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Today everything tends to be connected in the Internet of Things (IoT) uni-

verse, where a broad variety of communication standards and technologies are used

for those connected devices. It is always a dream to design a Software-Defined

Radio (SDR) supporting different standards solely based on the software configu-

ration. As integrated-circuit (IC) manufacture and design advance, a partial of SDR

can be realized. This thesis investigates one of the most important parts in a SDR:

the analog design of a direct sampling (DS) receiver, which mainly consists of a

broadband RF front end and a wideband ADC. Especially, a DS receiver shows a

great flexibility and efficiency for the simultaneous reception of multiple channels

comparing with the traditional parallelism of superheterodyne structure.

The research contributions of this work include (1) demonstration and com-

parative analysis of two new architectures of broadband RFPGAs: voltage-mode:

RFPGA-V and current-mode: RFPGA-I. RFPGA-V and RFPGA-I utilize an inno-

vative interpolation method and current steering approach, respectively, to achieve

a fine gain step of 0.25-dB over 40-dB gain range for several GHz frequency range.
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Besides, with innovative design, no off-chip inductor is needed for the both RF-

PGAs. (2) The design of a 5-GS/s 10b time-interleaved SAR. The ADC power

efficiency is significantly improved by many design techniques: the low-energy

CDAC switching scheme, optimized input common-mode voltage for comparator,

optimal reduced radix-2 capacitor ratio for low-power reference buffers and higher

conversion speed, etc. The lane-to-lane mismatches in a time-interleave ADC are

minimized by using optimal floor plan and then are calibrated digitally.

Three prototypes: the broadband RF front ends with RFPGA-V, the broad-

band RF front ends with RFPGA-I and a 5-GHz ADC, are fabricated to verify the

proposed ideas in 28nm CMOS technology.
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Chapter 1

Introduction

1.1 Motivation

Today everything tends to be connected in the Internet of Things (IoT) uni-

verse, which has created fundamental change throughout society, driving it forward

into a connected era. There are broad varieties of communication standards and

technologies for numerous applications. These communication technologies can

roughly be categorized as short-range communication system like Wi-Fi, Bluetooth,

etc., medium-range wireless like cellular communication system, long-range wire-

less like satellite communication technologies and wired like twisted pair fiber op-

tic and power-line communication. [wikipediaIoT] Among all the communication

technologies, several rapid-evolving ones will be briefly introduced in this section.

First, mobile communication system, the largest technology platform in

human history, has evolved several generations starting from the first generation

mobile network started in early 1980s, as shown in Fig. 1.1. The rapid evolu-

tion of cellular network technology has allowed users to experience much faster

data speeds and lower latency, and has prompted exponentially data usage for ser-

vices and applications. The upcoming 5G mobile technology not only is back-

wards compatible with LTE Evolution for the previous mobile technology gen-
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erations, but also includes a New Radio access technology (NR) which is op-

erable at two frequency bands, FR1 (<6 GHz) and FR2 (mm-Wave), as shown

in Fig. 1.2. [Qualcomm [2017]][Huawei [2017]][Zaidi et al. [2016]][Salgueiro

[2016]][3GPP [2015]]. Meanwhile, such wide 5G spectrum radio access will re-

quire breakthroughs in fundamental radio technologies like radio frequency transceiver,

miniaturized antenna and so on.

Figure 1.1: Evolution of mobile communication system[Salgueiro [2016]]

Figure 1.2: 5G Radio Access vision[3GPP [2015]]
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Second, a wide range of Smart applications such as Smart Vehicles, Smart

Buildings, Smart Cities, Smart Energies, Smart Industries, etc. are rapidly adopted

and creates the always-on society. These smart applications mainly rely on wire-

less sensor network (WSN). The node of WSN includes two parts: the sensors

for monitoring and recording the physical conditions of the environment and the

short-range wireless radio, which has a numerous of standards such as Wi-Fi, NFC,

RFID, Bluetooth, ZigBee, Z-Wave, etc. Those nodes can form different network

topologies varying from a simple star network to an advanced multi-hop wireless

mesh network. In a self-assembling mesh network, the collected data could be

propagated to a gateway node, which directly communicates with servers in the

cloud[wikipediaWSN]. Fig. 1.3 shows a possible example: the mesh nodes per-

form the management tasks, and are controlled and stored in the Internet cloud

[Wagenknecht et al. [2014]]. Since hundreds or thousands of nodes are spatially

dispersed in many WSNs to monitor temperature, sound, pressure, etc. size and

cost constraints on the nodes results in the constrains of sensor function, mem-

ory, communication bandwidth and distance and energy. The low-power low-cost

design for the sensor and radio in the node is vital in WSNs. Further, the energy-

harvest design could be incorporated in the sensor node for many battery-power

applications.

Third, the recent ambitious satellite-based projects aiming to provide global

broadband Internet services have been announced by a number of companies, such

as Boeing, OneWeb, SpaceX and so on. The satellite-based broadband can cover

entire regions without the need to build out expensive land-based internet infrastruc-
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Figure 1.3: A possible WSN [Wagenknecht et al. [2014]]

ture. However, there are several big traditional disadvantages: the costly expense

to launch high-altitude satellites, high latency due to the long distance like geosta-

tionary orbit (GEO) satellites is about 22 thousand miles above the equator, and

weather interruption. Low-earth orbit (LEO) satellites with the altitude of hundreds

of miles provide great opportunities to overcome those traditional disadvantages.

Especially, LEO satellite features fewer components, lighter weight, easier to man-

ufacture and cheaper to launch. Meanwhile, the issue for LEO satellite method is

that each LEO satellite can only cover a much smaller patch of territory. To pro-

vide competitive coverage, large satellite constellation, as shown in Fig. 1.4, is

needed to form space-based mesh network. For example, Oneweb plans to launch

900 LEO satellites beginning in 2018, to deliver affordable Internet access globally.
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SpaceX proposes to initially deploy 800 LEO satellites for initial U.S. and interna-

tional coverage. Then it wants to throw over 7,000 Very Low Earth Orbit (VLEO)

to fill in the blanks as needed. [OnewebSatellites][WikipediaStarlink]. Especially,

mmWave band is very suitable due to extra wide bandwidth resource and low space

loss without atmospheric absorption for inter-satellite communication in the space.

Figure 1.4: LEO constellation[WikipediaStarlink]

The broad variety of communication standards and technologies nowadays

are enabled by all sorts of different RF technologies. However, it is always a dream

for engineers to design a flexible hardware supporting all of those standards and

technologies. Such a design produces a radio which can receive and transmit widely

different radio protocols based solely on the software configuration, is often called

as the software defined radio (SDR).

The ideal receiver for a SDR would be like that an ADC directly digitizes

the incoming RF signal right after an antenna. A digital signal processor and its

software would convert the data stream into any other form the application requires.
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Similarly, the ideal transmitter would be like that a digital signal processor and its

software would generate the data stream based on the different radio protocol. A

DAC converts the data stream into a RF signal, which is transmitted by an antenna.

The main problem of SDR is that the data converters (ADC and DAC) require a high

sampling rate and a high resolution at the same time[WikipediaSDR]. As integrated-

circuit (IC) manufacture and design advance, a data converter is approaching the

speed and resolution requirement satisfying a partial of SDR applications. The

boundary between configurable and non-configurable parts is closed to antenna and

it is able to support a broad frequency range. In this thesis, the motivation is to

investigate the design of a direct sampling (DS) receiver, one of the most important

parts in a SDR.

1.2 Organization

Chapter 2 briefly introduces several concepts for RF communication system:

a narrowband RF signal, a broadband RF signal, a superheterodyne receiver and a

direct sampling receiver.

Chapter 3 reviews previously reported state-of-art architectures of RFVGA/PGA,

then describes and comparatively analyzes two new architectures of RFPGA: voltage-

mode RFPGA-V and current-mode RFPGA-I. The broadband RF front ends with

either RFPGA-V or RFPGA-I for a direct sampling receiver are manufactured in

28nm CMOS technology. The measurement results of prototypes are discussed.

Chapter 4 presents a 5-GS/s 10b time-interleaved SAR ADC for direct sam-

pling receivers. The ADC power efficiency is significantly improved by many de-

6



sign techniques: the low-energy CDAC switching scheme, optimized input common-

mode voltage for comparator, optimal reduced radix-2 capacitor ratio for low-power

reference buffers and higher conversion speed, etc. The measurement results of pro-

totype in 28nm CMOS technology are discussed.

Chapter 5 concludes this thesis and discusses the future research direction.
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Chapter 2

Narrowband and Wideband Communications

2.1 Narrowband RF Signal

Many communication systems mentioned in the previous chapter have nar-

rowband incoming RF signals, where desired signal, adjacent-channel interferer

(ACI) and an alternate-adjacent channel interferer are in relatively narrow frequency

range, as shown in Fig. 2.1. For example, A GSM receiver must withstand 9dB ACI

or 41dB higher alternate adjacent channel interference with channel bandwidth of

200 kHz. The off-chip Band-Pass Filter like BAW, SAW, etc. is typical utilized to

select the band.

Figure 2.1: Narrow-band RF input and its receiver [Razavi [2011]]

In a transceiver, the circuits like Low-Noise Amplifier (LNA), mixer, ADC,

etc., are not perfectly linear and result in distortion products. It is convenient to use

a tone to represent the energy of a single channel. Two-tone tests can be a powerful
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tool to study the linearity for narrow-band systems. If two tone frequencies are

spaced closely, their intermodulation products would fall in band too and can be

used to evaluate the linearity. For example, two tones (A and B) will generate third

order intermodulation (IM3) products 3A, 3B, 2A + B, 2A - B, 2B + A and 2B -

A. The third order products: 2A - B and 2B - A fall in band and can be used to

measure the linearity. A common method of the circuit linearity characterization

is to measure intercept points for two-tone tests, where each tone has equal signal

power. As shown in Fig.2.2(a), as the amplitude of each tone increases, IM3 terms

increases in a cubic power of amplitude. The input level and the output level where

the fundamental line and the IM3 line meet together, are called input third intercept

pint (IIP3) and output third intercept pint (OIP3), respectively. In addition, IIP2

and OIP2 can be similarly defined, where IM2 terms increases in a square power of

amplitude, as shown in Fig.2.2(b).

2.2 Broadband RF Signal

In contrast with limited frequency range in a narrowband system, there are

many channels spreading over the broad frequency range in a broadband system.

Multiple tones are typically used to model a broadband signal. Fig. 2.3 shows one

of the most difficult scenarios for a broadband system, where multiple equal-power

interference channels are present where the aggregated power of interference could

be 30 or 40 dBc higher than the desired channel. As a result, the intermodulation

products from the transceiver non-linearity can severely degrade the system SNR at

the desired channel, which poses a linearity challenge for a transceiver.

9



Figure 2.2: (a) definition of IIP3. (b) definition of IIP2.

It is worth noting that since the ratio of maximum to minimum frequency

is less than two for a narrowband system, second-order intermodulation specifica-

tion does not need be significantly considered. In contrast, the second-order inter-

modulation distortion of the two in-band interferers in broadband systems could

10



possibly fall into the frequency range of the desired channel, the second-order inter-

modulation products are as important as the third-order intermodulation products.

Besides IIP2 and IIP3 from two-tone tests, composite second-order (CSO)

and composite triple beat (CTB) are also commonly utilized to characterize the

broadband system linearity. CSO and CTB are the ratios expressed in dB of the

power of the desired channel to the average power of the 2nd and 3rd distorted

components centered at the frequency of the desired channel, respectively. As a

matter of fact, the approximated relationship between CSO and IIP2 or CTB and

IIP3 can be simply derived in [MatrixTestEquipment].

Figure 2.3: Broadband RF signal.

Further, if the number of tones in a broadband system is extended into infin-

ity, then the signal spectrum eventually approaches flat line as band-limited Gaus-

sian noise. Moreover, if the RF signal spectrum becomes noise-like spectrum with

an in-band notch, the intermodulation products due to a transceiver non-linearity

would result in excess noise at the notch frequency. Noise power ratio, which is

defined as the ratio of power spectrum density (PSD) of noise-like signal and PSD

at the notch frequency, is another important method to characterize linearity for a

broadband system. As shown in Fig. 2.4 [Gomez [2016]], the distortion spectrum
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is roughly flat in the middle and tapering at its edges due to the convolution in

the frequency domain. In a broadband system, distortion and noise are typically

comparable in the fully loading scenario to achieve a power-efficient design.

Figure 2.4: Noise power ratio in broadband system.

As mentioned above, broadband RF signal is composite of many channels,

usually over 100 channels. According to law of large numbers, a broadband RF

signal should have a “bell shape”of Gaussian voltage distribution, as shown in Fig.

