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Abstract

In this thesis, we deal with two packing problems: the online bin packing
and the geometric knapsack problem. In online bin packing, the aim is to pack
a given number of items of di�erent size into a minimal number of containers.
The items need to be packed one by one without knowing future items. For
online bin packing in one dimension, we present a new family of algorithms
that constitutes the �rst improvement over the previously best algorithm in
almost 15 years. While the algorithmic ideas are intuitive, an elaborate analysis
is required to prove its competitive ratio. We also give a lower bound for the
competitive ratio of this family of algorithms. For online bin packing in higher
dimensions, we discuss lower bounds for the competitive ratio and show that the
ideas from the one-dimensional case cannot be easily transferred to obtain better
two-dimensional algorithms.

In the geometric knapsack problem, one aims to pack a maximum weight
subset of given rectangles into one square container. For this problem, we consider
o�ine approximation algorithms. For geometric knapsack with square items,
we improve the running time of the best known PTAS and obtain an EPTAS.
This shows that large running times caused by some standard techniques for
geometric packing problems are not always necessary and can be improved.
Finally, we show how to use resource augmentation to compute optimal solutions
in EPTAS-time, thereby improving upon the known PTAS for this case.



Zusammenfassung

In dieser Arbeit betrachten wir zwei Packungsprobleme: Online Bin Packing
und das geometrische Rucksackproblem. Bei Online Bin Packing versucht man,
eine gegebene Menge an Objekten verschiedener Größe in die kleinstmögliche
Anzahl an Behältern zu packen. Die Objekte müssen eins nach dem anderen ge-
packt werden, ohne zukünftige Objekte zu kennen. Für eindimensionales Online
Bin Packing beschreiben wir einen neuen Algorithmus, der die erste Verbesserung
gegenüber dem bisher besten Algorithmus seit fast 15 Jahren darstellt. Während
die algorithmischen Ideen intuitiv sind, ist eine ausgefeilte Analyse notwendig
um das Kompetitivitätsverhältnis zu beweisen. Für Online Bin Packing in mehre-
ren Dimensionen geben wir untere Schranken für das Kompetitivitätsverhältnis
an und zeigen, dass die Ideen aus dem eindimensionalen Fall nicht direkt zu einer
Verbesserung führen.

Beim geometrischen Rucksackproblem ist es das Ziel, eine größtmögliche
Teilmenge gegebener Rechtecke in einen einzelnen quadratischen Behälter zu
packen. Für dieses Problem betrachten wir Approximationsalgorithmen. Für das
Problem mit quadratischen Objekten verbessern wir die Laufzeit des bekann-
ten PTAS zu einem EPTAS. Die langen Laufzeiten vieler Standardtechniken für
geometrische Probleme können also vermieden werden. Schließlich zeigen wir,
wie Ressourcenvergrößerung genutzt werden kann, um eine optimale Lösung in
EPTAS-Zeit zu berechnen, was das bisherige PTAS verbessert.



Acknowledgments

People think that computer science is the art of geniuses but the actual
reality is the opposite, just many people doing things that build on each
other, like a wall of mini stones.

Donald E. Knuth

I deeply thank my advisor Rob van Stee for introducing me to the intriguing world
of bin packing, for being an incredibly reliable and pleasant person to work with, and
an inexhaustible source of optimism and good ideas.

I want to thank Andreas Wiese for always being available for discussions and
questions (even at 8 am in the morning!), for patiently introducing me to geometric
packing problems, and for being a lot of fun to work with.

I am grateful to Kurt Mehlhorn for his support and for making the algorithms
group at MPI what it is: an incredible place to work. Thanks to Kurt’s initiative and
the support by all three of you, I was awarded a Google PhD Fellowship, and I am
very thankful for that.

My sincere thanks also go to Fabrizio Grandoni for agreeing to review this thesis.
I also want to thank all the people at MPI. Special thanks go to Stephan Friedrichs,

Kevin Schewior, and Andreas Schmid; it was a lot of fun to work with you and share
the curiosities of a PhD student’s everyday life with you.

I thank my good friends Martin Bromberger, Andrea Fischer, Ralf Jung, Jan-Oliver
Kaiser, Jana Rehse, and Tim Ru�ng. We had a whole lot of fun and your friendship
carried me through the rougher times of this PhD journey. I will miss the lunch
breaks on Thursdays terribly. Special thanks go to Andrea, Jan-Oliver, Jana, and Tim,
who proofread this thesis. Andrea, you especially have put great e�ort in helping
me to polish the presentation of this thesis, and I am very thankful for our intense
discussions and your valuable, well-founded advice.

Ich danke meinen Eltern Sylke und Jörg, dass sie immer hinter mir standen und
stehen und mich bedingungslos unterstützen. Ohne euch wäre diese Arbeit nicht
möglich gewesen und ohne euch wäre ich nicht der Mensch, der ich bin.

I saved the best for last: I thank my husband Elias for his unconditioned and
unwavering love and support. I wouldn’t have come so far without you.

v



vi



Contents

1 Introduction 1

1.1 Contributions and organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 De�nitions and Notations 7

2.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Online problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Online Bin Packing 11

3 An Overview of Bin Packing 13

3.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Results in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Online One-Dimensional Bin Packing 21

4.1 Super Harmonic and its limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 A new framework: Extreme Harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 The algorithm Son Of Harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Super Harmonic revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Lower bound for Extreme Harmonic-algorithms . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 A further improvement: Introducing red sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Discussion and directions for future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Lower Bounds in Multiple Dimensions 73

5.1 Lower bound for general algorithms for square packing. . . . . . . . . . . . . . . . 74
5.2 Lower bounds for general algorithms for rectangle packing . . . . . . . . . . . 79
5.3 Lower bound for Harmonic-type algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Further lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Discussion and directions for future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II Geometric Knapsack Problems 97

6 An Overview of Geometric Knapsack 99

6.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Results in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



Contents

7 Geometric Knapsack with Squares 103

7.1 PTAS by Jansen and Solis-Oba. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Guessing large squares faster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Indirect guessing technique - special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Indirect guessing technique - general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5 An EPTAS for geometric knapsack with squares . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Discussion and directions for future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Geometric Knapsack with Resource Augmentation 127

8.1 Rectangle classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Placing a grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3 Packing the rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.4 Discussion and directions for future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9 Conclusion 135

Appendices 137

A Parameters for a 1.583-CompetitiveExtremeHarmonic-Algorithm 139

B Improved Parameters for a 1.5884-Competitive Super Harmonic-

Algorithm 143

C Parameters for a Competitive Ratio of 1.5787 145

Bibliography 155

viii



1Introduction
In this thesis, we study packing problems. Imagine you are moving to a new apartment
and want to pack all of your belongings into boxes for transportation. Of course, you
want to make as few trips as possible between your new and old home, so your goal is
to use as few boxes as possible in order to make e�cient use of the space available in
the truck. For another example, imagine you are the publisher of a newspaper and you
receive o�ers from companies who want to advertise their services and products in
your newspaper. Each potential ad has a certain length and width and the companies
are willing to pay di�erent prices for their ads to be printed. Your goal is to select
some of these ads and arrange them on one newspaper page such that you maximize
the revenue you get.

It is of course easy to think of a multitude of similar problems: optimizing how
many transporters a logistics company has to send in order to ful�ll their contracts,
minimizing the number of storage devices required in order to store a set of �les
(where a single �le cannot be distributed over multiple devices), or selecting a set
of requests you want to execute on a server, where each request requires a certain
amount of memory and yields in turn a certain pro�t.

When considering such problems, we notice that they are all optimization problems:
Instead of only looking for some solution to a given problem instance, we are also
given a measure of quality for any possible solution. Our goal is to optimize this
solution quality. In our examples, this measure is the number of moving boxes we
need for all our belongings, the total pro�t of the selected ads, the number of hard
drives to store all data, and so forth. Optimization problems are a fundamental notion
in algorithms research. In an enormous number of applications we require a good
solution instead of merely any solution. For example, you would usually want your
navigation device to give you the shortest route from one place to another.

Amongst optimization problems in general, one might �nd that packing problems
– such as the ones described in the beginning – play a particularly important role
as they pose a very fundamental challenge: How can we use limited space most
e�ciently? We encounter this question not only in concrete practical applications
but also often as a subproblem of other, more complex problems. Results on packing
problems can therefore give fundamental insights into many other problems from
computer science. This potential impact on the broader computer science community
makes packing problems particularly interesting.

In order to �nd meaningful answers for such questions in realistic settings, we
often have to consider additional factors. For example, we might be missing some
information, or our computing power may be limited. Three such additional factors
in�uencing the design and quality of algorithms which are relevant in this thesis are
the following:

1



1. Introduction

Incomplete information Let us consider the example of moving house. You will
probably not have a complete inventory of your belongings that lists each single
item together with its exact size. You usually also do not want to take inventory of
them as you probably do not have the space and time to take out all items at once
and catalogue them. What you will probably do instead is take out the items one by
one, pack them into the boxes as they come, and try to avoid repacking items again
and again. Similar restrictions are reasonable for many other applications of such
packing problem, thus motivating the so-called online model: The items arrive over
time and whenever an item arrives, we immediately have to decide where to pack
this item, without knowing which items will arrive in the future and without being
able to revoke our packing decisions later on.

While we see that the online model is well-motivated from practical applications, it
is also noteworthy that it poses an interesting theoretical question, namely examining
how well we can solve problems if we do not have full information about the input.
This, in e�ect, can also help in identifying why a problem is hard: Online algorithms
can make clear why and in which way decisions need to be global in order to achieve
good results by showing the impact of the impossibility of global decisions.

Restricted computational resources Many packing as well as other optimization
problems arising in applications are NP-complete and thus solving these problems
exactly might not be feasible. Instead, we need to �nd approximate solutions that
provide a good guarantee on the solution’s quality but can be computed quickly,
within the timeframe we are able to allocate to this problem. When considering the
newspaper ad example, we might not be willing to invest a large amount of time
in �nding the optimal selection of ads and their arrangement. Instead, we might be
satis�ed with �nding a solution that is guaranteed to yield, e.g., at least 99% of the
pro�t of the optimal solution. This motivates research on approximation algorithms.

It is easy to see that this can be very interesting for practical applications, but once
again, quantifying this kind of tradeo� between running time and solution quality is
also an interesting theoretical question in itself. Approximation algorithms can for
example illustrate which structural information about a problem can be leveraged in
polynomial time – thus pointing to which parts of the structure make the problem
easier.

Soft problem constraints When designing algorithms, we usually deal with two
di�erent types of constraints: Inherent problem constraints, such as the capacity of
our container, and algorithmic constraints imposed by the model, such as using only
polynomial running time. In the two situations described above we impose additional
algorithmic constraints – the lack of complete information and the requirement of
polynomial running time. But we might also be in the opposite situation where we
can slightly relax inherent constraints of the problem itself.

Imagine that when packing your belongings for moving house, you might end
up with one box with some free space left and a single item which is just slightly
too large to be packed into this box. If we assume for a moment that the objects in
this box are not too fragile, you will probably be very happy with squeezing this
additional item into the already partly-�lled box instead of using an additional one.
This illustrates that in some situations, you might be willing to relax some of the
constraints that arise from the problem itself – like the capacity of the container – in
order to obtain a better solution. This concept is captured in the notion of resource

2



augmentation: We might be allowed to make our container a bit larger in order to
improve the solution quality.

And while, again, this is well-motivated from practical examples, we also pose a
more fundamental, theoretical question here: If a problem is very hard to solve, what
can we gain when relaxing some of the constraints, and to which extent do we need
to relax them? This can be another building block in identifying what makes a hard
problem hard.

The real world-inspired packing problems described in the beginning can all be
modeled by two computational problems: bin packing and the knapsack problem. They
are the focus of this thesis.

In both problems, we are asked to pack items into containers, and in both problems
each item has a particular size and each container has a particular capacity. In bin
packing, we are given an unbounded number of containers, and we want to pack all

items into as few of them as possible. In the knapsack problem, on the other hand,
we only have a single container and want to select and pack a subset of the items
into it. Here, each item also has an associated pro�t and our goal is to maximize the
total pro�t of those items that we pack. When you are packing your belongings for
moving house, you are solving a bin packing problem. When trying to select and
arrange newspaper ads, you are solving a knapsack problem.

Note that both problems can of course be considered in one or in multiple dimen-
sions. In the one-dimensional version, items and containers have a scalar size, which
is for example the case if you want to store �les on as few as possible storage devices.
In two dimensions, items and containers become rectangles, in three dimensions they
become boxes, and so forth.1 While even the one-dimensional variants are NP-hard,
the problems become even harder in higher dimensions because we have to ful�ll
multiple geometric – and thus intertwined – constraints.

Both problems have a long history in computer science. The bin packing problem
has been studied already since the 1950s [35, 58] and has not lost relevance since then.
In fact, it could be said that bin packing spawned two independent research areas:
online algorithms and approximation algorithms [98]. Many techniques and ideas
later applied to other problems in these �elds were �rst used in bin packing. This is
another reason for the continually high interest in this old problem besides its broad
applicability.

The knapsack problem is no less fundamental and practically relevant than bin
packing. They are also closely related: Knapsack is a natural dual of bin packing, and
in fact often appears as a subproblem in bin packing problems in form of a separation
oracle. First results about the universality of the knapsack LP were published more
than one hundred years ago [92] and since the 1950s the problem received growing
interest [34].

The fundamentality of the bin packing and knapsack problem motivates ongoing
research on these long-standing but still not completely understood problems. In
addition, the online model, approximation algorithms, and resource augmentation
are highly relevant in practical examples and pose interesting theoretical questions.
With this thesis, we want to contribute some new ideas and insights to this �eld of
research.

1What we describe here is in fact two-dimensional geometric bin packing and knapsack. We will
describe the di�erence between the geometric and non-geometric versions in chapters 3 and 6

3



1. Introduction

1.1 Contributions and organization of this thesis

After this introduction, we will give some general de�nitions and notations used in
this thesis in chapter 2. We can then start describing the examined problems and our
results.

Part I contains our results about online bin packing.

• We start by giving the formal de�nitions needed for the bin packing problem
and by discussing related work in chapter 3.

• In chapter 4, we present a new family of algorithms for the online one-
dimensional bin packing problem. We �rst discuss the previously best family
of algorithms for this problem, Super Harmonic, in particular pointing out
its weaknesses and limitations. We then discuss the ideas we developed in
order to overcome these weaknesses, leading to a new and better family of
algorithms. In particular, our result breaks a lower bound applicable to the
previously known algorithms and reduces the gap to the general lower bound
by more than 15%. We furthermore show a new lower bound for our family
of algorithms. In a second step, we show how an additional and rather small
change can improve the performance of our framework even further, reducing
the gap by more than 20% compared to Super Harmonic.

• In chapter 5, we discuss lower bounds for multi-dimensional geometric online
bin packing. We show lower bounds for general algorithms but also for di�erent
classes of algorithms that are motivated by the literature and our algorithm
from chapter 4.

Part II is concerned with the o�ine geometric knapsack problem.

• Chapter 6 introduces the required formal de�nitions and discusses prior work.

• In chapter 7, we discuss the special case of geometric knapsack where all
input items are squares rather than arbitrary rectangles. While a so-called
polynomial time approximation scheme, that is an approximation scheme that
can approximate the optimal solution with arbitrary precision, was already
known, this algorithm has a rather large (while still polynomial) running time.
We show how this approximation scheme can be adjusted to allow for a much
smaller running time while maintaining the approximation guarantee.

• Finally, in chapter 8, we discuss the general geometric knapsack problem, i.e.,
allowing arbitrary rectangles as input items, in the setting where resource
augmentation is allowed. We show that we can �nd a solution that is at least as
good as the optimal one and also improves the running time of the best known
approximation scheme that existed before (which did not �nd an optimal but
only an approximate solution).

4



1.2. Publications

1.2 Publications

The results presented in this thesis were published in the following articles.

[65] Sandy Heydrich and Rob van Stee. “Beating the Harmonic Lower Bound for
Online Bin Packing.” In: 43rd International Colloquium on Automata, Languages,

and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy. Ed. by Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi.
Vol 55. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 41:1-
41:14. ISBN: 978-3-95977-013-2. DOI: 10.4230/LIPIcs.ICALP.2016.41.

[18] David Blitz, Sandy Heydrich, Rob van Stee, André van Vliet, and Gerhard J.
Woeginger. “Improved Lower Bounds for Online Hypercube and Rectangle
Packing.” In: CoRR abs/1607.01229 (2016). URL: https://arxiv.org/abs/
1607.01229.

[66] Sandy Heydrich and Andreas Wiese. “Faster approximation schemes for the
two-dimensional knapsack problem.” In: Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,

Spain, Hotel Porta Fira, January 16–19. Ed. by Philip N. Klein. SIAM, 2017, pp.
79-98. ISBN: 978-1-61197-478-2. DOI: 10.1137/1.9781611974782.6.

A preliminary version of the results of chapter 4 was published in ICALP 2016
[65]. Compared to that publication, the presentation of the results was improved and
extended for this thesis, and minor issues have been corrected.

The results of chapter 5 are available online [18] and currently under review for
publication. The results described in section 5.2 and many concepts and ideas used in
section 5.1 were derived by David Blitz in his Master’s thesis [17]. We improve his
lower bound for square packing very slightly from 1.68025 to 1.68078 and present for
the �rst time a full and complete proof of all the steps needed to obtain these results.
For rectangle packing, we now only claim a 1.859 lower bound, as we were unable to
give a formal proof of all the details needed to obtain Blitz’s claimed bound of 1.907.

The results of chapter 7 and chapter 8 were published in SODA 2017 [66]. For this
thesis, the presentation has been improved.
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2Definitions and Notations

In the following, we introduce some important models and notions that are used in
this thesis to handle settings with restricted resources or incomplete information.

2.1 Approximations

Many optimization problems that are both practically and theoretically relevant
cannot be solved optimally in polynomial time unless P = NP. In that case, we
might ask how well (w.r.t. the quality measure) we can approximate the optimal
solution in polynomial time. This leads to the notion of approximation algorithms
and approximation ratios de�ned below.

De�nition 1 (Approximation ratio). LetΠ be an optimization problem, I the set of

all input instances ofΠ andA an algorithm forΠ that runs in polynomial time. Denote

by OPT(I) the value of the optimal solution for instance I ∈ I and by A(I) the value
of the solution of A for I . We say that A has an approximation ratio of α (or A is an

α-approximation algorithm) if, for any input instance I ∈ I ,
• A(I) ≤ αOPT(I), in caseΠ is a minimization problem, or

• OPT(I) ≤ αA(I), in caseΠ is a maximization problem.

Note that this de�nition implies that the approximation ratio is always at least 1.
An algorithm with approximation ratio of exactly 1 solves the problem optimally for
every input instance in polynomial time.

In some cases, one can approximate a problem within a constant factor, and in
the best case, one even knows a family of algorithms that can �nd an approximation
algorithm with any desired constant approximation ratio. This concept is formalized
in the notion of a polynomial time approximation scheme.

De�nition 2 (PTAS). A family of algorithms is called a polynomial time approxima-
tion scheme (PTAS) if, given a constant parameter ε > 0, it �nds a (1+ε)-approximation

in a running time that is polynomial in the input size n.

Note that the running time of a PTAS needs to be polynomial for constant ε, i.e., it
will usually depend on ε. This dependence on ε might be arbitrarily bad, e.g., one can
get running times of the form n2ε or even worse functions of ε in the exponent of n.
One could therefore try to �nd a PTAS with a better guarantee on the running time
w.r.t. ε, which leads us to the de�nition of e�cient polynomial time approximation

schemes given next.

De�nition 3 (EPTAS). A family of algorithms is called an e�cient polynomial time
approximation scheme (EPTAS) if it is a PTAS with running time of the form f (1/ε) ·
nO(1)

for some function f .

7



2. Definitions and Notations

Note that this means that the exponent of n does not depend on ε, only the
constant factor f (1/ε) does. In order to be able to handle dependencies on ε more
clearly, we introduce the following notation: Whenever we mean a constant that
depends on ε, we write Oε(1), for a constant that does not depend on ε we write
O(1). Using this notation, an EPTAS is a PTAS with running time Oε(1) ·nO(1).

However, the constant f (1/ε) might still be exponential in 1/ε, so we might even
want to go further.

De�nition 4 (FPTAS). A family of algorithms is called a fully polynomial time ap-
proximation scheme (FPTAS) if it is a PTAS with running time polynomial in n and in

1/ε.

Note that no FPTAS can exist for strongly NP-hard problems unless P = NP [105].
Another concept appearing in this thesis is that of asymptotic analysis. In some

settings and problems, there are very small input instances known that obstruct a
good approximation ratio, but no large problematic inputs are known. In this case, it
can be more insightful to �nd out whether an algorithm can do better on large inputs
than on small, maybe pathological instances. This is for example the case for bin
packing (see also chapter 3). In such cases, it makes sense to consider the asymptotic

approximation ratio instead of the absolute approximation ratio de�ned above.

De�nition 5 (Asymptotic approximation ratio). An algorithm A for problemΠ with

set of input instances I has asymptotic approximation ratio α if there is a constant c
such that for any input instance I ∈ I we have

• A(I) ≤ αOPT(I) + c, in caseΠ is a minimization problem, or

• OPT(I) ≤ αA(I) + c, in caseΠ is a maximization problem.

Similarly, we de�ne an asymptotic polynomial time approximation scheme as a
polynomial-time algorithm with asymptotic approximation ratio 1+ε for any constant
ε > 0 (an APTAS); the same goes for an asymptotic EPTAS and asymptotic FPTAS
(AFPTAS).

2.2 Online problems

We now introduce a second interesting model for algorithmic optimization problems:
the online model. Recall the example from before about packing boxes for moving
house: The items are taken out of shelves and cupboards one by one and we want to
pack each item into a box immediately. To model such a situation formally, we assume
the following: The input of the problem is not given as a whole to the algorithm
beforehand, but is presented piece by piece. Furthermore, the algorithm has to make
decisions during the revelation of the input, i.e., at a point in time where the whole
input is not yet known. These decisions usually a�ect the parts of the input that have
already been revealed and cannot be revoked later on when new information is gained.
Note that the algorithm also does not know the length of the input sequence. To stay
with our example, whenever a new task arrives, we immediately have to assign it
to a worker (or hire a new worker), who will execute this task. We cannot reassign
tasks once they have been scheduled and only when the current task is assigned to a
worker, we will gain knowledge of the next task.
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2.2. Online problems

Online problems pose the question of how well we can solve a problem under
such a model of incomplete information. We want to quantify the impact of incom-
plete information on the computability of optimal solutions, asking how much – in
terms of solution quality – we lose due to the lack of information, compared to the
situation where we have all information upfront. This is somewhat orthogonal to the
notion of approximation algorithms, and therefore we are usually not restricting the
allowed running time. The algorithm is indeed often assumed to have unbounded
computational power and allowed to use unbounded (while of course �nite) running
time and space.

In order to quantify the loss in solution quality, we use the notion of competitive

analysis, comparing the quality of the solution of the online algorithm to the quality
of the best possible solution (also often referred to as optimal o�ine solution) that
can be found if one knows the whole input from the beginning.1 For this, we use the
so-called competitive ratio introduced by Sleator and Tarjan [102].

De�nition 6 (Competitive ratio). LetΠ be an optimization problem, I the set of input

instances ofΠ and A an online algorithm forΠ. Denote by OPT(I) the quality of the

optimal o�ine solution for instance I ∈ I and by A(I) the quality of the solution of A
for I . A has competitive ratio α (or is α-competitive) if for every input instance I ∈ I
we have

• A(I) ≤ αOPT(I), in caseΠ is a minimization problem, or

• OPT(I) ≤ αA(I), in caseΠ is a maximization problem.

Again, the competitive ratio is de�ned in such a way that it is always at least 1. A
1-competitive algorithm solves a problem optimally for all input instances.

As with approximations, in some cases we are interested in the behavior of the
algorithm on very large inputs only. We therefore also de�ne the notion of asymptotic

competitive ratio.

