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Abstract: Several techniques have been proposed to upper-bound the worst-
case execution time behaviour of programs in the domain of critical real-time 
embedded systems. These computing systems have strong requirements 
regarding the guarantees that the longest execution time a program can take is 
bounded. Some of those techniques use extreme value theory (EVT) as their 
main prediction method. 

In this paper EVT is used to estimate a high quantile for different types of 
execution time distributions observed for a set of representative programs for 
the analysis of automotive applications. A major challenge appears when the 
data set seems to be heavy tailed, because this contradicts the previous 
assumption of embedded safety-critical systems. 

A methodology based on the coefficient of variation is introduced for a 
threshold selection algorithm to determine the point above which the 
distribution can be considered generalised Pareto distribution. This 
methodology also provides an estimation of the extreme value index and high 
quantile estimates. We have applied these methods to execution time 
observations collected from the execution of 16 representative automotive 
benchmarks to predict an upper-bound to the maximum execution time of this 
programs. Several comparisons with alternative approaches are discussed. 

 
Keywords: worst-case execution times; extreme value theory; generalised 
Pareto distribution; threshold exceedances; high quantiles. 

  



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

The number of functionalities in the automotive, space, aerospace and railway domains 
involving computer systems is rapidly increasing. For instance, while in the past, car 
steering wheel was mechanically connected to the wheels, this connection is now 
electromechanical: a sensor detects the steering angle and this is transmitted to a 
computer, which processes the signal and uses electric motors to move the wheels. This 
whole process is subject to stringent safety-related timing constraints, since it affects the 
safety of the whole car. 

Computing systems involved in critical functions, must provide evidence that the 
computation required to process new inputs executes correctly and at the right time. In 
the particular case of timing, the worst-case execution time (WCET) of the programs, that 
perform the required computations, needs to be estimated. From a probabilistic point of 
view this resembles a classic problem of extreme value theory (EVT), but from computer 
science terms it is not quite so. 

Wilhelm et al. (2008), analyse ten commercial tools and research prototypes to 
estimate an upper-bound to the WCET of programs. They present two different classes of 
methods: static methods and measurement-based methods. The latter perform 
measurements from parts of a task in a particular hardware or simulator for a set of 
inputs. The former, static methods, use the executable code itself, analising the set of 
possible control flows to obtain upper bounds.  

Static timing analysis has been the state-of-the-art practice, but requires a large and 
costly amount of detailed knowledge about the hardware and software components of the 
system. Probabilistic timing analysis has potential for reducing the weight of that 
demand. Further current research on measurement-based methods has focused on 
probabilistic tools, see also Bernat et al. (2002), Bernat and Newby (2006), and Hansen et 
al. (2009).  

Cucu-Grosjean et al. (2012) present for the first time a measurement-based timing 
analysis technique based on EVT proven compatible with time-randomized platforms. 
This article is the closest probabilistic timing analysis variant to industrial practice and 
has been positively assessed in several industrial case studies, such as Wartel et al. (2013, 
2015) and Kosmidis et al. (2014). Research on WCET and probabilistic WCET has been 
developed to date in the field of computer science. EVT has been added to this science 
along the lines of the fundamental theory, through such books as Beirlant et al. (2004), to 
cite just one classic and representative example. However, EVT has more tools that can 
enlighten the problems and this is what we aim to emphasize. 

The collaboration between specialists in statistics and probability and engineers 
should be to the benefit of both parties. The execution time of programs running on a 
computing system has strong requirements regarding the guarantee that the longest 
execution time a program can take is bounded. The distribution of the execution time 
where we apply EVT should be light tailed, but data sets often seem heavy tailed. Hence, 
the application of EVT methods to WCET is a new and challenging problem. 

In this paper we focus on the analysis of single-path automotive applications through 
the use of the EEMBC Autobench suite, see Poovey (2007). We consider a hardware 
architecture that implements such high-performance features as multicores and cache 
hierarchies analogous to that in Slijepcevic et al. (2014), and which has been modeled 
using a cycle-accurate simulator based on SoCLib (http://www.soclib.fr/trac/dev). The 
analised data sets are an example of the situation described in the preceding paragraph. 

Cucu-Grosjean et al. (2012) also used several benchmarks from the EEMBC 
Autobench suite as a reference to reflect the current real-world demand of some 



   

 

   

   
 

   

   

 

   

        
 

 

    
 
 

   

   
 

   

   

 

   

       
 

embedded systems. The EVT approach used in their analysis is the block maxima 
method. However, it is wasteful to only model block maxima for extreme value analysis 
if other data on extremes are available and basic assumptions can be assumed. Our EVT 
approach uses threshold exceedance models with generalised Pareto distribution (GPD), 
see Castillo and Serra (2015). We will follow a methodology, based on the coefficient of 
variation, developed by Castillo et al. (2014), and Castillo and Padilla (2016). 
 

 
 

2 Exploratory data analysis 

For this analysis we collect samples with N = 1,000 observations for each one of the 16 
benchmarks in the EEMBC Autobench suite (Poovey, 2007), which is a well-known suite 
for real-time systems that includes a number of programs used in automotive embedded 
systems. 

These datasets, which represent execution time in cycles, are, in alphabetic order: 
a2time, aifftr, aifirf, aiifft, basefp, bitmnp, cacheb, canrdr, idctrn, iirflt, matrix, pntrch, 
puwmod, rspeed, tblook, and ttsprk. Hereinafter, these sets will be called A (Autobench) 
plus their position in the list above. For example, A5 refers to basefp. 

We start by drawing histograms of the data, and observe unimodal distributions with 
extreme values on the right tail in all cases. Figure 1 shows the histograms of the 
execution time for A2 and A11, where some extreme values can be observed for A2 that 
are far from the median, whereas a small new group of data can be observed on the far 
right for A11. Cucu-Grosjean et al. (2012) used A1, A3, A7, A8, A13, A14, A15, A16. 

Box-plots have been made in order to show the existence of extreme values visually. 
Figure 2 shows the box-plots of six representative sets that represent the different 
behaviours observed in the tails, including the A2 and A11 sets shown above. The A5 
dataset is fairly homogeneous with clustered outliers. The outliers in A2 and A9 are more 
dispersed than in the previous case, with two very extreme values. Outliers are dispersed 
homogeneously in A8, and finally we can observe two clusters of extreme values in A11 
and A12. This difference in the type of tail behaviour can be achieved due to the 
combination of the characteristics of the program and those of the microarchitecture on 
which it is run. 

 
  



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Histograms of the execution time for A2 and A11. 
 

 
 
 

 
Figure 2 Box-plots of the execution time for six representative datasets. 
 

 



   

 

   

   
 

   

   

 

   

        
 

 

    
 
 

   

   
 

   

   

 

   

       
 

 

3 Detection of tail heaviness and dependence analysis 

Before performing a more in-depth analysis of the data, it is necessary to check the 
number of finite moments and to test the independence of the data. With respect to the 
number of finite moments, this will be done with the group estimator proposed in 
Davydov et al. (2000) and with the ratio of the maximum to the sum described in the 
book by Markovich (2007, sections 1.2 and 1.3). In this section we use these methods as 
a rough test of tail heaviness. In the following section we will argue that the datasets 
probably have lighter tails, but now assume a most unfavorable situation to validate the 
techniques that need iid samples and fourth moment finite. 
 

Let us consider an iid sample ଵܺ, … , ܺ௡ from a heavy-tailed distribution function 
satisfying 1 (ݔ)ܨ − (ݔ)ܨ ≈ → ݔ ఈ whenିݔ   ∞. The sample is divided into ݈ groups 

ଵܸ, … , ௟ܸ, each group containing ݉ random variables, that is, ݊ = ݈ · ݉, where ݈ = [݊/݉] 
and [ܽ] denotes the integer part of a number ܽ > 0. 

Let 

௜௝ܯ
(ଵ) = max { ௝ܺ ∶  ௝ܺ  ∈  ௜ܸ} 

and let ܯ௜௝
(ଶ) deonte the second largest element in the sample group ௜ܸ . Let us denote 

 

݇௟௜ = ௜௝ܯ
(ଶ) ௜௝ܯ

(ଵ)ൗ ݈ݖ    , = (1 ݈⁄ ) ෍ ݈݇݅

݈

݅=1

ߙ    , = ݈ݖ (1 − ⁄(݈ݖ . 

( 1) 

An estimator for the existence of moments is ߙ that is called the group estimator. 
Table 1 shows finite fourth moment, with ݉ = 25 and ݈ = 40, for each dataset. We also 
tried with ݉ from 20 to 100 with similar results. 

Let ଵܺ, … , ܺ௡ be an iid sample. The ratio of the maximum to the sum is defined as 
 

ܴ௡(݌) = (݌)௡ܯ ܵ௡(݌)⁄ ,    ݊ ≥ 1, < ݌ 0, ( 2) 

where 
 
ܵ௡(݌) = | ଵܺ|௣ + ⋯ + |ܺ௡|௣,   ܯ௡(݌) = max(| ଵܺ|௣, … , |ܺ௡|௣) , ݊ ≥ 1. ( 3) 

The maximum of the datasets ratios without A7 is 0.001, 0.002 and 0.004 for ݌ = 1, 
݌ = 2, and ݌ = 4, respectively, so there is evidence of the existence of a fourth moment. 
For A7, the ratios are 0.002, 0.005, and 0.019 for ݌ = ݌ ,1 = 2, and ݌ = 4, respectively, 
which suggests that the fourth moment might not be finite.  

A popular and simple test of independence uses the first autocorrelation coefficient 

rejecting at the 5% significance level √݊|ߩොଵ| > 1.96√n|ρොଵ| >. The test applies the result 

,௞ ~ ܰ(0ߩ݊√ 1) for the autocorrelation coefficient at lag ݇, approximately, when ܪ଴ is 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

true. When many coefficients are considered some will probably be significant even if 
 ଴ is true. A more natural way to combine h coefficients into a single test statistic is theܪ
Ljung–Box test given by 

ܤܮ = ݊(݊ + 2) ෍ ො௞ߩ
ଶ (݊ − ݇)⁄

௛

௞ୀଵ

 

where n is the sample size, and ߩො௞  is the sample autocorrelation at lag ݇. Under the 
hypothesis of independence, on the assumption that the data at least has a finite fourth 
moment, the statistic follows a ߯௞

ଶ  distribution.  
The Ljung-Box has been applied to test independence for the 16 datasets of the 

Autobench suite. Table 1 shows the most significant p-value for each dataset, in the "p-
val." column, using 10 and 20 lags. There is no evidence to reject independence in any 
case. 

Although the estimates used guarantees finite fourth moment, the Box-Pierce statistic 
for random variables with infinite variance has been also applied to A7 (the less clear 
case), see Runde (1997). With 5 lags and ߙ = 1.9 the statistic is 1.51 and de critic value 
at 95% is 24.87. Then independence is not rejected. 
 
 

4 Specifying the model 

The purpose of this study is to determine at high probability the maximum value that can 
be achieved in a benchmark of the Autobench suite.  The method that we will apply in 
Section 7, called “peak over threshold” (PoT), is based on determining a high enough 
threshold from which the distribution of the observations above this value, adjusted to 
zero, approaches a GPD distribution with cumulative distribution function. 

 
 

(ݔ)క,టܩ = ൜1 − (1 + ଵ/కି(߰/ݔߦ ߦ   , ≠ 0,
1 − exp (−ݔ/߰),         ߦ = 0,

 
( 4) 

 

where ߦ ∈  ℝ , and ߰ > 0 are shape and scale parameters, respectively, 0 ≤ ݔ ≤ −
ట

క
 

if ߦ < 0, and ݔ ≥ 0   if ߦ ≥ 0. 
The value of the ߦ parameter of the GPD used to model the threshold exceedances 

determines the tail type and is also called the extreme value index. If ߦ < 0, we have a 
light tail, for ߦ = 0 an exponential tail, if 0 < ߦ < 1/4 there is a heavy tail with four 
finite moments, and for ߦ > 1/4 we will consider the tail too heavy. The mean of a GPD 
is ߰/(1 − and the variance is ߰ଶ/[(1 (ߦ − ଶ(1(ߦ − ߦ given [(ߦ2 < 1 and ߦ < 1/2, 
respectively. There is a limitation of the finite moments if  ߦ > 0, more precisely, a GPD 
has finite moments of order ݊ if ߦ < 1/݊. 

If it is obtained first the threshold from which the approach by the GPD is accurate, 
and the parameters of the GPD can easily be estimated, for instance by maximum 
likelihood. The problem is that there is generally a need to do both things at once. A 
standard procedure in EVT is to use the method proposed by Hill, or a modified Hill 
estimator based on second order parameters to avoid bias problems, see Gomes and 



   

 

   

   
 

   

   

 

   

        
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Pestana (2007). However, the Hill method always provides positive estimates of the 
extreme value index, because it is designed specifically for heavy tails. In the current 
situation we expect zero or negative values for the extreme value index, due to the 
software design and the static timing analysis. Cucu-Grosjean et al. (2012) always obtain 
Gumbel distributions for Autobench suite, using the block maxima method, hence, the 
extreme value index should be zero. 

In this article we will follow the methodology based on the coefficient of variation (CV), 
defined for distributions with finite variance.  The asymptotic theory of the empirical CV 
is developed by Castillo et al. (2014) and Castillo and Padilla (2016), assuming finite 
fourth moment. This theory can be used for exploratory data analysis, for testing the 
hypothesis of GDP, for estimating the extreme value index and for threshold selection. 
Let ܺ be a continuous non-negative r.v. with distribution function (ݔ)ܨ. For any 
threshold, ݐ > 0, the r.v. of the conditional distribution of threshold excesses ܺ −  given ݐ
ܺ > denoted ௧ܺ ,ݐ = (ܺ − ܺ | ݐ >  The .ݐ is called the residual distribution of ܺ over ,(ݐ
cumulative distribution function of ௧ܺ   is given by ,(ݔ)௧ܨ ,
 

1 − (ݔ)௧ܨ = ൫1 − ݔ)ܨ + ൯/(1(ݐ −  (5 ) .((ݐ)ܨ

 
The quantity (ݐ)ܯ = )ܧ ௧ܺ) is called the residual mean and ܸ(ݐ) = )ݎܽݒ ௧ܺ) the 

residual variance. The residual coefficient of variation is given by 
 

(ݐ)ܸܥ ≡ )ܸܥ ௧ܺ) = ඥܸ(ݐ)/(6 ) ;(ݐ)ܯ 

 
like the usual ܸܥ, the function (ݐ)ܸܥ is independent of scale, and the function ݐ →

 is constant if and only if the distribution of ܺ is GPD, see Castillo and Padilla (ݐ)ܸܥ
(2016) and Castillo et al. (2014). The conditional distribution of threshold excesses of a 
GPD is again GPD and for any threshold, t > 0, the residual CV is given by 

 
(ݐ)ܸܥ = ܿక = (1 −  ଵ/ଶି(ߦ2

 

( 7) 

The CV-plot has some advantages over ME-plot (Davison and Smith, 1990): first, it 
does not depend on the scale parameter; second, it is easier to detect constant functions 
than linear functions, since linear functions are defined by two parameters and the 
constants by only one. The uncertainty is essentially reduced from three to one single 
parameter. 

 

5 Identifying tail behaviour 

 
Given a sample {࢑ࢄ} of positive numbers, let ൛(࢑)ࢄൟ be the ordered sample, so that 
(૚)ࢄ ≤ ⋯ ≤  of (࢜ࢉ) Defining a CV-plot as the representation of the empirical CV .(࢔)ࢄ
the conditional exceedances, given by 

࢑ ⇾ (࢐)ࢄ൫࢜ࢉ − :(࢑)ࢄ ࢐ ≥ ࢑൯ 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

Given a sample of a GPD distribution with ࣈ < ૚/૝ and a threshold, ࢚ > ૙, let ࢔(࢚) 
and ࢜ࢉ(࢚) the sample size and the CV of the residual sample. The asymptotic distribution 
of ܿ(ݐ)ݒ is given by 

ඥ࢔(࢚)൫࢜ࢉ(࢚) − ൯ࣈࢉ ⇾ ,൫૙ࡺ ࣈ࣌
૛൯ ( 8) 

where ࣌ࣈ
૛ = 1 and ࣈࢉ = 1 for the exponential distribution (ߦ = 0), and ࣌ࣈ

૛ = ૡ/૝૞ and 

ࣈࢉ = 1/√3 for the uniform distribution (ߦ = −1). These values provide confidence 
intervals for the CV-plot of the mentioned distributions, see Castillo and Padilla (2016).  

In order to fit the upper tail of each empirical cumulative distribution function of the 
16 dataset, from the Autobench suite, by the GPD we examine at the decreasing part of 
the histogram, near to the upper half of the sample. On the other hand, we need large 
samples to increase the precision of the estimates. So we begin our analysis in this section 
with the ࢔ = ૞૙૙ upper observations (tail size). 

