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‡ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
§European Space Agency

? Spanish National Research Council (IIIA-CSIC). Barcelona, Spain.

Abstract—Timing simulation is a key element in multicore
systems design. It enables a fast and cost effective design space
exploration, allowing to simulate new architectural improvements
without requiring RTL abstraction levels. Timing simulation also
allows software developers to perform early testing of the timing
behavior of their software without the need of buying the actual
physical board, which can be very expensive when the board uses
non-COTS technology. In this paper we present the validation of
a timing simulator for the NGMP multicore processor, which
is a 4 core processor being developed to become the reference
platform for future missions of the European Space Agency.

I. INTRODUCTION

Timing simulators are used to test processor designs, from
RTL to system level. From a software perspective, the ideal
timing model of the hardware should provide the exact latency
for each instruction. However, the latency of an instruction,
and thus the execution time of a task running in a processor,
completely depends on many factors, including the hardware
implementation: pipeline, input-data, memory hierarchy, data
dependencies and execution history. For instance, every in-
struction has to be fetched, which generates a request to the
instruction cache that may result on a cache hit or a cache
miss depending on the execution history, i.e. if that address
was fetched by a previous instruction.

Timing details of the processor are usually provided in
the specifications/datasheets on a high level of abstraction
using metrics such as processor frequency. Also required
details from the board are given with similar metrics, such as
memory frequency and column access latency for memories.
In the best case, some information about the instruction and
cache latencies is provided; however, many details needed
for accurate timing simulation related to pipelining, data and
structural dependencies, etc. are usually omitted. Moreover,
latencies of interfaces (e.g., to access memory) are poorly
documented and depend on complex timing interactions of
several components such as the processor, the board and the
memory chips. This is not a problem to obtain an idea of the
performance of the processor, but it is not enough to derive
accurate timing simulators.

In this paper, we focus on the space domain and the Cob-
ham Gaisler Next Generation Multi-Processor (NGMP), a.k.a.
GR740, multicore processor [10]. The NGMP is envisaged as
the future computing platform for missions carried out by the
European Space Agency (ESA). Such a processor for the space
domain remains in service for decades and its design is refined
over the years, responding to the new needs of the industry.

In order to test the accuracy of a timing simulator, its timing
estimates have to be compared with values coming either from
RTL simulation or execution on a board. However, in case

the simulator does not provide accurate values, this kind of
test does not provide any information about which part of the
model is inaccurate. For instance, if the simulator has a bus
latency that does not correspond with the reality, every miss
in the L1 cache that accesses the bus will introduce an error
on the estimate. This error accumulates, increasing overall
inaccuracy. A methodology that allows to test the behavior
of each resource separately is needed. This process allows
not only to validate the behavior of the simulator but also to
leverage certain timing parameters to provide better estimates.
For instance, in the previous case described, if the methodology
analyzes the latency of the different types of requests in the
bus, it can infer their latency and thus, properly adjust the
simulator’s timing parameters to model it.

Contribution. In this paper we show the validation method-
ology for a timing simulator developed by us for the Cobham
Gaisler NGMP processor [10]. We show the structure of the
simulator and the procedure to validate its behavior in terms of
instruction timing, memory hierarchy, interconnect access and
multicore interference. We show how the simulator provides
execution time estimates which have less than 3% error at cycle
level for real applications and widely accepted benchmarks.
Through this particular case study we provide a methodology
that can be applied to other embedded processors considered
in domains such as automotive, avionics, railway and the like.

The paper is organized as follows: Section II describes the
processor and the simulator. Section III explains the method-
ology, which is applied in Section IV with the final accuracy
results. Related work and conclusions are in Sections V and VI.

II. TIMING SIMULATOR OVERVIEW

We build a model of the NGMP simulator upon the So-
CLib [20] simulation environment, which we properly modify
to resemble the NGMP processor. The purpose of the simulator
is to have a cycle accurate simulator environment, in order
to correctly measure the execution cycles. However, our goal
is not to model all the complexity of the processor, because
there is a tradeoff between complexity (or simulation time)
and accuracy. In case some accuracy has to be traded off for
a more simple model, simplicity is achieved by modelling the
most common case.