De�nition 7 (Asymptotic competitive ratio). Let Π be an optimization problem, I
the set of input instances of it and A an online algorithm for Π. Denote by OPT(I)
the quality of the optimal o�ine solution for instance I ∈ I and by A(I) the quality
of the solution of A for I . A has asymptotic competitive ratio α (or is asymptotically

α-competitive) if there is some constant c such that for every instance I ∈ I we have

• A(I) ≤ αOPT(I) + c, in caseΠ is a minimization problem, or

• OPT(I) ≤ αA(I) + c, in caseΠ is a maximization problem.

When working with online models, it is often helpful to think of an adversary
that de�nes the input, and who is moreover adaptive. Whenever the online algorithm
makes a decision, the adversary decides on the worst possible continuation of the
current input sequence. The worst possible input is the one that maximizes the
competitive ratio, i.e. the gap between the algorithm’s solution and the optimal
o�ine solution. The adversary can also decide to stop the input at any time, if this is
disadvantageous for the algorithm.

1This does not mean that we compare to solutions computable by an o�ine polynomial-time algorithm;
rather think of the best solution an oracle could provide for the problem.
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Part I

Online Bin Packing
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3An Overview of Bin Packing

Informally, bin packing can be seen as the following problem: Given a set of items
of di�erent sizes, pack them into as few as possible bins of unit size. As detailed in
chapter 1, this is a very fundamental and broadly applicable problem, with a long list
of results and algorithms. Some bin packing problems are of such great importance
that they are also studied in the literature as separate problems.

One of them is the cutting stock problem. Imagine the following situation: A
merchant is o�ering metal rods and has a supply of rods of a �xed length L. Customers
request pieces of certain lengths ≤ L. The merchant wants to cut all requested pieces
from as few as possible length L rods in order to minimize the amount of wasted
material. This is a simple instance of a one-dimensional bin packing problem. For an
example in higher dimension, imagine that the merchant is selling cutouts of sheet
metal, and is given a list of rectangular pieces with certain side lengths that need to
be cut out of �xed size raw material sheets. Also the online model is very relevant in
this example: Whenever a customer arrives, the merchant should cut the requested
piece immediately, without waiting for a large number of customers to arrive �rst
before ful�lling all their requests at once even if this might reduce the amount of
material wasted. The cutting stock problem was studied since the 1930s [79, 78, 35,
58] and a large number of professional software solutions for industry applications is
available (see for example [2, 96, 103]).

On top of that, bin packing has a strong connection to scheduling problems (see
e.g. [57, 27, 29]), a large area of research in itself. For illustration, assume we have
a set of jobs that need to be done, where each job takes a certain amount of time to
�nish. We want to �nd the minimal number of workers we need to hire and assign
jobs to these workers such that no worker has to work longer than a speci�c amount
of time a day as imposed by labour law regulations.

Next, we describe the problem formally in the o�ine and online setting as well as
in the one- and multi-dimensional version.

3.1 Problem definition

One-dimensional bin packing In the bin packing problem, we are given a set of
n items 1, . . . ,n, each with an associated size si ∈ [0,1], and an unlimited supply of
bins of size 1. The goal is to pack all the items into bins, i.e., assign each item to a bin
such that the total size of the items in any bin is at most one, and the number of used
bins (i.e., bins that contain at least one item) is minimized.

In the online version of the bin packing problem, the input items arrive one by
one over time, and whenever an item arrives, the algorithm immediately has to decide
where to pack this item. It does not know which and how many items arrive in the
future and it cannot revoke its packing decision later on.
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3. An Overview of Bin Packing

Multi-dimensional bin packing A natural generalization of bin packing to higher
dimensions asks the following: Given bins of capacity one in all d dimensions and a
set of items 1, . . . ,n, each item i with d sizes sji for j = 1, . . . ,d, pack the items into as
few as possible bins while making sure that for each set of items IB packed in one bin
B,

∑
i∈IB s

j
i ≤ 1. This is also called the vector bin packing problem. In such a setting, we

have to respect several capacity constraints, which are however independent of each
other; e.g. think of packing items that must not exceed size and weight constraints.

Another obvious generalization is the multi-dimensional geometric bin packing
problem, which resembles the packing of objects with multiple spatial dimensions,
such as packing three-dimensional boxes. Each item i is now a d-dimensional box
of side length sji ∈ [0,1] in dimension j . Similarly, the bins are unit-size hypercubes.
In order to solve the problem, we now not only have to assign items to bins, but we
have to assign each item a speci�c position within this bin, in such a way that items
are axis-aligned, no two items overlap and no item exceeds the bin’s boundary. Thus,
the di�erent constraints in this problem are highly related.

Note that the vector and the geometric multi-dimensional bin packing problems
are rather di�erent; while for vector bin packing, it is easy to compute whether a
given set of items �ts into a single bin (just add up their sizes in every dimension),
this is a hard problem in the geometric setting, where we have to try out di�erent
positionings to see if the items �t. This thesis only deals with geometric bin packing.

In geometric bin packing, one can also consider more specialized models. For
example, we can either allow to rotate the items1 or forbid this, forcing items to be
packed in the orientation speci�ed in the input2.

Another interesting setting is the case when items are not arbitrary boxes, but
hypercubes instead. Then, each item is again characterized by a scalar size which
represents the side length in all dimensions. That way, it becomes simpler to adapt
one-dimensional algorithms – which can only handle a scalar size for an item – for
the two-dimensional case, allowing us to examine how such algorithms behave in
higher dimensions.

Of course, multi-dimensional bin packing problems can again be considered in an
o�ine or online setting analogously to the one-dimensional case.

3.2 Related work

3.2.1 One-dimensional bin packing

O�line version The bin packing problem has been present in the literature since
the 1950s [35, 58]. It was one of the very �rst problems that was considered in the
context of approximations, and one of the �rst problems for which formal proofs
for a certain quality guarantee for the solution of an approximation algorithm were
given [55]. Garey et al. [56] formulated it as a generalization of various memory
allocation problems and it is well known that the problem is NP-hard [54]. It is even
strongly NP-complete and so no FPTAS can exist for this problem [53]. From the
NP-hardness proof one can immediately conclude that no algorithm can approximate
the problem with an absolute ratio better than 3/2 unless P = NP, as the NP-hardness
proof shows that an algorithm that could distinguish between bin packing instances

1Usually, we consider rotations by 90 degrees, as the problem becomes even more complex as soon as
items are not axis-parallel anymore.

2This might be necessary when transporting sensitive cargo, such as refrigerators.
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which can be packed in 2 or 3 bins can be used to solve the 2-Partition problem.
This barrier is the reason why asymptotic analysis was always considered to be the
most interesting model for this problem.

One of the simplest algorithms for the bin packing problem is NextFit: Pack
the �rst item in the �rst bin and call this the “current” bin, and then, for each item,
pack it into the current bin if it �ts, otherwise pack it into a new bin which then
becomes the new current bin. It is very easy to see that this algorithm is an abso-
lute 2-approximation (any two consecutive bins – other than the last one – must
contain items of total size more than 1), and it can be improved to an asymptotic
1.691-approximation when considering the items in decreasing order of size [5]. Some
similar algorithms that were proposed later further improved the approximation
guarantee: FirstFit3 as well as BestFit4 have an asymptotic approximation ratio
of 1.7, while their variants that consider items in decreasing order of size (called
FirstFitDecreasing and BestFitDecreasing, respectively) achieve asymptotic ra-
tios of 11/9 [77]. A big step forward was made by Fernandez de la Vega and Lueker
[43], who gave an APTAS. Successively, Karmarkar and Karp [80] gave an AFPTAS
for the problem. Their algorithm �nds a solution with at most OPT +O

(
log2 OPT

)
bins (where OPT denotes the optimal number of bins). Their approach was later
improved by Rothvoß [97] to a polynomial time algorithm with a solution of size
at most OPT +O (logOPT · loglogOPT) and by Hoberg and Rothvoß [67] to an
algorithm with a solution of size at most OPT+O (logOPT). It might still be possible
that there exists an algorithm which returns a solution of size at most OPT + 1.

In terms of absolute approximation ratio, Simchi-Levi [101] showed that First-
FitDecreasing and BestFitDecreasing have an absolute ratio of 3/2, which is best
possible unless P=NP.

An interesting variant of bin packing are so-called “bounded space” algorithms: In
such algorithms, at any point in time there is only a constant number of open bins, and
items can only be packed into open bins (in contrast to closed bins to which no items
will be added anymore). More speci�cally, an algorithm is k-bounded space if at any
point there are at most k open bins. A natural k-bounded space variant of NextFit,
called Next-k Fit, has an asymptotic approximation ratio of 1.7 + 3

10(k−1) as showed
by Mao [91], while the k-bounded space variant of BestFit is a 1.7-approximation
for every k ≥ 2 [32]. Chrobak et al. [26] showed that no 2-bounded space algo-
rithm can have a better asymptotic ratio than 5/4 and gave a 3/2-approximative
2-bounded space algorithm. Note that their notion of approximation ratio compares
the algorithmic solution with the best possible 2-bounded space solution.

Due to the broad applicability of the bin packing problem, there is a large variety
of problem variants considered in the literature. Some of them are: cardinality
constrained bin packing (at most k items can be packed into one bin) [3, 11], variable-
sized bin packing (bins have di�erent capacities and we want to minimize the total
capacity of used bins) [39], bin packing with con�icts (some items might not be packed
into the same bin) [37], bin packing with fragile objects (objects have a fragility and
the sum of the sizes of the items in one bin must not exceed the minimum fragility
among the items in this bin) [13], and many more.

3For each item, check all bins that were opened so far in the order they were opened and pack it into
the �rst where it �ts.

4For each item, �nd the �rst bin (in order of opening) with minimal unused capacity where it �ts and
pack it there.
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3. An Overview of Bin Packing

Online version Bin packing was one of the very �rst problems considered in the
online setting. The �rst bin packing algorithms were observed to have di�erent
behavior when sorting the input items in advance compared to when not doing this,
leading to a very natural distinction between online and o�ine algorithms [76].

No 1-competitive algorithm for online bin packing can exist. This can be seen
by a very simple example: Let two items of size 2/5 arrive. The algorithm has two
possibilities: it either packs both items into the same bin or it packs them into separate
bins. If it packs them into separate bins, we can end the input at this point and get a
competitive ratio of 2 (the optimal solution would be using one bin to pack both). If
the algorithm packs the items into one bin, we let two items of size 3/5 arrive. The
algorithm needs to pack these into two new bins, using three bins in total, while the
optimal solution only uses two bins (one small and one large item in each). That way,
we see immediately that no online algorithm can �nd the optimal solution. This can
of course be expanded to an input consisting of n items of either type, showing that
in fact no online bin packing algorithm can have a competitive ratio of less than 4/3.

The question becomes now: Which is the best possible competitive ratio any
online algorithm can achieve for this problem? We will now discuss some results
about lower and upper bounds for this value.

The algorithms NextFit and FirstFit described previously are online algorithms
by nature, giving upper bounds of 2 and 1.7, respectively. Johnson [76] posed the
question whether any improvement upon this would be possible, which was answered
by Yao [108] to the a�rmative by providing the 5/3 ≈ 1.666-competitive algorithm
Refined FirstFit. In 1985, Lee and Lee [86] proposed the so-called Harmonic
algorithm, which achieved a competitive ratio of (1 + ε)H∞ for any ε > 0 where
H∞ ≈ 1.69103. This algorithm is bounded space and Lee and Lee showed also that
no algorithm which uses bounded space can perform better than H∞. Later, Chrobak
et al. [26] showed a lower bound of 4/3 for online 2-bounded space algorithms,
comparing the online solution to the best possible o�ine 2-bounded space solution.
Lee and Lee [86] also gave the (unbounded space) algorithm Refined Harmonic with
competitive ratio less than 1.636.

After that, basically all published algorithms for the online bin packing problem
were variations and improvements of Lee and Lee’s Harmonic algorithm. Ramanan
et al. [95] gave the algorithm Modified Harmonic with competitive ratio less than
538
333 ≈ 1.616 . . . and the algorithm Modified Harmonic 2 with competitive ratio
≈ 1.612 . . .. They also showed a lower bound of 19

12 ≈ 1.58333 for a larger class
of algorithms including their algorithms, Harmonic and Refined Harmonic. In
2002, Seiden [98] uni�ed all these algorithms in the framework Super Harmonic and
within this framework speci�ed the algorithm Harmonic++ which has competitive
ratio at most 1.58889 and thus is very close to optimal within this framework of
algorithms (the Ramanan et al. lower bound holds for it). After this work, no further
improvements were made for almost 15 years prior to the work presented in this
thesis.

Regarding general lower bounds, Yao [108] showed that no online algorithm can
have a competitive ratio of less than 3/2, which was thereafter improved to 1.53635
by Brown [21] and Liang [88] independently, to 1.54014 by van Vliet [106] and �nally
to 248

161 ≈ 1.54037 by Balogh et al. [8] where it stands today. The very slow progress
in improving the lower bounds leads to our conjecture that this lower bound is much
closer to the “real” best competitive ratio of an online algorithm than the current
upper bounds.
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Regarding absolute competitive ratio, the best known algorithm has a ratio of 5/3
which matches the lower bound [9].

Apart from the classical online setting, one might also consider so-called semi-

online settings. In these, the online constraint is relaxed, meaning that the algorithm
might have some information about future input or might be allowed to adjust its
packing during processing. Several models have been considered. A very natural one
is bin packing with repacking in which the algorithm is allowed to repack a certain
(usually constant) number of items every time a new item arrives [49, 50, 52]. Another
model, so-called batched bin packing, assumes that the input is split into parts by the
adversary and each such part (batch) is given to the algorithm as one, allowing o�ine
processing of this batch. This model was introduced by Gutin et al. [59].

Additionally, in recent years there has been an interest in bin packing with
advice. This model investigates how many bits of additional information an online
algorithm needs in order to achieve a certain competitive ratio; this also leads to the
notion of advice complexity. To name one example, Boyar et al. [19] showed that the
number of advice bits required to achieve an optimal solution is lower bounded by
(n − 2OPT(σ )) logOPT(σ ) and upper bounded by ndlogOPT(σ )e (where OPT(σ )
denotes the optimal number of bins needed to pack input σ ). They also gave a 1.5-
competitive algorithm with logn + o(logn) bits of advice, a (4/3 + ε)-competitive
algorithm with 2n+ o(n) bits of advice, and they showed that in order to achieve a
competitive ratio better than 9/8, an online algorithms needs at least advice of linear
size. For an overview about bin packing and other online problems with advice, see
the recent survey by Boyar et al. [20].

3.2.2 Multi-dimensional bin packing

O�line version As soon as one turns to packing multi-dimensional items into bins,
the problem becomes harder, as then it becomes even NP-hard to decide whether a
given set of items can be packed into a single bin; this even holds in two dimensions
when all items are squares [87]. This immediately implies that no absolute approxi-
mation ratio better than 2 is possible. Bansal et al. [14] showed that two-dimensional
bin packing does not admit an APTAS unless P = NP.

Let us start by considering the two-dimensional case with arbitrary rectangles as
input items.

When rotation of the items is not allowed, Kenyon and Rémila [82] gave a (2 + ε)-
approximation for any ε > 0. The important bound of 2 was broken by Caprara
[22], who achieved an approximation ratio of H∞ ≈ 1.69103. For the case where
rotations are allowed, there was a sequence of papers with approximation ratios 2.64
[93], 9/4 = 2.25 [41], 2 + ε [73] and ln(H∞) + 1 ≈ 1.525 [15]. In 2013, Jansen and
Prädel [70] gave an algorithm with approximation guarantee 1.5 for both cases (with
and without rotation). Using their result, Bansal and Khan [12] showed that there is
an approximation algorithm with asymptotic approximation ratio ln(1.5) + 1 + ε ≈
1.405+ε in both cases (with or without rotations) for any ε > 0. This is the best result
known until today. On the other hand, the best known hardness of approximation
results for two-dimensional bin packing are 1+1/3792 (with rotation) and 1+1/2196
(without rotation) [25], so the gap to the upper bound remains quite large. In the
d-dimensional case with d > 2, the best known lower bound is Hd−1∞ [22].

For packing d-dimensional hypercubes, Kohayakawa et al. [83] gave a (2−(2/3)d+
ε)-approximation algorithm. Bansal et al. [14] improved this to an APTAS.
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Regarding the absolute approximation ratio, as mentioned before, no ratio below
2 can be reached unless P = NP. Zhang [109] gave a 3-approximation for rectangles,
while Harren and van Stee [63] gave a 3-approximation with better running time
and a 2-approximation if rotations are allowed. Finally, a 2-approximation without
rotation was shown by Harren et al. [64].

Online version An asymptotic 3.25-competitive algorithm for online bin packing
in 2 dimensions was given by Coppersmith and Raghavan [30]. In three dimensions,
they obtain a competitive ratio of 6.25. Csirik and van Vliet [33] gave an algorithm
for arbitrary dimension d with competitive ratio Hd∞, which amounts to roughly
2.859 for d = 2 and 4.835 for d = 3. This same bound was achieved by Epstein
and van Stee [40] but with a bounded space algorithm; they also showed that no
bounded space algorithm can improve this. They also give an algorithm for packing
hypercubes. Interestingly, this algorithm can be shown to be optimal, however,
the exact asymptotic competitive ratio is not known but only bounded by Ω(logd)
and O(d/ logd). This open question was very recently resolved: Kohayakawa et al.
[84] showed a lower bound of Ω(d/ logd) for bounded space hypercube packing
algorithms. Seiden and van Stee [99] gave a 2.66013 competitive algorithm. Finally,
the upper bound for two-dimensional bin packing was improved to 2.5545 by Han
et al. [61]. The best known lower bound for two-dimensional online bin packing is
1.851 as given by van Vliet [107].

When rotations are allowed, Epstein [36] gave a 2935
1152 + δ ≈ 2.54775 competitive

algorithm which is bounded space and also showed that this is almost optimal by
proving a lower bound of 120754

47628 ≈ 2.53537 for bounded space algorithms. She also
gave an unbounded space algorithm with competitive ratio below 2.45.

Coppersmith and Raghavan [30] showed that no online algorithm can have com-
petitive ratio better than 4/3 for square packing and gave a 2.6875 competitive
algorithm (this is the same algorithm that has competitive ratio 3.25 in the general
case). Seiden and van Stee [99] gave a 2.43828 competitive algorithm for online
square packing, a lower bound of 2.28229 for bounded space online square packing,
and an in�nite lower bound for d−1-bounded space online hypercube packing (mean-
ing that any such algorithm has arbitrary bad competitive ratio). Epstein and Stee [38]
gave a 2.2697 competitive algorithm for square packing and a lower bound of 1.6406
for this problem. They also gave a 2.9421 competitive cube packing algorithm and
a 1.668 lower bound for cubes. Han et al. [60] �nally gave a 2.1187 upper bound
for square packing and a 2.6161 upper bound for cube packing. These are the best
bounds known. In the bounded space setting, Epstein and van Stee [42] gave lower
and upper bounds for d = 2, . . . ,7. In particular, for d = 2 the lower bound is 2.36343
and the upper bound 2.3692 and for d = 3 the lower bound is 2.95642 and the upper
bound is 3.0672. Very recently, Balogh et al. improved the general lower bound for
square packing to 1.75 [7].

3.3 Results in this thesis

In this thesis, we present several results on online bin packing in part I. Firstly, in
chapter 4, we present two di�erent one-dimensional online bin packing algorithms.
These state the �rst improvement over the previous best algorithm in �fteen years
and reduces the gap to the lower bound by over 15% and over 20%, respectively; both

18



3.3. Results in this thesis

results also beat the lower bound for the previous algorithm framework. We also
show a lower bound for algorithms of our new framework.

Secondly, in chapter 5, we give lower bounds for multi-dimensional hypercube
packing. We improve the general lower bound for square packing and rectangle pack-
ing in two dimensions. We also show a lower bound for Harmonic-type algorithms
for hypercube packing in two or more dimensions, for the �rst time breaking the
bound of 2, which uses a generalization of the method of Ramanan et al. [95]. Finally,
we show that even when incorporating the ideas from chapter 4 that improved the
one-dimensional case – essentially making use of knowledge about the items that
already have arrived –, we obtain similar lower bounds as without these ideas. This
indicates that further advances are necessary to obtain an improved two-dimensional
algorithm.
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4Online One-Dimensional Bin Packing

In this chapter, we present two di�erent one-dimensional online bin packing algo-
rithms with asymptotic competitive ratio of 1.5813 and 1.5787, respecitvely. This
beats the best algorithm known before which was Seiden’s 1.58889-competitive
Harmonic++ algorithm, and also beats the lower bound of 1.58333 by Ramanan
et al. [95] for the whole class of algorithms in the Super Harmonic framework. In
addition, we show how with a further improvement of Extreme Harmonic, we can
reach a competitive ratio of 1.5787 and thus beat the bound of 1.58.

We make two crucial changes to the previous framework Super Harmonic. First,
some of our algorithm’s decisions depend on exact sizes of items, instead of only
their types. In particular, for each item with size in (1/3,1/2], we use its exact size to
determine if it can be packed together with an item of size greater than 1/2. Second,
we try to postpone some decisions made by the previous algorithm Super Harmonic
to a later point in time in order to adapt to the input. We carefully mark items
depending on how they end up packed, and use these marks to bound how many
bins of a certain kind can exist in the optimal solution. This gives us better lower
bounds on the optimal solution value. We show that for each input, a single weighting
function can be constructed to upper bound the competitive ratio on it. We also give
a lower bound of 1.5762 for this new framework.

For the second algorithm with competitive ratio 1.5787, we additionally handle
the smallest type of items in the same way as all other items (packing them in two
di�erent ways), leading to a further improvement.

We also use our ideas to simplify the analysis of Super Harmonic, and show that
the algorithm Harmonic++ is in fact 1.58880-competitive (Seiden proved 1.58889),
and that 1.5884 can be achieved within the Super Harmonic framework.

Results in this chapter and organization First, we give an overview over the
basic ideas and also the shortcomings of Super Harmonic in section 4.1. We then
describe our new online bin packing algorithm framework, Extreme Harmonic; it is
described and analyzed in section 4.2. In section 4.3, we describe a speci�c algorithm
within this framework, called Son Of Harmonic, that achieves a competitive ratio
of 1.5813. In section 4.4 we simplify and improve the analysis of Super Harmonic
and Harmonic++. In section 4.5, we show that no algorithm within the Extreme
Harmonic framework can give a competitive ratio below 1.5762. Finally, in section 4.6,
we show that with only small modi�cations to Extreme Harmonic, we obtain a
framework in which a competitive ratio of 1.5787 can be achieved.
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4. Online One-Dimensional Bin Packing

4.1 Super Harmonic and its limitations

In 1985, Lee and Lee [86] described the Harmonic-algorithm, whose ideas became the
basis for almost all online bin packing algorithms that followed. The central idea is
the following: the interval (0,1] is partitioned into m > 1 intervals I1 = (1/2,1], I2 =
(1/3,1/2], . . . , Im = (0,1/m], and the type of an item is then de�ned as the index of
the interval which contains its size. Each type of items is packed into separate bins (i
items per bin for type i), i.e., two items of di�erent types will never be put into the
same bin. This gives a very simple, bounded-space (we only have m open bins at all
times, one for each type) algorithm. Lee and Lee [86] showed that for any ε > 0, there
is a numberm such that the Harmonic algorithm that usesm types has a competitive
ratio of at most (1 + ε)Π∞, where Π∞ ≈ 1.69103.

To understand the biggest problem of Harmonic, which prevents a better compet-
itive ratio, consider the following input sequence: First, n items of size 1/3 + ε arrive
(for arbitrarily small, positive ε), followed by n items of size 1/2 + ε. Harmonic will
pack the two types of items separately, the �rst n items pairwise into n/2 bins, and
the second n items separately into n additional bins. However, it is apparent that in
bins with type 1 items, nearly half the space remains unused, and it would be much
more prudent to pack one 1/3 + ε item with one 1/2 + ε item into each bin, using n
bins in total. This means, one would use free space in bins with items of a certain
type to pack items of other types there.