Figure 3 shows the CV-plots for some representative datasets. The black and grey 
dotted lines correspond to the confidence interval at 95% for the exponential and uniform 
distributions, respectively, and the constant line is CV=1.4, approximately CV for a GPD 
with ߦ = 1/4, the limit for the four finite moments. It can be observed how the detected 
behaviours with the box-plots move to the CV-plots. The CV of A9 is clearly in the 
confidence interval of the exponential. For A2, it is exponential at the tail. For A5 looks 
like a constant light tail, for A8 it is heavy tail, with four finite moments and decrease in 
the confidence interval of the exponential distribution at the end. Finally, for A11 and 
A12, too heavy tails with a decrease to the exponential distribution at the end are 
observed. This latter behaviour is also observed for A3 and A7 in the Autobench suite. 

While the basic model for probability distributions is the normal distribution, for the 
threshold exceedance it is the exponential distribution, the particular case of the GPD 
with shape parameter ߦ = 0. It will be interesting, therefore, to find out whether this 
model is the most appropriate to fit the data. In this regard, a method to contrast 
exponential versus polynomial tails was developed by Castillo et al. (2014). The 
methodology based on the coefficient of variation has been extended to GPD, with finite 
fourth moment, by Castillo and Padilla (2016).  

Using the building blocks given by (8) a multiple threshold test for a number ݉ of 
thresholds as large as necessary for practical applications can be constructed. In order to 
avoid subjectivity as much as possible, to the limit of the number of thresholds ݉, we 
proceed as follows. Given de sample size ݊ and the number of thresholds ݉, we choose a 
probability ݌, which determines the distance between the quantiles, such that ݊݌௠ = 8. 
For ݇ = 0, … , ݉, let ݌௞ = 1 −    .{௞݌} the empirical quantiles coresponding to {௞ݍ} ௞ and݌

Let us denote 

௠ܶ(ߦ) = ݊ ෍ (௞ݍ)ݒ௞൫ܿ݌ − ܿక൯
ଶ

௠

௞ୀ଴

 
( 9) 

This statistic allows testing if a sample is distributed as a GPD with parameter ߦ. 
Moreover, if the parameter ߦ is unknown, ܿక  can be estimated as the value such that 
achieves the minimum of ܶ݉(ߦ) and reversing (7) provides and estimator of ߦ. 

 



   

 

   

   
 

   

   

 

   

        
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 CV-plots for the execution times for six representative datasets. The black and grey dotted 
lines correspond to the confidence interval at 95% for the exponential and uniform distributions, 
respectively, and the constant line is CV=1.4, approximately CV for a GPD with ߦ = 1/4, the limit 
for the four finite moments. 
 

 
 
 
 

 
 

Applying ܶ݉(ߦ) under exponentiality (ߦ = 0) with ݉ = 20 for all Autobench suite 
datasets (݊ = 500) the null hypothesis is not rejected in eight cases. The analysis is 
improved applying the contrast with ݉ = 20 under the hypothesis of GPD, with ߦ 
unknown, then GPD with light tail is not rejected for A1, A5, A6, A10, A13 and A15 and 
exponentiality is accepted for A4, A9, A14, A16, since ߦ is close to 0 (|ߦ௜| ≤ 0.04). GPD 
with heavy tail is not rejected for A2 and A8. In short, for 12 datasets GPD is not rejected 
or, equivalently, is not rejected a constant residual CV. Table 1 shows the cases in which 
exponential or light tails are chosen for ݊ = 500 values, see "Tail type" and "Tail size" 
columns. 

Real-time systems only use a restricted form of programming, which guarantees that 
programs always finish; recursion is not allowed or explicitly bounded as are the iteration 
counts of loops. Considering this restriction, the appropriate models will be light tails, 
ߦ < 0 for the GPD, or the exponential distribution, so it is advisable to add the boundary 
parameters in these cases, see Castillo and Serra (2015). If the basic model is the only 
option considered, we could be quite conservative in some cases when it really is not 
necessary. 

 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

For A2 and A8, a heavy tail is not rejected, but this restriction contradicts the 
bounded time for programs. The CV-plot for A2, in Figure 3, shows that for the second 
half of the sample the empirical CV is in the confidence interval of the exponential 
distribution. For A8 this can be accepted for the end part of the sample. This visual 
inspection can be automated with a threshold selection algorithm in the next section. 