2.5. A special example is already described in the last paragraph: the RF input with

infinite equal-power channel is actually a band-limited noise, which has a well-

known “bell shape ”of Gaussian voltage distribution. However, this type of voltage

distribution inevitably causes high crest factor or Peak-to-Average Ratio (PAR). For

example, OFDM signal in LTE system PAR is approximated 12dB and QAM signal

in CATV is approximated 15dB. The large PAR is undesired, because it means that

the transceiver needs more dynamic range to handle the large peak signal. On the

other hand, the good news is that most of signal information concentrates in the

middle of “bell shape“, as shown in Fig. 2.5. This property can be used to alleviate

12



the linearity difficulty, because gain compression for an extra-large signal can be

largely tolerated, and a transceiver could be designed targeting at linearity with

relatively small signals like 30% of a full scale signal. However, it is worth noting

that ”wiggles-like” non-linearity is not tolerated easily most of time.

Figure 2.5: Gaussian voltage distribution .

2.3 Superheterodyne Receiver

A superheterodyne receiver, which mixes RF signals in a non-linear fashion

and moves signal spectrum into a lower frequency, has been developed and im-

proved by many pioneer engineers over a long history. A significant milestone was

R. Fessenden’s ”Liquid barretter”, which later was used to perform the first AM

13



broadcast by Fessenden himself on 1906 Christmas Eve. Vacuum tube, the first

electronic device capable of amplification, was invented by Lee de Forest in 1907.

Edwin Armstrong utilized the vacuum tube to invent the regenerative receiver in

1912. After many decades developments, a superheterodyne receiver has become a

dominant architecture in radio electronics [Lee [2004]].

Figure 2.6: Block diagram of a typical superheterodyne receiver.

Fig. 2.6 shows the block diagram of AM/FM radio, a typical superhetero-

dyne receiver and Fig. 2.7 illustrates the spectrum for a typical sperheterodyne

receiver. After an antenna receives an incoming RF signal, a RF filter selects band

of interest and suppresses image S2, whose frequency is the mirror of the signal

S1 frequency with the symmetry of local oscillator (LO) frequency. After mix-

ing a RF signal and LO, band of interest is translated into intermediate frequency

(IF). And then an IF filter is utilized to select channel of interest and to reject oth-

ers. Finally, demodulator extracts the modulated signal and audio amplifier drives

a speaker/headset, which plays audio out[Wikipediaradio]. It is worth noting that

RF filter’s transition band is much wider than that of IF filter, for Q value, which
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Figure 2.7: Spectrum for a typical superheterodyn receiver.

can be calculated as ratio of 3-dB bandwidth and the center frequency, has to be

reasonable for the implementation.

As a matter of fact, one major disadvantage to a superheterodyne receiver is

the image issue, especially (1): when the image power is much larger than the signal

power, saying 30-dBc higher. (2): and/or when the distance between band of inter-

est and the image frequency is too narrow. An RF filter, which is required to provide

sufficient attenuation on images, often relies on expensive off-chip components like
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SAW, BAW filters. In addition, the choice of single LO or several LO frequencies

can greatly influence the filter complexity in a superheterodyne receiver. [Razavi

[2011]] illustrates how to make the proper choice of LO in details.

If LO frequency is chosen right on the center of band of interest, IF would be

at DC without any image, as shown in Fig. 2.8. Obviously, quadrature conversion

by mixing incoming signal with the quadrature phases of LO is required to preserve

the content on the both side of LO frequency. This popular type of receiver is often

called zero-IF or direct-conversion architecture. Therefore, the absence of image

greatly simplifies the receiver complexity, because (1) much less filtering is needed;

(2)mixing spurs are much reduced and easier to handle; (3) A sharp IF LPF filter

can be much easier to be implemented for channel selection. However, Zero-IF

receivers also have several important issues: LO leakage, DC offset, Flicker noise,

even-order distortion, I/Q mismatch and so on.

LO leakage effect is that LO couples into the receiver input through sub-

strate or parasitic capacitance or electromagnetic (EM) emission, de-sensitizing the

receiver. Meanwhile, the leaked LO would mix the LO to create a DC offset, called

LO self-mixing. DC offset can also be from LO self-mixing and the device mis-

match. Since following baseband blocks can provides a large gain, saying 60dB

or more, DC offset like 5 mV can significantly reduce the maximum signal swing

or even saturates the baseband blocks. A typical method to cancel DC offset is to

inject a corrective very-low frequency current back to the receiver. Flicker noise

can be considered as slow-moving DC offset and has a similar effect as DC offset.

Even-order distortion such as the term of ”A − B” from RF blocks would cre-
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ate low frequency components. Those low-frequency components after the mixer

feedthrough could have similar effect of DC offset or Flicker noise.

Figure 2.8: Zero-IF spectrum.

IQ mismatch is very important for a superheterodyne receiver, because it

could significantly undermine the system SNR or BER in a zero-IF receiver or limit

the image rejection ratio (IRR) for an image-reject receiver with none-zero IF. The

sources of IQ mismatch can be phase mismatch and gain mismatch from clock

paths and from signal paths. Careful IQ mismatch simulations must be performed

to evaluate its influence to the system SNR or to satisfy IRR requirement.

2.4 Direct Sampling Receiver

Although superheterodyne receiver is a dominant architecture in radio elec-

tronics, the parallelism of superheterodyne receivers, as shown in Fig. 2.9, can be

an expensive solution for simultaneous reception of multiple channels in the state-

of-art communication applications. First, the power consumption and hardware

including the silicon area and the off-chip components like antenna, off-chip fil-
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Figure 2.9: Simultaneous reception of multiple channels with superheterodyne re-
ceivers.

ters, PCB area explodes linearly with the number of channels. Thinking about the

case of an 8- or 16-channel receiver, the power consumption and cost would be too

high by using this parallelism idea. Second, each receiver requires a tunable PLL

for channel selection, and each PLL has A LC VCO for its low phase noise. For

the parallelism of multiple superheterodyne receivers, different VCOs pulling each
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other would cause undesired spurs. To manage those spurs into an acceptable level,

each PLL needs to be separated widely in layout, which causes extra silicon area.

Because of the above mentioned issues for the parallelism of multiple su-

perheterodyne receivers, a direct sampling (DS) receiver, where entire RF band is

digitized by a wideband ADC, is gaining more and more attention. Fig. 2.10 shows

a simplified block diagram of a DS receiver. First, an incoming RF signal is received

by an antenna, and then is selected for band of interest by an off-chip filter. This

band-limited RF signal is fed into to the RF input of an integrated receiver, and con-

ditioned into a proper level by an RF Programmable/Variable-Gain Amplifier (RF-

PGA/VGA). And then an anti-aliasing filter (AAF) is applied to restrict the folded

noise and distortion before the digitization. Finally, a wideband ADC digitizes the

entire spectrum from DC to Nyquist frequency, whereas all down-conversions and

demodulations are done as much as possible in the digital domain.

Figure 2.10: Diagram of direct sampling receiver.
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Comparing with the analog channel selection using analog mixer and IF fil-

ters in a superheterodyne receiver, the digital channel selection is realized by using

digital mixers and filters in a DS receiver. First, thanks to evolution of advanced

technologies, the digital circuit for digital channel selection is much smaller and

consumes much less power. Then, multiple precise tunable PLLs in the parallelism

of superheterodyne receivers are no longer needed. Instead, only a fixed frequency

PLL for a wideband ADC is needed in a DS receiver. Further, a DS receiver has an

inherent fast channel hopping without any fine tuning of an analog PLL. Therefore,

a DS receiver is very efficient for the simultaneous reception of multiple channels

and dramatically reduces the hardware complexity.

Comparing with a baseband ADC in a superheterodyne receiver, a wide-

band ADC in a DS receiver is often considered as a RF block because it is in front

of the mixing. For a RF block, the noise and linearity performance are usually

characterized by NF and IIP3/IIP2, respectively. For an ADC, they are traditionally

characterized by SNR and THD, respectively. First, the relationship between SNR

and NF will be derived in the following. ADC SNR can be expressed as:

SNRdB = PFS − PSDn − 10log10(fs/2) (2.1)

where PFS , PSDn, fs is the power of the full scale signal, power spectral

density and sampling frequency, respectively. Meanwhile, NF can be calculated as

referencing PSDn to thermal noise at 290 K based on IEEE standard:

NF = 10log10(1 +
10

PSDn
10

k · 290K
) ' PSDn + 174dBm/Hz (2.2)
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NF ' PFS − 10log10(fs/2)− SNR + 174dBm/Hz (2.3)

The approximation holds when ADC noise floor is much higher than 174

dBm/Hz. From Eq. 2.3, NF has 1-dB-to-1-dB relationship with ADC SNR.

Next, the relationship between THD and IIP3 will be derived. Assuming

the third harmonic is the dominant term among all harmonics. When a full-scale

sinusoid wave is applied to ADC, THD is typically specified as:

THDdB = PFS −HD3 (2.4)

A two-tone test (A and B) is used for IIP3 calculation, where each tone is

set to be 3dB lower to keep the full-scale amplitude. So the third harmonic term

for each tone is 9dB lower power. Moreover, according to Binomial theorem for

(x+ y)3, the third intermodulation (IM3) term (A2B or AB2) is 3 times of the third

harmonic term (A3 or B3) or 9.5dB higher power than that of the third harmonic

for a two-tone test. IM3 can be expressed as:

IM3 = 9.5dB + (PFS − 3dB)− (HD3 − 9dB) (2.5)

Thus,

IIP3dB = (PFS − 3dB) + IM3/2 = PFS +
THD3 + 9.5dB

2
(2.6)

From Eq. 2.6, IIP3 has 0.5-dB-to-1-dB relationship with ADC THD if the

third harmonic is dominant among all other harmonics . Taking a specific example:
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for a 1-GHz ADC with 1-Vppd full-scale, 10-b SNR and 10-b THD, NF and IIP3

is approximated as 27.7dB and 38.1 dBm with reference of 50-ohm impedance,

respectively.
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Chapter 3

A Broadband CMOS RF Front-End

This chapter presents comparative analysis between two new architectures

for RF programmable-gain amplifiers (RFPGA): voltage-mode RFPGA-V and current-

mode RFPGA-I. RFPGA-V utilizes multiple-switch-multiple-amplifier configura-

tion and gain interpolation method to achieve a fine gain step of 0.25-dB over 42-dB

gain range for the band of 250 MHz to 2.3 GHz. Meanwhile, RFPGA-I uses a cur-

rent steering approach to achieve a fine gain step of 0.25-dB over 42-dB gain range

for an even wider band of 250 MHz to 3.4 GHz. Since the active feedback topol-

ogy is used, no off-chip inductor is needed in either RFPGA, especially for the

low-frequency band. Additionally, both RFPGA-V and RFPGA-I are able to

handle maximum 4.4V peak-to-peak input signal without compromising their

high operating bandwidth. Two broadband RF front ends for direct sampling re-

ceivers, which include either RFPGA-V or RFPGA-I followed by the same gain

buffer and RF filter, have been demonstrated. For the RF front-end with RFPGA-V,

the measured gain, NF, IIP3 and IIP2 in the differential mode are 29.5dB, 5.2dB,

-10.9dBm and 31.4dBm, respectively. With RFPGA-I, they are 30.5dB, 3dB, -

0This chapter is a partial reprint of the publication: Jie Fang, Chaoming Zhang, Frank Singor,
Jacob Abraham, “A Broadband CMOS RF Front-End for Direct Sampling Satellite Receivers,” has
been submitted. I thank all the co-authors for their valuable advice in designing and testing of the
prototype.
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10.5dBm and 21.1dBm, respectively. Both RF front ends consume approximated

50 mW and occupy the similar area of 0.32 mm2 in 28nm CMOS technology.

This chapter is organized as follows: Section 3.2 previously reported archi-

tectures of RFVGA/PGA. Section 3.3.1 describes the new architecture of RFPGA-

V, develops a new gain interpolation scheme, discusses the design of an amplifier

and a RF filter and a gain buffer, and then presents the measurement results. Section

3.4.1 focus on the second new architecture of RFPGA-I, discusses the design of the

amplifier, and then presents the measurement results. Section 3.5 concludes this

chapter.

3.1 Introduction

Fig. 2.10 shows a simplified block diagram of a direct sampling receiver.

Right after an off-chip band-select filter, a RF programmable/variable-gain ampli-

fier (RFPGA/VGA) conditions an incoming signal into a proper level, and then an

anti-aliasing filter (AAF) restricts the folded noise and distortion from the LNA

before digitization. A RFPGA/VGA is the critical block in the direct sampling re-

ceivers and needs satisfy many requirements over wide frequency range in modern

broadband communication applications such as cable, terrestrial, satellite, cellular

receivers. For example, the input signal spectrum spans very broad range from a

few tens of MHz to 1 GHz in cable and terrestrial receivers [Gatta et al. [2009]][Lee

et al. [2014]][Manstretta and Dauphinee [2007]][Kim and Kim [2006]][Xiao et al.

[2007]][Im et al. [2010]][Greenberg et al. [2013]] and from hundreds of MHz to

more than 2 GHz in satellite receivers [Fang et al. [2015]. As the front end of
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a receiver, a RFPGA/VGA must provide broadband input impedance matching to

provide good signal power transmission and to properly terminate the off-chip filter

too.

A RFPGA/VGA is required to achieve low NF, high gain and large gain

range with fine gain steps to condition an incoming signal into a proper level with

sufficient SNR. A RFPGA/VGA provides high gain and low NF when the input

signal is weak, whereas it should provide high attenuation when the input signal is

strong. In addition, the modern communication systems usually adopt the digital

modulation with a high number of constellations for high spectral efficiency. For

example, the cable receivers uses as 16, 64, and 256 QAM modulation [DVBc2] and

the satellite receiver uses QPSK, 8PSK, 16APSK, 32APSK modulation [DVBs2x].

Therefore, the fine gain step less than 0.5 dB is required for those modulation

schemes to tolerate the noise burst without visible errors and to prevent upsetting

the digital channel decoder.

A RFPGA/VGA is required to have high linearity as well. One of the diffi-

cult scenarios for input signals is that the desired channel could be presented with

multiple interference channels while the power of the interference could be 30 or 40

dBc higher. Since the second-order inter-modulation distortion of the two in-band

interferers in wideband receivers could possibly fall into the frequency range of the

desired channel, the second-order input-referred intercept point (IIP2) is as impor-

tant as the third-order input-referred intercept point (IIP3). In contrast, the narrow-

band receivers covering frequency bands where the ratio of maximum to minimum

frequency is less than two do not significantly consider the IIP2 specification. Since
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there are many channels spreading over the broad frequency range in wideband sys-

tems, composite second-order (CSO) and composite triple beat (CTB), where RF

input signal is modeled by the multi-tones, are typically used to characterize the

second-order and third-order intermodulation products, respectively. The CSO and

CTB are the ratios expressed in dB of the power of the desired channel to the av-

erage power of the 2nd and 3rd distorted components centered at the frequency of

the desired channel, respectively. As a matter of fact, the approximated relationship

between the CSO and IIP2 and that between CTB and IIP3 are derived in [Matrix-

TestEquipment].

In addition, it will be a desired feature that a RFPGA/VGA is able to receive

a single-ended input signal. In the single-end mode, a RFPGA/VGA is able to

perform a single-end-to-differential conversion, so an off-chip balun can be saved,

and its insertion loss and its cost can be avoided as well. However, single-ended

circuits usually suffer from common-mode rejection ratio (CMRR), power-supply

rejection ratio (PSRR) and even-order distortions, which could cause in-band spurs

and degrade the system performance especially in a complicated SoC environment.

On the other hand, a RFPGA/VGA in the differential mode needs an off-chip balun,

but usually has better CMRR, PSRR and even-order distortion.

This chapter presents comparative analysis for two new architectures for

RFPGAs: voltage-mode RFPGA-V and current-mode RFPGA-I. RFPGA-V uti-

lizes multiple-switch-multiple-amplifier configuration and the gain interpolation

method to achieve a fine gain step of 0.25-dB over 42-dB gain range for the band

of 250 MHz to 2.3 GHz. Meanwhile, RFPGA-I uses current steering method to
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achieve a fine gain step of 0.25-dB over 42-dB gain range for even wider band of

250 MHz to 3.4 GHz. Both RFPGA-V and RFPGA-I are able to handle maximum

4.4V peak-to-peak input signal. Two broadband RF front ends for direct sampling

receivers, which include either RFPGA-V or RFPGA-I followed by the same 6-

dB gain buffer and RF filter, have been implemented. For the RF front-end with

RFPGA-V, the measured gain, NF, IIP3 and IIP2 at maximum gain in the differen-

tial mode are 29.5dB, 5.2dB, -10.9dBm and 31.4dBm, respectively. With RFPGA-I,

they are 30.5dB, 3dB, -10.5dBm and 21.1dBm, respectively. Both RF front ends

consume approximated 50 mW and occupy the similar area of 0.32 mm2 in 28nm

CMOS technology.

3.2 Overview of State-of-the-Art Architecture OF RFVGA/PGA

As discussed in Section I, a RFVGA/PGA needs satisfy many specifications

such as input impedance matching, NF, gain, programmable gain range, gain step,

linearity, single-ended-to-differential conversion, PSRR, CMRR, etc. Meanwhile,

the choice of RFVGA or RFPGA depends on the application requirements. RFPGA

is conventionally not suitable for the receiver with the fine gain step of less than 0.5

dB, since it usually increases the hardware complexity and degrades the bandwidth

due to its parasitics of switches and amplifiers. On the other hand, the requirement

of fine gain step can be satisfied easily by filling the coarse gain step of the front

attenuator with the fine gain step of VGA. However, when an incoming signal varies

a lot and requires the gain change of more than the gain range of VGA, it would

take a long time for Automatic Gain Control (AGC) loop to settle due to the slow
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ramping of the control voltage in a RFVGA. In this section, several state-of-the-art

architectures of RFVGA/PGA will be described, analyzed and compared.

Figure 3.1: Block diagram of the RFVGA with a resistive attenuator.

The first RFVGA architecture is shown in Fig. 3.1 [Manstretta and Dauphi-

nee [2007]][Mehr and et al [2005]]. The single-ended version is drawn for the

simplicity, although it could be implemented in a differential version. An R-2R

based attenuator provides 6-dB attenuation per stage along the resistive ladder and

has good input impedance matching over broad frequencies. The multiple variable-

gain amplifiers are connected along R-2R based attenuator. The gain control works

as follows. At the maximum gain, only Gm,1 is turned on, the rest of Gm blocks

are off. As gain decreases, the current gradually steers from Gm,1 to Gm,2. When

all of current goes to Gm,2, 6-dB gain back-off is achieved. The same way can be

applied to other adjacent Gm blocks to realize more gain attenuation. It is worth

noting that the steering current needs change in a certain way to achieve dB-linear

gain control characteristic by using Taylor’s series approximation [Yamaji et al.
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[2002]][Christopher [2000]][Liu et al. [2015]]. However, there are two main draw-

backs of this architecture: the additional noise from the resistive attenuator results

in noise figures greater than 3-dB. Secondly, it also suffers from bandwidth limita-

tion due to excessive parasitics in the multi-amplifier configuration, especially for

the large attenuation settings.

Figure 3.2: Block diagram of the RFVGA with a capacitive attenuator.

To overcome the two drawbacks mentioned above, two improved architec-

tures in the following can be used. The first one [Kim and Kim [2006]][Retz and

Burton [2003] uses a capacitive attenuator to replace the resistive attenuator, as

shown in Fig. 3.2, so the noise penalty from R-2R attenuator can be avoided and

low NF can be achieved. Since the capacitor value in the capacitive attenuator is

chosen to have relatively high input impedance for the band of interest, the broad-

band input impedance matching is satisfied by the shunt-feedback path. However,

excessive parasitics in the multi-amplifier configuration still limit its bandwidth.

Second improved architecture [Gatta et al. [2009]][Im et al. [2010]] has

used a single amplifier with multiple switches configuration, as shown in Fig. 3.3.
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Figure 3.3: Block diagram of the RFVGA with a resistive attenuator and multiple
switches.

Since the excessive parasitics from the multi-amplifier is avoided, this architecture

is able to achieve higher bandwidth and take less area. The mismatch of different

Gm blocks is avoided in this architecture as well. At the same time, the idea of

using a capacitive attenuator for low NF and a shunt-feedback path for broadband

input impedance matching can still be applied in this architecture too. However, the

on-resistance of the tapping switch at Vin node results in somewhat NF degradation

at the maximum gain setting.

It is worth noting that the above architectures use the voltage divider (R-

2R ladder) to realize signal attenuation, which fall into the voltage-mode category.

They require the amplifiers having a high input impedance to minimize their load-

ing influence to the attenuator. The input impedance of amplifier along the voltage

divider actually reduces the bandwidth of RFPGA/VGA. Fig. 3.4 shows another

type of current-mode RFPGA/VGA architecture, which utilizes the current divider

to realize signal attenuation [Im et al. [2010]][Mak and Martins [2011]]. The am-
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Figure 3.4: Block diagram of the current-mode RFPGA.

plifier includes a common-gate (CG) stage and a common-source (CS) stage, and

the amplifier input impedance is mainly determined by the CG stage and equals to

1/gm over a broad frequency range. Supposing 1/gm = R, the input impedance of

amplifier then can be absorbed into the R-2R resistive attenuator. At the maximum

gain mode, the R-2R resistive attenuator is switched off and the entire input signal

is directly fed into the amplifier through the switch of S0. In attenuation modes, the

RF input is fed into the R-2R ladder via one of the switches (S1, S2...Sn), and the

signal attenuation is realized by the divided signal current going to the CG stage.

In addition, since only one of the switches (S0, S1, S2...Sn) connecting to Vin node

is turned on at different gain settings, the input impedance always equals to R and

can be matched to the source impedance over wide frequencies.

There are several advantages in this architecture. Firstly, unlike previous

architectures, the input impedance of amplifier is finite and absorbed by the at-
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tenuator, which minimizes the loading influence to the attenuator resulting in a

very broad frequency range. Then this amplifier can achieve single-to-differential

conversion. The CS stage amplifies the input signal to the inverted output signal,

while the CG amplifies the input signal with the same phase. Additionally, this

architecture also achieves good NF due to noise canceling in the CG-CS amplifier

[Blaakmeer and et al [2006]]. At the same time, the switch S0 passes the signal

current to the amplifier and causes little noise penalty. However, there are also sev-

eral drawbacks of this architecture: firstly, an off-chip inductor is needed especially

for low-frequency band. Then the non-ideal OFF switches among (S0, S1, S2...Sn)

might contribute considerable nonlinearity when the input signal amplitude is large

at a high attenuation mode.

3.3 A Wideband RF Front-end with RFPGA-V

The RF front end in the section is designed for the direct sampling satellite

receiver satisfying latest DVB-S2X standard. The receiver is required to achieve

more than 40 dB gain range and a fine gain step of 0.25dB over the RF band from

250 MHz to 2.3 GHz. As discussed in Section II, a RFVGA is conventionally

chosen to achieve this fine gain step for the hardware simplicity reason. However,

since the input signal level can vary a lot in the satellite receiver application, a

RFPGA with fine gain step is more desirable due to fast AGC loop settling time.

In this section, a broadband voltage-mode RFPGA-V with a new gain interpolation

scheme will be presented to satisfy the above requirements.
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3.3.1 Architecture of RFPGA-V

Figure 3.5: Block diagram of RFPGA-V with multiple switches and multiple am-
plifiers.

Compared with the multiple-amplifier configuration in Fig. 3.1 and the

single-amplifier-and-multiple-switch configuration in Fig. 3.3, the proposed RFPGA-

V of multiple switches and multiple amplifiers configuration, as shown in Fig. 3.5,

can be considered as the hybrid version of both architectures. In this design, a

6-stage R-2R ladder provides total 36-dB attenuation range and 6-dB coarse gain

steps. In each stage of R-2R ladder, 12 tapping switches connect between the ladder

and the 12 amplifier units. In the maximum gain mode, all 12 amplifier units are
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tapped to the first stage of attenuator. In 6dB back-off mode, all 12 amplifiers units

are tapped to the second stage. Between the 6-dB coarse steps, the fine gain steps

are realized through the new gain interpolation scheme as the follows.

In the 0.5-dB interpolation scheme, the 12 amplifier units are tapped to two

adjacent stages in the ladder through the switches, as shown in Fig. 3.6 (a). For

example: the configuration of 11 amplifiers tapped to the 1st stage in the attenuator

and 1 amplifier tapped to the 2nd stage results in 0.37dB attenuation. The config-

uration of 10 amplifier slices tapped to the 1st stage and 2 amplifier slices tapped

to the 2nd stage, leads to additional 0.39dB attenuation. This interpolation pattern

can realize more gain steps until all 12 amplifier units are tapped to the 2nd stage of

R-2R ladder. The fine gain step ranges from 0.37dB to 0.64dB. This interpolation

scheme can also be applied to other two adjacent stages such as the 2nd and 3rd

stage in the attenuator to generate fine gain steps.

In order to realize 0.25-dB gain steps, it is easy to think about increas-

ing the number of the tapping switches and amplifier units from 12 into 24. The

24 amplifier units can be tapped to two adjacent stages in the ladder through the

switches. However, this possible interpolation method would significantly increase

routing parasitics, which reduces the RFPGA bandwidth. As a matter of fact, the

new 0.25-dB interpolation scheme in this design is realized without extra hardware

complexity compared with the 0.5-dB interpolation scheme. The 12 amplifier units

now are tapped to three adjacent ladder stages through the switches. As shown in

Fig. 3.6(b), the first two gain settings are same as those in the 0.5-dB interpolation

scheme. The 3rd gain setting is different, where 11 amplifier slices tapped to the 1st
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stage in the attenuator and 1 amplifier tapped to the 3rd stage of 12-dB attenuation.

