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Abstract—Tasks running in MPSoCs experience contention
delays when accessing MPSoC’s shared resources, complicat-
ing task timing analysis and deriving execution time bounds.
Understanding the Actual Contention Delay (ACD) each task
suffers due to other corunning tasks, and the particular hardware
shared resources in which contention occurs, is of prominent
importance to increase confidence on derived execution time
bounds of tasks. And, whenever those bounds are violated, ACD
provides information on the reasons for overruns. Unfortunately,
existing MPSoC designs considered in real-time domains offer
limited hardware support to measure tasks’ ACD losing all these
potential benefits. In this paper we propose the Contention Cycle
Stack (CCS), a mechanism that extends performance monitoring
counters to track specific events that allow estimating the ACD
that each task suffers from every contending task on every
hardware shared resource. We build the CCS using a set of
specialized low-overhead Performance Monitoring Counters for
the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space
domain – for which we show CCS’s benefits.

I. INTRODUCTION

As part of the validation and verification process of Crit-
ical Real-Time Embedded Systems (CRTES)1 functional and
temporal requirements need to be assessed to obtain enough
evidence about the proper operation of the CRTES. Testing,
which is an integral part of the validation and verification
process, is intended to find both temporal violations (i.e. a
function overruns its assigned time budget) and functional bugs
(i.e. a given function does not perform its work). The absence
of errors during the testing phase increases the confidence
on the system correct behavior. In this paper we focus on
the temporal validation and verification of CRTES, which
requires deriving execution time bounds for software units
– also referred to as Worst-Case Execution Time (WCET)
estimates. The most common method used to obtain those
bounds is measurement-based timing analysis [42]. In proces-
sor architectures with limited complexity the challenge lies in
finding a set of (program) inputs that lead to the WCET. Tools
have been developed and qualified to help on this task. For
instance, Rapita’s Verification Suite [1] can be used to test
the achieved execution-path coverage with the user provided
inputs. Of course, the level of rigour required varies depending
on the criticality defined for the function under analysis (e.g.
modified condition/decision coverage is required for DAL A
functions under DO-178C [39]).

In recent years CRTES are witnessing an unstoppable
transition towards MultiProcessors System-on-Chip (MPSoC)
– featuring cache memories and multicores – to respond to
the increased performance requirements of CRTES in domains
such as avionics, space and automotive. This, in turn, is

1In CRTES Criticality relates to safety, availability, security, mission or
business needs of the system.

required for CRTES to cope with more sophisticated value-
added software functionalities [41]. MPSoC promised benefits
come at the cost of complicating CRTES temporal verifica-
tion. In particular the contention between tasks in MPSoCs
hardware shared resources has been acknowledged as one of
the most complex elements for temporal analysis [3][30]. This
occurs because the load a given task puts on hardware shared
resources affects its co-runners and vice versa.

For static timing analysis, despite its mathematical rigour,
its correctness rests on the quality of user-supplied data. For
instance, the correctness of the information about hardware’s
internal functioning – used to derive timing models of the
hardware – is heavily challenged in MPSoCs [3]: hardware is
so complex that even the information provided in processor
reference manuals is subject to several errata releases as
undiscovered timing behavior appears [18][5]. In other cases,
the lack of information of the impact of contention in hardware
shared resources makes industry rely on measurement-based
techniques to derive such information [30] and provide it as
input to the static timing analysis tool. Measurement-based
timing analysis also faces several difficulties, in particular cap-
turing in the performed tests all the hardware/software factors
impacting execution time, which is increasingly becoming an
unaffordable task [3]. The dependence of execution time on the
task under analysis, its co-runner tasks and the shared resource
access policies can potentially cause a state explosion in the
set of experiments to perform.

It follows that no WCET technique provides full confidence
on derived execution time bounds for MPSoC. In particular, the
estimated bounds for the Worst Contention Delay (WCD) in
hardware shared resources are exposed to several inaccuracies
that decrease the confidence on them [13]. In this scenario,
confidence can only be regained via proper testing in the
validation and verification phase. Whenever a task overruns
it is key determining whether the overrun is caused by the
contention on the hardware shared resources or it is due to the
application intrinsic (in isolation) behavior. In the former case,
one would want further information on the resource where the
contention delay is taking place and which of its contenders
is causing it. This would be very valuable information for
validation, verification – acknowledged as time and effort
consuming steps – and optimization purposes.

This paper makes the case for the Actual Contention Delay
(ACD) metric and the Contention Cycle Stack (CCS) approach
to improve the temporal-related testing of MPSoCs. ACD
captures the time tasks spend stalled in a shared resource
due to contention with their co-runner tasks. The CCS is
a stacked representation of a task’s ACD to understand the
particular contention time the task spends in each shared
resource. For each such resource the CCS also allows deter-
mining the contending task causing the contention. The use
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of CCS brings benefits at different abstraction levels, both
during the integration tests and once the system is deployed.
This includes (i) determining whether a task overruns due to
(unnoticed) systematic hardware failures or software faults; or
(ii) the overrun is caused by inaccuracy of the WCD used
by the timing analysis tool; and (iii) optimizing energy usage
and average performance by scheduling tasks such that ACD
is reduced. Overall, our contributions in this paper can be
summarized as follows:
1) We make an in-depth analysis of the Performance Mon-
itoring Counters (PMC) provided in several processor chips
targeting high-performance and real-time domains including
designs by IBM, Intel, Freescale, ARM and Gaisler. Rather
than providing an exhaustive list of PMCs, we focus on
the events related with contention that PMCs can track. Our
analysis reveals that, despite some of the studied architectures
having hundreds of PMCs, they are not meant to track ACD,
which prevents deriving the CCS in a cost-effective manner.
2) With focus on the GR740 processor – which implements
the latest NGMP (Next Generation Multipurpose Processor)
architecture and which is planned to be used by the European
Space Agency in future missions – we propose a new set
of low-overhead CCS-aware PMCs for the two main shared
resources in the GR740: the AHB AMBA bus and the memory
controller (note that the L2 cache is partitioned using the
hardware support provided by the GR740, so tasks suffer no
contention delay in this resource).
3) We evaluate our proposal in two solid setups. First, a GR740
simulator whose accuracy has been tested to be 97% at cycle
level for EEMBC and real space applications against an ASIC
implementation. And second, the CCS-aware PMCs for the
AMBA bus are implemented in a FPGA with a real version of
the GR740. For both setups, our results show that CCS-aware
PMCs effectively capture the contention delay suffered by
each task which we present with CCS. We also show that our
proposal incurs low hardware cost since it reuses the available
PMC infrastructure in the GR740, which is multiplexed for
different event counts, adding only 16 new events and its
corresponding wiring on the FPGA.

