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ABSTRACT

Broadband RF Front-End Design for Multi-Standard Receiver

with High-Linearity and Low-Noise Techniques. (December 2011)

Ju Sung Kim, B.S., Yonsei University

Chair of Advisory Committee: Dr. Jose Silva-Martinez

Future wireless communication devices must support multiple standards and

features on a single-chip. The trend towards software-defined radio requires flexible

and efficient RF building blocks which justifies the adoption of broadband receiver

front-ends in modern and future communication systems. The broadband receiver

front-end significantly reduces cost, area, pins, and power, and can process several

signal channels simultaneously. This research is mainly focused on the analysis and

realization of the broadband receiver architecture and its various building blocks

(LNA, Active Balun-LNA, Mixer, and trans-impedance amplifier) for multi-standard

applications.

In the design of the mobile DTV tuner, a direct-conversion receiver architecture is

adopted achieving low power, low cost, and high dynamic-range for DVB-H standard.

The tuner integrates a single-ended RF variable gain amplifier (RFVGA), a current-

mode passive mixer, and a combination of continuous and discrete-time baseband

filter with built-in anti-aliasing. The proposed RFVGA achieves high dynamic-range

and gain-insensitive input impedance matching performance. The current-mode pas-

sive mixer achieves high gain, low noise, and high linearity with low power supplies.

A wideband common-gate LNA is presented that overcomes the fundamental

trade-off between power and noise match without compromising its stability. The

proposed architecture can achieve the minimum noise figure over the previously re-

ported feedback amplifiers in common-gate configuration. The proposed architecture



iv

achieves broadband impedance matching, low noise, large gain, enhanced linearity,

and wide bandwidth concurrently by employing an efficient and reliable dual negative-

feedback.

For the wideband Inductorless Balun-LNA, active single-to-differential architec-

ture has been proposed without using any passive inductor on-chip which occupies a

lot of silicon area. The proposed Balun-LNA features lower power, wider bandwidth,

and better gain and phase balance than previously reported architectures of the same

kind.

A surface acoustic wave (SAW)-less direct conversion receiver targeted for multi-

standard applications is proposed and fabricated with TSMC 0.13µm complementary

metal-oxide-semiconductor (CMOS) technology. The target is to design a wideband

SAW-less direct coversion receiver with a single low noise transconductor and current-

mode passive mixer with trans-impedance amplifier utilizing feed-forward compensa-

tion. The innovations in the circuit and architecture improves the receiver dynamic

range enabling highly linear direct-conversion CMOS front-end for a multi-standard

receiver.
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CHAPTER I

INTRODUCTION*

The demand for a multi-standard transceiver is expanding rapidly because of huge

markets ranging from cell phones, WLAN terminals, and GPS to DAB/DVB enabled

PDAs. Ultimately, software radio∗ (SWR) is the most flexible and efficient realization

of RFIC transceiver but it is not a reality yet due to various design challenges. The

SWR transceiver initially proposed by Mitola [3] puts very stringent requirements on

the A/D and D/A conversion in terms of dynamic range, speed, noise, and linearity.

Even if this A/D and D/A conversion is realizable with today’s technologies, its

power consumption may reach unreasonable values prohibiting the concept of SWR

for practical hand-held devices.

CMOS technologies with aggressive scaling improve area and power consump-

tion with high enough ft to accomodate most existing commerical applications under

10GHz. Compatibility with the digital part of the transceiver mandates the use of

advanced (scaled down) CMOS process. With its ability of highest level of integra-

tion, low cost, and low power consumption, CMOS is a MUST for SOCs consumer

electronic products.

In this dissertation, we focus on the analysis and realization of a broadband re-

ceiver architecture and its various building blocks (LNA, Active Balun-LNA, Mixer,

and trans-impedance amplifier) for multi-standard applications in CMOS technology.

Two contrasting requirements, noise and linearity, which set the dynamic range per-

 This dissertation follows the style of IEEE Journal of Solid-State Circuits.

∗Part of this chapter is reprinted with permission from ”Frequency Translation Tech-
niques for Interference-Robust Software-Defined Radio Receivers”, by Z. Ru, Ph.D.
dissertation, University of Twente, Enschede, Netherlands, 2009.
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Fig. 1. Various mobile standards and allocated spectrums (excerpted from [1]).

formance of RFICs are tackled from the circuit to the architecture level. The proposed

architecture and its building blocks improve dynamic range enabling highly a linear

CMOS front-end for multi-standard receivers.

A. Motivations and Origins

Wireless communication came to existence with Guglielmo Marconi’s successful ra-

dio signal transmission across the Atlantic Ocean in 1901 [4]. The consequences of

this demonstration is simply astonishing. Different communication standards exist

currently where most of them are allocated in the spectrum from 400MHz to 6GHz

as shown in Fig. 1 [1]. Traditionally, each standard requires separate RF front-end

and digital resources for baseband processing. To minimize cost and power, there has

been a strong interest towards merging many applications and its functionality into a

single mobile radio device [1]. The realization of flexible and efficient hardware that

is controlled by software can make the device smaller, lighter, flexible, and low-cost,

and this trend of radio evolution leads to the term, software radio (SWR) [1, 3].

The use of an analog to digital converter (ADC) is mandatory for the SWR

receiver because the received analog radio signal is handled by the DSP employing its

digital representation. In contrast to the popular super-heterodyne receiver and other
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Fig. 2. (a) Ideal SWR receiver and (b) Practical SDR (multi-standard) receiver.

variants, the SWR receiver moves the ADC right after antenna as shown in Fig. 2(a).

The burden on the ADC becomes extremely challenging without any amplification,

filtering, and down-conversion. Therefore, the realization of an ideal SWR receiver is

almost impossible with even state of the art technology. Mitola also suggested that

a practical SWR can have the ADC located after down-conversion, and it can be

defined as software-defined radio (SDR) [1]. The realization of SDR does not have to

be fully software configurable like SWR, but SDR has to accept and process different

standards with as much programmability as possible.

Fig. 2 shows the conceptual diagram of ideal SWR receiver and practical SDR

receiver with a flexible RF front-end. Ideal SWR in Fig. 2(a) may be the ultimate

dream of consumer electroncic designers but is not realizable as described before.

On the other hand, the RF front-end in Fig. 2(b) should be at least broadband to

cover different standards within the frequency range that a practical SDR should

cover. Moreover, its performance must be comparable to or even better than the
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conventional narrowband RF front-end due to concurrent reception of multi-standard

unfiltered signals. The challenges for the design of the broadband RF front-end

boils down to two contrasting scenarios: one challenge is to achieve a low noise

figure while satisfying impedance matching over several gigahertz bandwidth when

the signal strength is very small (around the sensitivity level of the standard), while

another challenge is the high linearity requirement due to several channels received

without any filtering but with high enough signal power. These two issues define

the dynamic range of the RF front-end and dictate the required performance of the

baseband ADC. This dissertation focuses on the design and optimization of the RF

front-end for practical SDR receiver with high-linearity and low-noise techniques.

B. Research Focus and Dissertation Overview

Most of the narrowband receivers in the literature used super-heterodyne architec-

ture proposed by Armstrong in 1918. The architecture was adopted widely since the

architecture provides sensitivity and selectivity simultaneously. This approach, how-

ever, has multiple drawbacks especially for monolithic integration. The architecture

requires an off-chip SAW filter for image rejection. Also, the architecture consumes

huge power due to the power matching requirement with off-chip components. To

achieve the full integration and low power, architectural solutions as well as circuit-

level solutions are proposed and following chapters are the realizations of broadband

receiver architecture and its various building blocks (LNA, Active Balun-LNA, Mixer,

and trans-impedance amplifier) with detailed analysis.

In Chapter II, a direct-conversion receiver architecture is adopted achieving low

power, low cost, and high dynamic-range for DVB-H standard. RFVGA, as the most

critical block for the tuner application, adjusts the RF front-end gain to achieve
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the maximum dynamic range of the tuner. A single-ended architecture is adopted

to reduce the number of I/O and power consumption. A novel matching scheme is

proposed to enable gain-insensitive impedance match. Low noise and high linearity

with wide gain range of 30dB is achieved with the implemented RFVGA and serves

as the first block in the proposed tuner. Single-to-differential conversion with a single

ended RFVGA is achieved with a CMOS type differential pair with a single input

AC grounded. An active-balun also serves as a transconductor driving a current-

mode passive mixer. A passive mixer with current-in and current-out shows high

dynamic range and is free of flicker noise suitable for direct conversion receivers.

More importantly, the proposed topology can work with very low voltage supply and

is a promising cadidate for future scaled-down technology.

Chapter III proposes a wideband common-gate (CG) LNA with dual negative

feedback that overcomes the fundamental trade-off between power and noise match

without compromising its stability. The proposed architecture can achieve the mini-

mum noise figure (NF) over the previously reported feedback amplifiers in common-

gate configuration. The proposed architecture achieves broadband impedance match-

ing, low noise, large gain, enhanced linearity, and wide bandwidth concurrently by

employing an efficient and reliable dual negative-feedback. An amplifier prototype

was realized in 0.18µm CMOS, operates from 1.05 to 3.05GHz, and dissipates 12.6mW

from a 1.8V supply while occupying 0.073mm2 active area. The LNA provides 16.9dB

maximum voltage gain, 2.57dB minimum NF, better than -10dB input matching, and

-0.7dBm minimum IIP3 across the entire bandwidth.

In Chapter IV, a wideband inductor-less low-noise-amplifier (LNA) with single-

to-differential conversion is proposed for multi-standard radio applications. Exploit-

ing common-gate (CG) and common-source (CS) stage with negative feedback, the

proposed architecture features lower power, wider bandwidth, and better gain and
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phase balance than previously reported active-balun based on CG-CS topology. Noise-

suppressed current-mirror based biasing is utilized to ensure stable operation under

process, voltage, and temperature (PVT) variations. Inherent inverting gain of CS

stage is reused to boost the trans-conductance of CG stage and, hence, noise and

power efficient design is achieved with better bandwidth. The gain and phase bal-

ance is improved by employing a compensation scheme in CS stage. The prototype

was realized in 0.13µm CMOS, operates from 0.5 to 4GHz, and dissipates 2.6mW from

1.2V supply while occupying 0.075mm2 active area. The Balun-LNA provides 17.4dB

maximum voltage gain, 3.56dB minimum NF, better than -10dB input matching, and

-0.45dBm IIP3.

Chapter V describes the receiver architecture based on a single low-noise trans-

conductor (LNTA) driving a current-mode passive mixer loaded by low-impedance.

The proposed architecture exhibits beneficial features in terms of noise and linearity.

Due to the current-mode passive mixer, it shows a drastic reduction in its flicker

noise void of static DC current. Noise optimized trans-impedance amplifier (TIA)

after down-conversion further optimizes the noise performance of receiver in direct-

conversion architecture. Regarding linearity, distortion associated with a large voltage

swing present in Gilbert cell mixer and voltage-mode passive mixer is eliminated

by virtual ground of the TIA. Out-of-band interference performance is improved by

avoding voltage swing before the signal experiences first-order low-pass filtering via

I-V conversion in the TIA. The prototype receiver has been integrated in 0.13µm

CMOS process with an on-chip frequency divider. The chip has an active area of

1mm2 with the entire RF signal path operated from 1.2V and LO portion operated

from 1.5V. The prototype receiver achieves >22dB conversion gain, <7dB NF, and

>0.5dBm IIP3 from 2 to 6GHz. The performance degradation at high frequency is

due to in-sufficient LO swing and S11 is below -10dB from 2 to 7.7GHz.
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CHAPTER II

CMOS DIRECT CONVERSION RECEIVER FRONT-END FOR DVB-H UHF

BAND*

A. Introduction

Demand for personal multimedia services continues to increase leading to popularity

of mobile digital TV (DTV). Emerging DTV services provide real-time digital televi-

sion programs on mobile handsets. A high performance tuner front-end is a critical

component for DTV reception. Such a tuner receives broadband mobile DTV chan-

nels, down converts the desired channel to baseband, and ensures adequate signal

quality for further processing (demodulation and decoding). The received signal is

then displayed on an LCD screen.

Multiple DTV standards suitable for mobile applications have emerged in recent

years. DVB-H standard is used mainly in Europe and the USA, while ISDB-T and

DMB are mainly used in Japan and Korea. While some of the earliest mobile tuner

solutions were implemented in BiCMOS process [5–7]. However, integrated CMOS

solutions have recently emerged as well [8–10]. Some recent solutions integrate multi-

standard, multi-band (UHF, VHF and L-band) tuners in advanced CMOS technology

[10].

This chapter∗ presents UHF band (470-862MHz) tuner with a single-ended RF

input (without requiring external balun) implemented using IBM 0.18µm RF CMOS

technology. The RF front-end consists of an RF variable gain amplifier (RFVGA) us-

∗Part of this chapter is reprinted with permission from ”UHF Receiver Front-End:
Implementation and Analog Baseband Design Consideration”, by R. Kulkarni et al.,
accepted for future publication in IEEE Transactions on VLSI systems with DOI:
10.1109/TVLSI.2010.2096438.
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ing a modified shunt feedback structure that provides gain independent input match-

ing without using shunt peaking inductor. The single-ended output of the RFVGA

drives two linear broadband transconductors (I and Q) each of which also provide

on-chip single-ended to differential signal conversion. Each transconductor drives

a current-mode passive mixer. The downconverted signal is further processed by

the baseband section implemented using a hybrid combination of continuous- and

discrete-time filters with built in anti-aliasing.

This chapter is organized as follows. Section B provides an overview of specifica-

tions for the DVB-H standard and system-level design, and detail the RF front-end

circuit blocks in Section C. Baseband section is not covered in Section C but de-

tailed analysis on baseband section can be found in [11]. Characterization setup and

experimental results are provided in Section D with brief conclusions in Section E.

B. Specification and Architecture

Dynamic range performance requirements of the mobile tuner are set by two con-

trasting scenarios. The weakest input signals power (sensitivity level) that can be

received to guarantee sufficient signal-to-noise ratio sets the noise figure (NF) of the

system. On the other hand, at high input power levels, non-linearity contributions

degrade the system performance which sets the linearity requirements (specified in

terms of IIP3) of the system.

To maintain an overall demodulator performance in terms of bit error rate

(B.E.R.), the threshold signal to noise ratio (called C/N ratio) can be obtained for a

given modulation scheme. For a demodulator B.E.R. requirement of 2× 10−4, tuner

threshold C/N performance requirements in a Gaussian channel for QPSK (1
2
rate),

16 QAM (3
4
rate) and 64 QAM (3

4
rate) are 5.6dB, 15.1dB and 20.8dB respectively.



9

Fig. 3. Direct conversion DVB-H tuner system.

This C/N performance requirement is 24.8dB for the Mobile channel. Based on the

C/N requirements, DVB-H tuner sensitivity level can be obtained as -94.6dBm, -

86dBm and -75dBm for QPSK, 16 QAM and 64 QAM respectively from which noise

figure specifications can be obtained for the system as a maximum of 5dB for the

most stringent case.

Non-linearity contributions from the tuner front-end degrade the system per-

formance. Undesired digital or analog channels inside the UHF signal band cannot

be pre-filtered prior to channel down conversion. Linearity pattern requirement for

DVB-H standard indicates that, the desired channel (channel N) can be embedded

within two strong interferers located at channels N + 2 and N + 4 with over 45dBc

higher power. This requirement has been analyzed previously in [5,7,9,12]. Assuming

worst case input power (minimum) of -75dBm for 64 QAM and maximum possible

interferer power of -35dBm, it can be shown that the worst case IIP3 requirement of

the system is -1dBm [12].

Given an input RF frequency band of 470-862MHz, we chose a direct conversion

architecture shown in Fig. 3 since (1) Local oscillator (LO) harmonic frequencies
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used for down conversion are out of band, eliminating harmonic mixing, and (2) the

channel selection filter is a low pass filter (LPF) instead of a bandpass filter (BPF),

and hence can be integrated on chip. The baseband LPF selectivity is determined

from the undesired analog adjacent channel (N + 1) which can be up to 38dBc higher

in power [12]. Using two AGC loops (RF and baseband) in the design helps to

maximize the dynamic range of the tuner system [5, 12]. Variable input power level

(sensitivity to maximum power level) sets the total AGC requirements of the system

which can be conveniently partitioned between RF front-end and baseband.

Table I. Desired block level specifications.

Performance RFVGA Mixer Baseband

Gain (dB) -14 to +16 18 -6 to +53

Noise Figure (dB) 3 at +16dB gain 12 35 at 53dB gain

30 at -14dB gain

IIP3 (dBm) 0 at +16dB gain 13 Outband > 30

20 at -14dB gain Inband > 30

Following the methodology outlined in [4,12], we partition the block specifications

as shown in Table I. A gain range of 30dB is required in the RFVGA to ensure

that the mixer and baseband stages do not saturate. When the power level at the

RFVGA output exceeds -20dBm (RF take-over point), the RFVGA switches from

gain to attenuation. The system can tolerate the higher noise figure at low gain

settings since the input power is also higher. For the baseband, the variable gain

range is distributed between baseband PGA and filter to ensure sufficient output

C/N performance. The low pass filter bandwidth is programmable between 3MHz

and 4MHz. For the 4 MHz option, the channel selectivity dictates attenuation >29dB

at 5.25MHz and >45dB at 5.75MHz with minimum passband ripple. The baseband
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Fig. 4. RFVGA with gain independent shunt feedback input matching.

Fig. 5. Single-to-differential converting transconductor (Gm) driving the mixer

switches.

signal chain should also provide automatic gain control range of -6 to +53dB to deliver

-8dBm output power. The baseband noise figure should be <33 dB with both in-band

and out-band IIP3>30dBm.
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Fig. 6. Current-mode passive mixer terminated at TIA input with DC offset cancella-

tion.

C. Circuit Design

1. RF Variable-Gain Amplifier

The RF front-end consists of an RF variable gain amplifier (cf. Fig. 4) followed by

transconductor (cf. Fig. 5) and current-mode quadrature mixers (cf. Fig. 6). We

use a single ended RF input to reduce the system cost by obviating the external

balun. The variable gain helps maximize the output signal-to-noise-plus-distortion

ratio (SNDR). We modify the wide dynamic range RFVGA of [13] and use MIM

(Metal-Insulator-Metal) capacitors instead of deep N-well MOS transistors to enhance

the capacitor divider accuracy. The RFVGA implements a modified shunt feedback

scheme to achieve wideband input matching independent of gain without a shunt

peaking inductor. The RFVGA consists of five identical Gm stages that are connected

with a capacitive divider configuration as shown in Fig. 4. This cascaded arrangement
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[b0 b1] =  ‘00’  : Shunt feedback matching (First Gm stage)

[b0 b1] =  ‘01’  : Shunt feedback matching (Second Gm stage)

[b0 b1] =  ‘10’ : Resistive matching

Fig. 7. Input impedance matching block (using modified shunt feedback).

facilitates a 6dB coarse gain setting in the RFVGA. Fine gain steps with smooth gain

adjustment are implemented with a current steering scheme (not shown in the figure)

with a process independent control block as reported in [13]. The shunt feedback

matching is used for the first and the second Gm stages and simple resistive matching

is used for the third through the fifth Gm stages. Fig. 7 displays the impedance

matching/termination scheme as well as the control logic truth table. Operating with

a 1.8V supply, RFVGA provides a gain range of -14dB to +16dB with a targeted NF

of 3dB at maximum gain and IIP3 performance of +20dBm at 14dB RF attenuation.

2. Current-Mode Passive Mixer and Trans-Impedance Amplifier

Every building block except for the RFVGA is fully differential to minimize common

mode noise and even order harmonic distortion. The RFVGA drives a single-ended

to fully-differential converting Gm stage (cf. Fig. 5), which in-turn drives the mixer.

The transconductor utilizes source-degenerated complementary NMOS and PMOS

differential pairs to achieve high linearity and power efficiency through current reuse.

The common mode feedback circuitry shown in Fig. 5 ensures proper biasing of the

output nodes for the transconductor. The transconductor and the mixer switches
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External Clock
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Fig. 8. Replica biasing for mixer switches.

are AC coupled to suppress flicker noise, DC offset and to provide biasing flexibility.

This mixer combines source degeneration to provide superior nonlinearity, embedded

single-ended to fully-differntial conversion and higher channel bandwidth (4 MHz

vs 250kHz) compared to the mixer previously reported in [14]. The passive mixer

as shown in Fig. 6 is terminated at the virtual ground of a transimpedance amplifier

(TIA) stage, which provides the necessary current to voltage conversion. TIA provides

broadband low impedance current path for the down converted signal within the signal

bandwidth (up to 4MHz) using a wide gain-bandwidth (460 MHz), fully differential,

two-stage Miller-compensated amplifier [15]. As indicated in Fig. 8, mixer switches

are biased at the onset of inversion to minimize clock feed-through and even order

harmonic distortion components. The biasing loop depicted in Fig. 8 biases the source

of the NMOS transistor (M1) at the same level as TIA input (set by CMFB in the

TIA amplifier). The gate of M1 is connected to the mixer switches DC bias to track
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Fig. 9. Chip micrograph of DVB-H tuner.

threshold voltage (Vth) variation. On-chip frequency divider generates the required

quadrature LO signals. Also a DC-offset cancellation loop is included around the TIA

stage (cf. Fig. 6) which provides a highpass corner frequency of 2.4kHz. Operating

with a 1.8V supply, mixer (along with TIA) provides a gain of +18dB with a targeted

NF and IIP3 performance of 12dB and 13dBm respectively.

D. Measurement Results

The tuner system was fabricated in IBM 0.18µm RF CMOS technology. Fig. 9 shows

the chip mircrograph for this design. Only one baseband channel was realized (out

of I and Q) due to area constraints; however analog performance verification only re-

quires testing of one channel. The system occupies 2.14mm2 of active area (4.95mm2

including decoupling capacitors distributed throughout the chip) and was tested in a

QFN80 package.

Fig. 10 illustrates the measurement setup used for characterization of the tuner

system. The RF signal source is single ended, while all remaining signal I/Os are

fully differential. An external broadband balun converts the single-ended external

clock source to fully differential for the on-chip I/Q generator. Baseband outputs
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Fig. 10. Measurement set-up.

tapped at intermediate points in the signal chain are buffered using on-chip open

drain buffers, which are terminated on the board. In order to accommodate large

output signal swings in the baseband outputs (around the common mode voltage

0.8V), we designed the output buffers with source degenerated triple well NMOS de-

vices with separate negative supply voltages. An independent additional buffer was

included for characterization and de-embedding. All the differential outputs share

a single termination on the board and only one output buffer is active at a time.

The differential signal outputs are buffered separately using highly linear commercial

amplifiers, which also provide low output impedance to drive the measurement equip-

ment. Baseband blocks can also be characterized separately as using this setup as

indicated in Fig. 10. A highly linear commercial single-ended to differential amplifier

circuit is used for baseband characterization. The key advantage of this measurement

setup is the option of characterizing the external amplifiers and open drain buffers
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(a) (b)

Fig. 11. Measured baseband transfer function: (a) Continuous-time section and (b)

Continuous and discrete-sections together.

separately to facilitate de-embedding.

The measured baseband transfer functions are shown in Fig. 11(a) and Fig. 11(b).

Fig. 11(a) shows the frequency (3/4MHz) and gain programmability (-6dB to +18dB

with 6dB per step) of the continuous time baseband filter. Fig. 11(b) shows frequency

programmability of the entire baseband filter (3/4 MHz options) along with gain

programmability of the SC section (0 to +18dB range with 0 or 6dB per biquad). For

the 4 MHz setting, the measured frequency response indicates a stopband attenuation

of >42dB for frequencies >5.75MHz.

The desired input impedance of the RFVGA is targeted for 75Ω (video standard).

Since all the measurement equipment is based on 50Ω, the measured S11 response

from the network analyzer is post-processed to reflect the matching performance with

respect to a 75Ω. This post-processed S11 performance is indicated in Fig. 12. As

explained previously in Section C.1, modified shunt feedback system is used for first

and the second Gm stages while resistive matching is employed for rest of the cases.

Fig. 12 indicates the S11 performance for two cases of shunt feedback matching and
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Fig. 12. Measured S11 performance (after post-processing for 75Ω input impedance).

resistive matching in the frequency range from 400 to 900MHz. We measured a NF of

7.9dB at maximum gain using the Y-factor method with an NC346B noise source. We

attribute the additional NF penalty of 2.5dB with respect to the simulation result to

(1) insertion loss of interconnections between the noise source and LNA, (2) the noise

contribution of the gain control block in the RFVGA, and (3) RC routing parasitics

between the RFVGA and the mixer.

Based on the L2 linearity test pattern specified in the DVB-H standard, the

desired IIP3 is -8.5dBm at the 16QAM sensitivity level and -1dBm at 64 QAM sensi-

tivity level. Since L2 pattern in DVB-H standard is the most stringent requirement,

two RF tones located at N + 2 (516MHz) and N + 4 (531MHz) are injected, and

the in-band distortion tone located at 1 MHz after the down conversion is measured.

In-band gain at 501MHz was measured with the appropriate LO frequency to cal-

culate the IIP3 (fLO set to 500MHz). The outband tone input power is varied from

-42dBm to -20dBm for the highest gain setting and from -34dBm to -16dBm for 9dB

RF gain attenuation setting in steps of 1dB. The plot in Fig. 13(a) shows an IIP3
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(a) (b)

Fig. 13. Measured linearity performance: (a) Two-tone measurement results for the

system and (b) System IIP3 performance.

of -8 and +2dBm for the highest gain and 9dB RF attenuation cases respectively.

Fig. 13(b) clearly indicates that the system IIP3 performance meets the desired IIP3

requirements for the system as the input power is varied.

E. Conclusion

A low power tuner IC was implemented in IBM 0.18µm RF CMOS technology target-

ing DVB-H specifications in the UHF band. This solution integrates an RFVGA, a

linear current-mode passive mixer with a transimpedance amplifier, a baseband imple-

mentation using continuous and discrete-time partitioning, and an all digital tuning

scheme for non-overlap clock generation. Using a single-ended RF input eliminates

the requirement of an external balun, reducing the overall cost of the system. The

hybrid baseband implementation achieves sharp roll-off with precise stopband zeroes

without requiring elaborate tuning schemes. The approach outlined in this work can

be extended to multi-band solutions implemented in deep-submicron processes
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CHAPTER III

WIDEBAND COMMON-GATE CMOS LNA EMPLOYING DUAL NEGATIVE

FEEDBACK WITH SIMULTANEOUS NOISE, GAIN, AND BANDWIDTH

OPTIMIZATION*

A. Introduction

Future wireless communication devices must support multiple standards and features

on a single chip. In particular, the LNA must have low noise and high linearity over a

wide frequency range. The conventional solution is to employ several LC-tuned LNAs

in parallel [16,17]. This approach requires significant die area for several narrowband

LNAs and RF switches for band selection, which hurts the sensitivity and compli-

cates the receiver design. Reconfigurable LNAs [18–20] enable hardware sharing and

reduce form factor, cost, and power with respect to parallel narrowband LNAs. How-

ever, simultaneous operation of several signal channels (e.g., cellular communications

at 900MHz and 1800MHz, global positioning system at 1.2GHz and 1.5GHz, and

WiFi at 2.4GHz and 5.2GHz) is prohibited with the reconfigurable operation. The

concurrent dual-band architecture was proposed in [21], which requires multiple LC

resonance circuitry at the input and the output increasing the die area, cost, and

more importantly noise due to the finite Q of the inductors at the input. Further-

more, input match and band selection due to the LC resonators must occur at the

same frequency to achieve the optimum performance. This is difficult to achieve

without extremely accurate passive device models. Then, this chapter∗ presents a

∗Reprinted with permission from ”Wideband Common-Gate CMOS LNA Employing
Dual Negative Feedback with Simultaneous Noise, Gain, and Bandwidth Optimiza-
tion”, by J. Kim et al., IEEE Trans. on Microwave Theory and Tech., vol. 58, no. 9,
pp. 2340-2351, Sep. 2010.
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wideband common-gate CMOS LNA for multi-standard applications.

The trend towards software-defined radio (SDR) requires flexible and efficient RF

building blocks, which justifies the adoption of wideband LNAs in modern and future

communication systems. Wideband LNAs significantly reduce cost, area, pins, and

power, and can process several signal channels simultaneously. However, the design

of wideband LNAs is challenging in several aspects. One challenge is to achieve a low

noise figure (< 3dB) while satisfying impedance matching (S11 < −10dB) over several

gigahertz bandwidth. The inductor-degenerated LNA used in conventional wireless

receivers can offer simultaneous noise and power match by shifting the optimum

noise impedance Zopt to the desired value, but only in a narrowband around a single

frequency [22]. Reducing the Q factor for the input matching network can increase

the bandwidth at the cost of higher NF [23]. Another challenge is the high linearity

requirement due to several channels received without any filtering. Chen et al. [24]

reported a broadband linearization scheme, but, due to the higher order non-linear

terms of the MOSFET, their linearization scheme is not effective for a high input

power signal (Pin > −20dBm).

The common-gate (CG) LNA’s NF is no better than 1+ γ
α
at the input matched

condition, and recent research as of yet can not fully decouple the tradeoff between

noise and power match [18,19,25–27]. We demonstrate that a dual negative-feedback

amplifier in CG configuration can achieve low noise and high gain in a wideband

fashion. The proposed CG-LNA with dual negative-feedback achieves simultaneous

noise and power match without compromising other design parameters. Due to the

nature of negative feedback, the LNA enhances the linearity regardless of variations

in input power. We also show that the proposed LNA is able to achieve the orthogo-

nality of design parameters between impedance matching, linearity, noise, gain, and

bandwidth. The proposed techniques can also be used for BJTs and MESFETs and
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are compatible with device scaling and technology evolution trends.

This chapter presents an analysis and realization of wideband common-gate

CMOS LNA employing dual negative feedback. Section B reviews the properties

of CG-LNA and low-noise techniques employing feedback. Section C describes the

proposed dual negative-feedback LNA and derives analytical expressions for input

impedance, gain, bandwidth, NF, and IIP3. The amplifier design and layout is-

sues are discussed in Section D. Section E provides measurement results, and the

concluding remarks are given in Section F.

B. Propertis of CG-LNA and Its Low-Noise Techniques

As ft increases with the scaling of CMOS devices, it becomes more promising to

employ feedback in the design of wideband LNAs. Before exploring the design details

of the dual negative-feedback CG-LNA, it is helpful to review the properties of CG-

LNAs and their low-noise techniques.

1. Properties of CG-LNA

Fig. 14(a) shows the conventional CG-LNA where the inductor resonates with the

parasitic capacitance of the impedance matching device and the input pad. Then,

within the signal bandwidth, the reacitive part of the input impedance is canceled

and the real part of the input impedance is determined by 1/(gm + gmb). Also, the

input matching network of the CG-LNA is a parallel resonance as opposed to the

series resonance of inductor-degenerated LNA. Hence, a low Q (quality factor) of the

input matching network results in a wider bandwidth and CG-LNA is more robust

to process, voltage, and temperature (PVT) variations.

The power gain of CG-LNAs is relatively low due to the impedance matching
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constraint. Ignoring the transconductance of the back-gate transistor (gmb), input

impedance matching requires 1/gm = Rs and the CG-LNA’s effective transconduc-

tance under input matching condition is

Gm,CG−LNA =
1

2
gm =

1

2RS

. (3.1)

CG-LNAs exhibit superior stability and reverse isolation due to the absence of

the Miller effect by Cgd. Although CG-LNAs feature desirable properties for wideband

operation, their high NF under input matching condition prevents its extensive use.

The NF including channel noise, induced gate noise, and resistive load under the

input matching condition is expressed as [25]

NFCG−LNA ≈ 1 +
γ

α
+

δα

5

(
ω0

ωT

)2

+
4RS

RL

, (3.2)

where γ, α, and δ are bias-dependent parameters [28], RL is the load impedance, RS

is the source impedance, ωo and ωT are operating and unity current gain frequencies,

respectively. The dominant noise source in CG-LNA is due to the channel noise

4kT γ
α
gm of the MOSFET device. The gate induced noise in a CG-LNA is usually

negligible in contrast to an inductor-degenerated LNA under simultaneous noise and

power match condition [29]. The fourth term shows that a large resistive load is

desirable for low NF, but this condition is usually detrimental for wideband operation

of LNAs.

In summary, CG-LNAs achieve a broadband impedance match, superior reverse

isolation, stability, and a high linearity. Recently reported CG feedback amplifiers

aim at decoupling the noise and power (input) match tradeoff without degrading

other rel evant LNA parameters.
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Fig. 14. Conventional CG-LNA and low-noise techniques employing feedback.

2. Low-Noise Techniques Employing Feedback in CG-LNA

The capacitor cross-coupled CG-LNA [25] in Fig. 14(b) reduces its NF and power con-

sumption by employing negative feedback. gm-boosting with inverting amplification,

Aneg, reduces the noise contribution due to the channel noise by a factor of 1 + Aneg

under input matching condition. At the same time, the intrinsic transconductance of

the impedance matching device can be halved, which reduces the power consumption

by the same factor. The drawbacks of the capacitor cross-coupled CG-LNA are that

the passive gm-boosting dictates that the inverting amplification must be less than

1 taking into account the parasitic capacitance (Cgs). Furthermore, the unilateral

behavior of the CG-LNA is affected by the scheme where input-output feedthrough

and stability are deteriorated.

In [18], shunt-shunt positive feedback is used to add a degree of freedom in deter-
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mining the gm of the impedance matching device, as shown in Fig. 14(c). However,

the amplifier’s stability must be carefully evaluated when the positive feedback is

employed. Also, increasing the loop gain in positive feedback reduces the overdrive

voltage of the transistor and consequently its linearity.

Negative-feedback around a common-base amplifier has been employed to break

the lower bound of noise performance in [19]. The simplified CMOS version schematic

of the LNA is shown in Fig. 14(d). In this topology, the feedback network is passive,

limiting the choice of the gm of the impedance matching device. Low gain and a

large parasitic capacitance at the output node makes this approach unsuitable for

wideband LNAs.

Woo et al. [27] demonstrated that positive feedback in combination with passive

gm boosting can achieve the best theoretical noise performance with low power. Com-

pared to [18], this work, shown in Fig. 14(e), requires half the power consumption

for the same power gain and features further suppression of channel noise from the

impedance matching device.

All the reported works are based on feedback amplifiers taking advantage of

the high ft of scaled CMOS devices. However, none of these designs achieve the full

decoupling of noise and power match in CG-LNAs. Also, other design parameters (e.g.

stability, reverse isolation, and wide bandwidth) are sacrificed in order to improve

noise performance. The main properties of feedback based CG-LNA topologies are

summarized in Table II.

C. Dual Negative-Feedback Wideband CG-LNA

Fig. 15 shows the proposed wideband CG-LNA with dual negative feedback (shunt-

series) along with its simplified model. Impedance matching device M1 amplifies the
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Table II. Comparison of characteristic in feedback based CG-LNA.

Neg. FB (type I) Pos. FB Pos.-Neg. FB
This Work

CG-LNA [25] CG-LNA [18] CG-LNA [27]

Zin
1

gm(1+Aneg)
1

gm(1−Apos)
1

gm(1+Aneg)(1−Apos)
RL+1/gm1

1+gm2/gm3

AV * 1
2
RL

RS

RL

RS

RL

RS

1
2

(
gm1RL

1+gm1RL

) (

1 +
gm2

gm3

)

@ input match

Bandwidth** 1
RLCp

1
RLCp

1
RLCp

1+gm1RL

RLCp
≈

gm1

Cp(ω3dB)

NF*
1 + γ

2α 1 + γ
2α + gmpRS

γ
α 1 + γ

4α + gmpRS
γ
α

1 +
γ
α

1
gm2RS

***
wo RL

NF 4RS

RL

9RS

4RL

9RS

4RL

RS

RLdue to RL

NF †
4.47 4.23 3.32

3 (with IDC,fb=5mA)
total (dB) 2.1 (with IDC,fb=10mA)

*Aneg = 1, Apos = 0.5 are assumed under perfect input matching condition
**Cp is the parasitic capacitance at the output node of the CG-LNA
***Thermal noise due to M1 is negligible and is not shown here
†Numerically estimated with Aneg = 1, Apos = 0.5, γ

α = 2, and RL = 250
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Off-Chip
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(a) (b)

Fig. 15. (a) Simplified LNA model and (b) Schematic of the dual negative-feedback

CG-LNA (biasing not shown).

signal and provides the main forward signal path. The common-source amplifier Afb

in Fig. 15(a) boosts gm1 (gm of M1). The source follower M3 controls the LNA input

impedance with the ratio gm2/gm3, which governs the amount of gm boosting as well

as the contribution of RL to the LNA input impedance. Rbias sets the loop gain and

supplies the difference in bias current between M2 and M3.

To minimize the power consumption, we employ a single-ended configuration and

use only NMOS transistors, as they have a higher ft than PMOS for a given current.

Note that while our proposed architecture allows for a single-ended implementation,

those in [25, 27] do not, for they rely on capacitor cross-coupling to achieve sign

inversion with passive devices. Hence, those previous approaches require a balun

worsening the NF due to its insertion loss, thus offsetting the advantage of low-noise

techniques.
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1. Input Match

The in-band LNA input impedance can be found as

Zin ≈
RL + 1/gm1

1 + gm2/gm3

‖ sLbias ‖
1

sCp

(3.3)

where parasitic capacitor Cp arises from the input pad, M1, and M2. The input

matching network is a parallel resonance where the quality factor of the parallel LC

resonator is

Qmatch =
ωCpRS

2
. (3.4)

A lower Qmatch results in a wider bandwidth since the sensitivity of Zin to parasitic

components is proportional to the quality factor of the matching network [30]. The

parasitic capacitor Cp is absorbed into the LC network and the imaginary part of Zin

is negligible within the bandwidth. The real part of Zin mainly depends on RL, which

is transformed to the input through the embedded dual negative feedback. Therefore,

gm1 is no longer constrained by the input match condition and can be chosen > 1
RS

.

2. Noise Analysis

Noise cancellation using feed-forward techniques [24, 31, 32] can decouple the in-

put matching from the NF by cancelling the impedance matching device’s noise.

However, mismatch and parasitic effects limit the performance of the technique,

and the effective bandwidth of noise cancellation is limited. In feedback based ap-

proaches [18,19,25–27], the noise cancellation of the impedance matching device comes

from the degree of freedom provided by the feedback network.

The dominant noise sources in the proposed LNA are M1, M2, M3, and RL.

Within the LNA’s bandwidth, the power spectral density components at the output
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can be obtained as

V 2
m1 = 4kT

γ

α
gm1

(
RL

H

)2

, (3.5)

V 2
m2 = 4kT

γ

α
gm2

(
gm1RL

Hgm3

)2

, (3.6)

V 2
m3 = 4kT

γ

α
gm3

(
gm1RL

Hgm3

)2

, (3.7)

V 2
RL = 4kTRL

{
1 + gm1RS (1 + gm2/gm3)

H

}2

, (3.8)

V 2
RS = 4kTRS

{
gm1RL (1 + gm2/gm3)

H

}2

, (3.9)

where H is

H = 1 + gm1RS

(

1 +
gm2

gm3

+
RL

RS

)

. (3.10)

Thus, the total NF is approximately

NF = 1 +
V 2
m1 + V 2

m2 + V 2
m3 + V 2

RL

V 2
RS

(3.11)

= 1 + FM1 + FM2 + FM3 + FRL
(3.12)

≈ 1 +
γ

α

1

gm1RS

1

(1 + gm2/gm3)
2

︸ ︷︷ ︸

M1 contribution

+
γ

α

1

(gm2 + gm3)RS
︸ ︷︷ ︸

M2,3 contribution

+
RS

RL
︸︷︷︸

RL contribution

.(3.13)

The second term in (3.13) represents the noise contribution of the main transistor

M1 and is minimized when gm1 and gm2/gm3 are large. The third term accounts

for the noise contribution of M2 and M3 and is minimized if (gm2 + gm3) > 1
RS

.

The last term represents the thermal noise contribution of RL. Under the same

bandwidth condition, the proposed LNA presents the lowest noise contribution due

to RL when compared to other LNAs. With an unconstrained power specification,

the proposed LNA can achieve the theoretical minimum NF. With a constrained

power specification, the power budget determines the NF, which in this topology is

decoupled from other design parameters.
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Fig. 16. NF countour plot with different gm1 and gm2 at RL = 370Ω, gm2

gm3
= 5, γ = 4

3
,

and α = 0.8.

From (3.13), the LNA NF improves by increasing gm1, gm2, gm3, and RL while

determining the gm2/gm3 ratio from the input matching condition. The maximum

values for design parameters, however, are bounded by two constraints: available

voltage headroom, and Q of the input matching network. Fig. 16 shows the NF

contour by varying gm1 and gm2 given that gm2/gm3 is unaltered and RL is maximized.

The dashed line in Fig. 16 corresponds to a constant current consumption of 6mA for

M1 and M2 under the same gm/ID condition.

The LNA power consumption factor, or equivalently
∑

gm = gm1 + gm2 can be

taken into consideration by substituting gm2 with
∑

gm − gm1. Hence, (3.13) can be

rewritten as

NF ≈ 1 +
γ

α

1

gm1RS

1

(1 + gm2/gm3)
2

+
γ

α

1

(
∑

gm − gm1) (1 + gm3/gm2)RS

+
RS

RL

.

(3.14)
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Fig. 17 shows the theoretical NF w.r.t. LNA current consumption for different

gm1 values. As expected, the plot shows an inverse relationship with current. The

thermal noise due to M1 is minimized, regardless of current, by the dual feedback

factor gm2/gm3. Notice that at lower current levels, the NF for small gm1 shows better

performance since, in this region, feedback transistors M2 and M3 dominate the noise

performance. As current increases, the noise contritution due to M1’s noise becomes

more prominent, indicating that large gm1 is desirable for low noise performance.

Regardless of current levels, RL’s noise imposes the lower bound on the NF. Based

on the trend of noise performance w.r.t. current consumption levels, a power-efficient

region of operation can be found by equating FM1 = FM2 + FM3 . Hence

gm2 = A2 (1 + A2) gm1, (3.15)

where A2 = gm2/gm3. Increasing current beyond this point results in diminishing

marginal returns.
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3. Gain and Bandwidth Analysis

Like other topologies, conventional CG-LNAs must trade gain for bandwidth. In [18]

and [27], active current gain is added by employing positive-feedback, thereby increas-

ing the gain by a factor of 2 compared to conventional CG-LNA and the topology

reported in [25] for input matched condition. Still, gain, bandwidth, impedance

matching, and NF can not be optimized simultaneoulsy, as depicted in Table II.

However, the dual negative feedback in the proposed architecture can simultaneously

optimize all these parameters. The high transconductance ratio gm2/gm3 provides

a high voltage gain and allows us to use larger output load (RL) as shown by the

impedance matching condition given in (3.3). Large RL gives a low NF and does not

affect the 3-dB bandwidth, because the bandwidth is chiefly a function of only gm1

and the parasitic capacitances at the LNA output.

To derive the voltage gain and bandwidth of the proposed ampflifier, we consider

two dominant parastitic capacitances as shown in Fig. 18(a) and its AC model in

Fig. 18(b). The parasitic capacitors at the input node vx are canceled by LC resonance

and thus not considered. Cp1 is the total capacitance due to M1, M3, and the input

capacitance of the next stage. Cp2 is the parastitic effects at the drain ofM2 and source

of M3. In the practical implementation, Cp1 dominates Cp2 because Cp1 includes the

appreciable parasitic capacitance of the next stage. CA ≈ Cgs1 + Cgd2 and CB ≈

Cgd1 + Cgs3 create an undesired feedback path. Impedance matching and low NF

condition dictate that M1 and M2 be much larger than M3, so CA >> CB. Hence,

for simplicity, we neglect CB in the following analysis. The effects of CB on LNA

frequency response is included in Appendix A.

AC coupling capacitors C1, C2, and C3 attenuate low-frequency signals, and

the parasitic capacitors Cp1,p2 attenuate high-frequency signals. In the mid-band
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A1 = gm1RL ωp1 = 1/RLCp1

A2 = gm2/gm3 ωp2 = gm3/(CA + Cp2)

(c)

Fig. 18. (a) Proposed LNA with parasitic capacitors, (b) Equivalent circuit model for

voltage gain and bandwidth analysis, and (c) Design parameters.
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Table III. Pole, zero, and Q parameters versus relative location of two poles.
ωp1 ≫ ωp2 ωp2 ≫ ωp1 ωp1 ≈ ωp2

ωdominant ωp2 (1 + A1) ωp1 (1 + A1)
√

ωp1ωp2 (1 + A1) *

ωzero
gm3

Cp2
(1 + A2) gm3

Cp2
(1 + A2) gm3

Cp2
(1 + A2)

Q
– –

√
ωp1ωp2(1+A1)

ωp1+ωp2(quality factor)

*Natural frequency (ωn)

frequency, AC coupling capacitors and parasitic capacitors can be ignored yielding

Avo =

(
Zin

RS + Zin

)(
gm1RL

1 + gm1RL

)(

1 +
gm2

gm3

)

≈
(

Zin

RS + Zin

)(

1 +
gm2

gm3

)

. (3.16)

Note that the mid-band gain of the amplifier is mainly determined by the dual feed-

back transconductance ratio (gm2/gm3) rather than the load and source impedance

ratio (RL/RS). Small signal analysis of Fig. 18(b) shows that the high-frequency

voltage gain is approximately given by

Av(s) ≈ Avo

1 + Cp2

gm3(1+A2)
s

1 +
(

1
ωp1

+ 1
ωp2

)
1

1+A1
s+ 1

ωp1ωp2(1+A1)
s2
, (3.17)

where A1, A2, ωp1, and ωp2 are circuit dependent parameters defined in Fig. 18(c).

Depending on the relative location of the two poles, the pole, zero, and Q values

for each case change and are shown in Table III. When either ωp1 or ωp2 is much

greater than the other, the dominant pole is shifted away from the origin by the factor

of 1+A1. When no dominant pole exists (i.e., two poles are close to each other), the

transfer function becomes second order and has complex poles. The natural frequency

ωn is
√

ωp1ωp2 (1 + A1) and the system Q is given in Table III. Regardless of the

location of the poles, dual negative feedback increases the amplifier’s bandwidth.

Fig. 19 displays the surface plots of normalized 3-dB bandwidth ω3dB

ωp1
vs. the

forward path gain gm1RL and the feedback loop gain gm2

gm3
for ωp2

ωp1
∈

{
1
2
, 1, 2, 4

}
. As
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seen in the figure, the feedback loop gain does not change the bandwidth appreciably,

provided that it is sufficiently high. This behavior occurs because the loop gain only

affects the zero, while the forward path gain determines the pole shifting. In all cases,

ω3dB

ωp1
> 1 when gm1RL > 1 (normal operation), demonstrating higher bandwidth than

the conventional CG-LNA.
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Fig. 19. Bandwidth dependence on feedback characteristics: (a) ωp2 = 1
2
ωp1, (b)

ωp2 = ωp1, (c) ωp2 = 2ωp1, and (d) ωp2 = 4ωp1.

The bandwidth enhancement due to the dual negative feedback is limited by

the ft of the device and the LNA’s driving capability. When the proposed LNA

is realized in a receiver, the dominant pole is located at ωp1 (≪ ωp2) due to the

parasitic capacitance of the next stage (e.g., mixer or off-chip SAW filter). Hence,
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the expression for the dominant pole can be derived as

ωdominant = ωp1 (1 + A1)

≈ gm1

Cnext + ξ gm1

2πft

, (3.18)

where Cnext is the capacitance of the next stage and ξ is the proportionality constant

between the parasitic capacitance of the amplifier output and Cgs1. Therefore, the

bandwidth enhancement (1/RLCp1 → gm1/Cnext) is effective only when the LNA’s

driving capacitance (Cnext) is dominant. If not, the dominant pole is ft limited

(≈ 2πft/ξ).

4. LNA’s Linearity

The LNA linearity is typically described using IIP3 and 1-dB compression point,

where the former is the metric for small signal power and the latter is for large signal

power. Multi-Gate transistor (MGTR) based linearization methods for MOSFETs

rely on the fact that the second-order gm derivative’s polarity is different in weak and

strong inversions. MGTR scheme is not effective for large input signals because of

higher-order non-linearity. Although the published works in [24, 33, 34] report large

IIP3 values, they typically work only for Pin ≤ −20dBm. On the other hand, feedback

suppresses all the harmonic terms [35,36] and, therefore, is effective regardless of the

input signal power.

Consider a single NMOS transistor in saturation region with drain current given

by

IDS =
µCox

2

W

L

(VGS − Vth)
2

1 + θ (VGS − Vth)
(3.19)

where θ models mobility degradation. Its nonlinear transconductance is represented
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by a power series around the bias point:

ids = gmvgs +K2gmv
2
gs +K3gmv

3
gs + · · · (3.20)

where gm is the transconductance, and K2gm = 1
2!

∂2IDS

∂V 2
GS

and K3gm = 1
3!

∂3IDS

∂V 3
GS

are

higher order nonlinear coefficients. For simplicity, we neglect VDS dependence of the

drain current and assume linear intrinsic NMOS capacitances.

An intuitive but frequency independent explanation of the enhanced linearity of

a closed loop feedback system is provided in [35]. The source degeneration due to RS

inherently linearizes the amplifier. The dual feedback network in the proposed circuit

further linearizes the system with a loop gain of Gloop. The analytical expression for

the overall amplifier IIP3, denoted as IIP3,closed, is given by

IIP3,closed ≈ IIP3,open · |1 +Gloop|3 , (3.21)

where IIP3,open is the open loop amplifier IIP3 without the dual negative feedback

loops. To verify the preceding analysis, the circuits shown in Fig. 15(a) were simulated

in Spectre RF with ideal linear elements for Afb and Bfb, showing 6.2dB improvement

at the designed bias point. However, the linearity of the closed-loop LNA has an

upper bound that is set by the linearity of the feedback amplifier. The final LNA has

a linearity enhancement of 2dB compared to the open-loop CG-LNA.

To calculate the frequency dependency of IIP3, we apply a Volterra analysis [37]

(detailed in Appendix B) to the simplified circuit shown in Fig. 20. Fig. 21 plots

the resultant IIP3 vs. the gate overdrive voltages (Veff) of M1,2. M3 has a large

overdrive voltage and hence a much smaller distortion. The device parameters used

in the simulation are from the final LNA design bias point at Veff,1 = 180mV and

Veff,2 = 130mV for M1 and M2 respectively. The IIP3 performance is better with

large effective gate voltage for the transistors M1 and M2, and is more sensitive with
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Fig. 20. Equivalent model for non-linearity computation in the proposed LNA.
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Fig. 22. Theoretical (solid line) and simulated (dots) IIP3 at 2.4GHz versus (a)

Veff,1 = VGS,1 − Vth,1 and (b) Veff,2 = VGS,2 − Vth,2.

the main transistor M1 as expected. Fig. 22 shows the theoretical and simulated

IIP3 when the effective gate voltage of M1 or M2 is varied and the other is fixed at

the designed LNA bias point. In the simulation for Fig. 22(a), the power supply is

adjusted such that VDS of the transistor M1 is fixed after I · R drop due to resistive

load. The theoretical and simulated IIP3 match very well within 2dB difference.

D. Circuit Design and Layout Issues

1. Circuit Design

A dual negative feedback CG-LNA targeted for 1.2-5.2GHz was designed with triple-

well RF transistors and metal-insulator-metal (MIM) capacitors in TSMC 0.18µm

CMOS. Fig. 23 shows the final wideband CG-LNA with the source follower buffer.

The target specifications are: 1) 17dB voltage gain; 2) NF < 3dB; 3) current bud-

get of 10mA; and 4) IIP3 > 0dBm. In this design, we set gm1 = 1/RS, i.e. the

conventional impedance-match value for a CG-LNA. The IIP3 specifications require

Veff,1 = 200mV and Veff,2 = 130mV. Given gm1, we maximize RL to minimize its
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Fig. 23. Schematic of the proposed LNA with the buffer (biasing not shown).

noise contribution. From the voltage headroom constraint, we choose RL = 400Ω

ensuring M1 operates in saturation region with a sufficient margin.

Based on the NF target specification, the total current consumption of 6mA is

determined where (3.13) shows 2.4dB of NF. The induced gate noise and the gate

resistance increases the predicted NF and this safety margin is necessary to achieve the

targeted NF. Finally, the ratio gm2/gm3 is determined from input matching condition

given gm1 and RL. The LNA is biased with a current mirror, which is not shown in

Fig. 23 for simplicity. The final values of the device sizes are summarized in Table

IV.

Table IV. Device dimension.
M1 (3µm/0.18µm)× 16
M2 (3µm/0.18µm)× 64
M3 (3µm/0.18µm)× 10
C1,3 0.4 pF
C2 1 pF
RL 370Ω
Rbias 350Ω

We added a source follower to drive the 50Ω external measurement equipment.

The gm of the source follower is intentionally designed to be less than 1/Rext with

smaller device size to improve S22 at high frequency. A separate 1.8V power supply
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Fig. 24. Schematic of the proposed LNA with bondwire inductors.

is used with independent current mirror biasing for the design of the buffer.

2. Layout Issues

Wide-use of RF-MIM coupling capacitors gives design flexibility but causes signal

loss because of parasitic substrate capacitance. Hence, we minimize AC coupling

capacitance size to maximize the LNA’s bandwidth. Shielded pads [38] are employed

for RF input and output to prevent signal loss and noise from the resistive substrate.

Shielded RF pads exhibit more capacitance to RF ground (Metal 1 shorted to ground),

but this is not a major issue since it is resonated out with an off-chip inductor.

The schematic in Fig. 24 shows the pads and bondwire inductors. On-chip bypass

capacitors null the effects of bondwire inductances L1 and L3. Bondwire inductance

L2 requires careful consideration since it alters the input impedance with a parasitic

pole-zero pair. Assuming other parasitic effects are cancelled by the input-mathcing
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Fig. 25. Die photograph of the LNA.

LC resonator yields the following expression for input impedance:

Zin =
RL + 1/gm1

1 + gm2/gm3

· 1 + sgm2L2

1 + sgm2L2

1+gm2/gm3

(3.22)

Then, multiple pads are connected but not in adjacent pads to decrease effective L2

and mutual inductance.

E. Measurement Results

The circuit was designed and fabricated in TSMC 0.18µm CMOS technology and

encapsulated in a QFN package. Fig. 25 shows the die photograph of the LNA.

The active area is only 0.073mm2 since no inductor is used on-chip. The chip was

measured on FR-4 PCB.

Fig. 26 shows the measured and simulated S11. The measured S11 is close to

simulation up to 2.5GHz but degrades rapidly above the point. The measured S11

is below -10dB between 1.05 and 3.1GHz. We attribute the discrepancey to (1)

insufficient self-resonant frequency (<10GHz) of off-chip inductor Lbias and (2) board
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Fig. 26. Measured and simulated S11.
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Fig. 27. Measured and simulated voltage gain versus frequency.
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Fig. 28. Measured and simulated NF versus frequency.

parasitics in FR-4 substrate. Fig. 27 shows the measured voltage gain versus simulated

voltage gain after deembedding the buffer effect. We measure a maximum voltage

gain of 16.9dB and remains 1-dB flatness from 1.1 to 2.5GHz. The lower and upper

3-dB bandwidth is measured at 0.8GHz and 3.05GHz. The gain roll-off also starts

at 2.5GHz where impedance matching degrades due to the board parasitics. Note

that the 3-dB bandwidth (3.05GHz) almost exactly corresponds with the -10dB S11

bandwidth (3.1GHz).

The NF is measured within amplifier’s 3dB bandwidth. As shown in Fig. 28,

the NF varies between 2.57dB to 3.15dB within the amplifier’s bandwidth. IIP3

measurement was performed with the LNA and buffer as shown in Fig. 29. Two tones

are applied with equal amplitude and a frequency spacing of 4MHz. The measured

IIP3 is 0.3dBm at 2.2GHz. Fig. 30 displays the IIP3 as the location of the two tones

are varied within the bandwidth. IIP3 has a minimum of -0.7dBm for fo =2GHz.

The measured performance of the dual negative-feedback LNA is summarized

in Table V. Recently published works in wideband LNAs are compared with the

proposed architecture. The circuit benefits from low NF and high linearity with
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Table V. Comparison of CG-LNA to recently published works.

Technology
Frequency Gain NF IIP3 Power Supply

Architecture
Area

[GHz] [dB] [dB] [dBm] [mW] [V] [mm2]

[24]
0.18µm 0.8-

14.5 2.6*** 16 17.4 1.5 single 0.099
CMOS 2.1

[27]
0.18µm 0.3-

21**
2

-3.2 3.6 1.8 differential 0.33
CMOS 0.92* 2.8***

[31]
0.25µm 0.2-

13.7** 2.4 0 35 2.5 single 0.075†
CMOS 1.6*

[39]
0.13µm 1.0-

17** 2.7*** -4.1 25 1.4 differential 0.019†
CMOS 7.0

[40]
90nm 0-

17.4** 2.5 -8‡ 9.8 1.2 single 0.002†
CMOS 6.0*

[41]
90nm 0.5-

25** 2 -14 42 2.7 single 0.025†
CMOS 6.0

[42]
0.18µm 2.3-

9.3
4

-6.7 9 1.8 single 0.66†
CMOS 9.2* 5.2***

[43]
65nm 0.2-

15.6** < 3.5 > 0 21 1.2 balun⋄ 0.01†
CMOS 5.2*

This Work
0.18µm 1.05-

16.9**
2.57

-0.7 12.6 1.8 single 0.073†

CMOS 3.05* 2.86***

*Minimum of 3-dB bandwidth and S11¡-10dB
**Voltage gain
***Average NF
†Active area size
‡Graphically estimated
⋄Single-to-differential conversion
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moderate power consumption.

F. Conclusions

A new wideband CG-LNA architecture is proposed with a detailed analysis and de-

sign guidelines. Theoretical analysis of the amplifier architecture demonstrated that

the fundamental tradeoff between noise match (NF) and power match (S11) can be

overcome without degrading other design parameters.

Measurement results of the dual negative-feedback CG-LNA realized in 0.18µm

CMOS demonstrate 16.9dB maximum voltage gain, 2.57dB minimum NF, better

than -10dB input matching and -0.7dBm minimum IIP3 from 1.05 to 3.05GHz, while

dissipating 7mA from 1.8V supply. A comparison of measurement results with the

recently published wideband LNAs shows that the proposed dual negative-feedback

CG LNA achieves superior noise and linearity performance with moderate power

consumption using a mainstream technology.
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CHAPTER IV

WIDEBAND INDUCTOR-LESS BALUN-LNA EMPLOYING FEEDBACK WITH

NOISE AND DISTORTION CANCELLING

A. Introduction

Recently, multi-standard radio receivers have drawn strong attention and future wire-

less communication devices must support multiple standards and features on a single

chip. Low-noise-amplifier (LNA), as the first active block in receiver, must have good

impedance matching, low noise, and high linearity across a wide frequency band.

The conventional solution is to employ several LC-tuned LNAs in parallel to cover

dedicated small band over the wanted frequency span [16, 17]. The other extreme

is a wideband LNA [44] with more flexibility and better efficiency in terms of form

factor, cost, and power, but its performance must be comparable to or even better

than narrowband tuned LNAs due to concurrent reception of multi-standard signals

unfiltered.

Balanced and symmetrical architecture is preferred to an unbalanced one due

to its robustness to power supply and substrate noise. Second-order distortion in

the receive chain is significantly reduced when differential (balanced) signaling in the

receive chain is adopted. However, antennas and RF filters typically produce single-

ended I/O and, thus, adding a single-to-differential circuitry in the receiver chain

is a must [45, 46]. Passive components have been used to implement the single-to-

differential but the form-factor is usually excessive and, therefore, is not suitable for

integrated circuit operations [47,48]. Also, passive balun is lossy and narrowband so

that several components dedicated to each frequency band are required for wideband

operation, leading to higher costs. Current state of the art RF systems with high
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sensitivity requirement demands high performance balun, which are not lossy and

area efficient. Active-Balun fits the requirements very well, which provides positive

gain and small noise contribution in a wideband fashion. Several topologies have

been devised and those include a single transistor with common-source and common-

drain (source follower) outputs [45, 49], a differential pair with a single input AC

grounded [50–52], and common-source (CS) and common-gate (CG) pair for 180

degree phase shift [43, 53, 54].

In this chapter, we present an inductorless Balun-LNA based on the CG-CS

topology. Previous works [43, 53] have shown that CG-CS topology with trans-

conductance scaling in CS stage can achieve sufficient low noise figure (< 3dB) with

balanced output, noise and distortion cancellation. However, the noise and headroom

issue due to the biasing of CG stage was not fully accounted for, and the previous

works used either noisy resistor bias in [43], or noiseless and bulky inductor in [53].

The passive device acting as a current source suffers from process, voltage, and tem-

perature (PVT) variations as well, in contrast to the stable operation with an active

device based on current-mirror. The proposed architecture employing negative feed-

back features lower power and wider bandwidth with minimal noise contribution due

to the active current source. The frequency compensation in CS stage ensures bet-

ter gain and phase balance, whereas previous works [43, 53] show different frequency

response between CG and CS stage due to trans-conductance scaling.

This chapter is structured as follows. Section B reviews the active-balun topolo-

gies and their properties. Section C describes the proposed inductorless balun-LNA

and derives analytical expressions for input impedance, gain, bandwidth, NF, and

output balancing. Section D provides simulation results, and the concluding remarks

are given in Section E.
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Fig. 31. Active-balun topologies: (a) A single transistor topology, (b) Differential

topology with a single input AC grounded, and (c) CG-CS topology.

B. Active-Balun Topologies and Their Properties

There exists passive and active differential phase shifters or baluns. Passive balun

due to its lossy and bukly nature, is not suitable for integrated circuit operations and,

thus, are not considered further.

Fig. 31 shows several active-balun topologies that have been proposed in past

and present literature [43, 45, 49–54]. A single transistor topology in Fig. 31(a) with

180 anti-phase outputs at drain and source of transistor is probably the simplest

implementation of active-balun. The single transistor topology, however, do not have

even signal leakage to the drain and source at high frequency due to assymetric
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parasitics at both outputs. In order to achieve a good balance at high frequency

(> 1GHz), a dummy transistor to compensate for unequal parasitics is deliberately

added in [45], but requires careful simulation to ensure gain and phase balance. Cross

connection of three single transistor phase shifter is utilized to cancel the imbalance

between differential output in [49] at the expense of degradation in other performances

(e.g., noise and linearity) due to the cascaded structure.

Fig. 31(b) shows the differential topology where one arm of differential pair is AC

grounded. RF signal applied to the gate of one of differential pair transistor ideally

flows through two symmetric branches with the same magnitude and an inverse direc-

tion [55]. Two non-idealities limit the balance of differential pair topology, which are

finite impedance of current source and feed-forward path mainly due to Cgd of differ-

ential pair transistor. The effect of non-idealities on output balance performance can

be analyzed separately without losing its generosity. When the parasitic capacitance

of common-source node and the finite resistance of current source are included with

Cgd = 0, the differential output voltage can be obtained as follows.

vout1 = −
gm
2
·

(

1 + gx
gm

)(

1 + sCgs+Cx

gm+gx

)

(

1 + gx
2gm

)(

1 + sCx+2Cgs

gx+2gm

)
1

Zout1

· vin, (4.1)

vout2 =
gm
2
·

(

1 + sCgs

gm

)

(

1 + gx
2gm

)(

1 + sCx+2Cgs

gx+2gm

)
1

Zout2

· vin, (4.2)

where Cx is parasitic capacitance at the common-source node, gx is the finite

conductance of current source, and gm is the trans-conductance of differential pair. It

is seen from (4.1), (4.2) that there are two source of error; low-frequency magnitude

mismatch and location of the zero.

The effect due to Cgd only incurs imbalance for differential output, whose expres-

sion is shown below
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vout1 = −
gm
2
− sCgd

1
Zout1

+ sCgd

· vin, (4.3)

vout2 =
gm
2

1
Zout2

+ sCgd

· vin. (4.4)

A right-hand-plane (RHP) zero has been introduced at the inverting output due

to feed-forward path, whereas it is not present in the expression of the non-inverting

output voltage.

The imbalance due to these effects prevents the use of differential pair topology

at high frequency. One solution is to feed back a fraction of the single-ended output

signal to the second transistor [52]. Feed-forward path from the input node to non-

inverting output node can be employed to shift the zero of non-inverting output

voltage to a lower frequency [55].

CG-CS topology in Fig. 31(c) has drawn close attention due to its advantageous

properties such as noise and distortion cancellation [43, 53, 54]. Blaakmeer et al.

[43] demonstrated that, by trans-conductance scaling, CG-CS topology can provide

wideband matching, noise and distortion cancellation, and output balancing. This

work shows the output balacing condition at low frequency but does not explictly

show how differential output can be balanced at high frequency especially when trans-

conductance of CS stage is scaled (> 4x) although the measurement shows good gain

and phase balance up to 3.5GHz. In [54], local feedback is utilized to boost the trans-

conductance of CG stage. However, the feedback signal is from cascode node of CS

stage where low signal swing is desired to minimize the miller effect and enhance the

frequency response. Also, the resistor bias is used for CG stage susceptible to PVT

variations.
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Fig. 32. Schematic of inductor-less balun-LNA employing feedback.

C. Wideband Inductor-Less Balun-LNA

Fig. 32 shows the proposed wideband inductor-less balun-LNA employing feedback.

The compensation scheme for output balance is not shown here not to clutter the

schematic of the proposed balun-LNA. Impedance matching device M1 amplifies the

signal and provides the main non-inverting signal path in CG configuration. The

common-source (CS) amplifier due to M2 ideally shows 180 degree phase shift with

respect to non-inverting CG stage. The inherent inverting gain of the CS stage is

utilized to boost the trans-conductance of M1 and, therefore, the required gm,CG can

be reduced by a factor of 1 +AV,CS, where AV,CS is the gain of CS stage. Device size

and its power consumption in CG stage is reduced as well and its reduction factor

is design dependent. Additional benefit from the feedback is noise-suppression of

CG stage bias transistor (M3) with minimal headroom due to M3. With the given
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bias current from input match (Rin = 50Ω) condition, the only way to minimize the

noise contribution due to M3 is to lower its noise source (i2n/∆f = 4kTgm,M3) at the

expense of headroom (Vov,M3). Hence, there is a trade-off between noise contribution

due to CG stage bias transistor and its headroom. Low noise design dictates the high

supply required and both can not be optimized at the same time. Previous works

in [43, 53] used either noisy resistor bias with large resistance (> 300Ω) to minimize

noise at the expense of voltage drop, or noiseless and area-inefficient inductor. The

proposed architecture maintains the noise and distortion cancellation property of the

original circuit with lower power and better bandwidth. Two frequency compensation

schemes to balance gain and phase of differential outputs are proposed and will be

discussed in Section C.3.

1. Input Match

The input impedance of the inductorless balun-LNA employing negative feedback at

low frequency can be easily evaluated by the Blackman’s formula [56, 57] as

Zin = Zin,open ·
1 +RR(port short circuited)

1 +RR(port open circuited)
, (4.5)

where Zin,open is the input impedance with the feedback broken. Since the input

impedance of CS stage is capacitive, the real part of input impedance with the feed-

back broken is given from 1/gm,CG of CG stage. For the series-shunt (voltage-voltage)

feedback in the proposed architecture, shorting the port kills the feedback. Then, (4.5)

can be further simplified to

Zin =
Zin,open

1 +RR(port open circuited)
, (4.6)

The input impedance of Balun-LNA in terms of device parameters can be found
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as

Zin =
1

gm,CG

(

1 + gm,CS ·
(

RCS ‖ 1
sC2

)) ‖ 1

sCp

(4.7)

where RCS and C2 are output resistance and capacitance of CS stage respectively,

and parasitic capacitor Cp arises from the input pad, M1, M2, and M3. The device

size in the proposed architecture is much smaller and, furthermore, the circuitry does

not suffer from miller effect due to Cgd of M2 in contrast to the architecture in [54].

2. Noise Analysis

CG-CS topology is a well known architecture and has been widely used [58,59]. Prop-

erty of noise and distortion cancellation due to CG stage was not cleary stated before,

and recent works in [43, 53, 54] better utilized the property with trans-conductance

(gm,CS) scaling of CS stage. The detailed analysis for noise figure (NF) of previous

work without series-shunt feedback is a little tedious and is shown below without

proof.

NF = 1 +
γgm,CG · (RCG −RS · gm,CS ·RCS)

2

RS · A2
V

︸ ︷︷ ︸

M1(CG) contribution

+
γgm,CS · R2

CS · (1 + gm,CG ·RS)
2

RS · A2
V

︸ ︷︷ ︸

M2(CS) contribution

+
(RCG +RCS) · (1 + gm,CG ·RS)

2

RS · A2
V

︸ ︷︷ ︸

load resistor contribution

+ γ · gm,bias ·RS
︸ ︷︷ ︸

M3(bias) contribution

(4.8)

where AV is differential voltage gain expressed as

AV = gm,CG · RCG + gm,CS ·RCS. (4.9)
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Assuming square-law behavior of MOS transitor in saturation under impedance match

condition (RS = 1/gm,CG), (4.8) can be rewritten as

NF = 1 +
γgm,CG · (RCG −RS · gm,CS ·RCS)

2

RS · A2
V

︸ ︷︷ ︸

M1(CG) contribution

+
γgm,CS · R2

CS · (1 + gm,CG ·RS)
2

RS · A2
V

︸ ︷︷ ︸

M2(CS) contribution

+
(RCG +RCS) · (1 + gm,CG ·RS)

2

RS · A2
V

︸ ︷︷ ︸

load resistor contribution

+ γ · Vov,CG

Vov,bias
︸ ︷︷ ︸

M3(bias) contribution

(4.10)

where Vov,CG and Vov,bias are overdrive voltage of M1 and M3, respectively. It is

explicit from (4.10) that the noise contribution due to current source (M3) has a

direct trade-off with its headroom (Vov,bias). A similar conclusion can be drawn if the

resistor is used for CG bias [43]. The thermal noise of resistor (i2n/∆f = 4kT/Rbias)

can be reduced if its value is increased at the expense of headroom (voltage drop).

350Ω resistor is used for CG bias to minimize its noise contribution in [43]. The work

in [53] is free of noise due to bias since noiseless inductor (RF choke) is used to bias

the CG stage at the expense of chip area.

Fig. 33 shows NF of CG-CS topology when negative series-shunt feedback is not

used. The trans-conductance scaling of CG stage is represented by N = gm,CS/gm,CG

and gm,CG is set to be 20mS to ensure ideal input impedance matching with reactive

terms ignored. RCG = 200Ω is given from the assumption that both M1 and M3

have 0.3V of overdrive voltage with 1.2V supply. From the input impedance match

condition (gm,CG = 20mS), RCG = 200Ω requires 0.6V of voltage drop under classic

square-law behavior of MOS in saturation (gm = 2·I
Vov

). The noise contribution due to
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current mirror bias with i2n/∆f = 4kTγgm,bias is not negligible and should be carefully

evaluated. Noise performance can be enhanced when the headroom due to current

mirror is sacrificed. Vov scaling denoted as M in addition to gm.CS scaling can further

improve NF of the active-balun based on CG-CS topology. Fig. 34 clearly shows

that only due to scaling of both the gm,CS and Vov,bias scaling, denoted as N and M

respectively, can the converntional CG-CS topology achieve sufficient low NF. NF of

the proposed architecture employing feedback can be expressed as

NF = 1 +
γgm,CG · (RCG −RS · gm,CS · RCS)

2

RS · A2
V

︸ ︷︷ ︸

M1(CG) contribution

+
γgm,CS ·R2

CS · (1 + gm,CG · (RCG +RS))
2

RS · A2
V

︸ ︷︷ ︸

M2(CS) contribution

+
(RCG +RCS) · (1 + gm,CG · (1 + AV,CS) ·RS)

2

RS · A2
V

︸ ︷︷ ︸

load resistor contribution

+ γ · Vov,CG

Vov,bias · (1 + AV,CS)
︸ ︷︷ ︸

M3(bias) contribution

(4.11)

where AV is differential voltage gain of the proposed architecture and AV,CS is the

gm,CG boosting factor expressed as

AV,CS = gm,CS ·RCS. (4.12)

AV = gm,CG · (1 + AV,CS) ·RCG + gm,CS ·RCS.

(4.13)

The second term in (4.11) represents the noise contribution of CG transistor

M1 and its noise is totally cancelled when the output is balanced. The third term
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represents the thermal noise contribution of CS transistor M2. It is not apparent but

can be shown that the noise due to M2 is minimized with larger loop gain (AV,CS).

The last term accounts for the noise due to CG stage bias and its noise is suppressed

by the factor, 1 + AV,CS, compared to the conventional topology [43, 53]. Fig. 35

shows that the noise performance with enough loop gain (AV,CS > 2) can achieve the

sufficient low NF even without Vov scaling.

3. Gain and Phase Balance and Their Compensation

The transfer function from vx to the non-inverting and inverting stage output is

derived to obtain the gain and phase error of the proposed Balun-LNA with parasitic

capacitance effects shown in Fig. 36. The transfer function from the port to vx does

not incur imbalance and, thus, not considered in the derivation. Ca is the total

capacitance due to M1, M2, and M3. Cb is the parastitic effects at the drain of M2
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Fig. 36. Balun-LNA with parasitic capacitance for gain and phase imbalance analysis.

and source of M4. The approximate capacitance of Ca and Cb is given by

Ca ≈ Cgd3 + Cdb3 + Cgd2(1 + gm,CS/gm4)

+Cgs2 + Csb1 + Cgs1(1 + gm,CS ·RCS) (4.14)

Cb ≈ Cgd2 + Cdb2 + Cgs4 + Csb4, (4.15)

where miller approximation is utilized to capture the capacitance boosting due to

feedback. The voltage gain from vx to the CS (inverting) stage output is derived as

v2

vx
= − gm,CS ·RCS

1 + sRCS · C2

· 1

1 + s · Cb

gm4

. (4.16)

The non-dominant pole (gm4/Cb) due to the cascode device is order of magnitude

higher than the dominant pole (=1/RCS · C2) at the output of the CS stage and is

neglected in the following derivation. Small signal analysis of Fig. 36 shows that the
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high-frequency voltage gain of CG (non-inverting) stage is given by

v1

vx
=

gm,CG · (1 + gm,CS ·RCS) ·RCG · (1 + s RCS ·C2

1+gm,CS ·RCS
)

(1 + sRCG · C1) (1 + sRCS · C2)
. (4.17)

From (4.16) and (4.17), the output balance at low-frequency is satisfied when

noise and distortion canceling conditions are met. The dominant pole of the CS stage

generates the pole and zero pair in the CG stage due to the feedback in addition to

the pole at the output of CG stage. Since the pole at (=1/RCS · C2) is common for

CG and CS stage, the gain and phase imbalance can be expressed as

∆φ = φv1 − φv2

= tan−1

(
ω ·RCS · C2

1 + gm,CS ·RCS

)

− tan−1 (ω ·RCG · C1) (4.18)

∆v = 20 log10 (v1)− 20 log10 (v2)

= log10







√
√
√
√1 +

(
ω·RCS ·C2

1+gm,CS ·RCS

)2

1 + (ω ·RCG · C1)
2







(4.19)

Taking into consideration the effect of gm,CG boosting (T = gm,CS · RCS) and gm,CS

scaling (gm,CS = N/RS), the gain and phase imbalance due to the zero are negligible.

The dominant pole is determined by 1/RCG · C1 and the zero is pushed to high

frequency by the factor N · T .

The imbalance in gain and phase is predictable in the proposed Balun-LNA at

high frequency due to the pole at the output of CG stage. The capacitor between CG

and CS stage output shown in Fig. 37 can be included to compensate for the gain

and phase imbalance. With the compensation capacitor C3 only (i.e., Rgate = 0), the
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Fig. 37. Balun-LNA with gain and phase compensation network.

transfer function can be derived as

v2

vx
= −

gm,CS ·RCS ·
{

1 + s ·RCG ·
(

C1 + C3 − gm,CG

gm,CS
· C3

)}

1 + a · s+ b · s2

v1

vx
=

gm,CG · (1 + gm,CS · RCS) ·RCG ·
{

1 + s RCS ·C2

1+gm,CS ·RCS

}

1 + a · s+ b · s2
,

(4.20)

where a and b are as follows.

a = RCG · C1 +RCS · C2

+(RCG +RCS + gm,CG ·RCG ·RCS) · C3 (4.21)

b = RCG · RCS · (C1 + C2) · C3 (4.22)

Perfect balance in gain and phase can then be achieved by equating two transfer

functions. Since the natural response (pole) of the system are equivalent, the condition
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of equal zero in inverting and non-inverting output stage leads to the following:

C3 =
k · C2 − C1

1− k
(4.23)

where k =
gm,CG

gm,CS
(= 1

N ·(1+T )
) ≪ 1 is the ratio of common-gate and common-source

amplifier transconductance.

The short-coming of the proposed compensation is the dependency on the para-

sitic capacitance value of differential outputs (C1 and C2) and, therefore, the required

compensation component can be either capacitive or inductive. The loading due to

the next stage (e.g., mixer) is symmetrical and usually more dominant than the par-

asitic of Balun-LNA at the differential output node in the typical implementation,

and therefore C3 is negative (inductive) with k ≪ 1 and C1 ≈ C2.

The alternative compensation scheme that is employed for the proposed balun-

LNA is the use of gate resistance for the cascode transistor. The gate resistance of the

cascode transistor can be beneficial for both differential output symmetry (balance)

and stability. As capacitively degenerated device exhibits negative real impedance in

contrast to positive real impedance synthesis widely adopted for inductor degenerated

LNA [20,29], parasitic inductance at the gate of cascode can form a colpitts oscillator.

Therefore, the gate resistance added de-Q the resonator and improves the stability

[60]. From the current transfer perspective from CS stage to CG stage due to cascode

transistor, the gate resistance added modifies the frequency response in CS (inverting)

stage. The voltage gain from vx to the CS (inverting) stage output with Rgate only is

now expressed as

v2

vx
= − gm,CS ·RCS

1 + sRCS · C2

· 1

1 + s · Cgs4+Cb

gm4
+ s2 · Rgate·Cgs4·Cb

gm4

. (4.24)

where Rgate is the gate resistance added for the cascode transistor. The current
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Fig. 38. Die photograph of the balun-LNA.

transfer due to cascode transistor is second-order with Rgate added and can serve as a

compenation network. Without Rgate, non-dominant pole due to the cascode is much

higher than the dominant pole as shown in (4.16) and is negligible. A stabilizing

and compensating resistor of Rgate = 140Ω is chosen based on the trade-off between

output symmetry and NF degradation due to Rgate.

D. Simulation Results

The circuit was designed in TSMC 0.13µm CMOS technology and extracted with

calibre. Fig. 38 shows the die photograph of the Balun-LNA with probe buffer. The

active area of the chip and Balun-LNA core are only 250µm × 300µm and 170µm ×

150µm respectively, since no inductor is used on-chip.

Fig. 39 shows simulated impedance matching performance (S11) and power gain

(S21) of Balun-LNA core and the probe buffer. The simulated S11 is below -10dB

between 0.5 and 4GHz. The maximum power gain (S21) is 7.6dB and remains 1-dB
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flatness from 0.35 to 2.8GHz. The lower and upper 3-dB bandwidth is measured at

0.2GHz and 4GHz. AC coupling capacitors attenuate low frequency signals, and the

parasitic capacitors Ca, Cb, C1, and C2 attenuate high-frequency signals. Therefore,

the proposed Balun-LNA shows band-pass type of response in its impedance matching

and power gain although the circuit itself is broadband from DC.

Fig. 40 shows the simulated voltage gain after deembedding the probe buffer

effect. The probe buffer output impedance ( 1
gm,buffer

) is designed to be larger than

50Ω with smaller parasitics to extend the output matching bandwidth. Then, the

loss due to the probe buffer is 6.8dB. Another 3dB is added to reflect the conversion

from 50Ω input to 100Ω output.

Fig. 41 shows the simulated NF of Balun-LNA and the probe buffer and NF of

Balun-LNA core only after de-embedding the probe buffer effect. The de-embedding

procedure is detailed in Appendix C. The NF varies between 3.56dB to 4.2dB within

the amplifier’s bandwidth. The linearity test (IIP3) was performed with the Balun-

LNA and the probe buffer as shown in Fig. 42. Two tones are applied with equal
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amplitude and a frequency spacing of 10MHz. The simulated IIP3 shows the maxi-

mum of -0.45dBm with two tones at 0.7GHz and 0.8GHz. IIP3 shows the degradation

when frequency of two tone test signal increases. The degradation in its linearity is

due to the lack of perfect linearity cancellation as frequency increases since gain and

phase im-balance in CG (non-inverting) and CS (inverting) stage increases. The fre-

quency spacing between two tones are varied from 4MHz to 20MHz and shows very

little variation as shown in Fig. 43.

Fig. 44 shows the phase im-balance between non-inverting and inverting stage

with and without the compensation network. It clearly shows that the compensa-

tion circuitry equalizes the phase imbalance at high frequency. Less than 0.5dB of

gain imbalance and 3 degree of phase-imbalance is satisfied within the balun-LNA’s

bandwidth as shown in Fig. 45.

The simulated performance of the dual negative-feedback LNA is summarized in

Table VI. Recently published works in balun-LNAs are compared with the proposed

architecture.

E. Conclusions

This chapter presents a new Balun-LNA architecture, and provides a detailed anal-

ysis on its performance; gain, NF, bandwidth, and differential symmetry (balance).

Inherent gain of CS (inverting) stage is utilized to reduce the power consumption

and improve performance with noise and linearity cancellation property of CG-CS

balun topology preserved. Current-mirror based biasing scheme is used to ensure

stable operation under PVT variations. The noise contribution due to active current

source is suppressed with less voltage headroom when the proposed feedback scheme

is employed. Two gain and phase compensation schemes are introduced in Section
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Table VI. Comparison of Balun-LNA to recently published works.

Technology
Frequency Gain NF IIP3 Power Supply

Architecture
Area

[GHz] [dB] [dB] [dBm] [mW] [V] [mm2]

[24]
0.18µm 0.8-

14.5 2.6*** 16 17.4 1.5 single 0.099
CMOS 2.1

[27]
0.18µm 0.3-

21**
2

-3.2 3.6 1.8 differential 0.33
CMOS 0.92* 2.8***

[31]
0.25µm 0.2-

13.7** 2.4 0 35 2.5 single 0.075†
CMOS 1.6*

[39]
0.13µm 1.0-

17** 2.7*** -4.1 25 1.4 differential 0.019†
CMOS 7.0

[42]
0.18µm 2.3-

9.3
4

-6.7 9 1.8 single 0.66†
CMOS 9.2* 5.2***

[43]
65nm 0.2-

15.6** < 3.5 > 0 21 1.2 balun⋄ 0.01†
CMOS 5.2*

[54]
0.13µm 0.2-

19** 2.8 -4.2 5.7 1 balun⋄ 0.025†
CMOS 3.8

[61]
0.13µm 0.1-

19** 3 1 12 1.8 balun⋄ Not reported
CMOS 6.5*

[62]
90nm 0.8-

20** 3.5 -3.5 12.5 2.5 balun⋄ Not reported
CMOS 6*

This Work
0.13µm 0.5-

17.4** 3.56 -0.45 2.6 1.2 balun⋄ 0.075†

CMOS 4.0*

*Minimum of 3-dB bandwidth and S11 <-10dB
**Voltage gain
***Average NF
†Active area size
⋄Single-to-differential conversion
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C.3 and latter scheme is utilized due to nearly equal loading to Balun-LNA. Theoret-

ically, former scheme equalizes CG and CS stage without hurting other performance

but required passive device can be either capacitive or inductive depending on the

loading due to the next-stage (e.g., mixer or off-chip SAW filter)

Simulation results of the proposed balun-LNA realized in 0.13µm CMOS demon-

strate 17.4dB maximum voltage gain, 3.56dB minimum NF, better than -10dB input

matching and -0.45dBm IIP3, while dissipating only 2.6mA from 1.2V supply. A com-

parison of measurement results with the recently published wideband LNAs shows

that the proposed balun-LNA with negative feedback achieves lower power, wider

bandwidth, better gain and phase symmetry without using any inductors on-chip.
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CHAPTER V

LOW-POWER, LOW-COST CMOS DIRECT CONVERSION RECEIVER

FRONT-END FOR MULTI-STANDARD APPLICATIONS

The strong demand for multi-standard receiver encouraged research centers and com-

panies to find architectural solutions to maximize the SOC integration and reduce bill

of materil (BOM). Direct conversion receivers are widely adopted in state-of-the-art

wireless communication systems for their high level of integration and reconfigura-

bility in the baseband. Its critical drawbacks such as 1/f noise, DC-offset, and high

requirement for matching are still challenging and should be tackled at both the

system level as well as circuit level.

Compatibility with the digital part of transceiver mandates the use of advanced

(scaled down) CMOS process. However, CMOS introduces more flicker noise (1/f

noise) than other processes and the only way to mitigate the low-frequency noise

from device perspective is to increase the device size, which is contradictory to the

necessity of scaled CMOS process in modern transceiver design. The most promising

way to alleviate the 1/f noise is to have zero DC current in the switching core [63,64].

Although, it is shown that non-zero time-varying current void of DC current can

still generate the flicker noise [65], the passive mixer shows order of magnitude lower

flicker noise compared to gilbert cell mixer, where mixer dissipates DC currrent.

The receiver architecture based on a single low-noise trans-conductor (LNTA)

driving a current-mode passive mixer loaded by low-impedance has been widely

adopted recently due to its beneficial feature in terms of noise and linearity [53, 64,

66–68]. The architecture shows a drastic reduction in its flicker noise due to current-

mode passive mixer void of static DC current. Further optimization can be done

on TIA after down-conversion by increasing its device size for flicker noise reduction
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and burning more current for thermal noise reduction. Regarding linearity, distortion

associated with a large voltage swing present in gilbert cell mixer and voltage-mode

passive mixer is minimized thanks to the TIA’s virtual ground. Out-of-band interfer-

ence performance is improved by avoding voltage swing before the signal experiences

first-order low-pass filtering via I-V conversion on TIA.

However, the design of broadband receiver based on the architecture is chal-

lenging in several aspects. Since there is a single V-I conversion before reaching the

mixer, LNTA’s trans-conductance should be large enough to guarantee low noise-

figure (NF) of the system. Inductor degenerated LNTA can be adopted in narrow-

band implementation [66, 68, 69], where large trans-conductance (>40mS) with 50Ω

input impedance synthesis is allowed. Broadband LNTA (e.g., shunt-feedback LNTA

and CG-LNTA) has a fixed relation between input impedance, trans-conductance,

and the load impedance and, thus, trans-conductance of LNTA is limited by input

matching condition. Low mixer input impedance creates another difficulty because

feedback based amplifiers rely on large loop gain that LNTA can not provide. Noise

amplification due to TIA [65] can be significant in broadband design, whereas LC

tank for LNTA is utilized for narrowband design to mitigate the switch capacitor

effects [66, 68, 70]. Frequency-dependent input impedance of TIA deserves a careful

attention as well in wideband systems. At high frequency, the feedback gain drops

with the increase in virtual ground impedance. The conventional solution is to add a

shunted capacitor at virtual ground to mitigate the impedance rises at high baseband

frequency [68, 70]. However, this solution drastically limits the open-loop OTA high

frequency gain, and incurs noise peaking of TIA and non-ideal filtering for out-of-band

interfernece [64].

In this chapter, we present an broadband low-power, low-cost receiver front-end

with a dual feedback CG-LNTA driving a current-mode passive mixer loaded by a
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virtual ground of wideband feed-forward compensated TIA. CG-LNTA utilizes capac-

itor cross-coupling and positive feedback from the cascode node of the amplifier such

that LNTA can break the trade-off between input impedance, trans-conductance, and

LNTA load impedance. A topology for the quadrature sampling mixer [2] is employed

to realize 25% duty-cycle with 50% quadrature LO. Quadrature mixing scheme sig-

nificantly saves power consumption related to LO and improves noise performance

with the proposed receiver architecture. For TIA implementation, a feed-forward

compensated operational trans-conductance amplifier (OTA) realizes wideband low

input impedance compared to miller compensated OTA with pole separation. TIA

filtering is realized employing conventional technique. This chapter is organized as

follows. The system description is discussed in Section A. Section B describes the

chip design details for CG-LNTA, Quadrature sampled mixer, feed-forward OTA,

and frequency divider, followed by simulation results in Section C. The concluding

remarks are given in Section D.

A. System Description

1. Receiver Architecture

The receiver block diagram is depicted in Fig. 46. The front-end employs a direct

conversion architecture for its lower cost and power with a reconfigurability in the

baseband. The receiver front-end comprises a low-noise trans-conductance amplifier

(LNTA), two separate passive mixers for in-phase (I) and quarature-phase (Q) and

a trans-impedance single-pole filter. A local oscillator (LO) generation consists of a

divide-by-two circuit to generate 50% duty-cycle LO from the external 2fLO source

and chains of self-biased CMOS inverters to provide rail-to-rail swing to the passive

mixer. Since the output of LNTA is current (trans-conductance), 50% duty-cycle



75

BBI

BBQ

LNTARFin 2fLO
I

Q
I/Qgen.

Fig. 46. Receier architecture: LNTA, passive mixer, trans-impedance single-pole filter

with I/Q generator (divide by 2 and mixer buffer).

LO with a relative delay of 1/4 period gives 6dB (1/2) of gain loss and significant

NF increase due to the overlap between LO I and LO Q pulses. 25% duty-cycle LO

scheme [53] provides isolation between I- and Q- current-path in time and, therefore,

conversion gain loss and subsequent NF increase is prevented. However, the power

dissipation to generate required 25% duty-cycle LO might be prohibitively large.

AND operation to provide 25% duty-cycle can be done within the mixer swithes

instead of LO [2]. In this work, a topology for the quadrature sampling is utilized to

implement non-overlapping switching mixer between I and Q path with 50% duty-

cycle LO. The increase in on-resistance due to quadrature sampling does not impact

the receiver performance significantly by employing LNTA load impedance boosting

and wideband low input impedance TIA in the proposed architecture. Size of the

mixer switches can be increased as well with the penalty in bandwidth (frequency

response) of the passive mixer. All the RF and LO paths are differential (balanced)

in order to enhance sensitivity to power supply and substrate noise. By using current-
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mode passive mixer and careful design of baseband OTA used for TIA, the flicker noise

issue of the proposed architecture is significantly reduced.

The proposed receiver architecture improves the linearity and maximize dynamic

range by avoiding large voltage swings before the first-order low pass filtering on TIA.

Low input impedance presented by the virtual ground of TIA reduces the distortion

related to the passive mixer [71]. The selectivity from the low pass filtering on TIA

also helps mitigating the impact of out-of-band interferences (OBI). Tolerance to OBI

is more important for broadband receiver in contrast to narrowband receiver with RF

band-selection [67].

The most critical aspects of the receiver front-end is its sensitivity (NF) perfor-

mance. To ensure low NF of the receiver, large amplification with low-noise perfor-

mance early in the chain is mandatory [72]. Thus, a single trans-conductor of the

proposed receiver front-end should be large and this requirement has been met in pre-

vious works [66,68,69] with inductor-degenerated LNAs. Effective trans-conductance

(Gm) of the inductor-degenerated LNAs can be expressed as below and, therefore, is

independent of its input impedance.

Gm = Qin · gm =
ωT

2 · ωo ·RS

, (5.1)

where RS is the source impedance, ωo and ωT are operating and unity current gain fre-

quencies, respectively. However, broadband LNAs (e.g., shunt-feedback and common-

gate LNTA) present a fixed relationship between input impedance, trans-conductance,

and the load impedance. Shunt-feedback LNTA is discarded in this application for

the following reasons. Firstly, due to the trade-off between input impedance, trans-

conductance, and the load impedance, it is difficult to achieve good NF and required

input impedance with reasonable current consumption. The work in [73] shows ex-

cellent broadband performance but consumes excessive power of 42mW. Secondly,
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shunt-feedback LNTA requires large loop gain but, due to the low input impedance

passive mixer and virtual ground of TIA, loop gain of LNTA is drastically reduced

when cascaded with the mixer.

CG-LNTA features desirable properties for broadband operation [44]. However,

their high NF under input matching condition prevents its extensive use. Its effective

transconductance under input matching condition is

Gm =
1

2
gm =

1

2RS

. (5.2)

In 50Ω RS system, this requirement dictates that Gm,CG−LNTA is only 10mS and CG-

LNTA is not feasible for the proposed architecture where larger trans-conductance is

needed to ensure good system NF performance. With the scaling of CMOS devices

and high ft transistors available, it becomes more promising to employ feedback in the

design of broadband CG-LNTA. In the proposed architecture, dual feedback, shunt-

series negative feedback [25] and shunt-shunt positive feedback [18], are utilized in

order to decouple the trade-off between critical design parameters and to enable high

effective trans-conductance (>20mS). Woo et al. [27] reported similar architecture

with LNA only but it is not applicable to LNTA for the proposed system.

The proposed architecture features efficient current transfer between LNTA and

passive mixer, and improved linearity (in-band and out-of-band) by employing LNTA

load impedance boosting and a wideband low input impedance OTA with feed-forward

compensation. With the limited power supply of 1.2V, a shunt-peaking inductor is

used to boost the load impedance at the receiver bandwidth. The optimum inductor

size is derived analytically in Section B.1. Low input impedance of TIA over a

wideband is ensured by employing feed-forward compensation technique, where the

dominant pole does not have to be placed at low frequency as in miller-compensated

OTA. Large swing due to OBI is sigficantly reduced, resulting in better large-signal
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Fig. 47. Schematic of dual feedback CG-LNTA (LNTA block in Fig. 46).

linearity (e.g., P1dB) performance.

2. Receiver Performance

Fig. 47 shows RF trans-conductor used for the receiver performance analysis. RF

trans-conductor is based on dual feedback LNTA and is cascaded with the quadrature

sampling mixer switches. The current transfer from LNTA to quadrature sampling

switch is enhanced through a load boosting inductor. Frequency translated signal

after switching flows into a single-pole RC low-pass network. The conversion gain of

the proposed architecture can be expressed as

Vout (fout)

Vin (fin)
≈
√
2

π
·
∣
∣
∣
∣

Zin

Zin +RS

∣
∣
∣
∣
· gmn · (1 + An) · |ZF | , (5.3)

where fout is the output frequency after down-conversion, fin is the input RF fre-

quency, An is the negative feedback factor (≈ 1), and
√
2/π (=c) is the conversion

gain of 25% switching alone. Zin is the input impedance of LNTA as shown in (5.18)
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and ZF is expressed as

ZF =

(
RF

1 + j2πfoutRFCF

)

, (5.4)

The dominant noise sources in the proposed architecture are M1 (gmn), M2 (gmp),

RL, RF , and Vamp. Noise from the switches are neglected because of low average on-

resistance and small DC current [74]. Noise at the output of TIA from dominant

noise sources can then be obtained as

V 2
RS

= n× 4kTRS

(
gmn (1 + An)

H

)2

c2 |ZF |2 (5.5)

V 2
M1

= n× 4kT
γ

α
gmn

(
1

H

)2

c2 |ZF |2 (5.6)

V 2
M2

= n× 4kT
γ

α
gmp

(
gmn (1 + An)RS

H

)2

c2 |ZF |2 (5.7)

V 2
RL

= n× 4kTRL

(
1

RL + j2πfinL

)2

c2 |ZF |2 (5.8)

V 2
Rf

= 4kTRF

∣
∣
∣
∣

1

1 + j2πfoutRFCF

∣
∣
∣
∣

2

(5.9)

V 2
amp = v2

n,amp

∣
∣
∣
∣
1 +

2ZF

ZLNTA

∣
∣
∣
∣

2

(5.10)

where γ and α are bias-dependent parameters [28]. n (noise aliasing factor) and H

are expressed as

n = 2

(

1 +
1

32
+

1

52
+ · · ·

)

=
π2

4
(5.11)

H = 1 + gmn (1 + An) (1− Ap)RS. (5.12)
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Thus, the single-sideband (SSB) NF is approximately

NFSSB =
V 2
RS

+ 2
(

V 2
M1

+ V 2
M2

+ V 2
RL

+ V 2
Rf

)

+ V 2
amp

4kTRS

(
Vout(fout)
Vin(fin)

)2 (5.13)

= n+ FM1 + FM2 + FML
+ FRf

+ FTIA (5.14)

≈ n+ 2n
γ

α

1− Ap

1 + An

+ 2n
γ

α
gmpRS

+n
8RS

RL

(1− Ap)
2

∣
∣
∣
∣

RL

RL + j2πfinL

∣
∣
∣
∣

2

+
8RS

RF

(1− Ap)
2 1

c2

+
4RS

kT
v2
n,amp (1− Ap)

2 1

c2 |ZLNTA|2
(5.15)

The factor of 2 for the numerator in (5.13) is due to the double balanced mixer

operation and ZF ≫ ZLNTA is used for the approximation in (5.15). TIA noise

amplification due to the switched capacitor (SC) effects is more pronounced as input

RF frequency goes up. The value of this SC impedance with LLNTA neglected is

expressed as

RLNTA =
1

4fLOCpar

(5.16)

where the factor of 4 arises from parallel connection of SC resitor in quadrature (I/Q)

mixer. This effect can be nullified in narrowband receiver by employing LC tank load

for LNTA [66, 68, 69], whereas broadband receiver’s NF degrades due to TIA noise

amplication effect.

The receiver NF improves as a result of both negative feedback (An) and posi-

tive feedback (Ap). Ap has more impact on NF than An because positive feedback

improves LNTA signal-to-noise ratio (SNR) as well as effective trans-conductance of

the system. The conventional CG-LNTA and the negative feedback (An) does not

enhance the current gain and, thus, effective transconductance remains equal to 1
2RS

while satisfying matching condition, whereas the effective trans-conductance with the
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Fig. 48. Receiver NF performance with different broadband CG-LNTAs.

positive feedback (Ap) is proportional to gmn. The benefits of the positive feedback

(Ap) becomes evident from (5.15) that noise contribution due to M1, RL, RF , and

Vamp are drastically suppressed when the positive feedback (Ap) approaches unity.

Fig. 48 shows the double side-band (DSB) NF performance when different types of

CG-LNTAs are used and supports the previous analysis. Ap = 0.5 is used for positive

feedback gain but the conclusions can be extrapolated to any other Ap. Flicker noise

corner frequency of OTA at 200KHz and single-pole RC filter at 1.92MHZ (UMTS

signal bandwidth) is used to capture these effects at system NF performance. Fig. 49

shows the receiver NF and power consumption (current used for LNTA) as a function

of the positive feedback factor (Ap). High Ap improves NF by enhancing SNR of

LNTA and RF trans-conductance (Gm) at the expense of power consumption and

potential in-stability. When generating these results, vdsat of 0.2V is assumed for

LNTA. Hence, its power consumption can be expressed as the following according to

classical square-law MOS model.

ILNTA =
1

2
(gmn + gmp) vdsat (5.17)
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Fig. 49. NF and power consumption (ILNTA) with different positive gain factor (Ap)

with vdsat = 0.2V .

B. Building Block Designs

1. Low-Noise Trans-Conductance Amplifier

The RF trans-conductor (LNTA) of the proposed receiver is shown in Fig. 47. Impedance

matching device M1 provides the main forward signal path. gm boosting is imple-

mented with noiseless capacitor cross-coupling [25] with almost unity negative feed-

back gain (An = CC−Cgs

CC+Cgs
). Shunt-shunt positive feedback through M2 enables the

current gain larger than 1 and increases the input impedance of conventional CG-

LNTA. The previous works utilized positive feedback [18, 27] that senses the signal

at the output of the amplifier. However, in the proposed architecture, RF trans-

conductor drives low impedance mixer terminated by virtual ground and, therefore,

positive feedback loop gain from the output can not be employed. Instead, the signal

is sensed at the cascode node, leading to loop gain ratio of two trans-conductance

(Ap =
gmp

gm,cas
). Possible increase of the parasitic capacitance at the input is nulled by

bias inductor (Lbias).
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The in-band LNA input impedance can be found as

Zin ≈
1

gmn (1 + An) (1− Ap)
‖ sLbias ‖

1

sCpar

(5.18)

where parasitic capacitor Cpar arises from the contributions of the input pad, M1,

M2, and CC . The input matching network is a parallel resonance where the quality

factor of the parallel LC resonator is

Qmatch =
ωCparRS

2
. (5.19)

Low Qmatch results in a wider bandwidth since the sensitivity of Zin to parasitic

components is proportional to the quality factor of the matching network [30].

Shunt-peaking inductor is used at LNTA output to enhance the current transfer

into the mixer and to minimize the noise contribution due to the OTA. Fig. 50 (a)

shows the equivalent circuit diagram for broadband current-trasfer optimization. Rin

is the mixer input impedance when the switch is on and can be expressed as

Rin = 2Rswitch +
RF

1 + AOTA

. (5.20)

where the factor of 2 comes from quadrature sampling mixer and AOTA is the open-

loop gain of the OTA. The current transfer into the mixer can be obtained as

IGm

ILNTA

= − RL

RL +Rin

1 + s L
RL

1 + s
(

L
RL+Rin

+ RinRLCP

RL+Rin

)

+ s2 RinCPL
RL+Rin

= − ρ (1 + sτ1)

1 + sρ (τ1 + τ2) + s2ρτ1τ2

(5.21)

where ρ (= RL

RL+Rin
) is low frequency current-transfer gain. τ1 (= L

RL
) and τ2 (=

RinCP ) are time constants present in the equivalent circuit. To facilitate subsequent

derivations, we introduce a factor m (= τ1
τ2
), defined as the ratio of two time constants.

The damping factor (ζ) and the undamped natural frequency (ωn) of the current
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Fig. 50. (a) Equivalent circuit diagram for current-transfer optimization and (b) Trans-

fer function vs. relative location of two poles.

transfer function can be derived as

ζ =
1

2

√
ρ

(√
τ1

τ2

+

√
τ2

τ1

)

≥ √ρ (5.22)

ωn =
1√
ρτ1τ2

(5.23)

Depending on the relative location of two poles, the trans-conductance follows the

trends shown in Fig. 50(b). Notice that 1/τ1 does not correspond to the band-

width of current transfer function without shunt-peaking inductor, which is given

by 1/ (Rin ‖ RL)CP .

2. Switches

Fig. 51 (a) shows the 25% duty-cycle mixer switches, which is drawn with single-

ended RF input only not to clutter the schematic. It is fundamentally the double

balanced topology with the benefit of rejecting LO feedthrough and noise due to LO

circuitry. Also, the double balanced structure improves IIP2 performance with less

self-mixing [70, 75]. The switching topology in Fig. 51 (a) realizes 25% duty-cycle
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Fig. 51. (a) 25% duty-cycle qudarature sampling mixer (single-ended RF input only)

[2] and (b) Replica circuitry for mixer switch DC bias.
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Fig. 52. (a) 50% duty-cycle LO and (b) 25% duty-cycle LO by ANDing of two 50%

I-Q LO signals with a relative delay of 1/4 period.
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by ANDing two 50% I-Q LO signals with a relative delay of 1/4 period. Timing

diagram illustrating AND operation of the quadrature switching topology is also

shown in Fig. 52. Switching part I and II together achieves the equal loading from

50% I-Q LO, whereas each of them introduces I-Q mismatch since in-phase LO drives

one switch and quarature-phase LO drives two switches in switching part I and vice

versa in switching part II. Potential residual side-band (RSB) performance reduction

is prevented by the scheme. Previous works in [53, 76] implement 25% duty-cycle

switching with either 50% duty-cycle 2fLO or 25% duty-cycle fLO, both of which

consumes significant power for LO buffers.

Depending on the DC gate bias of the switches, passive mixer can operate in

either ON or OFF overlap. ON overlap results in lowered conversion gain and, more

importantly, noise amplification due to OTA becomes significant. It is evident from

(5.10) that ON overlap of the switches results in a significant gain of OTA input

referred noise voltage (V 2
amp) due to very small on-resistance of the switches. On

the other hand, OFF overlap results in linearity degradation [74, 77]. Fig. 51 (b)

shows the replica circuitry to bias the gate of passive mixer switches. The replica

transistor (Mreplica) is biased at weak inversion where its Vgs is near threshold voltage

(Vth) and tracks with process variation. Vocm represents the common-mode voltage

used for common-mode feedback (CMFB) circuitry of op-amp, which set the DC bias

voltage at the source (drain) of the passive mixer switches. The replica circuitry

provides DC gate bias for the switches at the threshold of conduction for the switches

(Vg ≈ Vocm + Vth). The receiver simulation results show that the optimum NF with

respect to DC gate bias is several tens of mV smaller than the replica bias circuit

provides but the difference is very minimal.
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3. Baseband Trans-Impedance Amplifier

The trans-impedance amplifier (TIA) converts the base-band current into the volt-

age with very small input impedance that allows the current-mode passive mixer to

be functional. To accomodate high-power blockers, single pole RC filtering is typi-

cally employed where the bandwidth is determined by the location of the pole. The

main limitation on the TIA design is to achieve high gain and wide-bandwidth with-

out burning significant power. The conventional solutions [74, 78] employ two-stage

OTA with miller compensation and nulling resistor. This approach requires signifi-

cant power consumption to achieve good stability and large gain-bandwidth-product

(GBW) at the same time. Furthermore, the pole splitting inherent in miller com-

pensation [36, 79] reduces the amplifier dominant pole significantly. As a result, the

input impedance of the TIA shows inductive behavior after the dominant pole of

the amplifier. Previous works [68, 70, 80] added an extra capacitance at the virtual

ground node to suppress the inductive input impedance but the frequency dependent

transconductance of the previous stage degrades and the effects on noise and gain are

detrimental especially for wide-band communication systems.

In the proposed receiver front-end, feed-forward two-stage OTA [81] is employed

to achieve the wide-band low input impedance and ideal single-pole response in its

trans-impedance gain. The block diagram of the feed-forward compensation for two-

stage OTA and the design parameters are shown in Fig. 53. The feed-forward path

due to gm3 introduces a LHP zeros and compensates for the negative phase shifts due

to the poles. The amplifier transfer function based on Fig. 53 (a) is derived as

Vout(s)

Vin(s)
= −

(Av1Av2 + Av3)
(

1 + Av3s
(Av1Av2+Av3)ωp1

)

(

1 + s
ωp1

)(

1 + s
ωp2

) . (5.24)

The location of LHP zero is approximately k times the gain-bandwidth product of
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-gm3

R1 C1 R2
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Av1 = gm1R1 ωp1 = 1/R1C1

Av2 = gm2R2 ωp2 = 1/R2C2

Av3 = gm3R2 ωp3 = ωp2

(b)

Fig. 53. (a) The block diagram of feed-forward compensation scheme for two-stage

amplifier and (b) Design parameters.

the first stage [81], where k is the ratio of two trans-conductance ( gm2

gm3
). Miller com-

pensation realizes stability at the expense of reduced dominant pole location and,

therefore, the inductive behavior of TIA input impedance kicks in at rather lower

frequency. Out-of-band peaking in the trans-impedance transfer function moves to

a lower frequency as well and hurts ideal sing-pole RC filtering. Broadband receiver

front-end without any pre RF-filtering is susceptible to OBI interference and wideband

low-impedance before RC low-pass filter is indispensable to maintain the superior lin-

earity of the proposed architecture.

TIA input-impedance and its transfer function can be derived from Fig. 54. The

equivalent circuit model includes RC feedback components. After some simplifica-

tions, TIA input impedance can be obtained as
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Fig. 54. Equivalent circuit model of TIA with feed-forward compensation.

vin
iin

= Zin(s)

≈ RF +R2

1 + Av

(1 + sR1C1)
A(s)

D(s)
, (5.25)

where Av (≈ gm1R1gm2R2) is the DC open-loop gain of the OTA, and A(s) and B(s)

are

A(s) =
1 + s(R2‖RF )(C2 + CF )

1 + sRFCF

(5.26)

D(s) = 1 + s
gm3

gm1gm2

C1 + s2 C1C2

gm1gm2

(5.27)

A(s) represents pole-zero pair located around the single-pole RC filtering bandwidth

(3-dB) and does not incur inductive impedance behavior of TIA. The increase in TIA

input impedance is due to the OTA dominant pole at 1
R1C1

in contrast to 1
R1Cm(1+gm2R2)

for miller-compensated OTA with Cm being miller capacitor. The damping factor (ζ)

and the undamped natural frequency (ωn) of D(s) can be derived as

ζ =
1

2
κ
gm3

gm2

(5.28)

ωn =

√
gm1gm2

C1C2

= κ
gm1

C1

(5.29)
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Fig. 55. The schematic of feed-forward compensated OTA (CMFB is not shown).

where κ =
√

gm2/C2

gm1/C1
is a proportionality constant that relates the gain-bandwidth

product of each stage in OTA. The characteristics of TIA input impedance can then

be adjusted by properly selecting the parameters of the frequency dependent D(s).

Similar conclusions can be drawn for TIA trans-impedance gain expressed below

vout
iin

≈ − Av

1 + Av

RF

1 + sRFCF

G(s)

D(s)
(5.30)

where D(s) is given in (5.27) and G(s) is expressed as

G(s) = 1 + s
1

gm1gm2

(

gm3C1 −
CF

R1

)

− s2 C1CF

gm1gm2

(5.31)

The schematic of the OTA, depicted in Fig. 55, employs a two-stage ampli-

fier with feed-forward compensation. PMOS instead of NMOS inputs are chosen
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for reduced flicker noise performance and large input devices biased at moderately

high current is employed to reduce the equivalent input noise voltage [78]. The out-

put stage in common-source configuration without cascode transistor achieves large

output swing. RC feedback component sizes were chosen based on noise and gain

performance of the receiver front-end and available chip-area.

To verify the previous analysis with fair comparison to miller-compensated OTA,

the circuit shown in Fig. 55 was designed and simulated in Spectre RF. Feed-forward

compensation is added and its parameter (gm3) is chosen based on two design consid-

erations; 1) butterworth response for D(s) and 2) placing the frequency of the LHP

zero such that it cancels the non-dominant pole ( 1
R2C2

). Nulling resistor in miller-

compensated OTA was used as a design paramter and the zero (ωz = − 1
Cm(1/gm2−RZ)

)

was varied and placed at 3) non-dominant pole (ωp2 ≈ gm2

C1+C2
) and 4) infinite fre-

quency (∞). TIA input impedance behavior for both amplifiers is shown in Fig. 56.

For the case of the proposed TIA, inductive behavior of input impedance is pushed

to higher frequency and roll-off due to D(s) compensates for the effect and enables

very low input impedance over a wideband, whereas miller-compensated OTA can

not maintain low impedance property of the proposed TIA. Better OBI filtering is

also achieved with feed-forward OTA as shown in Fig. 57.

4. Frequency Divider and LO Buffer

LO generation circuitry is shown in Fig. 58. An off-chip 2fLO signal is injected

through balun. Divide-by-two circuitry produces 50% duty-cycle fLO on-chip. An

edge-triggered master/slave flip-flop (DFF) implemented using current-mode logic

(CML) style implements the divide-by-two circuitry. The required operating fre-

quency is between 4GHz and 12GHz, twice the frequency of internal LO frequency.

Frequency-divider is directly connected to the pin without any input buffer to min-
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Fig. 58. LO generation circuitry (divider by two and chains of CMOS inverters).

imize the dynamic power of LO chain. Required clock swing for proper generation

of fLO on-chip is getting smaller until self-oscillating frequency of divider based on

CML latch, which obviates the need for input-buffer [82]. Chains of self-biased CMOS

inverters provide rail-to-rail signals that improves passive mixer NF and IIP2 per-

formance [63, 75]. CML type inverters may provide faster operating frequency than

CMOS inverters. However, it is not adopted since required power consumption is

excessively large with much less voltage swing.

C. Measurement Results

The circuit was designed in TSMC 0.13µm CMOS technology and extracted with

calibre. Fig. 59 shows the die photograph of the prototype receiver. The active

area of the chip is 1.1mm×1mm, and CG LNTA occupies 0.45mm×0.9mm due to

differential inductors used for input match and load boosting.
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Fig. 59. Die photograph of the balun-LNA.
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Fig. 60. Simulated AV,LNTA and S11 of stand-alone LNTA.
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Fig. 61. Simulated NF (dB) of stand-alone LNTA.

Fig. 60 shows simulated impedance matching performance (S11) and voltage gain

(AV,LNTA) of stand-alone LNTA. The simulated S11 is below -10dB between 2.2GHz

and 7.7GHz. The maximum AV,LNTA is 18.1dB and remains 1-dB flatness from

1.3GHz to 7.5GHz. The lower and upper 3-dB bandwidth is measured at 0.8GHz

and 8.1GHz. Fig. 61 shows the simulated NF of stand-alone LNTA. The NF varies

between 2.8dB to 3.1dB between 2GHz and 7GHz in post-layout simuation.

Conversion gain (AV,RX) and NF of the proposed receiver are simulated and

shown in Fig. 62 and Fig. 63, respectively. The degradation of AV,RX and NF at high

frequency is noticeable but is not due to the bandwidth limitation of receiver signal

path design. For higher LO frequncies, LO buffer driving the passive mixer switch

shows slow rise and fall times as well as insufficient swing. LO swing at the gate

of passive mixer switch is shown in Fig. 64, where LO swing rapidly degrades from

5GHz. Note that AV,RX and NF of the proposed receiver degrades where LO pulse

amplitude is getting lower, showing close correlation.

Fig. 65 shows simulated 1/f corner sweeping the LO frequency. 1/f noise is
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Fig. 62. Simulated AV,RX of the proposed receiver.
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Fig. 64. LO swing (dBm) versus frequency.

mainly determined by OTA because of current-driven passive mixer operation and AC

coupling from LNTA to the mixer. The degradation in AV,RX at high LO frequency

entails the increase in OTA’s noise contribution. Then, 1/f corner also increases with

higher LO frequency as shown in Fig. 65.

The simulated performance of the proposed receiver is summarized in Table VII.

Recently published works in the same architecture are compared with the prototype

receiver.

D. Conclusions

This paper presents a broadband CMOS direct-conversion quadrature receiver ar-

chitecture fabricated in 0.13-µm CMOS. The prototype receiver demonstrates that

a single LNTA driving a current mode passive mixer terminated by a low input

impedance TIA can achieve a high and flat gain with low NF over a wide bandwidth.

Large voltage swing due to I-V conversion is deferred till the output of TIA and, thus,

the receiver shows improved OOB interference and in-band linearity performance. By
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Table VII. Comparison of proposed receiver to recently published works.

Technology
Frequency Gain NF IIP3 Power Supply

[GHz] [dB] [dB] [dBm] [mW] [V]

[68]
0.13µm 5.15-

26 3.5 -2
36∗ 1.2∗

CMOS 5.825 36∗∗ 2.5∗∗∗

[66]
0.18µm 0.869-

44 2.4 4.65⋄ 35.7∗ 2.1
CMOS 0.894

[64]
0.18µm 1.55-

22.5-25 7.7-9.5 ≥7 10∗ 2
CMOS 2.3

[83]
90nm 0.1-

20 8.4-11.5‡ -3.23⋄⋄ 9.8∗ 1.2
CMOS 3.85

[74]
0.13µm 0.9-

34.5-35.5 9.5-11.5 4-11
30-36

1.5
CMOS 2.3 (total)

[53]
90nm 0.5-

18 4.5-5.5 -3
16∗

1.2
CMOS 7⊲ 4-28∗∗

[62]
90nm 0.8- 3-36

5-5.5 -3.5 29∗ 2.5
CMOS 6 (variable-gain)

This Work
0.13µm 0.8-

25.1 5.73 0.9
13∗ 1.2∗

CMOS 6.2 35∗∗ 1.5∗∗

∗RX portion (including baseband)
∗∗LO portion
∗∗∗Baseband only portion
†Active area size
‡Single side-band NF
⋄Inferred from Triple-Beat (TB) performance, where TB = 2 (TX − IIP3)
⋄⋄Inferred from P1dB performance, where IIP3=P1dB+9.6dB
⊲1-dB bandwidth; others use 3-dB bandwidth
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ensuring low impedance along the RF signal path, the receiver operates over a wide

range of frequencies from 2GHz to 6GHz and the bandwidth limitation comes mainly

from in-sufficient LO swing.

The trade-off between input impedance, trans-conductance, and the load impedance

of broadband LNTA can be overcome by the proposed CG LNTA with dual feedback.

Trans-conductance (Gm) is not limited by source impedance (RS) and, therefore,

improved current gain of LNTA enables large gain and low NF of the receiver in a

wideband fashion. Neither 50% duty-cycle 2fLO nor 25% duty-cycle fLO is required by

overlapping of two 50% I-Q LO signals with a relative delay of 1/4 period. The feed-

forward compensation scheme is employed to achieve wideband low input impedance

and ideal single-pole filtering of TIA. Measurement results of the proposed receiver

demonstrate >22dB conversion gain, <7dB NF, and >0.5dBm IIP3 from 2GHz to

6GHz. Better than -10-dB input matching is achieved from 2GHz to 7.7GHz, while

dissipating 13mW from RF and baseband signal path with 1.2-V supply. A compar-

ison of measurement results with the recently published broadband receiver with a

single LNTA shows that the proposed architecture achieves superior noise and linear-

ity performance with low power consumption using a mainstream technology.
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CHAPTER VI

CONCLUSION

The SWR receiver is not a reality yet and, as an intermediate step prior to the realiza-

tion of SWR receiver, a broadband multi-standard receiver is highly desired leading

to the significant reduction in its form factor, cost, and power. Due to the ability

of highest level of integration, low cost, and low power, the use of advanced (scaled

down) CMOS processes is also mandatory along with the compatibility with the dig-

ital part of trasceiver. This dissertation is dedicated to the analysis and realization

of a broadband receiver architecture and its various building blocks (LNA, Active

Balun-LNA, Mixer, and TIA) for multi-standard applications in mainstream CMOS

technology. The efforts have been given to both the system level (Chapters II & V)

and circuit-level (Chapters III & IV) implementation.

In Chapter II, a fully integrated ultra high-frequency (UHF) broadband direct-

conversion receiver (tuner) for DVB-H standard is presented. Given specifications

from DVB-H standard, we partition the block specifications with automatic gain

control (AGC) in both RF front-end and baseband. Employing two AGC loops (RF

and baseband) in the design maximizes the dynamic range of the tuner system with

power optimization. No harmonic rejection scheme is employed since LO harmonic

frequencies used for down conversion are out of band eliminating harmonic mixing.

RFVGA with a modifed shunt feedback structure provides gain independent matching

regardless of variable gain setting. A single ended RF input reduces the system cost

without the use of the external balun. Complementary NMOS and PMOS input trans-

conductor with source degeneration provides on-chip single to differential conversion

(active-balun) with high linearity. Current mode passive mixer follows the trans-

conductor and the down converted signal is processed by filters with built in anti-
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aliasing. Targeted to operate between 470-862 MHz, the tuner system achieves a noise

figure of 7.9dB, an IIP3 of -8dBm at maximum gain, and an IIP3 of +2dBm at 9dB RF

attenuation. The gain- and frequency-programmable baseband section implements an

8th order inverse Chebyshev low pass approximation achieving >42dB attenuation at

an offset of 1.75MHz for the 4MHz frequency setting. Overall, the tuner consumes

120mW from 1.8V analog/2.5V digital dual supply and occupies 2.14mm2 in IBM

0.18-µm RFCMOS technology.

In Chapter III, a wideband CG-LNA architecture employing dual negative feed-

back is presented. Properties of the CG-LNA and its low-noise techniques are dis-

cussed prior to the analysis of the proposed CG-LNA architecture. The detailed analy-

sis on the architecture shows that the proposed scheme enables broadband impedance

matching, low noise, large gain, enhanced linearity, and wide bandwidth concurrently

by employing an efficient and reliable dual negative-feedback. An amplifier proto-

type was realized in 0.18µm CMOS, operates from 1.05 to 3.05GHz, and dissipates

12.6mW from a 1.8V supply while occupying 0.073mm2 active area. The LNA pro-

vides 16.9dB maximum voltage gain, 2.57dB minimum NF, better than -10dB input

matching, and -0.7dBm minimum IIP3 across the entire bandwidth.

In Chapter IV, an inductor-less active-balun architecture based on the CG-CS

topology for multi-standard radio applications is proposed. Current state of the art

RF systems require very low sensitivity level, and an active balun, which provides

gain and occupies small area, is desirable eliminating the lossy and narrowband ex-

ternal balun. The proposed architecture employing negative feedback features lower

power and wider bandwidth with minimal noise contribution due to the active cur-

rent source. On the other hand, previous works [43,53,54] used the passive device as

a current source susceptible to PVT variations. The frequency compensation in CS

stage ensures better gain and phase balance. The prototype was realized in 0.13µm
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CMOS, operates from 0.5 to 4GHz, and dissipates 2.6mW from 1.2V supply while

occupying 0.075mm2 active area. The Balun-LNA provides 17.4dB maximum voltage

gain, 3.56dB minimum NF, better than -10dB input matching, and -0.45dBm IIP3.

In Chapter V, a broadband quadrature receiver architecture with a single LNTA

is proposed. A current mode passive mixer void of DC current shows a significant

reduction in its flicker (low-frequency) noise. The baseband TIA is further opti-

mized in its noise performance. Therefore, the proposed receiver is suitable for a

direct-conversion receiver where the signal resides around DC frequency. Distortion

associated with a large voltage swing in Gilbert cell mixer and voltage-mode passive

mixer is eliminated thanks to TIA’s virtual ground. The receiver achieves improved

OOB interference performance as well with a single pole filtering prior to I-V con-

version. The proposed LNTA in CG configuration utilizes capacitor cross-coupling

and positive feedback from the cascode node of the amplifier and breaks the trade-off

betweeen input impedance, trans-conductance, and LNTA load impedance. Effec-

tive trans-conductance (Gm) of the proposed CG LNTA can be increased more than

1/2RS and improved current gain of LNTA allows large gain and low NF for the

proposed receiver. The proposed quadrature sampling mixer switches do not require

50% duty-cycle 2fLO nor 25% duty-cycle fLO and therefore, power consumption on

the LO portion is significantly reduced. A miller compensation scheme is avoided and

feed-forward compensation is employed featuring wideband low input impedance and

non out-of-band peaking in its single-pole filtering response. Simulation results of

the proposed receiver demonstrate >22dB conversion gain, <7dB NF, and >0.5dBm

IIP3 from 2GHz to 6GHz. Better than -10dB input matching is achieved from 2GHz

to 7.7GHz, while dissipating 13mW from RF and baseband signal path with 1.2V

supply. The chip has an active area of 1.1mm2 and is fabricated in 0.13µm CMOS

process.
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APPENDIX A

EFFECT OF CB ON AMPLIFIER’S BANDWIDTH

Including the effect of CB, the high frequency voltage gain becomes

Av(s) = Avo
N(s)

D(s)
. (A.1)

where N(s) and D(s) are

N(s) = 1 +
gm1(CB + Cp2)− gm2CB

gm1(gm2 + gm3)
s+

CACB

gm1(gm2 + gm3)
s2, (A.2)

D(s) = 1 +
gm1CBRL + gm3Cp1RL + (CA + CB + Cp2)

gm3(1 + gm1RL)
s

+
(Cp1 + CB)(Cp2 + CA)RL + Cp1CBRL

gm3(1 + gm1RL)
s2. (A.3)

Assuming gm1RL > 1, Cp1 >> CB, and gm2 >> gm3, (A.1) can be approximated as

Av(s) = Avo

1 +
(

CB+Cp2

gm2
− CB

gm1

)

s+ CACB

gm1gm2
s2

1 +
(

CB

gm3
+ Cp1

gm1
+ CA+CB+Cp2

gm1gm3RL

)

s+ Cp1(CA+CB+Cp2)

gm3gm1
s2
. (A.4)

An additional zero is created by the feed-forward path from the input to the output

due to parasitic capacitance CB. Therefore, small CB in the design should be ensured

not to hurt the reverse isolation and stability. The pole location under dominant pole

assumption can be derived as

ω1 ≈
gm1

Cp1

, ω2 ≈
gm3

CA + CB + Cp2

, (A.5)

or

ω1 ≈ α
gm3

(CA + CB + Cp2)
, ω2 ≈

1

α

gm1

Cp1

, (A.6)
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where ω1 is the dominant pole and ω2 is the non-dominant pole. Coefficient α is given

by

α =

(
1

gm1RL

+
CB

CA + CB + Cp2

)−1

. (A.7)

In the first case (A.5), bandwidth is enhanced by the factor of forward path gain

gm1RL for 1
RLCp1

as before. The non-dominant pole is shifted down from gm3

CA+Cp2
to

gm3

CA+CB+Cp2
with CB included in the analysis. In the second case (A.6), the dominant

pole at the feedback summing node is enhanced by α, the design dependent parameter.
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APPENDIX B

NON-LINEAR ANALYSIS USING VOLTERRA SERIES

Here, the numerical computation of the Volterra series up to the third-order

coefficients is evaluated with the direct calculation method.

First, the small signal gate-source voltages for nonlinear transistor M1, M2, and

M3 is modeled by the Volterra kernels in terms of the excitation voltage vs:

va = vy − vx = A1(s) ◦ vs + A2(s1, s2) ◦ v2
s + A3(s1, s2, s3) ◦ v3

s , (B.1)

vb = vx = B1(s) ◦ vs +B2(s1, s2) ◦ v2
s + B3(s1, s2, s3) ◦ v3

s , (B.2)

vc = vout − vy = C1(s) ◦ vs + C2(s1, s2) ◦ v2
s + C3(s1, s2, s3) ◦ v3

s , (B.3)

where s(= jω) is the Laplace variable, and the operator “◦” means that the magnitude

and phase of each spectral component of vns is to be changed by the magnitude and

phase of the corresponding nth order Volterra kernels [33]. As in (3.20), nonlinear

drain current for M1, M2, and M3 can be expanded by power series:

ids,M1 = gm1va +K2gm1v
2
a +K3gm1v

3
a, (B.4)

ids,M2 = gm2vb +K2gm2v
2
b +K3gm2v

3
b , (B.5)

ids,M3 = gm3vc +K2gm3v
2
c +K3gm3v

3
c . (B.6)

Applying the Kirchhoff’s current law equations for each node of the circuit in Fig. 20,

we have

vx − vs
Zs(s)

+
vx

Zx(s)
+ (gm1 + sCA) (vx − vy) = iNL,1, (B.7)

(gm3 + sCB) (vy − vout) + gm2vx +
vy

Zy(s)
+ sCA (vy − vx) = iNL,3 − iNL,2, (B.8)

vout
ZL(s)

+ gm1 (vy − vx) + sCB (vout − vy) = −iNL,1, (B.9)



117









gm1 + sCA + 1
Zx(s)

+ 1
Zs(s)

− (gm1 + sCA) 0

gm2 − sCA gm3 + sCA + sCB + 1
Zy(s)

− (gm3 + sCB)

gm1 sCB − gm1 −
(

sCB + 1
ZL(s)

)













vx,n
vy,n
vout,n



 =





vs
Zs(s)

+ iNL,1

iNL,3 − iNL,2

iNL,1





(B.15)

where

Zs(s) = Rs +
1

sCin

, (B.10)

Zx(s) =
sLbias

1 + s2Lbias (Cpad + Cgs2 + Cgb2 + Csb1)
, (B.11)

Zy(s) =
Rbias

1 + sRbias (Cds2 + Cdb2 + Csb3)
, (B.12)

ZL(s) =
RL

1 + sRLCL

. (B.13)

Regardless of the order of Volterra kernel, the calculation can be represented by

the solution of the following general matrix equation [37]

Y (s)Hn(s) = INn(s), (B.14)

where Y (s) is the admittance matrix of the circuit, Hn(s) is the vector of nth order

Volterra kernel, and INn(s) is the vector of excitations and nth order nonlinear current

sources. The matrix equation for the proposed LNA is derived from (B.7), (B.8),

and (B.9) as shown in (B.15) at the top of the page.

To find the linear transfer function A1(s), B1(s), and C1(s), set excitation voltage

(vs ← 1) and nonlinear current sources (iNL,j ← 0). va,1 = vy,1 − vx,1, vb,1 = vx,1, and

vc,1 = vout,1− vy,1 determines the desired transfer function after the matrix inversion.

To find the second-order transfer function, nonlinear current sources of order two is

applied to the linearized network in (B.15) with short-circuited excitation voltage
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(vs). Nonlinear transconductance of order two is as follows.

iNL,j = K2gm,jH1j(s1)H1j(s2) (B.16)

where K2gm,j is second-order nonlinearity coefficient for the transistor Mj. H1j(s) is

the first-order transfer function of the corresponding gate-source voltage for the tran-

sistor Mj. Then, second-order volterra kernels A2(s1, s2), B2(s1, s2), and C2(s1, s2)

are derived from

Y (s1 + s2)H2(s1, s2) = IN2(s1, s2). (B.17)

The computation of third-order kernels are similar to the second-order computa-

tion. The desired third-order output voltage kernel, C3(s1, s2, s3) is derived from the

solution of the following matrix equation with nonlinear current source shown below.

Y (s1 + s2 + s3)H3(s1, s2, s3) = IN3(s1, s2, s3) (B.18)

iNL,j = K3gm,jHj(s1)Hj(s2)Hj(s3) + 2K2gm,jH1j(s1)H2j(s2, s3) (B.19)

where the bar indicates the averaging of the transfer function over all possible per-

mutations of the Laplace variables [33]. H1j(·) and H2j(·) are the first-order and

second-order transfer function of the corresponding gate-source voltage. For a two

tone excitation at ωa and ωb, IIP3 as the available power of the signal generator at

the third-order intercept point is given by [33]

IIP3 (2ωb − ωa) =
1

6ℜ (Z1(sa))

∣
∣
∣
∣

C1(sa)

C3(sb, sb,−sa)

∣
∣
∣
∣
. (B.20)
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APPENDIX C

DE-EMBEDDING NF FOR STAND-ALONE BALUN-LNA

The stand-alone buffer for de-embedding purpose was not implemented. Then,

the effect of probe buffer is de-embedded from the simulation results of stand-alone

buffer. The probe buffer’s input-referred voltage noise is the double the quantity of

a source-follower, which is

v2
buffer,in/∆f = 2

[
4kTγ/gm5 + 4kTγgm6/g

2
m5

]
(C.1)

where gm5 and gm6 are trans-conductance of source-follower device and current-source

device respectviely in the probe buffer. NF measured in the lab includes the noise

due to balun-LNA and probe buffer as well, which can be expressed as

NFmea = 1 +
v2
core,out/∆f + v2

buffer,in/∆f

4kT ·RS ·
(

Rin

Rin+RS

)

· A2
V

(C.2)

AV =
S21,mea

1√
2
·
(

gm5

gm5+1/RL

) (C.3)

where vcore,out is output-referred noise voltage due to balun-LNA core and vbuffer,in

is input-referred noise voltage due to probe buffer. Denominator in (C.3) is the

combined effect of signal loss at the buffer output and the conversion from 50Ω input

to 100Ω output. The anlytical expression, (C.2), is derived at the output of balun-

LNA and the input of probe buffer, but de-embedding buffer’s noise can be applied

to (C.2) with NFmea and S21,mea at the probe buffer output.

Then, NF of stand-alone balun-LNA denoted as NFcore can be derived from

measured NFmea and S21,mea, and simulated gm5 and gm6. as shown below.

NFcore = NFmea −
v2
buffer,in/∆f

4kT ·RS ·
(

Rin

Rin+RS

)

· A2
V

(C.4)
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