Unfortunately, this is not easy to achieve in the online setting. If the online
algorithm simply packs the 1/3+ε items separately into bins in expectation of 1/2+ε
items to follow, the adversary will simply end the input without sending 1/2 + ε
items. In this case, the algorithm would use even twice as many bins as needed in
the optimal solution. Therefore, one should try to �nd a middle ground: Pack some

of the 1/3 + ε items alone into bins and the rest pairwise, in order to balance both
possibilities (large items arrive or do not arrive).

It turns out that packing items of size in (1/3,1/2] and (1/2,2/3] carefully is
crucial in order to achieve good competitive ratios. We therefore often use the notion
of medium items for items with size in (1/3,1/2] and large items for items with size
in (1/2,2/3].

A sequence of papers used the idea of combining items of di�erent types to
develop ever better algorithms [86, 95], and �nally Seiden [98] presented a general
framework called Super Harmonic which captures all of these algorithms.

Super Harmonic algorithms classify items based on an interval partition of (0,1]
that is much more �ne-grained than the one of Harmonic and give each item a color
as it arrives, red or blue. For each type j , the fraction of red items is some constant
denoted by redj1, and the item is colored upon arrival to maintain this constant as
well as possible. Our goal is to combine in one bin red and blue items of di�erent
types, i.e., blue items of one type and red items of one other type, so that in each bin
items of at most two di�erent types are contained. In general, blue items should be
packed as in Harmonic, i.e., b1/sjc items of type j and size at most sj will be packed
in one bin. Red items should be packed only few per bin, intuitively they should not
�ll up more than 1/3 of the bin (except for medium items, where red items are packed
one per bin and of course �ll up more than 1/3 of the bin). Note that this also means

1This parameter was called αj by Seiden; we have made many changes to the notation, which in many
cases we feel was quite ad hoc.
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that if red items of type i and blue items of type j are packed together into the same
bin, then type i items will always be smaller than type j items.

If a new item arrives and is colored blue by the algorithm, we can either pack it
with existing red items (we de�ne later which types of red items are considered for
this) or – if this is not possible – we pack it into a bin with only blue items of the
same type. In such a bin, we hopefully can pack other red items later on. Similarly, we
pack red items either with existing blue items or in new bins which are only partially
�lled. Hopefully, later blue items of another type arrive that can be placed into these
bins with the red items. In the example from above, this would mean that some of
the medium items (the red ones) are packed alone into a bin (the blue items, which
are the majority, are still packed two per bin), so that if later large items arrive, they
(or at least some of them) can be packed with the red medium items and if no large
items arrive later we did not lose too much space as we only packed some medium
items separately. One sees immediately that the ratio redi that we chose for each
type i immediately decides which of the two cases is worse and thus careful choice
of these parameters is crucial in order to balance both cases and obtain a good overall
competitive ratio.

Note that we speak of Super Harmonic as a framework, as it depends on many
parameters (e.g. the interval partition that de�nes the types and the redi-values);
once we specify such a set of parameters, we obtain a concrete algorithm. The Super
Harmonic algorithm Harmonic++, which uses 70 intervals for its classi�cation
and has about 40 manually set parameters (the redi-values and others), achieves a
competitive ratio of at most 1.58889 [98].

Ramanan et al. [95] gave a lower bound of 19/12 ≈ 1.58333 for this type of
algorithm. One important type of inputs considered in their paper are inputs that
contain a medium item and a large item2. Both of these items arrive N times for
some large number N , and their sizes are carefully chosen for a speci�c Super
Harmonic algorithm such that, although they �t pairwise into bins, the algorithm
never combines them like this. See �g. 4.1 for such a pair of items for Harmonic++.
No matter how �ne the item classi�cation of an algorithm, pairs of items such as
these, that the algorithm does not pack together into one bin, can always be found.
The result by Ramanan et al. shows that Harmonic++ is almost optimal within the
Super Harmonic framework, and that some new ideas are required to overcome its
shortcomings.

We now describe formally the Super Harmonic framework in section 4.1.1 and
then we explain in more detail two main weakpoints of Super Harmonic algorithms
in sections 4.1.3 and 4.1.4, in order to later show how our framework Extreme
Harmonic, at least partially, overcomes these (section 4.2).

4.1.1 Formal definition of Super Harmonic

The fundamental idea of all Super Harmonic algorithms is to �rst classify items by
size, and then pack an item according to its type (as opposed to letting the exact
size in�uence packing decisions). For the classi�cation of items, we use numbers
t1 = 1 ≥ t2 ≥ · · · ≥ tN > 0 to partition the interval (0,1] into subintervals I1, . . . , IN .
(N is a parameter of the algorithm.) We de�ne Ij = (tj+1, tj ] for j = 1, . . . ,N − 1 and
IN = (0, tN ]. We denote the type of an item p by t(p), and its size by s(p). An item

2To complete the lower bound construction, they also consider inputs containing the sizes 1/3 + ε,
1/2 + ε, which can be combined into a single bin, and the input consisting only of items of size 1/3 + ε.
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p has type j if s(p) ∈ Ij . A type j item has size at most tj . We call the values tj type
thresholds (or simply thresholds if the context is clear).

Each item receives a color when it arrives, red or blue; an algorithm of the
framework Extreme Harmonic de�nes parameters redj ∈ [0,1] for each type j ,
which denotes the fraction of items of this type that are colored red. Blue items of
type j are packed using NextFit: we use each bin until exactly bluefitj := b1/tjc items
are packed into it. For each bin, smaller red items may be packed into the space of size
1−bluefitjtj that remains unused. Red items are also packed using NextFit, using a
�xed amount of the available space in a bin. This space is chosen in advance from a
�xed set Redspace = {redspacei}Ki=1 of spaces, where redspace1 ≤ · · · ≤ redspaceK .
This determines the number of red items of type j that are packed together in one
bin, which is denoted by redfitj . In the space not used by red items, the algorithm
may pack blue items. There may be several types that the algorithm can pack into
a bin together with red items of type j . Each bin will contain items of at most two
di�erent types. If a bin contains items of two types, it is called mixed. If it contains
items of only one type, but items of another type may be packed into this bin later,
it is called unmixed. A bin that will always contain items of one type is called pure
blue. A Super Harmonic algorithm tries to minimize the number of unmixed bins,
and to place red and blue items in mixed bins whenever possible.

A Super Harmonic algorithm uses a function leaves : {1, . . . ,N } → {0, . . . ,K}
to map each item type to an index of a space in Redspace, indicating how much
space for red items it leaves unused in bins with blue items of this type. Here
leaves(j) = 0 means that no space is left for red items. The algorithm also uses a
function needs : {1, . . . ,N } → {0, . . . ,K} to map how much space (given by an index
of Redspace) red items of each type require. We have needs(i) = 0 if and only if
redi = 0 (i.e., there are no red items of this type).

The class of an item of type t is leaves(t), if it is blue, and needs(t) if it is red.
The class of an item p indicates how much space is reserved for red items in the bin
containing p (both if p is red and if p is blue), namely redspacei space if the class is i.

For each type i such that leaves(i) = 0, the items of this type are packed in pure
blue bins, that contain only blue items (only one type per bin). An unmixed bin is
called unmixed blue or unmixed red depending on the color of the items in it.

A mixed bin with blue items of type i and red items of type j satis�es the fol-
lowing properties: leaves(i) > 0,redj > 0,needs(j) > 0, and redspaceneeds(j) ≤

787
1200

413
1200

1/3

type i: items with size in (3148 ,
21
32 ] type j: items with size in (1132 ,

17
48 ]

21
32 +

17
48 > 1

Figure 4.1: A critical bin. The item sizes are chosen such that a given Super Harmonic
algorithm (in this case, Harmonic++) does not pack these items together. For any Super
Harmonic algorithm, such sizes can be found. The central idea of our new algorithm is that
we limit the number of times that these critical bins can occur in the optimal solution. This is
how we beat the ratio of 1.58333.
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redspaceleaves(i). Observe that the last inequality holds if and only if needs(j) ≤
leaves(i). The blue items will use space at most 1 − redspaceleaves(i) and the red
items will use space at most redspaceneeds(j) ≤ redspaceleaves(i).

De�nition 8. An unmixed blue bin with blue items of type j is compatible with a red

item of type i if needs(i) ≤ leaves(j). An unmixed red bin with red items of type j is
compatible with a blue item of type i if needs(j) ≤ leaves(i).

In both cases, the condition means that the blue items and the red items together
would use at most 1 space in the bin (the blue items leave enough space for the red
items and vice versa).

De�nition 9. A bin is red-open for a non-sand item of type t if it contains at least one
and at most redfitt − 1 red t items. A bin is blue-open for a non-sand item of type t
if it contains at least one and at most bluefitt − 1 blue t items. A bin is open if it is

red-open or blue-open.

Red-open bins with red items of type j contain at least one and at most redfitj −1
red items. Blue-open bins can be pure blue. Red-open and blue-open bins can be
mixed or unmixed. Mixed bins can be red-open and blue-open at the same time. A
bin with bluefiti items of type i but no red items is not considered open, even though
red items might still be packed into it later.

A formal de�nition of Super Harmonic in pseudo-code is given in algorithm 1.
This is a much more compact representation than the one Seiden used, following the
representation later used for our framework.

Note about sand items Items of size at most tN are called sand. As in Harmonic,
such items are packed completely independent from all other item types (in Super
Harmonic as well as in our framework Extreme Harmonic). We do not use pa-
rameters such as bluefit for this type, as such items are packed using Any Fit into
separate bins. They are also not explicitly mentioned in, e.g., algorithm 1 to keep the
presentation simpler.

However, the framework Extreme Harmonic can easily be extended to also
color sand items in a similar way as all other items; this extension and the resulting
competitive ratio are discussed in section 4.6.

Algorithm 1 How the Super Harmonic framework packs a single item p of type
i ≤N − 1. At the beginning, we set nir ← 0 and ni ← 0 for 1 ≤ i ≤N − 1.

1: ni ← ni + 1
2: if nir < bredinic then // pack a red item
3: PackSH(p, red)
4: nir ← nir + 1
5: else // pack a blue item
6: PackSH(p, blue)
7: end if
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Algorithm 2 The algorithm PackSH(p, c) for packing an item p of type i with color
c ∈ {blue, red}.

1: Try the following types of bins to place p with color c in this order:
2: • a pure blue, mixed, or unmixed c-open bin with items of type i and color c
3: • an unmixed bin that is compatible with p (the bin becomes mixed)
4: • a new unmixed bin (or pure blue bin, if leaves(i) = 0 and c = blue)

4.1.2 Analyzing Super Harmonic using weighting functions

For anaylizing bin packing algorithms, one of the best-known and most used ap-
proaches are weighting functions ([104, 86, 95]). The high-level idea is to de�ne one or
more weighting functions that assign each item a weight such that the average weight
per bin in the algorithm’s solution is one. Then, we can analyze the maximum weight
that can be packed into a single bin: This gives an upper bound on the competitive
ratio.

Seiden generalizes the previously used simpler concept of weighting functions
to weighting systems. A weighting system is basically characterized by a dimension
m and two functions w : (0,1] 7→R

m and ξ : Rm 7→R. w is the weighting function
which assigns each item of size s a set of m weights w(s)1, . . . ,w(s)m. ξ is called
consolidation function. In order for w and ξ to describe a feasible weighting system
for algorithm A, the inequality A(σ ) ≤ ξ(

∑N
i=1w(s(pi))) +O(1) has to hold, where

σ is an arbitrary input sequence and pi is the i-th item in this sequence. One can
reformulate the weighting system Seiden used in such a way that one obtains two
weighting functions that assign each item one weight for each of K+1 cases (where K
is the number of redspacei-values). The consolidation function then basically takes
the minimum of the two functions and maximizes this over the K + 1 cases.

Now �nding this maximum would give the desired upper bound on the competitive
ratio. This is basically a one-dimensional knapsack problem, however, using two
weighting functions per item. Seiden developed a heuristic approach to solve this
knapsack problem in a feasible time (roughly 36 hours) using a computer program.

4.1.3 The Ramanan et al. lower bound

Let us take a closer look into the lower bound construction of Ramanan et al. [95], to
gain more insight into what prevents Super Harmonic-algorithms from performing
better. The class of algorithms considered by Ramanan et al. provide, using some
parameter h ≥ 1, a partition of the interval [0,1] into disjoint subintervals, including
I1,j = (1− yj+1,1− yj ] and I2,j = (yh−j , yh−j+1] for j = 1, . . . ,h with parameters 1/3 =
y0 < y1 < . . . < yh < yh+1 = 1/2 and requires that items of two subintervals I1,j and
I2,k are only packed into the same bin if j +k > h. One of the inputs considered in the
lower bound proof consists of items of size 1−yh−j+1 +ε (i.e., at the lower end of type
I1,h−j ) and items of size yh−j + ε (i.e., at the lower end of type I2,j )3. The parameter ε
is chosen in such a way that these two items �t together into one bin, however, as
the algorithm only judges items based on their type, not on their exact size, it handles
these items as if they had maximum size within their type. That is, the items are
handled as if they have size 1−yh−j and yh−j+1 (one can think of them being rounded

3The approach by Ramanan et al. is generalized in section 5.3, see there for more details on the
construction.
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up within their type), which makes them not �tting together into one bin. Hence, the
algorithm does not pack the items into one bin although they would actually �t. We
call such bins critical, see also �g. 4.1.

It is the natural approach to overcome this problem by just combining items
whenever they �t together, ignoring their type. However, if we simply add this
rule to the Super Harmonic framework, we get an additional problem: It might be
impossible now to maintain the �xed fraction of red items redi , which is however
crucial for the analysis. The problem can occur if, e.g., the algorithm is �rst given n
large items of size 1/2 + ε, followed by n medium items of size 1/3 + ε. According
to our new rule, the algorithm would combine one large and one medium item in
each bin, and obviously, this is exactly the right way to go. However, now all of
the medium items are red, while our ratios redi for the medium types are of course
substantially below one. Known methods for analyzing such an algorithm, however,
heavily depend on the fact that these ratios are maintained exactly. On the other
hand, if we stick with the �xed fraction redj for the medium items in such a case we
end up with the same worst case instances as for Super Harmonic (see �g. 4.2).
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(a) Packing produced by Super Harmonic.
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(b) Optimal packing and packing produced by
Extreme Harmonic.

Figure 4.2: An example illustrating why it might be necessary to color more than a redi -fraction
of the items of a medium type i red. First, �ve large items arrive (numbered 1-5), then �ve
medium items of type i (numbered 6-10). We assume that redi = 1/5 here.

Finally, even if we add the rule to combine items whenever they �t together, there
is still another problem that might prevent the algorithm from combining items in
cases where the optimal solution is able to do so; this is discussed in the following.

4.1.4 The size of red items

Imagine the following situation: We have a type that contains items of size in
(1/3,0.37], and we want to color 1/7 of these items red (i.e., redi for this type
is 1/7). Super Harmonic would do this by simply coloring every seventh item red
and all other items blue. Now imagine that we would combine large items with
medium items whenever they �t together (which Super Harmonic does not do, as
discussed in the previous subsection). Consider an input that consists of six items
of size 0.34, followed by one item of size 0.36 and one item of size 0.65; for the
sake of asymptotic analysis, repeat this input arbitrarily often. Super Harmonic
will color the 0.34 items blue and pack them pairwise into three bins, the 0.36 item
will be colored red and packed alone into a bin, and when the large item arrives,
the algorithm will not be able to combine it with the red item, as this is too large.
However, if the algorithm would have colored one of the 0.34 items red and the 0.36
item blue, it would have been possible to combine the red medium and the large item
(and the o�ine optimum of course does so). A weakness of all Super Harmonic
algorithms is that they do not distinguish between any two items that have the same
type. See also �g. 4.3 for an illustration.
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(a) Packing produced by Super Harmonic.
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(b) Optimal packing.

Figure 4.3: Packing of a sequence of medium items (all of the same type i) followed by one
large item. The items arrive in the order indicated by the numbers in circles. Super Harmonic
needs more bins than the optimal solution, as the red medium item is too large to be combined
with the large item. (We assume redi = 1/7 here.)

It becomes clear that we should try to assure that the smallest items of each type
become red. However, this is not easy to attain in the online setting: When an item
arrives, we do not know whether, within its type, we will encounter larger or smaller
items in the future, thus whether it would be better to color it red or blue. However, as
we immediately have to decide where to pack the item, and this also means whether
to combine it with possibly existing other blue items of the same type or red items
of some other type, we need to color the item upon arrival. We will see in the next
section how this problem can be overcome – at least to some extent – by carefully
postponing the coloring decision.

4.2 A new framework: Extreme Harmonic

4.2.1 Overview

We �rst describe on a high level how our framework Extreme Harmonic overcomes
the problems of Super Harmonic mentioned before.

Combining items depending on exact size

First of all, our algorithm will combine large and medium items whenever they �t
together, ignoring their type. Essentially, we use Any Fit to combine such items
into bins (under certain conditions speci�ed below). This is a generalization of the
well-known algorithms FirstFit and BestFit [104, 56], which have been used in
similar contexts before [9, 4]. For all other items, we essentially leave the structure
of Super Harmonic intact, although a number of technical changes are made, as we
describe next. We maintain the property that each bin contains items from at most
two types, and if there are two types in a bin, then the items of one type are colored
blue and the others are colored red.

Provisional coloring

As discussed above, in order to bene�t from using Any Fit, it is important to ensure
that for each medium type, as much as possible, the smallest items are colored red. In
order to do this, we initially pack each medium item alone into a bin without assigning

a color. After several items of the same type have arrived, we will color the smallest
one red and the others blue and start packing additional medium items of the same
type together with these blue items (see �g. 4.4.) In this way, we can ensure that at
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least half of the blue items (namely, the ones that have already arrived at the time
when we select the smallest one to be red) are at least as large as the smallest red
item.

(a) Pack items one per bin without coloring
them.

(b) The �fth item arrives: time to �x the colors.

(c) The smallest item becomes red. (d) Additional blue items of the same type are
added.

Figure 4.4: Illustration of the coloring in Extreme Harmonic. Hatched items are uncolored.
In this example, redi = 1/9, where i is the type of all items depicted in this example. Note that
the ratio of 1/9 does not hold (for the bins shown) at the time that the colors are �xed: 1/5 of
the items are red at this point. The ratio 1/9 is achieved when all bins with blue items contain
two blue items. The blue items which arrive in step (d) are called late items.

However, postponing coloring decisions like this is not always possible or even
desirable. In fact there are exactly two cases where this will not be done upon arrival
of a new medium item p.

1. If a bin with suitable small red items (say, of some type t) is available, and it is
time to color p blue, we will pack p into that bin and color it blue, regardless
of the precise size of p. In this case, in our analysis we will carefully consider
how many small items of type t the input contains; knowing that there must be
some. This implies that in the optimal solution, not all the bins can be critical.
Moreover, our algorithm packs these small items very well, using almost the
entire space in the bin.

2. If a bin with a large item is available, and p �ts into such a bin, we will pack p
in one such bin as a red item regardless of which color it was supposed to get.
This is the best case overall, since �nding combinations like this was exactly
our goal! In fact we must pack p like this, else we end up with the same worst
case instances as for Super Harmonic (�g. 4.2). However, there is a technical
problem with this, which we discuss below.

Overall, we have three di�erent cases: medium items are packed alone initially (in
which case we have a guarantee about the sizes of some of the blue items), medium
items are combined with smaller red items (in which case these small items exist and
must be packed in the optimal solution), or medium items are combined with larger
blue items (which is exactly our goal).

The main technical challenge is to quantify these di�erent advantages into one
overall analysis. In order to do this, we introduce – in addition to and separate from
the coloring – a marking of the medium items. The marking indicates whether the
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blue or red items of a given mark are in mixed or unmixed bins. This will bound
the number of critical bins (�g. 4.1) that can exist in the optimal solution, leading to
better lower bounds for the optimal solution value than Seiden [98] used.

Post-processing and change of input

Maintaining the fraction redj of red items for all marks separately is necessary for
the analysis. As we have seen however, if many large items arrive �rst, we must pack
medium items with them whenever possible, even if this violates the ratio redj . If
there are more than redj medium items of some type j when the input ends, we call
those items bonus items. Each bonus item is packed in a bin with a large item. After
the input ends, we will (virtually) make some of those large items smaller so that
they get type j as well (see �g. 4.5a). We then change the colors of the bonus items to
ensure the proper fraction redj of red medium items. Hence we modify the input, but
we only do this for the analysis and only once all the items have been packed. Clearly
the number of bins in the optimal solution can only decrease as a result of making
some items smaller. In order to prove that the modi�cation is legal, we additionally
have to argue that our analysis using weighting functions still counts correctly the
number of bins after the modi�cations were applied (i.e., in particular, we do not
consider the algorithm’s solution on the modi�ed input directly; this indeed would
�rst require �xing an order for the items to arrive in).

However, this is not the case if we handle bonus items simply like that; consider
for illustration �g. 4.5a. The problem is that there could be small red items (say, of
type t) in separate bins that could have been packed in bins with two medium type
j items, had such bins been available at the time when the small red items arrived.
Creating such bins after the input ends generates a packing that would not be analyzed
correctly by our weighting functions. This would make our analysis invalid. To avoid
this, we do not allow small items to be packed into new bins as red items as long as
bins with large and medium items exist that may later be modi�ed. Instead, in such a
case, we count a single medium item in such a bin as a number of red small items of
type t, and pack the incoming item of type t as a blue item (�g. 4.5b). This ensures
(as we will show) that if suitable bins with blue items are available, red items of type
t are always packed in them, rather than in new bins.

Analysis

When analyzing Seiden’s algorithm with the weighting function technique, it turns
out that bins with a medium and a large item, i.e. those bins that are used in the
Ramanan et al. lower bound and called critical in this thesis, have the highest weight
and therefore determine the competitive ratio. In order to gain some advantage
from our techniques, we have to do a more complicated analysis: We do not assume
that all bins in the optimal solution are packed with maximum weight, as this is an
overly pessimistic assumption. Instead, we analyze in a more detailed fashion which
bins need to occur in the optimal solution and can then give an upper bound on the
competitive ratio that results from the average weight in the optimal solution’s bins.
Seiden set up a mathematical program that determined the competitive ratio and then
used a heuristic approach to solve this huge LP e�ciently. As we add more constraints
to the LP, this heuristic approach does not carry over to our setting immediately,
so instead we split the mathematical program into two linear programs and then
consider the dual of these LPs and show how to solve it using the ellipsoid method.
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post-processing

(a) This situation cannot occur in our algorithm: We shrink a large item packed with a bonus item but
there are uncombined red small items compatible with the bonus item.

+
change of input

(b) In order to prevent the situation in �g. 4.5a, we (virtually) resize and split the bonus item into small
items when other small red items arrive. The new item becomes blue instead. Later, more small blue items
can be packed with it.

post-processing

(c) Only when bonus items remain after the algorithm terminates do we transform some large items to
medium items, re-establishing the correct ratio of red items for the medium items (in this example, this
ratio is 1/5).

Figure 4.5: Post-processing and change of the input for the analysis. Gray items denote bonus
items.

We have to implement the ellipsoid method in order to be able to give a value for
the competitive ratio. We do this by writing the dual in terms of just one variable,
by eliminating two variables and assuming a third one to be given. This means that
we can now do a straightforward binary search for the �nal remaining variable. We
implemented a computer program which solves the knapsack problems and also does
the other necessary work, including the automated setting of many parameters like
item sizes and values redi . As a result, our algorithm Son Of Harmonic requires far
less manual settings than Harmonic++.

Our program uses an exact representation of fractions, with numerators and
denominators of potentially unbounded size, in order to avoid rounding errors. For
our �nal calculations we have set the bound such that every dual LP is feasible; this
means that our results do not rely on the correctness of any infeasibility claims (which
are generally harder to prove). We also provide the �nal set of knapsack problems
directly to allow independent veri�cation.

