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Summary We review and apply a computational theory of the feedforward path of
the ventral stream in visual cortex based on the hypothesis that its main function is
the encoding of invariant representations of images. A key justification of the theory is
provided by a theorem linking invariant representations to small sample complexity for
recognition - that is, invariant representations allows learning from very few labeled
examples. The theory characterizes how an algorithm that can be implemented by
a set of ”simple” and ”complex” cells - a ”HW module” – provides invariant and
selective representations. The invariance can be learned in an unsupervised way from
observed transformations. Theorems show that invariance implies several properties of
the ventral stream organization, including the eccentricity dependent lattice of units in
the retina and in V1, and the tuning of its neurons. The theory requires two stages of
processing: the first, consisting of retinotopic visual areas such as V1, V2 and V4 with
generic neuronal tuning, leads to representations that are invariant to translation and
scaling; the second, consisting of modules in IT, with class- and object-specific tuning,
provides a representation for recognition with approximate invariance to class specific
transformations, such as pose (of a body, of a face) and expression. In the theory the
ventral stream main function is the unsupervised learning of ”good” representations
that reduce the sample complexity of the final supervised learning stage.

1 Intro and background

The ventral visual stream is believed to underlie object recognition abilities
in primates. Fifty years of modeling efforts, which started with the original
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Hubel and Wiesel proposal of a hierarchical architecture iterating in different
layers the motif of simple and complex cells in V1, led to a series of quantita-
tive models from Fukushima 1980 to HMAX (Riesenhuber and Poggio 2000)
which are increasingly faithful to the biological architecture and are able to
mimic properties of cells in different visual areas while achieving human-like
recognition performance under restricted conditions. Recently, deep learning
convolutional networks which are hierarchical and similar to HMAX but other-
wise do not respect the ventral stream architecture and physiology, have been
trained with very large labeled datasets (Russakovsky et al. 2014, Google 2014,
Zeiler and Fergus 2014). The population of resulting model neurons mimic
well the object recognition performance of the macaque visual cortex (Dicarlo,
unpublished). However, the nature of the computations carried out in the ven-
tral stream is not explained by such models that can be simulated on a com-
puter but remain otherwise rather opaque.

In other papers (in particular Anselmi et al., 2014; Poggio et al., 2014) we
have developed a mathematics of invariance that can be applied to the ventral
stream. In this neuroscience paper we do this and outline a comprehensive
theory of the feedforward computation of invariant representations in the ven-
tral stream (Anselmi et al. 2014, Anselmi et al. 2013) - that is a theory of the
first 100 milliseconds of visual perception, from the onset of an image to acti-
vation of IT neurons about 100 msec later. In particular, such representations
are likely to underlie rapid categorization – that is immediate object recogni-
tion from flashed images (Potter 1975, Thorpe et al 1996). We emphasize that
the theory is not a full theory of vision that should explain top down effect
and the role of backprojections, but only a precursor to it. The theory, dubbed
i-theory, is based on the hypothesis that the main computational goal of the
ventral stream is to compute neural representations of images that are invari-
ant to transformations commonly encountered in the visual environment and
learned from unsupervised experience. I-theory proposes computational ex-
planations for various aspects of the ventral stream architecture and of its neu-
rons. It makes several testable predictions. It also leads to network implemen-
tations that show high performance in object recognition benchmarks (Liao et
al. 2013). As we mentioned, the theory is based on the unsupervised, au-
tomatic learning of invariant representations. Since invariant representations
turn out to be “good” representation for supervised learning, characterized by
small sample complexity, the architecture of the ventral stream may ultimately
be dictated by the need to learn from very few labeled examples, similar to
human learning but quite different from present supervised machine learning
algorithms trained on large sets of labeled examples.

We use i-theory to compactly summarize several key aspects of the neuro-
science of visual recognition, explain them and predict others. The organiza-
tion of the paper is as follows. Section 2 and 3 describe the general theoretical
framework: a computational theory of invariance in section 2 and a theory of
the basic biophysical mechanisms and circuits in section 3. In particular, we de-
scribe relevant new mathematical results on invariant representations in vision
that are given elsewhere with details and proofs (Anselmi et al. 2014, Anselmi
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et al. 2013). The starting point is a theorem proving that image representations
which are invariant to translation and scaling and approximately invariant to
some other transformations (e.g. face expressions) can considerably reduce the
sample complexity of learning. We then describe how an invariant and unique
(selective) signature can be computed for each image or image patch: the in-
variance can be exact in the case of locally compact group transformations (we
focus on groups such as the affine group in 2D and one of its subgroups, the
similitude group consisting of translation and uniform scaling) and approxi-
mate under non-group transformations. A module performing filtering and
pooling, like the simple and complex cells described by Hubel and Wiesel (HW
module), can compute such estimates. Each HW module provides a feature
vector, which we call a signature, for the part of the visual field that is inside its
receptive field. Interestingly, Gabor functions turn out to be optimal templates
for maximizing simultaneous invariance to translation and scale. Hierarchies
of HW modules inherit their properties, while alleviating the problem of clutter
in the recognition of wholes and parts. Finally, the same HW modules at high
levels in the hierarchy are shown to be able to compute representations which
are approximately invariant to a much broader range of transformations—such
as 3D expression of a face, pose of a body, and viewpoint, by using templates,
reflected in neuron’s tuning, that are highly specific for each object class. Sec-
tion 3 describes how neuronal circuits may implement the operation required
by the HW algorithm. It specifically discusses new models of simple and com-
plex cells in V1. It also introduces plausible biophysical mechanisms for tuning
and pooling and for learning the wiring based on Hebbian-like unsupervised
learning.

The rest of the paper is devoted to reviewing the application of the theory
to the feed forward path of the ventral stream in primate visual cortex. Sec-
tion 4 applies the theory to explain the multi resolution, eccentricity-dependent
architecture of the retina and V1 as a consequence of the need for simultane-
ous space and scale invariance. It predicts several still untested properties of
the early stages of vision. Section 5 deals with V2 and V4 as higher layers in
the hierarchy devoted to progressively increase invariance to shift and scaling
while minimizing interference from clutter (”minimizing crowding”). Section
6 is about the final IT stage where class-specific representations that are quasi-
invariant to non-generic transformations are computed from a shift and scale
invariant representation obtained from V4. It also discusses the modular orga-
nization of anterior IT in terms of the theory; in particular it proposes an expla-
nation of the architecture and of some puzzling properties of the face patches
system. We conclude with a discussion of predictions to be tested and other
open problems.
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2 Computational level: mathematics of invariance

As context for this paper, let us describe the conceptual framework for primate
vision that we use:

• The first 100ms of vision in the ventral stream are mostly feed forward.
The main computation goal is to generate a number of image represen-
tations each one or quasi invariant to some transformations experienced
during development and at maturity, such as scaling, translation, and
pose changes. The representations are used to answer basic default ques-
tions about what kind of image and what may be there.

• The answers will often have low confidence requiring an additional ”ver-
ification/prediction step” which may require a sequence of shifts of gaze
and attentional changes. This step may rely on generative models and
probabilistic inference and/or on top-down visual routines following mem-
ory access. Routines that can be synthesized on demand as a function of
the visual task are needed in any case to go beyond object classification.
Notice that in a Turing test of vision (see http://cbmm.mit.edu/research-
areas/cbmm-challenge/) only the simplest questions (what is there? who
is there?...) can be answered by pretrained classifiers.

We consider only the feedforward architecture of the ventral stream and its
computational function. To help the reader understand more easily the math-
ematics of this chapter, we anticipate here the network of visual areas that we
propose for computing invariant representations for feedforward visual recog-
nition. There are two main stages: the first one computes a representation that
is invariant to affine transformations, followed by a second stage that computes
approximate invariance to object specific, non-group transformations. The sec-
ond stage consists of parallel pathways, each one for a different object class
(see Figure 4 stage1). The theorems of this section do not strictly require these
two stages: the second one may not be present, in which case the output of the
first directly access memory or classification. If both are present, as it seems
the case for the primate ventral stream, the mathematics of the theory requires
that the object specific stage follows the one dealing with affine transforma-
tions. According to the theory, the HW module mentioned earlier is the basic
module for both stages. The first and the second stage pathways may consist of
a single layer of HW modules. However, mitigation of interference by clutter
requires a hierarchy of layers (possibly corresponding to visual areas such as
V1, V2, V4, PIT) within the first stage. It may not be required in visual systems
with lower resolution such as the mouse. The final architecture is shown in
the Figure 4: in the first stage about four layers compute representations that
are increasingly invariant to translation and scale while in the second stage a
large number of specific parallel pathways deal with approximate invariance
to transformations that are specific for objects and object-classes. Notice that
for any representation which invariant to X and selective for Y, there may be a
dual representation which is invariant to Y but selective for X. In general, they
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are both needed for different tasks and both can be computed by a HW mod-
ule. In general, the machinery computing them shares a good deal of overlap.
As an example, we would expect that different face patches in cortex are used
to represent different combinations of invariance and selectivity.

2.1 Invariance reduces sample complexity of learning

Images of the same object usually differ from each other because of generic
transformations such as translation, scale (distance) or more complex ones such
as viewpoint (rotation in depth) or change in pose (of a body) or expression
(of a face) (see also Anselmi et al. 2013, par 3.1.2 for a back of envelope esti-
mation). In a machine learning context, invariance to image translations, for
instance, can be built up trivially by memorizing examples of the specific ob-
ject in different positions. Human vision on the other hand is clearly invariant
for novel objects seen just once: people do not have any problem in recogniz-
ing in a distance-invariant way a face seen only once. It is rather intuitive that
representations of images that are invariant to transformations such as scaling,
illumination and pose, just to mention a few, should allow supervised learning
from much fewer examples.

This conjecture is supported by previous theoretical work showing that al-
most all the complexity in recognition tasks is often due to the viewpoint and il-
lumination nuisances that swamp the intrinsic characteristics of the object (Lee
and Soatto 2012). It implies that in many cases, recognition—i.e., both identi-
fication, e.g., of a specific car relative to other cars—as well as categorization,
e.g., distinguishing between cars and airplanes—would be much easier (only
a small number of training examples would be needed to achieve a given level
of performance) if the images of objects were rectified with respect to all trans-
formations, or equivalently, if the image representation itself were invariant.
The case of identification is obvious since the difficulty in recognizing exactly
the same object, e.g., an individual face, is only due to transformations. In the
case of categorization, consider the suggestive evidence from the classification
task in Figure 1.

The figure shows that if an oracle factors out all transformations in images
of many different cars and airplanes, providing “rectified” images with respect
to viewpoint, illumination, position and scale, the problem of categorizing cars
vs airplanes becomes easy: it can be done accurately with very few labeled
examples. In this case, good performance was obtained from a single train-
ing image of each class, using a simple classifier. In other words, the sample
complexity of the problem seems to be very low.

A proof of the conjecture for the special case of translation or scale or rota-
tion is provided in (Anselmi et al. 2014) for images defined on a grid of pixels
the theorem (in the case of translations) can be stated as:

Sample complexity for translation invariance
Consider a space of images of dimensions pp which may appear in any posi-
tion within a window of size rp × rp. The natural image representation yields
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Figure 1: If an ”oracle” factors out all transformations in images of many differ-
ent cars and airplanes, providing “rectified” images with respect to viewpoint,
illumination, position and scale, the problem of categorizing cars vs airplanes
becomes easy: it can be done accurately with very few labeled examples. In
the figure, good performance (black line) was obtained from a single training
image from each rectified class, using a linear classifier operating on pixels,
whereas training from the unrectified training set yields chance performance.
In other words, the sample complexity of the problem becomes much lower
with a rectified (and therefore invariant) representation (Anselmi et al. 2013).
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a sample complexity (for a linear classifier) of order mimage = O(r2p2); the
invariant representation yields a sample complexity of order:

minv = O(p2)

The theorem says that an invariant representation can decrease considerably
the sample complexity – that is, the number of supervised examples necessary
for a certain level of accuracy in classification. A heuristic rule corresponding
to the theorem is that the sample complexity gain is in the order of the number
of virtual examples generated by the action of the (locally compact) group on
a single image (see also Niyogi 1998, Y. S. Abu-Mostafa 1993). This is not a
constructive result but it supports the hypothesis that the ventral stream in
visual cortex tries to approximate such an oracle. The next section describes a
biologically plausible algorithm that the ventral stream may use.

2.2 Unsupervised learning and computation of an invariant
signature (one layer architecture)

The following HW algorithm is biologically plausible - as we will discuss in de-
tail in section 6, where we argue that it may be implemented in cortex by a HW
module, that is a set of KH complex cells with the same receptive field, each
pooling the output of a set of simple cells whose sets of synaptic weights cor-
respond to one of the K ”templates” of the algorithm and its transformations
(which are also called templates) and whose output is filtered by a sigmoid
function with ∆h threshold, h = 1, ,H .

HW algorithm for (locally compact) groups (see Figure 2)

• ”Developmental” stage:
1.1 For each of K isolated (on an empty background) objects - ”tem-
plates” - memorize a sequence Γ of |G| frames corresponding to its trans-
formations (gi, i = 1, ..., |G|) observed over a time interval (thus Γ =
g0t, g1t..., g|G|t for template t; for template tk the corresponding sequence
of transformations is denoted Γk).
1.2 Repeat for each of K templates

• ”Run-time” computation of invariant signature for a single image (of any
new object):
2.1 For each Γk compute the dot product of the image with each of the
|G| transformations in Γk

2.2 For each k compute cumulative histogram of the resulting values
2.3 The signature is the set of K cumulative histograms that is the set of:

µk
h(I) =

1

|G|

|G|∑
i=1

σ(
〈
I, git

k
〉

+ h∆) (1)

where I is an image, σ is a threshold function ∆ > 0 is the width of bin
in the histogram and h = 1, ,H is the index of the bins of the histogram.
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Figure 2: A graphical summary of the HW algorithm. The set of µk
h(I) =

1/|G|
∑|G|

i=1 σ(
〈
I, git

k
〉

+ h∆) values (eq. 1) in the main text) correspond to
the the histogram where k=1 denotes the template” green blackboard”, h the
bins of the histogram and the transformations are from the rotation group.
Crucially, mechanisms capable of computing invariant representations under
affine transformations can be learned (and maintained) in an unsupervised, au-
tomatic way just by storing sets of transformed templates which are unrelated
to the object to be represented in an invariant way. In particular the templates
could be random patterns..

8



The algorithm consists of two parts: the first is unsupervised learning of
transformations by storing transformed templates, which are ”images”. This
can be thought of as a ”once in a time” stage, possibly done once during de-
velopment of the visual system. The second part is the actual computation of
invariant signatures during visual perception.

This is the algorithm used throughout the paper. The guarantees we can
provide depend on the type of transformations. The main questions are a)
whether the signature is invariant under the same type of transformations
that were observed in the first stage and b) whether it is selective, e.g. it can
distinguish between N different objects. The summary of the main results of
(Anselmi et al. 2014, Anselmi et al. 2013) is that the HW algorithm is invariant
and selective (for K in the order of logN ) if the transformations form a group.
In this case, any set of randomly chosen templates will work for the first stage.
Seen as transformations from a 2D image to a 2D image, the natural choice is
the affine group consisting of translations, rotations in the image plane, scal-
ing (possibly non-isotropic) and compositions thereof of (see also par 3.2.3 of
Anselmi et al 2013). The HW algorithm can learn with exact invariance and
desired selectivity 1 in the case of the affine group or its subgroups. In the case
of 3D ”images” consisting of voxels with x, y, z coordinates, rotations in 3D
are also a group and in principle can be dealt with, achieving exact invariance
from generic templates by the HW algorithm (in practice this is rarely possible
because of correspondence problems and self-occlusions). Later in section 2.5
we will show that the same HW algorithm provides approximate invariance
(under some conditions) for non-group transformations such as the transfor-
mations from R3 to R2 induced by 3D rotations of an object.
In the case of compact groups the guarantees of invariance and selectivity are
provided by the following two theorems (given informally here; detailed for-
mulation in Anselmi et al. 2014, Anselmi et al. 2013).

Invariance theorem
The distributions represented by equation 1 are invariant, that is each bin is
invariant, e.g.

µk
h(I) = µk

h(gI) (2)

for any g in G, where G is the (locally compact) group of transformations la-
beled gi in equation 1.

Selectivity theorem
For (locally compact) groups of transformations (such as the affine group), the

1Consider the case of a discrete group of M elements. What is required are K tem-
plates with K = M + 1. The argument is as follows. From the M observations there
is a distribution p(I) supported on M atoms (each is a bin corresponding to a specific
image). This distribution can be uniquely associated to M + 1 one-dimensional dis-
tributions of the projections of p(I). This is based on Heppes theorem (Heppes 1956):
A distribution consisting of k arbitrary points in the n-dimensional space is uniquely
determined if its projections on k + 1 not parallel 1-dimensional subspaces are given.
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distributions represented by equations 1) can achieve any desired selectivity
for an image among N images in the sense that they can ε-approximate the
true distance between each pair of the images (and any transform of them)
with probability 1− δ provided that

K >
c

ε2
ln
N

δ
(3)

where c is a universal constant.
The signature provided by theK cumulative histograms is a feature vector cor-
responding to the activity of the (HK) complex cells associated with the HW
module. It is selective in the sense that it corresponds uniquely to an image
of a specific object independently from its transformation. It should be noted
that the robustness or stability of the signature under noisy measurements re-
mains an interesting open problem in the theory. Because of the restricted dy-
namic range of cortical cells the numberH of bins is likely to be small, probably
around 2 or 3. It is important to remark that other, related representations are
possible (see also par. 3.3.1 eq. 3 Anselmi et al. 2013 and Kouh and Poggio
2008). A cumulative distribution function (cdf) is fully represented by all its
moments; often a few moments, such as the average or the variance (energy
model of complex cells, see Adelson and Bergen 1985) or the max,

µk
av(I) =

1

|G|

|G|∑
i=1

〈
I, git

k
〉

(4)

µk
energy(I) =

1

|G|

|G|∑
i=1

〈
I, git

k
〉2

µk
max(I) = maxgi∈G

〈
I, git

k
〉

can effectively replace the cumulative distribution function. Notice that any
linear combination of the moments is also invariant and a small number of
linear combinations is likely to be sufficiently selective. We will discuss impli-
cations of this remark for models of complex cells in the last section.

2.3 Optimal templates for scale and position invariance are
Gabor functions

The previous results apply to all groups, in particular to those which are not
compact but only locally compact such as translation and scaling. In this case
it can be proved that invariance holds within an observable window of trans-
formations (Anselmi et al. 2014, Anselmi et al. 2013). For the HW module the
observable window corresponds to the receptive field of the complex cell (in
space and scale). For maximum range of invariance within the observable win-
dow, it is proven in (Anselmi et al. 2014, Anselmi et al. 2013) that the templates
must be maximally sparse relative to generic input images (see below for defi-
nition of sparseness). In the case of translation and scale invariance, this spar-
sity requirement is equivalent to localization is space and spatial frequency,
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respectively: templates must be maximally localized for maximum range of
invariance - in order to minimize boundary effects due to the finite window.
Assuming therefore that the templates are required to have simultaneously a
minimum size in space and spatial frequency, it follows from results of Gabor
(Gabor 1946, see also Donoho 1989) that they must be Gabor functions. The
following surprising property holds:

Optimal invariance theorem Gabor functions of the form (here in 1D) t(x) =

e−
x2

2σ2 eiω0x are the templates that are simultaneously maximally invariant for
translation and scale (at each x and ω.)
In general, templates chosen at random in the universe of images can provide
scale and position invariance. However, for optimal invariance under scaling
and translation, templates of the Gabor form are optimal. This is the only com-
putational justification we know 2 of the Gabor shape of simple cells in V1
which seems to be remarkably universal: it holds in primates (Ringach 2002),
cats (Jones et al. 1987) and mice (Striker and Neill 2008) (see also Figure 3 for
results of simulations).

2.4 Quasi-invariance to non-group transformations requires
class-specific templates

All the results so far require a group structure and provide exact invariance for
a single new image. In 2D this induces all combination of translation, scaling
and rotation in the image plane but does not include the transformations in-
duced on the image plane by 3D transformations such as viewpoint changes
and rotation in depth of an object. The latter forms a group in 3D, that is if im-
ages and templates were 3D views: in principle motion or stereopsis can pro-
vide the third dimension though available psychophysical evidence (Bulthoff
and Edelman 1992, Tarr 1995) suggests that human vision does not use it for
recognition. Notice that transformations in the image plane are affected not
only by orthographic projection of the 3D geometry but also by the process
of image formation which depends on the 3D geometry of the object, its re-
flectance properties, the relative location of light source and viewer.

It turns out that the HW algorithm can still be applied to non-group trans-
formations – such as transformations of the expression of a face, of pose of
a body–to provide, under certain conditions, approximate invariance around
the ”center” of such a transformation. In this case bounds on the invariance
depend on specific details of the object and the transformation: we do not have
general results and suspect they may not exist. The key technical requirement
is that a new type of sparsity condition holds: sparsity for the class of images
IC with respect to the dictionary tk under the transformations Tr (we consider

2Mallat (Mallat 2012) justification of his use of wavelets is different (Lipschitz-
continuity to the action of C2 diffeomorphisms). He does not justify the Gaussian en-
velope associated to Gabor functions. Also the alternative argument of Stevens 2004 for
wavelet receptive fields in V1 does not imply Gabor wavelets.
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Figure 3: a) Simulation results for V1 simple cells learning via PCA. Each ”cell”
sees a set of images through a Gaussian window (its dendritic tree) ., shown in
the top row. Each cell then ”learns” the same weight vector extracting the prin-
cipal components of its input. b) This figure shows ny = σy/λ vs nx = σx/λ for
the modulated (x) and unmodulated (y) direction of the Gabor wavelet. No-
tice that the slope σy/σx Is a robust finding in the theory and apparently also
in the physiology data. Neurophysiology data from monkeys, cats and mice
are reported together with our simulations. Figure from Poggio et al. 2013.
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here a one parameter r transformation)〈
IC , Trt

k
〉
≈ 0 |r| > a a & 0. (5)

This property, which is an extension of the compressive sensing notion of “in-
coherence”, requires that images in the class and the templates have a rep-
resentation with sharply peaked correlation and autocorrelation (the constant
a above is related to the support of the peak of the correlation). This condi-
tion can be satisfied by templates that are similar to images in the set and are
sufficiently “rich” to be incoherent for “small” transformations. This relative
sparsity condition is usually satisfied by the neural representation of images
and templates at some high level of the hierarchy of HW modules that we de-
scribe next. Like standard sparsity (Donoho, 1989) our new sparsity condition
is generic: most neural patterns - templates and images from the same class -
chosen at random will satisfy it. The full theorem (Anselmi et al. 2014, Anselmi
et al. 2013) takes the following form:

Class-specific property
µk
h(I) is approximatively invariant around a view if

• I is sparse in the dictionary of the templates relative to the transforma-
tions

• I transforms ”in the same way” as the templates

• the transformation is smooth.

The main implication is that approximate invariance can be obtained for non-
group transformation by using templates specific to the class of objects. This
means that class specific modules are needed, one for each class; each module
requires highly specific templates, that is tuning of the cells. The obvious ex-
ample is face-tuned cells in the face patches. Unlike exact invariance for affine
transformations where tuning of the ”simple cells” is non-specific in the sense
that does not depend on the type of image, non-group transformations require
highly tuned neurons and yield at best only approximate invariance 3

3A similar, stronger result can be obtained with somewhat more specific assump-
tions. Consider the image transformations induced by an affine transformation of a
3D object such as a face, in particular rotation around the vertical (y) axis. Consider
a simplistic model of image formation in which the surface texture of the 3D object
is mapped into pixel values independently of the surface orientation and of the ge-
ometry of illumination. Let us call I0(x), with x = (x, y) the image of the object for
”zero” pose. Let the object rotated by θ yield the image Iθ(x). Introducing the defor-
mation field dθ(x) we write its definition as Iθ(x) = I0(x + dθ(x)). The deformation
field d(x) is uniquely associated with the 3D structure of a specific object (under ortho-
graphic projection and neglecting occlusions, the field dθ(x) =

∑2
i=1 c

θ
iφi(x) , where

φ1(x) and φ2(x) are fixed functions for a specific object, describes the deformation on
the image plane induced by affine transformations in 3D (this follows since under or-
thographic projection the space of views of the object is spanned by 2 views, see Ull-
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2.5 Two stages in the computation of an invariant signature

Hierarchical architectures are advantageous for several reasons which are for-
malized mathematically in (Anselmi et al. 2014, Anselmi et al. 2013). It is
illuminating to consider two extreme ”cartoon” architectures for the first of the
two stages described at the beginning of section 2:

• one layer comprising one HW module and its KH complex cells, each one
with a receptive field covering the whole visual field

• a hierarchy comprising several layers of HW modules with receptive
fields of increasing size, followed by parallel modules, each devoted to
invariances for a specific object class.

In the first architecture invariance to affine transformations is obtained by pool-
ing over KH templates each one transformed in all possible ways: each of the
associated simple cells corresponds to a transformation of a template. Invari-
ance over affine transformation is obtained by pooling over the whole visual
field. In this case, it is not obvious how to incorporate invariance to non-group
transformations directly in this one-hidden layer architecture.

Notice however that a HW module dealing with non-group transforma-
tions can be added on top of the affine module. The theorems (Anselmi et al.
2014, Anselmi et al. 2013) allow for this factorization. Interestingly they do
not allow in general for factorization of translation and scaling (e.g. one layer
computing translation invariance and the next computing scale invariance). In-
stead, what the mathematics allows is factorization of the range of invariance
for the same group of transformations (see also Anselmi et al. 2013 par 3.6-7-
8-9). This justifies the first layers of the second architecture, corresponding to
Figure 4 stage1, where the size of the receptive field of each HW module and
the range of its invariance increases from lower to higher layers.

man and Basri 1991; Poggio 1990.). Under our (strong) assumptions, the normalized
images Iθ1 (x), Iθ2 (x) of two objects with different texture but the same 3D structure -
therefore the same deformation fields – satisfy

〈
I01 (x), I02 (x)

〉
=
〈
Iθ1 (x), Iθ2 (x)

〉
. Objects

with similar texture and similar 3D structure and therefore similar deformation field
therefore satisfy

〈
I01 (x), I02 (x)

〉
≈
〈
Iθ1 (x), Iθ2 (x)

〉
. This property of objects that belong

to the same object class (Anselmi et al. 2014, Anselmi et al. 2013 and Leibo et al. 2014)
is sufficient for the signature component µkh(I) = (1/|G|)∑θ σ(< I, tθ > +h∆) to be
approximately invariant under 3D rotation by θ. The property holds for higher layers
in a hierarchical architecture under mild conditions (Anselmi et al in preparation). This
in turn can explain how templates from the object class of faces can be used to obtain
invariance to rotations in depth of a new face under assumptions similar to the condi-
tions required by the class-specific theorem (apart from sparsity, which is not strictly
required).
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Figure 4: A hierarchical architecture of HW modules. Signature provided by
each of the nodes at each layer may be used by a supervised classifier. Stage 1: a
hierarchy of HW modules (green inset) with growing receptive fields provide
a final signature (top of the hierarchy ) which is globally invariant to affine
transformations by pooling over a cascade of locally invariant signatures at
each layer. Stage 2: transformation specific modules provide invariance for
non group transformations (e.g. rotation in depth).
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2.6 Invariance to translation and scale (stage 1) tolerant of clut-
ter requires a hierarchical architecture

The main problem with the one-layer architecture is that it can recognize iso-
lated objects in the visual field in an invariant way but cannot recognize objects
in clutter: the key theorem about invariance assumes that image and templates por-
tray isolated objects. Otherwise the signature may change because of different
clutter at different times4 . The problem of clutter - of recognizing an object
independently of the presence of another one nearby - is closely related to the
problem of recognizing ”wholes” and ”parts”. Recognizing an eye in a face
has the problem that the rest of the face is clutter. This is the old conundrum of
recognizing a tree in a forest while still recognizing the forest.

A partial solution to this problem is a hierarchical architecture for stage 1
in which lower layers provide signatures with a small range of invariance for
”small” parts of the image and higher layers provide signatures with greater
invariance for larger parts of the image (see also Anselmi et al. 2013, par 5.4
for the case of translations). This signature could then be used by class specific
modules. We will describe this architecture starting with the retina and V1 in
the next section. Two points are of interest here.

Factorization of range of invariances is possible if a certain property of the
hierarchical architecture, called covariance, holds. Assume a group transfor-
mation of the image that is e.g. a translation or scaling of it. The first layer
in a hierarchical architecture is called covariant if the pattern of neural activity
at the output of the complex cells transforms accordingly to the same group
of transformations. It turns out that the architectures we describe have this
property (see Anselmi et al. 2014, Anselmi et al. 2013 par 3.5.3 for the transla-
tions case): isotropic architectures, like the ones considered in this paper, with
point-wise nonlinearities, are covariant. Since each module in the architecture
gives an invariant output if the transformed object is contained in the pooling
range, and since the pooling range increase from a layer to the next, there is
a invariance over larger and larger transformations. The second point is that
in order to make recognition possible for both parts and wholes of an image,
the supervised classifier should receive signatures not only from the top layer
(as in most neural architectures these days) but from the other levels as well
(directly or indirectly).

4Notice that because images are filtered by the retina with spatial bandpass filters
(ganglion cells), the input to visual cortex is a rather sparse pattern of activities, some-
what similar to a sparse edge map.
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3 Biophysical mechanisms of invariance: unsuper-
vised learning, tuning and pooling

3.1 A single cell model of simple and complex cells

There are at least two possible biophysical models for the HW module implied
by i-theory. The first is the original Hubel and Wiesel model of simple cells
feeding into a complex cell. I-theory proposes the ”ideal” computation of a
CDF, in which case the nonlinearity at the output of the simple cells is a thresh-
old. A complex cell, summating the outputs of a set of simple cells, would then
represent a bin of the histogram; a different complex cell in the same position
pooling a set of similar simple cells with a different threshold would represent
another bin of the histogram. Another possibility, is that the nonlinearity at the
output of the simple cells is a square or any power or combination of powers.
In this case the complex cell pooling simple cells with the same nonlinearity
would represent a moment of the distribution, including the linear average.
Notice that in this case some of the complex cells would be linear and would
be classified by neurophysiologists using the standard criteria as simple! The
nonlinear transformation at the output of the simple cells would correspond
to the spiking mechanism in populations of cells (see references in Kouh and
Poggio 2008).

The second biophysical model for the HW module that implements the
computation required by i-theory consists of a single cell where dendritic
branches play the role of simple cells (each branch containing a set of synapses
with weights providing, for instance, Gabor-like tuning of the dendritic branch)
with inputs from the LGN; active properties of the dendritic membrane distal
to the soma provide separate threshold-like nonlinearities for each branch sep-
arately, while the soma summates the contributions for all the branches. This
model would solve the puzzle that so far there seems to be no morphological
difference between pyramidal cells classified as simple vs complex by physiol-
ogists.

It is interesting that i-theory is robust with respect to the nonlinearity from
simple to the complex ”cells”. We conjecture that almost any set of non trivial
nonlinearities will work. The argument rests on the fact that a set of different
complex cells pooling from the same simple cells should compute the cumu-
lative distribution or equivalently its moments or combinations of moments
(each combination is a specific nonlinearity). Any nonlinearity will provide
invariance, if the nonlinearity does not change with time and is the same for
all the simple cells pooled by the same complex cells. A sufficient number of
different nonlinearities, each corresponding to a complex cell, can provide ap-
propriate selectivity - assuming that each nonlinearity can be represented by a
truncated power series and that the associated complex cells provide therefore
enough linearly independent combinations of moments.
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3.2 Learning the wiring

A simple possibility of how the wiring between a group of simple cells with the
same tuning (for instance representing the same eigenvector, with the same ori-
entation etc.) and a complex cell may develop is to invoke a Hebbian trace rule
(Foldiak 1991). In a first phase complex cells may have subunits with different
selectivities (eg orientations), for instance because natural images are rotation
invariant and thus eigenvectors with different orientations are degenerate. In
a second plastic phase, subunits which are not active when the majority of the
subunit is active will be pruned out according to a Foldiak-like rule.

3.3 Hebb synapses and PCAs

I-theory provides the following algorithm for learning the relevant invariances
during unsupervised visual experience: storing sequences of images for each
of a few objects (called “templates”) while transforming - for instance translat-
ing, rotating and looming. Section 2 proves that in this way invariant hierar-
chical architectures can be learned from unsupervised visual experience. Such
architectures represent a significant extension, beyond simple translation in-
variance and beyond hardwired connectivity, of models of the ventral stream
such as Fukushima’s Neocognitron (Fukushima1980) and HMAX (Riesenhu-
ber and Poggio 2000, Serre et al. 2007) – as well as deep neural network called
convolutional networks (LeCun et al. 1989, LeCun et al. 1995) and related
models e.g. (Poggio et al. 1990, Perrett and Oram 1993, Mel 1997, Stringer and
Rolls 2002, Pinto et al. 2009, Saxe et al. 2011, Le et al. 2011, Abel-Hamid 2012).

In biological terms the sequence of transformations of one template would
correspond to a set of simple cells, each one storing in its tuning a frame of the
sequence. In a second learning step a complex cell would be wired to those
“simple” cells. However, the idea of a direct storage of sequences of images or
image patches in the tuning of a set of V1 cells by exposure to a single object
transformation is biologically rather implausible. Since Hebbian-like synapses
are known to exist in visual cortex a more natural hypothesis is that synapses
would incrementally change over time as an effect of the visual inputs - that
is over many sequences of images resulting from transformations of objects,
e.g. templates. The question is whether such a mechanism is compatible with
i-theory and how.

We explore this question for V1 in a simplified setup that can be extended
to other areas. We assume

• a) that the synapses between LGN inputs and (immature) simple cells
are Hebbian and in particular that their dynamics follows Oja’s flow. In
this case, the synaptic weights will converge to the eigenvector with the
largest eigenvalue of the covariance of the input images.

• b) that the position and size of the untuned simple cells is set during de-
velopment according to the inverted pyramidal lattice of Figure 7. The
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key point here is that the size of the Gaussian spread of the synaptic in-
puts and the positions of the ensemble of simple cells are assumed to be
set independently of visual experience.

In summary we assume that the neural equivalent of the memorization of
frames (of transforming objects) is performed online via Hebbian synapses that
change as an effect of visual experience. Specifically, we assume that the distri-
bution of signals ”seen” by a maturing simple cell is Gaussian in x, y reflecting
the distribution on the dendritic tree of synapses from the lateral geniculate
nucleus. We also assume that there is a range of Gaussian distributions with
different σ which increase with retinal eccentricity. As an effect of visual expe-
rience the weights of the synapses are modified by a Hebb rule (Hebb 1949).
Hebb’s original rule can be written as

wn = αy(xn)xn (6)

where α is the ”learning rate”, xn is the input vector w is the presynaptic
weights vector and y is the postsynaptic response. In order for this dynamical
system to actually converge, the weights have to be normalized. In fact, there
is considerable experimental evidence that cortex employs normalization (Tur-
rigiano and Nelson 2004) and references therein). Hebb’s rule appropriately
modified with a normalization factor turns out to be an online algorithm to
compute PCA from a set of input vectors. In this case it is called Oja’s flow.
Oja’s rule (Oja 1982, Karhunen 1994) defines the change in presynaptic weights
w given the output response y of a neuron to its inputs to be

∆wn = wn+1 − wn = αyn(xn − ynwn) (7)

where yn = wT
nxn. The equation follows from expanding to the first order

Hebb rule normalized to avoid divergence of the weights.
Since the Oja flow converges to the eigenvector of the covariance matrix of the
xn which has the largest eigenvalue, we are therefore led to analyze the spectral
properties of the inputs to ”simple” cells and study whether the computation
of PCA can be used by the HW algorithm and in particular whether it satisfies
the selectivity and invariance theorems.

Alternatives to the Oja’s rule that still converge to PCAs can be considered
(Sanger 1989 and Oja 1992). Also notice that a relatively small change in the
Oja equation gives an online algorithm for computing ICAs instead of PCAs
(see Hyvrinen and Oja 2000). Which kind of plasticity is closer to the biology
remains an open question.

3.4 Spectral theory and pooling

Consider stage 1, which is retinotopic, and, in particular, the case of simple cells
in V1. From assumption b in section 6.1, the lattice in x, y, s of immature sim-
ple cell is set during development of the organism (s is the size of the Gaussian
envelope of the immature cell). Assume that all of the simple cells are exposed,
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while in a plastic state, to a possibly large set of images T = (t1, ..., tK). A
specific cell at a certain position in x, y, s is exposed to the set of transformed
templates g∗T where g∗ corresponds to the translation and scale that trans-
forms the ”zero” cells to the chosen neuron in the lattice) and therefore the
associated covariance matrix g∗TTT gT∗ . Thus it is possible to choose PCA as
new templates and pooling over corresponding PCAs across different cells is
equivalent to pool over a template and its transformations. Both the invariance
and selectivity theorem are valid. Empirically, we find (Leibo et al. 2014) that
PCA of natural images provides eigenvector that are Gabor-like wavelets with
a random orientation for each size receptive field (hypothesis b). The random
orientation is because of the argument above, together with the fact that the
covariance of natural images is approximately rotation invariant. The Gabor-
like shape can be qualitatively explained in terms of translation invariance of
the correlation matrix associated with a set or natural images (and their ap-
proximate scale invariance which corresponds to a ≈ 1/f spectrum, see also
Ruderman 1994 and Torralba and Oliva 2003)5 . Thus the Oja rule acting on
natural images provides ”equivalent templates” that are Gabor-like - which
are the optimal ones, according to the theory of section 2.3!

Consider now non-retinotopic stage 2 in which transformations are not in
scale or position, such as the transformation induced by a rotation of a face. As-
sume that a ”simple” cell is exposed to ”all” transformations gi (gi is a group el-
ement of the finite groupG) of each of a set T = (t1, ..., tK) ofK templates. The
cell is thus exposed to a set of images (columns of X) X = (g1T, ..., g|G|T ). For
the sake of this example, assume that G is the discrete equivalent of a group.
Then the covariance matrix determining the Oja’s flow is

C = XXT =

|G|∑
i=1

giTT
T gTi . (8)

It is immediate to see that if φ is an eigenvector of C then giφ is also an eigen-
vector with the same eigenvalue (for more details on how receptive fields look
like in V1 and higher layers see also Poggio et al. 2013 or Anselmi et al. par
4.3.1 and 4.7.3 or Gallant et al. 1993,1996 or Hegde and Van Essen 2000). Con-
sider for example G to be the discrete rotation group in the plane: then all the
(discrete) rotations of an eigenvector are also eigenvectors. The Oja rule will
converge to the eigenvectors with the top eigenvalue and thus to the subspace
spanned by them. It can be shown that L2 pooling over the PCA with the
same eigenvalues represented by different simple cells is then equivalent to L2

pooling over transformations, as the theory of section 2.2 dictates in order to

5Suppose that the simple cells are exposed to patterns and their scaled and translated
versions. Suppose further that images are defined on a lattice and translations and
scaling (a discrete similitude group) are carefully defined on the same lattice. Then a set
of discrete orthogonal wavelets - defined in terms of discrete dilation and shifts - exist
and is invariant under the group. The Oja rule (extended beyond the top eigenvector)
could converge to specific wavelets.
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achieve selectivity and invariance (Anselmi et al. 2013 par 4.6.1). This argu-
ment can be formalized in the following variation of the pooling step in the
HW algorithm:

Spectral pooling proposition. Suppose that φk is the matrix corresponding to the
group transformations of template tk (each column is a transformation of the
template). Consider the set of eigenvectors φ∗i of the associated covariance ma-
trix with eigenvalue λ∗. Because of the above argument 〈gmI, φ∗k〉 =

〈
I, φ∗p

〉
where g−1m φ∗k = φ∗p. Therefore to achieve invariance a complex cell can pool
with a quadratic nonlinearity over the eigenvectors of Γk instead than over
the transformations of the template (in addition we may assume sparsity of
the eigenvectors). The argument is still valid if the pooling is over part of the
eigenvectors of Γ =

⋃K
i=1 Γi. Thus components of an invariant signature can

be computed as

µ∗(I) =
∑
i

|| 〈I, φ∗i 〉 ||2. (9)

We conjecture that PCA and linear combinations of them can provide a suffi-
cient number of templates to satisfy the selectivity theorem of section 2.

3.5 Tuning of ”simple” cells

The theorems of section 2 on the HW module, imply that the templates, and
therefore the tuning of the simple cells can be the image of any object. At
higher levels in the hierarchy, the templates are neuroimages - patterns of neu-
ral activity – induced by actual images in the visual field. The previous section,
however, offers a more biologically plausible way to learn the templates from
unsupervised visual experience, via Hebbian plasticity. In the next sections
we will discuss predictions following from this assumptions for the tuning of
neurons in the various areas of the ventral stream.

4 Stage 1: retina and V1

4.1 Inverted truncated pyramid

The simplest and most common image transformations are similitude trans-
formations, that is shifts in position (x) and uniform changes in scale (s). The
theory suggests that the first step of the invariance computation are likely to
consists of learning/storage of the set of transformations. This is done either
by actual visual experience or by evolution encoded in the genes or by a com-
bination (see the Discussion section):

• storing template tk (which is an image patch and could be chosen at ran-
dom)
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Figure 5: On the left the s, x plane, indicating templates of radius s1, s2, and
s3 in the spatial dimensions x, y all centered at position X . Note that while s
and x are both measured in degrees of visual angle, in this plot the two axes
are not shown to the same scale. Here, as in the rest of the paper, we show
only one spatial coordinate (x); everything we say can be directly extended to
the x, y plane. We will assume later that the smallest template is the smallest
simple cell in the fovea with a radius of around 40′′ (Marr et al. 1980). For any
fixed eccentricity (right) the size of the pattern determines the slope of its s,x
trajectory under scaling. (From Poggio et al., 2014).

• storing all its observed transformations (bound together by continuity in
time)

• repeating the above process for a set of K templates.

Though the templates can be arbitrary image patches, we will assume – be-
cause of the Optimal Invariance Theorem and because of the experimental ev-
idence from V1 simple cells – that V1 templates are Gabor-like functions (more
precisely windowed Fourier transforms, Mallat 2008, par 4.2 pg. 92).

Under scaling, a pattern exactly centered at the center of the fovea will
change size without any translation of its center while its boundaries will shift
in x, y; for a pattern centered at some non-zero eccentricity, scaling will trans-
late its center in the s, x plane, see Figures 5. In the s, x plane the slope of the
trajectory of a pattern under scaling is a straight line through the origin with a
slope that depends on the size of the pattern s and the associated position.

Consider a Gabor function at s = s0, x = 0. s0 is the minimum possible re-
ceptive field size given optical constraints. Transforming it by shifts in xwithin
(−x0, x0) generates a set Γ0 of templates. Suppose that we want to ensure that
what is recognizable at the highest resolution (s0) remains recognizable at all
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Figure 6: Synthesis of template set. Consider a template, such as a Gabor RF,
at smin and x = 0. Store its transformations under (bounded) shift, filling the
interval between smin, x = 0 and smin ,xmax. Store its transformations over
(bounded) scale, filling the space in the truncated, inverted pyramid shown
in the figure. This is the space of bounded joint transformations in scale and
space. For clarity of the figure the axes s,x are not in the same units (s unit is 10
times the x unity, so that the real slope is 1/10 of the shown one). (From Poggio
et al., 2014).

scales up to smax. The associated scale transformations of the set Γ0 yield the
inverted truncated pyramid shown in Figure 6.

Pooling over that set of transformed templates according to the HW algo-
rithm will give uniform invariance to all scale transformations of a pattern over
the range (s0, smax); invariance to shifts will be at least within (−x0, x0), de-
pending on scale. Note that the above process of observing and storing a set of
transformations of templates in order to be able to compute invariant represen-
tations may take place at the level of evolution or at the level of development
of an individual system or as a combination of both.

The following definition holds: the inverted truncated pyramid of Figure 6
is the locus Γ of the points such that their scaling between smin and smax gives
points in S; further all points P in (−x0, x0) are in S, e.g. P ∈ Γ if

gsP ∈ Γ , s ∈ (smin, smax),Γ0 ∈ Γ (10)

where Γ0 consists of all points at smin between−x0 and x0. (Other alternatives
are possible: one of many is to set a constant difference between the minimum
and the maximum scale at each eccentricity: smax − smin = const (see Figure 9
(lower) of Poggio et al., 2014). Experimental data suggests this is a more likely
possibility (large eccentricities are also represented in the visual system)).
The inverted pyramid region follows naturally if scale invariance has a higher
priority than shift invariance. We recall that according to the Optimal invari-
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ance theorem, the optimal template is a Gabor function (Anselmi et al. 2014,
Anselmi et al. 2013). Under scale and translation within the inverted pyramid
region the Gabor template originates a set of Gabor wavelets (a tight frame). In
the region of Figure 6 scaling each wavelet generates other elements of the
frame. Notice that the shape of the lower boundary of the inverted pyra-
mid, though similar to standard empirical functions that have been used to
describe M scaling, is different for small eccentricities. An example of an em-
pirical function (Cowey et al., 1974), described in (Strasburger et al., 2011) is
M−1 = M0(1 + ax), where M is the cortical magnification factor, M0 and a are
constants and x is eccentricity.

A normal, non-filtered image may activate all or part of the Gabor filters
within the inverted truncated pyramid of Figure 6. The pattern of activities is
related to a multi-resolution wavelet decomposition of an image. We call this
transform of the image an“inverted pyramid scale-space fragment” (“IP frag-
ment” in short: the term fragment is borrowed from Ullman) and consider it
as supported on a domain in the space x, y, s that is contained in the inverted
truncated pyramid of the figure. The fragment corresponding to a bandpass fil-
tered image should be a more or less narrow horizontal slice in the s, x plane.
In the following we assume that the template is a Gabor filter (of one orien-
tation; other templates may have different orientations). We assume that the
Gabor filter and its transforms under translation and scaling are roughly band-
pass and the sampling interval at one scale over x is s implying half overlap of the
filters in x. This is illustrated in Figure 7. These assumptions imply that for
each array of filters of size s, the first unit on the right of the central one is at
x = s, if x and s are measured in the same units. For the scale axis we follow
the sampling pattern estimated by Marr et al., 1980 with five “frequency chan-
nels” with 2s = 1′20′′, 3.1′, 6.2′, 11.7′, 21′. Filter channels as described above
are supported by sampling by photoreceptors that starts in the center of the
fovea at the Shannon rate, dictated by the diffraction-limited optics with a cut-
off around 60 cycles/degree, and then decreases as a function of eccentricity.

4.2 Fovea and foveola

In this “truncated pyramid” model of the simple cells in V1, the slope of the
magnification factor M as a function of eccentricity depends on the size of the
foveola – that is the region at the minimum scale smin. The larger the foveola,
the smaller the slope. We submit that this model nontrivially fits data about the
size of the fovea, the slope ofM and other data about the size of receptive fields
in V1. In particular the size of the foveola, the size of the largest RFs in AIT and
the slope of acuity as a function of eccentricity depend on each other: fixing one
determines the other (after setting the range of spatial frequency channels, i.e.,
the range of RF sizes at x = 0 in V1). For a back of the envelope calculation
we assume here that smin ≈ 40” (from an estimate of 1′20′′ for the diameter
of the smallest simple cells Marr et al. 1980, see also Mazer et al. 2002). Data
of Hubel and Wiesel (Hubel et al., 1962, Hubel et al., 1974) (shown in figure
6A in Hubel and Wiesel 1974) and Gattass (Gattass et al. 1981, Gattass et al.
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Figure 7: Under the assumption of Gabor filters and associated sampling for
each scale at spatial intervals ∆x = s, this graph depicts a subset of the result-
ing array of template units. Note that the sampling over x follows the sampling
theorem. Note that there are no samples between the s axis and the line with
slope 1 (when x and s are plotted in the same units). The center of the circles in
the figure gives the s, x coordinates; the circles are icons symbolizing here the
receptive fields. The figure shows a foveola of ≈ 26′ and a total of ≈ 40 units
(20 on each side of the center of the fovea). It also shows sampling intervals at
the coarsest scale in the fovea (assumed to be around 2s = 21′ (Marr et al.1980)
which would span≈ ±6. Note that the size of a letter on the ophthalmologist’s
screen for 20/20 vision is around 5′. Since the inverted truncated pyramid a)
has the same number of sample points at every scale, it maps perfectly onto
a square array b) when x is replaced by ix = x/s, i.e., the number of samples
from the center. is is the scale band index. (s, x units are scaled as in Figure 6
for clarity). (From Poggio et al., 2014.) .
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Figure 8: Data of Hubel and Wiesel for monkey V1 gives a slope for average
RF diameter, relative to eccentricity, of a = 0.05 (from Hubel 1974). Data from
other areas are similar but have higher slope (adapted from Freeman 2011 with
original monkey data from Gattass 1981, Gattass 1988). (From Poggio et al.,
2014.) .

1988) (shown in Figure 8) yield an estimate of the slope a for M in V1 (the slope
of the line smin(x) = ax). Hubel and Wiesel cite the slope of the average RF
diameter in V1 as a = 0.05; Gattass quotes a slope of a ≈ 0.16 (in both cases the
combination of simple and complex cells may yield a biased estimate relative
to the “true” slope of simple cells alone). Our model of an inverted truncated
pyramid predicts (using an estimate of a = 0.1) from these estimates that the
radius of the foveola (the bottom of the truncated pyramid) is R = 1′20/0.1 ≈
13′ with a full extent of 2R ≈ 26′ corresponding to about 40 cells separated
by 40” each. The size of the fovea (the top of the truncated pyramid) would
then have 2R ≈ 6 with 40 cells spaced ≈ 10′′ apart; see Figure 6. Each of the
scale layers has the same number of units which is determined by the number
of units in the fovea – that is, the number of units at the finest resolution. This
remapping shows that S1 corresponds to a lattice of dimensions x, y, s, θ where
the dimension sizes are different (but roughly the same for x, y); the topology
is that of a cylinder with θ being periodic.

Notice that the lattice contains all the affine transformations - translations
and scale – of the templates required for invariance within the inverted pyra-
mid. The number is large but quite reasonable: 40 × 40 = 1600 per scale and
per Gabor orientation for a total of around 50K transformed templates.
We have used data from the macaque together with data from human psy-
chophysics. These estimates depend on the actual range of receptive field sizes
and could easily be wrong by factors of 2. Our main goal is to provide a logical
interpretation of future data and a ballpark estimate of relevant quantities.
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4.3 Scale and position invariance in V1

Invariance is not provided directly by the array but by the pooling over it.
Note that we are limiting ourselves in this section to the invariant recognition
of isolated objects. The range of invariance in x is limited for each s by the slope
of the lower bound of the inverted pyramid. The prediction is that the range of
invariance ∆x is proportional to the scale s,that is

∆x ≈ nxs (11)

where nx is the radius of the inverted pyramid, and is the same for all scales
s. Thus small details (high frequencies) have a limited invariance range in x
whereas larger details have larger invariance. nx is obtained from the slope a
of the cortical magnification factor as:

nx = 1/a (12)

The following rational for a so-called normative theory seems natural (and
could easily be wrong):

• a) Evolution tries to optimize recognition from few labeled examples;

• b) as a consequence it has to optimize invariance;

• c) as a first step it has to optimize invariance to scale and translation (un-
der constraint of non-infinite resources);

• d) therefore it develops in V1 multiple sizes receptive fields at each po-
sition with RF size increasing linearly with eccentricity, properties which
are reflected in the architecture of the retina.

4.4 Tuning of cells in V1

Sections 3.5 and 3.4 describe the learning of templates through unsupervised
experience of their transformations. The main example discussed consists of
simple cells in V1. We can now add details to the example using the inverted
pyramid architecture of this chapter. Our basic hypothesis is that the posi-
tion and size (a Gaussian distribution) of each immature simple cells is set by
development and corresponds to a node in the lattice of Figure 7 in x, y, s. Fur-
thermore, Hebbian synapses on the simple cells will drive the tuning of the cell
to be the eigenvector with the largest eigenvalue of the covariance of the input
images. It can be shown (Poggio et al., 2013) that because of the Gaussian enve-
lope at each site in the lattice and because of the statistics of natural images the
tuning of each simple cell will converge to a Gabor functions with properties
that match very closely the experimental data on the monkey, the cat and the
mouse (see Figure 3). Since the arguments at the beginning of section 3.4 ap-
ply directly to this case, pooling over simple cells is equivalent to pooling over
transformations of a template (a Gabor function with a specific orientation).

27



5 Stage 1: V2 and V4

5.1 Multistage pooling

As discussed in section 2.6, pooling in one-step over the whole s, x domain
of Figure 6 suffers from the interference from clutter-induced fragments in any
location in the inverted pyramid. A better strategy, as we will discuss in section
5.2, is to pool area by area (in the ventral stream), that is layer by layer (in the
corresponding hierarchical architecture). The C cells activities in each layer of
the hierarchy are sent to the memory or classification module at the top. After
each pooling (C unit) stage (and possibly also after a dot product (S unit) stage),
there is a downsampling of the array of units (in x, y and possibly in s) that
follows from the low-pass-like effect of the operation. As a related remark, the
templates in V2 and V4, according to the theory, should be ”patches” of neural
images at that level - possibly determined by the PCA-like learning described
earlier.

Here we analyze the properties of a specific hypothetical strategy of down-
sampling in space by 2 at each stage. This choice is for simple and roughly
consistent with biological data. It is easy to modify the results below by us-
ing different criteria for downsampling but the same logic. Pooling each unit
over itself and its neighbors (thus a patch of radius 1) allows downsampling
of the array in x by a factor of 2. We assume here that each combined S-C
stage brings about a downsampling by 2 of each dimension of the x, y array.
We call this process “decimation”; see Figure 9. Starting with V1, 4 stages of
decimation (possibly at V1, V2, V4, TEO) reduce the number of units at each
scale from ≈ 40 to ≈ 2 spanning ≈ 26′ at the finest scale and ≈ 6 at the coars-
est. Pooling over scale in a similar way may also decimate the array down to
approximately one scale from V1 to IT. Neglecting orientations, in x, y, s the
30× 30× 6 array of units may be reduced to just a few units in x, y and one in
scale. This picture is consistent with the invariance found in IT cells (Serre et
al. 2005). According to i-theory, different types of such units are needed, each
for one of several templates at the top level. Other types of pooling and down-
sampling are conceivable such as pooling in space over each spatial frequency
channel separately, possibly in different areas. Notice that the simple strategy
of downsampling in space by 2 at each stage, together with our previous esti-
mates of the dimensions of the inverted pyramid in V1, predicts that about 4-5
layers in the hierarchy are required to obtain almost full invariance to shift and
scale before stage 2. If layers are identified with visual areas, there should be
at least 4 areas from V1 to AIT: it is tempting to identify them with V1, V2, V4,
PIT.

5.2 Predictions of crowding properties in the foveola and out-
side it (Bouma’s law)

The pooling range is uniform across eccentricities in the plots of Figure 9. The
spatial pooling range depends on the area: for V1 it is the sampling interval
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Figure 9: Pooling over 3 × 3 patches in x, y of the lattice of simple cells in V1
and subsampling decimates the lattice; if the lattice in x, y is 40 units, 4 steps
(V1, V2, V4, PIT) of x pooling are sufficient to create cells that are 16 times
larger than the largest in the fovea in V1 (probably around 21′ at the coarsest
scale), yielding cells with a RF diameter of up to ≈ 5. Each area in the fovea
would see a doubling of size with corresponding doubling of the slopes at the
border (before remapping to a cube lattice). The index of the units at position
x and scale s is given by isx = 2si1x. Simultaneous pooling over regions in S is
possible. (From Poggio et al., 2014.)
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Figure 10: The diagram in x, s shows part of the inverted pyramid of simple
units in V1. The shaded regions are pooling regions, each one corresponding
to a complex cell (there are more such regions to cover the extent of the foveola
(diameter of around 21′): the ones at the left and right boundaries will be at
the edges of the inverted pyramid.) Pooling shown here is spatial only (at each
scale): it takes place around each simple units and its 2 neighbors in x, y (a
3 × 3 patch). Thus the critical spacing for crowding, at the highest resolution
complex cells, is ∆x = 1′20” in V1, ∆x = 2′40” in V2, ∆x = 5′20” in V4
(assuming that the spacing among simple cells in V1 is 40”).

between the red dots, for V2 it is the sampling interval between the blue dots:
they should be roughly equivalent to the radius of the receptive field of the
complex cells in V1 and V2 respectively. V4 is not shown but it is clear what is
expected.
Figure 10 shows the regions of pooling corresponding to our assumptions. The
inverted pyramid is split into sections, each one corresponding to pooling by a
complex cell module. For now we consider only pooling in space and not scale.
Figure 10 describes the situation for V1 but the same diagram also can be used
for V2, V4 and PIT by taking into account the downsampling, the increase in
size of the smallest cells and the doubling in slope of the lower boundaries of
the inverted pyramid. It is graphically clear from the figure why the following
criterion for pooling to remain interference-free from a flanking object, that is
unaffected by clutter, seems reasonable: the target and the flanking distractor
must be separated at least by the pooling range and thus by a complex cell
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receptive field.
We consider two cases: a) the target is in the central section at some layer (say
V2, for instance); b) the target is outside the foveola, that is at an eccentricity
greater than 10’. The predictions are:

• a. Consider a small target, such as a 5′ width letter, placed in the cen-
ter of the fovea, activating the smallest simple cells at the bottom of
the inverted pyramid. The smallest critical distance to avoid interfer-
ence should be the size of a complex cell at the smallest scale, that is
∆x ≈ 1′20” in V1 and ∆x ≈ 2′40” in V2. If the letter is made larger, then
the activation of the simple cells shifts to a larger scale (s in Figure 10)
and since ∆x ≈ s, the critical spacing is proportional to the size of the target.
It is remarkable that both these predictions match quite well Figure 10 in
Levi and Carney, 2011.

• b. Usually the target is just large enough to be visible at that eccentricity
(positive say). The target, such as a 8′ width letter, placed at 1 degree
eccentricity, is then in the section just above the lowest boundary of the
inverted pyramid. The critical separation for avoiding crowding outside
the foveola is

∆x ≈ bx (13)

since the RF size of the complex cells increases linearly with eccentricity,
with b depending on the cortical area responsible for the recognition sig-
nal (see Figure 9a). Thus the theory “predicts” Bouma’s law , (Bouma,
1970) of crowding! (see also Peli and Tillman, 2008, Levi, 2008). The ex-
perimental value found by Bouma for crowding of b ≈ 0.4 suggests that
the area is V2 since this is the slope found by Gattass for the dependence
of V2 RF size on eccentricity. Studies of ”metameric” stimuli by Freeman
and Simoncelli also implicated V2 in crowding and peripheral vision de-
ficiencies, Freeman et al. 2011.

5.3 Scale and shift invariance dictates the architecture of the
retina and of retinotopic cortex

It is interesting that, from the perspective of i-theory, the linear increase of RFs
size with eccentricity, found in all primates, follows from the computational
need of computing a scale and position invariant representation for novel im-
ages/objects. The theory also predicts the existence of a foveola and links its
size to the slope of linear increase of receptive field size in V1. From this point
of view, the eccentricity dependence of cone density in the retina as well as
of the cortical magnification factor follow from the computational requirement
of invariant recognition. The usual argument of limited resources (say num-
ber of fibers in the optical nerve) does not determine the shape of the inverted
pyramid but only the size of the fovea at the bottom (and thereby of the total
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number of cells). The inverted pyramid shape is independent of any bound on
computational resources.

As we mentioned the estimate for the size of the foveola is quite small with
a diameter of 26’ corresponding to about 40 simple cells (of each orientation)
and about 50 cones in the retina. This is almost certainly a tradeoff between
limited translation invariance - the inverted pyramid region - and the ability
to correct for it by moving gaze, while scale invariance is fully available in the
center of the fovea. Notice that a fovea with a 10 times larger diameter would
lead to an optical nerve of the same size as the eye - making it impossible to
move it.

This state of affairs means that there is a quite limited “field of vision” in
a single glimpse. Most of an image of 5 by 5 degrees is seen at the coarsest
resolution only, if fixation is in its center; at the highest resolution only a very
small fraction of the image (up to 30′) can be recognized, and an even smaller
part of it can be recognized in a position invariant way (the number above are
rough estimates). An “IP fragment” can be defined as the information cap-
tured from a single fixation of an image. Such a fragment is supported on a
domain in the space x, s, contained in the inverted truncated pyramid of Fig-
ure 6. For normally-sized images and scenes with fixations well inside, the
resulting IP-fragment will occupy most of the spatial and scale extent of the
inverted pyramid. Consider now the fragment corresponding to an object to
be stored in memory (during learning) and recognized (at run time). Consider
the most favorable situation for the learning stage: the object is close to the
observer so that both coarse and fine scales are present in its fragment. At run
time then, the object can be recognized whenever it is closer or farther away
(because of pooling). The important point is that a look at this and the other
possible situations (at the learning stage) suggest that the matching should al-
ways weight more the finest available frequencies (bottom of the pyramid).
This is the finding of Schynz (Schyns et al 2003). As implied by his work,
top-down effects may modulate somewhat these weights (this could be done
during pooling) depending on the task. Assume that such a fragment is stored
in memory for each fixation of a novel image. Then, because of ”large” and
position-independent scale invariance, there is the following trade-off between
learning and run-time recognition:

• if a new object is learned from a single fixation, recognition may require
multiple fixations at run time to match the memory item (given its limited
position invariance and unless fixation is set to be within the object).

• if a new object is learned from multiple fixations, with different frag-
ments stored in memory each time, run time recognition will need a
lower number of fixations (in expectation).

The fragments of an image stored in memory via multiple fixations could be
organized into an egocentric map. Though the map may not be directly used
for recognition, it is probably needed to plan fixations during the learning and
especially during the recognition and verification stage (and thus indirectly
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Figure 11: When fixating the central point, recognizability of a letter in the
chart does not change under global scaling of the figure (from Anstis, 1974).

used for recognition in the spirit of minimal images and related recent work by
Ullman and coworkers). Such a map may be related to Marr’s 2 · 1/2 sketch,
for which no neural correlate has been found as yet.

Thus, simultaneous invariance to translation and scale leads to an inverted,
truncated pyramid as a model for the scale-space distribution of the receptive
fields in V1; this is a new alternative, as far as we know, to the usual smooth
empirical fit of the cortical magnification factor data. In particular, the linear
dependency on eccentricity of receptive field sizes in V1 (and cones sampling
in the retina) follows from the computational requirement of scale invariance.
This picture contains other interesting properties: the range of shift invariance
depends on scale; the size of the flat, high acuity foveal region, which we iden-
tify with the foveola can be inferred from the slope of the eccentricity depen-
dent acuity. Existing neural data from macaque V1 suggest a foveola with a
diameter of around 20′ of arc. In a sense, scale invariance turns out to be more
natural than shift invariance in this model (there is scale invariance over the
full range at the fixation point). This is to be expected in organisms in which
eye fixations can easily take care of shift transformations whereas more expen-
sive motions of the whole body would be required to change the scale. I-theory
predicts scale invariance at this level: this is exactly what Anstis (Anstis,1974)
found (see Figure 11): a letter just recognizable at some eccentricity remains
equally recognizable under scaling.

Physiology data suggest that AIT neurons are somewhat less tolerant to po-
sition changes of small stimuli (Op de Beeck et al. 2001), also described in (Di
Carlo et al. 2003). A comparison across studies suggests that position tolerance
is roughly proportional to stimulus size (Di Carlo et al. 2003). If we assume that
some IT neurons effectively pool over “all” positions and scales i-theory in fact
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expects that their invariant receptive field (over which consistent ranking of
stimuli is maintained) should be smaller for higher spatial frequency patterns
than with low frequency ones. There is evidence of attentional suppression of
non-attended visual areas in V4. From the perspective of i-theory, it seems nat-
ural that top-down signals may be able to control the extent of pooling, or the
pooling stage, used in computing a signature from a region of the visual field,
in order to minimize clutter interference.

In summary, I-theory provides explanations and computational justifica-
tions for several known properties of retinotopic cortex. It also makes a few
predictions that are still waiting for an experimental test:

• There is an inverted pyramid of simple cells size and positions with pa-
rameters specified in the text, including linear slope of the lower bound-
aries. The predicted pyramid is consistent with available data. More
precise measurements in the region of the foveola could decide between
the usual empirical fits and our predictions.

• Anstis did not take measurements close to the minimum letter size –
which is around 5′ for 20/20 vision. I-theory predicts that if there is a
range of receptive fields in V1 between smin and smax in the fovea then
there is a finite range of scaling between smin and smax under which
recognition is maintained (see Poggio et al. 2014). It is obvious that look-
ing at the image from an increasing distance will at some point make it
unrecognizable; it is somewhat less obvious that getting too close will
also make it unrecognizable (this phenomenon was found in Ullman’s
minimal images; Ullman, personal comm.)

• Consider the experimental use of images such as novel letters (never seen
before) of appropriate sizes that are bandpass filtered (with the Gabor-
like filters assumed for V1). The predictions - because of the pooling over
the whole inverted pyramid (done between V1, V2 and V4) – is that for
a new presentation there will be psychophysically scale invariance for
all frequencies between smin and smax; there is shift invariance that in-
creases linearly with spatial wavelength and is at any spatial frequency at
least between xmin and xmax (the bottom edge of the truncated pyramid).

• I-theory predicts a flat region of constant maximum resolution - that we
called foveola. Its size determines the slope of the lower border of the
pyramid. Since the slope can be estimated relatively easily from existing
data, our prediction for the linear size of the foveola is around 40 min-
utes of arc, corresponding to about 30 simple cells of the smallest size
(assumed to be ≈ 1′20′′ of arc). Notice our definition of the fovea is in
terms of the set of all scaled versions of the foveola between smin and
smax spanning about 6 degrees of visual angle.
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• I-theory explains crowding effects in terms of clutter interference in the
pooling stage (see also Balas et al., 2009). It predicts Bouma’s law and its
linear dependency on eccentricity (Bouma,1970).

• Since Bouma’s constant has a value of about 0.4 (see also Freeman et al.
2011), our theory requires that a signature that is interference-free from
clutter at the level of V2 is critical for recognition. This is consistent with
i-theory independent requirement (Anselmi et al. 2014, Anselmi et al.
2013) that signals associated with image patches of increasing size from
different visual areas must be able to access memory and classification
stages separately. The requirement follows from the need of recognizing
“parts and wholes” in an image and avoid clutter for small objects. The
V2 signal could directly or indirectly (via IT or V4 and IT) reach memory
and classification.

• The angular size of the fovea remains the same at all stages of a hierarchi-
cal architecture (V1, V2, V4...), but the number of units per unit of visual
angle decreases and the slope increases because the associated x increases
(see Figure 9).

• The theory predicts crowding in the foveola (very close to fixation) but
with very small ∆x (see equation 10) that depends on the size of the
(small) objects rather than eccentricity. For objects smaller than 20′ in
diameter the prediction (to be tested) is ∆x ≈ 3′ − 4′, assuming that the
main effect of clutter is at the smallest of the five channels of simple cells
and in V2.

5.4 Tuning of ”simple” cells in V2 and V4

It is difficult to make clear predictions about V2 and V4, because several op-
tions are theoretically possible. A simple scenario is as follows. There is a
x, y, s lattice for V2 (and another for V3) simple cells as shown in Figure 6.
The tuning of each simple cell - a point in the x, y, s lattice – is determined by
the top PCAs computed on the neural activity of the complex cells in V1, seen
through a Gaussian window that includes≈ 3×3 complex cells in x, y and a set
of orientations for each position and scale. It is likely - and supported by pre-
liminary experiments (Poggio et al., 2013) - that some of the PCA computed in
this way over a large number of natural images can lead to cell tunings similar
to measurements in V4.
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6 Stage 2 in IT: class-specific approximate invari-
ance

6.1 From generic templates to class-specific tuning

As discussed in section 2.5, approximate invariance for transformations be-
yond the affine group requires highly tuned templates, therefore highly tuned
simple cells, probably at a level in the hierarchy corresponding to AIT. Ac-
cording to the considerations of section 2.6 this is expected to take place in
higher visual areas of the hierarchy. In fact, the same localization condition
Equation 4 suggests Gabor-like templates for generic images in the first layers
of a hierarchical architecture and specific tuned templates for the last stages
of the hierarchy, since class specific modules are needed, one for each class
and each containing highly specific templates,that is highly tuned cells. This
is consistent with the architecture of the ventral stream and the the existence
of class-specific modules in primate cortex such as a face module and a body
module (Tsao, 2003, Leibo et al. 2011a, Kanwisher, 2010, Downing and Jiang
2001). We saw in section 2.6 that areas in the hierarchy up to V4 and/or PIT
provide signatures for larger parts or full objects. Thus we expect

• that the inputs to the class-specific modules are scale and shift invariant

• that the class-specific templates are ”large”. For instance in the case of
faces, templates should cover significant regions of the face. Notice that
only large templates support pose invariance: the image of an isolated
eye does not change much under rotations in depth of the face!

6.2 Development of class-specific and object-specific modules

A conjecture emerging from i-theory offers an interesting perspective (Leibo et
al. 2014) on AIT. For transformations that are not affine transformations in 2D
(we assume that 3D information is not available to the visual system or used by
it, which may not always be true), an invariant representation cannot be com-
puted from a single view of a novel object because the information available
is not sufficient. What is lacking is the 3D structure and material properties of
the object: thus exact invariance to rotations in depth or to changes in the di-
rection or spectrum of the illuminant cannot be obtained. However, as i-theory
shows, approximate invariance to smooth non-group transformations can still
be achieved in several cases (but not always) using the same HW module. The
reason this will often approximately work is because it effectively exploits prior
knowledge of how similar objects transform. The image-to-image transforma-
tions caused by a rotation in depth are not the same for two objects with differ-
ent 3D structures. However, objects that belong to an object class where all the
objects have similar 3D structure transform their 2D appearance in (approx-
imately) the same way. This commonality is exploited by a HW module to
transfer the invariance learned from (unsupervised) experience with template

36



Figure 12: Class-specific transfer of depth-rotation invariance for images from
three classes (faces, A, cylinders, B and composed, C). The left column of the
matrix shows the results of the test for invariance for a random image of a
face (A) in different poses w.r.t. 3D rotation using 3D rotated templates from
A,B,C; similarly the middle and the right column shows the invariance results
for class B and C tested on rotated templates of A,B,C respectively. The colors
in the matrix show the maximum invariance range (degrees of rotation away
from the frontal view). Only the diagonal values of the matrix (train A - test A,
train B - test B, train C- test C) show an improvement of the view-based model
over the pixel representation. That is, only when the test images transform
similarly to the templates is there any benefit from pooling (Leibo et al. 2014).

objects to novel objects seen only from a single example view. This is effectively
our definition of an object class: a class of objects such that the transformation
for a specific object can be approximately inferred from how other objects in the
class transform. The necessary condition for this to hold is that the 3D shape is
similar between any two objects in the class. The simulation in Figure 12 shows
that HW-modules tuned to templates from the same class of the (always novel)
test objects provide a signature that tolerates substantial viewpoint changes
(plots on the diagonal); it also shows the deleterious effect of using templates
from the wrong class (plots off the diagonal). There are of course several other
class-specific transformations besides depth-rotation, such as face expression
and body pose transformations.

In an interesting conjecture, (Leibo et al. 2014) argue that the visual system
is continuously and automatically clustering objects and their transformations
- observed in an unsupervised way - in class-specific modules. Images of an
object and of its transformations correspond to a orbit Γk. New images are
added to an existing module only if their transformation are well predicted by
it. If no module can be found with this property the new orbit will be the seed
of a new object cluster/module.

For the special case of rotation in depth, (Leibo et al. 2014), ran a simula-
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tion using 3D modelling / rendering software to obtain the orbits of objects
for which there exist 3D models. Faces had the highest degree of clustering of
any naturalistic category - unsurprising since recognizability likely influenced
face evolution. A set of chair objects had broad clustering, implying that little
invariance would be obtained from a chair-specific region. A set of synthetic
”wire” objects, very similar to the ”paperclip” objects used in several classic
experiments on view-based recognition e.g. (Bar et al. 2008, Logothetis et al.
1994, Logothetis et al. 1995) were found to have the smallest index of clus-
terability: experience with familiar wire objects does not transfer to new wire
objects (because the 3D structure is different for each individual paperclip ob-
ject).

It is instructive to consider the limit case of object classes that consist of
single objects - such as individual paperclips. If the object is observed under
rotation several frames are memorized as transformations of a single template
(identity is implicitly assumed to be conserved by a Foldiak-like rule, as long as
there is continuity in time of the transformation). The usual HW module pool-
ing over them will allow view-independent recognition of the specific object.
A few comments:

1. remarkably, the HW module described above for class-specific transfor-
mations – when restricted to multiple-views, single-object – is equivalent
6 to the Edelman-Poggio model for view invariance (Edelman and Poggio
1990);

2. the class-specific module is also effectively a ”gate”: in addition to pro-
viding a degree of invariance it also performs a template matching op-
eration with templates that can effectively ”block” images of other object
classes. This gating effect may be important for the system of face patches
discovered by Tsao and Freiwald and it is especially obvious in the case
of a single object module;

3. from the point of view of evolution, the use of the HW module for class-
specific invariances can be seen as a natural extension from its role in
single-objects view invariance. The latter case is computationally less
interesting, since it implements effectively a look-up table, albeit with
interpolation power. The earlier case is more interesting since it allows
generalization from a single view of a novel object. It also represent a
clear case of transfer of learning.

6.3 Domain-specific regions in the ventral stream

As discussed by (Leibo et al. 2014), there are other domain-specific regions
in the ventral stream besides faces and bodies. It is possible that additional

6In Edelman and Poggio 1990 the similarity operation was the Gaussian of a distance
- instead of the dot product required by i-theory. Notice that for normalized vectors, l2
norms and dot products are equivalent.
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regions for less-common or less transformation-compatible object classes will
appear with higher resolution imaging techniques. One example may be the
fruit area, discovered in macaques with high-field fMRI (Ku et al. 2011). Oth-
ers include the body area and the Lateral Occipital Complex (LOC) which ac-
cording to recent data (Malach et al. 1995) is not really a dedicated region
for general object processing but a heterogeneous area of cortex containing
many domain-specific regions too small to be detected with the resolution of
fMRI. The Visual Word Form Area (VWFA) (Cohen et al. 2000) seems to rep-
resent printed words. In addition to the generic transformations that apply
to all objects, printed words undergo several nongeneric transformations that
never occur with other objects. For instance, our reading is rather invariant
to font transformations and can deal with hand-written text. Thus, VWFA is
well-accounted for by the invariance hypothesis. Words are frequently-viewed
stimuli which undergo class-specific transformations.

The justification - really a prediction! - by i-theory for domain-specific re-
gions in cortex is different from other proposals. However, it is in complemen-
tary w.r.t. some of them, rather than exclusive. For instance, it would make
sense that the clustering depends not only on the index of compatibility but
also on the relative frequency of each object class. The conjecture claims a)
that transformation compatibility is the critical factor driving the development
of domain-specific regions, and b) that there are separate modules for object
classes that transform differently from one another.

6.4 Tuning of ”simple” cells in IT

In the case of ”simple” neurons in the AL face patch (Freiwald et al 2010 and
Leibo et al, in preparation), exposure to several different faces – each one gen-
erating several images corresponding to different rotations in depth – yields a
set of views with a covariance function which has eigenvectors (PCs) that are
either even or odd functions (because faces are bilaterally symmetric; par 5.4.1,
pg. 110 Magic Material 2013) .

The Class-specific theorem together with the Spectral pooling proposition
suggests that square pooling (over these face PCs provides approximate in-
variance to rotations in depth. The full argument goes as follows. Rotations in
depth of a face around a certain viewpoint - say θ = θ0 – can be approximated
well by linear transformations (by transformations g ∈ GL(2)). The HW al-
gorithm can then provide invariance around θ = θ0. Finally, if different sets
of ”simple” cells are plastic at somewhat different times, exposure to a partly
different set of faces yields different eigenvectors summarizing different sets
of faces. The different sets of faces play the role of different object templates in
the standard theory.

The limit case of object classes that consist of single objects is important to
understand the functional architecture of most of IT. If an object is observed
under transformations, several images of it can be memorized and linked to-
gether by continuity in time of the transformation. As we mentioned, the usual
HW module pooling over them will allow view-independent recognition of the
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specific object. Since this is equivalent to the Edelman-Poggio model for view
invariance (Edelman and Poggio 1990) there is physiological support for this
proposal (see Logothetis, Pauls and Poggio, 1995; Logohetis and Sheinberg,
1996; Stryker, 1991).

6.5 Mirror symmetric tuning in the face patches and pooling
over PCs

The theory then offers a direct interpretation of the Tsao-Freiwald data (see
Freiwald et and Tsao 2010, Freiwald et al. 2009) on the face patch system. The
most posterior patches (ML/MF) provide a view and identity specific input to
the anterior patch AL where most neurons show tuning which is an even func-
tion of the rotation angle around the vertical axis. AM, which receives inputs
from AL, is identity-specific and view-invariant. The puzzling aspect of this
data is the mirror symmetric tuning in AL: why does this appear in the course
of a computation that leads to view-invariance? According to the theory the
result should be expected if AL contains ”simple” cells that are tuned by a
synaptic Hebb-like Oja rule and the output of the cells is roughly a squaring
nonlinearity as required by the Spectral pooling proposition. In this interpreta-
tion, cells in AM pool over several of the squared eigenvector filters to obtain
invariant second moments (see Figure 13). Detailed models from V1 to AM
show properties that are consistent with the data and also perform well in in-
variant face recognition (Liao et al. 2013, Leibo et al. 2011b, Leibo2013, Mutch
et al. 2010).

7 Discussion

Several different levels of understanding. I-theory is at several different levels ad-
dressing the computational goal of the ventral stream, the algorithms used,
down to the architecture of visual cortex, its hierarchical architecture and the
neural circuits underlying tuning of cells. This is unlike most other models or
theories.

Predictions. From the point of view of neuroscience, the theory makes a num-
ber of predictions, some obvious, some less so. One of the main predictions
is that simple and complex cells should be found in all visual and auditory
areas, not only in V1. Our definition of simple cells and complex cells is differ-
ent from the traditional ones used by physiologists; for example, we propose a
broader interpretation of complex cells, which in the theory represent invariant
measurements associated with histograms of the outputs of simple cells or of
moments of it. The theory implies that, under some conditions, exact or ap-
proximate invariance to all geometric image transformations can be learned,
either during development or in adult life. It is, however, also consistent with
the possibility that basic invariances may be genetically encoded by evolution
and possibly refined and maintained by unsupervised visual experience. A
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Figure 13: Face identity is represented in the macaque face patches (Freiwald
and Tsao, 2010). Neurons in the middle areas of the ventral stream face patch
(middle lateral and fundus (ML, MF)) are view specific, while those in the
most anterior (anterior medial patch (AM)) are view invariant. Neurons in
an intermediate area (anterior lateral patch (AL)) respond similarly to mirror-
symmetric views. In i-theory view invariance is obtained by pooling over ”sim-
ple” neurons whose tuning corresponds to the PCAs of a set of faces previ-
ously experienced each under a range of poses. Due to the bilateral symmetry
of faces, the eigenvectors of the associated covariance matrix are even or odd.
This is shown in a) where the first 3 PCAs of set of grey-level faces under differ-
ent poses are plotted: the same symmetry arguments apply to ”neural” images
of faces. b) shows the response of 3 model AL units to a face stimulus as a
function of pose under different poses (Leibo et al. 2014).
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single cell model for simple complex cells follows from the theory as an inter-
esting possibility. I-theory also makes predictions about the architecture of the
ventral stream:

• the output of V2, V4, PIT should access memory either via connections
that bypass higher areas or indirectly via equivalent neurons in higher
areas (because of the argument in a previous section about clutter).

• areas V1, V2, V4 and possibly PIT are mainly dedicated to compute sig-
natures that are invariant to translation, scale and their combinations - as
experienced in past visual experience.

• IT is a complex of parallel class-specifc modules for a large number of
large and small object classes. These modules receive position and scale
invariant inputs (invariance in the inputs greatly facilitates unsupervised
learning of class specific transformations). We recall that, from the per-
spective of the theory, the data of Logothetis et al. 1995 concern single
object modules and strongly support the prediction that exposure to a
transformation lead to neuronal tuning to several ”frames” of it.

Object-based vs 3D vs view-based recognition. We should mention here an old con-
troversy about whether visual recognition is based on views or on 3D primitive
shapes called geons. In the light of i-theory image views retain the main role
but ideas related to 3D shape may also be valid. The psychophysical exper-
iments of Edelman and Buelthoff concluded that generalization for rotations
in depth was limited to a few degrees (≈ ± 30 degrees) around a view (in-
dependently of whether 2D or 3D information was provided to the human
observer (psychophysics in monkey (Logothetis et al 1994, 1995) yielded sim-
ilar results). The experiments were carried out using ”paperclip” objects with
random 3D structure (or similar but smoother objects). For this type of objects,
class-specific learning is impossible (they do not satisfy the second condition
in the class-specific theorem) and thus i-theory predicts the result obtained by
Edelman and Buelthoff. For other objects, however, such as faces, the gener-
alization that can be achieved from a single view by i-theory can span a much
larger range than ±30 degrees, effectively exploiting 3D-like information from
templates of the same class.

Genes or learning. I-theory shows how the tuning of the ”simple” cells in V1
and other areas could be learned in an unsupervised way. It is possible how-
ever that the tuning - or better the ability to quickly develop it in interaction
with the environment - may have been partly compiled during evolution into
the genes 7. Notice that this hypothesis implies that most of the times the spe-
cific function is not be fully encoded in the genes: genes facilitate learning but

7 If a function learned by an individual represents a significant evolutionary advan-
tage we could expect that aspects of the learning the specific function may be encoded in
the genes, since an individual who learns more quickly has a significant advantage. In
other words, the hypothesis implies a mix of nature and nurture in most competencies
that depend on learning from the environment (like perception). This is an interest-
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do not replace it completely. It has to be expected then in the ”nature vs nur-
ture debate” that usually nature needs nurture and nurture is made easier by
nature.

Computational structure of the HW module. The HW module computes the CDF
of
〈
I, git

k
〉

over all gi ∈ G. The computation consists of

µk
h(I) =

1

|G|

|G|∑
i=1

σ(
〈
I, git

k
〉

+ h∆) (14)

with h = 0, ...,H and k = 1, ...,K; the main forms of the nonlinearity σ are
either a threshold function or a power n = 1, ...,∞ of its argument. Several
known networks are special cases of this module. One interesting case is when
G is the translation group and σ(·) = || · ||2: then the equation is equivalent
(for H = 0) to a unit in a convolutional network with max pooling. In another
noteworthy case (we always assume that I and tk are normalized) the equation
is very similar to the RBF network proposed by Edelman and Poggio (Poggio
and Edelman1990) for view classification. In this spirit, note that the equation
for a unit in a convolutional network is

1

|G|

|G|∑
i=1

ciσ(〈I, git〉+ h∆) (15)

where I is the input vector, ci, t,∆ are parameters to be learned, in supervised
mode, from labeled data and git(x) = t(x − iδx). Thus units in convolutional
network could learn to become units of the i-theory (by learning ci = 1) but
only when G is the translation group (in the i-theory G is the full affine group
for the first layers and can be a non group such as the transformation induced
by rotations in depth).

Relations to Deep Learning networks. The best performing deep learning net-
works - a new name for multilayer perceptrons (MLPs) - have convolutional
layers as well as densely connected layers. I-theory applies to the convolu-
tional but not the densely connected, classification stage. Historically, hard-
wired invariance to translation was first introduced in the Neocognitron by
Fukushima and later in LeNet (LeCun et al 1995) and in HMAX (Riesenhuber

ing implication of the ”Baldwin effect” - a scenario in which a character or trait change
occurring in an organism as a result of its interaction with its environment becomes
gradually assimilated into its developmental genetic or epigenetic repertoire (Simpson,
1953; Newman, 2002). In the words of Daniel Dennett, ”Thanks to the Baldwin effect,
species can be said to pretest the efficacy of particular different designs by phenotypic
(individual) exploration of the space of nearby possibilities. If a particularly winning
setting is thereby discovered, this discovery will create a new selection pressure: or-
ganisms that are closer in the adaptive landscape to that discovery will have a clear
advantage over those more distant.” (p. 69, quoting Dennett 1991).
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2000; HMAX had also invariance to scale). These architectures are early exam-
ples of convolutional networks. I-theory provides a general theory for them 8

that also offers two significant algorithmic and architectural extensions: a) it
ensures, within the same algorithm, invariances to other groups beyond trans-
lation and, in an approximate way, to certain non-group transformations; b) it
provides a way to learn arbitrary invariances from unsupervised learning.

Invariance in 2D and 3D vision. We have assumed here that ”images” as well
as templates are in 2D. This is the case if possible sources of 3D information
such as stereopsis and or motion are eliminated. Interestingly, it seems that
stereopsis does not facilitate recognition, suggesting that 3D information, even
when available, is not used by the human visual system (see Bricolo 1996) 9.

Relations to the scattering transform. There are connections between the scat-
tering transform and i-theory but also several differences. There is no obvi-
ous correspondence between operations in the scattering transform and sim-
ple+complex cells in the ventral stream unlike convolutional networks and
i-theory networks. I-theory provides an algorithm in which invariances are
learned from unsupervised experience of transformations of a random set of
objects/images; in the scattering transform invariances are hardwired. I-theory
proves that Gabor-like templates are optimal for simultaneous invariance to
scale and shift and that such invariance requires a multi-resolution inverted
and truncated pyramid which turns out to be reflected in the architecture of the
visual cortex starting with eccentricity dependent organization of the retina; in
the scattering transform, Gabor wavelets are assumed at the start.

Explicit or implicit gating of object classes. The second stage of the recognition
architecture consists of a large set of object-class specific modules of which
probably the most important is the face system. It is natural to think that sig-
nals from lower areas should be gated, in order to route access only to the
appropriate module. In fact, Tsao (Tsao and Livingstone 2008) postulated a
gate mechanism for the network of face patches. The structure of the modules
however suggests that the module themselves provides automatically a gating
function even if their primary computational function is invariance. This is
especially clear in the case of the module associated with a single object (the
object class consists of a single object as in the case of a paperclip). The input
to the module is subject to dot products with each of the stored views of the
object: if none matches well enough the output of the module will be close to

8In the case of the translation group the HW module (see Equation 1) consists of
(non-linear) pooling of the convolution of the image with a template.

9This hypothesis should however be checked further since i-theory implies that if 3D
information is available, rotation in depth is a group and therefore generalization from
a single view could be available simply by having stored 3D templates of a few arbitrary
objects and their 3D transformations. This is not what psychophysics (for instance on
the paperclips) shows; however, the mathematical claim of perfect invariance is only
true in the absence of self-occlusions, a clearly unrealistic assumption for most objects.
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zero, effectively gating off the signal and switching off subsequent stages of
processing.

Invariance to X and estimation of X. Our description of i-theory focuses on the
problem of recognition as estimating identity or category invariantly to a trans-
formation X - such as translation or scale or pose. Often however, the comple-
mentary problem, of estimating X, for instance pose, is also important. The
same neural population may be able to support both computations and multi-
plex the representations of their outcome as shown in IT recordings (Hung et
al 2005) and model simulations (Serre at al. 2005). As human observers, we are
certainly able to estimate position, rotation, illumination of an object without
eye movements. HW modules pooling over the same units in different way -
pooling over identities for each pose or pooling over pose for each identity -
can provide the different types of information using the same ”simple” cells
and different ”complex” cells. Anselmi et al. (2013, fig 45) show simulations
of recognizing a specific body invariantly to pose and estimating pose-out of a
set of 32 possibilities-of a body invariantly to the identity.

PCAs vs ICAs. Independent Component Analysis (ICA) (Hyvrinen and Oja
2000) and similar unsupervised mechanisms describe plasticity rules similar
to the basic Oja flow analyzed in this paper. They can generate Gabor-like
receptive fields and they may not need the assumption of different sizes of
Gaussian distributions of LGN synapses. We used PCA simply because its
properties are easier to analyze and should be indicative of the properties of
similar Hebbian-like mechanisms. Parsing a scene. Full parsing of a scene can-
not be done in a single feedforward processing step in the ventral stream. It
requires task-dependent top-down control, in general multiple fixations and
therefore observation times longer than ≈ 100 msec. This follows also from
the limited high resolution region of the inverted pyramid model of the visual
system, that the theory predicts as a consequence of simultaneous invariance
to shift and scale. In any case, full parsing of a scene is beyond what a purely
feedforward model can provide.

Feedforward and feedback. We have reviewed a forward theory of recognition
and some of the related evidence. I-theory does not address top-down or recur-
rent or horizontal connectivity and their computational role. It makes however
easier to consider plausible hypothesis. The inverted pyramid architecture that
follows from scale and position invariance requires for everyday vision a tight
loop between different fixations in which an efficient control module drives eye
movements by combining task requirements with memory access. Within a
single fixation, however, the space-scale inverted pyramid cannot be shifted in
space. What could be controlled in a feedback mode are parameters of pooling,
including the choice of which scales to use depending on the results of classifi-
cation or memory access. The most obvious limitation of feedforward architec-
tures is recognition in clutter and the most obvious way around the problem
is the attentional masking of large parts of the image under top-down control.
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More in general, a realistic implementation of the present theory requires top-
down control signals and circuits, supervising learning and possibly fetching
signatures from different areas and at different locations in a task-dependent
way. An even more interesting hypothesis is that backprojections update local
signatures at lower levels depending on the scene class currently detected at
the top (an operation similar to the top-down pass of Ullman (Borestein and
Ullman 2008). In summary, the output of the feedforward pass is used to re-
trieve labels and routines associated with the image; backprojections may im-
plement an attentional focus of processing to reduce clutter effects and also to
run visual routines (Serre et al. 2005) at various levels of the hierarchy.

Motion helps learning isolated templates. Ideally templates and their transforma-
tions should be learned without clutter. It can be argued that if the background
changes between transformed images of the same template the averaging ef-
fect intrinsic to pooling will mostly ”average out” the effect of clutter during
the unsupervised learning stage. Though this is correct and we have computer
simulations that provide empirical support to the argument, it is interesting
to speculate that motion could provide a simple way to eliminate most of the
background. Sensitivity to motion is one of the earliest visual computations to
appear in the course of evolution and one of the most primitive. Stationary im-
ages on the retina tend to fade away. Detection of relative movement is a strong
perceptual cue in primate vision as well as in insects vision, probably with sim-
ilar normalization-like mechanisms (Heeger 1992, Poggio and Reichardt 1973).
Motion induced by the transformation of a template may then serve two im-
portant roles:

• to bind together images of the same template while transforming: conti-
nuity of motion is implicitly used to ensure that identity is preserved;

• to eliminate background and clutter by effectively using relative motion.

The required mechanisms are probably available in the retina and early visual
cortex.

I-theory. The theory that guided our review of computational aspects of the
ventral stream cuts across levels of analysis (Marr 1976). Some of the existing
models between neuroscience and machine learning, such as HMAX (Riesen-
huber and Poggio 2000, Mutch and Lowe 2006, Serre et al 2007) and other
convolutional neural networks (Fukushima 1980, LeCun 1989, LeCun 1995,
LeCun 2004), are special cases of the theory. Despite significant advances in
sensory neuroscience over the last five decades, a true understanding of the
basic functions of the ventral stream in visual cortex has proven to be elu-
sive. Thus it is interesting that the theory used in this paper follows from a
novel hypothesis about the main computational function of the ventral stream:
the representation of new objects/images in terms of a signature which is in-
variant to transformations learned during visual experience, thereby allow-
ing recognition from very few labeled examples—in the limit, just one. This
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view of the cortex may also represent a novel theoretical framework for the
next major challenge in learning theory beyond the supervised learning set-
ting which is now relatively mature: the problem of representation learning,
formulated here as the unsupervised learning of invariant representations that
significantly reduce the sample complexity of the supervised learning stage.

Acknowledgments Thanks to Danny Harari, Leyla Isik, Lorenzo Rosasco and
especially to Gabriel Kreiman.
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