12 research outputs found

    CMOS RF front-end design for terrestrial and mobile digital television systems

    Get PDF
    With the increasing demand for high quality TV service, digital television (DTV) is replacing the conventional analog television. DTV tuner is one of the most critical blocks of the DTV receiver system; it down-converts the desired DTV RF channel to baseband or a low intermediate frequency with enough quality. This research is mainly focused on the analysis and realization of low-cost low-power front-ends for ATSC terrestrial DTV and DVB-H mobile DTV tuner systems. For the design of the ATSC terrestrial tuner, a novel double quadrature tuner architecture, which can not only minimize the tuner power consumption but also achieve the fully integration, has been proposed. A double quadrature down-converter has been designed and fabricated with TSMC 0.35õm CMOS technology; the measurement results verified the proposed concepts. For the mobile DTV tuner, a zero-IF architecture is used and it can achieve the DVB-H specifications with less than 200mW power consumption. In the implementation of the mobile DVB-H tuner, a novel RF variable gain amplifier (RFVGA) and a low flicker noise current-mode passive mixer have been proposed. The proposed RFVGA achieves high dynamic range and robust input impedance matching performance, which is the main design challenge for the traditional implementations. The current-mode passive mixer achieves high-gain, low noise (especially low flicker noise) and high-linearity (over 10dBm IIP3) with low power supplies; it is believed that this is a promising topology for low voltage high dynamic range mixer applications. The RFVGA has been fabricated in TSMC 0.18õm CMOS technology and the measurement results agree well with the theoretical ones

    Architecture and algorithms for the implementation of digital wireless receivers in FPGA and ASIC: ISDB-T and DVB-S2 cases