6 Threshold selection algorithm and extreme value index estimation 

In the ௠ܶ(ߦ) calculation the number of thresholds ݉ must be fixed by the researcher. 
This determines the thresholds where the CV is calculated, {0 = ଴ݍ  < ଵݍ   < ⋯ <  ,{௠ݍ 
which are fixed throughout the procedure. We accept or reject the null hypothesis for the 
shape parameter using all the thresholds. If the hypothesis is rejected, the threshold 
excesses ൛ݔ௝ − ௝ݔଵൟ are calculated for the sub-sample ൛ݍ ≥  ଵൟ . The previous steps areݍ
repeated, but removing one threshold, to accept or reject the null hypothesis that the 
sample comes from a GPD with parameter ߦ. This algorithm provides an estimation for 
the threshold as well as an estimation for the parameter ߦ. If the parameter ߰ is needed it 
can be estimated by maximum likelihood, see Castillo and Padilla (2016). 

 
In 10 of the 16 datasets we obtained ≤ 0 (݊ = 500). With the a priori information 

that this is necessarily so from a threshold, we apply the algorithm above with  ߦ = 0 to 
datasets where GPD was rejected, and to A2 and A8, where GPD was not rejected but we 
obtained ߦ > 0. Then, we not reject exponentiality (ߦ = 0) for A2, A3, A7, A8, A11 and 
A12 with tail size 328, 40, 50, 40, 50 and 33, respectively, see Table 1. The tail size 
determines the standard error (se). Assuming ߦ = 0, if ݊ = 500 then ݁ݏ = 0.04, if  ݊ =
20 then ݁ݏ =  0.22. 
  

Cucu-Grosjean et al. (2012) indicate that the Gumbel distribution fits well the 
distribution of maxima for 8 of the Autobench suite datasets. This means that the tails 
have to be exponential distributed in all cases, including A3, A7, A8, where we have 
achieved this only at the end of the distribution, with a priori information. 

Applying the modified Hill estimator by Gomes and Pestana (2007) to Autobench 
suite, the parameter estimates show that the fourth moment is always infinite. For A3, 
A7, A11, even the variance is infinite. In order to summarize all views, from Section 3, 
the group estimator shows finite fourth moment for each dataset. This is confirmed 
qualitatively by the ratio of the maximum to the sum rough tests of tail heaviness. 
 

Table 1 shows the parameter estimation, ߦ column, and the number of values above 
the estimated threshold, "Tail size" column. A light tail (L) is chosen for six datasets, and 
exponential (E) for the rest, four cases with the full sample (n=500) and five at the tail of 
the distribution. The “Finite mom.” column shows the parameter estimated by the group 
estimator. 
 

 
 

 



   

 

   

   
 

   

   

 

   

        
 

 

    
 
 

   

   
 

   

   

 

   

       
 

7 PoT and VaR 

The PoT method offers an approach to model the tail of a distribution based on the limit 
distribution from a threshold being a GPD. The first part consists of choosing a proper 
threshold, in the second part the data over this threshold is translated to the origin by 
(ܺ − ≤ ݔ | ݐ  .and finally this new data is adjusted by a GPD, see Markovich (2007) ,(ݐ

The estimated distribution function, (ݔ)ܨ෣ , for values above the threshold ݐ is 

෣(ݔ)ܨ = ൫1 − (ݔ)క,௧,టܩ൯(ݐ)௡ܨ  +  (10 ) (ݐ)௡ܨ 

where ܨ௡(ݐ) is the empiric distribution function with ݔ =  is the (ݔ)క,௧,టܩ and ,ݐ
distribution function of a GPD using an estimation of ߦ,  .߰ and ,ݐ

For threshold selection and the extreme value index estimation, ݐ and ߦ, we will use the 
threshold selection algorithm, and the maximum likelihood estimation for the scale 
parameter, ߰. Table 1 shows the ݐ and ߰ values, and ߦ when the Tail type is L, if the Tail 
type is E then ߦ = 0 is considered. 

Some high quantiles for each sample are presented. In terms of risk, this concept is 
expressed as the value at risk (VaR). For a small ݌, ܸܴܽ௣ = if and only if 1 ݒ − (ݒ)ܨ =
 Table 1 shows the different values for each proposed threshold and estimated .݌
parameters for the ܸܴܽଽଽ.ଽ%. Figure 5 shows the fit of three examples to the data after 
which their use as predictors seems appropriate. 

Finally, since we collect samples with ܰ =  1000 observations, the ܸܴܽଽଽ.ଽ%  should 

be about ݔ(ଽଽଽ), where ݔ(௞) is the ݇th order statistic of the sample. For the ten cases with 

tail size n = 500, and threshold ݔ(ହ଴ଵ), the errors between the two quantities are small. For 

A4 and A16 are 2.17% and 1.06%, and less than 1% in the other eight cases. This is a 
validation of our methodology and allows extrapolate the VaR for much higher quantiles, 
although for small tail sizes the results may be less satisfactory. 

 
 

Figure 4 Empirical CCDF (black line) and CCDF of the estimate GPD (dotted line) from quantile 
95 for A2, A9, and A12. 
 

 
 
 
 

 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Summary of the results of the 16 datasets. For each variable, the number of estimated finite 
moments by the group estimator, the most significant p-value for the Ljung-Box with 10 or 20 lags, 
the estimated ߦ value with the threshold selection algorithm, the estimated ߰ by MLE, the 
estimated threshold by the automatic algorithm, the tail size for the proposed threshold, the tail type 
(L for light tails and E for exponential tails), and ܸܴܽଽଽ.ଽ% for the PoT method are presented. 

 

Var. Name Finite 
mom. 

p-val. ࣈ ࣒ Thresh. Tail 
size 

Tail 
type 

ࡾࢇࢂ
ૢૢ. ૢ%

 

A1 a2time 44.8 0.336 -0.2 4.4x103 1.1x105 500 L 1.2x105 

A2 aifftr 34.1 0.562 0 2.5x105 7.1x106 328 E 8.6x106 

A3 aifirf 11.5 0.870 0 1.7x104 1.7x105 40 E 2.3x105 

A4 aiifft 21.7 0.578 0 1.9x105 6.5x106 500 E 7.8x106 

A5 basefp 302.8 0.380 -0.25 1.7x103 2.8x105 500 L 2.9x105 

A6 bitmnp 61.1 0.117 -0.13 1.6x104 6.3x105 500 L 7.0x105 

A7 cacheb 4.8 0.174 0 5.1x105 1.0x106 50 E 3.0x106 

A8 canrdr 26.4 0.142 0 3.2x103 1.5x105 40 E 1.6x105 

A9 idctrn 78.1 0.459 0 1.1x104 1.1x106 500 E 1.1x106 
A10 iirflt 116.4 0.683 -0.15 2.3x103 1.7x105 500 L 1.8x105 

A11 matrix 8.6 0.502 0 1.8x106 2.7x107 50 E 3.4x107 

A12 pntrch 25.4 0.851 0 6.7x103 2.0x105 33 E 2.3x105 

A13 puwmod 162.8 0.313 -0.17 2.2x103 2.2x105 500 L 2.3x105 

A14 rspeed 43.7 0.700 0 1.1x103 6.5x104 500 E 7.3x104 

A15 tblook 65.6 0.741 -0.11 1.8x103 8.0x104 500 L 8.8x104 

A16 ttsprk 39.7 0.944 0 3.2x103 1.7x105 500 E 1.9x105 

 
 

8 Concluding remarks 

We have applied a new EVT methodology to the 16 datasets of the EEMBC Autobench 
suite described in this article, to predict their maximum execution time with certain 
confidence. The methodology is based on the following points: 
 

1. Selecting an appropriate technique for the type of tail that we can find. For the 
EEMBC Autobench suite, methods based on the coefficient of variation, defined for 
distributions with finite variance, are appropriate. Otherwise, the methods that only work 
for heavy tails can give inappropriate estimates. 

2. Deciding between the tail type (light, exponential, heavy, and too heavy) 
based on the graphics called CV plots and the exponentiality test ௠ܶ , for ߦ = 0, using 
multiple thresholds. 

3. Estimating the extreme value index, and the threshold at which the estimate is 
made, with a threshold selection algorithm based on contrasts of GPD for multiple 
thresholds.  

4. Application of the PoT method, which divides the sample between the body 
and tail, from the previously selected threshold and the estimation of the extreme value 
index. 



   

 

   

   
 

   

   

 

   

        
 

 

    
 
 

   

   
 

   

   

 

   

       
 

The methodology has worked successfully in most cases but presents doubts for the 
A7, A11 and A12 datasets. In these cases, other methods have been used that have not 
been conclusive. The proposed decision is to accept exponentiality for a very high 
threshold, which leads us to suspect a problem with contamination by a normal 
distribution in a lower proportion for an extremely high threshold. 
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