The 4th gain setting is again same as the 3rd gain setting in 0.5dB interpolation

scheme. Therefore, this 0.25-dB interpolation scheme actually adds one more step

between the adjacent steps in the 0.5dB interpolation scheme except the 1st gain

step. It achieves the gain step ranging from 0.19dB to 0.37dB. This interpolation

scheme can also be applied to other three adjacent stages such as the 2nd, 3rd and

4th stage in the attenuator to generate fine gain steps.

Figure 3.6: Illustration of the gain interpolation scheme (a) 0.5-dB gain step, (b)
0.25-dB gain step

Ideally, even finer gain step can be realized by tapping the 12 amplifier units

to more than three adjacent ladder stages through the switches without extra hard-

ware expense. However, the device mismatch and the parasitic mismatch limit the

minimum possible gain step especially for high frequency in practice. Besides,
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another trick to improve bandwidth is also used in this design. The feedforward

capacitors are added along the resistive ladder to boost the bandwidth and can be

switched on or off at different gain control codes, as shown in Fig. 3.3. It is worth

noting that the tapping switches at the first stage have the largest size to minimize

noise penalty from the switch on-resistance at the maximum gain setting; and the

other tapping switches are progressively scaled down along the attenuator, which

minimizes the parasitics to the resistive ladder for achieving wide bandwidth. Be-

sides, the tapping switches at the first stage are thick-oxide NMOS devices, which

allows RFPGA-V to tolerate maximum 4.4V peak-to-peak input signal reliably.

The devices in the signal paths including the rest of tapping switches are all thin-

oxide devices to reduce parasitics and achieve high operating frequency.

Besides the gain programmability at the RFPGA input, RFPGA output gain

can be also programmed by varying the load resistor of Rout and the feedback resis-

tor ofRfb to achieve additional 8-dB gain range. According to Fig. 3.3, the gain (G)

and the input impedance (Rin) and noise figure (NF) for the gain programmability

at the RFPGA output gain can be expressed in the following:

G = GmRout (3.1)

Rin ≈
Rfb

G
=

Rfb

GmRout

(3.2)

NF = 1 +
Rsw

Rs

+
V 2
in,gm

4KTRs

+
Rout +Rfb

G2
mR

2
outRs

+
V 2
in,buf

G2
mR

2
out4KTRs

(3.3)
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where Gm is the total effective transconductor of the amplifier, Vin,buf is the

input referred noise of the buffer in the feedback path. Therefore, according to Eq.

3.2, Rout and Rfb change in a similar manner to keep the input impedance same

for the different gain control codes at RFPGA output. Compared with the gain-NF

relation for the input programmable gain where 1-dB gain attenuation causes 1-dB

NF degradation, RFPGA output gain attenuation causes little NF degradation due

to GmRout >> 1 according to Eq. 3.3. As a result, the system SNR can be further

improved when the incoming signal is large enough to back off the RFPGA output

gain.

As mentioned above, the broadband impedance matching for RFPGA out-

put gain programmability is provided by the shunt feedback loop, where the input

resistor ladder is switched off to minimize the noise penalty. As RFPGA gain de-

creases and the input attenuation start working, the input resistors Rin are gradually

switched on to satisfy input impedance matching. As RFPGA gain decreases further

where the input signal swing is fairly large, the feedback resistors Rfb are gradually

switched off, otherwise, the large input current would inject into the buffer output

in the feedback path and cause significant nonlinearity. The input impedance in

the low-gain or attenuation mode is completely provided by the resistors Rin. For

the large signal scenarios, the noise penalty from Rin has negligible impact to the

system SNR.
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Figure 3.7: Diagram of the amplifier in RFPGA (a) input-pair amplifier, (b) inverter-
like psudo-differential amplifier, (c) the proposed amplifier

3.3.2 Design of Amplifier

Fig. 3.7 shows several possible amplifier topologies used in RFPGAs. Fig.

3.7(a) is a fully differential input-pair amplifier, which is able to support both dif-

ferential and single-ended input signal. For the single-ended mode, this amplifier

topology can also work as a wideband active balun to perform single-ended-to-
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differential conversion. However, there are two disadvantages for this topology in

the single-ended mode. Firstly, the tail current is an additional noise source degrad-

ing NF. Secondly, the finite output impedance of the tail current can cause the signal

leakage especially at the high frequency, which results in the phase and magnitude

imbalance of this active balun. Another commonly used inverter-like amplifier is

shown in Fig. 3.7(b). Its class AB structure, where both PMOS and NMOS pro-

vide trans-conductance, saves about half current. However, it is not suitable for the

single-ended mode due to lack of a non-inverting path.

As shown in Fig. 3.7(c), the proposed amplifier in this design has two gain

stages. The first stage has two signal paths: a non-inverting path of a source fol-

lower, and an inverting path of a common-source stage. Here the four NMOS tran-

sistors are chosen to be the same size, so the both paths have unity gain over a wide

bandwidth. Particularly, in a single-ended mode, this stage can work as a broadband

active balun to perform single-end-to-differential conversion with 6-dB gain with-

out any off-chip inductor. Another advantage is that it is suitable to the low-voltage

operation due to only two stacked transistor in this stage. It implies that applying

more current at a low voltage supply to this stage, can achieve lower noise figure

with less power penalty. The second stage of amplifier is a simple common-source

stage and provides the majority of the gain. To be noted that the boxed part in

Fig. 3.7(c), actually has 12 identical units, which are used for the gain interpolation

scheme mentioned earlier.

39



3.3.3 Design of RF filter and Buffer

As shown in Fig. 2.10 , a gain buffer and RF filter follow the RFPGA/VGA

in a direct sampling receiver. Although most of out-of-band contents are rejected by

an off-chip filter, the out-of-band noise and distortion induced by RFPGA needs to

be suppressed by an RF filter before digitizing the entire RF band. Otherwise, the

RF front-end noise in the frequency above half of ADC sampling frequency (Fs)

would be folded back to the band of interest and this noise folding equivalently

causes 3-dB NF increase for the receiver. The RF filter in this design is required

to provide 6-dB attenuation from the upper bound of the band of interest (Fhigh) to

Fs − Fhigh, which results in less than 1-dB noise penalty due to the noise folding.

At the same time, a fixed 6-dB gain is added in the next stage of RFPGA to reduce

RFPGA output swing, which relaxes the linearity requirement for RFPGA. The

gain buffer needs provide sufficient linearity performance to handle the full scale

signal of ADC. As a result, the noise and linearity specifications of RF front end

are separated into two different blocks of RFPGA and the gain buffer.

The detailed implementation of the gain buffer and RF filter is shown in Fig.

3.8(a). The gain buffer consists of two paths: a source follower and a common-

source stage, which is same as the first stage of the amplifier in the RFPGA. The

next stage is a 3rd-order elliptic LC filter, where a class-AB source follower is used

to drive the LC filter for saving power consumption. The bias circuit for Vcmfb2

and Vcmfb2 in the push-pull source follower is realized by the common-mode feed-

back loop with the diode connected transistor M5 and M6 [Huijsing [2001]]. Be-

sides, the input impedance of the next stage ADC, which can be modeled as a
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parallel resistor and capacitor in the boxed part, is absorbed into the filter param-

eters to provide a low-pass response. The notch of filter can be tuned to provide

sufficient attenuation, and the slight peaking from inductor compensates the gain

roll-off from the proceeding stages. Fig. 3.8(b) shows the measured filter frequency

response with three different bandwidth settings.

Vop

Vin

Von

Zload
Vip

M1

M2

M3

M4

Vb

Vcmfb1

Vip

Vin

Vb

Vcmfb1

Vcmfb2’

Vcmfb2
Vcmfb2’

Vcmfb2

Vcmfb2

+

-Vcmo

(Vop+ Von)/2

M5

M6

Vcmfb2’

(a)

(b)

Figure 3.8: Gain buffer and RF filter (a) Simplified schematic; (b) magnitude re-
sponse
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3.3.4 Measurement results

The measurement results are shown in Fig. 3.9. The RF front-end achieves

42dB RF gain range with 0.25dB per step ranging from 250MHz to 2.3Hz. In the

differential mode, the measured gain, NF, IIP3 and IIP2 at maximum gain setting are

29.5dB, 5.2dB, -10.9dBm and 28.4dBm, respectively. At the minimum gain, IIP3

and IIP2 are greater than 25.9dBm and 58.3dBm, respectively. As shown in Fig.

3.9, as LNA output programmable gain decrease, NF keeps almost flat; as LNA in-

put programmable gain attenuates 1 dB, NF increases 1 dB. Besides, LNA gain de-

creases 1 dB, IIP3 improves 1 dB. It is worth noting that the measured non-uniform

gain steps, which should be distinguished from the ”wiggle-like” non-linearity in

Fig. 2.5, do not degrade the system performance as long as the largest gain step

would not cause excessive Amplitude Modulation(AM) error in the constellation

plot during the gain change and gain steps are monotonic.

In the single-ended mode, an external 50-ohm resistor is added at the other

side RF input, which will help reject the board noise pickup in the complicated SoC

environment. The measured gain, NF, IIP3 and IIP2 at the maximum gain for this

mode are 26.5dB, 8.2dB, -7.6dBm and 28.6dBm, respectively. The 3dB degradation

for NF is due to that the noise sources effectively are doubled and the half-circuit in

the differential circuits can no longer be used in the singled-ended mode for noise

analysis. At the minimum gain, measured IIP3 and IIP2 are greater than 26.6 and

48dBm, respectively. The high IIP2 demonstrates the effectiveness of the circuit to

convert single-ended signals to differential signals over wide frequency range.

This RF front end also has been tested in the direct sampling receiver with
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Figure 3.9: Measurement results (a) max gain; (b) gain programmability; (c) NF
at max gain; (d) NF vs gain control code; (e) IIP3/ IIP2 vs gain control code in
differential mode; (f) IIP3/ IIP2 vs gain control code in single-ended mode

a digital demodulation, as depicted in Fig. 2.10. Applying a -55dBm sinusoidal

waveform to mimic the desired channel at 1255MHz and aggregated 30dB-higher

adjacent channel interference (ACI) into the RF input, which is shown in Fig. 3.10,
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system SNDR achieves 25.4dB at 30MHz symbol rate for 8PSK modulation. More-

over, sweeping the total input power up to 3 dBm with 30-dB ACI and 15-dB Peak-

to-Average ratio (, which is equivalent to 4.4V peak-to-peak amplitude), the system

SNDR remains the same, indicating that the RF front-end has high dynamic range.

-40dBm (+15dB) -35dBm (+20dB)

235MHz 2215MHz1255MHz

-55dBm

-55dBm desired and 30dB ACI at RF input

Demodulated DAC output with SNDR of 25.4 dB

-90

-70

-50

-30

-10
(dBm)

Center 1.2GHz

RES BW 1 MHz

VBW 10 kHZ

Span 100 MHz

Figure 3.10: Measured SNDR with 30dB-higher ACI

Fig. 3.11 shows the micrograph of RF front end fabricated in 28nm CMOS

process, occupying area of 0.32 mm2. It only consumes 56mW from 1.3/1.8V

supplies, while demonstrating a wide gain range with a fine step, a superior linearity

and a low noise figure for a broad band.
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Figure 3.11: Die micrograph of RF front-end with RFGPA-V

3.4 A Wideband RF Front-End with RFPGA-I

As previously discussed, the amplifier input impedance along the attenuator

limits the high frequency range in a voltage-mode RFGPA. In contrast, the amplifier

input impedance can be absorbed by the attenuation and cause much less loading

influence in a current-mode RFPGA, as shown in Fig. 3.4. In this session, new

current-mode RFPGA-I achieving a fine gain step of 0.25-dB over 42-dB gain range

for even wider band of 250 MHz to 3.4 GHz will be presented.

3.4.1 Architecture of RFPGA-I

As shown in Fig. 3.4.1, the proposed wideband current-mode architecture

of RFPGA-I mainly composes of a resistive DAC and a trans-impedance amplifier

(TIA). In the low-frequency band, the inductor is too larger to be integrated in a

chip. Compared with the previous current-mode RFPGA architecture in Fig.3.4,
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RFPGA-I uses a TIA to replace the combination of a CS stage and a CG stage for

avoiding an off-chip inductor, especially in low-frequency band. At the maximum

gain, the resistive DAC is bypassed by turning on switch S0 and TIA provides

broadband gain and input impedance matching. The input impedance is equal to

Ro/A, where A represents the open-loop gain of the amplifier. At low-gain or

attenuation mode, TIA provides a low-swing node for current summation. As a

result, the signal attenuation is realized by steering the signal current from TIA

input to the common node Vcm through the switches (S1, S2...S12) in the resistive

DAC. Since those switches (S1, S2...S12) only handle small signal swing, they will

not cause linearity degradation. Moreover, the bypass switch S0 is turned off at

the large attenuation mode, where a large input signal swing needs to be isolated

from TIA input. In this design, a T-type switch is implemented for the switch S0

to minimize the signal leakage to the TIA input due to parasitic capacitance which

includes the switch Cds and the routing parasitic capacitance. The first switches

connecting Vip or Vin inside the T-type switch S0 are the only thick-oxide devices in

the signal path, so RFPGA-I is able to tolerate maximum 4.4V peak-to-peak input

signals without compromising the 3.4 GHz operating frequency.

RFPGA-V used the gain interpolation scheme via multiple switches and

multiple amplifiers in RFPGA-V for fine gain step of 0.25-dB over large gain range.

In contrast, RFPGA-I utilizes a 12-b segmented resistive DAC, which composes of

a 6-b binary resistor array and a 6-b R-2R ladder, for the similar function. The

segmented architecture for the DAC, where R is chosen to a value close to the unity

sheet resistance of a poly resistor, reduces the resistor spread leading to a small area
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and good matching. It is worth noting that the resistor matching in the attenuator

is not required to be 12-bit accuracy, since the most communication system usu-

ally allows a bit variation of the gain step as long as the gain monotonicity can be

guaranteed.

In addition, similar to RFPGA-V, the output gain in RFPGA-I can be also

programmed by varying the feedback resistor of Ro to achieve additional 8 dB gain

range. The output gain back-off cause little NF degradation.

Figure 3.12: Block diagram of current-mode RFPGA-I.

For a clear illustration of RFPGA-I, the detailed analysis including the equiv-

alent circuits for RFGPA-I at the different gain settings will be discussed in the

following:

1) At the maximum gain setting, all the switches (S0, S1...S12) in the input

attenuator are turned on and the RFPGA equivalent circuits can be drawn in Fig.

3.13(a). The input impedance is mostly provided by the TIA, which is equal to
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aboutRo/A, where A represents the open-loop gain of the amplifier. Since the input

impedance is a function of the gain of the amplifier, the input matching depends

upon process and temperature as most of wideband LNA topologies do [Razavi

[2010]]. In addition, the equivalent resistor value of 12-b resistive DAC and switch

S0 is small and the signal current entirely goes through them without any leaking

path, so the input attenuator contributes little noise penalty. As a result, noise figure

is mainly determined by the input equivalent noise of the amplifier. According to

this feedback configuration, the maximum gain is simply determined by Ro/Rs,

which has to be closed to the amplifier open-loop gain of A to satisfy the input

impedance matching condition.

2) For the output gain programmability of RFPGA-I, gain and input impedance

of TIA decrease with Ro. In this case, the input impedance is equal to the sum of

the equivalent impedance of the resistive DAC and input impedance of TIA. In or-

der to keep input impedance matching as gain decreases, the bypass switches S0 are

gradually turned off. At the minimum output gain setting, the equivalent circuit of

RFPGA-I can be drawn in Fig. 3.13(b), where the output resistor becomes Ro/2.5

and switch S0 in the input attenuator is completely switched off. Besides, since all

signal current goes to the TIA input, noise figure only increases slightly.

3) For the input gain programmability of RFPGA-I, the input signal attenu-

ation is realized by steering the signal current from TIA input to the common node

Vcm. The equivalent circuit is shown in Fig. 3.13(c). The resistive DAC can be

modeled by R1 and R2, where R1 represents the path of the input signal current

flowing to TIA input and R2 represents the path of the input signal current flowing
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Figure 3.13: RFPGA-I equivalent circuits (a) at the maximum gain; (b) at the min-
imum output gain; (c) at input gain back-off.

Table 3.1: Parameters summary for different gain settings of RFPGA-I

Gain setting
of RFPGA-I

Gain Rin β NF

Max gain Ro
Rs

or A Ro
A

R0
Rs+Ro

1 + Rs
Ro

+
R2

in,a

4KTRs

Min output
gain

Ro/2.5
Rs

or
A/2.5

R
32 + Ro

2.5A
Rs+R/32

Rs+R/32+Ro/2.5
1+ R/32

Rs
+ Rs

Ro/2.5
+

Rin,aRs

4KT (Rs+R/32)2

Input gain
back-off

Ro/2.5A
R1+Ro/2.5A

R2||(R1 +
Ro
2.5A)

Rs||R1+R2

Rs||R1+R2+Ro/2.5
approx. dB-by-
dB increase as in-
put gain decreases
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to the common node Vcm. Therefore, the signal attenuation is determined by the ra-

tio of R1 and R2 and the resistance of R1 and R2 in parallel is equal to R/32. Since

the signal is attenuated at the input, 1-dB attenuation causes 1-dB NF degradation

in this case.

From these equivalent circuits in Fig. 3.13, gain (G) and input impedance

(Rin) and loop feedback ratio (β) and noise figure (NF) of RFPGA-I at the different

gain settings has been derived and summarized in Table 3.1. Taking the example

of the equivalent circuit in Fig. 3.13(c), where the input gain of RFPGA-I is pro-

grammed, Rin and Vo can be expressed as:

Rin = R2||(R1 +
Ro

2.5A
) ≈ Rs (3.4)

Vo = − Vi
Rs

R2

R2 +R1 + Ro

2.5A

Ro

2.5A
(3.5)

From equation Eq. 3.4 and Eq. 3.5, gain can be expressed as:

G =
Vo
Vi

=
−1

Rs(R1 + Ro

2.5A

(R1 + Ro

2.5A
)R2

R2 +R1 + Ro

2.5A

Ro

2.5A
= − Ro/2.5A

R1 +Ro/2.5A
(3.6)

From Table 3.1, many important insights for RFPGA-I can be obtained.

Listed in column Rin, RFPGA-I input impedance is a function of the open-loop

gain of the amplifier for different gain settings. Therefore, a high-speed amplifier is

required to keep input impedance matching over wide bandwidth. Then, according

to the column β, feedback factor of this shunt feedback structure increases as the
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gain decreases. When RFPGA-I in the setting of the output gain programmability,

the feedback factor is small and the loop stability can be easily achieved. Then the

feedback factor goes to maximum for the minimum gain setting, where the loop

stability needs to be carefully checked. Besides, from the column NF, noise figure

keeps relatively constant for the output gain programmability due to small value of

Rs/Ro, where Vin,a is the input referred noise of the amplifier. The noise figure

expression for the input gain programmability is a little lengthy and not listed in

Table I, but basically 1-dB gain attenuation at the input causes 1-dB NF degradation.

3.4.2 Design of Amplifier

The schematic of high-speed amplifier used in RFPGA-I is shown in Fig.

3.14. This amplifier includes two stages: the first stage is an inverter-based class-

AB CS amplifier, which provides the most of gain in the amplifier. Since the low-

band of this application is at 250-MHz instead of DC, a simple diode-connected

PMOS through a resistor is used for its common-mode biasing. The second stage

is the combination of a source follower and a common-source stage, same structure

as the gain buffer in Fig. 3.8. It provides additional several-dB gain, and drives the

feedback resistor array of Rfb and the next gain-buffer stage.

In term of the frequency response of this two-stage amplifier, the dominate

pole is at its first stage output due to the high output impedance of CS stage. The

small capacitance at the first stage output pushes the dominate pole to a high fre-

quency. The non-dominate pole is at its second stage output due to the small output

impedance of source follower. Since this topology separates the heavier loading
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from the high output impedance of the first stage, it achieves wider bandwidth,

compared with the one-stage inverter-based CS amplifier in Fig. 3.7(b). In addi-

tion, since this is a two-pole system, the loop stability needs to be carefully checked,

especially at the minimum gain setting, where the feedback factor of RFPGA-I is

maximum according to Table 3.1.

Figure 3.14: Schematic of the amplifier in RFPGA-I.

3.4.3 Measurement results

The RF front end with RFPGA-I is designed for the direct sampling satellite

receiver as well. The following stage of the anti-alias filter and gain buffer in sub-

section 3.3.2 is re-used here. The measurement results are shown in Fig. 16. The

RF front-end with RFPGA-I extends the high band to 3.4 GHz. It achieves 41dB

gain range with 0.25-dB per step. The measured S11 is less than -10dB from 100

MHz to 3.4 GHz. The measured gain, NF, IIP3 and IIP2 at the maximum gain are

about 30dB, 3dB, -10.5dBm and 21.1dBm, respectively. IIP3 and IIP2 are greater

than 30dBm and 58.2dBm at the minimum gain setting, respectively. Both IIP2 and
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IIP3 improve 1dB as LNA gain decreases 1dB. RFPGA-I achieves better noise per-

formance at the maximum gain setting than RFPGA-V for two reasons: no tapping

switches and higher gain in the first stage of amplifier.
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Figure 3.15: Measurement results (a) S11; (b) max gain and NF at max gain; (c)
gain programmability; (d) IIP3 & IIP2 vs gain control code.

Fig. 3.15 shows the micrograph of the front end with RFPGA-I fabricated

in 28nm CMOS process. The left part is the RF front end and the right part is the

testing buffer, which connects the output of RFPGA-I. In order to reuse the testing

board, the ball configuration is kept same as the RF front end in section III. The area

of the RF front end is limited by the balls and is 0.32mm2. It only consumes 50mW

from 1.2/1.8V supplies, while demonstrating a fine gain step of 0.25-dB over 41-dB
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Table 3.2: Measured performance summary and comparison with state-of-the-art

Parameters This
work
with

RFPGA-
V

This
work
with

RFPGA-I

Murphy
et al.

[2015]

Greenberg
et al.

[2013]

Im et al.
[2012]

Mak and
Martins
[2011]

Frequency
(MHz)

200-2300 200-3400 200-3300 40-1002 48-860 170-1700

Diff/balun diff/balun diff diff/balun balun diff balun
Gain step
(dB)

0.25 0.25 NA 1 0.25 6

Gain range
(dB)

42 42 fixed
gain

51 58 18

NF @ max
gain (dB)

5.2 3 1.7 3 6 4

IIP3 @ max
gain (dBm)

-10.9 -10.5 NA -13 -13 -3.4

IIP2 (dBm) 28.4 21.1 NA 20 NA 32
Receiver ar-
chitecture

Direct
sampling

direct
sampling

single-
conversion

single-
conversion

single-
conversion

single-
conversion

External
inductor for
LNA

N N N Y N Y

Power [mW] 56 50 36-62 113 115.2 55
Area [mm2] 0.32 0.32 5.2 5.6 NA 0.57
Technology 28nm 28nm 28nm 80nm 180nm 65nm

gain range in the band of 200 MHz to 3.4 GHz.

Table 3.2 is summary of the front end performance in comparison with the

state-of-the-art. Both presented RF front-ends in this chapter show fine gain step,

large gain programmability, and low noise over wide frequency range and occupy

a small area. Thanks to the high bandwidth of the current steering, RFPGA-I has

wider frequency range than RFPGA-V. Meanwhile, it is convenient to use gain in-
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Figure 3.16: Die micrograph of RF front-end with RFGPA-I.

terpolation for RFPGA-V to realize even finer gain step for relatively low frequency

applications, as discussed in ??. Therefore, either RFPGA-V or RFPGA-I could be

a better candidate for different applications. Besides, no off-chip inductor is needed

in either RFPGA-V or RFPGA-I.

3.5 Conclusion

This paper presents comparative analysis between two new architectures

of RFPGAs: voltage-mode RFPGA-V and current-mode RFPGA-I. RFPGA-V uti-

lizes multiple-switch-multiple-amplifier configuration and gain interpolation method

to achieve a fine gain step of 0.25-dB over 42-dB gain range from 250 MHz to 2.3

GHz. Meanwhile, RFPGA-I uses current steering approach to achieve a fine gain

step of 0.25-dB over 41-dB gain range for even wider frequency range from 250
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MHz to 3.4 GHz. In addition, both RFPGA-V and RFPGA-I are able to handle

maximum 4.4V peak-to-peak input signal. The presented broadband RF front-end

with either RFPGA-V or RFPGA-I significantly simplifies hardware complexity

and reduces the power consumption.
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Chapter 4

High-speed Time-interleaved SAR ADC

This chapter presents a 5-GS/s 12-way 10-b time-interleaved SAR ADC for

direct sampling receivers. Proper signal and clock distribution along the multiple

channels are utilized to mitigate inter-channel bandwidth and timing mismatches. A

digitally-assisted calibration is introduced to remove the inter-channel offset, gain

and timing mismatch. The T-type bootstrapped sampling switches minimize the

inter-channel crosstalk among top-plate sampling SAR channels and the signal-

dependent leakage current during SAR conversion cycles. The power efficiency

of this ADC is significantly improved by many design techniques. The merged

capacitor switching algorithm leads to high switching efficiency and smaller area.