This approach can also be applied to the original Super Harmonic framework.
Surprisingly, we �nd that the algorithm Harmonic++ is in fact 1.58880-competitive.
We suspect that Seiden did not prove this ratio because of the prohibitive running
times of his heuristic approach; he mentions that it took 36 hours to prove the upper
bound of 1.58889. Our program completes in few seconds. Another bene�t of using
our approach is that this result becomes more easily veri�able as well. Furthermore,
we were able to improve and simplify the parameters of Harmonic++ to obtain a
competitive ratio of 1.5884. These results are discussed in section 4.4.
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4.2.2 The algorithm

The Extreme Harmonic framework

Let us �rst formally de�ne the di�erent item size ranges.

De�nition 10. An item is called

• huge if its size is in (2/3,1],

• large if its size is in (1/2,2/3],

• medium if its size is in (1/3,1/2], and

• small if its size is at most 1/3

Note that from now on, there will be no types that contain 1/2 or 1/3 as an inner
point in their interval, and thus, we can extend the notion of huge, large, medium
and small items to types in the natural way.

Next, we extend the de�nition of compatible bins (de�nition 8) as follows. As
noted before, some items will not receive a color when they arrive, but only later. The
goal of having uncolored items is to try and make sure that relatively small items of
each medium type become red in the end (to make it easier to combine them with
large items).

De�nition 11. An unmixed bin is red-compatible with a newly arriving item p of type

≤N − 1 if

1. the bin contains blue or uncolored items
4
of type i with leaves(i) ≥ needs(t(p)),

or

2. the bin contains a (blue) large item of size x, p is medium and s(p) ≤ 1− x.
An unmixed bin is blue-compatible with a newly arriving item p if

1. the bin contains red items
4
of type j and leaves(t(p)) ≥ needs(j), or

2. the bin contains one red or uncolored medium item of size x, p is large and

s(p) ≤ 1− x.
For checking whether a large item and a medium item can be combined in a bin,

we ignore the values leaves(i) and needs(j) and use only the relevant parts 2 of
de�nition 11.

Recall that a bin is red-open (blue-open) if it contains some red items (blue
items) but can still receive additional red items (blue items). Like Super Harmonic
algorithms, an Extreme Harmonic algorithm �rst tries to pack a red (blue) item into
a red-open (blue-open) bin with items of the same type and color; then it tries to �nd
an unmixed compatible bin; if all else fails, it opens a new bin. Note that the de�nition
of compatible has been extended compared to Super Harmonic, but we still pack
blue items with red items of another type and vice versa; there will be no bins with
blue (or red) items of two di�erent types. The new framework is formally described in
algorithms 3 and 4. Items of type N are packed using NextFit as before. We discuss
the changes from Super Harmonic one by one. All the changes stem from our much
more careful packing of medium items. The algorithm Mark and Color called in

4We will see later that if an item has no color, it is the only item in its bin (property 7).
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4.2. A new framework: Extreme Harmonic

line 27 of Extreme Harmonic will be presented in section 4.2.4. This algorithm will
take care of assigning marks and colors to the items. In particular, this will take care
of �xing the color of medium items as described in �g. 4.4.

As can be seen in Pack (lines 2, 4 and 5), medium items that are packed into new
bins are initially packed one per bin and not given a color. We wait until enough of
these items have arrived, and then color the smallest one red using Mark and Color
(�g. 4.4). Note that nir is increased in line 16 of algorithm 3 even though the item
might not receive a color at this time. This means that the value nir does not alway
accurately re�ect how many red items there are currently. We will show that this is
not an issue for the analysis (it will be accurate up to a constant).

Algorithm 3 How the Extreme Harmonic framework packs a single item p of type
i ≤N −1. At the beginning, we set nir ← 0, nibonus← 0 and ni ← 0 for 1 ≤ i ≤N −1.

1: ni ← ni + 1
2: if nir < bredinic then // pack a red item
3: if nibonus > 0 or needs(i) ≤ 1/3∧∃j : njbonus > 0 then

// special case: replace bonus item and make the new item blue; see �g. 4.5c

4: if nibonus > 0 then

5: Let b be a bonus item of type i // in this case, redfiti = 1
6: else

7: Let b be a bonus item of some type j with njbonus > 0 // here i is
// a small type

8: end if

9: n
t(b)
bonus← n

t(b)
bonus − 1

10: Label b as type i // count b as type i item(s) and color it/them red

11: ni ← ni + redfiti // b might have been of type i already, then redfiti = 1
12: nir ← nir + redfiti
13: Pack(p, blue) // since we now have nir ≥ bredinic again
14: else

15: Pack(p, red)
16: nir ← nir + 1 // The item is red or uncolored

17: end if

18: else // pack a blue item
19: if p is medium, redi > 0, and there exists a bin B that is

red-compatible with p then

20: Place p in B and label it as bonus item. // special case: bonus item
21: ni ← ni − 1 // we do not count this item for type i
22: nibonus← nibonus + 1 // Note that B contains a large item

23: else

24: Pack(p, blue) // The item is blue or uncolored

25: end if

26: end if

27: Update the marks and colors using Mark and Color (section 4.2.4).

When an item arrives, in many cases, we cannot postpone assigning it a color,
since a c-open or c-compatible bin is already available (see lines 2 to 3 of Pack(p,c)).
Additionally, if we are about to color a medium item blue because currently nir ≥
bredinic, we check whether a suitable large item has arrived earlier. We deal with
this case in lines 19 to 22 of Extreme Harmonic. In this special case, we ignore the
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4. Online One-Dimensional Bin Packing

Algorithm 4 The algorithm Pack(p, c) for packing an item p of type i with color
c ∈ {blue, red}.

1: Try the following types of bins to place p with (planned) color c in this order:
2: • a pure blue, mixed, or unmixed c-open bin with items of type i and color c
3: • a c-compatible unmixed bin (the bin becomes mixed, with �xed colors

of its items)
4: • a new unmixed bin (or pure blue bin, if leaves(i) = 0 and c = blue)
5: If p was packed into a new bin, p is medium and redi > 0, give p no color, else

give it the color c.

value redi . We pack the medium item with the large item as if it were red (no further
item will be packed into this bin), but we do not count it towards the total number of
existing medium items of its type; instead we label it a bonus item. Bonus items do
not have a mark or color, but this can change later during processing in the following
two cases.

1. Additional items of type i arrive which are packed as blue items. If enough of
them arrive (so that it is time to color an item red again), we �rst check in line 3
of Extreme Harmonic if there is a bonus item of type i that we could color
red instead. If there is, we will do so, and pack the new item as a blue item.

2. An item of some type j and size at most 1/3 arrives, that should be colored
red. In this case, for our accounting, we view the bonus item as redfitj red
items of type j , and adjust the counts accordingly in lines 10 to 12 of Extreme
Harmonic.5 The new item of type j is packed as a blue item in line 13 of
Extreme Harmonic.6

It can be seen that blue items of size at most 1/3 are packed as in Super Harmonic.
For red items of size at most 1/3, we deal with existing bonus items in lines 10 to 12
of Extreme Harmonic, and in line 3 of Pack(p, c), an existing medium item may be
colored red or blue (the opposite of the parameter c). Otherwise, the packing proceeds
as in Super Harmonic for these items as well.

Parameter requirements

In order to make our analysis work for all Extreme Harmonic algorithms, we require
their parameters to ful�ll certain conditions, which are listed now.

R(1) If j is a small type with redj > 0, redspaceneeds(j) ≤ 1/3.

R(2) If i is a large or huge type, then redi = 0, so nir = 0 at all times.

R(3) For x > 1/3, we have x ∈ Redspace if and only if ∃i : x = ti and i is medium.

R(4) We have redi < 1/3 for all types i.

R(5) We have t1 = 1, t2 = 2/3, t3 = 1/2, and red1 = red2 = redN = 0.
5Note that the meanings of i and j are switched in the description of the algorithm for reasons of

presentation.
6Strictly speaking, we only need this whole procedure if type j is compatible with the bonus item, to

avoid the case in �g. 4.5b. Instead, we do it for all small items for simplicity.
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R(6) All type 1 items (i.e., huge items) and type N items are packed in pure blue
bins. Equivalently, leaves(1) = leaves(N ) = 0.

R(7) We have 1/3 ∈ Redspace.

R(8) Let ti , ti+1 be two consecutive medium type thresholds of the algorithm. Then
ti − ti+1 < tN < 1/100.

Note that requirement R(3) implies that redfiti = 1 for medium types i.

4.2.3 Properties of Extreme Harmonic algorithms

We now prove (or state, for easily observable ones) some properties of Extreme
Harmonic algorithms. Let ε = tN .

Property 1 (Lemma 2.1 in Seiden [98]). Each bin containing items of type N , apart

from possibly the last one, contains items of total size at least 1− ε.
Property 2. For any type i, if needs(i) > 0, then leaves(i) < needs(i).

Proof. If needs(i) > 0, then redi > 0. If leaves(i) ≥ needs(i) > 0, an additional item
of type i could be placed in the space redspaceneeds(i) ≤ redspaceleaves(i), which
means we could �t bluefiti + 1 blue items of type i into one bin, contradicting the
de�nition of bluefiti .

Property 3. For a medium type i, if leaves(i) > 0 then redspaceleaves(i) < 1/3, and
if redi > 0, then 1/3 < redspaceneeds(i).

Requirements R(5) and R(7) together imply that redspaceleaves(2) = 1/3. This
means together with property 3 that an unmixed bin with a large item is never red-
compatible with a medium item via condition 1 of de�nition 11 (so only condition 2
is relevant for this combination). This furthermore implies that for a medium item of
type i, the precise value needs(i) is irrelevant for the algorithm (only the fact that
redspaceneeds(i) > 1/3 is relevant). It will nevertheless be useful for the analysis to
have ti ∈ Redspace as required by requirement R(3).

Property 4. For each type i and color c, there is at most one c-open bin that contains

items of type i and no other type. For each pair of types and color c, there is at most one

c-open bin with items of those types.

Proof. Consider an item of type i and color c. By the order in which Pack tries to
place items into bins, we only open a new unmixed or pure blue bin of type i if no
c-open bin is available, so the �rst claim holds.

Now consider a pair of types. Say the blue items are of type i and the red items
are of type j . The only cases in which a mixed bin with such items is created are the
following:

• A red item of type j is placed into an unmixed bin B with blue items of type
i. In this case, there was no existing red-open mixed or unmixed bin with red
items of type j .

• A blue item of type i is placed into an unmixed bin B with red items of type j .
In this case, there was no existing blue-open mixed, unmixed or pure blue bin
with blue items of type i.

35



4. Online One-Dimensional Bin Packing

• A bin receives a bonus item in line 20 of Extreme Harmonic and is now
considered mixed.

• A bonus item gets counted as items of type j in lines 10 to 12.

At the beginning, there are zero open bins with items of type i and type j . Such
bins are only created via one of the cases listed above. In the last two cases, no
open bins are created (note that only one medium and one large item can be packed
together in a bin). In the second case, B is the only red-open bin with these types (if
redfitj > 1, that is), and no red items of type j are packed into unmixed bins with
blue items until B contains redfitj type j items by line 2 of algorithm 4. In the �rst
case, similarly, no new blue item of type i will be packed into unmixed bins with red
items as long as B remains blue-open.

Property 5. At all times, for each type i, nir ≥ bredinic − 1. For each medium type i,
nir ≤ bredinic. For each small type i, nir ≤ bredinic+ redfiti .

Proof. The �rst bound follows from the condition in line 2 of algorithm 3 and because
ni increases by at most 1 in between two consecutive times that this condition is
tested, unless lines 10 to 12 of Extreme Harmonic are executed; but in that case, the
fraction of red items of type i only increases, because ni and nir increase by the same
amount.

The upper bounds follow because for each medium type i, nir increases by at most
1 when nir < bredinic and a new item of this type arrives: either in line 12 (redfiti = 1
for medium items) or in line 16. Furthermore, if nir = bredinic, nir is not increased
anymore. For small items, nir increases by at most redfiti in one iteration (line 12),
and this only happens if the ratio is too low (line 2).

Recall that nir is not always the true number of medium red items of type i, as
some of these may not have a color yet. For a small type i, the value nir may also not be
accurate, because it may include some bonus items. We will �x this in postprocessing,
where we replace the bonus items by items of type i to facilitate the analysis.

Property 6. At all times, for each type i that is not medium, nibonus = 0.

Property 7. Each bin with an uncolored item contains only that item.

Proof. By line 3 of the Pack method, as soon as a bin becomes mixed, the colors of
its items are �xed. By line 2 of the Pack method, an unmixed bin with an uncolored
item does not receive a second item of the same type.

In particular, no bin which contains an uncolored item is a mixed bin. The
following important invariant generalizes a result for Super Harmonic (which is not
formally proved in Seiden [98], but is quite easy to see for that algorithm).

Invariant 1. If there exists an unmixed bin with red items of type j , then for any type

i such that needs(j) ≤ leaves(i), there is no bin with a bonus item of type i and no

unmixed bin with blue items of type i.

Proof. As long as an unmixed red bin with items of some type j exists, no unmixed
blue bin with items of type i for which needs(j) ≤ leaves(i) can be opened and vice
versa (line 3 of Pack).
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Now assume for a contradiction that there is an unmixed red bin with red items
of type j (denote the �rst item in this bin by f) and a bin with a bonus item b of
type i. Assume b arrived before f. Consider the point in time where f arrived. After
deciding that f should be colored red in line 2 of Extreme Harmonic, we would have
found that the second part of the condition in line 3 of Extreme Harmonic is true,
and as a consequence would have made b no longer be bonus, a contradiction to our
assumption.

Now assume that f arrived before b. In this case, either f or the large item L

that is packed with b arrived �rst. (Note that b de�nitely arrived after L, or it would
not have been made bonus.) Now s(L) < 2/3 since L was packed with the medium
item b. But redspaceleaves(t(L)) ≥ 1/3 by requirement R(7), 1/3 > redspaceleaves(i)
by property 3, redspaceleaves(i) ≥ redspaceneeds(j) by the assumption of the lemma.
Thus redspaceleaves(t(L)) ≥ redspaceneeds(j), which implies leaves(t(L)) ≥ needs(j),
i.e., f and L are compatible according to de�nition 11. Hence, regardless of which
item among these two arrived �rst, the algorithm does not pack them in di�erent
unmixed bins; the second arriving item would be packed at the latest by line 3 of
Pack.

4.2.4 Marking the items

De�nition 12. A critical bin for an Extreme Harmonic algorithm is a bin used in the

optimal solution that contains a pair of items, one of a medium type j (tj ∈ (1/3,1/2])
and one of a large type i (ti ∈ (1/2,2/3]) such that tj + ti > 1 but tj+1 + ti+1 < 1.

An example was given in �g. 4.1. By marking the medium items, we keep track of
how many red and blue items of a given type j are in mixed bins. Blue medium items
in mixed bins imply the existence of compatible small items in the input (which need
to be packed somewhere in the optimal solution). Red medium items in mixed bins
means that the algorithm managed to combine at least some pairs of medium and
large items together into bins. In both cases, we have avoided the situation where
the o�ine packing consists only of critical bins, whereas the online algorithm did
not create any bins which contain a large and a medium item. We use three di�erent
marks, which together cover all the cases. Our marking is illustrated in �g. 4.6.

R For any medium type j , a fraction redj of the items marked R are red, and all of
these red items are packed into mixed bins (i.e., together with a large item).

B For any medium type j , a fraction redj of the items marked B are red, and the
blue items are packed into mixed bins (i.e., together with small red items).

N For any medium type j , a fraction redj of the items markedN are red, and none

of the red and blue items markedN are packed into mixed bins.

The algorithm Mark and Color is de�ned in algorithm 5. For a given type i and
setM∈ {N ,B,R}, denote the number of red items by nir (M), and the total number
of items by ni(M). Algorithm 5 is run every time after an item has been packed,
and for every medium type i for which redi > 0 separately. It divides the medium
items into three setsN ,B and R (see �g. 4.6). Once assigned, an item remains in a
set until the end of the input (after which it may be reassigned, see section 4.2.5). In
many cases, the algorithm will have nothing to do, as none of the conditions hold.
Therefore, some items will remain temporarily unmarked, in a set U. The set U does
not contain the bonus items (in fact none of the sets does).
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R R R R R
(a) Items get mark R: uncolored items and a red item in a mixed bin. The bins with blue R-items will
receive an additional blue item of the same type before any new bin is opened for this type.

B
B

B
B

B
B

B
B

B

(b) Items get mark B: a single uncolored item and blue items (in pairs) in mixed bins.

N N N N N

(c) Items get markN : a set of uncolored items. The bins with blueN -items will receive an additional blue
item of the same type before any new bin is opened for this type. See �g. 4.4.

Figure 4.6: Marking the items. For simplicity, we have taken redi = 1/9 here (where i is the
type of the medium items).

Algorithm 5 The algorithm Mark and Color as applied to medium items of type i
for which redi > 0.

1: if there is an unmarked blue item p1 in a bin with a marked blue item p2 then

2: Give p1 the same markM as p2.
3: ni(M)← ni(M) + 1
4: end if

5: Let xR be the minimum integer value such that b(ni(R)+2xR+1)redic > nir (R).
6: if there exist xR uncolored non-bonus items and

one unmarked red or bonus item in a mixed bin then

7: Mark these xR + 1 items R. If there is a choice of items in mixed bins, use a
bonus item if possible and color it red. Color the (other) uncolored items
blue. If a bonus item is used, nibonus← nibonus − 1.

8: ni(R)← ni(R) + xR + 1, nir (R)← nir (R) + 1
9: end if

10: Let xB be the minimum integer value such that b(ni(B) + xB + 1)redic > nir (B).
11: if there exists an uncolored non-bonus item and a set of mixed bins

with two unmarked blue items each, which contains a number
x′B ∈ {xB ,xB + 1} of blue items in total, then

12: Mark these x′B items B and color the uncolored item red.
13: ni(B)← ni(B) + x′B + 1, nir (B)← nir (B) + 1
14: end if

15: Let xN be the minimum integer value such that b(ni(N )+2xN +1)redic > nir (N ).
16: if there exist xN + 1 uncolored non-bonus items then

17: Mark the xN largest uncolored items and the single smallest uncolored item
p with the markN . Color p red and the other xN items blue.

18: ni(N )← ni(N ) + xN + 1, nir (N )← nir (N ) + 1
19: end if
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Line 17 of Mark and Color ensures the following property, which was the point
of postponing the coloring. Recall that early items are blueN -items which did not
get their color immediately and were packed one per bin (each late item is packed in
a bin that already contains an early item).

De�nition 13. For some medium marked early blue item p, its reference item, denoted

by r(p), is the red item that received its mark in the same iteration of Mark and Color.

A set of bins whose (early) items received their marks in the same iteration ofMark and

Color (i.e., a set of blue early items, their common reference item, and their corresponding

late blue items) are called a cluster.

Property 8. Each earlyN -item is at least as large as its reference item.

After all items have arrived and after some post-processing, we will have

|nir (M)−ni(M) · redi | =O(1) forM∈ {N ,B,R}
and each medium type i with redi > 0.

(4.1)

Each item will be marked according to the set to which it (initially) belongs. We will
see that the values xR,xB and xN in Mark and Color are calculated in such a way
that nir (M) = bni(M) ·redic holds just before any assignment toM∈ {N ,B,R}. The
proof is straightforward, but we need to be precise with the bound on xN for later.

Note that Mark and Color never changes the values nir and ni . As we saw,
the value nir may be inaccurate for some types in any event. This will be �xed for
small types in post-processing, whereas for medium types we will prove eq. (4.1). Of
course, Mark and Color does change values nir (M) and ni(M) forM∈ {R,N ,B}
in order to record how many items with each mark there are (and these values will
be accurate).

Lemma 1. LetM ∈ {N ,R}. Just before assignments of new items toM in lines 7

to 8 or lines 17 to 18, for each medium type i such that redi > 0, we have nir (M) =
bredini(M)c and xM < 1/(2redi) + 1/2. Generally, we have nir (M) ∈ [bredini(M)c,
bredini(M)c+ 1].

Proof. Call the assignment of new items toM due to lines 7 to 8 or lines 17 to 18
early assignments.

At the beginning, we have nir (M) = ni(M) = 0. Thus the lemma holds at this
time. When an early assignment takes place, ni(M) increases by xM + 1, and nir (M)
by 1. By minimality of xM, just before any early assignment we have

b(ni(M) + 2(xM − 1) + 1)redic ≤ nir (M) (4.2)
===⇒ (ni(M) + 2(xM − 1) + 1)redi < n

i
r (M) + 1

===⇒ (ni(M) + 2xM + 1)redi < n
i
r (M) + 1 + 2redi

===⇒ b(ni(M) + 2xM + 1)redic < nir (M) + 1 + 2redi
R(4)

===⇒ b(ni(M) + 2xM + 1)redic − 1 < nir (M) + 1

===⇒ b(ni(M) + 2xM + 1)redic ≤ nir (M) + 1
def. of
===⇒
xM

b(ni(M) + 2xM + 1)redic = nir (M) + 1
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This immediately implies that right after an early assignment toM,

b(ni(M) + xM)redic = nir (M). (4.3)

There are then xM bins with one early blue medium item of type i. Extreme
Harmonic will put the next arriving blue items of this type into these xM bins
(one additional item per bin) before opening any new bins. All of these late blue items
are assigned toM and ni(M) is increased accordingly in lines 2 to 3, so eventually
nir (M) = bredini(M)c.

After that, ni(M) and nir (M) remain unchanged until the next early assignment
of items toM. Hence before an early assignment of items toM, the �rst claimed
equality holds.

This equality together with ineq. (4.2) gives

bni(M)redi + (2(xM − 1) + 1)redic ≤ bni(M)redic
which implies (2(xM−1)+1)redi < 1 and thus xM < 1/(2redi)+1/2 < 1/redi . This,
together with eq. (4.3), implies nir (M) < b(ni(M)c + 1 (note that nir (M) is largest
relative to ni(M) right after an early assignment toM, i.e., when eq. (4.3) holds).

Corollary 1. After each execution of Mark and Color and for each medium type i
such that redi > 0, ni(U) ≤ 1/redi .

Proof. We have xN < 1/redi and xR < 1/redi by lemma 1, so at the latest when
1/redi + 1 uncolored non-bonus items exist, they are marked and colored.

Lemma 2. At all times and for each medium type i such that redi > 0, nir (B) =
bredini(B)c and xB < 1/redi .

Proof. We use similar calculations to the proof of lemma 1. At the beginning, all
counters are zero. When Mark and Color is about to assign items to B, we have
bredi(ni(B) + xB + 1)c = nir (B) + 1: Assume the contrary, that is, bredi(ni(B) + xB +
1)c ≥ nir (B)+2. Then bredi(ni(B)+(xB−1)+1)c ≥ nir (B)+1 > nir (B), a contradiction
to minimality of xB . We also have bredi(ni(B) +xB + 2)c = nir (B) + 1. If redi(ni(B) +
xB+1) is integral, this is clear by requirement R(4). Otherwise, assuming bredi(ni(B)+
xB + 2)c = nir (B) + 2 would mean that dredi(ni(B) + xB + 1)e − redi(ni(B) + xB +
1) < 1/3, hence redi(ni(B) + xB + 1) − bredi(ni(B) + xB + 1)c > 2/3, and hence by
requirement R(4) redi(ni(B)+(xB−1)+1) > bredi(ni(B)+xB+1)c, again contradicting
minimality of xB . Having bredi(ni(B)+xB +1)c = bredi(ni(B)+xB +2)c = nir (B)+1
immediately implies that after each assignment, we have bredini(B)c = nir (B). By
minimality of xB , we also conclude bredi(ni(B) + xB)c = nir (B), so xB · redi < 1.

4.2.5 Post-processing

Since we consider only the asymptotic competitive ratio in this paper, it is su�cient
to prove that a certain ratio holds for all but a constant number of bins: such bins are
counted in the additive constant. We will perform a sequence (of constant length)
of removals of bins in this section. We will also change the marks of some items to
better re�ect the actual output, �x the type and color of any remaining bonus items
and reduce the sizes of some items to match the values used by Extreme Harmonic
in its accounting (see line 11 of algorithm 3). We will now establish – using such
modi�cations – some packing properties. After establishing such a property, we will
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argue that it will not be a�ected by further modi�cations. In the end, all packing
properties will hold and build the basis for our anaylsis.

