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ABSTRACT 

This thesis reports issues and design methods used to achieve high-speed and 

high-resolution Successive Approximation Register analog to digital converters 

(SAR ADCs). A major drawback of this technique relates to the mismatch in the 

binary ratios of capacitors which causes nonlinearity. Another issue is the use of 

large capacitors due to nonlinear effect of parasitic capacitance. Nonlinear effect of 

capacitor mismatch is investigated in this thesis.  Based on the analysis, a new Tri-

level switching algorithm is proposed to reduce the matching requirement for 

capacitors in SAR ADCs. The integral non-linearity (INL) and the differential non-

linearity (DNL) of the proposed scheme are reduced by factor of two over 

conventional SAR ADC, which is the lowest compared to the previously reported 

schemes. In addition, the switching energy of the proposed scheme is reduced by 

98.02% compared with the conventional SAR architecture. A new correction method 

to solve metastability error of comparator based on a novel design approach is 

proposed which reduces the required settling time about 1.1τ for each conversion 

cycle.  Based on the above proposed methods two SAR ADCs: an 8-bit SAR ADC 

with 50MS/sec sampling rate, and a 10-bit SAR split ADC with 70 MS/sec sampling 

rate have been designed in 0.18µm Silterra complementary metal oxide 

semiconductor (CMOS) technology process which works at 1.2V supply voltage and 

input voltage of 2.4Vp-p. The 8-bit ADC digitizes 25MHz input signal with 48.16dB 

signal to noise and distortion ratio (SNDR) and 52.41dB spurious free dynamic range 

(SFDR) while consuming about 589µW. The figure of merit (FOM) of this ADC is 

56.65 fJ/conv-step. The post layout of the 10-bit ADC with 1MHz input frequency 

produces SNDR, SFDR and effective number of bits (ENOB) of 57.1dB, 64.05dB 

and 9.17Bit, respectively, while its DNL and INL are -0.9/+2.8 least significant bit 

(LSB) and -2.5/+2.7 LSB, respectively. The total power consumption, including 

digital, analog and reference power, is 1.6mW. The FOM is 71.75fJ/conv. step.  
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ABSTRAK 

Tesis ini melaporkan isu dan teknik reka bentuk yang diguna untuk 

menghasilkan penukar analog kepada digital Daftar Penghampiran Berturutan (SAR 

ADCs) yang berkelajuan dan resolusi tinggi. Satu kelemahan utama teknik ini 

berkaitan dengan ketakpadanan dalam nisbah perduaan kapasitor yang menyebabkan 

ketaklinaran. Satu lagi isu ialah penggunaan kapasitor besar disebabkan oleh kesan 

ketaklinaran kapasitor parasitik. Kesan ketidaklinaran kapasitor parasitik ini dikaji 

dalam tesis ini. Hasil daripada kajian ini, satu cara pensuisan Tri-tahap algoritma 

dicadangkan untuk mengurangkan keperluan sepadan kapasitor dalam SAR ADC. 

Ketidaklelurusan kamilan (INL) dan ketidaklelurusan perbezaan (DNL) pensuisan 

yang dicadangkan berjaya dikurangkan sebanyak dua kali ganda dan ini adalah yang 

paling rendah berbanding kaedah konvensional. Kuasa pensuisan juga dikurangkan 

sebanyak 98.02%. Satu cara pembetulan untuk menyelesaikan ralat metastabiliti juga 

dicadangkan dan berjaya mengurangkan masa menetap kepada 1.1τ bagi setiap kitar 

penukaran. Berdasarkan kepada teknik yang dicadangkan, dua SAR ADC telah 

direka bentuk: satu 8-bit SAR ADC dengan kadar pensampelan 50MS/saat dan satu 

10-bit SAR ADC-Pecahan dengan kadar pensampelan 70MS/saat. Keduanya 

menggunakan proses CMOS 0.18µm daripada Silterra dengan bekalan kuasa 1.2V 

dan voltan masukan 2.4Vp-p. Bagi masukan 25MHz, ADC 8-bit mendigitalkan 

48.16dB isyarat kepada hingar dan kadar herotan (SNDR) dan 52.41dB julat dinamik 

bebas palsu (SFDR) dengan menggunakan kuasa  589µW. Angka kebaikan (FOM) 

untuk ADC ini adalah 56.65 fJ/penukaran langkah. Pasca bentangan bagi ADC 10-bit 

dengan ulangan masukan 1MHz menghasilkan SNDR, SFDR and nombor bit 

berkesan (ENOB) of 57.1dB, 64.05dB dan 9.17Bit, setiap satu, manakala DNL and 

INL adalah -0.9/+2.8 bit paling kurang nilaian (LSB) dan -2.5/+2.7 LSB. Jumlah 

semua kuasa yang diguna termasuk litar digital, analog dan kuasa rujukan adalah  

1.6mW. FOM pula adalah 71.75fJ/penukaran langkah. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Due to the advancement in fabrication technology in recent decades, 

transistors have become faster making possible to achieve high-rate energy-efficient 

digital circuits. For analog circuits the evolution of technology is not as beneficial. 

Besides of high speed performance and energy efficiency, there are several 

advantages of processing in digital domain such as storage capability, unlimited 

signal to noise ratio, programmability and performing complex algorithms. Thus, 

there is an increasing trend to perform more and more signal processing functions in 

digital.  

 

Since the nature of signals needed to be processed in real world is analog, 

there is an increasing demand for analog to digital converters (ADCs). ADCs act as 

the entrance gates in digital signal processing systems. They have crucial roles in 

modern signal processing and communication systems because their speed and 

accuracy can effect on overall system performance.  

 

Recently, the applications of ADCs have been expanded widely as many 

electronic systems that used to be entirely analog have been implemented using 

digital electronics [1]. This research is focused on high speed ADCs with sampling 

frequencies greater than 5 MS/sec and resolutions 10-14 bits used in many types of 

instrumentation (including digital oscilloscopes, spectrum analyzers, and medical 

imaging), video, radar, communications applications (including IF sampling, 
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software radio, base stations, and set-top boxes) and consumer electronics equipment 

(such as digital cameras, display electronics, DVDs, enhanced definition TVs). 

 

On the other hand, during the last decade much effort has been put into the 

reduction of the supply voltage and the supply power of mixed signal CMOS 

systems. Three main reasons can be given for the necessity of low-voltage circuits. 

The first one comes from the continued down-scaling of device feature size. As the 

channel length is scaled down into submicron and the gate-oxide thickness becomes 

only several nanometres thick, the supply voltage has to be reduced due to reliability 

issues. The second reason is referred to the increasing components on chip. A silicon 

chip can only dissipate a limited amount of power per unit area. The last reason is 

dictated by portable, battery-powered equipment. One of the most effective ways to 

reduce active power consumption is by lowering the supply voltage [2].  

 

However lowering supply voltage creates a number of challenges in high 

speed, high resolution circuit design. Unlike digital circuits and systems that have 

enjoyed benefits of scaling, there are some serious issues which analog circuits deal 

with them such as ever-shrinking signal range, lower device gain, poor matching, and 

increased substrate noise [3]. Since there is only comparator circuit as analog 

component in SAR-ADCs and there isn‟t any gain stage to amplify residue in SAR 

ADCs, this architecture is more popular among various ADC architectures for low 

voltage applications.  

 

This work concentrates on low voltage SAR ADC by searching for and 

developing techniques and circuit structures suitable for low voltage designs. In 

parallel, this work also aims to achieve high-accuracy high-speed low-power design. 

1.2 Problem statement 

SAR ADCs are conventionally used for medium-speed medium-resolution 

applications as categorized as the first group of applications mentioned above. 

Recently, many intelligent design techniques and advances in CMOS technologies 
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have enhanced the conversion rate and resolution achieved by SAR architecture. 

However there are some issues to design high speed low-voltage SAR ADC with 

high resolution as explained below.  

1.2.1.1   Architectural issues of SAR ADC to achieve high sampling rate  

As mentioned above the most component of SAR ADC are digital circuits 

and digital circuits benefit from scaling technology process. Therefore it is expected 

that SAR ADCs, also benefit from small technology process. Figure 1.1 shows the 

sampling rate of SAR ADCs versus their technologies consisting of all SAR ADCs 

published from 1999 to 2014 from [4] and other outstanding designs from different 

journals such as [5-7]. As explained it is clear that SAR ADC is a compatible 

architecture with technology advancement.  

 
Figure 1.1   Conversion rate of SAR ADCs in different CMOS technology process [7]. 

 

Although SAR ADC benefits from technology scaling, the main limitation of 

this ADC to achieve high conversion rate is not related to the technology. The main 

obstacle to speed up the SAR ADCs is due to large capacitor- arrays consisting of a 

number of unit capacitors. To achieve high resolution, large size and large number of 

unit capacitors are needed which takes longer time to settle the comparison voltage 

levels in every conversion cycles [8].  

 

Decreasing the total capacitance of the capacitor arrays is an effective 

solution to obtain high speed SAR ADC which can be implemented with two 

methods. The first method is reduction of the unit capacitor size. Since the 
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comparison voltage in each conversion cycle is obtained by charge redistribution in 

capacitor array, the ratios between capacitors determine the comparison voltage 

level. Therefore any mismatch between capacitor leads to errors in conversion steps 

and deviation from ideal I/O transfer function which is known as non-linearity 

effects. Therefore some extra circuits should be added for calibration or error 

correction. The second method to decrease the total capacitance array is by 

decreasing the number of unit capacitors which requires a new search algorithm or 

new switching methods. 

1.2.1.2    Effect of lowering supply voltage on SAR ADC sampling rate 

As mentioned above most SAR ADC components are digital circuits. 

Although down scaling supply voltage leads to decrease energy per operation in 

digital circuits, it causes increase in delay [9-12].In fact power consumption is 

reduced at the cost of lower performance. Since changes in supply voltage affects all 

gates in the same way, delay of any gate remains roughly proportional to the delay of 

an inverter which is investigated with detail in  [13]. As conclusion, as power supply 

voltage approximates to the threshold voltage, delay of digital cells is increased and 

maximum operation speed is limited. 

 

Further SAR ADC operation is based on consecutive switching of capacitive 

DAC, there is another effective factor of switch conductance to determine the 

required DAC settling time. In real implementation, NMOS and PMOS devices are 

used as switches which operate on linear region like a resistor. There is a direct 

relation between current from drain to source, Ids, of MOSFETs in ON-state and 

applied voltage to the gate-source connection, Vgs. 

 

Since the maximum applied Vgs is limited to the supply voltage, supply voltage 

reduction results to decrease the conductance of MOSFETs. As Vgs is decreased, the 

conductance of switch is reduced which means more time is required for DAC 

settling. Figure 1.2 shows the conductance of switch, gds, versus Vds for different Vgs 

values for an NMOS transistor of Silterra‟s 0.18um CMOS technology. As explained 

above, as supply voltage reduces and (Vdd -Vth) decreases, digital circuit delay 
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increases. Hence the SAR logic unit consisting of digital circuits needs more time 

which means less conversion speed. 

 
Figure 1.2   gds-Vds curve at different Vgs for an NMOS transistor with size of w/l=10 µ/10µ 

in Silterra 0.18um CMOS technology. 

 

Based on the above explanation, as supply voltage approximates to the 

threshold voltage it is expected to limit the conversion rate of SAR. Figure 1.3 shows 

sampling rate of SAR ADCs versus (Vdd -Vth) of all SAR ADCs published from 1999 

to 2014 from [4] and other outstanding designs from different journals. This graph 

confirms that sampling rate of SAR ADCs decreases as (Vdd -Vth) reduces. 

 
Figure 1.3   Conversion rate of SAR ADCs in different CMOS technology process versus 

(Vdd -Vth) (from 1997 to 2014) [7].  
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1.2.1.3   Sampling switch issues 

The low supply voltage inherently limits the maximum input signal swing of 

an ADC, and thus may lead to a poor peak signal-to-noise ratio (SNR). To achieve 

higher accuracy and higher signal to noise and distortion ratio (SNDR), it is better to 

have larger input range which is limited to the power rails. However rail-to-rail input 

leads to the difficulty of circuit design (especially analog parts) in rail-to-rail 

condition. 

The sampling switches as the input gate of SAR ADC has an important role 

in determining the overall performance. MOSFET transistor is a natural switch 

which is extensively used in S/H. However there are several issues (such as charge 

injection [14] , clock feed through, MOS transconductance variation [15-17] , body 

effect [18-23] ) which are exacerbated for low voltage rail-to-rail condition. By 

considering the limitation of maximum tolerable voltage for gate-source connection 

of MOSFETs, tracking rail-to-rail input voltage is not possible with a simple 

MOSFET switch. Furthermore, in comparison to input signal range, threshold 

voltage variation is not negligible and causes nonlinearity effect on “ON” state 

switch resistance [14, 24, 25]. To achieve high-speed high-resolution ADCs, high- 

resolution high speed switches are needed.  

 

Although there are some techniques to boost the Vgs and make it signal 

independent, final achieved Vgs value is a function of Vdd, too. Thus lowering supply 

voltage means restricting the band width of switches performances, too. The 

techniques mentioned above are discussed and analyzed more deeply in the 

following chapters. 

 

The above mentioned issues to enhance the conversion rate of SAR ADCs 

and additional difficulties resulting from lowering supply voltage call for research 

work to design proper circuits, concentrated on rail-to-rail low voltage designs, and 

finding new methods for enhancing SAR-ADC characteristics at this condition.  

1.2.1.4   Metastability error of comparator 

One of the comparator error which is known as metastability error is a 

degrading factor in SAR ADC performance. Metastability is a problem that occurs in 
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all latching comparators as the output does not saturate to valid regions of logical one or 

zero during comparison time. Since the conversion process of SAR ADC is a serial 

operation, any error in output of comparator in each cycle penetrates to the remind 

process without any chance to get back and doing correction. Although there are 

some techniques to solve this issue, but most of them are not suitable solutions for 

low voltage applications due to the required analog components. Further 

investigation of metastable error besides of incomplete DAC settling shows more 

research work is required to develop current solutions or find new approach. 

1.3 Objectives  

This PhD thesis focuses on design of a rail-to-rail low voltage SAR ADC in 

0.18µm process CMOS technology. By taking into account the aforementioned 

problem statements, the following objectives are the main concern of this research. 

 

1. To investigate non-linear effect of capacitor mismatch and effective methods 

to control it. 

2. To implement the design using a small power supply voltage of 1.2V.   

3. To enhance SAR-ADC conversion speed higher than 50MS/sec.  

1.4 Scope of work 

The scope of this research is as explained below: 

 

 Investigation capacitor mismatch:  

Capacitor mismatch is an inevitable issue of capacitive DAC arrays and all 

SAR ADCs suffer from this issue beyond their used technologies and applied supply 

voltages. Thus investigation of capacitor mismatch and finding a model consisting of 

all effective factors to control the resulted nonlinearities in converter performance is 

within the scope of this research. 
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 Proposing a new switching algorithm 

Since the mismatch requirement and switching algorithm determine the size 

and number of unit capacitors in SAR ADC, a switching algorithm is developed to 

decrease the number of unit capacitors without damaging the linearity of 

performance. 

 

 The choice of process technology and supply voltage 

When we look at the new application areas where we see the future wave of 

sub stream innovation happening such as medical and wearable‟s, IoT, ... we see that 

it is not necessarily needed to use the most advanced technologies such as 28nm [26]. 

The chosen technology for this work is 0.18um CMOS technology process which is 

the most popular and commercial technologies in the last decade [26-28]. Now the 

main challenge in this mature technology is enhancement of energy efficiency which 

is studied through circuit architecture development and decreasing the supply voltage 

[6, 7, 29-32]. According to the shown supply voltage margin reduction in [33], 1.2 

volt is considered as the supply voltage. 

 

 Development of conversion rate 

CMOS technology and supply voltage in this work are 0.18µm and 1.2V, 

respectively. As shown in Figure 1.1, the maximum achieved conversion rate in 

0.18um technology is 50MS/sec in [6, 7]. Further (Vdd -Vth) is a value between 0.6V 

and 0.7V which the maximum achieved conversion rate is 50MS/sec as shown in 

Figure 1.3. The highest speed converters in this range are 9-bit with 40MS/sec and 

two 10-bit ADCs with 50MS/sec in 90nm, 65nm and 0.18um technologies, 

respectively [6, 34, 35]. The goal of this work is to achieve conversion rate higher 

than 50 MS/sec. 

 

 Development in sampling switch design 

The sampling switches as the fundamental block are investigated at low 

supply voltage. Some solutions are proposed to enhance their performance. 

 

 Development in metastability solution 
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A new development in correction method for metastability error is proposed 

which is useful for incomplete settling of DAC output voltage, also. 

1.5 Contributions 

In this thesis, two SAR ADCs are presented with 5 contributions which are 

listed below.The main contributions leads to improve the conversion rate and 

linearity performance of SAR ADCs at low supply voltage, energy efficient 

condition.   

 

1. Nonlinear effect of capacitor mismatch on SAR ADC performance is 

investigated which leads to the development of a new model of capacitor 

mismatch on capacitive-DACs. Based on the new model, effective factors to 

control the non-linear effect of capacitor mismatch are determined.   

 

2. From the achieved results from the above mentioned investigation, a new Tri-

level switching algorithm is proposed to reduce the matching requirement for 

capacitors in SAR ADCs. The integral non-linearity (INL) and the differential 

non-linearity (DNL) of the proposed scheme are reduced by factor of two over 

the conventional SAR ADC which is the lowest compared to the previous 

schemes. In addition, the switching energy of the proposed scheme is reduced 

by 98.02% as compared with the conventional architecture which is the most 

energy-efficient algorithms in comparison with the previous algorithms, too. 

 

3. Nonlinear effect of parasitic capacitors on split SAR ADC performance is 

investigated and a new error correction method is proposed to improve its 

performance. In the proposed method, the maximum possible error is measure 

before the ADC starts the conversion process. Since this error is negative, it is 

injected to the DAC array by pre-charging the LSB array during MSB 

conversion phase. After complete the conversion process, an error correction 

is applied through MATLAB software. Differential nonlinearity (DNL) of 

ADC before compensation is within -1LSB and +4.3LSB which is restricted to 
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-0.9LSB and +2.8LSB after applying compensation. Also, integral 

nonlinearity (INL) of ADC before compensation is within -4.4LSB and 

+5.3LSB which is restricted to -2.5LSB and +2.7LSB after applying 

compensation. 

 

4. One of the comparator error which is known as metastability error is a 

degrading factor in SAR ADC performance. A new development in correction 

method for metastability error is proposed which is useful for incomplete 

settling of DAC output voltage, also.  

 

5. A new optimized CMOS switch is proposed consisting of a bootstrapped 

NMOS switch and a boosted PMOS switch as a transmission gate. By utilizing 

this technique, the nonlinearity resulting from the threshold voltage variation 

(body effect) of NMOS switch is mitigated, considerably, compared to 

standard CMOS switch or a bootstrapped NMOS switch. 

1.6 Thesis Organization 

The rest of the thesis is organized as follows.  

 

Chapter 2 reviews the successive approximation structure and its positive and 

negative characteristics. This chapter is followed by introducing the previous 

solutions and designs in terms of search algorithms and switching schemes in the 

published high-performance SAR ADCs. After review of conversion process and 

algorithms, the metastable state of comparator and conventional solution is 

introduced. At the last part of this chapter a review on sampling switches, which is 

subjected to develop in this thesis, is presented.     

 

Chapter 3 presents research methodology of this research. At first, analysis of 

nonlinear effect resulted from capacitor mismatch is discussed. Then the proposed 

switching algorithm is presented with its performance details in aspect of linearity 

and energy consumption. Next the first ADC design which is based on the presented 

algorithm is explained. For the second ADC design split architecture is combined 
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with the new algorithm. This section is followed by investigation of nonlinear error 

from parasitic capacitors. The presented investigation is a way to reach the proposed 

correction method.  

 

Chapter 4 presents the circuit design details and layout preparation. This 

chapter starts with the proposed sampling CMOS switch which acts as entrance gate 

of ADC. The circuits of comparator, clock generation and output buffers are 

presented at the following of this chapter. At the second part of this chapter layout of 

the second ADC is exposed and discussed. 

 

Chapter 5 exposes the achieved results from simulation of each circuit. The 

simulation condition applied to the designed ADCs is discussed which is followed by 

simulation results of both designed ADCs. Finally, the performances of designed 

ADCs are compared with previous published works. 

 

Chapter 6 concludes the research findings. Recommendations for future 

works are also addressed to assist other researchers in pursuing the works for further 

development and improvement. 
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