19 research outputs found

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    High speed – energy efficient successive approximation analog to digital converter using tri-level switching

    Get PDF
    This thesis reports issues and design methods used to achieve high-speed and high-resolution Successive Approximation Register analog to digital converters (SAR ADCs). A major drawback of this technique relates to the mismatch in the binary ratios of capacitors which causes nonlinearity. Another issue is the use of large capacitors due to nonlinear effect of parasitic capacitance. Nonlinear effect of capacitor mismatch is investigated in this thesis. Based on the analysis, a new Tri-level switching algorithm is proposed to reduce the matching requirement for capacitors in SAR ADCs. The integral non-linearity (INL) and the differential non-linearity (DNL) of the proposed scheme are reduced by factor of two over conventional SAR ADC, which is the lowest compared to the previously reported schemes. In addition, the switching energy of the proposed scheme is reduced by 98.02% compared with the conventional SAR architecture. A new correction method to solve metastability error of comparator based on a novel design approach is proposed which reduces the required settling time about 1.1τ for each conversion cycle. Based on the above proposed methods two SAR ADCs: an 8-bit SAR ADC with 50MS/sec sampling rate, and a 10-bit SAR split ADC with 70 MS/sec sampling rate have been designed in 0.18μm Silterra complementary metal oxide semiconductor (CMOS) technology process which works at 1.2V supply voltage and input voltage of 2.4Vp-p. The 8-bit ADC digitizes 25MHz input signal with 48.16dB signal to noise and distortion ratio (SNDR) and 52.41dB spurious free dynamic range (SFDR) while consuming about 589μW. The figure of merit (FOM) of this ADC is 56.65 fJ/conv-step. The post layout of the 10-bit ADC with 1MHz input frequency produces SNDR, SFDR and effective number of bits (ENOB) of 57.1dB, 64.05dB and 9.17Bit, respectively, while its DNL and INL are -0.9/+2.8 least significant bit (LSB) and -2.5/+2.7 LSB, respectively. The total power consumption, including digital, analog and reference power, is 1.6mW. The FOM is 71.75fJ/conv. step

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF

    An AC-Coupled Wideband Neural Recording Front-End With Sub-1 mm² × fJ/conv-step Efficiency and 0.97 NEF

    Get PDF
    This letter presents an energy-and-area-efficient ac-coupled front-end for the multichannel recording of wideband neural signals. The proposed unit conditions local field and action potentials using an inverter-based capacitively coupled low-noise amplifier, followed by a per-channel 10-b asynchronous SAR ADC. The adaptation of unit-length capacitors minimizes the ADC area and relaxes the amplifier gain so that small coupling capacitors can be integrated. The prototype in 65-nm CMOS achieves 4× smaller area and 3× higher energy–area efficiency compared to the state of the art with 164 μm×40μm footprint and 0.78 mm²× fJ/conv-step energy-area figure of merit. The measured 0.65- μW power consumption and 3.1 - μVrms input-referred noise within 1 Hz–10 kHz bandwidth correspond to a noise efficiency factor of 0.97

    An AC-Coupled Wideband Neural Recording Front-End With Sub-1 mm² × fJ/conv-step Efficiency and 0.97 NEF

    Get PDF
    This letter presents an energy-and-area-efficient ac-coupled front-end for the multichannel recording of wideband neural signals. The proposed unit conditions local field and action potentials using an inverter-based capacitively coupled low-noise amplifier, followed by a per-channel 10-b asynchronous SAR ADC. The adaptation of unit-length capacitors minimizes the ADC area and relaxes the amplifier gain so that small coupling capacitors can be integrated. The prototype in 65-nm CMOS achieves 4× smaller area and 3× higher energy–area efficiency compared to the state of the art with 164 μm×40μm footprint and 0.78 mm²× fJ/conv-step energy-area figure of merit. The measured 0.65- μW power consumption and 3.1 - μVrms input-referred noise within 1 Hz–10 kHz bandwidth correspond to a noise efficiency factor of 0.97

    Successive-approximation-register based quantizer design for high-speed delta-sigma modulators

    Get PDF
    High-speed delta-sigma modulators are in high demand for applications such as wire-line and wireless communications, medical imaging, RF receivers and high-definition video processing. A high-speed delta-sigma modulator requires that all components of the delta-sigma loop operate at the desired high frequency. For this reason, it is essential that the quantizer used in the delta-sigma loop operate at a high sampling frequency. This thesis focuses on the design of high-speed time-interleaved multi-bit successive-approximation-register (SAR) quantizers. Design techniques for high-speed medium-resolution SAR analog-to-digital converters (ADCs) using synchronous SAR logic are proposed. Four-bit and 8-bit 5 GS/s SAR ADCs have been implemented in 65 nm CMOS using 8-channel and 16-channel time-interleaving respectively. The 4-bit SAR ADC achieves SNR of 24.3 dB, figure-of-merit (FoM) of 638 fJ/conversion-step and 42.6 mW power consumption, while the 8-bit SAR ADC achieves SNR of 41.5 dB, FoM of 191 fJ/conversion-step and 92.8 mW power consumption. High-speed operation is achieved by optimizing the critical path in the SAR ADC loop. A sampling network with a split-array with unit bridge capacitor topology is used to reduce the area of the sampling network and switch drivers

    A 12-bit SAR ADC for a flexible tactile sensor

    Get PDF
    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) are some of the most efficient ADC topologies available, allowing excellent performance values at low power consumption across a wide range of sampling frequencies. The proposed ADC is aimed at a tactile sensor application, requiring a low-noise and lowpower solution. In addition, it should have high SNDR to detect even the weakest signals with precision. This thesis presents a 12-bit 400 kS/s SAR ADC implemented in a 180 nm CMOS technology for such a task. The designed SAR ADC uses a hybrid R-C DAC topology consisting of a chargescaling MSB DAC and a voltage-scaling LSB DAC, allowing a good trade-off between power consumption, layout area and performance while keeping the total DAC capacitance under reasonable values. Bootstrapped switches have been implemented to preserve high-linearity during the sampling period. A double-tail dynamic comparator has been designed to obtain a low-noise measurement while ensuring suitable delay values. Finally, regarding the logic, an asynchronous implementation and the conventional switching algorithm provide a simple but effective solution to supply the digital signals of the design. Pre-layout noise simulations with input frequencies around 200 kHz show SNDR values of 72.07 dB, corresponding to an ENOB of 11.67 bits. The total power consumption is 365 ?W while the Walden and Schreier figure-of-merit (FoM) correspond to values of 275 fJ/conversion and 160 dB, respectively

    Accelerated Successive Approximation Technique for Analog to Digital Converter Design

    Get PDF
    This thesis work presents a novel technique to reduce the number of conversion cycles for Successive Approximation register (SAR) Analog to Digital Converters (ADC), thereby potentially improving the conversion speed as well as reducing its power consumption. Conventional SAR ADCs employ the binary search algorithm and they update only one bound, either the upper or lower bound, of the search space during one conversion cycle. The proposed method, referred to as the Accelerated-SAR or A-SAR, is capable of updating both the lower and upper bounds in a single conversion cycle. Even in cases that it can update only one bound, it does more aggressively. The proposed technique is implemented in a 10-bit SAR ADC circuit with 0.5V power supply and rail-to-rail input range. To cope with the ultra-low voltage design challenge, Time-to-Digital conversion techniques are used in the implementation. Important design issues are also discussed for the charge scaling array and Voltage Controlled Delay Lines (VCDL), which are important building blocks in the ADC implementation

    Data Conversion Within Energy Constrained Environments

    Get PDF
    Within scientific research, engineering, and consumer electronics, there is a multitude of new discrete sensor-interfaced devices. Maintaining high accuracy in signal quantization while staying within the strict power-budget of these devices is a very challenging problem. Traditional paths to solving this problem include researching more energy-efficient digital topologies as well as digital scaling.;This work offers an alternative path to lower-energy expenditure in the quantization stage --- content-dependent sampling of a signal. Instead of sampling at a constant rate, this work explores techniques which allow sampling based upon features of the signal itself through the use of application-dependent analog processing. This work presents an asynchronous sampling paradigm, based off the use of floating-gate-enabled analog circuitry. The basis of this work is developed through the mathematical models necessary for asynchronous sampling, as well the SPICE-compatible models necessary for simulating floating-gate enabled analog circuitry. These base techniques and circuitry are then extended to systems and applications utilizing novel analog-to-digital converter topologies capable of leveraging the non-constant sampling rates for significant sample and power savings
    corecore