Lemmas 1 and 2 give us the �rst packing property.

Packing Property 1. ForM∈ {N ,R,B}, we have
∣∣∣ni(M) · redi −nir (M)

∣∣∣ =O(1).

The next packing property follows from the way Mark and Color selects the
items to mark.

Packing Property 2. All bins with blue B-items or red R-items are mixed.

We remove all bins with unmarked items (but not the bonus items); according to
corollary 1, there are at most

∑
i:redi>0 1/redi such bins. This establishes the following

packing property:

Packing Property 3. All medium non-bonus items are marked.

We remove any bins with a single blue N - or R-item p, as well as all bins in
the same cluster as p. Line 7 or line 17 of Mark and Color are only executed if all
blue items that were assigned toN or R in a previous run of Mark and Color are
already packed into bins with two blue items, since the algorithm Pack prefers to
pack a new blue item into an existing blue-open bin. Thus, when we remove all bins
with singleN - orR-items, this is at most

∑
i:redi>0(1+1/redi) bins by lemma 1. This

does also not invalidate packing property 1, following the argumentation from the
proof of lemma 1. We established the following packing property:

Packing Property 4. Each blue item inN ,R and B is packed in a bin that contains

two blue items.

Finally, we remove all open bins, which are at most O(N2) by property 4. We
also remove the single bin with items of type N of total size at most 1− ε, if it exists
(see property 1). We thus get the next two packing properties.

Packing Property 5. No open bins exist. That is, every bin that contains red items

of type i contains redfiti such items, and every bin that contains blue items of type i
contains bluefiti such items, for every type i < N .

Packing Property 6. All bins with items of type N are at least 1− ε full.

Final marking An overview of our changes of marks and sizes is given in �g. 4.7.
We will change marks of some items to R or B if such marks are appropriate. To do
this, we run algorithm 6 for every medium type i separately. Note that seemingly
wrongly marked items like the ones we look for in algorithm 6 can indeed exist
because while the algorithm is running we only mark each item once, when it is
assigned to a set; other items could arrive later and be packed with it, invalidating its
mark.

Lemma 3. Algorithm 6 does not a�ect packing properties 1 to 6.

Proof. Packing properties 3 to 6 are obviously not a�ected by changing marks. Packing
property 2 is maintained by the way we select items that are moved to other sets.
Packing property 1 is maintained because we change marks in the correct proportions:
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N
bonus
items

B R

Alg. 6, line 7
Alg. 6, line 4

Alg. 6, line 4

Alg. 7, line 4

Figure 4.7: Reassigning marks after the input is complete and changing some items to get
rid of bonus items. Items are sorted into their correct sets whenever possible, updating the
marks that they received while the algorithm was running. Some item sizes are reduced (!).
The bins next to the arrows indicate what sets of bins are being reassigned. Note that, when
shifting items from B to R, we obtain bins with two blue R-items and some red items. This is
no problem of course, as we do not require that the blue R-item are in unmixed bins, but it is
not depicted here.

If
∣∣∣ni(M) · redi −nir (M)

∣∣∣ ≤ c holds for someM ∈ {N ,R,B} and constant c before
shifting items to this set, then afterwards we have

nir (M) + brediT c ∈
[
bredin

i(M)c − c+ brediT c,bredin
i(M)c+ c+ brediT c

]
⊆

[
bredi(n

i(M) + T )c −O(c),bredi(n
i(M) + T )c+O(c)

]
.

Similarly, when shifting items fromM to some other set, we get

nir (M)− brediT c ∈
[
bredin

i(M)c − c − brediT c,bredin
i(M)c+ c − brediT c

]
⊆

[
bredi(n

i(M)− T )c −O(c),bredi(n
i(M)− T )c+O(c)

]
.

As we only do this shifting a constant number of times, packing property 1 is main-
tained.

Instead of the process described in algorithm 6, an easier approach might seem to
be the following. For changing marks fromN toR, we could simply take the clusters
of the redN -items in the mixed bins. The problem with this approach is that not all
these clusters have the same size in general, since xN may vary. This means the ratio
redi would possibly not be maintained for R (and then also not forN ).

Packing Property 7. No bins with items inN are mixed. No bins with red items in

B are mixed.
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Algorithm 6 Final marking for items of type i in Extreme Harmonic algorithms.
Again we only consider items of medium type i.

1: Sort the bins with two blue N -items in order of increasing size of the early
N -items in these bins.

2: forM = {N ,B} do
3: Let T be the largest integer value such that there exist

• brediT c redM-items in mixed bins (one per bin) and
• (T − brediT c)/2 bins with (two) blueM-items (so (T − brediT c)/2 ∈N)

4: Assign the brediT c largest redM-items in mixed bins and the blueM-items
in the �rst (T − brediT c)/2 bins in the sorted order to R

5: end for

6: Let T be the largest integer value such that there exist
• brediT c redN -items
• (T − brediT c)/2 mixed bins with (two) blueN -items

7: Assign the brediT c largest redN -items and the blueN -items in the �rst (T −
brediT c)/2 mixed bins in the sorted order that were not yet reassigned to R, to
B

Lemma 4. After running algorithm 6, only constantly many bins need to be removed in

order to ensure that packing property 7 holds. Packing properties 1 to 6 are maintained.

Proof. Let us �x a medium type i. After the �rst loop is �nished, there can be at most
constantly many redN -items and B-items in mixed bins, since these sets of items are
both colored with the correct proportion of red items by packing property 1 and we
move a maximal subset of items with the correct proportion to R. After algorithm 6
completes, there are at most constantly many blue N -items in mixed bins for the
same reason. We can remove all of these bins at the end if needed. This does not
a�ect any of packing properties 1 to 6.

The following lemma helps us to bound the optimal solution later.

Lemma 5. Let the smallest medium red item of type i inN be ri . It is packed alone in

a bin. At most
1−redi

2 (ni(R) +ni(N )) +O(1) items inN have size less than s(ri).

Proof. Item ri is packed alone by packing property 7 and the fact that redfiti = 1 for
medium type i. Each red N -item of type i has size at least s(ri) by de�nition of ri .
Furthermore, each early blueN -item of type i has size at least s(r(p)), where r(p) is
the reference item of p (property 8). However, it is possible that the bin containing r(p)
received an additional (large, blue) item later. In that case, after post-processing, the
item r(p) does not have markN anymore, so it is not considered when determining
ri , and may in fact be smaller than ri ; thus also p may be smaller than ri although it
is an early blueN -item. In algorithm 6, we therefore take care to always select the
bins with the smallest early blueN -items (line 1).

Thus, there are two kinds of items inN that can be smaller than ri : Late blueN -
items and early blueN -items whose reference items are shifted to R by algorithm 6.

We �rst give an upper bound for the number of items of the second kind. Let
z = brediT c be the number of red N -items in mixed bins that receive the mark R
in line 4 of algorithm 6. Then the total number of early items that are in the same
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clusters as these z items is upper bounded by z/(2redi)+z/2 by lemma 1. We transfer
in total (T −z)/2 early items fromN toR and these are the smallest early items. The
number of early items that do not get transferred and are potentially smaller than ri
is therefore at most z/(2redi) + z−T /2 ≤ z since T ≥ z/redi . Clearly, since we move
z redN -items to R, z is at most redini(R) afterwards.

Next, we give an upper bound for the �rst kind of items that are potentially smaller
than ri , i.e., the late blueN -items. There are ni(N )−nir (N ) = ni(N )−bredini(N )c±
O(1) blue items in N (using packing property 1). Half of them are packed as late
items. We have 1

2 (ni(N )− bredini(N )c ±O(1)) ≤ 1−redi
2 ni(N ) + 1

2 +O(1).
Since redi <

1−redi
2 by requirement R(4), the lemma follows.

A modi�cation of the input In line 20 of Extreme Harmonic, bonus items are
created. These are medium items which are packed as red items (each such item is
in a bin with a large blue item) but violate the ratio redi . Some of them may still be
bonus when the algorithm has �nished. Also, some of them may be labeled with a
di�erent type than the type they belong to according to their size. We call such items
reduced items. Note that Extreme Harmonic treated each reduced item as small red
items in its accounting (but had in fact packed the larger bonus item). All reduced
items are in mixed bins. They are not counted as bonus items.

Algorithm 7 Modifying the input after packing all items
1: Let the number of bonus items of type i be T . // These are not reduced items

2: Color b2rediT
1+redi

c of these items red and the others blue. Mark them all R.
3: Reduce the size of blue large items in the bins with (now) blue medium items of

type i to ti .
4: Mark all of these items R as well.
5: ni(R)← ni(R) + 2T − b2rediT

1+redi
c.

6: nir (R)← nir (R) + b2rediT
1+redi

c.
7: for each reduced item p do

8: Let j be the type with which p is labeled.
9: Split up p into redfitj red items of size s(p)/redfitj .

10: Reduce the size of the newly created items until they belong to type j .
11: end for

After Extreme Harmonic has �nished, and the steps previously described in
this sections have been applied, we modify the packing that it outputs as described
in algorithm 7. Again we run this algorithm for every medium type i. The post-
processing is illustrated in �g. 4.5; the process in lines 2 to 6 is illustrated in �g. 4.5c,
the process in lines 8 to 10 in �g. 4.5b.

Lemma 6. Denote the set of items in a given packing P by σ . Denote the set of items

after applying algorithm 7 to the packing P by σ ′ . Then P induces a valid packing for

σ ′ , and opt(σ ′) ≤ opt(σ ).

Proof. In line 3 of algorithm 7, items are only made smaller. In line 9, a medium item
of type i is split into redfitj items of some type j . The condition for an item to be
labeled with type j in line 3 of Extreme Harmonic is that j is a small type.

By de�nition of redfitj and redspaceneeds(j), we have that redfitj items of type
j have total size at most redspaceneeds(j). Since j is a small type, this value is less
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than 1/3 by requirement R(1). This means the newly created items occupy less space
than the medium item that they replace. Hence, in both cases we do not increase the
amount of occupied space in any bin.

The inequality follows by choosing P to be an optimal packing for σ .

Lemma 7. Lemma 5 still holds after executing algorithm 7.

Proof. Algorithm 7 creates new items only with mark R. Therefore, the number of
“problematic items” that we want to upper bound, that is, the number ofN -items of
size less than s(ri), does not increase. As we only increase ni(R) in algorithm 7, the
upper bound in lemma 5 is not decreased.

Theorem 1. For a given input σ , denote the result of all the post-processing done in
this section by σ ′ = {p1, . . . ,pn}. Packing properties 1 to 7 and invariant 1 still hold after
post-processing. For any type i, at the end we have |nir −redini | =O(1), where nir counts
the (correct) total number of red items of type i after postprocessing. There are no bonus
items, and the optimal cost to pack the input did not increase in post-processing.

Proof. Let P0 be the packing of σ that is output by A. Let P1 be the packing after
running algorithm 6, and let the items packed into P1 be σ1. By lemma 4, the packing
properties hold before algorithm 7 is executed. Packing property 1 is not a�ected by
lines 2 to 6, as the additional items marked R are colored with the correct ratio: We
have r = b2rediT

1+redi
c red items, b = 2(T − r) = 2T − 2b2rediT

1+redi
c blue items, that means

r + b = 2T − b2rediT
1+redi

c items in total in r + b/2 = T bins, and |redi(r + b)− r | =O(1).
Packing property 2 obviously holds as the new red R-items are in mixed bins as
they were bonus items before. Packing property 4 holds as in the bins with new blue
R-items, the formerly large items are shrunk to becomeR-items of the same medium
type as well. Packing properties 3 and 5 to 7 are not a�ected.

Consider some medium type i. Invariant 1 is not a�ected by any change of marks
or removal of bins. The e�ect of lines 2 to 6 of algorithm 7 is that some bins with
bonus items of type i are replaced with unmixed bins with blue type i items. As
invariant 1 held before where we had bonus items of type i, we know that there is no
unmixed bin with red items of type j such that needs(j) ≤ leaves(i), so the invariant
still holds after we created the new unmixed bins with blue type i items.

To get from P0 to P1, we only removed some bins (and changed marks, which
are irrelevant for the optimal solution). Hence opt(σ1) ≤ opt(σ ). We can thus apply
lemma 6 to the optimal packing for σ1 to get the last claim. All bonus items are
removed by algorithm 7.

It remains to argue about the correct proportion of red to blue items for all types.
For medium types, by packing property 1 the ratios are correct within each setR,B,N ,
so they are also correct in total. For a small type i, we have |nir − redini | =O(1) by
property 5. The only e�ect of post-processing is that afterwards, nir counts the actual
number of red items of type i in σ1. (Some of these red items replace bonus items in
σ1, but the algorithm already counted them in the value nir .)

4.2.6 Weighting functions

Let A be an Extreme Harmonic algorithm. For analyzing the competitive ratio of
A, we will use the well-known technique of weighting functions. The idea of this
technique is the following. We assign weights to each item such that the number of
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bins that our algorithm uses in order to pack a speci�c input is equal (up to an additive
constant) to the sum of the weights of all items in this input. Then, we determine
the average weight that can be packed in a bin in the optimal solution. This average
weight for a single bin gives us an upper bound on the competitive ratio. In order to
use this technique, we now de�ne a set of weighting functions.

Fix an input sequence σ.Denote the result of post-processing σ by σ ′ = {p1, . . . ,pn}.
Let P be the packing of σ that is output by A. Let P ′ be the packing of σ ′ induced by
P (lemma 6).

From this point on, our analysis is purely based on the structural properties of the
packing P ′ that we established in theorem 1. We view σ ′ only as a set of items and
not as a list. We prove in theorem 2 below that this is justi�ed. In particular, we do
not make any statement about A(σ ′), since the post-processing done in algorithm 6
means that some items (e.g., the ones introduced in lines 8 to 10) do not have clearly
de�ned arrival times, and it is not obvious how to de�ne arrival times for them
in order to ensure that A(σ ′) = A(σ ). Recall that the class of an item of type t is
leaves(t), if it is blue, and needs(t) if it is red.

Lemma 8. For k ∈ {1, . . . ,K}, red items of class k are either all medium or all small. If

they are medium, they are of the unique type t such that k = needs(t).

Proof. If for a red item of type t we have redspaceneeds(t) > 1/3, then it is a medium
item by requirement R(1); in this case, type t is the only type such that needs(t) = k
since each medium type is in a di�erent class by requirement R(3). For each small
item p we have redspaceneeds(t(p)) ≤ 1/3, i.e., no class can contain items of small and
medium types.

The class of a bin with red items is the class of those red items. This is well-de�ned,
as each bin contains red items of only one type.

De�nition 14. Let k be the minimum class of any unmixed red bin. Let r be a smallest

item in the unmixed red bins of class k. If all red items are in mixed bins, we de�ne

k = K + 1 (and r is left unde�ned).

If k ∈ {1, . . . ,K}, then by this de�nition we have k = needs(t(r)). If redspacek
is at most 1/3, there may be several red items in one bin, as in Super Harmonic
(in Harmonic++, there is always at most one red item per bin).7 Also, there can be
several types t such that k = needs(t).

We follow Seiden’s proof, adapting it to take the marks into account. In order
to de�ne the weight functions, it is convenient to introduce some additional types.
Note that the algorithm does not depend on the weight functions in any way. It is
also unaware of the added type thresholds. First of all, for each i such that 1/3 <
redspacei < 1/2, we add a threshold 1− redspacei between t2 = 2/3 and t3 = 1/2
(see requirement R(5)). For a type t with upper bound 1 − redspacei we de�ne
leaves(t) = i. We furthermore add a threshold 1− s(r) in case r is medium. This splits
an existing type into two types. For the new type t1 with upper bound 1− s(r), we

7At this point we note that there is a minor inaccuracy in the corresponding proof in Seiden [98]. He
de�nes an item e as the smallest red item in an indeterminate red group bin, and proceeds to argue using
the class of e (where we use k). However, that class does not need to be monotone in the size of e, so there
could be a larger red item of a smaller class that is in an indeterminate group bin! Instead, e should be
de�ned based on the smallest class of an unmixed red bin, as we do above. The proof as written by Seiden
only works for algorithms like Harmonic++ which pack only one red item per bin.
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de�ne leaves(t1) = k, where k = needs(t(r)). For the new type t2 with lower bound
1−s(r), we de�ne leaves(t2) = k−1. We see that the function leaves now depends on
the size of the item r and thus we will write leavess(r). To maintain consistency with
the rest of the chapter, we add negative indices for the types to maintain t3 = 1/2.
That is, if there are a values in Redspace in the range (1/3,1/2), the corresponding
values 1−redspacei and the threshold 1−s(r) (if r is medium) are stored in ascending
order in the values t2, t1, . . . , t2−a, and t1−a = 2/3, t−a = 1.

For large items, the value of the function leaves(i) is only used by the algorithm to
check whether small items can be combined with them. Moreover, for small items, the
only relevant piece of information is that at least 1/3 of space is left by large items. An
Extreme Harmonic algorithm de�nes leaves(2) such that redspaceleaves(2) = 1/3
(and then ignores this value when considering to pack a medium item with a large
item). The additional types simply make the function leaves more accurate, in
particular with the threshold 1− s(r), which the algorithm does not know. It can be
seen that the de�nition of k (and r) is not a�ected by these new types, as only types
of large (i.e., blue) items are changed, and k and r are de�ned based on unmixed red
bins.

The weights of an item p will depend on s(r), the class of the red and blue items
of type t(p) relative to k, and the mark of p. This means we essentially de�ne them
for every possible input sequence separately. The value of k and s(r) (and the marks)
become clear by running the algorithm. We do not write the dependence on σ
explicitly since we have �xed σ in this section.

The two weight functions of an item of size x, type t and markM are given below.
For convenience, de�ne βt = 1−redt

bluefitt
and ρt = redt

redfitt
; these represent the “blue weight”

and “red weight” of type t in the sense that if we havem items of type t, the red items
are packed in ρtm bins and the blue items are packed in βtm bins. That way (and
using packing property 5), wk counts all bins with blue items (and some additional
bins with red items), and vk,s(r) counts all bins with red items (and some additional
bins with blue items). We will later show in theorem 2 that both functions indeed
count all bins in the packing produced by the algorithm.

The weighting function w only depends on the size, type and mark of the item p

and on k:

wk(p) = wk(x, t,M) =



βt + ρt if t < N and (needs(t) > k or
needs(t) = 0 or
(needs(t) = k andM ,R))

βt if t < N and either 0 < needs(t) < k
or needs(t) = k,M =R

1
1−εx if t =N

Recall that ε = tN . Non-medium items have no mark and are handled under the
caseM , R. (Unmarked medium items were removed in the previous section). By
de�nition of k and packing property 7, we have M = R for all items with type
t such that needs(t) < k. For simplicity, we ignore the markings for any type t
with needs(t) > k, essentially assuming that there are no items of such types that
are marked R. It is clear that this assumption can only increase the weight of any
item. Note that wk(p) does not depend on s(r) or the added types, as redt = 0 and
needs(t) = 0 for all items larger than 1/2.
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In contrast, our second weighting function v depends on leavess(r)(t) and thus
also on the threshold 1− s(r) if r is medium as described above. Therefore, v depends
on the size and type of the item p and on k and the size of r:

vk,s(r)(p) = vk,s(r)(x, t) =


βt + ρt if t < N, leavess(r)(t) < k
ρt if t < N, leavess(r)(t) ≥ k

1
1−εx if t =N

Note that for any item p, we have ṽk(p) ≥ ṽk,s(r)(p) since 1 − s(r) ≥ 1 − tt(r), and
this is the point at which the leavess(r) function drops below k. Thus, we de�ne
vk(p) = vk,tt(r)(p).

Theorem 2. For any input σ and Extreme Harmonic algorithm A, de�ning k as

above
8
we have

A(σ ) ≤min

 n∑
i=1

wk(pi),
n∑
i=1

vk(pi)

+O(1) (4.4)

Proof. Our goal is to upper bound A(σ ) by the weights of the items p1, . . . ,pn, which
are the items in σ ′ . We will show that the number of bins in the packing P ′ is upper
bounded by the min-term in ineq. (4.4), with the additive constantO(1) corresponding
to the bins removed in post-processing. We follow the line of the corresponding proof
in Seiden [98].

Let Tiny be the total size of the items of type N in σ ′ . Let UnmixedRed be the
number of unmixed red bins in P ′ . LetBi andRi be the number of bins in P ′ containing
blue items of class i and type less than N , and red items of class i, respectively. Note
that this means that mixed bins are counted twice.

If UnmixedRed = 0, every red item is placed in a bin with one or more blue items,
and k = K + 1. In this case, the total number of bins in P ′ is exactly the total number
of bins containing blue items. Each bin containing items of type N contains at least a
total size of 1−ε due to packing property 6. The bins used to pack Tiny are pure blue
and

∑
t(pi )=N wK+1(pi) =

∑
t(pi )=N vK+1(pi) ≥ Tiny/(1 − ε). For each item p of type

t < N , we have wK+1(p) = βt = 1−redt
bluefitt

≤ vK+1(p). We see that wK+1 counts all the
bins with blue items (see packing property 5), and

A(σ ) ≤ Tiny
1− ε +

K∑
i=0

Bi ≤
n∑
i=1

wK+1(pi)

(since B0 does not include bins with items of type N ).
If UnmixedRed > 0, then k = needs(t(r)), and there is an unmixed red bin of

class k. By invariant 1, all bins with a blue item of class i ≥ k must be mixed bins.
These are the bins which contain blue items of any type j such that leaves(j) ≥ k; if r
is medium, this means exactly the large items with size at most 1− s(r). We conclude

UnmixedRed ≤
K∑
i=1

Ri −
K∑
i=k

Bi . (4.5)

8Seiden expresses the upper bound as a maximum over k, even though for a �xed input sequence, the
value of k is �xed. While the resulting expression is correct, we prefer this formulation.
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Let Rk(−R) be the number of bins in P ′ containing red items of class k that are
not marked R. If items of class k are not medium, then Rk(−R) = Rk . This is a
well-de�ned distinction by lemma 8. Let R∗i be the number of unmixed bins in P ′
containing red items of class i. Since every red item with class less than k (that is, red
items of any type j such that needs(j) < k) is placed in a mixed bin by de�nition of k,
we have

UnmixedRed ≤
K∑

i=k+1

R∗i +Rk(−R) ≤
K∑

i=k+1

Ri +Rk(−R). (4.6)

The �rst inequality holds because the red items marked R are in mixed bins by
packing property 2. (If r is not medium, Rk(−R) = Rk , so it also holds.) By combining
ineq. (4.5) and ineq. (4.6), we have

UnmixedRed ≤min

 K∑
i=k+1

Ri +Rk(−R),
K∑
i=1

Ri −
K∑
i=k

Bi

 .
So if UnmixedRed > 0, the total number of bins in P ′ is at most

1
1− εTiny + UnmixedRed +

K∑
i=0

Bi +O(1)

≤ B0 +
1

1− εTiny

+ min

 K∑
i=k+1

Ri +Rk(−R) +
K∑
i=1

Bi ,
K∑
i=1

Ri +
k−1∑
i=1

Bi

+O(1). (4.7)

Let J be the set of types whose blue items are packed in pure blue bins, including
type 1 and type N . For each item p of type t ,N , t ∈ J , we have leaves(t) = 0 < k, so
vk,s(r)(p) = 1−redt

bluefitt
. Furthermore, wk(p) ≥ 1−redt

bluefitt
. We conclude

∑
j∈J

∑
t(pi )=jwk(pi) ≥∑

j∈J
∑
t(pi )=j vk,s(r)(pi) ≥ B0 + Tiny

1−ε using packing property 5.
In the �rst term of the minimum in ineq. (4.7), we count all bins with blue items

except the pure blue bins, all bins with red items of classes above k, and the bins with
red items of class k that are not markedR. (If red items of class k are small, this means
all red items of this class.) This term is therefore upper bounded by

∑
j<J

∑
t(pi )=jwk(pi)

(again using packing property 5). In the second term of the minimum in ineq. (4.7),
we count all bins with red items, as well as bins with blue items of class at least 1 and
at most k−1. The second term is therefore upper bounded by

∑
j<J

∑
t(pi )=j vk,s(r)(pi).

