156 research outputs found

    Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS

    Get PDF
    High speed optical interconnects require low-power compact electro-optical transmit modules comprising driver circuits and optical modulators. This letter presents a low power 56 Gb/s non-return-to-zero CMOS inverter-based driver in 28 nm fully depleted silicon-on-insulator CMOS driving a 46 GHz silicon photonic microring modulator. The driver delivers 1 Vpp to the microring modulator from a 75 mVpp input while only consuming 40 mW (710 fJ/bit at 56 Gb/s). The realized transmitter shows 4 dB extinction ratio when running of a 1 V supply voltage. Transmission experiments up to 2 km of single mode fiber show a bit-error-ratio less than 1 . 10(-9) at 56 Gb/s

    A 160Gb/s (4x40) WDM O-band Tx subassembly using a 4-ch array of silicon rings co-packaged with a SiGe BiCMOS IC driver

    Get PDF
    We present a 400 (8Ă—50) Gb/s-capable RM-based Si-photonic WDM O-band TxRx with 1.17nm channel spacing for high-speed optical interconnects and demonstrate successful 50Gb/s-NRZ TxRx operation achieving a ~4.5dB Tx extinction ratio under 2.15Vpp drive

    70 Gb/s low-power DC-coupled NRZ differential electro-absorption modulator driver in 55 nm SiGe BiCMOS

    Get PDF
    We present a 70 Gb/s capable optical transmitter consisting of a 50 mu m long GeSi electro-absorption modulator (integrated in silicon photonics) and a fully differential driver designed in a 55 nm SiGe BiCMOS technology. By properly unbalancing the output stage, the driver can be dc-coupled to the modulator thus avoiding the use of on-chip or external bias-Ts. At a wavelength of 1560 nm, open eye diagrams for 70 Gb/s after transmission over 2 km standard single-mode fiber were demonstrated. The total power consumption is 61 mW, corresponding to 0.87 pJ/b at 70 Gb/s. Bit-error rate measurements at 50 Gb/s and 56 Gb/s (performed both back to back and with up to 2 km standard single-mode fiber) demonstrate large (0.4 UI at a BER of 10(-12)) horizontal eye margins. This optical transmitter is ideally suited for datacenter applications that require densely integrated transceivers with a low power consumption

    Broadband distributed drivers for 3D photonic-electronic wafer-scale packaging

    Get PDF

    Broadband distributed drivers for 3D photonic-electronic wafer-scale packaging

    Get PDF

    50 GBd PAM4 transmitter with a 55nm SiGe BiCMOS driver and silicon photonic segmented MZM

    Get PDF
    We demonstrate an optical transmitter consisting of a limiting SiGe BiCMOS driver co-designed and co-packaged with a silicon photonic segmented traveling-wave Mach-Zehnder modulator (MZM). The MZM is split into two traveling-wave segments to increase the bandwidth and to allow a 2-bit DAC functionality. Two limiting driver channels are used to drive these segments, allowing both NRZ and PAM4 signal generation in the optical domain. The voltage swing as well as the peaking of the driver output are tunable, hence the PAM4 signal levels can be tuned and possible bandwidth limitations of the MZM segments can be partially alleviated. Generation of 50 Gbaud and 53 Gbaud PAM4 yields a TDECQ of 2.8 and 3.8 dB with a power efficiency of 3.9 and 3.6 pJ/bit, respectively; this is the best reported efficiency for co-packaged silicon transmitters for short-reach datacenter interconnects at these data rates. With this work, we show the potential of limiting drivers and segmented traveling-wave modulators in 400G capable short-reach optical interconnects

    Modeling of Silicon Photonic Devices for Optical Interconnect Transceiver Circuit Design

    Get PDF
    Optical interconnect system efficiency is dependent on the ability to optimize the transceiver circuitry for low-power and high-bandwidth operation, motivating co-simulation environments with compact optical device simulation models. This chapter presents compact Verilog-A silicon carrier-injection and carrier-depletion ring modulator models which accurately capture both nonlinear electrical and optical dynamics. Experimental verification of the carrier-injection ring modulator model is performed both at 8 Gb/s with symmetric drive signals to study the impact of pre-emphasis pulse duration, pulse depth, and dc bias, and at 9 Gb/s with a 65-nm CMOS driver capable of asymmetric pre-emphasis pulse duration. Experimental verification of the carrier-depletion ring modulator model is performed at 25 Gb/s with a 65-nm CMOS driver capable of asymmetric equalization