Overall, CCS increases the confidence on the bounds of
tasks’ WCD, and hence the CCS becomes an instrumental
means for the testing of CRTES – arguably the only way to
consider increasing dynamic contention in MPSoCs. In case
of a task overrun, CCS allows to ascertain whether this is due
to an inaccuracy in the model or it is due to other systematic
behaviors intrinsic to the task or the hardware. Finally, CCS
also enables other scheduling optimizations.

The rest of this paper is organized as follows: Section II
presents the problem attacked and the expected results. Sec-
tions III presents a taxonomy of the PMC in the architectures
studied in this paper based on the detailed analysis done in
Section VI. Section IV shows our proposal of CCS aware
PMCs. Section V evaluates our proposal. Section VII presents
the most relevant related work. Finally, Section VIII presents
the main conclusions of this paper.

II. THE CONTENTION CYCLE STACK
During the analysis phase of the system, bounds are derived

to the WCD that a task can suffer. At deployment (operation)
tasks suffer delays due to contention, which we call actual
contention delay (ACD). It is worth nothing that, while several
works focus on deriving bounds to WCD, understanding the

Fig. 1: Synthetic CCS for a given Task1 on a quad-core. Note that
we usually represent the CCS vertically, though for space constraints
this figure presents it horizontally.

ACD that tasks suffer has been barely studied in the literature.
In this paper we show the benefits that deriving ACD brings
for validation/verification and optimization purposes.

A. Introduction to the CCS
Figure 1 shows a synthetic example of the CCS of a given

task2, Task1, derived for a 4-core processor with a shared bus
and memory (the L2 is split per core), when Task1 runs in
a workload with Task2, Task3 and Task4. Under each CCS
component we stack3 all the cycles that Task1 spends on a
given resource. The core component covers the time Task1
spends executing locally in the core (28% in the example).

For the off-core resources, the CCS breaks down per task
the time in each component. For instance, the bus component
covers the cycles, called working cycles, in which the processor
is stalled due to the processing of a request in the bus, labelled
as Task1; and the cycles in which Task1 is waiting to get
access to the bus while Task2, Task3 and Task4 are using it,
called contention cycles. In the figure, we observe that Task1
is stalled during 24% of its overall execution time due to
the bus: 4% of the cycles to handle its own requests, while
4% waiting for Task2, 8% for Task3 and 8% for Task 4.
Likewise, the CCS also provides information about Task1’s
working and contention cycles in the L2 cache and memory
controller. The shaded elements in each component represent
Task1’s working cycles, i.e. its behavior in isolation, while
the other elements provide information about the time Task1
spends stalled in each shared resource due to contention caused
by each contending task.

B. Applicability
Temporal Validation and Verification. Deriving bounds

to the contention delay in MPSoCs, either by building timing
models to feed static timing analysis tools or using measure-
ments, is challenging. In both cases the complexity of MPSoCs
affects the confidence one can put on the derived bounds.

For timing models, one could infer the contention that
requests accessing a shared resource cause on each other from
the reference documentation. However, manuals are becoming
multi-thousand documents so extracting timing information is
an error-prone process. As a matter of example, some parts
of the Freescale P4080 specification have 2,000 pages [17]
and the Infineon XMC4500 microcontroller documentation has
more than 2,500 pages [21]. Even if the chip vendor explicitly
provides this information in the manuals, it is the case that
MPSoCs documentation can be inaccurate or outdated with
respect to the deployed chip implementation [3]. For instance,
the FreeScale e500mc core documentation has already reached
the third revision with details about non-negligible changes

2In this paper, for the sake of simplicity, we consider a correspondence
between task and core, i.e., TaskX runs in CoreX.

3Cycles in each component do not occur consecutively during the execution
of the task. In the CCS we stack those cycles (and show them) consecutively.



TABLE I: Analysis of whether each processor contains PMC in each of the categories identified in our taxonomy (Detailed
description provided in Section VI).

Cycle Count Event Count Data Count Current Events
Use Busy Idle Use Busy Threshold Inst. Type

IBM 3 3 3 3 3 7 3 3 7
Intel 3 3 3 3 3 3 3 7 3
ARM 3 3 7 3 3 7 3 7 7

Freescale 3 3 7 3 3 3 3 7 7
GR740 3 3 3 3 3 3 3 7 7

across revisions [18]. Similarly, the documentation of pro-
cessors such as the ARM Cortex R5 – specifically targeting
CRTES – have abundant errata [18][5] despite being relatively
simple. All these difficulties have made that real-time industry
and static timing analysis tool providers use measurement-
based approaches to derive contention bounds [30].

With the goal of deriving bounds to WCD, several
measurement-based techniques exist that use specialized ker-
nels, called resource stressing kernels (rsk) [14], which aim
at putting high, ideally the highest, load on shared resources.
Those rsk are used to put a given task under analysis under
stressful contention scenarios. When there are several shared
resources, it is virtually impossible to design a rsk that puts
the highest load on all of them simultaneously [34]. Hence, it
is hard – if at all possible – to determine from the execution
time whether, under a given workload, a task hits the WCD in
one shared resource and not in another or whether the WCD
was not hit for any of the resources.

The CCS allows determining the ACD a task suffers per
resource (and per task) which enables verifying and validating
contention bounds by determining how close is the ACD to the
theoretical WCD. The CCS can be used in those scenarios to
provide evidence about the validity of contention time bounds
– increasingly derived with measurements [30][13] – such that
the contention suffered by the task in the workload matches the
worst possible latency it can suffer [31]. Also, in case a bound
is exceeded, the CCS can detect it and identify the reason
behind it. For instance, assuming that Task 1 in Figure 1 had
an overrun due to Tasks 3 and 4 memory contention, the CCS
allows identifying this situation by providing the information
that memory contention is 38%, having Tasks 3 and 4 a 15% of
impact each. CCS also provides the execution time in isolation
just by removing the ACD. For instance, if Tasks 2, 3 and 4
are removed from the CCS in Figure 1, what remains is the
execution time of Task 1 when no other core is running.

Optimization. The CCS provides valuable information that
can be used for optimization purposes. For instance, the CCS
allows identifying, in the example in Figure 1 that Task 1
spends 43% of its execution time in memory, 30% of which is
due to interference from Tasks 3 and 4. In such a case system
designers can either reduce memory accesses from Task 1 by
improving cache locality of accesses or prevent Tasks 3 and 4
from being scheduled together with Task 1. Such optimizations
bring the advantage of having more slack in the schedule,
so that other tasks can also be consolidated onto the same
hardware platform, or some energy can be saved.

To obtain the CCS we need detailed information of the
processor events affecting its timing, which is obtained through
its PMC. In the next section, we analyze those PMC available
in some MPSoCs useful for measuring contention.

III. TAXONOMY OF PMCS IN REAL MULTI-CORE
PROCESSORS

We have analyzed in detail the available information about
the PMCs of the IBM POWER7, the latest Intel architectures,
the ARMv7-A, the Freescale P4080 and the GR740. Our goals
are identifying the type of events that can be tracked with
those counters and whether this can be used to build the CCS,
rather than presenting an extensive list of all counters of the
analyzed architectures – that in several cases exceed 500. It is
worth noting that, since our focus is on contention interference
effects, we analyze the trackable events on hardware shared
resources. From this perspective, the events happening inside
the computing cores private resources (e.g. pipeline and local
caches) are of no interest.

From our analysis we have produced a PMC taxonomy and
have derived some conclusions on PMC that hold across all
platforms. For readability reasons, we defer a detail explana-
tion of the PMC support in each architecture to Section VI
and we focus on this section on the result of the analysis, i.e.
the taxonomy which is shown in Table I.
Cycle count covers those counters that measure time (cycles)
. This is further broken down into the following. Use: number
of cycles that a resource is in use; Busy: number of cycles that
a resource is unavailable and causes a core stall. And Idle:
number of cycles that a resource remains unused.

Event count category groups those counters that measure the
number of times an event happens. This category is further
divided into the following. Use: number of times a resource
has been accessed; Busy: number of times a resource has been
unavailable because it was busy; Threshold: number of times
a set threshold has been exceeded; And Instructions by type:
number of times an instruction of a given type is executed.
Data count covers the counters that measure the amount of
data transferred or managed.
Current events groups those counters that provide the current
status of the processor.

We find few counters that help understanding to some
extent the effect of contention interferences:

POWER7: The PMC PMC-CMPLU-STALL-THRD provides
the number of cycles a task is stalled due to inter-task
interferences in the reorder buffer (a.k.a. as Global Completion
Table). No information on contention in core-external shared
resources is provided.

Intel: The MEM-TRANS-RETIRED.LOAD-LATENCY
counter can be configured to track the number of times
memory load operations latencies exceed a user defined
threshold. This allows the user to approximate the worst
observed behavior, and to upper bound it. However, such
counter neither measures actual contention nor identifies the
reasons behind such contention.

GR740: PMCs can be configured in maximum count mode.
While in this mode, the counter keeps the maximum amount



Fig. 2: GR740 Processor architecture.

of time the selected event has been asserted. It is also possible
in this mode to count the maximum amount of time between
two event assertions. Maximum count mode might be useful as
a first step to implement CCS PMCs. Using Maximum Count
Mode it could be possible, for example, to count the longest
burst of bus cycles, or the longest amount of time the bus has
been without having a read access. As in the case of Intel and
IBM counters, these counters are neither designed to measure
actual contention nor to identify the cause of such contention.

In all the studied architectures, PMCs are used to improve
average system performance by monitoring software execu-
tion, characterizing processor behavior, and/or helping system
developers bring up and debug their systems, but their focus is
not monitoring contention or interferences across tasks, so they
do not help deriving the CCS. We note that some information
about contention interference can be derived in controlled
scenarios by means of experimentation. For instance, in a
first experiment the program under study is run in isolation
recording cycle count PMC readings. In a subsequent set of
experiments the program under study is run again as part of a
workload. By subtracting the PMCs in the first run from those
in the second run some inter-task interference information can
be obtained, though likely it will not be precise on which
shared resource and which task caused it. Furthermore, this
process is complex due to reproducibility issues and, in some
cases, because the system cannot be used to carry out those
extra runs. For instance, if a deadline is missed in a fail-safe
system (1) it may be difficult – if at all possible – to reproduce
the scenario that led to the deadline miss and (2) the system
cannot be used to run some experiments because it would
jeopardize its availability given that its operation needs to be
quickly resumed.

IV. PMC PROPOSAL FOR OBTAINING CCS
The CCS provides a representation of the working and

contention cycles of each task (τi) running in a multicore.
Tasks spend some processing cycles at core level4, pi, and
some others accessing core-external hardware shared resources
(R) that cause cores to stall and consume cycles, si. For each
shared resource r ∈ R, stall cycles are broken down into
working cycles, wri , and contention cycles, cri . The former
corresponds to the cycles τi spent actually using the resource,
as it happens when running in isolation, i.e. without contention.
The latter covers the cycles in which τi was stalled due to

4We include in this category also cycles in which the pipeline is stalled (no
instruction can be fetched) due to a local stall, for instance a floating-point
operation blocking the processor due to its long latency.

some inter-task (contention) interference activity generated by
another contending task τj . In our reference architecture, the
CCS can be expressed as shown in Equation 1:

ti = pi + si = pi +
∑
r∈R

(wri + cri ) (1)

Let c(τi) be the (contending) tasks executing at a given
point in time with a given task τi. The number of tasks in
c(τi) varies from 0 to Nc− 1, i.e. the number of cores minus
one. For τi, its CCS for each resource cri , can be further broken
down so that it provides information about the contention each
of its contenting tasks cause on τi, called cri←j .

cri =
∑

τj∈c(τi)

cri←j (2)

By combining Equation 2 and Equation 1, the CCS can be
expressed as shown in Equation 3:

ti = pi +
∑
r∈R

wri + ∑
τj∈c(τi)

cri←j

 (3)

In this paper we explore the cost and benefits of the CCS in
the Cobham Gaisler GR740. This is a representative MPSoC
planned to be used for years by the European Space Agency
in future on-board systems in space missions.

A. Cobham Gaisler GR740
The GR740, sketched in Figure 2, is a system-on-chip with

four 32-bit LEON4 SPARCv8 processors. Each core comprises
private instruction (IL1) and data (DL1) caches, and write
buffers. Cores do not stall unless waiting for either a read
miss in any of the L1 caches or write requests that find the
write buffer full. In both cases, the core accesses the L2 cache
through a shared bus in which it either gets the bus granted
and transfers the request or waits for other cores accessing the
bus. DL1 is write-through, L2 write-back and all caches use
LRU replacement policy. The bus connecting the cores to the
L2 cache uses a round-robin arbitration scheme.

The GR740 implements hardware mechanisms to partition
the L2 cache so that each core can only access its assigned
cache ways. Hence, there is no contention once a request
arrives at the L2 and all cycles spent in the L2 are working
cycles. If the request misses in L2, it accesses memory. The
memory controller behaves as a FIFO queue, with the request
on top accessing memory, i.e., consuming working cycles,
and the other requests in the queue waiting, i.e., consuming
contention cycles.

B. CCS for the GR740
The GR740 comprises three main on-chip hardware shared

resources, the memory, L2 cache and the bus, so R = {mem,
L2, bus}. Building the CCS for the GR740 requires deriving
the processing cycles (pi) for the core where the task under
analysis is, working cycles (wri ) for each shared resource and
contention cycles (cri←j) for each contending task in the bus
and the memory. The L2 cache is a special case because it is
partitioned, which means that contention on the access to it is
removed, i.e., cL2i←j = 0 for all τi, τj .



Fig. 3: CCS module and input/output signals.

C. Processing and stall cycles
We deploy existing PMCs in the GR740 to derive pi. In

particular, we use the execution cycles, ti, and the stall cycles,
si to compute processing cycles as pi = ti − si. Execution
cycles ti are obtained from existing PMC (processor event
time:0x15 [11]). When deriving si it is worth noting that the
stall cycles are obtained as a combination of three existing
PMCs since the cycles that the processor is stalled, si, are
caused by the i)IL1, ii)DL1 or iii)the write-buffer when they
wait for a request to be completed outside of the core. These
three events can be directly measured from their respective
available PMCs (processor events ichold:0x02, dchold:0x0A
and wbhold:0x10 [11]) and their addition gives si.

D. Working and contention cycles
Our extension to the GR740 PMC infrastructure consists

in adding new low-overhead PMCs that allow accounting
for wri and cri←j for the bus and the memory. L2 working
cycles, wL2i , can be obtained indirectly from available PMCs.
Since hit and miss latencies are known, and available in the
documentation [11], an estimate of the time spent in the L2
cache can be derived using these latencies and the number of
hits and misses, which can be directly measured from their
respective PMCs (events l2hits:0x60 and l2miss:0x61 [11]).
If L2 latencies were not available in the documentation, L2
working cycles could be easily obtained as the remaining
execution time cycles, since all the cycles, except L2 cycles,
can be accurately classified as either core, bus or memory
cycles. Note that all L2 cycles are working cycles, because
there is no contention in the L2.

For the bus and the memory, working (and contention)
cycles cannot be indirectly obtained from available PMCs.
For instance, the GR740 provides PMCs to count the number
of bus accesses, however, since the latency per access is not
fixed – and in some cases depends on other components [23]
– working and contention cycles cannot be derived.

We propose extending the available processor’s statistics
unit, called L4STAT in the GR740, with new events needed
by the CCS, called CCS module (CCSm). Figure 3, sketches
the CCSm and how it is connected to other hardware blocks
in the GR740. Each shared resource provides two pieces of
information to the CCSm on every cycle: the core that is using
the resource, which allows tracking the working cycles, and the
cores that are waiting for the resource, which allows tracking
if a core is interfered and in that case, the actual core using
the resource is designated as the interferer.

It is worth noting that certain resources inside the core,
such as the write-buffer, can hide the latency of some requests.
This makes that even when there are outstanding requests in
the bus or in memory, the processor core is not necessarily
stalled, since the write-buffer can hide that latency. The CCSm

requires identifying the cycles that the processor is stalled to
know if it should account cycles in shared resources, either as
working or contention cycles. Otherwise there would be more
accounted cycles than cycles spent in reality, thus reducing
the accuracy of the CCS.5 For instance, if the write-buffer
hides the latency of a write request, even if that request is
using the bus, the core is working, thus consuming processing
cycles and those cycles should not be accounted for the bus.
For that purpose, the core should provide a stalled signal to
the CCSm, indicating whether the core is stalled waiting for a
request or not. As mentioned at the beginning of this section,
the stalled signal can be easily obtained as a combination of the
three trigger signals for the PMCs that measure the cycles that
IL1, DL1 or the write-buffer are waiting for a request, which
correspond to the stall cycles of the core, as seen before.

Although in theory some events could overlap, and so
some cycles could be accounted twice, this occurs seldom in
practice. In particular, a core may have two requests in flight
simultaneously (one in the bus and another in the memory
controller). However, this can only happen if the first request is
a write operation – so it does not stall the core – and the second
one a read operation. In this case, since the write operation
cannot stall the execution, any stall due to contention or access
delay is accounted to the second request, since it is the only
one that can impact execution time. Still, our results show that
the frequency of occurrence of that combination of events is
negligible in practice.

E. Shared AMBA AHB bus
One of the most important hardware shared resources in

the GR740 (and in many other MPSoC for real-time systems)
is the backbone bus, since it connects the different cores with
the memory/cache subsystem (and possibly other devices or
subsystems). The Advanced Microcontroller Bus Architecture
(AMBA) [6] is one of the most – if not the most – broadly used
bus interface. AMBA is used in a wide range of architectures,
providing flexibility in the implementation and backward-
compatibility with existing AMBA interfaces. AMBA AHB
is used in multicore processors for real-time industry, e.g.
LEON3-based GR712RC [9] and LEON4-based GR740 [11].

A recent study [23] shows that a single AMBA request
from a given task can block other tasks’ accesses to the
bus for long periods. This reinforces the need to have the
CCS for the bus. In [23] authors also talk about the high
cost that changing the AMBA interface would incur, specially
regarding compatibility and development/usage of third-party
intellectual-property cores. Therefore, our PMC support for the
AHB AMBA bus must not require any change in its interface.

Under the AMBA protocol, the arbitration process involves
several hardware blocks (the arbiter and one or several mas-
ters) and several signals. We focus on two of these signals:
HBUSREQi and HGRANTi. Master mi asserts HBUSREQi to
indicate the arbiter that it is requesting the bus. The arbiter
asserts HGRANTi when it grants access to mi, according
to its arbitration policy (not specified by AMBA protocol,
though in our case is round-robin [11]). As an illustrative
example, Figure 4 shows one arbitration process6 for m1.
Once master (core) 1 is ready to send a request, it asserts the

5This also stands for the counters that count L2 hit/miss, counting only when
the processor is stalled. Otherwise, original PMCs would account hits/misses
for write requests that do not stall the processor.

6The timing on the figure is an abstraction of the real AMBA timing, see
section 3.11 of [6] for details.



Fig. 4: Simplified AMBA arbitration process.

HBUSREQ1 signal. At that point in time, core 2 is using the
bus, since HGRANT2 is active. In this example, let us assume
that core 3 and core 4 are also waiting for the bus (HBUSREQ3

and HBUSREQ4 are active) and according to the round-robin
arbitration policy they both have higher priority than m1 at
this point. The figure shows how the grant is passed from m2

to m3 and m4 respectively. When the arbiter grants access to
core 1, it sets the HGRANT1 signal for m1.

We propose to forward HBUSREQi and HGRANTj signals
from the arbiter to the CCSm. By checking these signals the
CCSm infers on each cycle which master mj is using the bus,
thus the working cycles wbusj , and whether another master mi

is waiting for master mj , i.e. the contention cycles cbusi←j . Our
proposal maintains the same bus interface, since no signals are
introduced or modified. We simply forward the existing signals
to the CCSm as shown in Figure 5. The CCSm has Nc×Nc =
16 Bus Contention Counters (bcci,j). bcci,j stores the number
of cycles that (HBUSREQi) & (HGRANTj) holds. bcci,j where
i 6= j hold the contention cycles that master i suffers from
master j, i.e. cbusi←j . Counters bcci,i store the working cycles
that master mi uses to process its requests, i.e, wbusi . In the
bottom part of Figure 4 we show how cycles are accounted
for core 1.

It is worth noting that the HBUSREQi and HGRANTj
signals are common to other bus interfaces such as Wishbone
(grant and cycle signals), Avalon (waitrequest and read/write
signals), VCI (valid and acknowledge signals) or CoreConnect
(command and response send and accept signals). For other
types of interconnects, such as AMBA AXI, similar signals
are available that allow to monitor the interconnect usage.

Overall, our approach to account CCS does not change
the AMBA interface or protocol. Instead we simply snoop
the AMBA AHB arbiter signals and with this information we
measure the time that a given task waits for the others when it
tries to get access to the bus and the time that spends using it,
so that all types of accesses are captured [23]. The hardware
cost in terms of storage is 16 counters ×32 bits each. That is
64 bytes.

F. Memory controller
The memory controller comprises a FIFO queue, with one

entry per core, the memory bus, and a command translator
that translates AMBA requests into DRAM commands. When
a request from a core ci arrives at the FIFO queue, if the
queue is empty, it is put at the top of the queue and accesses
the memory immediately. Otherwise, when other requests are

Fig. 5: AMBA Signals and CCSm.

in the queue, it has to wait for them to finish since the memory
bus and memory controller only accept one request at a time.
The former corresponds to the time the request takes to be
processed once it is granted access and it cannot be further
delayed by any preceding request. The latter is the time the
request waits to get access to the memory controller.

At any given cycle, the core using the memory could be
determined if information is provided about the id of the core
that is at the top of the FIFO queue, and hence whose request
is being processed. The id of the requests in a FIFO queue
entry – other than that at the top position – are those cores
suffering contention. Hence, the knowledge of the core id for
each request in the FIFO queue is needed. In the GR740, the
id of the core generating a request is kept in the AMBA AHB
as master id. However, once the request accesses the L2 this
information is no longer kept.

Intuitively this would require keeping the core id on every
L2 cache line, which would incur a significant increase in the
L2 cache size. However, in reality the core id is kept in the
Miss Status Holding Register (MSHR) of the L2 cache. The
process goes as follows. On the event of an access to the L2,
the L2 cache determines whether that access is a hit or a miss.
In case of a miss, the request is stored in the MSHR with the
core id as part of the miss request, to be able to respond to
the appropriate master afterwards.

Our proposal propagates the core id from the MSHR to
the memory controller FIFO queue. When a request is sent
from the L2 to the memory controller it is tagged with the
core id. Both the MSHR and the FIFO queue are relatively
small with sizes up to 8/16 entries in general. In our case both
have 4 entries. Hence our proposal incurs an increase in area
of 4× log2(Nc = 4) = 8 bits (1 byte).