As noted above theorem 2, this is at most
∑
j<J

∑
t(pi )=j vk(pi).

4.2.7 O�line solution

Having derived an upper bound for the total cost of an Extreme Harmonic algorithm
in theorem 2, in order to calculate the asymptotic competitive ratio (de�nition 7),
we now need to lower bound the optimal cost of a given input after post-processing.
This will again depend on what the value of k is. There are two main cases if
k ∈ {1, . . . ,K}: r is medium and r is small. The case k = K + 1 is much easier, because
wK+1(p) ≤ vK+1(p) for each item p, so

∑n
i=1wK+1(p) upper bounds the cost of A by

theorem 2, and this sum does not depend on any marks of items. We can therefore
use a standard knapsack search as in Seiden [98] for this case and other papers.
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For k ∈ {1, . . . ,K}, we will be interested in the weights of items for a �xed value
of k. It can be seen that in the range (1/2,1], the function vk(p) changes at most
once (viewed as a function of the size of p), namely at the threshold 1− tt(r), where
leaves(k) drops below k if r is medium. On the other hand wk(p) = 1 in the entire
range (1/2,1]. For a �xed value of k < K + 1, we therefore reduce the number of
types again as follows. Recall that t3 = 1/2, and r is determined by k.

Case 1: r is medium We set t2 = 1−tt(r), t1 = 2/3 and t0 = 1. We set leaves(2) = k,
leaves(1) < k such that redspaceleaves(1) = 1/3 < tt(r), and leaves(0) = 0.

Case 2: r is small We set t2 = 2/3 and t1 = 1 as in Extreme Harmonic itself (re-
quirement R(5)). We have redspaceleaves(2) = 1/3, and leaves(1) = 0.

After these changes, theorem 2 remains valid for any �xed k, as wk and vk remain
unchanged (given k). This holds even though if r is medium, the types do not match
the types used by Extreme Harmonic; the important property is that they match
the behavior of Extreme Harmonic for any �xed value of k < K + 1.

We now de�ne patterns for the two main cases. Intuitively, a pattern describes the
contents of a bin in the optimal o�ine solution. If r is medium, a pattern of class k is an
integer tuple q = (q0,q1, . . . , qN−1, (q

N
t(r),q

B
t(r),q

R
t(r))) where qi ∈N∪{0},qMt(r) ∈N∪{0}

forM∈ {N ,B,R}, qNt(r) + qBt(r) + qRt(r) = qt(r) and

N−1∑
i=0

qiti+1 < 1. (4.8)

The values qi describe how many items of type i are present in the bin. The value qMt(r)
counts the number of items of type t(r) and markM. It can be seen that any feasible
packing of a bin can be described by a pattern: the only quantity that is not �xed by
a pattern is the total size of the items of type N , which we will call sand. However,
by ineq. (4.8), there can be at most 1−∑N−1

i=0 qiti+1 of sand in a bin packed according
to pattern q. Conversely, for each pattern, a set of items matching the pattern that �t
into a bin can be found by choosing the size of each item close enough (from above)
to the lower bound ti+1 for its type; then ineq. (4.8) guarantees the items will �t.

If r is small, we de�ne a pattern of class k as an integer tuple q = (q1, . . . , qN−1)
where qi ∈N∪ {0} and ineq. (4.8) holds using q0 = 0 (note that the values t1 and t2
depend on whether r is medium or small, but the de�nition of t(r) is consistent across
these two cases).

There are only �nitely many patterns for each value of k. Denote this set by Qk
for k = 1, . . . ,K . If r is small or k = K + 1, Qk is a �xed set, denoted by Q.

For a given weight function w of class k, we de�ne the weight of pattern q,
denoted as w(q), as the sum of the weights of the non-sand items in it plus w(1 −∑N−1
i=0 qiti+1,N ,∅). As noted, 1−∑N−1

i=0 qiti+1 is an upper bound for the amount of
sand in a bin packed according to pattern q; this value is not necessarily in the range
(0, tN ]. If r is medium, q0 = 0. Pattern q speci�es all the information we need to
calculate w(q), as w does not depend on the precise size of non-sand items, and for
class k we know exactly how many items there are (if any) for each mark.

We can describe the o�ine solution for a given post-processed input σ ′ by a
distribution χ over the patterns, where χ(q) indicates which fraction of the bins in the
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optimal solution are packed using pattern q. Theorem 1 shows that opt(σ ′) ≤ opt(σ ),
where σ refers to the original input and σ ′ refers to the input after post-processing.

To show that Extreme Harmonic has competitive ratio at most c for an input
sequence σ with a particular value k < K + 1, by theorem 2 it is su�cient to show
that

min
{∑n

i=1wk(pi),
∑n
i=1 vk(pi)

}
opt(σ ′)

= min
{∑n

i=1wk(pi)
opt(σ ′)

,

∑n
i=1 vk(pi)
opt(σ ′)

}

≤min


∑
q∈Qk

χ(q)wk(q),
∑
q∈Qk

χ(q)vk(q)

 ≤ c
(4.9)

for all such inputs σ , using
∑n
i=1w(pi) ≤ opt(σ ′)

∑
q∈Qk χ(q)w(q) for w ∈ {wk ,vk}, as

w(q) uses an upper bound for the amount of sand but is otherwise exactly the sum of
the weights of the items in it.

As can be seen from this bound, the question now becomes: what is the distribution
χ (the mix of patterns) that maximizes the minimum in ineq. (4.9)? We begin by
deriving some crucial constraints on χ for the important case that r is medium. This
is the point where we start using the marks. The notation qi(q) refers to entry qi in
pattern q. We use q−Bt(r)(q) as shorthand for qRt(r)(q) + qNt(r)(q).

We de�ne three important patterns q1,q2,q3. For i = 1,2,3, let

qi = (0,1,0, . . . ,0,1,0, . . . ,0, (ei)),

where the second 1 is at position t(r), and ei is the i-th three-dimensional unit vector.
These are the three possible patterns with an item of type t(r) and an item larger than
1− s(r). By requirement R(8), no non-sand item can be added to any of these patterns
while maintaining

∑N−1
i=0 qiti+1 < 1.

Lemma 9. If r is medium, then

χ(q1) ≤ 1− redt(r)
1 + redt(r)

∑
q,q1

χ(q)q−Bt(r)(q) .

Proof. We ignore additive constants in this proof, as we will divide by opt(σ ′) at the
end to achieve our result. The pattern q1 contains anN -item that is strictly smaller
than r. We apply lemma 5 for i = t(r) (ignoring the additive constant) to get

χ(q1)opt(σ ′) ≤ 1− redt(r)
2

(nt(r)(R) +nt(r)(N ))

≤ 1− redt(r)
2

χ(q1) +
∑
q,q1

χ(q)q−Bt(r)(q)

opt(σ ′),

and the bound in the lemma follows.

Lemma 10. In q2
, the B-item p of type t(r) is blue.

Proof. Extreme Harmonic did not pack p alone in a bin as a red item, since it is
smaller than r. But by packing property 7, p also was not packed in a mixed bin as a
red B-item.
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We will use the following notation.

De�nition 15. Let RedComp(i) = {j < N |0 < needs(j) ≤ leaves(i)} be the set of all
types j such that red items of type j can be packed with blue items of type i.

Lemma 11. If r is medium, then

1
2
χ(q2) ≤

∑
j∈RedComp(t(r))

∑
q

ρjχ(q)qj (q) .

Proof. As before, we ignore additive constants. There are χ(q2)opt(σ ′) bins packed
with pattern q2, meaning that σ ′ contains at least χ(q2)opt(σ ′) blue B-items of type
t(r) by lemma 10. So in the packing P ′ , there exist at least 1

2χ(q2)opt(σ ′) bins with
two blue B-items of type t(r) and by packing property 2 these bins are mixed and
contain red items. The red items are red-compatible with those B-items. That is, each
such red item is of a type j ∈ RedComp(t(r)).

The number of items of type j in σ ′ is given by
∑
qχ(q)qj (q) · opt(σ ′). By

theorem 1, the number of red items of type j is redj
∑
qχ(q)qj (q) · opt(σ ′). We

place redfitj red items together in each bin by packing property 5. This means that
the number of bins in P with red items of type j is redj

redfitj

∑
qχ(q)qj (q) · opt(σ ′) =

ρj
∑
qχ(q)qj (q) ·opt(σ ′). Summing over all types j ∈ RedComp(t(r)), we �nd that

1
2
χ(q2)opt(σ ′) ≤ (number of bins in P ′ with

two blue B-items of type t(r) and red items)

≤ (number of bins in P ′ with
red items that �t with items of type t(r))

=

 ∑
j∈RedComp(t(r))

∑
q

ρjχ(q)qj (q)

 ·opt(σ ′).

4.2.8 Linear program

Maximizing the minimum in ineq. (4.9) is the same as maximizing the �rst term under
the condition that it is not larger than the second term – except that this condition
might not be satis�able, in which case we need to maximize the second term. For
each value of k ∈ {1, . . . ,K}, we will therefore consider two linear programs, and
furthermore these linear programs will di�er depending on whether r is medium or
small, so that in total we get four di�erent LPs which we will call P k,med

w ,P k,sml
w , P k,med

v

and P k,sml
v (we will use the notation P kw (P kv ) whenever we want to refer to both P k,med

w

and P k,sml
w (P k,med

v and P k,sml
v )). Let Qk = {q1, . . . , q|Qk |} and let χi = χ(qi),wik =

wk(qi),vik = vk(qi),nij = qj (qi),mi = q−Bt(r)(q
i). If r is medium, P k,med

w is the following
linear program.
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(
P k,med
w

)

max
|Qk |∑
i=1

χiwik

s.t. χ1 −
1− redt(r)
1 + redt(r)

|Qk |∑
i=3

χimi ≤ 0 (4.10)

1
2
χ2 −

∑
j∈RedComp(t(r))

|Qk |∑
i=3

ρjχinij ≤ 0 (4.11)

|Qk |∑
i=3

χi (wik − vik) ≤ 0 (4.12)

|Qk |∑
i=1

χi ≤ 1 (4.13)

χ(q) ≥ 0 ∀q ∈ Qk (4.14)

P k,med
w has a very large number of variables but only four constraints (apart from

the nonnegativity constraints). Constraint (4.10) is based on lemma 9, where we
have used that q2 does not contain any item marked N or R, implying m2 = 0.
Constraint (4.11) is based on lemma 11, using that q1 and q2 do not contain non-sand
items of size less than 1/3, so n1j = 0 and n2j = 0 for all j for which needs(j) ≤
leaves(t(r)).9 Constraint (4.12) simply says that the objective function must be at
most

∑|Qk |
i=1 χivik (using that wik = vik for i = 1,2, which we will prove in lemma 12):

if this does not hold, we should be solving the linear program P k,med
v , which has

objective function
∑|Qk |
i=1 χivik , instead. The �nal constraints (4.13) and (4.14) say that

χ is a distribution.

Lemma 12. v1k = w1k = w2k = v2k .

Proof. Recall that q1 contains oneN -item of type t(r), i.e. the same type as r, and one
item larger than 1− s(r). Call theN -item r′ and the large one L; note that t(L) = 2.
We have that wk(q1) = wk(r′) +wk(L) +S , where S is an upper bound for the weight
of the sand, and vk(q1) = vk(r′) + vk(L) + S (the maximum possible amount of sand
and hence also its weight is equal in the two cases). As red2 = 0 (L is larger than
1/2 and such items are never red), and L is too large to be combined with r, we have
wk(L) = vk(L) = 1/bluefit2 = 1.

For wk(r′), consider that r′ and r have the same type, and as the mark of r′ is
N , we get wk(r′) = βt(r) + ρt(r) =

1−redt(r)
bluefitt(r)

+
redt(r)

redfitt(r)
. For type t(r), we have that

leaves(t(r)) < needs(t(r)) (property 2). Therefore, vk(r′) = βt(r) + ρt(r) = wk(r′). This
shows that v1k = w1k .

The pattern q2 contains one B-item of type t(r) (denoted by r′′) and one item
larger than 1−r (again denoted by L). We havewk(r′′) = wk(r′) since the weightwk is
the same forN - and B-items of the same type. As above, we �nd wk(L) = vk(L) = 1

9We also have n3j = 0, but we keep the term for i = 3 in constraint (4.11) to make the dual easier to
write down.
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and vk(r′′) = βt(r) + ρt(r) =
1−redt(r)
bluefitt(r)

+
redt(r)

redfitt(r)
= wk(r′′). This shows w2k = v2k and

w1k = w2k .

For the case when r is small, we do not have constraints (4.10) and (4.11), and the
linear program P k,sml

w looks as follows. Here we denote the set of patterns simply by
Q since it is the same for all values of k for which redspacek ≤ 1/3. In this setting,
q1,q2,q3 do not have a special meaning.

(
P k,sml
w

)
max

∑|Q|
i=1χiwik

s.t.
∑|Q|
i=1χi (wik − vik) ≤ 0 (4.15)∑|Q|

i=1χi ≤ 1 (4.16)
χi ≥ 0 ∀i = 1, . . . , |Q| (4.17)

Intermezzo It is useful to consider the value ofw1k (etc.). We have not discussed the
values of the parameters yet. However, as an example, for the algorithm Harmonic++,
two of the types are (341/512,1] and (1/3,171/512] (types 1 and 18). Let us consider
the case where at the end of the input, an item of type 18 is alone in a bin, and no
smaller items are alone in bins. For this case, for Harmonic++, the two weighting
functions for the pattern which contains types 1 and 18 both evaluate to

1 +
1− 0.176247

2
+

0.176247
1

+
1

1− 1
50

· 1
1536

≈ 1.58879.

In other words, a distribution χ consisting only of this one pattern immediately gives
a lower bound of 1.58879 on the competitive ratio of Harmonic++.

Our improved packing of the medium items and our marking of them ensures
that this distribution, where the optimal solution uses critical bins exclusively, can
no longer be used, since it is not a feasible solution to P k,med

w . This is the key to our
improvement over Harmonic++.

Dual program

Our general idea is as follows: We consider the duals of the linear programs given
above. These dual LPs have variables y1, . . . , y4 or y3, y4, respectively. Any feasible
solution for the dual (which is a minimization problem) is an upper bound on the
competitive ratio of our algorithm by duality and by ineq. (4.9). We are interested
in feasible dual solutions with objective value c, where c is our target competitive
ratio. Our goal is then to �nd feasible values for y1, y2 and y3 (or only y3) such that
the dual becomes feasible.

Case 1: r is small The dual of P k,sml
w is the following.

(
Dk,sml
w

) min y4

s.t. (wik − vik)y3 + y4 ≥ wik i = 1, . . . , |Q| (4.18)
yi ≥ 0 i = 3,4
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If constraint (4.18) does not hold for pattern qi and a given dual solution y∗, we
have

(1− y∗3)wik + y∗3vik > y
∗
4 (4.19)

We need to determine if there is a pattern such that ineq. (4.19) holds. For y∗3 ∈ [0,1],
the left hand side of ineq. (4.19) represents a weighted average of the weights wik
and vik . We add the condition y3 ≤ 1 to Dk,sml

w . A feasible solution with objective
value c and y3 ≤ 1 exists for Dk,sml

w if and only if a feasible solution with objective
value c and y3 ≤ 1 exists for Dk,sml

v , as ineq. (4.19) is now symmetric in w and v. This
means that feasibility of Dk,sml

w and Dk,med
v with y3 ≤ 1 can be checked at the same

time. Again, note that it is su�cient for our purposes to �nd a feasible solution.

De�nition 16. In case Dk,sml

w is used, we de�ne ωk(p) = (1− y∗3)wk(p) + y∗3vk(p).

We de�ne ωk(p) as given in de�nition 16 for each item p. Since r is small, there
are no marked items of type t(r), so ωk(p) depends only on the type and size of p.
The problem of determining W = maxq∈Qωk(q) for a given value of y∗3 is a simple
knapsack problem, which is straightforward to solve using dynamic programming.

All that remains to be done is to determine a value for y∗3 for given k such that
W ≤ c. The values that were used for Son Of Harmonic can be found in table 4.2 on
page 61. In order to �nd these values, we used a binary search in the interval [0,1].
We start by setting y∗3 = 1/210 and compute W . If W ≤ y∗4, Dk,sml

w and Dk,sml
v have

objective value at most y∗4 and we are done. Else, the dynamic program returns a
pattern q such that ωk(q) > y∗4. For this pattern q, we compare its weights according
to w and v. If wik > vik , we increase y∗3, else we decrease it (halving the size of the
interval we are considering). If after 20 iterations we still have no feasible solution,
we return infeasible. This may be incorrect (it depends on how long we search), but
our claimed competitive ratio depends only on the correctness of feasible solutions.

Let us summarize the above discussion. If r is small, proving that an Extreme
Harmonic algorithm is c-competitive can be done by running the binary search for
k = needs(t∗) using y∗4 = c. If successful, this yields some value y∗3. If (y∗3, y

∗
4) is a

feasible solution for Dk,sml
w , then (1− y∗3, y∗4) is a feasible solution for Dk,sml

v .

Case 2: r is medium For the more interesting case when r is medium, the dual
Dk,med
w of the program P k,med

w is the following.

(
Dk,med
w

)

min y4

s.t. y1 + y4 ≥ w1k (4.20)
1
2
y2 + y4 ≥ w2k (4.21)

−1− redt(r)
1 + redt(r)

miy1 − y2

∑
j∈RedComp(t(r))

ρjnij

+(wik − vik)y3 + y4 ≥ wik i = 3, . . . , |Qk | (4.22)
yi ≥ 0 i = 1,2,3,4 (4.23)

10In fact, we did start at y∗3 = 3/16 for Son Of Harmonic. This was only to speed up computations as
soon as we noticed that such low values work well.
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Again we restrict ourselves to solutions with y∗3 ∈ [0,1]. If the value y∗4 = c ≥ w1k =
w2k , then constraints (4.20) and (4.21) are automatically satis�ed by constraint (4.23).
In this case we can set y∗1 = 0 and y∗2 = 0. In e�ect, this reduces Dk,med

w to Dk,sml
w ,

for which we already know how to �nd a feasible value for y∗3. We therefore ignore
the entire marking done by the algorithm and set the weight for each item to be the
weight for the case that its mark is not R. Then weights again do not depend on
marks and we apply the method from Case 1.

Let us now consider the case y∗4 = c < w1k .11 For given y∗4 we need to determine if
Dk,med
w and Dk,med

v are feasible; this requires �nding suitable values for y1, y2 and y3.
If a solution vector y∗ is feasible for Dk,med

w (or Dk,med
v ), y∗4 < w1k = v1k = w2k = v2k ,

and constraint (4.20) or constraint (4.21) is not tight, then we can decrease y∗1 and/or
y∗2 and still have a feasible solution. We therefore restrict our search to solutions for
which constraints (4.20) and (4.21) are tight, and y∗4 < w1k . Then

y∗1 = w1k − y∗4 > 0 (4.24)
y∗2 = 2(w1k − y∗4) > 0. (4.25)

This means that given y∗4 < w1k , we know the values of y∗1 and y∗2. We can
therefore prove y∗4 is a feasible objective value for Dk,med

w by giving y∗3-values that
make the linear program feasible. If constraint (4.22) does not hold for pattern qi
(i ≥ 3) and a given dual solution y∗, we have the following by some simple rewriting:

(1− y∗3)wik + y∗3vik +
1− redt(r)
1 + redt(r)

miy
∗
1 + y∗2

∑
j∈RedComp(t(r))

ρjnij > y
∗
4 (4.26)

If this holds for some pattern q that contains anR-item, then it obviously also holds if
we replace that R-item by anN -item of the same type. This gives a pattern with the
same values mi = qt(r)−B (qi) and nij = qj (qi) but a higher value for wik . It is therefore
su�cient to check the patterns withN -items. The only exception to this is if replacing
theR-item by anN -item would give pattern q1, which does have weight larger than
y∗4 and therefore violates ineq. (4.26) (but constraint (4.22) does not involve pattern
q1). We therefore check pattern q3 separately in the program.

We can now de�ne a new weighting functionωk(p), which depends only on types
and sizes (and not on marks).

De�nition 17. In case Dk,med

w is used, we de�ne

ωk(p) =



(1− y∗3)
(
βt(r) + ρt(r)

)
+ y∗3vk(p) +

1−redt(r)
1+redt(r)

y∗1 if t(p) = t(r)

(1− y∗3)wk(p) + y∗3vk(p) + ρt(p)y∗2 if t(p) ∈
RedComp(t(r))

1
1−εx if t(p) =N
(1− y∗3)wk(p) + y∗3vk(p) else

In order to prove that an Extreme Harmonic algorithm is c-competitive if r is
medium and c < w1k , it is su�cient to verify that there exists a value y∗3 ∈ [0,1]

11This means that the critical patterns q1,q2 have weight higher than our target competitive ratio.
These are exactly the cases, where Seiden’s simpler analysis reaches its limits (see the Intermezzo) and
where we can use our markings for better results.
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such that maxq∈Qk ωk(q) ≤ c. Values for y∗3 that satisfy this can be found in table 4.2.
Finding these values was done by a binary search for each value of k for which
redspacek > 1/3, each time setting y∗4 = c and using inequalities (4.24) and (4.25).

Summary Overall, our approach is as follows: We �rst �x a target competitive
ratio c. We do the following for every value of k ∈ {1, . . . ,K}. Consider the value for
y∗3 (for our algorithm Son Of Harmonic, these values are speci�ed in table 4.2). If
r is small, we check that Dk,sml

w is feasible for y∗4 = c and this y∗3. If r is medium, we
compute w1k and check whether w1k ≤ c or w1k > c. In the latter case, we again
check that Dk,sml

w is feasible for y∗4 = c and the given value of y∗3. In the former case,
we check that Dk,med

w is feasible for y∗4 = c, the given value of y∗3, and y∗1, y
∗
2 as given

by inequalities (4.24) and (4.25). Finally, for k = K + 1, it is su�cient to count blue
bins, and we solve a single knapsack problem based on wk alone, checking that the
heaviest pattern is not heavier than y∗4 = c. A pseudocode description of this can be
found in algorithm 8.

Algorithm 8 The procedure for checking a certain target competitive ratio for an
Extreme Harmonic algorithm. The procedure used for solving the knapsack problem
is described in algorithm 9.

1: Read parameters of the Extreme Harmonic algorithm
2: blueWeight[i]← 1−redi

bluefiti
3: maxWeight← solveKnapsack(blueWeight) // Check case k = K + 1
4: if maxWeight > targetRatio then return false
5: end if

6: for k = 0, . . . ,K do

7: // Find the correct weighting function to be used

8: if r is medium then

9: Compute w1k
10: if w1k < targetRatio then

11: ωk ← weight function according to de�nition 16
12: else

13: ωk ← weight function according to de�nition 17
14: end if

15: else

16: ωk ← weight function according to de�nition 16
17: end if

18: // Now solve the knapsack problem and compare with target ratio

19: maxWeight← solveKnapsack(ωk)
20: if maxWeight > targetRatio then return false
21: end if

22: end for

23: // In all cases, maxWeight ≤ targetRatio, so we veri�ed this competitive ratio

24: return true
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Solving the knapsack problems

In order to prove our competitive ratio c = 1.5813, we prove feasibility of the dis-
cussed dual linear programs, which amounts to solving knapsack problems and
comparing the maximum weight of a pattern to our target competitive ratio. We will
now describe how our implementation of this knapsack solving works, given a set of
item types as described at the beginning of section 4.2.7 and a corresponding weight
function w (one weight per type). See also algorithm 9.

We use two main heuristics to speed up the computation. First, for each type i,
we de�ne the expansion expi of type i as the weight according to function w divided
by ti+1. Now we sort the types in decreasing order of expansion; call this permutation
of types π. When constructing a pattern with high weight, we try to add items in the
order of this permutation. Note that π will not contain types that have expansion
below that of sand: Such types will not be part of a maximum weight pattern, as the
pattern with sand instead of these items has no smaller weight.

