6 research outputs found

    Paid Exchanges are Worth the Price

    Get PDF
    We consider the list update problem as defined in the seminal work on competitive analysis by Sleator and Tarjan [12]. In this problem, a sequence of requests, consisting of items to access in a linked list, is given. After an item is accessed it can be moved to any position forward in the list at no cost (free exchange), and, at any time, any two adjacent items can be swapped at a cost of 1 (paid exchange). The cost to access an item is its current position in the list. The goal is to dynamically rearrange the list so as to minimize the total cost (accrued from accesses and exchanges) over the request sequence. We show a lower bound of 12/11 on the worst-case ratio between the performance of an (offline) optimal algorithm that can only perform free exchanges and that of an (offline) optimal algorithm that can perform both paid and free exchanges. This answers an outstanding question that has been open since 1996 [10]

    Kernelization of Whitney Switches

    Get PDF
    A fundamental theorem of Whitney from 1933 asserts that 2-connected graphs G and H are 2-isomorphic, or equivalently, their cycle matroids are isomorphic, if and only if G can be transformed into H by a series of operations called Whitney switches. In this paper we consider the quantitative question arising from Whitney's theorem: Given two 2-isomorphic graphs, can we transform one into another by applying at most k Whitney switches? This problem is already NP-complete for cycles, and we investigate its parameterized complexity. We show that the problem admits a kernel of size O(k), and thus, is fixed-parameter tractable when parameterized by k.Comment: To appear at ESA 202

    Local First-Order Logic with Two Data Values

    Get PDF
    We study first-order logic over unordered structures whose elements carry two data values from an infinite domain. Data values can be compared wrt. equality so that the formalism is suitable to specify the input-output behavior of various distributed algorithms. As the logic is undecidable in general, we introduce a family of local fragments that restrict quantification to neighborhoods of a given reference point. Our main result establishes decidability of the satisfiability problem for one of these non-trivial local fragments. On the other hand, already slightly more general local logics turn out to be undecidable. Altogether, we draw a landscape of formalisms that are suitable for the specification of systems with data and open up new avenues for future research

    A tale of two packing problems : improved algorithms and tighter bounds for online bin packing and the geometric knapsack problem

    Get PDF
    In this thesis, we deal with two packing problems: the online bin packing and the geometric knapsack problem. In online bin packing, the aim is to pack a given number of items of different size into a minimal number of containers. The items need to be packed one by one without knowing future items. For online bin packing in one dimension, we present a new family of algorithms that constitutes the first improvement over the previously best algorithm in almost 15 years. While the algorithmic ideas are intuitive, an elaborate analysis is required to prove its competitive ratio. We also give a lower bound for the competitive ratio of this family of algorithms. For online bin packing in higher dimensions, we discuss lower bounds for the competitive ratio and show that the ideas from the one-dimensional case cannot be easily transferred to obtain better two-dimensional algorithms. In the geometric knapsack problem, one aims to pack a maximum weight subset of given rectangles into one square container. For this problem, we consider online approximation algorithms. For geometric knapsack with square items, we improve the running time of the best known PTAS and obtain an EPTAS. This shows that large running times caused by some standard techniques for geometric packing problems are not always necessary and can be improved. Finally, we show how to use resource augmentation to compute optimal solutions in EPTAS-time, thereby improving upon the known PTAS for this case.In dieser Arbeit betrachten wir zwei Packungsprobleme: Online Bin Packing und das geometrische Rucksackproblem. Bei Online Bin Packing versucht man, eine gegebene Menge an Objekten verschiedener Größe in die kleinstmögliche Anzahl an Behältern zu packen. Die Objekte müssen eins nach dem anderen gepackt werden, ohne zukünftige Objekte zu kennen. Für eindimensionales Online Bin Packing beschreiben wir einen neuen Algorithmus, der die erste Verbesserung gegenüber dem bisher besten Algorithmus seit fast 15 Jahren darstellt. Während die algorithmischen Ideen intuitiv sind, ist eine ausgefeilte Analyse notwendig um das Kompetitivitätsverhältnis zu beweisen. Für Online Bin Packing in mehreren Dimensionen geben wir untere Schranken für das Kompetitivitätsverhältnis an und zeigen, dass die Ideen aus dem eindimensionalen Fall nicht direkt zu einer Verbesserung führen. Beim geometrischen Rucksackproblem ist es das Ziel, eine größtmögliche Teilmenge gegebener Rechtecke in einen einzelnen quadratischen Behälter zu packen. Für dieses Problem betrachten wir Approximationsalgorithmen. Für das Problem mit quadratischen Objekten verbessern wir die Laufzeit des bekannten PTAS zu einem EPTAS. Die langen Laufzeiten vieler Standardtechniken für geometrische Probleme können also vermieden werden. Schließlich zeigen wir, wie Ressourcenvergrößerung genutzt werden kann, um eine optimale Lösung in EPTAS-Zeit zu berechnen, was das bisherige PTAS verbessert.Google PhD Fellowshi

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore