9,060 research outputs found

    Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning

    Get PDF
    A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Observations on Cortical Mechanisms for Object Recognition andsLearning

    Get PDF
    This paper sketches a hypothetical cortical architecture for visual 3D object recognition based on a recent computational model. The view-centered scheme relies on modules for learning from examples, such as Hyperbf-like networks. Such models capture a class of explanations we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition, and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of MBMs are consistent with the description of cortical neurons. We describe how an example of MBM may be realized in terms of cortical circuitry and biophysical mechanisms, consistent with psychophysical and physiological data

    Representation Learning in Sensory Cortex: a theory

    Get PDF
    We review and apply a computational theory of the feedforward path of the ventral stream in visual cortex based on the hypothesis that its main function is the encoding of invariant representations of images. A key justification of the theory is provided by a theorem linking invariant representations to small sample complexity for recognition – that is, invariant representations allows learning from very few labeled examples. The theory characterizes how an algorithm that can be implemented by a set of ”simple” and ”complex” cells – a ”HW module” – provides invariant and selective representations. The invariance can be learned in an unsupervised way from observed transformations. Theorems show that invariance implies several properties of the ventral stream organization, including the eccentricity dependent lattice of units in the retina and in V1, and the tuning of its neurons. The theory requires two stages of processing: the first, consisting of retinotopic visual areas such as V1, V2 and V4 with generic neuronal tuning, leads to representations that are invariant to translation and scaling; the second, consisting of modules in IT, with class- and object-specific tuning, provides a representation for recognition with approximate invariance to class specific transformations, such as pose (of a body, of a face) and expression. In the theory the ventral stream main function is the unsupervised learning of ”good” representations that reduce the sample complexity of the final supervised learning stage.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Why the brain separates face recognition from object recognition

    Get PDF
    Many studies have uncovered evidence that visual cortex contains specialized regions involved in processing faces but not other object classes. Recent electrophysiology studies of cells in several of these specialized regions revealed that at least some of these regions are organized in a hierarchical manner with viewpoint-specific cells projecting to downstream viewpoint-invariant identity-specific cells (Freiwald and Tsao 2010). A separate computational line of reasoning leads to the claim that some transformations of visual inputs that preserve viewed object identity are class-specific. In particular, the 2D images evoked by a face undergoing a 3D rotation are not produced by the same image transformation (2D) that would produce the images evoked by an object of another class undergoing the same 3D rotation. However, within the class of faces, knowledge of the image transformation evoked by 3D rotation can be reliably transferred from previously viewed faces to help identify a novel face at a new viewpoint. We show, through computational simulations, that an architecture which applies this method of gaining invariance to class-specific transformations is effective when restricted to faces and fails spectacularly when applied across object classes. We argue here that in order to accomplish viewpoint-invariant face identification from a single example view, visual cortex must separate the circuitry involved in discounting 3D rotations of faces from the generic circuitry involved in processing other objects. The resulting model of the ventral stream of visual cortex is consistent with the recent physiology results showing the hierarchical organization of the face processing network.United States. Defense Advanced Research Projects Agency. Information Processing Techniques OfficeUnited States. Defense Advanced Research Projects Agency. System Science Division. Defense Sciences OfficeNational Science Foundation (U.S.) (Grant NSF-0640097)National Science Foundation (U.S.) (Grant NSF-0827427)United States. Air Force Office of Scientific Research (THRL Grant FA8650-05-C-7262)Adobe SystemsHonda Research Institute USA, Inc.King Abdullah University of Science and TechnologyNEC CorporationSony CorporationEugene McDermott Foundatio

    Representation Learning in Sensory Cortex: A Theory

    Get PDF
    We review and apply a computational theory based on the hypothesis that the feedforward path of the ventral stream in visual cortex's main function is the encoding of invariant representations of images. A key justification of the theory is provided by a result linking invariant representations to small sample complexity for image recognition - that is, invariant representations allow learning from very few labeled examples. The theory characterizes how an algorithm that can be implemented by a set of "simple" and "complex" cells - a "Hubel Wiesel module" - provides invariant and selective representations. The invariance can be learned in an unsupervised way from observed transformations. Our results show that an invariant representation implies several properties of the ventral stream organization, including the emergence of Gabor receptive filelds and specialized areas. The theory requires two stages of processing: the first, consisting of retinotopic visual areas such as V1, V2 and V4 with generic neuronal tuning, leads to representations that are invariant to translation and scaling; the second, consisting of modules in IT (Inferior Temporal cortex), with class- and object-specific tuning, provides a representation for recognition with approximate invariance to class specific transformations, such as pose (of a body, of a face) and expression. In summary, our theory is that the ventral stream's main function is to implement the unsupervised learning of "good" representations that reduce the sample complexity of the final supervised learning stage

    The computational magic of the ventral stream

    Get PDF
    I argue that the sample complexity of (biological, feedforward) object recognition is mostly due to geometric image transformations and conjecture that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations.

In the first part of the paper I describe a class of simple and biologically plausible memory-based modules that learn transformations from unsupervised visual experience. The main theorems show that these modules provide (for every object) a signature which is invariant to local affine transformations and approximately invariant for other transformations. I also prove that,
in a broad class of hierarchical architectures, signatures remain invariant from layer to layer. The identification of these memory-based modules with complex (and simple) cells in visual areas leads to a theory of invariant recognition for the ventral stream.

In the second part, I outline a theory about hierarchical architectures that can learn invariance to transformations. I show that the memory complexity of learning affine transformations is drastically reduced in a hierarchical architecture that factorizes transformations in terms of the subgroup of translations and the subgroups of rotations and scalings. I then show how translations are automatically selected as the only learnable transformations during development by enforcing small apertures – eg small receptive fields – in the first layer.

In a third part I show that the transformations represented in each area can be optimized in terms of storage and robustness, as a consequence determining the tuning of the neurons in the area, rather independently (under normal conditions) of the statistics of natural images. I describe a model of learning that can be proved to have this property, linking in an elegant way the spectral properties of the signatures with the tuning of receptive fields in different areas. A surprising implication of these theoretical results is that the computational goals and some of the tuning properties of cells in the ventral stream may follow from symmetry properties (in the sense of physics) of the visual world through a process of unsupervised correlational learning, based on Hebbian synapses. In particular, simple and complex cells do not directly care about oriented bars: their tuning is a side effect of their role in translation invariance. Across the whole ventral stream the preferred features reported for neurons in different areas are only a symptom of the invariances computed and represented.

The results of each of the three parts stand on their own independently of each other. Together this theory-in-fieri makes several broad predictions, some of which are:

-invariance to small transformations in early areas (eg translations in V1) may underly stability of visual perception (suggested by Stu Geman);

-each cell’s tuning properties are shaped by visual experience of image transformations during developmental and adult plasticity;

-simple cells are likely to be the same population as complex cells, arising from different convergence of the Hebbian learning rule. The input to complex “complex” cells are dendritic branches with simple cell properties;

-class-specific transformations are learned and represented at the top of the ventral stream hierarchy; thus class-specific modules such as faces, places and possibly body areas should exist in IT;

-the type of transformations that are learned from visual experience depend on the size of the receptive fields and thus on the area (layer in the models) – assuming that the size increases with layers;

-the mix of transformations learned in each area influences the tuning properties of the cells oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);

-features must be discriminative and invariant: invariance to transformations is the primary determinant of the tuning of cortical neurons rather than statistics of natural images.

The theory is broadly consistent with the current version of HMAX. It explains it and extend it in terms of unsupervised learning, a broader class of transformation invariance and higher level modules. The goal of this paper is to sketch a comprehensive theory with little regard for mathematical niceties. If the theory turns out to be useful there will be scope for deep mathematics, ranging from group representation tools to wavelet theory to dynamics of learning
    corecore