    Full text link
    [EN] The first generation of Terrestrial Digital Television(DTV) has been in service for over a decade. In 2013, several countries have already completed the transition from Analog to Digital TV Broadcasting, most of which in Europe. In South America, after several studies and trials, Brazil adopted the Japanese standard with some innovations. Japan and Brazil started Digital Terrestrial Television Broadcasting (DTTB) services in December 2003 and December 2007 respectively, using Integrated Services Digital Broadcasting - Terrestrial (ISDB-T), also known as ARIB STD-B31. In June 2005 the Committee for the Information Technology Area (CATI) of Brazilian Ministry of Science and Technology and Innovation MCTI approved the incorporation of the IC-Brazil Program, in the National Program for Microelectronics (PNM) . The main goals of IC-Brazil are the formal qualification of IC designers, support to the creation of semiconductors companies focused on projects of ICs within Brazil, and the attraction of semiconductors companies focused on the design and development of ICs in Brazil. The work presented in this thesis originated from the unique momentum created by the combination of the birth of Digital Television in Brazil and the creation of the IC-Brazil Program by the Brazilian government. Without this combination it would not have been possible to make these kind of projects in Brazil. These projects have been a long and costly journey, albeit scientifically and technologically worthy, towards a Brazilian DTV state-of-the-art low complexity Integrated Circuit, with good economy scale perspectives, due to the fact that at the beginning of this project ISDB-T standard was not adopted by several countries like DVB-T. During the development of the ISDB-T receiver proposed in this thesis, it was realized that due to the continental dimensions of Brazil, the DTTB would not be enough to cover the entire country with open DTV signal, specially for the case of remote localizations far from the high urban density regions. Then, Eldorado Research Institute and Idea! Electronic Systems, foresaw that, in a near future, there would be an open distribution system for high definition DTV over satellite, in Brazil. Based on that, it was decided by Eldorado Research Institute, that would be necessary to create a new ASIC for broadcast satellite reception. At that time DVB-S2 standard was the strongest candidate for that, and this assumption still stands nowadays. Therefore, it was decided to apply to a new round of resources funding from the MCTI - that was granted - in order to start the new project. This thesis discusses in details the Architecture and Algorithms proposed for the implementation of a low complexity Intermediate Frequency(IF) ISDB-T Receiver on Application Specific Integrated Circuit (ASIC) CMOS. The Architecture proposed here is highly based on the COordinate Rotation Digital Computer (CORDIC) Algorithm, that is a simple and efficient algorithm suitable for VLSI implementations. The receiver copes with the impairments inherent to wireless channels transmission and the receiver crystals. The thesis also discusses the Methodology adopted and presents the implementation results. The receiver performance is presented and compared to those obtained by means of simulations. Furthermore, the thesis also presents the Architecture and Algorithms for a DVB-S2 receiver targeting its ASIC implementation. However, unlike the ISDB-T receiver, only preliminary ASIC implementation results are introduced. This was mainly done in order to have an early estimation of die area to prove that the project in ASIC is economically viable, as well as to verify possible bugs in early stage. As in the case of ISDB-T receiver, this receiver is highly based on CORDIC algorithm and it was prototyped in FPGA. The Methodology used for the second receiver is derived from that used for the ISDB-T receiver, with minor additions given the project characteristics.[ES] La primera generación de Televisión Digital Terrestre(DTV) ha estado en servicio por más de una década. En 2013, varios países completaron la transición de transmisión analógica a televisión digital, la mayoría de ellas en Europa. En América del Sur, después de varios estudios y ensayos, Brasil adoptó el estándar japonés con algunas innovaciones. Japón y Brasil comenzaron a prestar el servicio de Difusión de Televisión Digital Terrestre (DTTB) en diciembre de 2003 y diciembre de 2007 respectivamente, utilizando Radiodifusión Digital de Servicios Integrados Terrestres (ISDB-T), también conocida como ARIB STD-B31. En junio de 2005, el Comité del Área de Tecnología de la Información (CATI) del Ministerio de Ciencia, Tecnología e Innovación de Brasil - MCTI aprobó la incorporación del Programa CI-Brasil, en el Programa Nacional de Microelectrónica (PNM). Los principales objetivos de la CI-Brasil son la formación de diseñadores de CIs, apoyar la creación de empresas de semiconductores enfocadas en proyectos de circuitos integrados dentro de Brasil, y la atracción de empresas de semiconductores interesadas en el diseño y desarrollo de circuitos integrados. El trabajo presentado en esta tesis se originó en el impulso único creado por la combinación del nacimiento de la televisión digital en Brasil y la creación del Programa de CI-Brasil por el gobierno brasileño. Sin esta combinación no hubiera sido posible realizar este tipo de proyectos en Brasil. Estos proyectos han sido un trayecto largo y costoso, aunque meritorio desde el punto de vista científico y tecnológico, hacia un Circuito Integrado brasileño de punta y de baja complejidad para DTV, con buenas perspectivas de economía de escala debido al hecho que al inicio de este proyecto, el estándar ISDB-T no fue adoptado por varios países como DVB-T. Durante el desarrollo del receptor ISDB-T propuesto en esta tesis, se observó que debido a las dimensiones continentales de Brasil, la DTTB no sería suficiente para cubrir todo el país con la señal de televisión digital abierta, especialmente para el caso de localizaciones remotas, apartadas de las regiones de alta densidad urbana. En ese momento, el Instituto de Investigación Eldorado e Idea! Sistemas Electrónicos, previeron que en un futuro cercano habría un sistema de distribución abierto para DTV de alta definición por satélite en Brasil. Con base en eso, el Instituto de Investigación Eldorado decidió que sería necesario crear un nuevo ASIC para la recepción de radiodifusión por satélite, basada el estándar DVB-S2. En esta tesis se analiza en detalle la Arquitectura y algoritmos propuestos para la implementación de un receptor ISDB-T de baja complejidad y frecuencia intermedia (IF) en un Circuito Integrado de Aplicación Específica (ASIC) CMOS. La arquitectura aquí propuesta se basa fuertemente en el algoritmo Computadora Digital para Rotación de Coordenadas (CORDIC), el cual es un algoritmo simple, eficiente y adecuado para implementaciones VLSI. El receptor hace frente a las deficiencias inherentes a las transmisiones por canales inalámbricos y los cristales del receptor. La tesis también analiza la metodología adoptada y presenta los resultados de la implementación. Por otro lado, la tesis también presenta la arquitectura y los algoritmos para un receptor DVB-S2 dirigido a la implementación en ASIC. Sin embargo, a diferencia del receptor ISDB-T, se introducen sólo los resultados preliminares de implementación en ASIC. Esto se hizo principalmente con el fin de tener una estimación temprana del área del die para demostrar que el proyecto en ASIC es económicamente viable, así como para verificar posibles errores en etapa temprana. Como en el caso de receptor ISDB-T, este receptor se basa fuertemente en el algoritmo CORDIC y fue un prototipado en FPGA. La metodología utilizada para el segundo receptor se deriva de la utilizada para el re[CA] La primera generació de Televisió Digital Terrestre (TDT) ha estat en servici durant més d'una dècada. En 2013, diversos països ja van completar la transició de la radiodifusió de televisió analògica a la digital, i la majoria van ser a Europa. A Amèrica del Sud, després de diversos estudis i assajos, Brasil va adoptar l'estàndard japonés amb algunes innovacions. Japó i Brasil van començar els servicis de Radiodifusió de Televisió Terrestre Digital (DTTB) al desembre de 2003 i al desembre de 2007, respectivament, utilitzant la Radiodifusió Digital amb Servicis Integrats de (ISDB-T), coneguda com a ARIB STD-B31. Al juny de 2005, el Comité de l'Àrea de Tecnologia de la Informació (CATI) del Ministeri de Ciència i Tecnologia i Innovació del Brasil (MCTI) va aprovar la incorporació del programa CI Brasil al Programa Nacional de Microelectrònica (PNM). Els principals objectius de CI Brasil són la qualificació formal dels dissenyadors de circuits integrats, el suport a la creació d'empreses de semiconductors centrades en projectes de circuits integrats dins del Brasil i l'atracció d'empreses de semiconductors centrades en el disseny i desenvolupament de circuits integrats. El treball presentat en esta tesi es va originar en l'impuls únic creat per la combinació del naixement de la televisió digital al Brasil i la creació del programa Brasil CI pel govern brasiler. Sense esta combinació no hauria estat possible realitzar este tipus de projectes a Brasil. Estos projectes han suposat un viatge llarg i costós, tot i que digne científicament i tecnològica, cap a un circuit integrat punter de baixa complexitat per a la TDT brasilera, amb bones perspectives d'economia d'escala perquè a l'inici d'este projecte l'estàndard ISDB-T no va ser adoptat per diversos països, com el DVB-T. Durant el desenvolupament del receptor de ISDB-T proposat en esta tesi, va resultar que, a causa de les dimensions continentals de Brasil, la DTTB no seria suficient per cobrir tot el país amb el senyal de TDT oberta, especialment pel que fa a les localitzacions remotes allunyades de les regions d'alta densitat urbana.. En este moment, l'Institut de Recerca Eldorado i Idea! Sistemes Electrònics van preveure que, en un futur pròxim, no hi hauria a Brasil un sistema de distribució oberta de TDT d'alta definició a través de satèl¿lit. D'acord amb això, l'Institut de Recerca Eldorado va decidir que seria necessari crear un nou ASIC per a la recepció de radiodifusió per satèl¿lit. basat en l'estàndard DVB-S2. En esta tesi s'analitza en detall l'arquitectura i els algorismes proposats per l'execució d'un receptor ISDB-T de Freqüència Intermèdia (FI) de baixa complexitat sobre CMOS de Circuit Integrat d'Aplicacions Específiques (ASIC). L'arquitectura ací proposada es basa molt en l'algorisme de l'Ordinador Digital de Rotació de Coordenades (CORDIC), que és un algorisme simple i eficient adequat per implementacions VLSI. El receptor fa front a les deficiències inherents a la transmissió de canals sense fil i els cristalls del receptor. Esta tesi també analitza la metodologia adoptada i presenta els resultats de l'execució. Es presenta el rendiment del receptor i es compara amb els obtinguts per mitjà de simulacions. D'altra banda, esta tesi també presenta l'arquitectura i els algorismes d'un receptor de DVB-S2 de cara a la seua implementació en ASIC. No obstant això, a diferència del receptor ISDB-T, només s'introdueixen resultats preliminars d'implementació en ASIC. Això es va fer principalment amb la finalitat de tenir una estimació primerenca de la zona de dau per demostrar que el projecte en ASIC és econòmicament viable, així com per verificar possibles errors en l'etapa primerenca. Com en el cas del receptor ISDB-T, este receptor es basa molt en l'algorisme CORDIC i va ser un prototip de FPGA. La metodologia utilitzada per al segon receptor es deriva de la utilitzada per al receptor IRodrigues De Lima, E. (2016). Architecture and algorithms for the implementation of digital wireless receivers in FPGA and ASIC: ISDB-T and DVB-S2 cases [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61967TESI

    Broadband RF Front-End Design for Multi-Standard Receiver with High-Linearity and Low-Noise Techniques

    Get PDF
    Future wireless communication devices must support multiple standards and features on a single-chip. The trend towards software-defined radio requires flexible and efficient RF building blocks which justifies the adoption of broadband receiver front-ends in modern and future communication systems. The broadband receiver front-end significantly reduces cost, area, pins, and power, and can process several signal channels simultaneously. This research is mainly focused on the analysis and realization of the broadband receiver architecture and its various building blocks (LNA, Active Balun-LNA, Mixer, and trans-impedance amplifier) for multi-standard applications. In the design of the mobile DTV tuner, a direct-conversion receiver architecture is adopted achieving low power, low cost, and high dynamic-range for DVB-H standard. The tuner integrates a single-ended RF variable gain amplifier (RFVGA), a current-mode passive mixer, and a combination of continuous and discrete-time baseband filter with built-in anti-aliasing. The proposed RFVGA achieves high dynamic-range and gain-insensitive input impedance matching performance. The current-mode passive mixer achieves high gain, low noise, and high linearity with low power supplies. A wideband common-gate LNA is presented that overcomes the fundamental trade-off between power and noise match without compromising its stability. The proposed architecture can achieve the minimum noise figure over the previously reported feedback amplifiers in common-gate configuration. The proposed architecture achieves broadband impedance matching, low noise, large gain, enhanced linearity, and wide bandwidth concurrently by employing an efficient and reliable dual negative-feedback. For the wideband Inductorless Balun-LNA, active single-to-differential architecture has been proposed without using any passive inductor on-chip which occupies a lot of silicon area. The proposed Balun-LNA features lower power, wider bandwidth, and better gain and phase balance than previously reported architectures of the same kind. A surface acoustic wave (SAW)-less direct conversion receiver targeted for multistandard applications is proposed and fabricated with TSMC 0.13?m complementary metal-oxide-semiconductor (CMOS) technology. The target is to design a wideband SAW-less direct coversion receiver with a single low noise transconductor and current-mode passive mixer with trans-impedance amplifier utilizing feed-forward compensation. The innovations in the circuit and architecture improves the receiver dynamic range enabling highly linear direct-conversion CMOS front-end for a multi-standard receiver

    Analysis and Design of Wideband Low Noise Amplifier with Digital Control

    Get PDF
    The design issues in designing low noise amplifier (LNA) for Software-Defined-Radio (SDR) are reviewed. An inductor-less wideband low noise amplifier aiming at low frequency band (0.2-2GHz) for Software-Defined-Radio is presented. Shunt-shunt LNA with active feedback is used as the first stage which is carefully optimized for low noise and wide band applications. A digitally controlled second stage is employed to provide an additional 12dB gain control. A novel method is proposed to bypass the first stage without degrading input matching. This LNA is fabricated in a standard 0.18 um CMOS technology. The measurement result shows the proposed LNA has a gain range of 6dB-18dB at high gain mode and -12dB-0dB at low gain mode, as well as a –3dB bandwidth of 2GHz. The noise figure (NF) is 3.5-4.5dB in the high gain setting mode. It consumes 20mW from a 1.8V supply

    Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio

    Get PDF
    A discrete-time (DT) mixing architecture for RF-sampling receivers is presented. This architecture makes RF sampling more suitable for software-defined radio (SDR) as it achieves wideband quadrature demodulation and wideband harmonic rejection. The paper consists of two parts. In the first part, different downconversion techniques are classified and compared, leading to the definition of a DT mixing concept. The suitability of CT-mixing and RF-sampling receivers to SDR is also discussed. In the second part, we elaborate the DT-mixing architecture, which can be realized by de-multiplexing. Simulation shows a wideband 90° phase shift between I and Q outputs without systematic channel bandwidth limitation. Oversampling and harmonic rejection relaxes RF pre-filtering and reduces noise and interference folding. A proof-of-concept DT-mixing downconverter has been built in 65 nm CMOS, for 0.2 to 0.9 GHz RF band employing 8-times oversampling. It can reject 2nd to 6th harmonics by 40 dB typically and without systematic channel bandwidth limitation. Without an LNA, it achieves a gain of -0.5 to 2.5 dB, a DSB noise figure of 18 to 20 dB, an IIP3 = +10 dBm, and an IIP2 = +53 dBm, while consuming less than 19 mW including multiphase clock generation

    Digitally-Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    Get PDF
    A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband in combination with low-pass filtering to mitigate blockers and improve out-of-band IIP3. Two alternative “iterative” harmonic-rejection (HR) techniques are presented to achieve high HR robust to mismatch: a) an analog two-stage polyphase HR concept, which enhances the HR to more than 60 dB; b) a digital adaptive interference cancelling (AIC) technique, which can suppress one dominating harmonic by at least 80 dB. An accurate multiphase clock generator is presented for a mismatch-robust HR. A proof-of-concept receiver is implemented in 65 nm CMOS. Measurements show 34 dB gain, 4 dB NF, and 3.5 dBm in-band IIP3 while the out-of-band IIP3 is + 16 dBm without fine tuning. The measured RF bandwidth is up to 6 GHz and the 8-phase LO works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz LO, the analog two-stage polyphase HR achieves a second to sixth order HR > dB over 40 chips, while the digital AIC technique achieves HR > 80 dB for the dominating harmonic. The total power consumption is 50 mA from a 1.2 V supply

    Design of broadband inductor-less RF front-ends with high dynamic range for G.hn

    Get PDF
    System-on-Chip (SoC) was adopted in recent years as one of the solutions to reduce the cost of integrated systems. When the SoC solution started to be used, the final product was actually more expensive due to lower yield. The developments in integrated technology through the years allowed the integration of more components in lesser area with a better yield. Thus, SoCs became a widely used solution to reduced the cost of the final product, integrating into a single-chip the main parts of a system: analog, digital and memory. As integrated technology kept scaling down to allow a higher density of transistors and thus providing more functionality with the same die area, the analog RF parts of the SoC became a bottleneck to cost reduction as inductors occupy a large die area and do not scale down with technology. Hence, the trend moves toward the research and design of inductor-less SoCs that further reduce the cost of the final solution. Also, as the demand for home networking high-data-rates communication systems has increased over the last decade, several standards have been developed to satisfy the requirements of each application, the most popular being wireless local area networks (WLANs) based on the IEEE 802.11 standard. However, poor signal propagation across walls make WLANs unsuitable for high-speed applications such as high-definition in-home video streaming, leading to the development of wired technologies using the existing in-home infrastructure. The ITU-T G.hn recommendation (G.9960 and G.9961) unifies the most widely used wired infrastructures at home (coaxial cables, phone lines and power lines) into a single standard for high-speed data transmission of up to 1 Gb/s. The G.hn recommendation defines a unified networking over power lines, phone lines and coaxial cables with different plans for baseband and RF. The RF-coax bandplan, where this thesis is focused, uses 50 MHz and 100 MHz bandwidth channels with 256 and 512 carriers respectively. The center frequency can range from 350 MHz to 2450 MHz. The recommendation specifies a transmission power limit of 5 dBm for the 50 MHz bandplan and 8~dBm for the 100 MHz bandplan, therefore the maximum transmitted power in each carrier is the same for both bandplans. Due to the nature of an in-home wired environment, receivers that can handle both very large and very small amplitude signals are required; when transmitter and receiver are connected on the same electric outlet there is no channel attenuation and the signal-to-noise-plus-distortion ratio (SNDR) is dominated by the receiver linearity, whereas when transmitter and receiver are several rooms apart channel attenuation is high and the SNDR is dominated by the receiver noise figure. The high dynamic range specifications for these receivers require the use of configurable-gain topologies that can provide both high-linearity and low-noise for different configurations. Thus, this thesis has been aimed at researching high dynamic range broadband inductor-less topologies to be used as the RF front-end for a G.hn receiver complying with the provided specifications. A large part of the thesis has been focused on the design of the input amplifier of the front-end, which is the most critical stage as the noise figure and linearity of the input amplifier define the achievable overall specifications of the whole front-end. Three prototypes has been manufactured using a 65 nm CMOS process: two input RFPGAs and one front-end using the second RFPGA prototype.El "sistema en un chip" (SoC) fue adoptado recientemente como una de las soluciones para reducir el coste de sistemas integrados. Cuando se empezó a utilizar la solución SoC, el producto final era más caro debido al bajo rendimiento de producción. Los avances en tecnología integrada a lo largo de los años han permitido la integración de más componentes en menos área con mejoras en rendimiento. Por lo tanto, SoCs pasó a ser una solución ampliamente utilizada para reducir el coste del producto final, integrando en un único chip las principales partes de un sistema: analógica, digital y memoria. A medida que las tecnologías integradas se reducían en tamaño para permitir una mayor densisdad de transistores y proveer mayor funcionalidad con la misma área, las partes RF analógicas del SoC pasaron a ser la limitación en la reducción de costes ya que los inductores ocupan mucha área y no escalan con la tecnología. Por lo tanto, las tendencias en investigación se mueven hacia el diseño de SoCs sin inductores que todavía reducen más el coste final del producto. También, a medida que la demanda en sistemas de comunicación domésticos de alta velocidad ha crecido a lo largo de la última década, se han desarrollado varios estándares para satisfacer los requisitos de cada aplicación, siendo las redes sin hilos (WLANs) basadas en el estándar IEEE 802.11 las más populares. Sin embargo, una pobre propagación de señal a través de las paredes hacen que las WLANs sean inadecuadas para aplicaciones de alta-velocidad como transmisión de vídeo de alta definición en tiempo real, resultando en el desarrollo de tecnologías con hilos utilizando la infraestructura existente en los domicilios. La recomendación ITU-T G.hn (G.9960 and G.9961) unifica las principales infraestructuras con hilos domésticas (cables coaxiales, línias de teléfono y línias de electricidad) en un sólo estándar para la transmisión de datos hasta 1 Gb/s. La recomendación G.hn define una red unificada sobre línias de electricidad, de teléfono y coaxiales con diferentes esquemas para banda base y RF. El esquema RF-coax en el cual se basa esta tesis, usa canales con un ancho de banda de 50 MHz y 100 MHz con 256 y 512 portadoras respectivamente. La frecuencia centra puede variar desde 350 MHz hasta 2450 MHz. La recomendación especifica un límite en la potencia de transmisión de 5 dBm para el esquema de 50 MHz y 8 dBm para el esquema de 100 MHz, de tal forma que la potencia máxima por portadora es la misma en ambos esquemas. Debido a la estructura de un entorno doméstico con hilos, los receptores deben ser capaces de procesar señales con amplitud muy grande o muy pequeña; cuando transmisor y receptor están conectados en la misma toma eléctrica no hay atenuación de canal y el ratio de señal a rudio más distorsión (SNDR) está dominado por la linealidad del receptor, mientras que cuando transmisor y receptor están separados por varias habitaciones la atenuación es elevada y el SNDR está dominado por la figura de ruido del receptor. Los elevados requisitos de rango dinámico para este tipo de receptores requieren el uso de topologías de ganancia configurable que pueden proporcionar tanto alta linealidad como bajo ruido para diferentes configuraciones. Por lo tanto, esta tesis está encarada a la investigación de topologías sin inductores de banda ancha y elevado rango dinámico para ser usadas a la entrada de un receptor G.hn cumpliendo con las especificaciones proporcionadas. Una gran parte de la tesis se ha centrado en el diseño del amplificador de entrada al ser la etapa más crítica, ya que la figura de ruido y linealidad del amplificador de entrada definen lás máximas especificaciones que el sistema puede conseguir. Se han fabricado 3 prototipos con un proceso CMOS de 65 nm: 2 amplificadores y un sistema completo con amplificador y mezclador.Postprint (published version

    Software Defined Radio using MATLAB & Simulink and the RTL-SDR

    Get PDF
    The availability of the RTL-SDR for less than $20 brings SDR to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR device can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and using some official software add-ons, these samples can be brought into the MATLAB and Simulink environment for users to develop receivers using first principles DSP algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this free book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive filter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. Towards the end of the book, we demonstrate how the RTL-SDR can be used with SDR transmitters to develop a more complete communications system, capable of transmitting text strings and images across the desktop

    High Speed Integrated Circuits for High Speed Coherent Optical Communications

    Get PDF
    With the development of (sub) THz transistor technologies, high speed integrated circuits up to sub-THz frequencies are now feasible. These high speed and wide bandwidth ICs can improve the performance of optical components, coherent optical fiber communication, and imaging systems. In current optical systems, electrical ICs are used primarily as driving amplifiers for optical modulators, and in receiver chains including TIAs, AGCs, LPFs, ADCs and DSPs. However, there are numerous potential applications in optics using high speed ICs, and different approaches may be required for more efficient, compact and flexible optical systems.This dissertation will discuss three different approaches for optical components and communication systems using high speed ICs: a homodyne optical phase locked loop (OPLL), a heterodyne OPLL, and a new WDM receiver architecture.The homodyne OPLL receiver is designed for short-link optical communication systems using coherent modulation for high spectral efficiency. The phase-locked coherent receiver can recover the transmitted data without requiring complex back-end digital signal processing to recover the phase of the received optical carrier. The main components of the homodyne OPLL are a photonic IC (PIC), an electrical IC (EIC), and a loop filter. One major challenge in OPLL development is loop bandwidth; this must be of order 1 GHz in order for the loop to adequately track and suppress the phase fluctuations of the locked laser, yet a 1 GHz loop bandwidth demands small (<100 ps) propagation delays if the loop is to be stable. Monolithic integration of the high-speed loop components into one electrical and one photonic IC decreases the total loop delay. We have designed and demonstrated an OPLL with a compact size of 10 × 10 mm2, stably operating with a loop bandwidth of 1.1 GHz, a loop delay of 120 ps, a pull-in time of 0.55 μs and lock time of <10 ns. The coherent receiver can receive 40 Gb/s BPSK data with a bit error rate (BER) of <10-7, and operates up to 35 Gb/s with BER 10-12.The thesis also describes heterodyne OPLLs. These can be used to synthesize optical wavelengths of a broad bandwidth (optical wavelength synthesis) with narrow linewidth and with fast frequency switching. There are many applications of such narrow linewidth optical signal sources, including low phase noise mm-wave and THz-signal sources, wavelength-division-multiplexed optical transmitters, and coherent imaging and sensor systems. The heterodyne OPLL also has the same stability issues (loop delay and sensitivity) as the homodyne OPLL. In the EIC, a single sideband mixer operating using digital design principles (DSSBM) enables precisely controlled sweeping of the frequency of the locked laser, with control of the sign of the frequency offset. The loop's phase and frequency difference detector (PFD) uses digital design techniques to make the OPLL loop parameters only weakly sensitive to optical signal levels or optical or electrical component gains. The heterodyne OPLL operates stably with a loop bandwidth of 550 MHz and loop delay of <200 ps. An initial OPLL design exhibited optical frequency (wavelength) synthesis from -6 GHz to -2 GHz and from 2 GHz to 9 GHz. An improved OPLL reached frequency tuning up to 25 GHz. The homodyne OPLL exhibits -110 dBc/Hz phase noise at 10 MHz offset and -80 dBc/Hz at 5 kHz offset.Finally, the thesis describes a new WDM receiver architecture using broadband electrical ICs. In the proposed WDM receiver, a set of received signals at different optical wavelengths are mixed against a single optical local oscillator. This mixing converts the WDM channels to electrical signals in the receiver photocurrent, with each WDM signal being converted to an RF sub-carrier of different frequency. An electrical IC then separately converts each sub-carrier signal to baseband using single-sideband mixers and quadrature local oscillators. The proposed receiver needs less complex hardware than the arrays of wavelength-sensitive receivers now used for WDM, and can readily adjust to changes in the WDM channel frequencies. The proposed WDM receiver concept was demonstrated through several system experiments. Image rejection of greater than 25 dB, adjacent channel suppression of greater than 20 dB, operation with gridless channels, and six-channel data reception at a total 15 Gb/s (2.5 Gb/s BPSK × 6-channels) were demonstrated
    corecore