The modified reference voltage scheme optimizes input common-mode voltage of

the comparators. The optimal sub-radix-2 CDAC results in low-power reference

buffers and higher conversion speed. This ADC achieves 49 dB SNR, 52 dB THD

and 42 dB SNDR up to Nyquist frequency at 5 GS/s, consumes 76 mW from 1 V

supply, and occupies 0.57 mm2 in 28 nm CMOS technology. The implemented ar-

0This chapter is a partial reprint of the publication: Jie Fang, Shankar Thirunakkarasu, Xuefeng
Yu, Fabian Silva-Rivas, Chaoming Zhang, Frank Singor, Jacob Abraham, “A 5GS/s 10b 76mW
Time-interleaved SAR ADC in 28nm CMOS,” IEEE Transactions on Circuits and Systems I: Reg-
ular Papers vol. 64, no. 7, pp. 16731683, July 2017. I thank all the co-authors for their valuable
advice in designing and testing of the prototype.
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chitecture also demonstrates high scalability to advanced CMOS technology nodes

and has even higher power efficiency potential.

This chapter is organized as follows: an introduction of existing high speed

SAR ADC design techniques is first presented. The proposed SAR ADC archi-

tecture is shown next. Finally, the detailed prototype ADC implementation and

measurement are presented.

4.1 Introduction

A low-noise amplifier (LNA) amplifies the incoming signals, passes it to

an anti-aliasing filter (AAF) which restricts the out-of-band content, such as LNA

noise and distortion. The properly conditioned signal is then sent to a wideband

ADC that digitizes the entire spectrum from DC to Nyquist, where channel selec-

tion and demodulations can be performed efficiently in the digital domain. The ar-

chitecture creates a great challenge to the dynamic range requirements of the ADC.

As shown in Fig. 4.1, the ADC dynamic range should be large enough to handle the

undesired blockers, the peak-to-average ratio (PAR), and still satisfy the signal-to-

noise ratio (SNR) requirement for a communication system. It is worth noting that

in the SNR calculation, the noise should be integrated over the channel bandwidth

instead of the entire Nyquist band.

Time-interleaved (TI) ADCs are popular architectures that satisfy multi-

GS/s and high-resolution requirements in recent literatures [Doris et al. [2011]][Stepanovic

and Nikolic [2012]][Janssen et al. [2013]][Dortz et al. [2014]][Fang et al. [2015]][Sung

et al. [2015]][Hong et al. [2015]][Sahoo and Razavi [2013]][Wu et al. [2013]][Bran-
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Figure 4.1: Requirement of ADC dynamic range.

dolini et al. [2015]]. It is well known that inter-channel timing, bandwidth, offset,

gain and linearity mismatches generate undesired artifacts, which limit the perfor-

mance of TI ADCs. In order to mitigate those non-ideal effects, proper clock and

signals distribution to all sample/hold (S/H) circuits in ADC channels and digitally-

assisted calibration schemes are needed. In addition, linearity and clock jitter at

high frequency are also critical limits for high-speed ADC performance. Especially

when the incoming signal has a fully loaded spectrum, significant broadband noise

due to clock jitter and broadband distortion due to circuit nonlinearity are generated,

both of which are strongly dependent on the spectral power at higher frequencies.

In terms of individual ADC channels in high-speed TI ADCs, successive

approximation register (SAR) ADCs [Doris et al. [2011]][Stepanovic and Nikolic

[2012]][Janssen et al. [2013]][Dortz et al. [2014]][Fang et al. [2015]][Sung et al.
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[2015]][Hong et al. [2015]][Sahoo and Razavi [2013]][Wu et al. [2013]] and pipelined

ADCs [Wu et al. [2013]][Brandolini et al. [2015]][van der Goes et al. [2014]] are

the two main structures. Pipelined ADCs generally provide higher resolution, but

SAR ADCs with digital calibration for capacitor mismatches can achieve high res-

olution as well [Stepanovic and Nikolic [2012]][Inerfield et al. [2014]][Chang et al.

[2013]]. Thanks to their digital-friendly nature, SAR ADCs are superior in as-

pects of power efficiency and are highly scalable to an advanced CMOS technol-

ogy [Hariprasath and et al [2010]][Liu et al. [2010]][Inerfield et al. [2014]][Chang

et al. [2013]]. First, as supply voltage shrinks in advanced technologies, the small

signal swing requires a large sampling capacitance to achieve high SNR at the ex-

pense of large current consumption. However, due to no closed-loop circuit in S/H

circuits, SAR ADCs can easily accommodate high-swing signals, which means a

smaller sampling capacitance is sufficient for a high SNR. In addition, capacitance

matching and density also improve continuously with the evolution in technolo-

gies. Further, the small sampling capacitance for TI ADCs also reduces the over-

head in distributing the sensitive incoming signals to all channels and increases the

bandwidth of the analog front-end buffer. In addition, digital SAR logic benefits

dramatically in terms of speed, area and power with technology scaling. On the

other hand, in order to improve the speed of SAR ADCs, some papers [Hong et al.

[2015]][Chan and et al [2012]][Kull et al. [2013]] used multiple comparators and

multiple reference voltages to determine 2 or 3 bits per conversion cycle at the cost

of power consumption for each channel which reduces the number of channels and

simplifies the time-interleaved S/H networks. After all, SAR ADCs achieve high
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power efficiency and low cost, therefore they are very popular choices for TI ADCs

in advanced CMOS technologies.

In this work [Fang et al. [2015]], a 12-channel 10b time-interleaved SAR

ADC is demonstrated. The inter-channel offset, gain, bandwidth and timing mis-

matches in the TI ADC are mitigated by both careful signal and clock distribu-

tion along the multiple SAR channels and an elaborate digitally-assisted calibration

method. The issues in the sample/hold network (S/H) such as the inter-channel

crosstalk and the signal-dependent leakage current during SAR conversion cycles

are eliminated by T-type bootstrapped sampling switches. In order to improve the

ADC power efficiency, many design techniques are applied. First, the merged ca-

pacitor switching algorithm leads to high switching efficiency and small area. Then

an optimized reference voltage scheme reduces the common-mode voltage of the

PMOS-input pair in comparators to achieve high speed and low noise. Further, the

sub-radix-2 CDAC is optimized not only to provide robustness for SAR conver-

sions, but also results in low-power reference buffers and higher conversion speed.

The measurement shows that this ADC achieves 49dB SNR, 52dB THD and 42dB

SNDR up to Nyquist frequency at 5GS/s, consumes 76mW from a 1V supply, and

occupies 0.57mm2 in 28nm CMOS technology.

4.2 TI ADC Architecture

The overall architecture of the 12-way TI synchronous SAR ADC is shown

in Fig.4.2. In the ADC, an input signal is distributed to the 12 SAR channels via

an on-chip input buffer in order to limit kickback noise back to the RF front end.
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Figure 4.2: Overall architecture.

Figure 4.3: Timing diagram of the TI ADC.
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The input differential signal has a maximum swing of 1.2 V peak-to-peak, which is

limited by the input buffer with 1.0 V power supply. The input buffer has 12 parallel

units, whose layout pitch matches that of the individual SAR channel for easy sig-

nal distribution along the SAR arrays with good inter-channel matching. Each SAR

channel converts data at the speed of 416.7 MS/s; the 12-way interleaved channel

results in the 5 GS/s conversion rate. An on-chip digital calibration engine for each

ADC channel removes gain and offset mismatches, and realizes the non-binary to

binary mapping on the output data. The inter-channel timing mismatch is estimated

offline, and then corrected by tuning the programmable delay of the sampling clock

in each ADC channel. Lastly, a combining multiplexer selects 12 channel outputs

in a rotated manner and outputs data with a decimation ratio of 13. Therefore, the

complete sampled spectrum is folded on 1/13th of the Nyquist frequency, which

allows measuring all spectral artifacts of the converter and overcomes the data ac-

quisition speed limitation of the setup.

The timing diagram of this TI ADC is described in Fig. 4.3. First, a single

5 GHz master clock is generated from an integer PLL with low jitter [Shen et al.

[2013]]. The clock generation block, which mainly consists of barrel shifters, re-

ceives the master clock and then generates 12 clocks with phases 0, 30, 60 ...... 330.

Each of 12 clocks operate at 416.7 MHz with a duty-cycle of 1/12, triggers each

individual SAR channel to sample and hold the input signal at equally spaced time

instants, thus the 12-way interleaved operation is realized. Further, each SAR chan-

nel also uses 12 master clock cycles: one for S/H and eleven for bit conversion, and

outputs 11b data every 12 cycles. The SAR conversion steps are all synchronous to
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a single 5 GHz master clock for the simplicity of the SAR logic.

4.3 Sample/Hold Network
4.3.1 S/H Issues in the TI ADC

In this work, a top-plate sampling SAR ADC is used in each channel. As

shown in Fig. 4.4, the S/H network in this TI ADC consists of the input buffer

array, a sampling switch and the sampling capacitors in each SAR channel. Several

issues in the S/H network should be carefully considered here. First, the signal-

path mismatch from the buffer input to each SAR channel will cause bandwidth

and phase mismatch, which degrades ADC performance. Proper signal distribution

along the channels is needed. Second, the crosstalk among the top-plate nodes of

the sampling capacitors could cause sampling errors in each SAR channel during

the S/H cycle, and conversion errors in the other channels. Third, the leakage cur-

rent of the sampling switch leaks the hold charge of the CDAC during conversion

cycles, leading to conversion error. In addition, the nonlinear input capacitor of the

comparator could cause THD issue, since the nonlinear capacitor ”takes away” or

”inject” a portion of the charge that are nonlinearly dependent to the comparator

input during SAR conversion.

4.3.2 Input Buffer

The single-ended version of input buffer is shown in Fig.4.5, although the

actual implementation is a differential version. It consists of 12 parallel units, and

each unit has dual signal paths: the main path of source follower stage, and the
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Figure 4.4: Sample/hold network in the TI ADC.

auxiliary path of the common source stage. The -1 block in Fig. 4.5 represents

the cross-coupled wire connection in the actual differential implementation. The

auxiliary path provides a little extra gain to compensate the loss from the main path

of source follower to achieve overall unity gain. Without this auxiliary path, the

loss of input buffer would require the larger output swing at its front stage, which

is RF front-end in direct sampling receiver as shown in Fig. 4.1. Thus, the linearity

requirement for the output stage at RF front-end would be more difficult. Besides,

since the pole of each path is at high frequency, the combination of the two paths

will induce the pole-zero doublets at the high frequency. This input buffer remains

wide bandwidth.

The signal distribution needs to be carefully considered to minimize band-

width and phase mismatches among the channels. First, the outputs of all buffer

units are shorted together, so the mismatch of buffer units will not contribute inter-

channel mismatches and all buffer units are used for the S/H settling in each SAR
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channel. Then, each buffer unit has a layout pitch matching that of each SAR chan-

nel for easy signal distribution and good inter-channel matching, as shown in Fig.

4.6. It can be seen that a tree-type routing is used to distribute the signal of Vin to

each buffer unit input achieving an equal delay for the input signal. In addition, a

ring-type routing for Vo is applied to equalize the buffer loadings among the central

channels and the channels in the both edges.

Figure 4.5: Simplified schematic of the input buffer.

Figure 4.6: Layout floor plan of the TI ADC.
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4.3.3 Sampling Switch

For this high-speed IT ADC, a single conventional sampling switch with

long channel length and/or high threshold voltage is not good enough to prevent

inter-channel crosstalk due to parasitic capacitance Cds which is composed by the

drain source capacitor of the sampling transistor and the routing parasitic capaci-

tance. To address the issues of the inter-channel crosstalk and the charge leakage

during SAR conversion phases, a T-type sampling switch with the combination of

a low-Vth transistor (LVT) and a high-Vth transistor (HVT) is applied. Its concept

is illustrated in Fig. 4.7. During the conversion phases, M3 is shorted to Vcm, and

both M1 and M2 are turned off, so this T-type switch provides good isolation to

prevent the inter-channel crosstalk. During the sampling phases, both M1 and M2

are bootstrapped to achieve good linearity and to reduce the switch on-resistance

for fast settling. In addition, in order to minimize the signal-dependent leakage cur-

rent during the conversion cycles, M2 is implemented using a HVT transistor for

small leakage current when it is off; and M2 bulk is dynamically biased as well.

The M2 bulk voltage of Vb is generated by a charge-pump-like circuit: when φa is

high, Vb is tied to ground; when φa changes from high to low, Vb goes to a negative

value, which is set by the capacitor ratio of C3/C4. Therefore, M2 bulk is switched

between ground and around -500 mV during on and off, respectively. The negative

body biasing increases the threshold voltage and reduces the leakage current. In

order to clearly define the sampling instant, φa is slightly earlier than φ to assure

the falling edge of the clock for M2 is the only critical clock transition.

The basic principle of the bootstrapping is illustrated in Fig. 4.7 as well. The
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Figure 4.7: Conceptual T-type sampling switch.