Second, we use branch and bound. We use a variable maxFound that will store the
maximum weight of a pattern found so far, and give this the initial value c − 1/1000.
Whenever the current pattern cannot be extended to a pattern with weight more than
maxFound (based on the expansion of the next item in the ordering π that still �ts),
we stop the calculation for this branch. Initializing maxFound with a value close to c
immediately eliminates many patterns.

The process works as follows. We start with type t = π(1) (i.e., the type with
the largest expansion) and an empty pattern. For current type t = π(j) and current
pattern q that contains non-sand items of total size S and total weight w(q), we
compute an upper bound on the weight that this pattern q can at most get by adding
items of types π(j),π(j + 1), ..., as follows. We �nd the �rst type i in this order that
still �ts with the items of q and compute u = w(q) + (1 − S)expi . This is an upper
bound for the weight of any bin which contains the items from q, as it assumes we
could �ll up the whole remaining space 1−S in the bin with items of expansion expi .
If this upper bound is already smaller than maxFound, we immediately cancel the
further exploration of this pattern q.

Otherwise, if we have no more types to add (i.e. we reached the end of list of types
in π), set maxFound to the weight of q (including the sand) and store q as the heaviest
pattern so far. If we still have more types to explore, �nd out how many items of the
next type can �t maximally into q; call this number m (if adding an item of the next
type would create pattern q1 or q2 and we are considering the dual program Dk,med

w ,
we set m = 0 as we do not need to consider these patterns). Now recursively call this
procedure with type π(j + 1) and patterns q0, . . . , qm where qi is obtained from q by
adding i items of type t.

The heuristics described in this section are still not enough to be able to examine
all possible patterns in reasonable time if the number of types is too large. We explain
in the next section how to reduce the set of patterns further by reducing the number
of small types and how to ensure that larger items are more important than smaller
items (by making sure the expansion of small items is monotonically nondecreasing
in the size, that is, larger (but still small) items do not have smaller expansions than
smaller items).
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Algorithm 9 solveKnapsack(w) Solving a knapsack problem for a given weight
function w. The procedure packRecursively(i,p) is described in algorithm 10.

1: p← new pattern object
2: maxFound← targetRatio −0.001
3: heaviestPattern← null
4: Create permutation according to expansions
5: packRecursively(0,p)
6: return heaviestPattern

Algorithm 10 packRecursively(i,p) We denote by w(p) the total weight of non-
sand items in p and by S(p) the free space in p. N ′ denotes the number of types in
the permutation.

1: exp← maximum expansion of items �tting in p
2: ub← w(p) + exp · S(p)
3: if maxFound > ub then return // No need to explore this pattern further

4: else if i =N ′ then // We tested all types, so we are done

5: maxFound← ub
6: heaviestPattern← p
7: else

8: t← i-th type in permutation // this is the next type we want to add
9: m← S(p)/tt+1 // how many type t items can we add?

10: if adding type t to p creates pattern q1 then

11: m← 0 // Do not add this type
12: end if

13: while m ≥ 0 do

14: p′← pattern obtained by adding m type t items to p
15: // Continue with next type in permuted order

16: packRecursively(i + 1,p′)
17: m←m− 1
18: end while

19: end if

4.3 The algorithm Son Of Harmonic

For our algorithm Son Of Harmonic we have set initial values as follows. The right
part of table 4.1 below contains item sizes and corresponding redi values that were set
manually. Some numbers of the form 1/i until the value tN are added automatically
by our program if they are not listed below (see below for details on how these are
selected).

The remaining values redi are set automatically using heuristics designed to
speed up the search and minimize the resulting upper bound. In the range (1/3,1/2],
we automatically generate item sizes (with corresponding values redi and redspacei )
that are less than tN apart to ensure uniqueness of q1 and q2: no non-sand item can
be packed into any bin of pattern q1 or q2. The value Γ speci�es an upper bound on
how much room is used by red items of size at most 1/14; larger items (≤ 1/3) use
at most 1/3 room. Since we have this bound Γ , we also add type thresholds of the
form Γ /i for i = 1,2,3,4, to ensure that items just below this threshold can be packed
without leaving much space unused.
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4. Online One-Dimensional Bin Packing

Table 4.1: Parameters and item types used for Son Of Harmonic.

(a) Parameters

Parameter Value

c 15813
10000

tN
1

4000
Γ 2

7 (starting from 1
14 )

T 1
50

(b) Size lower bounds and values redi

Item size redi

33345/100000 0
33340/100000 0
33336/100000 0
33334/100000 0

5/18 2/100
7/27 105/1000
1/4 1061/10000
8/39 8/100
1/5 93/1000
3/17 3/100
1/6 8/100
3/20 0

29/200 0
1/7 16/100

The last parameter is some item size T = tj . Above this size, we generate all item
sizes of the form 1/i for i > 3. Below this size, we skip some item sizes as described
below.

Our program uses an exact representation of fractions, with numerators and
denominators of potentially unbounded size, in order to avoid rounding errors. The
source code and the full list of all types and parameters as determined by the pro-
gram can be found at https://sheydrich.github.io/ExtremeHarmonic/. In ap-
pendix A, we provide an alternative set of parameters, which give a competitive ratio
of 1.583 with a much smaller set of knapsack problems to check.

Additionally, in table 4.2 we provide the y∗3-values that certify the competitive
ratio of our algorithm.

Automatic generation of item sizes We start by generating all item sizes of the
form 1/i for i between 2 and T (if they are not already present in the parameter �le).
After that, we generate types above 1/3 in steps of size tN . By choosing this step size,
we make sure that no non-sand items can be added to the patterns q1,q2,q3. The
value redj for such a type j is chosen such that the pattern containing an item r′ of
type j and a large item L of type 2 (i.e., ti+1 = 1/2) has as weight exactly our target
competitive ratio if k = K + 1. That is, we consider the weighting function wK+1. We
have wK+1(r′) =

1−redj
2 , wK+1(L) = 1, and an upper bound for the amount of sand

that �ts with these items is 1/2− tj+1. Therefore, redj is de�ned as the solution of
the equation

1 +
1− redj

2
+

1
1− ε

(1
2
− tj+1

)
= c = 1.5813, (4.27)

as long as this value is positive. We stop generating types as soon as it becomes
negative. To be precise, our highest value tj+1 is de�ned by taking redj = 0 in
eq. (4.27).
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4.3. The algorithm Son Of Harmonic

Table 4.2: y∗1-, y∗2- and y∗3-values used to certify that Son Of Harmonic is 1.5813-competitive.
In cases where no y∗1-value is given, Dk,sml

w was used. Note that only two di�erent values for
y∗3 were used.

k y∗1 = y∗2
2 y∗3

≤ 4 – 9
32

5 – 3
16

6,7 – 9
32

8, . . . ,43 – 3
16

44, . . . ,49 – 9
32

51 246839
59985000

3
16

52,53 27471
6665000

3
16

54 27271
6665000

3
16

55 80813
19995000

3
16

56 83813
19995000

3
16

57 26271
6665000

3
16

58 73813
19995000

3
16

59 68813
19995000

3
16

60 21271
6665000

3
16

k y∗1 = y∗2
2 y∗3

61 58813
19995000

3
16

62 53813
19995000

3
16

63 16271
6665000

3
16

64 43813
19995000

3
16

65 38813
19995000

3
16

66 11271
6665000

3
16

67 28813
19995000

3
16

68 23813
19995000

3
16

69 6271
6665000

3
16

70 13813
19995000

3
16

71 8813
19995000

3
16

72 41
215000

3
16

> 72 – 3
16

We have now generated all item sizes above T . We generate large types as
described in section 4.2.8. In the range (T , tN ), we do not generate all 1/i types,
but we skip some (to speed up the knapsack search) if this can be done without a
deterioriation in the competitive ratio. We do this by considering the expansion
of such items, that is, the weight divided by the in�mum size. We will ensure that
the expansion of smaller items is smaller than that of larger items, so that they are
irrelevant (or less relevant) for the knapsack problem.

Let us consider how we test whether a certain type (1/j,x] is required (where x
is the next larger type, i.e. either the last type generated before we started this last
phase or the last type generated in this phase), and which redi we should choose.
Denote by si := 1/j the value we want to check. We compute a lower and upper
bound redi ,redi for the redi-value of this type as follows: We can compute bluefiti
and redfiti only depending on the upper bound of the size of items of this type,
i.e. depending on x, the lower bound of the next larger item size. First, we require

1−redi
bluefiti ti+1

≤ 1, which gives redi ≥ 1− si ·bluefiti =: redi . Second, we want to make
sure that the maximum expansion of the current type is not larger than the expansion
of the previous (next larger) type (since that might slow down the search), expi−1:

1−redi
bluefitisi

+ redi
redfitisi

≤ expi−1⇔ redi ≤ bluefiti ·redfiti
bluefiti−redfiti

(expi−1si − 1/bluefiti) =: redi . If
redi ≤ redi , we continue to test (1/(j + 1),1/j]; if not, we know that the previously

tested type is necessary to ensure the two constraints. Hence, we add this previous
type to the list of types, together with the value redi−1 computed in the previous
iteration.
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4. Online One-Dimensional Bin Packing

Computation of redspace-values We generated the redspace-values completely
automatically, in contrast to Seiden’s paper, where these values are de�ned by the
author explicitly. For every type i such that ti+1 ∈ [1/6,1/3], ti+1 is added as a
redspace-value and for every type i such that 2 · ti+1 ∈ [1/6,1/3], 2 · ti+1 is added as
a redspace-value. Additionally, we make sure that for each medium type we have a
redspace-value equal to x and one equal to 1−2x where x is the lower bound of the
size of items of this type.

After computing the functions leaves and needs, we eliminate redspace-values
that are unused and less than 1/3, i.e., if there is no pair of types i, j such that
needs(i) = leaves(j) = l,redspacel < 1/3, then redspacel is removed from the list.
This reduces the number of knapsack problems that need to be solved.

Computation and adjustment of values redi For each item type i that has size
at most 1/6 and at least T , we adjust the value redi such that

1− redi
bluefiti · ti+1

≥ f

where f = 95/100 if ti+1 ≤ 1/13 and ti+1 > T and f = 1 otherwise. To be precise,
we set redi = 1− f · ti+1bluefiti . The reason for this is that it ensures that the “small
expansion” of these items, where we count only the blue items of this type, is at least
f . This is a heuristic; it does not seem to help to make redi larger than this.

4.4 Super Harmonic revisited

We revisit the Super Harmonic framework in this section. Seiden used the following
weighting functions, but presented them in a di�erent way. De�ne k and r as in
de�nition 14. The two weight functions of an item of type i and size x are de�ned as
follows:

wk(i) =


βi + ρi if i < N,needs(i) ≥ k or needs(i) = 0
βi if i < N,0 < needs(i) < k

1
1−εx if i =N

vk(i) =


βi + ρi if i < N, leaves(i) < k
ρi if i < N, leaves(i) ≥ k

1
1−εx if i =N

Using these weight functions, he shows that ineq. (4.9) with c = 1.58889 holds
for Super Harmonic algorithms. Instead of the mathematical program that Seiden
considers, we can use P k,sml

w and its dual Dk,sml
w . We use the method described in

section 4.2.8 (a binary search for a weighted average of weights) to check for feasibility
of the dual linear programs for all values of k, including the cases where r is medium.
This is a signi�cantly easier method than the one Seiden used, since it is based on
solving standard knapsack problems.

A small modi�cation of our computer program can be used to verify Seiden’s
result. Surprisingly, this shows that Harmonic++ is in fact 1.58880-competitive. In
contrast to Seiden’s heuristic program, which took 36 hours to prove Harmonic++’s
competitive ratio, our program terminates in a few seconds. Of course, this was over
�fteen years ago, but we believe the algorithmic improvement explains a signi�cant
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part of the speedup. The fast running time of our approach also allowed us to improve
upon Harmonic++ within the Super Harmonic framework: Using improved redi
values, we can show a 1.5884-competitive Super Harmonic-algorithm. Furthermore,
these values for redi are much simpler than the ones Seiden used (which were
optimized up to precision 1/2 · 10−7); they can be found in appendix B.

4.5 Lower bound for Extreme Harmonic-algorithms

We prove a lower bound for any Extreme Harmonic algorithm. We will consider
inputs consisting of essentially four di�erent item sizes: 1/2 + ε, 1/3 + ε, 1/4 + ε, and
1/7 + ε (we also speak of types 1 through 4). Here ε is a very small number. However,
there will be many di�erent item sizes in the range (1/3,1/3 + ε]. The value of ε is
chosen small enough that the algorithm puts all these sizes in the same type. Note
that the algorithm has not much choice about how many red items of types 2 and 3
can be packed in one bin: only one such item can be packed, else larger blue items
could not be added anymore. For type 4, between 1 and 3 red items could be packed
in one bin, and we will give lower bound constructions for each of these three cases.

Consider the case that the algorithm packs red type 4 items pairwise into bins.
In table 4.3, we give four di�erent inputs that together will prove a lower bound of
1.5762 for this case. A pattern (a,b,c,d) denotes a set of items containing a items of
type 1, b items of type 2 and so on. Note that our types de�ned here do not necessarily
correspond to size thresholds used by the algorithm; nevertheless, each item gets a
single type assigned by the algorithm, and if we use notation such as redfiti for type
i as de�ned here, we mean the redfit-value of the item type the algorithm assigns to
such an item. The other two columns of the table are explained below.

Table 4.3: Inputs for lower bound 1.5762 in case redfit4 = 2.

Pattern Space for ε→ 0 Distribution χ

0 0 3 1 31
28 + 2red3 + 1−red4

6 + red4
2 1

1 1 0 0 1 + 1−red2
2 + 1

6 1

1 1 0 1 1 + 1−red2
2 + 1−red4

6 + 1
42 1

0 2 1 0 2 · 1+red2
2 + 1−red3

3 + 1
12 1 (scaled)

q1 1 + 1−red2
2 + red2

2(1−red2−red2·red3)
1+red2

q2 1 + 1−red2
2 + red2 2red3

The �rst three lines of the table represent three di�erent inputs to the algorithm,
and the last three lines together represent the �nal input used in the lower bound.
We construct the �rst three inputs as follows. For each pattern in the table, items
arrive in order from small to large. Each item in the pattern arrives N times. In
addition, we getN times some amount of sand per bin, that �lls up the bin completely.
Based on each pattern and the values redi and redfiti , we can calculate exactly how
much space (represented as fractions of bins) the online algorithm needs to pack each
item in the pattern on average. To do this, we assume that if red small items can be
packed with larger blue ones, the algorithm will always do this (this is a worst-case
assumption). The result of this calculation is shown in the column Space.
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4. Online One-Dimensional Bin Packing

To illustrate this approach, let us consider an input based on the pattern (0,0,3,1)
in the manner described above. As we assumed that redfit4 = 2, we know that items
of types 3 and 4 will not be combined by the algorithm, as 3/4 + 2/7 > 1. Thus, the
algorithm will not be able to combine the red items of both types with any other items.
The number of bins used for blue type 3 items is at least 3 · ( 1−red3

3 )N , the number of
bins for red type 3 items is at least 3 · red3N . Analogously, we need at least 1−red4

6 N

bins for blue type 4 items and at least red4
2 N bins for red type 4 items. Finally, sand of

total volume arbitrarily close to (1−3/4−1/7)N = 3
28N arrives, which is packed in at

least as many bins by the online algorithm. Thus, on average the items in this pattern
need 3 · ( 1−red3

3 ) + 3 · red3 + 1−red4
6 + red4

2 + 3
28 = 31

28 + 2red3 + 1−red4
6 + red4

2 bins to
be packed. The space needed for the second and third patterns can be calculated in
the same way.

optimal solution algorithm’s solution

q0

q1

q2

medium, > x medium, > x 1/4+ ε 1/4+ ε 1/4+ ε 1/4+ ε

medium, ≤ x 1− x 1/4+ ε
B

medium, ≤ x

B
medium, ≤ x

medium, ≤ x 1− x
N

medium, > x

N
medium, ≤ x

N /B
medium, > x

1− x

Figure 4.8: Fourth input for our lower bound construction. The three patterns used in the
optimal solution are depicted on the left. The shaded area in the �rst pattern denotes sand.
The algorithm produces the �ve types of bins depicted on the right, plus bins that only contain
sand (not depicted here).

The fourth input (based on pattern (0,2,1,0)) requires more explanation; see also
�g. 4.8. For this input, we consider a combination of three patterns that arrive in the
distribution given in the last column of the table. Items of type 2 have size 1/3 + ε
and some of them end up alone in bins. We extend the input in this case by a number
of items of size almost 2/3, where this number is calculated as explained below. All
these large items will be placed in new bins by the online algorithm. In order for this
to hold, the items of type 2 must have slightly di�erent sizes - not all exactly 1/3 + ε.
We therefore pick ε small enough so that the interval (1/3,1/3 + ε] is contained in a
single type according to the classi�cation done by the algorithm. The �rst item of
this type will have size 1/3 +ε/2. The sizes of later items depend on how it is packed:
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• If the item is packed in a new bin, all future items will be smaller (in the interval
(1/3,1/3 + ε/2])

• If the item is packed into a bin with an existing item of type 2 or 3, all future
items will be larger (in the interval (1/3 + ε/2,1/3 + ε])

We use the same method for all later items of the same type, each time dividing the
remaining interval in two equal halves. By induction, it follows that whenever an
item is placed in a new bin, all previous items that were packed �rst into their bins
are larger, and all previous items that were packed into existing bins are smaller.
Therefore, after all items of this type have arrived, let x be the size of the last item
that was placed into a new bin. (Since the algorithm maintains a �xed fraction of red
items of type 2, there can be only constantly many items that arrived after this item;
we ignore such items.) We have the following.

• All items of size more than x are packed either alone into bins or are the �rst
item in a bin with two medium but no small red items; and

• All items of size less than x are in bins with items of type 3 or were packed as
the second item of their type in an existing bin.

We now let items of size exactly 1− x arrive. For every bin with red type 3 items and
blue type 2 items, two such items arrive, which will be packed in q2-bins. Assume
that we have N bins with pattern q0 = (0,2,1,0), then we create exactly red3N such
bins, i.e., we let 2red3N large items arrive for these. For every bin with a pair of
blue medium items but no red items, one such 1 − x item arrives. The number of
these bins is harder to calculate. Let M be the total number of medium items in
the input. Then the number of such bins is 1−red2

2 M − red3N . Now, we want to
express M in terms of N : Observe that N is half the number of medium items larger
than x (as only these end up in q0-bins). The number of those items is equal to the
number of bins with red medium items (which is red2M) plus the number of bins
with two blue medium but no red items (which is 1−red2

2 M − red3N ). Thus, N is
equal to 1

2

(
red2M + 1−red2

2 M − red3N
)
. This shows that M = 4+2red3

1+red2
N . Finally,

we conclude that we can send 1−red2
2 M − red3N = 1−red2

2 · 4+2red3
1+red2

N − red3N =
2(1−red2−red2·red3)

1+red2
N many large items and thus get this many q1-bins.

To packN copies of a given pattern, the online algorithm needsN times the space
calculated in table 4.3, while the optimal solution needs exactly N bins. In order to
calculate the �nal lower bound, for each of the four inputs, we simply calculate the
space of the pattern(s), in the last case the weighted (in proportion to the distribution)
sum of the three patterns’ spaces. All four cases inputs a lower bound of at least
1.5762, which is achieved if red1 = 0,red2 = 0.1800,red3 = 0.1276,red4 = 0.1428.
Whenever an algorithm has a smaller or larger value for some redi value, the space
needed by one of the patterns (or the weighted sum of the spaces needed by the three
patterns of the last case) increases and thus gives a lower bound above 1.5762.

Constructions for the other two cases redfit4 = 1 and redfit4 = 3 can be found
below in tables 4.4 and 4.5. The analysis is completely analogous to the �rst case.
For the case redfit4 = 1, the best values the online algorithm can use are red1 =
0,red1 = 0.19,red2 = 0.0872. The analysis for the case redfit4 = 3 is particularly
simple, as the given distribution requires 100/63 bins on average (independent of
red2 and red3), implying a lower bound of 100/63 ≈ 1.5873.
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Table 4.4: Inputs for lower bound 1.5788 in case redfit4 = 1.

Pattern Space for ε→ 0 Distribution χ

1 1 1 1 + 1−red2
2 + 1−red3

6 + 1
42 1

0 0 6 6 · 1−red3
6 + 6red3 + 1

7 1

0 2 2 2 · 1+red2
2 + 2 · 1−red3

6 + 1
21 1 (scaled)

q1 1 + 1−red2
2 + red2

4(1−red2−red2·red3)
1+red2

q2 1 + 1−red2
2 + red2 4red3

Table 4.5: Inputs for lower bound 1.5872 in case redfit4 = 3.

Pattern Space for ε→ 0 Distribution χ

1 1 1 1 + 1−red2
2 + 1−red3

6 + 1
42 2/3

0 2 2 2 · 1+red2
2 + 2 · 1+red3

6 + 1
21 1/3

4.6 A further improvement: Introducing red sand

We will now describe how the framework Extreme Harmonic can be improved
further by also coloring sand, i.e., items of type N , red and blue. This is also one
building block amongst others used in the recent paper by Balogh et al. [10], who
achieve a competitive ratio of 1.5783 using a di�erent analysis. It allows us to set
some of the parameters di�erently and we obtain an algorithm with competitive ratio
1.5787.

4.6.1 The algorithm and its properties

In order to incorporate the coloring of sand in the framework, we de�ne an additional
parameter redN that describes the ratio of red bins (rather than red items), that is,

redN ≈ (# of bins with red sand)/(# of bins with red or blue sand).

We will also have leaves(N ) = 0. We do not use bluefit- or redfit-parameters for
typeN , as the number of items of this type in a bin depends on the size of these items.

We now discuss the changes that need to be made to the algorithm. We �rst
extend the de�nition for open bins.

De�nition 18 (Extension of de�nition 9). A bin is red-open for a non-sand item of

type t if it contains at least one and at most redfitt − 1 red t items. A bin is blue-open
for a non-sand item of type t if it contains at least one and at most bluefitt − 1 blue t
items.

A bin is red-open for a sand item of size u, if it contains red sand items of total size

in (0,redspaceneeds(N ) −u]. A bin is blue-open for a sand item of size u, if it contains
blue sand items of total size in (0,1−u].

De�nition 11 simpli�es for sand items as follows:

De�nition 19. An unmixed bin is red-compatible with a sand item p if the bin contains
blue or uncolored items of type i and leaves(i) ≥ needs(N ).
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For sand items, blue-compatible bins can never exist, as blue sand items are packed
in pure blue bins. This is also re�ected in the following algorithm requirements,
replacing requirements R(5) and R(6):

R(5’) We have t1 = 1, t2 = 2/3, t3 = 1/2, and red1 = red2 = 0.

R(6’) All type 1 items (i.e., huge items) as well as blue type N items are packed in
pure blue bins. Equivalently, leaves(1) = leaves(N ) = 0.

The algorithm used to pack sand items is described in algorithm 11. Non-sand
items are packed as before. Note that nN and nNr count the number of bins (rather
than items, as for ni and nir for i < N ). The packing of sand items is basically the
same as for non-sand items, the main di�erence in the algorithm is how the counters
nN and nNr are increased.

Algorithm 11 How to pack a single item p of type N . At the beginning, we set
nNr ← 0 and nN ← 0.

1: if nNr < bredNnN c then
2: if ∃j : njbonus > 0 then

3: // label the bonus item as sand and color the new sand item blue

4: Let b be a bonus item of such a type j
5: n

t(b)
bonus← n

t(b)
bonus − 1

6: Label b as type N
7: nN ← nN + 1
8: nNr ← nNr + 1
9: Packsand(p,blue)

10: else // color the new sand item red and pack it

11: Packsand(p,red)
12: end if

13: else

14: Packsand(p,blue)
15: end if

Algorithm 12 Packsand(p, c) for c ∈ {blue, red}
1: Try the following types of bins to place p in this order
2: • a pure blue, mixed, or unmixed c-open bin with items of type N and color c
3: • a c-compatible unmixed bin (the bin becomes mixed, with �xed colors of its

items)
4: • a new unmixed bin (or pure blue bin, if c = blue)
5: Give p the color c
6: if p is the �rst sand item in its bin then

7: nN ← nN + 1
8: If c = red, then nNr ← nNr + 1
9: end if

We know the following, replacing property 1:
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4. Online One-Dimensional Bin Packing

Property 1. Each bin containing blue items of type N , apart from possibly the last one,

contains items of total size at least 1− ε. Each bin containing red items of type N , apart

from possibly the last one, contains red items of total size at least redspaceneeds(N ) − ε.

Properties 2 and 4 and invariant 1 holds for sand items as well. We next show an
extension of property 5 for sand items.

Lemma 13. At all times, bredNnN c − 1 ≤ nNr ≤ bredNnN c+ 1.

Proof. In the beginning, all counters are zero and the bounds hold. We have the
lower bound of nNr due to line 1 in algorithm 11 and because nN is increased by
at most one in between two consecutive times that this condition is tested. We get
the upper bound because nNr increases only if nNr < bredNnN c and a new item of
this type arrives (line 1 of algorithm 11), and it increases by at most one (line 8 of
algorithm 12).

All other properties and lemmas are not a�ected by coloring sand. Most of the
packing properties concern only medium items, so they are not a�ected either. In
post-processing, we now remove the single bin with blue items of type N and total
size at most 1− ε, as well as the single bin with red items of type N and total size at
most redspaceneeds(N ) − ε (due to the adapted property 1). This leads to an extended
version of packing property 6:

Packing Property 8 (Replacement of packing property 6). All bins with blue items

of type N are at least 1 − ε full. All bins with red items of type N are at least

redspaceneeds(N ) − ε full.

The change of marks and the coloring of previously uncolored items does not
interfere with our new red sand items. Algorithm 7 can be applied the same way as
before: Only in lines 9 and 10, if j =N , we split up p into x = ds(p)/tN e items of size
s(p)/x ≤ tN each instead. Lemma 6 does still hold for this case, as the red sand items
still occupy space of at least s(p) > 1/3 > redspaceneeds(N ) (using requirement R(1)).
All in all, theorem 1 still holds (the proof uses lemma 13).

4.6.2 Weighting functions

Lemma 8 still holds and we can still de�ne k and r as in de�nition 14. It might now
also happen that k < K + 1 and t(r) =N , i.e., the item r is a sand item.

Recall that βt = 1−redt
bluefitt

and ρt = redt
redfitt

for t < N . Analogously, we now de-
�ne βN = 1−redN

1−ε and ρN = redN
redspaceneeds(N )−ε . We can now re-de�ne the weighting

functions.
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wk(p) = wk(x, t,M) =



βt + ρt if t < N and (needs(t) > k or
needs(t) = 0 or
(needs(t) = k andM ,R))

βt if t < N and either 0 < needs(t) < k
or needs(t) = k,M =R

βNx if t =N and needs(N ) < k
(βN + ρN )x if t =N and needs(N ) ≥ k

vk,s(r)(p) = vk,s(r)(x, t) =


βt + ρt if t < N, leaves(t) < k
ρt if t < N, leaves(t) ≥ k,k ≤ K
(βN + ρN )x if t =N

Note that the function vk,s(r) again depends on s(r) in case r is medium; as before,
we set vk(p) = vk,tt(r)(p) ≥ vk,s(r). In the case that k = needs(N ), i.e., the item r is a
sand item, this function does not depend on the exact size of the item r. We hence
again use vk = vk,tt(r) . The proof of theorem 2 now runs completely analogous to
before. We give a proof sketch which focuses on the changes from the proof of
theorem 2.

Theorem 3. For any input σ and Extreme Harmonic algorithm A, de�ning k as

above we have

A(σ ) ≤min

 n∑
i=1

wk(pi),
n∑
i=1

vk(pi)

+O(1) (4.28)

Proof. We again upper bound A(σ ) by the weights of the items p1, . . . ,pn, which are
the items in σ ′ . The additive constant O(1) again corresponds to the bins removed in
post-processing.

Let Tiny be the total size of the items of type N in σ ′ . Let UnmixedRed be
the number of unmixed red bins in P ′ . Let Bi and Ri be the number of bins in P ′
containing blue items of class i, and red items of class i, respectively. In contrast to
the proof of theorem 2, we count sand items in Bi as well.

If UnmixedRed = 0, every red item is placed in a bin with one or more blue items,
and k = K + 1. In this case, the total number of bins in P ′ is exactly the total number
of bins containing blue items. Each bin containing blue items of type N contains at
least a total size of 1− ε due to packing property 8 and the blue type N items have
total volume (1 − redN )Tiny. Thus, there are Tiny(1 − redN )/(1 − ε) = βNTiny =∑
i:t(pi )=N wK+1(pi) bins with blue sand items. Note that vK+1(pi) ≥ wK+1(pi) for a

sand item pi .
In bins with blue items of type t < N , exactly bluefitt such items are packed

according to packing property 5. Thus, we need (1−redt)nt
bluefitt

bins to pack the blue items
of type t, where nt is the total number of items of type t. For each item p of type
t < N , we have wK+1(p) = βt = 1−redt

bluefitt
≤ vK+1(p). We see that wK+1 counts all the

bins with blue items, and

A(σ ) ≤
K∑
i=0

Bi ≤
n∑
i=1

wK+1(pi).
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4. Online One-Dimensional Bin Packing

If UnmixedRed > 0, then k = needs(t(r)), and there is an unmixed red bin of
class k. As before, we get that the total number of bins in P ′ is at most

UnmixedRed +
K∑
i=0

Bi +O(1)

≤ B0 + min

 K∑
i=k+1

Ri +Rk(−R) +
K∑
i=1

Bi ,
K∑
i=1

Ri +
k−1∑
i=1

Bi

+O(1). (4.29)

Let J be the set of types whose blue items are packed in pure blue bins, including
type 1 and type N . For each item p of type t , N , t ∈ J , we have leaves(t) = 0 < k,
so vk(p) = 1−redt

bluefitt
. Furthermore, wk(p) ≥ 1−redt

bluefitt
. For an item p of type t = N ,

we have vk = (βN + ρN )s(p) and wk ≥ βN s(p). We conclude
∑
j∈J

∑
t(pi )=jwk(pi) ≥∑

j∈J
∑
t(pi )=j vk(pi) ≥ B0 using packing property 5.

In the �rst term of the minimum in ineq. (4.29), we count all bins with blue
items except the pure blue bins, all bins with red items of classes above k, and the
bins with red items of class k that are not marked R. (If red items of class k are
small, this means all red items of this class.) This term is therefore upper bounded
by

∑
j<J

∑
t(pi )=jwk(pi) (again using packing property 5). In the second term of the

minimum in ineq. (4.7), we count all bins with red items, as well as bins with blue
items of class at least 1 and at most k−1. The second term is therefore upper bounded
by

∑
j<J

∑
t(pi )=j vk(pi).

4.6.3 O�line solution and results

For �nding the lower bound on the optimal cost depending on the value of k, we
can apply the same steps as described in section 4.2.7. We do not need to consider
the case that r is a sand item separately, as this is simply one particular value for k
and we check all such values. We can de�ne our types the same way as before and
also the de�nition of patterns stays unchanged. We still �ll up the empty space in a
pattern with sand; note that the weight of sand might now be smaller than before,
but �lling the empty space with sand still increases the total weight of the pattern (as
opposed to leaving this space empty). The crucial lemmas 9 and 11 are not a�ected
by the introduction of red sand. However, lemma 12 does not hold anymore, as the
w- and v-weights of sand are di�erent. We can, however, prove the following:

Lemma 14. v1k = v2k ≥ w1k = w2k .

Proof. The sum of the weights of the large and the medium item are, as before,
1 + βt(N ) + ρt(N ). The amount of sand is in both patterns tt(r) − tt(r)−1. The sand
expansion, i.e., the weight of a sand item divided by its size, is at least βN for w and
βN + ρN for v. Thus, the v-weights for q1 and q2 are equal and not smaller than the
w-weights of these patterns.

Therefore, for simplicity we let w1k := v1k ,w2k := v2k , i.e., we assume a higher
weight for q1 and q2 than their actual weight. That way, our bounds still hold and
we can still use constraint (4.12) in the dual LP. The only adaption that we now need
to make is using the right sand expansion in the program. We adapt de�nition 17:
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De�nition 20 (Replacement of de�nition 17). In case Dk,med

w is used, we de�ne

ωk(p) =


(1− y∗3)

(
βt(r) + ρt(r)

)
+ y∗3vk(p) +

1−redt(r)
1+redt(r)

y∗1 if t(p) = t(r)

(1− y∗3)wk(p) + y∗3vk(p) + ρt(p)y∗2 if t(p) ∈
RedComp(t(r))

(1− y∗3)wk(p) + y∗3vk(p) else

We now only need to use the sand expansion according to this weighting function
in the knapsack problems.

It remains to �nd new parameters for an algorithm and compute the competitive
ratio. There is one crucial change in the generation of types w.r.t. the processes
described in section 4.3, namely, adding type threshold of the form 1/2 − x for ev-
ery medium threshold x. This splits up the interval (1/15,1/6) into further types.
Furthermore, to speed up the computation, we reduce the number of tiny items as
follows. Instead of inserting a new tiny threshold whenever the small expansion of
items becomes too large, we can insert thresholds at multiplicative positions, based
on the parameter lastTypeBeforeSmallTypeGeneration = 1/x. That is, we multiply
the current threshold by x/(x+ 1) each time and round to get the next threshold of
the form 1/a. Finally, we hand-tune the red-values more carefully. We achieve a
competitive ratio of 1.5787 using the parameters speci�ed in appendix C.

4.7 Discussion and directions for future work

We have presented two new algorithms for online bin packing in one dimension,
breaking the long standing lower bound by Ramanan et al. [95]. Additionally, we
gave a lower bound for our new framework.

The Harmonic-based algorithms that have been studied in the past operate in
a rather controlled but local way in the sense that they base their decisions on the
compatibility of item types only and do not try to take the bigger picture into account.
This is done because it allows for a rather straightforward analysis using weighting
functions. Intuition tell us of course that it will make much more sense to adapt
our packing depending on the sequence of items seen so far, but the challenge is to
incorporate such more adaptive algorithms into the classical analytical frameworks.

In essence, our approach shows that we can leverage information about existing
items in order to improve the packing decision for the next item and thus our algo-
rithm’s performance overall. The core idea used for our improvement was to combine
medium and large items whenever they �t together. If we however just add this to
the previous algorithm, the adversary could simply avoid situations where we could
make use of this. In order to keep the adversary from doing so, we required two tools:

• By postponing the coloring of items, we try to gain knowledge about the sizes of
other items of this type that have arrived up to now. Items markedN guarantee
us this knowledge. On the other hand, if we do not mark medium items with
N , we instead know that some other compatible item types arrived earlier and
can in turn exploit this knowledge. We thus use the marking to keep track of
certain structures in the input that are advantageous for us in di�erent ways,
making it possible to bound the number of critical bins (lemmas 9 and 11).

• We relax the assumption about �xed fractions of red items by creating bonus
items, which in fact increase the fraction of red medium items beyond the �xed
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4. Online One-Dimensional Bin Packing

value. We do this by taking advantage of the fact that we know that matching
large items exist and can be combined with medium items in this situation,
allowing for a good packing of these items.

It seems plausible that future work should try to incorporate the knowledge about
existing items even further to obtain better algorithms. One could for example try to
relax the assumption about �xed fractions of red items even more. We have taken care
that additional red items are only created when this is desirable because they can be
combined with large items, but it might be possible that other advantageous situations
exist, where increasing or also decreasing of the fraction of red items makes sense. It
would be very interesting to develop techniques to generalize this input-dependent
adjustment of these parameters to all item types and further scenarios and develop
analytical tools to study such algorithms.

Of course, adding more and more constraints increases the complexity of solving
the linear program that upper bounds the competitive ratio. In order to overcome these
di�culties, we made use of the dual LP and showed how to simplify it by removing
variables so that we could solve it using a binary search. If future approaches introduce
even more constraints, they will need to develop better techniques for solving the LP
in order to make use of increased structural knowledge.
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5Lower Bounds in Multiple Dimensions

In this chapter, we consider the problem of geometric online bin packing in two or
more dimensions. We also consider the special case where all items are hypercubes
with the same edge length si in all dimensions.

Results in this chapter and organization We improve the general lower bound
for square packing in two dimensions to 1.680783. Very recently, Epstein et al.
improved this lower bound further to 1.75, using di�erent methods [7]. For rectangle
packing, we improve the general lower bound to 1.859. Furthermore, we improve the
lower bound for Harmonic-type algorithms for hypercube packing in any dimension
d ≥ 2. For this, we generalize the method of Ramanan et al. [95]. In particular,
we show that Harmonic-type algorithms cannot break the barrier of 2 for d = 2,
by giving a lower bound of 2.02 for this case. This shows that substantially new
ideas will be needed in order to achieve signi�cant improvements over the current
best upper bound of 2.1187 and get closer to the general lower bound. For high
dimensions, Our lower bound tends to 3.

Lastly, we show that when additionally incorporating the two central ideas
from the one-dimensional bin packing algorithm presented in chapter 4 into two-
dimensional square packing, there are instances which pose similarly strong lower
bounds as those for Harmonic-type algorithms. This shows that further new ideas
are required to improve algorithms for the square packing problem.

Preliminaries At several points in this chapter, we use the notion of anchor points
as de�ned by Epstein and van Stee [42]. We assign the coordinate (0, . . . ,0) to one
corner of the bin, all edges connected to this corner are along a positive axis and have
length 1.

De�nition 21 (Anchor point, anchor packing). We say that an item is placed at an
anchor point if it is placed parallel to the axes such that one of its corners coincides

with the anchor point and no point inside the item has a smaller coordinate than the

corresponding coordinate of the anchor point. We call an anchor point blocked for a

certain set of items in a certain packing (i.e. in a bin that contains some items), if we

cannot place an item of this set at that anchor point without overlapping other items.

See �g. 5.1 for illustration. An anchor packing is a packing where every item is placed

at an anchor point.
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(0,0) (1,0)

(0,1) (1,1)

p

i

p′

Figure 5.1: Item i is packed at anchor point p. Anchor point p′ is blocked for a square item
of side length 1/2 (depicted as dashed square) because packing it at this anchor point would
cause a collision with item i.

5.1 Lower bound for general algorithms for square packing

5.1.1 Van Vliet’s Method

For deriving a general lower bound on the competitive ratio of online hypercube
packing algorithms, we extend an approach by van Vliet [107] based on linear pro-
gramming. Problem instances considered in this approach are characterized by a list
of items L = L1 . . .Lk for some k ≥ 2, where each sublist Lj contains αj · n items of
side length sj (we will also call such items “items of size sj” or simply “sj -items”). We
assume s1 ≤ . . . ≤ sk . The input might stop after some sublist. An online algorithm A
does not know beforehand at which point the input sequence stops, and hence the
asymptotic competitive ratio can be lower bounded by

R ≥min
A

max
j=1,...,k

limsup
n→∞

A(L1, . . . ,Lj )

OPT(L1, . . . ,Lj )

For this approach, we de�ne the notion of a pattern
1: A pattern is a multiset

of items that �ts in one bin. We denote a pattern by a tuple (p1, . . . ,pk), where
pi denotes the number of si-items contained in the pattern (possibly zero). The
performance of an online algorithm on the problem instances we consider can be
characterized by the number of bins it packs according to a certain pattern. Van
Vliet denotes the set of all feasible patterns by T , which is the union of the disjoint
sets T1, . . . ,Tk where Tj contains patterns whose �rst non-zero component is j (i.e.,
whose smallest item size used is sj ). We can then calculate the cost of an algorithmA
by A(L1, . . . ,Lj ) =

∑j
i=1

∑
p∈Ti n(p), where n(p) denotes the number of bins A packs

according to pattern p. We call a pattern p ∈ Tj dominant if the multiset consisting of
the items of p plus one sj -item cannot be packed in one bin. Note that we only need
to consider dominant patterns in the LP [107]; thus we from now on denote by Tj the
set of all dominant feasible patterns with no items smaller than sj . As the variables
n(p) characterize algorithm A, optimizing over these variables allows us to minimize
the competitive ratio over all online algorithms with the following LP:

1This is of course very similar to the patterns de�ned in section 4.2.7.
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5.1. Lower bound for general algorithms for square packing

sublist Li number of items αi item size si OPT(L1 . . .Li) · 176400
n

L1 839n 1/420− ε 839
L2 10n 1/105 + ε/105 999
L3 8n 1/84 + ε/84 1199
L4 4n 1/42 + ε/42 1599
L5 39n 1/21 + ε/21 17199
L6 8n 1/20 + ε/20 20727
L7 4n 1/10 + ε/10 27783
L8 7n 1/5 + ε/5 77175
L9 5n 1/4 + ε/4 132300
L10 n 1/2 + ε/2 176400

Table 5.1: The input sequence that gives a lower bound of 1.680783 together with optimal
solutions.

minimize R

subject to
∑
p∈T

pj · x(p) ≥ αj 1 ≤ j ≤ k
j∑
i=1

∑
p∈Ti

x(p) ≤ lim
n→∞

OPT(L1, . . . ,Lj )

n
R 1 ≤ j ≤ k

x(p) ≥ 0 ∀p ∈ T

In this LP, the variables x(p) replace n(p)/n, as we are only interested in results
for n → ∞. Note that item sizes are always given in nondecreasing order to the
algorithm. In this paper, however, we will often consider item sizes in nonincreasing

order for constructing the input sequence and generating all patterns.

5.1.2 Proving a lower bound of 1.680783

In this section, we will prove the following theorem:

Theorem 4. No online algorithm can achieve a competitive ratio of 1.680783 for the

online square packing problem.

Consider the input sequence in table 5.1. First of all, we need to prove the
correctness of the values OPT(L1...Lj )

n for j = 1, . . . , k and n→∞. To prove a lower
bound, we do not need to prove optimality of the o�ine packings that we use. It is
su�cient to prove feasibility. To do this, we use anchor packings. In this section,
we use 4202 anchor points. The anchor points are at the positions for which both
coordinates are integer multiples of (1 + ε)/420. Note that every item used in the
construction apart from the ones in L1 have sides which are exact multiples of
(1 + ε)/420. Therefore, whenever we place an item at an anchor point, and the item
is completely contained within the bin, it will �ll exactly a square bounded by anchor
points on all sides.

To check whether a given pattern is feasible, the items of size s1 can be considered
separately. Having placed all other items at anchor points, we can place exactly one
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item of size s1 at each anchor point which is still available. Here an anchor point
(x,y) is available if no item covers the point (x + ε,y + ε). By the above, after all
other items have been placed at anchor points, it is trivial to calculate the number
of available anchor points; at least all the anchor points with at least one coordinate
equal to (1 + ε)419/420 are still available.

For any pattern that we use, the largest items in it are always arranged in a square
grid at the left bottom corner of the bin (at anchor points). The second largest items
are arranged in an L-shape around that square. It is straightforward to calculate the
numbers of these items as well. The patterns used for the given upper bounds on the
optimal solution are listed in table 5.2. Note that not all of these patterns are greedy
(in the sense that we add, from larger to smaller items, always as many items of the
current type as still �t).

Let us give some intuition on how these patterns are constructed. We start by
�nding a pattern that contains the maximal number of the largest type of items, and
then add greedily as many items as possible of the second largest type, then third
largest type and so on. We take as many bins with this pattern as are necessary to
pack all the largest items; a certain number of items of all other types remain. We
continue by choosing the pattern that contains the largest possible number of items
of the second-largest type and �ll it up greedily as before with other items. We use
this pattern in such a number of bins that all remaining items of the second-largest
type are packed. We continue like that until all items are packed. You can see this
approach for example in the patterns used for OPT(L1 . . .L3). We can pack 6889 items
of size s3 into one bin. With these, we can pack no more than 207 s2-items, and �nally
we can add at most 863 s1-items; this gives the �rst pattern, p(3). We need n ·8/6889
bins with this pattern to pack the 8n s3-items. This leaves n · 67234/6889 items of
size s2 unpacked, and as we can pack at most 10816 s2-items into one bin (and 3344
s1-items with them), this gives a certain amount of bins with this second pattern p(2).
For the remaining s3-items, we then use the respective number of bins with pattern
p(1).

However, we sometimes slightly derive from this construction, e.g., in the patterns
used for OPT(L1 . . .L5). In a bin with 400 items of size s5, we could �t 81 items of size
s4. However, if we do so, we would pack more s4-items than necessary and thus lose
space that we need in order to pack other items. In that case, we reduce the number
of s4-items as much as possible while still packing all of them (in this case, we reduce
it to 42). In �g. 5.2, we give the optimal packing for the whole input sequence (i.e., for
L1 . . .L10).

In order to prove lower bounds, we will use the dual of the LP given above. It is
de�ned as follows:

maximize
∑k
j=1αjλj

subject to
k∑
i=j

λipi +
k∑
i=j

µi ≤ 0 ∀p ∈ Tj ,1 ≤ j ≤ k

−
k∑
j=1

µj · lim
n→∞

OPT(L1 . . .Lj )

n
≤ 1

λj ≥ 0 1 ≤ j ≤ k
µj ≤ 0 1 ≤ j ≤ k

Note that any feasible solution to this dual gives us a valid lower bound for the
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5.1. Lower bound for general algorithms for square packing

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p(1) 176400
p(2) 3344 10816
p(3) 863 207 6889
p(4) 863 207 165 1681
p(5) 10477 103 83 42 400
p(6) 839 16 8 4 39 361
p(7) 10493 102 83 42 400
p(8) 839 16 8 4 39 37 81
p(9) 10541 99 83 42 400
p(10) 1918 23 18 10 90 19 10 16
p(11) 839 10 8 4 39 8 4 7 9
p(12) 1918 23 19 10 90 19 10 16
p(13) 839 10 8 4 39 8 4 7 5 1

i
patterns number of bins

for with this pattern
OPTi divided by n

1 p(1) 839
176400

2 p(2) 10
10816

p(1) 31393
6624800

3 p(3) 8
6889

p(2) 33617
37255712

p(1) 1944236893
410744224800

4 p(4) 4
1681

p(3) 12788
11580409

p(2) 31961
37255712

p(1) 646638631
136914741600

i
patterns number of bins

for with this pattern
OPTi divided by n

5 p(5) 39
400

6 p(6) 8
361

p(7) 13767
144400

7 p(8) 4
81

p(6) 500
29241

p(9) 13143
144400

8 p(10) 7
16

9 p(11) 5
9

p(12) 7
36

10 p(13) 1

Table 5.2: Patterns used for the optimal solutions. The upper table describes the patterns used.
The lower tables describe which patterns are used in which cases and for how many bins; we
use OPTi as a shortcut for OPT(L1 . . .Li ).

77



5. Lower Bounds in Multiple Dimensions

s10-item

s9-item s9-item s9-item

s9-item

s9-item
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s8-item
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s7 s7
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Figure 5.2: How to pack pattern p(13) from table 5.2. Note that the sketch is not true to scale
for the sake of readability.

i λi /x −µi /x
1 1 863
2 16 3312
3 25 4125
4 100 8100
5 400 15600

i λi /x −µi /x
6 400 14800
7 1600 27200
8 6400 44800
9 6400 32000

10 25600 25600

Table 5.3: The variable values for the dual solution. Here, x = 4410/338989303.

problem. In table 5.3, we specify a solution and then prove that it is indeed feasible
for the dual LP. In this table, the constant x is de�ned as 4410/338989303.

Note that the dual constraint

−
k∑
j=1

µj · lim
n→∞

OPT(L1 . . .Lj )

n
≤ 1

is satis�ed with equality.
It thus remains to check the other constraints, where we have one constraint

for every pattern. For verifying that all constraints
∑k
i=j λipi +

∑k
i=j µi ≤ 0 are

satis�ed, we see that it su�ces to check that for every j = 1, . . . , k the inequality
maxp∈Tj

∑k
i=j λipi ