Our model estimates the contention experienced by task 7
on the bus (and memory) that we refer to as At?US and is
measured in cycles. For that purpose we derive (1) how long
7; spends using the bus, etbus}‘L2 which already factors in the
impact of contention misses derived with the cache contention
model; (2) the bus utilization of its contenders ubus.(;); (3)
the probability than on an access to the bus 7; finds it avallable
abus;; to finally (4) obtain AtBUS

The time 7; spends on the bus etbus}‘m, is obtained by
adding the time spent serving ulL2 cache hits and misses in
isolation and the time to serve the uL2 contention misses.

3In the NGMP the bus is not relinquished until the access is served either
by the uL2 cache or memory.

etbusuLZ ( solo

NyL2n — AWUL ) X luranit) +

(n iongm + AmUL2) X lyL2miss)

l
ioLgm X luL2mlss) +

=(

(

(5781 X luronit) +
(n

(Amt™?

(luL2miss — luL2nit))  (12)

where nfj’ngh and ”ZOngm correspond to the number of ul.2
hits and misses in isolation, respectively; and Am;‘L2 of the
ul2 hits in isolation become miss due to contention. Therefore,
for the bus utilization, etbus?L? factors in uL2 hits and misses
applying the cache contention model, but not their impact on
the bus contention. We obtain the total solo execution time
plus the effect of cache contention analogously, by adding the
impact of the extra misses due to contention:
et = et3*' + AmY"? X (lupomiss — luronit)  (13)
By dividing the time spent using the bus by et}"? = et
for a given task, we obtain its bus occupancy in isolation

factoring in cache contention, ubusjy Lz,
etbusyL?
L2 J
J

Then, we add the utilization of all contenders of 7; to obtain
the accumulate utilization they cause.

ubus, ;) = Z ubusit?

ThEC(TH)

15)

Note, however, that ubusc(j) can be higher than 100%. For
instance, let assume 7; has two contenders, 73, and 7,,, each
with bus utilization of 60%. This results in a bus utilization
of ubus.;) = 1.2 that will be even higher when accounting
for 7; utilization in isolation. It is obvious that contention
will increase the time window since total bus utilization of
7; and its contenders cannot exceed 100%. The time window
increases by the true contention that the other tasks cause on
7;. However, the actual impact of contention on the bus is
the result of the model. For instance, recalling the previous
example, the impact of 75, and 7, bus accesses will increase
T; execution time, thus increasing bus availability (same
number of accesses over a larger time window). However,
such increased bus availability is already needed to compute
the time window, thus creating a circular dependence.

To break this dependence, we upper-bound contention im-
pact in the time window with the total utilization of the other
tasks. See the right addend of Equation 16, where the time
window available is 1 (available utilization in isolation) plus
the time that other tasks access the bus (ubusc(j)). Hence,
the actual bus utilization is approximated by dividing the
utilization of the other tasks by the total time window. 7; finds
the bus available (abus;) when it is not being used by others.

ubus.(j)

abus; =1 — (16)

1+ ubusq(j

In the example before, if ubusc(j) = 1.2 then abus; = 0.45,
so this is the probability assumed for 7; accesses to find the



bus available. Note that in the equation above, if the other tasks
did not use the bus, abus; = 1. Conversely, if the utilization
of the other tasks was huge, then abus; ~ 0.

Finally, by dividing 1 by the probability of success we
obtain how often a bus access from 7; tries to access the bus
to get it. Then we multiply this probability by the time spent
on the bus in isolation etbus’? to obtain the total time spent

j
on the bus due to contention, AthS , as shown below.

APV = ( (17)

x etbus®™?
abus;

J

C. Simplifications of the Model

Our model balances accuracy in its prediction and the exe-
cution time overhead to run it. Results presented in Section VI
show that our model achieves a good balance between both.
In this section we list the main simplifications in our model
to speed it up and how they impact accuracy.

General approach. The most remarkable assumption in our
models is that we take frequencies observed when character-
izing applications as probabilities. However, events such as
cache hits/misses do not have a randomized nature as it would
be required to attach probabilities to their occurrence. For the
sake of simplicity we make this assumption for any process
to limit the complexity of the cache model.

Core model. In general our model does not work with the
temporal distribution of events. For instance, we assume that
instructions of each type are equidistant in the code. Despite
we have histograms we do not consider how instructions are
distributed over time. For computing processor core time, we
over-approximate the execution time of each instruction in the
core instead of tracking pipeline and data dependences, that
is, we assume the longest latency of a jittery instruction, e.g.
for the NGMP we assume that fplong, i.e. fp long-latency
instruction we assume, always takes 25 cycles when in reality
it can take either 16 or 25 cycles depending on the input values
operated. This heavily simplifies the processor core time model
with low impact on accuracy.

Cache model. For the cache model, stack distances and
set distances are not maintained per set, but we have one
stack distance histogram and one set distance histogram for
the whole cache. Alternatively, to increase accuracy we could
keep information in a per-set basis, but this would add some
non-negligible complexity to the model, would increase the
amount of information recorded by a factor of s (the number
of sets in cache), and would make results dependent on the
actual sets (and so memory locations) of the different tasks.
Another source of innacuracy is that we average set distance
to approximate set dispersion.

Bus model. In the bus model there are two main sources of
inaccuracy. First, when determining the bus availability for a
task the time window assumed is upper-bounded. Second and
more important, our bus model assumes that bus accesses are
blocking, i.e. they stall the processor pipeline. However, the
LEON4 cores in the NGMP have a store buffer able to manage
a pending store without stalling the pipeline. Since dL1 caches
are write-through in the LEON4 core, write operations to uL.2
are abundant. Hence, the bus contention effect will not be as
linear as assumed, resulting in under-estimations of the model.

As shown in the result section, the overall accuracy of the
model is acceptable as execution time estimates to be used
during the EDP, while it incurs low execution time overhead.

Addressable unit. For sake of simplicity we have assumed
in our explanations that each access corresponds to a cache
line. When the addressable unit is smaller than a cache line,
accesses to different addresses can be mapped to the same
cache line. This has no impact on our previous formulation.
For instance, let us assume the sequence (A4, A, B,C, B, A),
in which B and C' go to the same line. We can simply abstract
this sequence as (A, 4, B, B, B, A), hence considering that the
access to C corresponds to another access to B, so cache stack
distances would be (co 0 co 0 0 0 1). This allows us applying
the formulation presented.

VI. REALIZATION AND EVALUATION ON THE NGMP

In this section we show how we realize our models for the
NGMP [7], whose general block diagram is shown in Figure 1.

A. Experimental Framework

Basics on the NGMP. In the space domain the NGMP [7],
whose latest implementation is the GR740 [8], is being con-
sidered by the European Space Agency (ESA) for its future
missions. Each LEON4 core comprises a seven-stage scalar
in-order pipeline. The NGMP has four cores, each comprising
instruction (iL1) and data (dL1) first-level caches. Each core
accesses to the L2 cache through an AHB AMBA bus.

Floating point. The FPU has two possible data paths for FP
operations: one for FP divisions and square roots, and one for
the rest of FP operations. This last data path is fully pipelined,
and has a latency of 4 cycles and, under ideal conditions, a
throughput of one cycle. The data path for divisions and square
roots is not pipelined, so the throughput of these operations is
equal to their latency.

Bus: The interconnection bus is a 128-bit AHB AMBA bus
arbitrated with round-robin policy. It has 5 masters (4 cores,
and I/O master) and 2 slaves (L2 cache and I/O slave). As
explained before, the bus-split feature is not implemented in
the GR-CPCI-LEON4-N2X [5], meaning that once a core has
its access to the bus granted, no other device can access the
bus until the access is performed. Our model has been fit to
this architecture where bus-split is not available.

Memory model: Every core has 16KB 4-way 128-set iL.1
and dL1 caches, implementing write-through, write no allocate
policies. The unified L2 cache is shared by all the cores in the
processor. It is a 256KB 4-way 2048-set cache. It uses write
policy is copy-back/write allocate. Cores also include some
store buffers capabilities.

Simulator. We have modeled this architecture on an en-
hanced version of the SoCLib simulation framework [25] and
validated that execution time measurements obtained in the
simulator are on average within 3% of those obtained in the
real board for the N2X implementation of the NGMP [5]
for the EEMBC benchmark suite [21] as well as some space
applications. We use the execution times obtained from the
simulator as reference to assess the accuracy of our model.

Benchmarks. We use a solid set of benchmarks to assess
our contention model.

EEMBC automotive. The EEMBC automotive benchmark
suite [21] is a well-known benchmark suite in the real-
time domain, and it is particularly useful for evaluating the
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Fig. 7. Accuracy of the cache contention model

capabilities of embedded microprocessors, compilers, and the
associated embedded system implementations. The diversity
of this suite ensures that designers can use combinations
of EEMBC workloads to make effective design choices. In
particular we use these benchmarks: aifirf (AF), aiifft
(AT), bitmnp (BI),cacheb (CB), canrdr (CN), idctrn
(D), iirflt (II), puwmod (PU), rspeed (RS).

European Space Agency benchmarks. We use representative
benchmarks of ESA on-board software. In particular, the On-
board Data Processing (OB) and DEBIE (DE) benchmarks.

e On-board Data Processing contains the algorithms used
to process raw frames coming from the state-of-the-art
near infrared (NIR) HAWAII-2RG detector [16], already
used in real projects, like the Hubble Space Telescope to
detect cosmic rays.

o« DEBIE is the software that controls an instrument, which
was carried on PROBA-1 satellite, to observe micro-
meteoroids and small space debris by detecting impacts
on its sensors, both mechanically and electrically.

Stressing Kernels. In order to also stress our model in
high contention situations, we have implemented five re-
source stressing kernels [13][24] that create high contention in
shared resources. Those benchmarks include 12full (U) and
12half (H), which traverse continuously an array occupying
the whole L2 and half of it, respectively; 12miss (M) and
llmiss (L), which continuously miss on their respective
caches; and mixed-8-12-80 (E), which executes a specific
mixture of instructions (8% stores, 12% loads and 80% adds).

Workloads. We run four-task workloads. For the first task
we use our model to estimate its execution time bound.
This first task is either a EEMBC AutoBench benchmark or
an ESA benchmark. The other three (contending) tasks in
the workload are 12full, 12half, 12miss, 11lmiss or
mixed-8-12-80. This creates a stressful scenario in which
we can fairly assess the accuracy of the predictions our model.
Table IV summarizes the workloads used in this paper.

Metrics. We evaluate the accuracy provided by our model in
terms of the increment in the number of L2 misses (Am?m),
bus time (AtBYS + AtMEM) and the overall execution time
in multicore (et”““). For each of these three metrics we
measure accuracy as %. Hence the closer to one
the better, with values above one showing that the model over-
approximates and values below one that the model under-
approximates. For each four-task workload, we measure the
accuracy in estimating the contention of its first task. As shown
in Table IV we create eight workloads for each EEMBC Auto-
motive and the ESA benchmarks. We show the distribution of

TABLE IV
WORKLOADS USED FOR EVALUATION

BENCHMARK 8 WORKLOADS IN WHICH IT RUNS
AF (TLL), (LLH), (LHL), (HLL), (HLH), (HHL), (LEA), (ULL)
AT (UUU), (UMU), (MUD), (UUM), (MMU), (MUM), (UMM), (MMM)
BT (UUU), (UMU), (MUU), (UUM), (MMU), (UMM), (MUM), (MMM)
cB (LUU), (UUU), (ULU), (UUL), (HUU), (MUU), (UHU), (UMU)
cN (ULU), (UUL), (LUU), (HUU), (UHU), (UUH), (MUL), (ULM)
DE (MUU), (UMU), (UUD), (UUM), (MMU), (MUM), (UMM), (MMM)
D (UUU), (UMU), (MUD), (UUM), (MMU), (UMM), (MUM), (MMM)
II (LLL), (LLH), (LHL), (HLL), (LHH), (LEL), (HLH), (LLE)
0B (UUU), (UMU), (MUU), (UUM), (MMU), (MUM), (UMM), (MMM)
PU (UUU), (UMU), (MUU), (UUM), (LUU), (ULU), (UUL), (UMM)
RS (LLL), (LLH), (LHL), (HLL), (LEL), (LLE), (ELL), (HLH)
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the accuracy across the eight workloads with a boxplot, thus
showing the median, the quantiles, maximum and minimum
values and outliers.

B. Experimental Results

Cache Contention Model. As we can see in Figure 7(a)
Am¥E? is accurately estimated for several benchmarks and
somehow overestimated for others. The largest deviation are
due to the fact that our cache contention model assumes
that stack and set distances are homogeneous across sets for
the sake of simplicity. However, this is not always the case
and, in fact, our 12full and 12half synthetic kernels
are specifically designed to stress all cache sets and half of
them, respectively, so that heterogeneous behavior across sets
produces large inaccuracies in our model.

The case of the three benchmarks in Figure 7(b) is com-
pletely different since Am¥£? is in the range [10, 100]. In this
case, benchmarks suffer in the order of dozens extra misses in
L2 due to contention, which is negligible for those benchmarks
executing millions of instructions. Hence, although our model
overestimates Am¥L2 by a factor of 10-20x, this only repre-
sents accounting for around of 1,000 extra L2 misses whose
impact in the total execution time is negligible.

It can also be observed that the cache contention model
leads to an overestimation of Am¥L2. The main reason is
the fact that our model assumes that cache accesses are
homogeneously distributed in time. However, in reality they
typically occur in bursts. Thus, if bursts of all different tasks
occur simultaneously, the model is accurate but if, instead,
not all of them overlap completely (the common case) real
interference is lower than estimated because the number of
interfering accesses from other tasks during a burst of the task
under analysis is lower than predicted.

Average-Based Model. For comparison purposes we ob-
tained results for the cache contention model using average
values rather than histograms. Our results show that for all the
workloads listed in Table IV the average-based model detects
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Fig. 9. Performance accuracy of the complete model. Results have
been normalized w.r.t. the actual measurements.

almost no contention. This occurs because dividing average
values by the number of sets du, as done in Equation 9,
leads to very low predicted interferences among tasks. This
produces contention predictions as low as 0.0034, that is with
an inaccuracy of almost 100% (1 — 0.0034 = 0.9966).

Bus Contention Model. For bus contention, shown in
Figure 8, we observe a variety of behaviors across benchmarks.
Although such contention is somehow overestimated for few
benchmarks, it is typically underestimated for most of them.
This effect is particularly noticeable for aiifft, debie
and obdp. As explained before, the NGMP processor has
store buffers that are able to hide part of the latency of
stores. However, since stores occur in bursts, whenever they
occur in a short period of time they can produce performance
degradations much higher than linear. For instance, it has been
proven that execution time may grow by a factor of 20x in the
NGMP with just 4 cores due to the (bad) interaction of store
operations in the different cores [13]. How to better capture
this effect in our bus contention model without incurring high
overhead is still part of our future work.

Putting it all together: Multicore Execution Time. We
have also analyzed the accuracy of our performance estimates
when considering all contention models and assumptions
together. The accuracy in determining et*°!° is high with
predictions in the range [1.02, 1.23] for all benchmarks.

Results are shown in Figure 9. We observe that the accuracy
of the estimates is mostly dominated by bus contention in
the NGMP. The main reason is the fact that the difference
between L2 hit and L2 miss latencies is relatively low (9
versus 23 cycles) and only affects Amf”, whereas the
impact of bus contention affects all load misses in L1 and all
store instructions given that DL1 is write-through. Therefore,
inaccuracies due to the effect of the store buffer in terms of
bus contention dominate the results.

Overall, our simple analytical model is able to keep perfor-
mance estimates in the range [0.6,1.4] w.r.t. the real perfor-
mance in the NGMP. These are accurate results for execution
time estimations for early-design phases. The accuracy of our
model allows system designers to really take into account
multicore contention in the design choices made (e.g. deciding
the scheduling plan).

Model Execution Time Overhead. To be usable in EDP,
the execution time overhead of our model should be low.

To produce the ‘raw data’ from the VM as presented in
Figure 2, we introduce instrumentation instructions to read
information about the particular instruction under execution.
The number of instructions to add is relatively low: three
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Fig. 10. Average overheads of our contention prediction model.

instructions in our case to read opcode, program counter and
data address. From the raw data we run the cache simulator
and process instructions to generate the EP. Figure 10(a) shows
the execution time of this EP generation step, which is run just
once per application. If the application has several releases
whose resource-usage profile is expected to change, this step
is repeated once for each of those releases. The duration of this
step depends on the length of the program. For the EEMBC
and the real ESA benchmarks, whose execution is in the order
of dozens millions of instructions, in the worst case this step
takes around 80 seconds. On average EP generation requires
around 20 seconds across all benchmarks, which is reasonably
short given the low frequency with which this step executes.