A. The NGMP processor
In the space domain, the NGMP architecture [10], whose

latest implementation is the GR740 [11], is an architecture
considered by the European Space agency for its future
missions. The NGMP has four cores, each comprising an
in-order pipeline. The pipeline consists of 7 stages: fetch,
decode, register, execute, memory, exceptions and commit.
The instruction and data caches are accessed in the fetch



Fig. 1: Simulator structure

and memory stages respectively. Floating point operations are
performed in a separate functional unit.

Every core comprises a L1 instruction cache and data
cache, each one with 4 ways, 16KiB (32 bytes line). The write
policy for these caches is write-through, write no allocate. All
cores are connected using a 128bit AHB AMBA bus arbitrated
by a round-robin policy. The bus connects the processors with
the L2 cache shared by all the cores in the processor. It is
a 4 way, 256KiB (32 bytes line). The write policy is copy-
back, write allocate. Some write-buffers exist somewhere, not
specified, in the memory hierarchy of the processor.

B. Simulator architecture
The simulator is conceptually designed to separate the

functional part from the timing behavior, which creates two
different design spaces: (1) the functional emulator (emulator
from now on) and (2) the timing simulator. The simulator
structure is shown in Figure 1. The emulator part executes the
instructions according to a particular Instruction Set Architec-
ture (ISA) and provides all the information about an instruction
like the instruction address, registers, type, results and memory
address in case it is a memory operation. The timing simulator
(simulator from now on) simulates the timing behavior of the
instruction for a given hardware implementation, for instance,
if it is a cache hit or miss and the delay introduced by the
bus access in case it has to reach a higher level cache or the
memory. The architecture of the simulator serves two purposes:
1) to resemble the actual processor structure which helps to
have a more accurate modeling of its behavior and 2) to
ease implementation of new hardware features such as bigger
caches.

The simulator architecture, as shown in Figure 2a, consists
of 4 cores with their respective private caches, connected
through a bus to a shared L2 cache and the shared memory. The
internal structure of the core is depicted in Figure 2b, which
comprises the 7-stage pipeline with private caches and a write-
buffer. Both pipelines, integer and floating point, are embedded
in the execution stage, that assigns latencies to instructions.
The timing of an instruction consists of the instruction latency,
that is defined by the pipeline, and the memory hierarchy
latency for the instruction access and data access, in case
of load and store operations. The memory hierarchy latency
includes a third contributor which is the multicore contention,
which involves the effect that the rest of the cores can have
on the timing of the core being analyzed, such as waiting for
the bus because it is being used by another core.

C. Simulator parameters
The simulator allows parameterizing all hardware features

that i) either allow fine tuning of the timing behavior, such

(a) Multicore architecture (b) Single core details

Fig. 2: Simulator architecture

as cache hit and miss latencies or ii) allow design-space
exploration for new hardware features, such as cache size
to test bigger cache designs. In particular, there are several
parameters that allow fine-tuning the behavior of the simulator:

Instruction latencies: To assign a latency to each instruc-
tion, we classify the instructions into different types, having
each type its own latency assigned. The contribution of an
instruction to the execution time is caused solely by the latency
of that instruction type if we consider always cache hits and
no data-dependencies. In our case, the NGMP features a back-
to-back execution pipeline in which all data dependencies are
resolved. We classify the instructions into: Integer short: add,
sub, cmp, ...; Integer long: mul, div, ... ; Branch: br, jmp, ....;
Load; Store; Floating point short: fadd, fsub, ...; Floating point
long: fmul, fdiv, ...; Special: Other instructions, traps, ... .

Memory hierarchy: A set of important parameters is the one
devoted to latencies of the complete memory hierarchy. These
parameters include: IL1/DL1, L2 hit/miss latencies, as well as
bus latencies and memory latencies. Another set of parameters
includes the effect that the rest of contenders in the processor
can have in the timing of the core analyzed due to contention
on the access to shared resources. This is particularly taken into
account on the processor bus, the L2 cache and the memory
controller.

III. METHODOLOGY

Our validation methodology is based on microbench-
marks [19][7], a set of application kernels that exercise certain
parts of the processor with a tow-fold objective. Providing
confidence on the fact that the timing simulator is accurate by
comparing their execution time on the simulator and the real
board, and if the execution time is different, it helps adjusting
the timing parameters of the simulator to improve accuracy for
the specific components used by the microbenchmark.

A. Microbenchmark structure
We use microbenchmarks or Resource Stressing Kernels

(RSK) comprising a single loop with instructions of the same
type that are chosen to stress a certain hardware resource
or a set of them. The reason to use a loop is to avoid IL1
(instruction L1) misses and exercise some latencies or certain
behavior in the processor long enough to be able to minimize
(1) the overhead of instrumenting and measuring the execution
time and (2) artifact interferences such as memory refreshes
that occur seldom over time and cannot be controlled. Each
loop iteration contains N instructions or operations that have



Fig. 3: RSK example with loads with 4K offset

a certain behavior, such as an addition or an access to the L2
cache. An example of a RSK is shown in Figure 3.

By doing this, every benchmark we run, except for the spe-
cific loop branch instructions, has exactly the same overhead or
structure. This simplifies getting a better prediction of the time
increment caused by the instructions in the loop and not the rest
of the benchmark. We assume that there is enough hardware
and software support to be able to measure the execution time
of the main loop with a certain degree of accuracy. The number
of iterations of the loop helps adjusting the granularity at which
execution time can be measured, since the behavior of a very
short loop might not be captured by a coarse-grain performance
monitoring counter and, on the opposite end, a very long loop
might saturate fine-grain counters.

B. Description of the methodology
The first step is factoring out the execution time of the

loop overhead in both, the timing simulator and the reference
processor. This overhead is removed from all the execution
time readings to obtain the exact latency of the operations
performed in the loop body. The latency of the body helps
tuning the latencies of the different parts of the processor
with very high accuracy. The loop overhead is measured with
a loop containing only the loop-related instructions, which
include roughly an arithmetic instruction to compute the loop
index and a branch instruction, and also possibly a comparison
instruction in some ISA. The latencies of these instructions
can be obtained from the datasheets, if available. Otherwise,
they can be derived easily. For that purpose, we use a loop
containing N times the instruction whose latency is to be
measured, that is programmed in a way that IL1 misses can
only occur in the first loop iteration, i.e. the loops fits in
the IL1. This way we can approximate the latency of the
instruction analyzed very accurately, since the overhead of the
loop is minimized. Once each instruction latency is obtained
we can set up the simulator with the appropriate latency for
each instruction type.

In terms of implementation, we proceed as follows. We
(automatically) create a set of RSK, each one having a different
instruction type under analysis in the loop. All instructions are
forced to incur cache hits in order not to include the memory
hierarchy latency on the execution time. First, we measure the
execution time of the empty-loop RSK. This execution time
needs to be substracted from the execution time of any of the
RSK that we produce to analyze any instruction. Then, the
execution time difference between the specific RSK and the
empty-loop RSK is divided by N ·M , where N is the number
of instances of the instruction under study in the loop and
M the number of iterations carried out. In order to validate
the behavior of each instruction type, the execution time of the
loop obtained in the simulator and the real board have to match
for each type. Figure 4 shows the results of the instruction

Fig. 4: Instruction timing

validation test for the different instruction types. All results
are normalized with respect to the nop case.

For branch instructions, in case there is a different latency
for taken and non-taken branches, the RSK can be adjusted
to use non-taken or taken branches by setting the branch
address to the exactly sequential instruction so that the control
flow is exactly the same and they can be modeled separately.
In our case, both cases behave equally. For input-dependent
instruction latencies, as it might be the case for divisions or
multiplications, several tests covering the different cases can
be used to profile the different instruction latencies of that
instruction type.

As next step, we address the memory hierarchy by testing
all types of hits and misses on it. For that purpose, the
instruction loop generates hits or misses on the instruction,
data L1 and L2 caches. The same procedure followed here
can be extended for processors with more hierarchy levels. All
caches in our processor have LRU replacement policy, which is
the most common in practice. To generate misses we perform
W + 1 accesses, being W the number of cache ways, to the
same set on each loop iteration. For instance, in the NGMP,
caches have 4-ways so performing 5 accesses to the same set
for different addresses causes that the first 4 accesses fill the
4-ways of the set and the 5th one evicts the 1st one from the
set. When the access sequence repeats, the 1st address misses
and evicts the 2nd address, which misses in turn and evicts
the 3rd address and so on and so forth. The memory accesses
systematically evict subsequent data to be accessed next and
thus all accesses miss in the cache systematically. An easy
way to access the same set is making cache accesses have an
address offset equal to the way size of the cache, i.e., for the
16K L1 cache, 16K/4 ways = 4K. The resulting RSK is shown
in Figure 3. By doing this we guarantee that we miss on that
cache, but we hit on the bigger next level cache. To generate
hits on a certain level of cache, we use the same procedure,
making a loop that misses on the previous level. In the case of
the L1 caches, accesses to the same address generate hits. For
instruction misses, we use five branches physically separated
by the required offset that jump sequentially. For data misses
we use load and store operations with the given address offset.
This benchmark structure is particularly devised for LRU and
FIFO replacement policies. For other types of replacement
policies similar structures can be built to produce systematic
cache misses.

Figure 5a shows the results of the validation for load
hit and misses in both, instruction (IC) and data (DC) L1
caches, normalized w.r.t. the execution of nop operations. Store
operations in the L1 data cache, which is write-through, behave
exactly the same whether they hit or miss since data are



forwarded to the next level anyway. There is a source of
inaccuracy from our model that can be seen on this figure.
Store operations are not exactly modelled due to the presence
of one or more write-buffers that are not accurately described
in the documentation.

In the L2 cache, we have four different types of accesses:
loads and writes that either hit or miss. Loads can be instruc-
tion or data requests, since the L2 cache is unified. Figure 5b
shows the values obtained for the different RSKs that generate
each type of request. We can observe again the difference
for store operations. The L2 cache case is more complicated,
since according to the manual [10], L2 latencies are variable
and depend on previous requests that were accessing the L2
cache, which can come from any of the 4 cores. However, this
behavior is complex to model or test, since requires cycle-level
control of the contention on the L2 cache which is impractical
in reality. In this case, we choose to model a fixed latency,
which reduces the accuracy but simplifies the L2 model.

As last step, we address the multicore contention on
the shared bus. To that end, we use a recently published
method [15] that allows to derive the latency caused by the
contention on the bus. This method allows us to expose the
interference that the cores generate for different types of
request in a given shared resource. We use two different RSK
at the same time, a sensitive RSeK and a stressing RStK. Both
RSK perform continuous accesses to the shared resource under
analysis by using the same technique presented before to miss
in the appropriate cache levels. The RSeK runs on the core
under analysis and the RStK run on the rest of cores, thus
creating a high contention scenario. The method explained
in [15] shows that round-robin arbitration behaves as a time-
multiplexed scheme under a high contention scenario. In this
situation, the access time of the RSeK accesses with respect
to the time-multiplexed window can be varied by inserting a
variable amount of nops between RSeK accesses to the shared
resources. For each access time, the interference experienced
has a different value and follows a sawtooth behavior. This
sawtooth exposes the maximum interference delay on the
bus as the frequency of the sawtooth. Similar analysis can
be carried out in the memory, however, in our case, the
interference occurs mostly on the bus because the bus serializes
the traffic by stalling accesses until the request being processed
is served.

After the contention on the bus is properly adjusted, we
run tests based on a RSK that uses a large fraction of the L2
cache on each core to create interference between the cores.
These can be adjusted to interfere only on the bus or the
memory by exceeding L1 and L2 capacity respectively only
when run together. For instance, given N cores, each RSK
can be designed so that the cache space used, Ci, matches the
following constraint: L2size

N < Ci ≤ L2size. Results of this
part are omitted due to space constraints and will be included
in the final version of the paper.

IV. VALIDATION RESULTS

In this section we show how the simulator performs with
different benchmarks and real applications to show its accu-
racy.

A. Experimental Setup
The processor we use as reference, a.k.a. board, is the

only commercially available version of the NGMP, the GR-

(a) L1 caches access latencies

(b) L2 cache accesses

Fig. 5: Memory hierarchy timing

N2X [12] board. We collect the values from the available
Performance Monitoring Counters (PMC) with the also com-
mercially available GRMON [8] tool. The simulator already
provides all the execution time values as output, without
requiring any tool. The GR-N2X has an ASIC implementation
of the NGMP architecture [10], whose latest implementation
is the GR740 [11].

B. Accuracy Results
For the validation with general benchmarks we use the

EEMBC Autobench suite [18], which mimics some real-world
automotive critical functionalities.

As real applications we use some software provided by the
ESA. As payload applications we use the On-board Data Pro-
cessing (OBDP) and DEBIE benchmark. OBDP contains the
algorithms used to process raw frames coming from the state-
of-the-art near infrared (NIR) HAWAII-2RG detector, already
used on real projects, like the Hubble Space Telescope to detect
cosmic rays. DEBIE is the software that controls an instrument,
which was carried on PROBA-1 satellite, to observe micro-
meteoroids and small space debris by detecting impacts on
its sensors, both mechanically and electrically. As control
application we use the Attitude and Orbit Control System
(AOCS) from the EagleEye project [4] and the thruster vector
control of the Vega launcher (VEGA). AOCS contains the
Guidance and Navigation Control system from the spacecraft
in charge of the correct position and orbit of the spacecraft.
It is one of the most critical systems of a spacecraft, since
a wrong position or orbit could mean the complete loss of
the spacecraft, due to loss of power (not pointing to the sun
for solar powered spacecrafts) or communication (antennas are
directional and have to be properly oriented).

Figure 6 shows the accuracy, at cycle-level, for EEMBC
automotive benchmarks and the four ESA applications. In this
chart we can clearly see, that our simulator offers accurate
results, with 3% of error on average. The lost in accuracy is
caused by the design choices of not exactly modeling some of
the behaviors. For instance the variable integer long instruction
latency, variable L2 miss latency and the write-buffer. Also the
difficulties to properly control and measure the contention in
multicore workloads, makes their modeling difficult.



Fig. 6: EEMBC and ESA benchmarks accuracy results.

Our simulator is able to reach up to 1 MIPS. If we compare
it with the performance of the actual board (around 100 MIPS
for the benchmarks), we observe that we obtained accurate
timing predictions for a tradeoff of performance. There is still
room to improve the execution time of the simulator by tuning
its code, however this is beyond the scope of this paper.

V. RELATED WORK

Computer architecture research heavily relies on simula-
tors since they allow the architect to quickly evaluate the
performance of a wide range of architectures [21]. We can
differentiate two main types of simulators. On the one hand,
we have emulators that focus on the functional simulation and
speed is their main design goal [2]. On the other hand, we
find simulation infrastructures that include both, an emulator
and a timing simulator. In this case, the speed of the simulator
and the accuracy of its behavior are the metrics to optimize
that usually come as a tradeoff [14]. A commercial option
for simulating the LEON architecture are the GRSIM/TSIM
simulators from Gaisler [9].

Simulator validation has been done by measuring the ex-
perimental error with benchmarks that target certain hardware
resources [13][6][17][16] or statistically using Monte Carlo
methods for out-of-order processors [1]. The idea of using
loops to test performance has already been used in [5]. Authors
in [3] improve their simulator accuracy also comparing with
the actual hardware showing the need for a simulator validation
in order to get representative results with the simulator.

However, to the best of our knowledge this paper is the
first attempt to adapt simulator validation processes to the
case of multicores for safety-critical systems, and produce a
methodology portable to other processors in the same domain.

VI. CONCLUSIONS

Accurate but fast timing simulators have been regarded
as mandatory to enable software development even before
delivering actual hardware, to save procurement costs during
development and to perform early schedulability analysis.
However, a methodology to tune and validate those simulators
is needed.

In this paper we apply such methodology through the
particular case of the NGMP multicore targeting the space
domain. By developing appropriate microkernels we are able
to characterize the timing of the main processor components
and develop accurate – yet light – performance simulators. Our

results for the NGMP show an average inaccuracy of only 3%
w.r.t. a real board implementation and different applications
and benchmarks.
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