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AN ABSTRACT OF THE THESIS OF 
 

RAM HARSHVARDHAN RADHAKRISHNAN, for the Master of Science degree in 
Electrical and Computer Engineering, presented on November 20th 2014, at Southern 
Illinois University Carbondale. 
 
TITLE:  ACCELERATED SUCCESSIVE APPROXIMATION TECHNIQUE FOR 
ANALOG TO DIGITAL CONVERTER DESIGN 
 
MAJOR PROFESSOR:  Dr. Haibo Wang 
 

This thesis work presents a novel technique to reduce the number of conversion 

cycles for Successive Approximation register (SAR) Analog to Digital Converters (ADC), 

thereby potentially improving the conversion speed as well as reducing its power 

consumption. Conventional SAR ADCs employ the binary search algorithm and they 

update only one bound, either the upper or lower bound, of the search space during one 

conversion cycle. The proposed method, referred to as the Accelerated-SAR or A-SAR, 

is capable of updating both the lower and upper bounds in a single conversion cycle. 

Even in cases that it can update only one bound, it does more aggressively. The 

proposed technique is implemented in a 10-bit SAR ADC circuit with 0.5V power supply 

and rail-to-rail input range. To cope with the ultra-low voltage design challenge, Time-to-

Digital conversion techniques are used in the implementation. Important design issues 

are also discussed for the charge scaling array and Voltage Controlled Delay Lines 

(VCDL), which are important building blocks in the ADC implementation. 
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CHAPTER 1 

INTRODUCTION 

 The evolution of the semiconductor industry in terms of both revenue and global 

market has been phenomenal over the past few decades. The next forthcoming years 

will be pivotal and very interesting for an inquisitive researcher to see the happenings 

and inventions in the industry. Low power VLSI design has been on the rise due to 

emerging applications, including portable devices, wireless sensors, etc. There are 

diverse types of VLSI circuits for carrying out various functionalities. This thesis 

investigates circuit design techniques for Analog to Digital converter (ADC), an 

important VLSI circuit that is used in various applications. 

  

1.1 MOTIVATION 

Signals in the real world are typically analog signals. But the computation power 

of electronic systems is mainly provided in digital format. Analog to Digital converters 

bridge the analog signals and the computation power provided by computer and digital 

signal processing circuits. Among various ADC implementation techniques, Successive 

Approximation Register Analog to Digital Converter (SAR ADC) topology is particularly 

attractive for low-power medium resolution and medium speed ADC implementation. 

Recently, many low voltage low-power SAR ADC circuits have been reported in 

literature. However, SAR ADC conversion speed is typically degraded with the reduction 

of supply voltage, making them too slow for many applications. Such observation 
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motivated this research which investigates circuit techniques that can enhance SAR 

ADC speed and meanwhile reduce circuit power consumption.  

 

1.2 OBJECTIVES 

The objective of the research is to investigate circuit techniques for low-voltage 

low power SAR ADC design. With the scaling down power supply voltage, the 

headroom for signal swing is reduced. To cope with this challenge, time-to-digital 

conversion techniques have been used in some recently reported low-voltage SAR 

ADCs. By this approach, voltage signal is translated into time domain information by 

Voltage Controlled Delay Lines (VCDL). This provides large headroom for signal swing 

(delay). This work will examine important design issues for VCDL used in SAR ADC. 

The use of Voltage to Time conversion technique may adversely affect the ADC 

conversion speed. An N-bit SAR ADC typically requires N conversion cycles and 1 

sampling cycle to digitize the analog input. If the number of conversion cycles for an 

ADC input can be reduced, it not only potentially improves the ADC overall conversion 

speed, but also significantly reduces the overall circuit power consumption. 

 

1.3 MAJOR CONTRIBUTION OF THE RESEARCH 

This thesis work presents a novel technique for SAR ADC design which reduces 

the number of conversion cycles, thereby accelerating the speed and reducing power 

consumption. The method is named as Accelerated Successive Approximation Register 

Technique, or simply A-SAR. Conventional SAR ADCs employ binary search algorithm 

to find the voltage level that is closest to the ADC input. During one conversion cycle, 
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the binary search algorithm reduces the search space by half and it updates only one 

bound, either the lower bound (LB) or the upper bound (UB) of the search space. The 

accelerated-SAR or A-SAR method is capable of updating both the LB and UB of the 

search space in a single conversion cycle thereby reducing the overall required number 

of clock cycles. Even in cases that it can update only one bound, it updates the bound 

more aggressively (more than half). Compared to other techniques [1] that reduce SAR 

ADC conversion cycles and power consumption, the proposed technique does not 

require ADC inputs to have the characteristic of short bursts followed by long periods of 

stationary values. Thus, the proposed technique is applicable to a wide range of 

applications. The proposed technique is implemented and evaluated in a 10-bit SAR 

ADC circuit, which uses time-to-digital conversion techniques. This is mainly to achieve 

low voltage operation. Important design issues on the implementation of the charge-

scaling capacitor array and Voltage Controlled Delay Line are also discussed in the 

thesis. 

 

1.4 ORGANIZATION OF THE THESIS 

 The rest of the thesis is organized as follows. Chapter 2 surveys the related work 

reported in recent literature. The topics being surveyed include SAR ADC, Time-to-

Digital converter and Voltage Controlled Delay Lines. The proposed A-SAR technique is 

described in Chapter 3. Circuit implementation and evaluation of a 10-bit ADC with 

using the proposed technique are presented in Chapter 4. Conclusions and future work 

are discussed in Chapter 5. 
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CHAPTER 2 

LITERATURE SURVEY 

 A survey of the recent development on SAR ADCs is presented in this chapter. 

This reveals the intensified interests as well as the current trend in the design of low-

voltage low-power SAR ADC circuits. In addition, the design techniques of Voltage 

Controlled Delay Lines (VCDL) and Time-to-Digital Converter (TDC) are summarized in 

the chapter, since such circuits are used in the SAR ADC circuits developed in this 

work. 

 

2.1 RECENT DEVELOPMENT OF SAR ADC 

 Recently, there are strong research interests in the design of low-voltage low-

power SAR ADC. Table 2.1 lists the SAR ADC circuits reported in major journals and 

conferences from 2010 to 2014. It lists the parameters such as resolution, sampling 

rate, figure of merit and power supply of the SAR ADCs. To highlight the design trend 

and technology advancement, key ADC design parameters including sampling rate, 

resolution, power supply and Figure of Merit (FoM) are plotted in Figures 2.1, 2.2, 2.3 

and 2.4. In literature, Figure of Merit (FOM) is often used to compare the performance of 

ADC energy efficiency. It is calculated as: 

��� =  ����� ����� �!

" #$��% &��'����( &)∗ +,-./    (1) 

 

 

 



5 
 

 
 

Table 2.1 List of recent developments in SAR ADC 

Year Authors Resolution 
Sampling 

Rate (MS/s) 
Power 
Supply 

Figure 
of Merit 

2010 Young-Kyun et al [2] 9 80 1 V 78 

2010 Chun-Cheng Liu et al [3] 10 50 1.2 V 29 

2010 Yan Zhu et al [4] 10 100 1.2 V 77 

2011 Jia Hao Cheong et al [5] 8 0.08 1 V 19.5 

2011 Masanori Furuta et al [6] 10 40 1.1 V 65 

2011 Sang-Hyun Cho et al [7] 10 40 1.2 V 50 

2011 Wenbo Liu et al [8] 12 45 1.2 V 51.3 

2011 Yongsheng et al [9] 12 0.05 1.8 V 1.74 

2011 John A. McNeill et al [10] 16 1 1 V 20 

2012 Tao Jiang et al [11] 6 1250 1.2 V 148 

2012 Akira Shikata et al [12] 8 1.1 0.5 V 6.3 

2012 I. Kianpour et al [13] 8 0.0178 0.7 V 2.2 

2012 Hegong Wei et al [14] 8 400 1.2 V 42 

2012 Guan-Ying et al [15] 10 0.2 0.6 V 8.03 

2012 Dai Zhang et al [16] 10 0.001 1 V 94.5 

2012 Jon Guerber et al [17] 10 0.008 1.2 V 16.9 

2012 Ruoyu Xu et al [18] 10 0.768 1.8 V 74 

2012 Martin et al [19] 11 0.08 1.02 V 36.8 

2013 Vikram et al [20] 8 1 1 V 42.3 

2013 Lukas Kull et al [21] 8 1200 1 V 34 

2013 Weibo Hu et al [22] 8 0.002 1.1 V 79.9 

2013 Ryota Sekimoto et al [23] 9 0.0001 0.5 V 5.2 

2013 Ying-Zu Lin et al [24] 9 200 1.3 V 27.2 

2013 Marcus Yip et al [25] 10 2 1 V 22.4 

2013 Si-Seng Wong et al [26] 10 170 1 V 30.8 

2013 Ji-Yong Um et al [27] 11 0.01 0.5 V 74.8 

2013 Pieter Harpe et al [28] 12 0.04 0.6 V 2.2 

2013 Seung-Yeob et al [29] 12 3 2.3 V 368 

2013 Ron Kapusta et al [30] 14 80 1.2 V 23.7 

2014 Hung-Yen Tai et al [31] 6 1000 1.2 V 180 

2014 Indrajit Das et al [32] 8 0.04 1.8 V 13 

2014 Younghoon Kim et al [33] 9 0.1 0.6 V 65 

2014 Howard Tang et al [34] 10 0.001 0.9 V 10.94 

2014 Yan Zhu et al [35] 10 100 1.2 V 55 
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Figure 2.1 Resolution vs Sampling Rate 

 

 

Figure 2.2 Supply Voltage vs Resolution 
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Figure 2.3 Year vs Figure of Merit 

 

 

Figure 2.4 Resolution vs Figure of Merit 
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2.1.1 LOW POWER CAPACITOR SWITCHING SCHEME 

 The design presented in [3] employs a monotonic switching method for a fully 

differential DAC capacitor array. Instead of using conventional bottom plate sampling 

techniques, the top plates of the capacitors are used to sample the input. To minimize 

charge injection impact and achieve rail-to-rail input range, bootstrapped switches are 

used as the sampling switch. There are two advantages of using the proposed top plate 

sampling technique. First, it increases settling speed and input bandwidth since there is 

smaller parasitic capacitance at the top plate. Second, the MSB conversion can be 

carried out without charging or discharging any capacitor. Note that the bottom plates of 

the capacitors are connected to ���& during sampling. During the conversion, the largest 

capacitor in the higher voltage potential side array is switched to ground and the other 

capacitors remain unchanged. This operation continues till the LSB conversion. So 

during one conversion cycle, only one capacitor is switched which significantly reduces 

charge transfer and transitions, thereby increasing the switching speed. The search 

process is monotonic based on the inputs. This switching procedure leads to lower 

switching energy which is reduced by 81%, without splitting or adding capacitances, and 

a total capacitance reduction of 50%. The overall switching power consumption is 

reduced to 1mW using 0.130m CMOS technology.  

 

2.1.2 INCREASING SAR ADC SPEED VIA BYPASS WINDOW TECHNIQUE 

 Techniques to increase the conversion speed of an SAR ADC are presented in 

[15]. A bypass window technique is used to skip several conversion steps in an SAR 

ADC if the ADC input is within the bypass window range. Assume the window size is 
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2 . �	
� and the difference between the DAC outputs is �!�&&. During the conversion 

process, if the voltage difference between the two comparator inputs in a conversion 

cycle is smaller than the window size, the conversion can directly jump to the 3� 4 �567 

conversion cycle, where N is the ADC resolution. The digital bits associated with the 

skipped conversion cycles will be assigned to 0.  

In this proposed method, the power consumptions of each block are separately 

calculated for uniformly distributed signals and it is found that a 128LSB window size 

leads to the least power consumed in such cases. For signals which are mostly non-

uniform such as normal distributed signals, ECG signals or neural signals, a much 

narrower window is found to be suitable and hence a 32-LSB window size is 

considered. Two comparators, coarse and fine comparators, are used to compare the 

DAC output voltages with a constant voltage corresponding to the bypass window size. 

The method is implemented with a supply voltage of 0.6V and sampling frequency of 

200 KS/s with 9.34 ENOB. 

 

2.1.3 SAR ADC SELF CALIBRATION TECHNIQUE 

 

 

Figure 2.5 The differential type 11.5-bit split-capacitor DAC array used in [27] 
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The work in [27] presents a self-calibration technique to minimize the inaccuracy 

caused by capacitor mismatch and parasitic capacitance, 8�9, 8�+ and 8�: (caused by 

overlaps between metal layouts and silicon substrates) as shown in Figure 2.5. It uses 

one of the split-capacitive DACs to measure the error code of the other array during the 

calibration process. The error voltages for each DAC capacitor is measured as �;� for 

bit <. �=� is its corresponding error code which is the digital value for average error 

voltage 0.5 3�;�� + �;A�5 of the positive and negative 8� branches of the DAC array. The 

error voltage and error code of a bit are related by the following equation: 

   �=� = 0.5 3�;�� + �;A�5. +BB

;CC
     (2) 

The measured codes are stored in a memory. During the normal ADC operation, an 

11.5 output code is generated which is a raw output. It is then added to the pre-

measured error code, �=�, to generate the 11-bit calibrated output code. Note that an 

additional bit of 0.5 LSB is added for the error correction. If a bit �� from the MSB array 

is 1 during the conversion process, the corresponding error code �=� is fetched from the 

memory and added with the 11.5-bit raw SAR code. Although all the 11.5-bit codes are 

used for calibration, only six MSB codes are used in error compensation since the sum 

of the error codes for the six LSB codes is smaller than 0.5 LSB (sum of all error 

voltages). Consider Σ�=� is the sum of all measured error codes and �99�9E�F … �E is 

the raw SAR code. 

Σ�=� = �=99 ∙ �99 + ⋯ + �=E ∙ �E    (3) 

���6 = �99�9E�F … �E +  Σ�=�    (4) 

The error correction procedure is done in the following manner. First, the offset 

compensation of the comparator is performed. Then the error codes are pre-measured 
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and stored in a memory circuit. The normal ADC conversion is performed which 

generates the raw 11.5 bit output code and an adder circuit adds the estimated error 

codes and the raw output to generate the calibrated 11-bit digital code. The design is 

implemented in a standard CMOS 0.130m technology with a supply voltage of 0.5V and 

a sampling rate of 10 KS/s and 9.93 ENOB.  

 

2.2 VOLTAGE CONTROLLED DELAY LINE 

In general, three circuit techniques have been widely used in the implementation 

of Voltage Controlled Delay Lines. They are: shunt capacitor, current-starved and 

variable resistor techniques. Figure 2.6 shows the block diagram of current starved 

implementation. 

 

Figure 2.6 Current-starved technique [36] 

 

During the clock low-to-high transition, M2 turns on and the capacitor 8	 starts to 

discharge. The discharging current is controlled by M1 which acts as a current source. 

The rising delay can be derived as, [36] 
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     J! =  K ln 9� NB OCC
9� NB

OCC
P

     (5) 

where 

     K =  =Q
RS TUV

P  WQ  3;X-� ;Y5
     (6) 

0� is the mobility of electrons, Z is the channel length modulation parameter, �[ is the 

threshold voltage of M1 and 8	 is the load capacitance. The above equation shows that 

the delay can be controlled by the size of M1. 

 

 

Figure 2.7 Shunt capacitor technique [37] 

 

The shunt capacitor technique is shown in Figure 2.7. Transistor M2 acts as a 

capacitor while transistor M1 controls the charging and discharging of M2. The gate 

voltage of M1, ��6�$, controls the charging/discharging current. Hence, the resistance of 

M1 is directly controlled by ��6�$. As the value of ��6�$ increases, the resistance of the 

shunt transistor M1 decreases and the effective capacitance at the output is large 

thereby producing larger delay. Thus its delay can be controlled through the control 

voltage. 
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Figure 2.8 Variable resistor technique [37] 

A variable resistor technique is shown in Figure 2.8. Variable resistors are used 

to control a particular transistor for delay in the form of a vector. A stack of n rows and 

m columns of NMOS transistors is used to make a variable resistor. The resistor stack 

controls the delay of the circuit. In the circuit, only the rising edge of the output is 

controlled through the stack. A stack of PMOS transistors can be used to control the 

falling edge of the delay. 

 

Among these three techniques, the current-starved technique is often preferred since it 

is less prone to temperature and process variations. To further improve its performance, 

a temperature compensated voltage controlled delay line is shown in Figure 2.9.  
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Figure 2.9 Thermal compensation current-starved delay line [38] 

 

The thermal compensation of the delay line is performed through the diode connected 

transistors P1, N1 and P3 by making the drain current of P3 independent of absolute 

temperature. The temperature increase directly affects the threshold voltage of the 

transistors. This decreases the drain current of the transistors and causes the increase 

of the delay. The threshold voltage �[ expression is given: 

    �[3\5 =  �[3\E5 +  ]3\ 4 3\E55    (7) 

where \E and \ are reference and practical absolute temperatures, respectively. ] is 

from -0.5 to -3.0 ^�_�9, which is the temperature coefficient. For P3, we have: 

    `�
: = 9
+ 08ab cd

	 e f�%� 4  �6g+31 + Z�%�5   (8) 

Substituting �[ expression into the above equation, 

 `!�: = 9
+ 08ab cd

	 e 3 [
[i

5j  k [�%� 4  �[3\E5 4  ]3\ 4  3\E5]+31 + Z�%�5 (9) 
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where n^ is thermal conductivity. The term 31 + Z�%�5 will be neglected in the following 

derivations since its thermal sensitivity is much smaller than that of mobility and 

threshold voltage. The sizes of P1 and N1 are adjusted to make Vgs of P3 satisfy the 

equation below. 

    �%�: =  �[3\E5 +  ]3\ 4 \E5 + 2 o[
j    (10) 

    `!�: = 9
+ 08ab cd

	 e 3 [
[i

5j  3+o[
j 5+ 31 + Z�%�5   (11) 

when n^ = 42 the current of P3 will become totally independent of temperature as 

shown below: 

    `!�: = 9
+ 08ab cd

	 e 3]\E5+ 31 + Z�%�5   (12) 

Thus, through the help of current mirrors P1, P2, N1 and N2, the conduction current of 

NOT gates will be kept thermally insensitive too. 

 

2.3 TIME-TO-DIGITAL CONVERTER 

Time-to-digital converters (TDC) are generally used to convert the time 

information to digital output based on their comparison. Several recently reported time-

domain comparators are discussed as follows. A flip-flop can be conventionally used 

since it is the fastest and simplest circuit. But it has a characteristic of non-zero setup 

time since a flip-flop has different paths for clock and data. This mismatch contributes to 

an input-referred offset delay which varies as supply voltage decreases. In [36],a true 

single edge D Flip-Flop as shown in Figure 2.10 is used as the phase detection circuit. 

Two inputs, D and CLK, decide the output of the flip flop based on the incoming signals. 
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It uses a single clock but with the expense of additional transistors. Due to the usage of 

a clock, it is prone to metastability caused by setup and hold time violations.  

 

 

Figure 2.10 Time-domain comparator with DFF [36] 

 

To cope with the above drawback, a Binary Phase Detector is proposed in [39] to 

convert time to digital code. The PD is shown figure 2.11. The Binary PD has two 

inputs, two back-to-back connected inverters and a latch. OUT is 1 when IN1 arrives 

first and vice-versa. The PD achieves fast latch operation with the shortest paths from 

input to its output. 
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Figure 2.11 Binary Phase Detector [39] 

 

 A Vernier type Time-to-Digital converter is presented in [40] which is used to 

convert the pulse width from a temperature sensor to a corresponding digital code. It is 

implemented in a 2 stage Vernier type TDC. The first stage of the Vernier type TDC is 

the conventional inverter based TDC to reduce power consumption. The second stage 

is the Vernier type TDC for high resolution where the resolution of the second stage is 

determined by the difference between the gate delays of the two inputs, thereby 

controlling its resolution. During the first stage operation, when the delay line leads the 

pulse input, the final time residue or final time remaining becomes the input for the 

second stage. A similar operation is done in the second stage. Finally, the digital code is 

determined by controlling the gate delays of both inputs. The design is implemented in a 

0.180m CMOS process technology. 

 

 A novel method of converting time to voltage and then converting the voltage to 

digital output through an ADC is presented in [41]. For converting the time to voltage, a 

charge-pump based transducer is implemented. A PMOS and an NMOS are connected 
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together in series with the differential inputs as gate inputs. When the PMOS is on and 

NMOS is off, the capacitor connected to both the transistors outputs gets charged. The 

voltage on the capacitor is held and converted to digital output by an ∆Σ ADC. During 

the hold and conversion process, both the transistors are turned on to make sure that 

the flowing output current is the same as the input current. Once the voltage is 

converted, the NMOS turns on and PMOS turns off, thereby discharging the charge 

from the capacitor. Final resolution is 200ps and power dissipated is 30mW. 
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CHAPTER 3 

PROPOSED ACCELERATED SAR TECHNIQUE 

 In this chapter, we present a technique that accelerates the SAR process during 

Analog to Digital conversion. The technique is developed for a Voltage-to-Time based 

VTC ADC circuit as shown in Figure 3.1. 

 

 

Figure 3.1 Conventional VTC-based SAR ADC 

 

The conventional SAR ADC always updates either the upper or the lower bound 

to reduce the search space by half. The proposed method updates both the upper and 

lower bounds in one conversion cycle, thereby reducing the number of conversions and 

reducing the overall power consumption. To implement this technique, two additional 

PDs are added along with the existing PD as shown in Figure 3.2. The original PD can 

be called as the main comparator whose output is �. This determines the difference 

between ���=
�and ���=

�. The offset of PD is relatively small after careful circuit design 
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and calibration [42]. The voltage-to-time gain of the VCDL is large such that a small 

input voltage can be converted to a large delay. So the offset of the PD is ignored. The 

PD whose output is referred to as ��
�, is an auxiliary PD which compares the delay of 

the entire top VCDL and a portion of the bottom VCDL. The upper PD is referred to as 

��
� which is the negative auxiliary PD which compares a portion of the upper part of the 

VCDL and the entire bottom VCDL. Unlike the main PD, ��
� and ��

� compare the 

asymmetric branches of the VCDL, as shown in Figure 3.2. Hence the comparison 

results are prone to temperature and process variations.  

 

 

Figure 3.2 A-SAR concept of VCDL with three PDs  

 

 ���= �� and ���= "q are used to denote the minimum and maximum values of 

the uncertain region, where the auxiliary PD produces different results based on the 

irregularities in process and temperature variations. This uncertain region is termed as 

rstuvJw<sJx ywsz 3r{wsz5 and its width is �| =  ���= "q  4  ���= ��. We approximately 

round the �| value to a multiple of �	
� since it is the minimum voltage difference that 

the ADC can detect. The rounded value is called as the us}~vtuz r{wsz and denoted 
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as �∆. �� is used to represent the starting voltage of the enforced uBand. In Figure 3.3, 

the shaded rectangle is the uBand and the unshaded rectangle is the enforced uBand. 

 

Figure 3.3 Relation between DAC outputs and comparator outputs of (b) � (c) ��
� and 

(d) ��
�  

 

The conventional SAR ADC and A-SAR ADC are compared with respect to 

search space refinement in Figure 3.4. The left side of the figure corresponds to 

conventional SAR operation which uses only the main PD. If � = 1, ���=
� >  ���=

�, 

indicating that ��� is larger than ��, which corresponds to the voltage level which is 

specified by the digital code in the SAR. ��� and �� are connected with the relation [43]: 

���=
� 4   ���=

� =  ��� 4  ��     (13) 

In this case, only the lower bound of the search space is updated to ��. On the contrary, 

the upper bound of the search space will be updated to �� in case if � = 0.  
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Figure 3.4 Comparative outcomes of Conventional SAR and A-SAR 

 

The right side of the figure corresponds to the A-SAR operation. Based on the 

relation between the VCDL outputs, there are only four possible combinations of the PD 

outputs. First case, all the outputs are 1, indicating that 

���=
� 4   ���=

� =  ��� 4  �� >  ��          (14) 

Also it implies that the new LB should be �� + ��. In case 2, all outputs are 0., indicating  

���=
� 4   ���=

� =  ��� 4  �� <  4��   (15) 

Implying that the new UB should be �� 4 ��. In these two cases, the A-SAR updates 

only one bound of the search space, but it does more aggressively than its conventional 

counterpart. In case 3, � = 1, ��
� = 0 and ��

� = 1, we have 

0 <  ���=
� 4   ���=

� =  ��� 4 �� <  ��  +  �∆   (16) 

Hence, 

�� < ��� <  �� +  ��  +  �∆     (17) 

In case 4, � = 0, ��
� = 0 and ��

� = 1. Hence, 
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�� 4  �� 4  �∆ <  ��� <  ��     (18) 

In cases 3 and 4, the A-SAR updates both the lower and upper bounds. Thus by 

aggressive search space update and reduction the A-SAR is capable of producing the 

digital output in less than the stipulated number of conversion cycles. 

 

3.1 4-BIT EXAMPLE 

 

 

Figure 3.5 Illustrative examples of A-SAR conversion 

 

Let us consider a 4-bit example to explain the search space reduction in the A-

SAR scheme as shown in Figure 3.5. The input of the ADC ��� is assumed as 0.1���� in 

the example. The output of the ADC is clearly seen as 1000 (excess-8 code) and it 

(conventional ADC) should take 4 conversion cycles to complete the conversion. For 

the A-SAR operation, we assume �� = 1�	
� and �∆ = 2�	
�. After the first conversion 

cycle, comparator output � = 1 (since ��� > �� = 0) and ��
� = 0 since ��� is below the 

enforced uBand of ��
�. Now, the UB is updated from ���� to 0.375���� and LB is 
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updated from 4���� to 0. In the second conversion cycle, the ADC compares ��� with 

0.25����, the level which will be compared in the conventional ADC. � = 0 since ��� <

0.25����. But this time ��� is located inside the enforced uBand of ��
�, so ��

� can be 

either 0 or 1. In scenario 1, we assume ��
� = 0, which indicates ��� < 0.125���� 3�� 4

�� = 0.25���� 4 0.125����5. This information is adequate for the ADC to reach the 

correct output code and the conversion is complete after two conversion cycles. 

Scenario 2 assumes ��
� = 1, which indicates 0.25���� 3��5 >  ��� >  40.125���� 3�� 4

�� 4 �∆5. But, LB has been received as 0 in the previous conversion cycle. The 

40.125���� is an underestimate of the LB, due to the uncertainty associated with the 

uBand. Hence, the final LB and UB must be 0.25���� and 0, respectively, after the 

second conversion cycle. There is only one level, which is 0.125����, within this search 

space. The output of the main PD in the third conversion cycle will be adequate to 

determine the final digital output and the entire conversion is completed in three cycles. 

Thus, we see that the A-SAR is capable of producing the digital output in less number of 

conversion cycles than the conventional ADC. 

 

3.2 LOWER BOUND (LB) AND UPPER BOUND (UB) UPDATE CIRCUITS 

 From the previous section where the A-SAR principle was explained, the search 

bound update policies in the proposed A-SAR scheme can be easily derived and they 

are depicted in Figure 3.6. 
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Figure 3.6 Lower and Upper bound update schemes 

 

D represents the digital code from the SAR register; A and B are the digital codes 

corresponding to �� and �∆ respectively. In the UB update process, the newly calculated 

UB is always one �	
� below the actual voltage level that partitions the search space. 

This is because if the ADC input is a fraction of �	
� smaller than a voltage level whose 

corresponding code is z, the ADC output code is z 4 1.  

� Case 1: This case updates only the lower bound or LB. If the new D+A is less than 

the previous UB, then the new LB will be D+A, else LB will be the new D. 

The comparison takes place with the help of a subtractor circuit 

� Case 2: This case updates only the upper bound or UB. The subtractor circuit 

compares the new D-A and the previous LB. If the output is 0, then UB will 

be D-A-1, else UB is D-1 

� Case 3: This case updates both UB and LB based on the comparison. Here, 

always the new LB will be the previous D. UB will be compared with 
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D+A+B. If the output is 1, UB will be D+A+B-1 or else the UB will the same 

as the previous UB 

� Case 4: This case also compares both UB and LB. Here, UB is always D-1. LB is 

compared with D-A-B and new LB is D-A-B if output is 0. LB remains the 

same if output is 1  

 

 

Figure 3.7 (a) LB update circuit and (b) UB update circuit 

 

The logic control circuit for the aforementioned cases, which is responsible to 

update the lower bound and upper bound, is shown in Figure 3.7. Control signals �1 

and �2 are figured out based on the four cases. Table 3.1 shows the four cases with the 
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three comparator outputs. It is easy to verify that the circuit functionalities are consistent 

with LB and UB update policies. 

 

Table 3.1 Cases of comparator outputs in A-SAR 

CASE 

PHASE DETECTOR 

OUTPUTS 
�� �� 

��
� �� ��

� ��
� . 3������ +  ��

�5 �� . ��
� 

1 1 1 1 1 1 

2 0 0 0 0 0 

3 0 1 1 0 1 

4 0 0 1 1 0 

 

When implemented in the circuit, both the signals control the lower and upper 

bound update code for the next cycle. The equations for �1 and �2 are as follows: 

�1 =  ��
� . 3����� +  ��

�5    (19) 

�2 =  � . ��
�      (20) 

Figure 3.7 shows that the control signals �1 and �2 control the two 11-bit 2:1 

multiplexers. The digital codes A and B are 11-bit and the output is 11-bit code. The UB 

and LB signals to the second MUX is from the previous conversion cycle. D is the 

previous digital code from the SAR register. Signals D and the output from the MUX are 

added through an 11-bit adder. The MSB of D input of the adder is grounded since the 

digital output D consists of 10-bits. Also, the 8�� of the adder is grounded to set it to 

zero. As seen in the figure, two 10-bit 2:1 multiplexers are responsible for the final 
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update of both LB and UB values at their respective registers. Their control signals are 

labeled as SELECT1, SELECT2, SELECT3 and SELECT4 based on the relation 

between �1, �2, �1 and �2 which is derived from the four cases. The relation is shown 

in Table 3.2. The generation of signals �1 and �2 are explained in the next section. 

 

Table 3.2 Table listing the logic for SELECT1, SELECT2, SELECT3 and SELECT4 

SIGNALS CIRCUIT EQUATION 

SELECT1 LB UPDATE �1���. �2 + �1. �2. �1���� 

SELECT2 LB UPDATE �1���. �2��� + �1. �2���. �1 

SELECT3 UB UPDATE �1. �2��� + �1���. �2���. �2 

SELECT4 UB UPDATE �1. �2 + �1���. �2. �2���� 

 

3.3 VALUE COMPARISON (X<Y?) CIRCUIT 

In Figure 3.7, the component labeled as “X<Y” compares the values of inputs X 

and Y and produces the output g1 (or g2) as 1 if X<Y. g1 (or g2) is 0 if X>Y. It works like 

a subtraction circuit and its carry out is the circuit output. In order to explain the 

operation of the circuit, let us consider an example. After the sampling, the LB register is 

set to 0000_0000_00, UB is set to 1111_1111_11 and thereby D is set to 

1000_0000_00. We shall assume that �1 = �2 = 1. From Figure 3.7, input X of the 

value comparison circuit of the LB register is D+A (1000_1111_10) and Y is UB 

(1111_1111_11). Note that A = 0000_1111_10 and A+B = 0001_1000_00 which will be 

explained later why. Clearly, X<Y. So g1 is 1. Thereby from Table 3.2, SELECT1 = 0 

and SELECT2 = 0. Now, the LB is updated as D+A. Similarly, for the UB update circuit, 
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X is D+A+B which is 1001_1000_00 and Y is UB which is 1111_1111_11, thereby g2 = 

1. So SELECT3 = 0 and SELECT4 = 1. Hence, the UB stays the same in this 

conversion. 

Let us consider an example where the value of X is negative. That would be the 

case when �2 = 0. We shall consider the UB update circuit for this example. According 

to Figure 3.7, the input of the value comparison circuit, X, will be D-A which is 

1_1111_0000_10 which is negative. Y is UB, 0_1111_1111_11. The value comparison 

circuit performs the subtraction X-Y and the difference is 0_1111_0000_11 with an 

additional carry-out of 1. Hence, the difference is negative and g2 should be 1. But, 

since the circuit is a 11-bit subtractor, the 12th bit is neglected and the circuit assumes 

the value of g2 as 0. In such a case when the value of X is negative, an error is 

occurred. To cope with this error, an additional 12th bit is added to the value comparison 

circuit which takes one input as the carry-out of the 11-bit adder. The difference of the 

12th bit is taken as g2. The same measure is considered for the LB update circuit where 

g1 is considered.  

In a summary, the inputs of the LB and UB register include A, B, digital code D, 

signal 2 , UB and LB values of the previous conversion cycle and signals SELECT1, 

SELECT2, SELECT3 and SELECT4. The outputs are �1, �2 and updated LB and UB 

values �{9 4 �{0 and �{9 4 �{0 respectively. The LB and UB registers are controlled 

by 8�_1. The LB register is reset to 0 for all 10-bits and UB register is preset to 1 for all 

10-bits during the first conversion cycle. 
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3.4 DIGITAL CODE UPDATE CIRCUIT 

  

Figure 3.8 A-SAR concept of Ci and SAR register 

 

 Figure 3.8 shows the circuit that generates the digital code corresponding to the 

voltage level to be compared with in the SAR conversion process. In the figure, blocks 

labeled by LB, UB and SAR are registers to store the current lower bound, upper bound 

and the D value, controlling the charge scaling capacitor array. The SAR register is 

updated as follows. First, the UB and LB are compared in bit-wise manner. Assume the 

n67 bit is the first bit that the LB and UB are different, starting from the MSB. The LB (or 

UB) register bits are partitioned into two groups: all the bits before the n67 bit 

�9�+ … ���9 and the rest of the bits �����9 … �A, assuming that the ADC resolution is 

N. Since LB and UB agree with each other before the n67 bit, �9�+ … ���9 is the correct 

ADC output for the first k-1 bits. They will be directly loaded into the SAR register for the 

next conversion cycle. Also, the n67 bit of SAR is set to 1 and rest of the bits are reset to 
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0. The voltage level specified by SAR will be compared with ADC input in the next 

conversion cycle to further refine the search space.  

 The above circuit carries out the above function. It is implemented by cascading 

N basic cells whose schematic is shown at the right side of the figure. The XOR gate 

detects if �{� is different from �{�. If they are different, the cell output 8� will be 1. 8� is 

also 1 when its previous cell output 8��9 is 1. This is implemented by the OR gate in the 

cell. If 8� is 0, �{� is given to cell output �� which is the input of the SAR. If 8� = 1 and 

8��9 = 0, the <67 bit is the first bit that LB and UB are different. Thus, the output �� will be 

1. Finally, if 8� = 1 and 8��9 = 1, then �� = 0.  

 The operation of the above circuit can be further explained using the same 4-bit 

ADC example provided previously, in Table 3.3. The discussion assumes Scenario 2 

takes place during the conversion. Before the first conversion cycle, UB is set to 1111 

and LB is reset to 0000. MSB is the first bit that UB and LB are different. Hence, 1000 is 

loaded into the SAR. These values are tabulated below in the rows “before conv.” 

group. 
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Table 3.3 Table showing LB, UB and SAR updates for the 4-bit example 

CONV. 

CYCLE 
PD OUTPUT REGISTER MSB MSB-1 MSB-2 LSB 

BEFORE 

CONV. 

��
� X SAR 1 0 0 0 

� X LB 0 0 0 0 

��
� X UB 1 1 1 1 

1 

��
� 0 SAR 1 0 1 0 

� 1 LB 1 0 0 0 

��
� 1 UB 1 0 1 0 

2 

��
� 0 SAR 1 0 0 1 

� 0 LB 1 0 0 0 

��
� 1 UB 1 0 0 1 

3 

��
� 0 SAR X X X X 

� 0 LB 1 0 0 0 

��
� 1 UB 1 0 0 0 

 

 After the first conversion, the LB and UB are updated to 1010 and 1000, 

respectively. Hence, the third bit is the first place that UB and LB are different. As a 

result, 1010 is loaded into the SAR. Similarly, the SAR values at the end of the 2nd and 

3rd can be determined. At the end of the third conversion cycle, LB and UB become the 

same and 8� = 0, indicating the completion of the conversion. The inverted 8� signal 

enables the output register to capture the correct ADC output from the LB (or UB) 

register.  
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CHAPTER 4 

CIRCUIT IMPLEMENTATION AND SIMULATION RESULTS 

 The proposed A-SAR technique is implemented and evaluated in this chapter. 

The implemented SAR ADC consists of a differential charge-scaling capacitor array, two 

ten-stage VCDLs, three binary phase detectors and the A-SAR logics. The design and 

circuit evaluation of these circuits are described in the following sections. 

 

4.1 CHARGE SCALING CAPACITOR ARRAY DESIGN 

A split-capacitor DAC charge scaling differential array is used in this design. The 

split-capacitive array consists of a pair of MSB and LSB arrays, each of 5-bits, 

connected by an attenuation capacitor. The unit capacitance is selected as 10fF. 

Consecutively, the rest of the bits are increased in powers of 2, where 160fF is the MSB 

capacitor of the LSB array. Correspondingly, the capacitances of the MSB array are 

also arranged in the same manner as 10fF, 20fF, 40fF, 80fF and 160fF. The attenuation 

capacitor (8
) is chosen as 10fF, same as that of the unit capacitance. A similar 

architecture is employed for the differential array segment for the input voltage ���
� as 

seen in Figure 4.1. 
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Figure 4.1 Block diagram of split-capacitive DAC array with VCDL and PD 

 

Each capacitor is connected to three different switches: ��� switch, ���switch and 

��� switch. The ��� switch is implemented by a transmission gate (due to varying input 

and to reduce channel charge injection) for the sampling of the input. The switch 

connected to ��� is implemented with a PMOS (since it is a good conductor of high 

voltage) and the switch connected to ��� is implemented with an NMOS (since it is a 

good conductor of low voltage). The equalization switch (ES) which shorts the two 

capacitor arrays is implemented using a transmission gate. Also, the off-resistance of 

the ��� switch is of no importance because when the ��� switch is open, there is always 

some voltage (��� or ���) to charge the connected node. 

During the sampling phase of the ADC, all the ��� switches are turned on. The 

equalization switch is also turned on. Therefore, the nodes ���=
� and ���=

�, from 

Figure 4.1, are settled at input common mode voltage, �=. In the subsequent 

conversion phases, both the ��� switch and the ES are off. The ��� and ��� switches 

are turned on and off according to the SAR register values during the conversion. 
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To accommodate the operation, a 11-bit shift register, whose output are labeled 

from �0 4 �10, is implemented. During the sampling phase, �0 = 1. The rest of the shift 

register outputs are 0. During the conversion phase, the logic 1 value, previously stored 

at �0, is passed as a token along the shift register chain. During the ith conversion 

phase, the ith bit of the SAR logic, which is denoted as ��, is set to logic 1. In the 

capacitor array, whose signal input is �<s�, the ith capacitor branch should be connected 

to ���. Meanwhile, the ith capacitor branch connected to the other capacitor array 

should be grounded. To realize this configuration, the switch controls are given in Table 

4.1. 

 

Table 4.1 Control Switch logic for DAC array switches 

 ��� SWITCH ��� SWITCH ��� SWITCH 

���
� array �� / ������ �� + ��  ������ .  ��  

���
� array �� / ������ �� + � ������ .  � 

 

 As mentioned earlier, the ��� switch is implemented by a PMOS and the ��� 

switch is implemented by an NMOS. The sizes of the ��� and ��� switches are 

determined through the settling error, which must be less than half of the �	
�voltage 

which is 0.48828mV. Default sizes (160nm/120nm) are selected for the LSB capacitor 

switch and consecutively binary weighted for the rest of the capacitor array switches. 

Two scenarios are to be checked for the settling error criterions which are: 
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a. ��� switches from 0 to ��� 

b. ��� switches from ��� to 0 

A minimum sizing requirement of 2:1 ratio for the PMOS:NMOS criterion is provided and 

simulated for the above sizes. The settling errors for the LSB capacitor array are 

tabulated in Table 4.2.   

Table 4.2 Settling error for ���/��� switches 

CONDITION SETTLING ERROR (mV) 

0 -> ��� 0.0006 

��� -> 0 0.00006 

 

Both the cases adhere to the settling error requirement. Hence, the LSB switch is 

given a size of 320nm/120nm for the PMOS and 160nm/120nm for the NMOS. The rest 

of the switches are binary weighted, owing to the increase in capacitances, as shown in 

Table 4.3. 

Table 4.3 Sizes for ���/��� switches 

CAPACITOR ��� SWITCH ��� SWITCH 

LSB 320nm/120nm 160nm/120nm 

MSB-3 640nm/120nm 320nm/120nm 

MSB-2 1.280m/120nm 640nm/120nm 

MSB-1 2.560m/120nm 1.280m/120nm 

MSB 5.120m/120nm 2.560m/120nm 
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 The ��� switch is implemented by a transmission gate. Its on-resistance reaches 

the maximum value when the on-resistances of both PMOS and NMOS reach the same 

value. For the convenience of discussion, we refer to this voltage as critical voltage, 

����6��"$. Therefore, the worst settling behavior can occur in one of the following four 

scenarios: 

a. ��� switches from 0 � ���  

b. ��� switches from ��� � 0 

c. ��� switches from 0 � ����6��"$ 

d. ��� switches from ��� � ����6��"$ 

The first two scenarios represent situations that the circuit experiences the largest 

voltage change. The last two scenarios represent the conditions that the switch 

experiences the largest on-resistance at the end of sampling phase. The sizes of the ��� 

switches are maintained a ratio of 2:1 (PMOS:NMOS) throughout with default channel 

lengths. For the LSB capacitor switch size, the width is implemented 4 times that of 

default width. Consecutively, the rest of the capacitor array ��� switches are binary 

weighted. Figure 4.2 shows the setup used to determine the settling errors of the above 

cases. It is to be noted that while calculating the settling errors for the ��� switch, the 

��� and ��� switches are also connected to the node. 
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Figure 4.2 Setup to determine the settling error for ��� switch 

 

 

Figure 4.3 Critical voltage of transmission gate 
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Figure 4.3 shows the simulated on-resistances of PMOS and NMOS devices. 

The obtained critical voltage stands at 0.2491395V, where both the resistances of 

PMOS and NMOS are the same, is labeled as ����6��"$. Table 4.4 lists the settling error 

values of each scenario. It is seen that the selected transistor sizes satisfy the settling 

error requirement and hence the final sizes of the ��� switches are given in Table 4.5. 

The schematic of the MSB capacitor branch with all the switches is given in Figure 4.4. 

 

Table 4.4 Settling errors for various transitions 

CONDITION TRANSITION SETTLING ERROR (mV) 

 ��� -> 0 0.00035 

 0 -> ��� 0.003 

��������  = �¡¢. �£¢¤¥� 
0 -> ����6��"$ 0.1139 

��� -> ����6��"$ 0.1177 

�������� 
¦ = ��������  + ��¥� 

��� -> ����6��"$ 0.1016 

0 -> ����6��"$ 0.1034 

�������� 
¦ = ��������  4 ��¥� 

��� -> ����6��"$ 0.1003 

0 -> ����6��"$ 0.0994 
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Table 4.5 Sizes for ��� switches 

SWITCH SIZE [P/N] (L=120nm) 

LSB 640nm/320nm 

MSB-3 1.280m/640nm 

MSB-2 2.560m/1.280m 

MSB-1 5.120m/2.560m 

MSB 10.240m/5.120m 

  

 

Figure 4.4 MSB of the split-capacitor array showing all the switches 

 

 The equalization switch (ES) or the sampling switch is closed during the 

sampling phase along with the ��� switches and open during the conversion phase. At 

the end of the sampling phase, it is made sure that the ES is open first before the 

opening of the ��� switch in order to neglect the channel charge injection and to make 

sure that the input is completely sampled and the node voltages equal the input 
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common mode voltage. So, additional delay is provided to the ��� switches to make this 

happen. 

Transmission gate is used for the ES since the voltage connected to the switch is 

around ���/2 . Since the ES is open during all the 10 conversion phases, the leakage of 

the transmission gate comes into effect and it is necessary to efficiently reduce the 

leakage current when it is off. Before considering reducing the leakage current, the 

maximum allowable leakage current is evaluated first. Considering the charge, 

capacitance and voltage relation: 

Δ� = ¨©
=      (21) 

where Δ� is the change in voltage. Here, the minimum difference in voltage is half �	
�. 

Δª is the charge associated with the array or the current times the time required for 

charge and discharge, which is 100s. 8 is the total capacitance of one of the differential 

charge-scaling arrays, which is 320fF. The above equation can be modified as: 

0.5�	
� = «¬®¯®°∗∆[
=      (22) 

The maximum leakage current can be calculated as 15.62pA from the above condition. 

It is to be made sure that the leakage current of ES must not exceed the maximum 

leakage current. To reduce the leakage current, stacked transistors based on [16] are 

implemented. And to determine their sizes, a basic single transmission gate is 

considered to calculate the channel length by varying it with the width as twice the 

channel length and the leakage current is monitored. Figure 4.5 shows the setup used 

to determine the leakage. 
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Figure 4.5 Setup to determine leakage current of equalization switch 

 

 

Figure 4.6 Leakage vs Length for W = 2*L 
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Upon simulating the single transmission gate, it is found that for a maximum 

leakage current of 15.62pA, the observed channel length is 1.320m (11*L). Such a large 

channel length will potentially affect the overall Signal-to-noise ratio (SNR) of the ADC. 

Owing to the area constraints, the calculated channel length is not feasible, even though 

it satisfies the criteria of maximum leakage. From Figure 4.6, it is seen that the leakage 

decreases as the size increases and at the range of 6 times the length, the reduction 

becomes almost constant. Hence, for future calculations, the length of the transmission 

gate is fixed as 6*L where L is the default channel length. But, it is seen that the 

observed leakage current at 6*L is 509.6pA which is more than the calculated maximum 

leakage current. The width is again varied for W = 3*L and W = 4*L in Figure 4.7 and 

Figure 4.8 to double-check whether the range of 6*L adheres to all the cases. 

 

 

Figure 4.7 Leakage vs Length for W = 3*L 
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Figure 4.8 Leakage vs Length for W = 4*L 

 

The above figures show that the leakage current becomes constant in the range 

of 6*L (720nm) for the single transmission gate. Hence, channel length of 3*L (360nm) 

for each transistor (2 X 3*L) is fixed for the stacked transmission gate which is to be 

employed as the ES. 

In order to determine the width of the ES, the on-resistance needs to be 

considered. The on-resistance of the equalization switch needs to be very small to 

sample the input voltages and equalize the node voltages to ���/2. The width of PMOS 
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is set to two times that of NMOS for nominal sizing and the channel length is set to 3*L, 

as explained before. 

 

Figure 4.9 Setup to determine the on-resistance of the equalization switch 

 

 Figure 4.9 shows the setup to determine the on-resistance of the stacked 

transmission gate by providing low voltage for the PMOS and high voltage for the 

NMOS transistors. Both the total array capacitances of 320fF are connected on either 

side of the switch. The width of the NMOS is varied by plotting the on-resistance of the 

switch. Figure 4.10 shows the corresponding plot.  
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Figure 4.10 On-resistance vs Width with Length = 3*L 

  

 From the above waveform, after a certain range, the on-resistance seems to be 

constant or doesn’t show much reduction marginally. The on-resistance reduces 

gradually around the range of 10m to 20m. Considering the settling error requirements, 

the condition is met for the size of 1.30m for the NMOS (2.60m for the PMOS). For the 

selected width size, the on-resistance is observed as 31.26KΩ. Further refinement of 

the on-resistance will be done in the future work. The settling error for the selected sizes 

is plotted in Figure 4.11 and tabulated in Table 4.6. 
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Figure 4.11 Settling error when equalization switch is on  

 

Table 4.6 Settling error for equalization switch 

TRANSITION SETTLING ERROR (mV) 

0.5V -> 0 0.013 

0 -> 0.5V 0.0127 
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Table 4.7 Sizes of all control switches and sampling switch 

ARRAY 

NODE 

��� SWITCH 

(W/L) 

��� SWITCH 

(W/L) 

��� SWITCH 

(P/N) [L=120nm] 

EQUALIZATION 

SWITCH 

(P/N) [L=360nm] 

LSB 320nm/120nm 160nm/120nm 640nm/320nm 

2.60m/1.30m 

MSB-3 640nm/120nm 320nm/120nm 1.280m/640nm 

MSB-2 1.280m/120nm 640nm/120nm 2.560m/1.280m 

MSB-1 2.560m/120nm 1.280m/120nm 5.120m/2.560m 

MSB 5.120m/120nm 2.560m/120nm 10.240m/5.120m 

 

 Table 4.7 tabulates the final sizes of the ���, ���, ��� and equalization switches. 

The split capacitive digital to analog converter array voltage can be mathematically 

derived. The split-capacitive array operation is based on the charge conservation 

principle. During sampling, the charge in the capacitors equal c;CC
+ 4 ��� e  320}. The 

node voltages during conversion process are calculated as 3�. ���& 4 ���5, where ���& is 

the reference voltage for the input voltages and � is the digital output. The comparator 

output is 0 if the following condition is true. 

    ��. ���& 4  ���
� >  ��. ���& 4 ���

�    (23) 

    ���& 3�� 4  ��5 > ���
�  4 ���

�    (24) 

Where ��. ���& 4  ���
� =  ���=

� and ��. ���& 4  ���
� =  ���=

�. In simple words, if 

���=
� > ���=

�, the output is 0. In the following discussion, we assume the sampled 

inputs ���
�  and ���

� as 0.28V and 0.22V, respectively.  
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Figure 4.12 I conversion cycle 

 

For the first cycle, the MSB capacitor is always set to 1 for one array and it is inverted 

for the other array, as shown in Figure 4.12. �9 = 1, �8 = 0, �7 = 0, �6 = 0, �5 = 0, �4 

= 0, �3 = 0, �2 = 0, �1 = 0, �0 = 0 and ª9 = 0, ª8 = 1, ª7 = 1, ª6 = 1, ª5 = 1, ª4 = 1, 

ª3 = 1, ª2 = 1, ª1 = 1, ª0 = 1 (where ª =  �� for the other differential array). 

   f���=
� 4 ���g160} + ���=

�160} = c;CC
+ 4 ���

�e 320}  (25) 

     ���=
� = ��� 4  ���

� = 0.22�   (26) 

Similarly, ���=
� can be derived as 0.28�. From the above equation, ∆��� is greater and 

�	
� = 1. 
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Figure 4.13 II conversion cycle 

 

For the second cycle, MSB-167 capacitor changes to 1 for the � array and MSB-167 

capacitor changes to 0 for the ª array (Figure 4.13). �9 = 1, �8 = 1, �7 = 0, �6 = 0, �5 

= 0, �4 = 0, �3 = 0, �2 = 0, �1 = 0, �0 = 0 and ª9 = 0, ª8 = 0, ª7 = 1, ª6 = 1, ª5 = 1, 

ª4 = 1, ª3 = 1, ª2 = 1, ª1 = 1, ª0 = 1 

   f���=
� 4 ���g240} + ���=

�80} = c;CC
+ 4 ���

�e 320}  (27) 

     ���=
� = µ;CC

� 4  ���
� = 0.345�   (28) 

Similarly, ���=
� = 0.155�. From the above equation, ���& 3�� 4  ��5 is greater than 

∆���. So �	
� = 0. 

 And the DAC operation goes on so forth, based on the comparator output. Totally 

10 conversion cycles are consumed for the 10-bit operation. Till the 5th bit conversion, 

the LSB array is considered as the termination capacitor for the MSB array conversions. 

From the 6th bit, the conversion mechanism differs.  
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Figure 4.14 VI conversion cycle 

 

The termination capacitor for the MSB array is the split capacitor which is 10fF and 

there is no need for a termination capacitor for the LSB array, as seen in Figure 4.14. 

The node voltage �2 is calculated as per the below equation. 

   �2 = ;CC
+ 4 ���

� + 9
9�c B

PBie
 ¶9·E

:+E ��� + 9E
:+E . 9¸E

:+E ���¹   (29) 

�2 (���=
� of 6th cycle) was calculated as 0.2439V and �2 for the other differential array 

is calculated 0.2557V. Similarly the voltages for the other 4 cycles are calculated.  

 

 The node voltages of both the arrays ���=
� and ���=

� are calculated for the 

above input voltages. Along with that, the observed or simulated node voltages are also 

tabulated in Table 4.8 and the comparator output is also given. 
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Table 4.8 Node voltages and comparator outputs for DAC array operation 

CONV. 

CYCLE 

CALCULATED 

VALUES 

SIMULATED 

VALUES 
COMP. 

OUTPUT 

���º
� (V) ���º

� (V) ���º
� (V) ���º

� (V) 

SAMPLING 0.249 0.249 0.249 0.249 X 

I 0.2207 0.2788 0.2211 0.2791 1 

II 0.344 0.155 0.344 0.155 0 

III 0.282 0.217 0.284 0.218 0 

IV 0.2516 0.2479 0.2520 0.2482 0 

V 0.2362 0.2634 0.2366 0.2637 1 

VI 0.2439 0.2557 0.2443 0.2559 1 

VII 0.2478 0.2518 0.2482 0.2521 1 

VIII 0.2497 0.2499 0.25018 0.25019 1 

IX 0.2507 0.2489 0.2511 0.2492 0 

X 0.2502 0.2494 0.2506 0.2497 0 

 

 The final output for the differential input of 60mV (0.28V and 0.22V) is 

59.08203125mV (1000_1111_00). In this split-capacitor array DAC, the output voltage 

���=
� is given to the negative input of the comparator and ���=

� is given to the positive 

input due to the following equations. 

    ���=
� = ;CC

+ 4  ���
� 4 �. ���&    (30) 

    ���=
� = ;CC

+ 4  ���
� 4  ��. ���&    (31) 
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    ���=
� 4 ���=

� = 3�� 4 �5. ���& 4 3���
� 4  ���

�5  (32) 

[Where ���& = ��� and ��. ���& 4  ���
� = ���=

� and ��. ���& 4 ���
� = ���=

�]. The 

complete architecture of the split-capacitive charge-scaling differential DAC array is 

shown in Figure 4.15. 
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Figure 4.15 Split-capacitive DAC array schematic 
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4.2 VOLTAGE CONTROLLED DELAY LINES 

 The current-starved technique is used to design a series of inverter chains, 

known as Voltage Controlled Delay Lines (VCDL). It is implemented by cascading two 

types of delay cells, which are basically inverters with current limiting capability. The 

VCDL used in the design is shown in Figure 4.16. It consists of 10 stages and its control 

voltage inputs are from the charge scaling DAC. The currents of all the delay cells with 

odd position numbers are limited by NMOS devices, whose gates are controlled by 

input ���=
� . Meanwhile, the delay cells in even positions have PMOS current limiting 

devices controlled by input ���=
�. Hence, the total delay of the VCDL is controlled by 

���=
� 4  ���=

�. 

 

 

Figure 4.16 Block diagram of Voltage Controlled Delay Line 
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Figure 4.17 Simulated 10-stage VCDL 

 

Proper sizing of the inverters is ensured so as to maintain the linear increase in 

sensitivity of temperature and process variation. Minimum sizes are used for the CMOS 

and a ratio of 2:1 is maintained throughout. The sizes for the respective transistors are 

tabulated in Table 4.9. 

Table 4.9 Transistor sizes in VCDL 

TRANSISTOR SIZE (nm) 

M1, M2 320/120 

M3 640/120 

M4 160/120 

M5 320/120 

M6 640/120 

INVERTER PMOS 320/120 

INVERTER NMOS 160/120 
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Figure 4.18 Output waveform of VCDL 

 

Figure 4.18 shows the inputs ���=
� and ���=

� along with the clock input. As seen 

in the figure, the output waveform rises after a considerable delay from the 10-stage 

VCDL. The VCDL is simulated at different process corners such as SS, FF and TT 

corners. The plot is shown in Figure 4.19. 
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Figure 4.19 Plot showing simulated VCDL for SS, FF and TT process variations 

 

Referring to the VCDL, (Figure 3.2) the portion of the VCDL whose delay is 

compared with the delay of the entire VCDL by the auxiliary PDs, consists of two delay 

stages. Circuit simulations have been performed at different process corners as well as 

different temperatures to find the input voltage values of the VCDL that result in the 

delay of the portion of VCDL being larger than the entire VCDL delay. Table 4.10 lists 

the obtained voltages that are rounded and expressed in terms of �	
�.  

 

Table 4.10 Simulated voltages to determine uBand in terms of �	
� 

PROCESS 

CORNERS 

TEMPERATURE (℃) 

0 25 85 

TT 64 70 86 

FF 68 74 93 

SS 63 68 82 
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Note that the maximum and minimum values are 63�	
� and 93�	
�, respectively. 

Thus, the uBand �| is 93�	
� - 63�	
� = 30�	
�. In the design, we select the enforced 

uBand as �∆ = 34�	
� and select �� = 62�	
�. So, A+B = �∆ + �� = 96�	
� and B = 

62�	
�. 

 

4.3 BINARY PHASE DETECTOR 

 

Figure 4.20 Block diagram of Phase Detector [39] 

 

An offset-free analog binary phase detector is used for the detection and 

comparison of the delay generated from the VCDL. This PD works fast than a flip-flop 

and eliminates setup/hold time. From Figure 4.20, INV1 and INV2 form a latch-type 

amplifier that senses the incoming input signals �<s� and �<s�. Transistors M5 and M6 

are in series with the discharging path of the inverters. So when inputs are low, M5 and 

M6 are off thereby disabling the inverters. PMOS M1 – M4 raise the cross-coupled 

nodes to ���. When one input raises to ��� before the other, the inverter connected with 
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it starts to discharge, thereby completing the comparison. The output is stored by the 

latch of �wsz1 and �wsz2. The sizes of transistors for the PD are tabulated in Table 

4.11 and the designed schematic is shown in Figure 4.21. 

 

Table 4.11 Transistor sizes in PD 

TRANSISTOR SIZE (nm) 

M1, M2 1280/120 

INVERTERS, M5 640/120 

NAND GATE PMOS 320/120 

NAND GATE NMOS 320/120 

 

 

 

 Figure 4.21 Final schematic of PD 
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Figure 4.22 shows the output of the PD. The first two signals are the PD inputs 

and third is the output. Clearly, the output is 1 since the positive input, ���
�, rises first. 

 

 

Figure 4.22 Output waveform of PD 

 

4.4 DESIGNED DIGITAL BLOCKS OF A-SAR 

Few of the designed blocks of the LB, UB update circuit and Digital code update 

circuit are shown in this section. Signal �_�� is used to initialize the output register to 

generate the final digital output of the A-SAR and the ���� signal is used to mark the 

end of the conversion process, which are also shown. 
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Figure 4.23 11-bit adder schematic 

 

 

Figure 4.24 LB update circuit 
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Figure 4.25 UB update circuit 

 

 

Figure 4.26 Digital code update circuit schematic 
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Figure 4.27 Schematic showing �_��, ���� and output register 

 

The complete architecture and schematic of the Accelerated Successive 

Approximation Technique is given in Figure 4.28. It consists of the input signals, control 

signals, Digital to Analog Converter, Voltage Controlled Delay Line and Phase Detector, 

LB and UB update circuits, LB and UB registers, Digital code update circuit and the 

output register blocks. The inputs of the A-SAR will be ���
�, ���

�, 8�_ and ¼���\ and 

the outputs will be the 10-bit digital output �F, �¾,  �· … . �E, �_�� and ���� signals. 
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Figure 4.28 Complete A-SAR schematic 
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4.5 SIMULATION RESULTS 

 The implemented ADC is simulated with a 0.5V power supply with 100 KS/s 

sampling rate. Also, the ADC input range is from rail to rail. Figure 4.29 shows a 

conversion for inputs  ���
� = 0.28� and ���

� = 0.22�. So the differential input is 60^� 

and corresponding digital output code is 1000_1111_00. As one can see, the final ADC 

output code is obtained after the eight clock cycle itself, and the ���� signal rises 

immediately showing that the conversion is complete. The ADC being structured for 10-

bit resolution produces the output in two cycles less than the stipulated number of 

conversion cycles. The 10-bit waveforms are labeled as �9, �+ … �9E where �9 is the 

MSB and �9E is the LSB. The first clock period is the sampling phase and it is controlled 

by �0 from the shift register, which is controlled by 8�_1. This samples the input voltage 

in the capacitors which will be used for the conversion process in the following clock 

periods. Once the sampling is done, the conversion starts. At the first conversion cycle, 

the SAR register is set to 1000_0000_00, which is identical to a conventional SAR ADC. 

Clearly, the A-SAR technique approaches the final ADC output code more quickly. 
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Figure 4.29 A-SAR output waveform 

 

4.5.1 POWER CONSUMPTION 

 The power consumption of an SAR ADC circuit is dominated by its analog 

blocks, especially its charge scaling DACs [44]. In this section, the average power 

consumptions of the analog blocks in the A-SAR and a conventional VTC-based SAR 

ADC are compared. The two ADCs used in the comparison have the same DAC, VCDL 

and PD circuits, except that only one PD is used in the conventional ADC. The clock 

frequency for both the ADCs is 1MHz and power supply is 0.5V.  
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Table 4.12 Table showing power consumption for each block in A-SAR 

COMPONENTS 
CONV. SAR 

ADC (nW) 

A-SAR ADC 

(nW) 

POWER 

SAVING (%) 

DAC 53.7 nW 42.2 nW 21.4% 

VCDL 13 nW 14.5 nW -11.5% 

PD 2.1 nW 5.2 nW -148% 

TOTAL 68.8 nW 61.9 nW 10% 

 

 

 Table 4.12 lists the power values of the components obtained from circuit 

simulations. It clearly shows that the DAC power consumption dominates the overall 

power consumption. The proposed A-SAR reduces the DAC power consumption by 

21.4%, mainly due to the reduction in number of clock cycles. The VCDL consumes 

more power in the A-SAR circuit since it has additional output loads. Also, the proposed 

ADC has three PD circuits and hence the total power consumption of the three PDs is 

much higher than the single PD power consumption in the conventional ADC. Also it is 

to be noted that the PD power consumption is not tripled due to the uncertainties. Due 

to the dominance of the DAC in power consumption, the overall power consumption is 

still reduced in the A-SAR by 10%, as mentioned in Table 4.12. And it should be noted 

that the unit capacitance is 10fF. In designs which use more unit capacitance, the 

overall power saving can be much higher. 
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4.5.2 SNR 

 The Signal-to-Noise Ratio of the ADC is evaluated. Every digital output from the 

end of the conversion is captured using a write module and the set of digital codes is 

written into a text file. The swing of the sinusoidal wave is from 4��� to ���. A total of 

1024 points or more are considered for the calculation. To calculate the input frequency 

of the sinusoidal waveform, the following equation is considered: 

&¿S
&)

= 9:·
9E+�     (33) 

where }� is the sampling frequency of the ADC, which is 100KHz, and }�� is the input 

frequency for the sinusoidal inputs. From the above equation, the input frequency is 

calculated as }�� = 13.405539772727_ÀÁ. The sinusoidal input is differential and the 

signals are at a phase difference of 180. The SNR is seen as 43.43dB and SNDR as 

43.01dB (Figure 4.30).  
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Figure 4.30 SNR of the A-SAR 

 

The effective number of bits (ENOB) is calculated as 6.85 according to the relation: 

���{ = 
A���9.·¸!�
¸.E+      (34) 

 

4.5.3 INL / DNL 

 The Differential Non-linearity (DNL) and Integral Non-linearity (INL) of the A-SAR 

is calculated by providing a ramp input signal from 0 to ���& for 9 occurrences of each 

conversion. A pulse-width-linear (��d	) is given as input where at time t=0, the voltage 

is 0V. The final time is calculated through 9 occurrences * 11 cycles each (1 sampling 

and 10 conversions) * 1024 conversions, which is 101.376ms, where the voltage is ���&. 

A sample input is shown below: 
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Figure 4.31 Ramp signal to calculate INL/DNL 

 

The output provides a linearly increasing output code with 9 occurrences for each code. 

It is dumped into a text file and simulated through MATLAB. FFT analysis is performed 

on the output. Ideally, the difference between each of the codes is �	
�. The 

maximum/minimum DNL stands at +0.1106/-0.1115 �	
� and the maximum/minimum 

INL stands at +3.0000/-0.6681 �	
�. Both the corresponding plots are shown below: 

 

 

Figure 4.32 DNL of A-SAR 
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Figure 4.33 INL of A-SAR 

 

4.5.4 REDUCED NUMBER OF CONVERSION CYCLES 

 The output of the A-SAR is simulated for 1024 conversions and the number of 

each conversion cycles, in which the output is generated, is seen. In particular, the 

���� signal is seen for every operation. Clock cycles of 10, 8 and 7 were seen as a 

result. The percentage split for the corresponding data is tabulated in Table 4.13. 

 

Table 4.13 Percentage split of number of conversions 

NO. OF PERCENTAGE 

10 67.578% 

9 0% 

8 10.644% 

7 21.778% 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 This thesis work presents a novel technique to reduce the number of conversion 

cycles in an SAR ADC, thereby making it faster. As a result, output can be generated in 

less than N clock cycles for an N-bit SAR ADC by this method which is called as the 

Accelerated Successive Approximation Register (A-SAR) technique. Compared to a 

conventional SAR ADC which updates only one bound, either the upper or lower bound, 

in a single conversion cycle, the proposed technique updates both the upper and lower 

bounds in a single conversion cycle, thereby producing the digital output much sooner 

than the conventional counterpart. Circuit techniques to implement the A-SAR technique 

are also developed and implemented using a 0.130m CMOS technology. The validity of 

the proposed technique is demonstrated by circuit simulation results. 

  

The proposed ADC topology has three phase detectors (PD). However, there are 

only four valid combinations of the three PD outputs. This leads to an interesting 

opportunity to perform online built-in-self-testing (BIST) operation for the ADC circuits, 

which will be investigated in our future works. Also, the SNR of the implemented ADC is 

much lower than the ideal value. Additional circuit optimization is needed to reduce the 

leakage of equalization switch and potentially improve the ADC performance. 

Furthermore, the layout of the circuit can be designed for fabrication and subsequently 

hardware measurements can be conducted to characterize the ADC performance. 
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