Figure 10(b) shows the execution time overhead of con-
tention models, once EP information has been produced. The
duration of this step is the most important for the feasibility of
our approach. This is so because, once the EPs are generated,
the system designer needs short turn-around time of the models
to be able to evaluate different design choices. We observe that
predicting the multicore performance of an application in a
workload requires as low as 120ms on average, which enables
a vast design space exploration of various system parameters
by system designers.

VII. RELATED WORKS

The focus of timing analysis techniques in the literature for
EDP has been on single-core architectures. To our knowledge,
the work presented in this paper is the first addressing the
challenge of providing timing estimates in EDP for multicores.

Some approaches for single-core architectures work on the
assumption that the target processor and/or the corresponding
compilation toolchain is available, while others do not. When
the target processor is not available, several techniques exist
to derive timing estimates that help deciding the hardware
platform that best satisfies system requirements [11][26] as
well as sizing it. The approach consists in compiling the source
code for a given set of potential target ISAs. For each of the
ISA there is a parameterizable processor simulator (model)
from which timing information is gathered. The model allows
changing parameters with high impact on timing such as cache



configuration [26]. Then program information (e.g. paths)
obtained from the executable and timing from the generic pro-
cessor model are combined to approximate programs execution
time. In our case the target ISA and processor are fixed, so
such an approach would not be necessary.

Other approaches do not work at the binary level but at
the source code level, or an intermediate representation level,
which are available earlier in the design cycle of the system.
In some cases, timing is integrated in high level modelling
environments such as Matlab/Simulink [9]. The ultimate goal
is providing the developer knowledge of the worst-case “as the
code is written” [10]. In all cases the focus is on single-core
architectures, while our focus is on multicore contention.

In many of the approaches above one of the main challenges
lies in deriving a light, yet accurate, timing (cost) model for
individual instructions or sequences of them. Some papers [10]
assume a WCET-friendly processor design, such as the Java
Optimized Processor (JOP). This simplifies the timing model
since the processor is predictability aware. Other papers pro-
pose methods to derive a timing model from measurements
of representative code extracts on the target processor. For in-
stance, authors in [17] work on the concept of C-source-level
abstract machine which is calibrated based on measurements
to match a target real hardware. In this line, [14] proposes the
timing model code level that combines measurements and a
regression model to perform timing estimates of source code.
In this latter work, the timing (cost) model is built, i.e. it is not
assumed as an input. In both cases the focus is on constructs
that frequently appear on the target programs.

While previous works focus on single-core processors,
our focus is on multicore specific aspects. In particular the
contention in the access to hardware shared resources. For
multicore, it could be possible to run the program under
analysis against a set of resource stressing kernels (rsks) which
put high load on the shared resources [13], [24]. This would
provide a good estimation of the program execution time under
heavy (extreme) load conditions. However, it has been shown
that this approach leads to inflated execution time estimates,
up to 20x bigger than programs’ execution time in isolation,
which makes it impractical to obtain accurate execution time
approximations during EDP.

Previous works show that, while exact bounds are required
in LDP, during EDP, instead, approximations to those bound
are needed [11][14]. Some accuracy is traded to speed up the
estimation process so that engineers can make design space
exploration taking into account timing. To our knowledge, no
particular figure is reported on accuracy required in EDP. For
multicores several works show that the impact of contention
can up to 20x for some kernels and up to 5.5x for some
EEMBC benchmarks [13]. In this context, we deem the
accuracy results obtained by our approach (between 0.6x and
1.4x) as sufficiently precise.

VIII. CONCLUSIONS

In this paper we present a new timing model for early design
stages able to predict in a fast manner the performance of
applications when the target (virtual) platform is multicore
based. They key idea behind our model is the generation of
an execution profile (EP) for each application that software

suppliers can share without revealing IP, yet allowing perfor-
mance analysis of multicore contention. This paper describes
how EP are generated and how they are combined to predict
the performance of applications under particular schedule. Our
results show that useful estimates can be obtained extremely
fast since generating an EP takes few seconds and evaluating
a schedule less than 0.2 seconds for the NGMP architecture.
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