Figure 4.8: Detailed implementation of the sampling switch.
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capacitor C1 is pre-charged to Vdd initially. Then the pre-charged C1 is applied

onto Vgs of the sampling switch to achieve a constant voltage regardless of the

input voltage in the hold phase. However, there are two issues associated with this

operation. First, the associated parasitics capacitance cause Vgs of M1 modulated by

the input signal, and also limits the bootstrap bandwidth, degrading linearity at high

frequencies. Second, while an input signal approaches Vdd, the gate voltage at M1

rise to 2Vdd causing MOS reliability problems, for instance, dielectric breakdown,

hot electron, punch-through.

For this design, the detailed implementation of the T-type sampling switch is

depicted in Fig. 4.8, where the bootstrapping implementation is similar to [Dessouky

and Kaiser [2001]]. In the consideration of bootstrapping switch of M1, C1 is pre-

charged during φ0. At the beginning of φ1, M4 and M6 turn on first and M1 gate

starts to rise, and then M5 and M7 turn on. At the end of φ1, M1 gate rises to

Vin+Vdd. M7 has been added to prevent Vgd of M8 from being overstressed while

it is off. This implementation consists of almost entirely of thin-oxide transistors

except M10, which needs to handle 1.5V Vgs right after φ1a goes high. Therefore,

both the parasitics issue and the reliability issue are significantly alleviated, and a

high-speed highly linear switch is achieved.

4.4 SAR ADC Implementation
4.4.1 SAR ADC channel

An individual channel of a 10b SAR ADC consists of an analog and a digi-

tal part. A simplified schematic of the analog part of the ADC channel is shown in
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Figure 4.9: (a)Simplified schematic of the analog part in a SAR channel; (b)Merged
capacitor switching algorithm.

Fig. 4.9 (a). Top-plate sampling circuit with merged capacitor switching algorithm

[Hariprasath and et al [2010]] is chosen for its high switching efficiency and less

total capacitors. The detailed operation will be explained in the next paragraph.

In addition, in bottom-plate sampling SAR ADCs, the charge sharing between the

comparator input capacitance and the sampling capacitor attenuates the sampled
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signal, or equivalently amplifies the comparator noise, which is usually one of the

dominant noise sources. This top-plate sampling SAR ADC avoids this effect. The

11b sub-radix-2 with 1b redundancy in the capacitive DAC (CDAC) is applied to

tolerate decision errors arising from noise, reference settling, etc. The redundancy

is implemented in the first 6 MSBs with the capacitance ratio of approximately

1.75, since most of reference settling errors happen in the MSB conversion cycles.

The capacitance ratio for the rest of LSBs is still binary. Detailed discussion to

optimize the capacitor ratio in CDAC will be explained in Section IV.C. A compact

customized M4-M6 metal finger capacitor is used to reduce the area while preserv-

ing good ratios between the capacitors. The unit capacitor is around 2 fF to achieve

better than 10-bit matching accuracy. Actually, in terms of matching accuracy, the

unit capacitor size can be even smaller according to the recently published papers

[Inerfield et al. [2014]]. Outputs of the analog part of the channel are raw output

bits. Then the digital part of each channel removes gain and offset mismatches,

and realizes the non-binary to binary mapping on the output data. In addition, SAR

logic majorly consists of shift registers to realize a synchronous SAR timing for its

simplicity and small power consumption.

The operation of top-plate sampling with merged capacitor switching algo-

rithm can be illustrated in Fig. 4.9(b), where a 3-bit CDAC is used as an example.

During the MSB cycle, the bottom plate of CDAC is connected to Vcm while the

top plate is holding the input signal, Vin. Apparently, the MSB can be determined

right after the sampling phase without consuming any switching energy due to no

charge redistribution. Depending on the value of MSB, the bottom plate of first
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capacitor will switch from Vcm to either Vrefp or ground. The rest of conversion

cycles will follow the same scheme. Besides the efficient MSB conversion, the 3-

level reference: Vcm, Vrefp and ground, halves the voltage step at the bottom plate

of CDAC and significantly minimizes the switching energy during the conversion

cycles compared to conventional 2-level reference, since the energy consumption is

proportional to CV 2.

4.4.2 Optimization for Input CM Voltage of Comparator

As for the selection of the reference levels, Vcm is typically set to Vrefp/2,

so the input common-mode voltage of the comparator will keep same as the common-

mode voltage of the input buffer output during the conversion cycles, as depicted

in Fig. 4.10(a). However, the comparator can be at better operating region when

its input common-mode is less than the half of 1.0 V power supply, since it has a

PMOS input pair. In order to obtain this, Vcm is not equal to Vrefp/2. Actually,

Vrefp = 0.6V and Vcm = 0.4V in this design. As a result, the input common-mode

voltage of the comparator gradually moves from the initial 0.5 V to 0.4 V during the

conversion process, as shown in Fig. 4.10(b). The relatively large decision errors

during MSB conversion cycles, where the input CM of comparator is about 0.5V,

could be recovered by the redundancy in CDAC. The last LSB conversion cycles

with binary capacitor ratio are more critical, where the input CM of comparator

moves to 0.4V, a better operating region for a PMOS input pair. However, low-

ing input-common voltage of the comparator will cause the offset voltage to vary

during SAR conversion cycles. This issue can be solved by the design and will be
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discussed in the Section IV.D.

Figure 4.10: The waveform of the top-plate CDAC in a SAR ADC (a) Vcm =
Vrefp/2, (b) Vcm 6= Vrefp/2

73



4.4.3 Reference Buffer and Related CDAC Optimization

Typically placing large capacitors at the reference voltages would have a

low-power advantage, because it only consumes the switching energy, but no qui-

escent current as class-A or class-AB reference buffers have. However, a TI ADC

requires large off-chip capacitors to minimize inter-channel crosstalk through the

reference voltages. In this design, the fast reference buffers are separated for each

SAR channel. The simplified schematic of Vrefp buffer is shown in Fig. 4.11, where

12 buffer units are all biased by a replica unit; and each buffer unit is a super source

follower, which includes a feedback loop to minimize the output resistance for fast

settling when the SAR algorithm is applied. The feedback loop gain and stability

can be controlled by the resistor connected to the ground in this design. Sometimes

the resistor could be replaced by a current source, and then the frequency com-

pensation may be added for the loop stability. Obviously, the device mismatches

among the 12 buffer units will cause the full-scale mismatch among 12 SAR chan-

nels meaning inter-channel gain mismatch, which needs to be removed by each

individual digital calibration engine discussed in Section V. At the same time, Vcm

buffer is implemented using a similar topology, but using NMOS instead. In addi-

tion, since ground is used as a reference level, one reference buffer is saved for each

SAR channel, achieving better power efficiency.

Each SAR channel poses a settling requirement for the feedback loop, which

consists of a comparator, SAR logic, CDAC and reference buffers, as shown in Fig.

4.9. Since each SAR channel has a Vrefp buffer and a Vcm buffer, the power con-

sumption of the reference buffers are not insignificant. Therefore, there is a trade-

74



off between speed and power consumption for the reference buffers. Fig. 4.12

illustrates the output voltage and the output current for a reference buffer during

the conversion cycles. Obviously, the voltage ripples are significantly large in MSB

conversion cycles, which would also induce large setting errors affecting ADC ac-

curacy unless a power-hungry buffer is used. In order to avoid large power penalty

or severe ADC performance degradation, the redundancy is applied in the first 6

MSBs in the CDAC array, where the capacitance ratio is approximately 1.75 in this

design. At the same time, a binary capacitor ratio is used in the rest of LSBs without

adding extra ADC conversion cycles due to the much smaller voltage step and the

RC time constant in the loop.

Figure 4.11: Schematic of the reference buffer.

Further, let us look at the output current of the reference buffer, as shown

in Fig. 4.11. The MSB conversion will cause the largest output current spike for
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Figure 4.12: Output voltage and output current of the reference buffer.

a reference buffer, which actually determines its power consumption. This obser-

vation implies that the MSB capacitor in CDAC should be as small as possible for

power efficiency, which gives a guidance to choose one of two commonly used

schemes for the capacitor ratio for redundancy: Option 1 of [32 16 8 8 4 2 1 1]

and Option 2 of [26 18 12 8 4 2 1 1]. This example has 8-bit CDAC with 1 extra

bit redundancy. First, option 1 may have a bit more redundancy range since it puts

all redundancy on the single 4th bit, which helps recover all the conversion errors

happening at the first 4 MSBs. However, option 2 distributes the redundancy into

the 4 MSBs progressively and achieves a smaller capacitor spread, which leads to

lesser power consumption of the reference buffers and lesser settling error for the

MSB conversion. Therefore, the option 2 scheme for the capacitor ratio is used in

this design.
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4.4.4 Comparator

Figure 4.13: Schematic of the comparator.

The comparator comprises a static pre-amplifier and a dynamic latch, as

shown in Fig. 4.13. The pre-amplifier has been designed for low noise and mod-

erate gain to improve the comparator noise performance, to reduce its offset, and

more importantly, to limit the kick-back noise from the dynamic latch. The input

capacitance of comparator needs to be small for (a) the charge sharing between the

preamplifier input capacitance and the sampling capacitor attenuates the sampled

signal, hence increasing the gain of the preamplifier noise on the total SNR; (b) the

comparator input capacitance Cgs is signal-dependent and will cause a distortion

issue in the sampling when a large input signal causes the input transistors of M1

and M2 to trip between saturation and linear or cut-off region. In this design, the

cross-coupled capacitors C1 and C2 are added to linearize and neutralize the input

capacitance of the comparator in order to alleviate this sampling error and to in-
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crease the pre-amplifier bandwidth. The following dynamic latch has the clocked

tail PMOS and a small tail current ensuring the latch is in a weak conduction state

when the clock is high, which makes the comparator recover faster from the reset

state. The reset devices then eliminate the memory effect at the internal nodes of

the comparator.

As discussed previously, lowing input-common voltage of comparator makes

the pre-amplifier of PMOS input-pair work at a better operating region, which not

only improves the comparator speed, but also reduces the comparator noise at LSB

conversions. However, the offset voltage will vary due to different input common-

mode voltages. The offset voltage of this comparator can be expressed as [Liu et al.

[2010]]:

Vos = ∆Vth1,2 +
(vGS − vth)1,2

2
(
∆S1,2

S1,2

+
∆R

R
) (4.1)

Where ∆Vth1,2, (VGS − Vth)1,2,∆S1,2 is the threshold voltage offset, the ef-

fective voltage and the physical dimension mismatch of the differential pair M1

and M2, respectively. ∆R is the loading resistance mismatch induced by the re-

sistor loading and the following dynamic latch stage. The second term of Eq.4.1

is a signal-dependent dynamic offset since (VGS − Vth)1,2 varies with the input

common-mode voltage.

Actually, the dynamic offset has a minor influence on the conversion lin-

earity in this work. First, as discussed in Section IV.B, the input common-mode

voltage of comparator only changes from 0.5V to 0.4V, which is much smaller than
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that in [Liu et al. [2010]]. Then, the tail current M0 keeps relatively constant cur-

rent even with Vds changes of M0, which causes the effective voltage of input pair

nearly constant. In addition, this small offset variation can be fully recovered by the

CDAC redundancy, as discussed in Section IV.C. Finally, since the comparator in-

put common-voltage always goes to 0.4V at the end of SAR conversion cycles, the

comparator offset with 0.4V input common-mode voltage is eventually removed in

the digital domain with the digital offset calibration in Section V.

4.5 Digitally-Assisted Circuits

Figure 4.14: Diagram of digital calibration in the TI ADC.

The performance of TI ADCs suffers from inter-channel timing, bandwidth,

offset and gain mismatches. In section IV, several analog design techniques are

introduced to alleviate these non-ideal factors. Now digitally-assisted calibration

schemes will be discussed in this section to further enhance the performance of TI

ADCs. As shown in Fig. 4.14, each SAR channel has the digital part, which in-
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cludes a radix look-up table to convert the sub-radix-2 data into a twos complement

format, and then offset and gain calibration engines to remove inter-channel gain

and offset mismatches. In the end, inter-channel timing mismatch is estimated of-

fline, and is corrected by tuning the programmable delay of the sampling clock in

each ADC channel.

Fig. 4.15 shows the diagram of digital offset calibration on the left and

the diagram of digital gain calibration on the right. First of all, since both off-

set and gain are changing slowly, a down-sampling operation can be performed

first to reduce power consumption substantially. DC offset can be easily calculated

by averaging the digital output at node In. Then DC offset at each SAR chan-

nel is removed by subtracting the average from the digital output. Furthermore,

an accumulate-and-dump sinc filter is an efficient architecture to perform down-

sampling operation and averaging operation in digital calibration. After removing

the DC offset, the average power for each SAR channel can be calculated and kept

updated by performing a square operation and a leaky integrator operation. In each

SAR channel, a common digital value called Threshold sets as a power reference.

By adjusting the gain of each channel, the power at node Out at each channel will

be equal to Threshold. Therefore, the inter-channel gain mismatch is corrected.

