thesis

Direct sampling receivers for broadband communications

Abstract

Today everything tends to be connected in the Internet of Things (IoT) universe, where a broad variety of communication standards and technologies are used for those connected devices. It is always a dream to design a Software-Defined Radio (SDR) supporting different standards solely based on the software configuration. As integrated-circuit (IC) manufacture and design advance, a partial of SDR can be realized. This thesis investigates one of the most important parts in a SDR: the analog design of a direct sampling (DS) receiver, which mainly consists of a broadband RF front end and a wideband ADC. Especially, a DS receiver shows a great flexibility and efficiency for the simultaneous reception of multiple channels comparing with the traditional parallelism of superheterodyne structure. The research contributions of this work include (1) demonstration and comparative analysis of two new architectures of broadband RFPGAs: voltage-mode: RFPGA-V and current-mode: RFPGA-I. RFPGA-V and RFPGA-I utilize an innovative interpolation method and current steering approach, respectively, to achieve a fine gain step of 0.25-dB over 40-dB gain range for several GHz frequency range. Besides, with innovative design, no off-chip inductor is needed for the both RFPGAs. (2) The design of a 5-GS/s 10b time-interleaved SAR. The ADC power efficiency is significantly improved by many design techniques: the low-energy CDAC switching scheme, optimized input common-mode voltage for comparator, optimal reduced radix-2 capacitor ratio for low-power reference buffers and higher conversion speed, etc. The lane-to-lane mismatches in a time-interleave ADC are minimized by using optimal floor plan and then are calibrated digitally. Three prototypes: the broadband RF front ends with RFPGA-V, the broadband RF front ends with RFPGA-I and a 5-GHz ADC, are fabricated to verify the proposed ideas in 28nm CMOS technology.Electrical and Computer Engineerin

    Similar works