In terms of logic, each position in the FIFO queue sends
a signal to the CCSm with the core id of the request in that
position, if any. The core i at the top of the FIFO queue,
FIFO(0) = i, is the one accessing the memory and the
rest of the cores in the FIFO queue, j ∈ FIFO|j 6= i, are
those interfered by i. The CCSm considers working cycles in
memory for core i, those cycles when the core is at the FIFO’s
top entry. If there is any other request from another core j in
the FIFO queue, the CCSm accounts contention cycles in the
memory for them caused by core i.

The CCSm has Nc × Nc = 16 Memory Contention
Counters (mcci,j) for the memory controller with an associated
size of 16×32/8 = 64 bytes. Counter mcci,j stores the number
of cycles that (FIFO(0) = i) & (j ∈ FIFO) holds. Counters
where i 6= j hold the contention cycles that core j suffers from
core i. Counters with i = j store the working cycles that core
i uses to process its requests.



Fig. 6: EEMBC with different contention workloads.

V. EVALUATION
We carried out the evaluation of CCS under two different

setups, both focusing on the GR740 [11]. First, we model
the GR740 on a simulation tool in which we implemented
the PMCs presented in Section IV. In our second evaluation
environment we focus on an FPGA model of the GR740 in
which we implemented the PMCs for the bus, the CCSm and
their signals.

Benchmarks. As reference applications we use the
EEMBC Autobench suite [33], which behave as some real-
world critical applications. In particular we use: a2time, aifftr,
aifirf , aiifft, basefp, cacheb, canrdr, idctrn, iirflt, matrix,
pntrch, puwmod, rspeed, tblook and ttsprk. We also developed
a set of synthetic kernels that inject constant high pressure
either on the shared bus or on the shared memory. The Bus-
Stressing Kernel, or bsk, comprises memory read requests that
always miss the L1 and hit the L2, thus maximizing the traffic
on the bus. This is done by having 5 memory accesses that
access the same set of the L1 cache, thus exceeding its 4
ways. These accesses hit on the L2 cache by targeting different
sets on the L2 cache. The Memory-Stressing Kernel, or msk
comprises memory read requests that always miss on the L1,
but in this case they also miss on the L2, following the same
procedure of targeting the same set, done for the L1. When our
task under analysis runs against three of these kernels, it finds
very high contention on the bus or the memory respectively.

For simplicity, in our experiments we run four-task work-
loads in which the task in core 1 (also referred to as task 1) is
the task under analysis (TUA) for which the CCS is derived.
The tasks on the other cores are considered contending tasks.

A. Simulator evaluation
Setup. We model the GR740 [11] running at 200MHz

using a modified version of the SoCLib [38]. Each core’s
private instruction (IL1) and data (DL1) caches are 16KB, 4-
way with 32-byte lines. The shared second level (L2) 256KB
cache is split among cores, each receiving one way of the L2,
so that inter-task contention only happens on the bus and the
memory controller. With DRAMsim2 [40] we model a 2-GB
one-rank DDR2-667 [27] system. We validated the simulator at
cycle-level against the NGMP implementation in the N2X [12]
evaluation board, as part of an internal study carried out in
the European Space Agency. A low-overhead kernel allowed
cycle-level validation. The deviation in terms of accuracy is
less than 3% on average for EEMBC benchmarks and 1% for
the NIR HAWAII benchmark [24].

Fig. 7: cacheb EEMBC in different workloads.

We implemented the CCSm and its signals, as presented in
Section IV, including the PMCs required to directly measure
the working and contention cycles on the bus and the memory
controller. With these modifications we build the CCS directly
from the measures obtained from the PMCs in one execution.

Timing Validation. In our first experiment, we use the
CCS to cross validate two different methods deriving bounds to
the WCD tasks suffer accessing GR740 shared resources. For
that purpose we run each EEMBC benchmark under different
4-task workloads and collect the ACD obtained with CCS and
compare it with the expected WCD.

WCD bounds with measurements. In this case we run each
EEMBC against several copies of the bsk or msk, which are
expected to generate high (potentially the highest) contention
in the bus and the memory to the TUA.

Theoretical WCD bounds. In this case, WCD bounds are
predicted by multiplying the number of accesses the bench-
marks does to the bus (and the memory) by the maximum
delay each request can suffer – called Upper-Bound Delay or
ubd [31] – in the access to the bus (and the memory). In the
case of the bus, assuming that all accesses target the L2 cache,
ubd-bus is 27 cycles that corresponds to the latency of three
contending cores sending requests that have the highest latency
(9 cycles) in our setup. In the memory case, ubd-mem is 69
cycles that corresponds with three complete row accesses of
the contending cores, i.e. 3 · tRC , with tRC = 23.

Figure 6 shows the CCS obtained when running each
EEMBC benchmark in isolation (isol); when using the
measurement-based WCD model that runs each EEMBC
against either three bsk or msk; and when using the theoretical
WCD model for which the CCS for ubd-bus and ubd-mem are
constructed replacing the interference on bsk and msk with the
theoretical ubd for each resource respectively or for both in
the ubd-bus+mem case. For simplicity, Figure 6 shows results
averaged across all the EEMBC Autobench.

We observe that the measurement-based WCD model, even
if bsk and msk put a high load on the resource, never exceeds
the bounds provided by the theoretical ubd-based model. In
particular for every shared resource and contending task the
theoretical bounds are higher than the measured ones.

This experiment shows that the approach based on running
each TUA against 3 copies of msk and bsk does not capture
that theoretical bound. For the case of bsk we observe that
these three benchmarks generate some activity in the memory
(i.e. Mem Task2, Mem Task 3 and Mem Task 4 are non
zero). This can be the reason why these benchmarks do not
generate maximum contention delay in the bus. Said that, it is
the case that this models approximates quite well the maximum



Fig. 8: r-bsk under analysis against different bus contenders.

theoretical value using ubd in both, bus and memory, but not
in a combined manner [34] as shown in the rightmost bar
(ubd-bus+mem) of Figure 6.

The result of this experiment also shows that in the experi-
ments done nothing suggests that theoretical WCD bounds are
violated for any of the contender tasks in any resource. This
increases confidence on the validity of those bounds.

Scheduling Optimizations. In our second experiment we
show how CCS could be used to improve other system metrics.
For this experiment we choose cacheb EEMBC benchmark as
TUA. Figure 7 shows the CCS obtained for the TUA under
different workloads, composed of randomly picked EEMBC
benchmarks. First, we see that most of the interference is
suffered on the bus, because the L2 is filtering the accesses
to the memory. We also see that Task2 in workload 2, i.e.,
(wkld:2,task:2)=(2,2), has high impact of TUA’s execution time
due to the interference on the bus. On the other hand, (2,3),
(3,4) and (4,2) have a low impact on TUA’s execution time.
This information can influence the scheduling decisions, for
instance, allocating the tasks with the highest interference, such
as (2,2), into the same core as the TUA so that they do not
interfere each other.

B. FPGA Evaluation
Setup. We implemented the CCS for the AMBA AHB

bus on a real GR740 FPGA prototype using a Xilinx ML510
evaluation board. In particular we implemented the bus CCS-
aware PMCs that measure the working and contention cycles
on the processor AHB bus. We used the commercially available
Cobham Gaisler GRMON2 [10] debug monitor software to
directly extract the CCS from the statistics unit (L4STAT) of
the GR740, without affecting execution. The CCS is directly
constructed from the readings obtained in one execution of the
task, i.e, no further post processing is required.

The real cost of the modifications is low since we reuse
the available counters and infrastructure of the GR740 L4STAT
unit. Our PMCs just require the wiring of the AMBA signals,
which corresponds to 8 1-bit signals, that is 4 HBUSREQ and
4 HGRANT signals. The cost of the wiring depends on the
target technology, synthesis tool and design size.

As TUA, we use bare-metal resource stressing kernels that
put high load on the bus using either read or write bus requests,
called r-bsk or w-bsk respectively.

Evaluation. To evaluate the design we use different bsk
contenders with different type of requests, read or write
that either hit (read-hit, write-hit) or miss (read-miss, write-
miss) on the L2. Each type of request causes a different bus

Fig. 9: w-bsk under analysis against different bus contenders.

contention due to the different behavior of requests and L2
latencies.

Figure 8, shows the CCS when taking as TUA r-bsk against
different workloads consisting of different types of bsk, shown
on the x-axis. We observe that the worst effect is caused by
the read-miss workload, followed by the read-hit. This happens
because read requests that miss on the L2 hold the bus while
accessing memory. On the other hand, read requests that hit on
the L2 do not access memory, thus, requiring less time on the
bus. We also see that write-hit and write-miss workloads have
the same effect on the bus, which is smaller than both read
workloads. This happens because write requests only require
an acknowledge and are immediately responded, even if they
miss on the L2.

The rightmost bar in Figure 8 shows a mixed scenario,
in which Task2 uses write misses, Task3 read hits and Task4
read misses. The obtained CCS effectively demonstrates the
capabilities to identify the contender with the highest interfer-
ence in a workload in which contenders have different resource
usage profiles, Task4 in this case.

Figure 9 shows the same contention scenarios using w-
bsk as TUA. As shown, the bus working cycles reduce in
comparison with Figure 8, because write bus requests from w-
bsk take much shorter time in the bus than read requests due
to the longer L2 cache read hit latency. We observe the same
contender behavior with similar amount of contention, even
though w-bsk requires less time on the bus than r-bsk. This
happens because contention mostly depends on the amount
of interfered requests and not on their duration, since once a
request accesses the bus, it cannot be preempted.

Overall, CCS provides valuable and accurate information
to build and validate timing models and WCD bounds.

VI. PMC SURVEY

In this section we provide further details on the PMC
support of different architectures that can be useful to measure
contention in shared resources to some extent.

IBM. The IBM POWER7 [25] is an 8-core multicore
in which each core is 4-thread Simultaneous Multithreaded.
Each core is divided into two clustered execution pipelines,
with each one supporting two threads. Program performance
analysis in such an aggressive core architecture with resources
shared among different threads is complex. The POWER7
processor comprises a Performance Monitoring Unit (PMU)
with six thread-level PMCs. Four of these are programmable
from software to monitor the desired (four) events at the same
time. There are more than 500 possible performance events



that can be read.
Based on our analysis of the POWER7 we identified

counters for cycle utilization, busy and idle cycles, occurrences
of a number of events, instructions of each type executed, and
the amount of data transferred. PMCs in the threshold and
current events were not found.

Intel. Usually Intel processors feature superscalar exe-
cution, complex branch predictors, out of order execution,
and several levels of cache memories. Provided PMCs fo-
cus on providing performance metrics for a single process
with counters for analyzing branch predictor effectiveness,
cache misses due to speculative execution, coherence protocol
metrics, etc. Most counters can be configured to measure
events for either from a core or all the cores, an agent or
all agents, and other kinds of specific qualifications (such as
detection of all events/exclude prefetching events, or counts
for different states for the coherence protocol used). In this
work we have analyzed the PMCs available in the following
Intel architectures: Haswell (Xeon E3-1200 v3), Ivy Bridge
(Xeon E3-1200 v2 ), Sandy Bridge (Core i7-2xxx, Core i5-
2xxx, Core i3-2xxx, Xeon E3-1200), Nehalem (Core i7, Xeon
5500 Series), and Westmere (Xeon E7-xxxx).

Intel’s PMCs are to some extent similar to those of the
IBM POWER7 since both processors are general-purpose
high-performance ones. Still, some relevant differences exist.
For instance, Intel processors don’t have explicit support to
measure data transferred. However, Intel’s PMCs include the
following counters:

– Threshold exceeding count. These counters measure the
number of times a threshold specified in number of cycles
has been exceeded for a given event. The threshold value is
configured by the user.
– Outstanding Requests. This counter measures events such

as cache requests, all offcore requests, etc. in the moment of
reading the counter.

ARM v7. The ARMv7-A architecture [20] provides 6
different 32-bit counters, which can count any event avail-
able. This architecture is used, among other by the Cortex-
A7, Cortex-A9, Cortex-A15 [7] and the big.LITTLE [19]
system. ARMv7-A provides a Performance Monitoring Unit
(PMU) with 6 performance counters. The events counted by
ARM architectures are a subset of those available in high-
performance processors such as Intel and IBM ones described
before as shown in Table I. Still this architecture is rich
in counters for a number of events such as miss-predicted
branches, number of exceptions, L1 write backs, number of
L1/L2 refills, L1 accesses, bus accesses and data memory
accesses among others.

Freescale. Freescale P4080 processor hosts eight
e500mc [18] cores, which are superscalar processors that can
issue and complete two instructions per clock cycle. Each
core has a private L1 instruction and data cache. It also has
a private L2 unified cache. The eight cores are connected
through a proprietary CoreNet Fabric coherent interconnect
with two shared 1MB L3 off-chip caches. Each L3 off-chip
cache is connected to a separate DDR memory controller.

The PMC support in the P4080 offers dedicated core and
SoC platform counters [15][16]. At the core level, the e500mc
core allows monitoring 256 different hardware events, each
core being able to monitor 4 different events at a given time in
4 dedicated 32-bit registers. At the SoC level the P4080 Event
Processing Unit (EPU) allows counting SoC platform events

of interest. Although some events across Intel and Freescale
processors differ due to their different designs, in essence, the
set of PMCs in both platforms is quite similar as shown in
Table I.

GR740. The GR740 is a 4 core LEON4 processor devel-
oped at Cobham Gaisler under contract with the European
Space Agency (ESA). It contains one or more LEON4 Statisti-
cal Units (L4STAT). The debug driver for L4STAT provides an
interface for reading and configuring the 32-bit performance
counters available in a L4STAT core. Each L4STAT allows
configuring any available sixteen events we want to monitor.
Each counter has an associated control register. Both the
counters and the control registers are mapped to the peripheral
address space.

The available events can be divided in three different
categories, depending on the component counting the events.
Processor events: events generated by the processor, e.g.,
pipeline or the L1 cache; bus events: events generated by the
bus, e.g., busy cycles or number of read accesses; and Device
specific events: events generated by other devices such as the
L2 or the IOMMU.

Again, although the PMCs across chip vendors do not
match, the type of counters one can find in the GR740 is quite
similar to those in the Freescale and Intel architectures, with
the exception of the idle cycle counters that the GR740 does
include for the bus.

VII. RELATED WORK

Performance Monitoring Counters (PMCs) have been tradi-
tionally used to measure average performance and power con-
sumption [28]. One of the few works that addresses contention
monitoring between tasks is [43], which uses cache scouts
to monitor contention on shared caches. However, with few
exceptions [37][8], cache partitioning is the common solution
in the context of CRTES due to the complexity of estimating
the WCET accurately on top of shared caches. Although
our work could be ported to non-partitioned caches building
on [43], we leave this analysis for future work.

The IBM POWER family, starting with the POWER5, have
developed a Cycles-Per-Instruction (CPI) stack that covers the
resources on which each task spends its cycles. The CPI stack
reports the cycles spent in each core resource. For instance in
the load/store Unit (LSU) [25]. This happens when a load/store
operation is stalled. The CCS instead does not focus on the
local resources getting clogged by contention (e.g. the LSU)
but the off-core resources identifying where (and how much)
contention occurs and the contending core producing it.

In [36] authors use custom PMC to derive WCD and
WCET estimates with measurement-based timing analysis
on a bus-based system. Authors assume that the WCD for
the bus is known, which is not always the case in real
implementations, as shown for the AMBA AHB bus [23].
Several works derive bounds, during the analysis phase of
the system, to the WCD that a task may suffer in different
processor resources assuming static or measurement-based
timing-analysis [31][35][22][36][14][32][4][26]. We do not
detail these works since we focus on measuring the ACD tasks
suffer rather than on making a-priori predictions on WCD.

The ACD in multicore processors has been characterized
mostly using resource-stressing kernels (rsk) [34][2], for in-
stance in a previous implementation of the NGMP [14] or in
the Freescale P4080 [29]. However, these approaches provide



neither a breakdown of the ACD nor means to measure it
accurately online, while CCS provides both.

Authors in [30] propose a runtime monitoring to control
the resource usage of tasks running on a multicore, preventing
tasks from having resource usage limit violations. Authors
make use of access count PMCs, such as bus access counts.
However, it has been shown that bus latencies may differ
accross different types of accesses and even for the same
type [23]. As a result, access counts does not provide the actual
impact of contention time which has to be estimated. The ACD
instead provides in an exact manner contention delay for each
task.

VIII. CONCLUSIONS

Obtaining accurate ACD breakdowns in MPSoCs provides
evidence about the trustworthiness of contention bounds and
increases confidence on derive execution time bounds; it is
also of prominent importance to detect the reasons for overruns
in a critical system once it has been deployed. It also helps
optimizing system’s performance and improving scheduling
decisions based on the knowledge of the real impact of
contenders in terms of execution time. Unfortunately, to the
best of our knowledge no solution exists to measure and
classify the ACD in CRTES.

In this paper we propose the Contention Cycle Stack
(CCS), which provides an effective representation of the ACD
that classifies contention per resource and contending task by
means of measurements. The CCS relies on some existing
Performance Monitoring Counters (PMCs) and introduces its
own-set of low-overhead PMCs to track the events that allow
building ACD per task and shared resource. Our evaluations
for the Cobham Gaisler GR740 (NGMP) show the benefits of
the CCS. In particular CCS enables understanding the source
and magnitude of the actual contention delay (ACD) caused
by contending tasks in a MPSoC, which is crucial to adopt
MPSoC in CRTES.
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