    Electro-Photonic Transmitter Front-Ends for High-Speed Fiber-Optic Communication

    Get PDF
    This thesis addresses basic scientific research in the field of transmitter front-end circuits for electro-optical data communication. First, the theoretical fundamentals are presented and analyzed. Based on the theoretical considerations, conceptual circuit designs are studied. Finally, in order to prove the described concepts, the circuits were experimentally characterized and subsequently compared to other works in the literature. The analysis covers key theoretical aspects regarding transmitter front-end circuits. It starts from the basic physical effects inside a transistor and ends with the design of high-swing modulator drivers. Furthermore, it comprises the fundamentals of optical modulators as well as the integration of the electrical driver with the modulator. First, the concept of a basic monolithically integrated transmitter consisting of a Mach-Zehnder modulator (MZM) and an electrical driver is presented. The circuit reaches a bit-error-free data rate of 37 Gb/s, which is a record among other monolithically integrated transmitters reported in the literature. It was shown that by employing a high-swing driver, high extinction ratios (ER) can be achieved (namely 8.4 dB at 25 Gb/s and 7.6 dB at 35 Gb/s) while using short-length phase shifters (2 mm of length). It was therefore proved that one of the main drawbacks of the MZM-based transmitters, namely their large chip area, can be mitigated by using high-swing drivers, however without sacrificing the ER. Next, an improved modulator driver design is investigated, the focus of the study being the linearity. In addition to a high peak-to-peak differential output voltage swing of 7.2 Vpp,d, the driver achieves record-low total harmonic distortion (THD) values of 1% (at 1 GHz, for the output swing of 6.5 Vpp,d) and 1.7% (at 1 GHz, for the output swing of 7 Vpp,d). Moreover, the driver reaches a bandwidth of 61.2 GHz and shows a high power efficiency when relating its DC power consumption to its output voltage swing. The achievement of a high linearity and bandwidth without an increased power consumption is due to the fact that the bias currents of the emitter-follower (EF) stages are provided by means of resistors instead of the conventional current sources. The two approaches were first analyzed mathematically and subsequently compared by means of circuit simulations. It was shown that the proposed approach for the realization of the EFs – i.e. by means of resistors – allows a reduction of the DC power consumption by 19% compared to the current-source approach for an equivalent performance in terms of linearity and bandwidth. Finally, a modulator driver concept suitable for higher-order modulation formats is studied, namely the 8-level pulse amplitude modulation (PAM-8). The circuit was realized as a 3-bit digital-to-analog converter (DAC), thus being able to yield 8-level output signals. Moreover, the circuit is able to function as a PAM-4 driver as well, thanks to the tunable tail currents of the DAC core. It achieves a symbol rate of 50 Gbaud, which corresponds to a bit rate of 150 Gb/s for the PAM-8 modulation and 100 Gb/s for PAM-4. The study showed that a modulator driver can be realized that is able to switch between different modulation formats (namely PAM-8 and PAM-4), without requiring extra power or additional circuit parts. Moreover, the use of on-chip single-to-differential converters (SDCs) targets the relaxation of the requirements on the stages that precede the driver. Finally, relating its DC power consumption (590 mW, including the SDCs) to its output voltage swing (4 Vpp,d), the driver shows one of the highest power efficiencies among PAM modulator drivers in the literature

    Multichannel 25 Gb/s low-power driver and transimpedance amplifier integrated circuits for 100 Gb/s optical links

    Get PDF
    Highly integrated electronic driver and receiver ICs with low-power consumption are essential for the development of cost-effective multichannel fiber-optic transceivers with small form factor. This paper presents the latest results of a two-channel 28 Gb/s driver array for optical duobinary modulation and a four-channel 25 Gb/s TIA array suited for both NRZ and optical duobinary detection. This paper demonstrated that 28 Gb/s duobinary signals can be efficiently generated on chip with a delay-and-add digital filter and that the driver power consumption can be significantly reduced by optimizing the drive impedance well above 50 Omega, without degrading the signal quality. To the best of our knowledge, this is the fastest modulator driver with on-chip duobinary encoding and precoding, consuming only 652 mW per channel at a differential output swing of 6 Vpp. The 4 x 25 Gb/s TIA shows a good sensitivity of - 10.3 dBm average optical input power at 25 Gb/s for PRBS 2(31) -1 and low power consumption of 77 mW per channel. Both ICs were developed in a 130 nm SiGe BiCMOS process
    • …
    corecore