In multi-GS/s and high-resolution TI ADCs, the inter-channel timing and

bandwidth mismatch due to interconnect mismatch, device mismatch, IR-drops in

supplies and bias lines, etc. is a more difficult issue. This design requires achiev-

ing 0.5ps timing accuracy, a very challenging task. [Doris et al. [2011]][Gupta et al.

[2006]] proposed a pure analog solution of inserting a common full-speed front-end
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Figure 4.15: Diagram of offset and gain digital calibration.

sampler at expense of a power and noise penalty, because the sampled voltage needs

to be resampled in the individual SAR channel. A pure digital timing correction has

been proposed in [Doris et al. [2011]][Dortz et al. [2014]][et al [2002]][Prendergast

et al. [2004]]. This technique uses fractional delay filters, which are realized by

multirate filter banks, to reconstruct the nonuniformly sampled signal. Since the fil-

ters are quite complex and run at the ADC sampling clock, it results in substantially

high power consumption. Typically, the most power-efficient approaches estimate

the timing mismatch, and then tune the programmable delay of the sampling clock

at each ADC channel. There are many methods to estimate the timing mismatches.

In [Greshishchev et al. [2010]], FFT processing and calibration DACs were used

to estimate the timing mismatch. In [Greshishchev et al. [2010]][Stepanovic and

Nikolic [2012]][Wu et al. [2013]][et al [2009]], the difference between each chan-

nel and an additional reference channel were used to estimate the timing mismatch.

In [Sahoo and Razavi [2013]], the correlation of the adjacent channel outputs is

calculated to determine the timing mismatch. In [Sung et al. [2015]][Lee et al.
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[2015]], the ADCs have a hybrid structure of a flash ADC and TI SAR ADC chan-

nels. The difference between the full speed flash and each SAR channel are used

for the timing estimation.

Figure 4.16: Diagram of timing mismatch estimation.

In this design, the principle of the timing mismatch estimation is illustrated

in Fig. 4.16. Firstly, a pilot tone generated from a calibration DAC in direct digital

frequency synthesis or a PLL with filters or off-chip, is fed to the ADC input. The

digital output of each SAR channel can be expressed as:

ADC(i) = Acos(ω(t+ τ(i)) + φ) + q + e (4.2)

where τ is the time delay induced by each ADC channel, e is circuit noise,

q is ADC quantization noise. Next the digital output is multiplied by a digital

I/Q sinusoidal waveform, which has the same input signal frequency. After an

averaging operation, the output at I and Q can be expressed as:

I = (Acos(ω(t+ τ(i)) + φ) + q + e) · cos(ωt) = 0.5Acos(ωτ(i)) + φ) (4.3)
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Q = (Acos(ω(t+ τ(i)) + φ) + q + e) · sin(ωt) = 0.5Asin(ωτ(i)) + φ) (4.4)

Lastly, the relative timing skew induced by each ADC channel can be ob-

tained by employing an inverse tan function, expressed as:

τest(i) =
tan−1(Q/I)− φ

ω
(4.5)

Based on the estimation results, the programmable delay at each SAR chan-

nel can be tuned to correct the timing skew. The advantage of this estimation

scheme is that it is not sensitive to the interference from noise and nonlinearity

terms, and not sensitive to varying signal amplitude and dc offset, although they

can easily be removed by the digital calibration shown in Fig. 4.14.

4.6 Measurement Results

The prototype IC, which includes a PLL, input buffer and the SAR ADC as

shown in Fig. 4.2, is implemented in 28nm CMOS technology. A die micrograph

of the TI ADC is shown in Fig. 4.17, occupying an area of 0.57mm2. It should

be noted that the multiplexer, which selects 12 channel outputs in a rotated manner

with a decimation ratio of 13, causes the content of the complete sampled spec-

trum to fold on 1/13th of the Nyquist frequency and allows measuring all spectral

artifacts of the converter. The TI ADC consumes 76mW from 1.0V supply while

sampling at 5.0GS/s with the digital calibration.
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Figure 4.17: Die micrograph.

To evaluate the effectiveness of the timing calibration algorithm, dc offset

mismatch and gain mismatch are removed first. Fig. 4.18 shows the measured ADC

output spectral plots with and without and the timing calibration for a -3dBFS 2.001

GHz input sinusoidal signal sampling at 4.968GHz. An input signal full-scale is

1.2Vpp−diff , which is limited by the input buffer of 1.0V supply. Before the timing

calibration, the artifacts from timing mismatch are dominant. The SFDR and SNDR

are 38.4dB and 33.3dB, respectively. After the timing calibration, the 3rd harmonic

becomes the dominant spur, and SFDR and SNDR improve to 54.5dB and 41.7dB,

respectively. The SNR is 49dB for a -3dBFS signal, which is extrapolated from

small-input measurement results for minimizing clock phase noise influence.

After the timing calibration, there are still many relatively small spurs in
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Figure 4.18: Measured ADC output spectral plots without and with timing calibra-
tion for 2001MHz signal (decimated by 13).

Fig.15. First, several spurs are due to the circuit nonlinearities from the non-ideal

input buffer, non-ideal sampling switch, finite setting time in S/H cycles, finite loop

settling in conversion cycles, kickback noise from the comparator. Second, the ca-

pacitor mismatch of CDAC in each sub-ADC channel degrades also ADC linearity

and induces spurs. Due to the design target of 50dB THD, the calibration for the

capacitor mismatch is not implemented in this work. In addition, the artifact residue

of the timing mismatch due to the granularity of the programmable delay also has
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some impact to the SNDR result.

To verify performance of the ADC across different input frequencies, the

input signal frequency has been swept from 100MHz to 2300MHz. The measured

SNDR and THD versus input frequency at 4968MS/s sampling rate are plotted in

Fig. 4.19. The SNDR at low frequencies is determined by the harmonic distor-

tion and thermal noise. Without the timing calibration, the artifacts due to timing

mismatch at a high frequency limit the SNDR performance. After the timing cali-

bration, SNDR gradually decreases with signal frequency due to clock jitter effect.

Figure 4.19: Measured SNDR and THD versus input frequency.

The power consumption breakdown is shown in Fig. 4.20. It can be seen

that the comparator and the SAR logic take the two largest portions of power con-

sumption. Using a fully dynamic Strong-Arm comparator with the foreground off-

set calibration could significantly improve the power efficiency in the future. The

larger kickback noise needs be taken care of by making the impedance at the com-
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Figure 4.20: Power breakdown.

parator inputs matched as much as possible. Further, asynchronous SAR logic could

reduce the power of the dynamic comparator because only one or two of 11 com-

parison cycles need long time for the meta-stability cases. Besides, a smaller unity

capacitor with capacitor mismatch calibration can be used in the design to achieve

better power efficiency and performance. Since the MOM capacitor mismatch in

CDAC is almost static, a foreground or slow background digital calibration for ca-

pacitor mismatch can be used for almost zero or very small power consumption

[Stepanovic and Nikolic [2012]][Inerfield et al. [2014]][Chang et al. [2013]][Kull

et al. [2013]][McNeil et al. [2011]].

A comparison with state-of-the-art ADCs with similar conversion rate and

resolution is made in Table 1. The Walden figure of merit (FoM) is 165 fJ/conversion-
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step calculated with high-frequency ENOB. A Walden FOM comparison to the

prior-art ADCs with sampling frequencies higher than 3 GHz and SNDR larger

than 30dB published at ISSCC and VLSI conferences from 1997 to 2015 [Mur

[2017]] is shown in Fig. 4.21. This work achieves the lowest FoM among ADCs

with Fs > 3GHz and SNDR> 40dB.

Table 4.1: Performance comparison

Dortz
et al.

[2014]

Janssen
et al.

[2013]

Wu et al.
[2013]

Brandolini
et al.

[2015]

This work

Architecture TI SAR TI SAR TI
Pipleline

TI SAR TI SAR

Technology 40nm 65nm 28nm 32nm
SOI

28nm

Supply voltage [V] 1.1 1.2 1.0 1.0 1.0
Fs [GS/s] 1.62 3.6 5.4 8.8 5

SNDR(Nyq) [dB] 48 50 50 37 42
Resolution [bit] 9 11 12 8 10

Power [mW] 93 795 500 35 76
FOM [fJ/step] 279 855 358 68.9 165

Active area [mm2] 0.83 7.4 0.4 0.025 0.57

4.7 Conclusion

This chapter presents a 5GS/s, 10b, 12X time-interleaved SAR ADC for

direct sampling receiver applications. The issues of inter-channel offset, gain and

timing mismatches in a TI ADC are minimized by careful signal and clock dis-

tribution along the multiple channels, and the digitally-assisted calibration. The

inter-channel crosstalk and the signal-dependent leakage current during SAR con-

version cycles are mitigated by proposed T-type bootstrapped sampling switches.
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Figure 4.21: Walden FOM Comparison for ADC with Fs>3GHz and
SNDR>30dB.

The ADC power efficiency is significantly improved by many design techniques:

the low-energy CDAC switching scheme, optimized input common-mode voltage

for comparator, optimal sub-radix-2 capacitor ratio for low-power reference buffers

and higher conversion speed, etc.

Measurements show that this ADC achieves 49dB SNR, 52dB THD and

42dB SNDR in the Nyquist band while consuming 76mW from 1V supply and oc-

cupying 0.57mm2 in 28nm CMOS technology. The experiment results demonstrate

the proposed architecture is highly scalable to an advanced CMOS technology and

also has even higher power efficiency potential.

89



Chapter 5

Conclusion and Future Directions

5.1 Conclusion

This thesis investigates the analog design of a DS receiver, which mainly

consists of a broadband RF front end and a wideband ADC. Thanks to the flexibility

of digital signal processor, A DS receiver is very efficient for the simultaneous

reception of multiple channels with much less hardware complexity comparing with

the parallelism of superheterodyne receivers.

Two broadband RF front ends for direct sampling receivers, which include

either RFPGA-V or RFPGA-I followed by the same 6-dB gain buffer and RF filter,

has been demonstrated. Especially, two new architectures of RF programmable-

gain amplifier (RFPGA): voltage-mode RFPGA-V and current-mode RFPGA-I,

has been presented and comparatively analyzed. RFPGA-V and RFPGA-I utilize

an innovative interpolation method and current steering approach, respectively, to

achieve a fine gain step over wide gain range for a broad frequency band. RFPGA-I

has wider frequency range than RFPGA-V. However, it is convenient to use RFPGA-

V architecture to realize even finer gain step for relatively low frequency applica-

tions. Besides, with innovative design, no inductor is needed in either RFPGA.

A 5-GS/s, 10b, 12X time-interleaved SAR ADC for direct sampling re-
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ceivers is presented. The issues of inter-channel offset, gain and timing mismatches

in a TI ADC are minimized by careful signal and clock distribution along the mul-

tiple channels, and the elaborate digitally assisted calibration. The inter-channel

crosstalk and the signal-dependent leakage current during SAR conversion cycles

are mitigated by proposed T-type bootstrapped sampling switches. The ADC power

efficiency is significantly improved by many design techniques: the low-energy

CDAC switching scheme, optimized input common-mode voltage for comparator,

optimal reduced radix-2 capacitor ratio for low-power reference buffers and higher

conversion speed, etc.

5.2 Future Directions

The presented broadband RFPGA-I can receive a broadband differential sig-

nal. It would be desirable to receive a single-ended signal as well avoiding an off-

chip balun. For the single-ended mode, the opamp in RFPGA-I should be a broad-

band active balun, performing single-ended-to-differential conversion. Besides, the

resistive DAC in RFPGA-I needs to be modified to support a single-ended as well.

Communication in mm-wave band is gaining lots of attention. For example,

new access radio in 5G mobile standard includes wide-range mm-wave band. Ku

band (12.2-12.7 GHz) and Ka band (17.3-20.2 GHz) are widely used in the satellite

communication. Currently, most of mm-wave RF front-ends are implemented in

III-V technologies. An mm-wave integrated RF front end in a CMOS technology

would be an interesting direction.

Improving power efficiency of a SAR ADC is always a direction for many
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applications. To reduce power further in a single-slice SAR ADC in the prototype,

several methods can be used. Smaller unity capacitor will result in lower power, but

worse mismatch. One-time capacitor mismatch calibration can be utilized to cali-

brate the mismatch without extra power, since MIM capacitor is insensitive temper-

ature or voltage variation. Fully dynamic Comparator with offset calibration and

Asynchronous SAR logic are also commonly effective method to lower the power.

If extra pins in the silicon are available, power supplies can be used as reference to

avoid the power of reference buffers.

Driving an ADC into higher sampling rate and higher resolution has been

a technology trend for many years. Besides time-interleaved SAR ADCs, a hybrid

structure is a good direction to explore. For example, in a Flash-SAR ADC, a flash

ADC can be used in the first several MSB conversions to improve the speed of

ADC. In a pipelined-SAR ADC, the gain of MDAC in first (several) stage(s) can

improve the ADC noise performance or resolution.
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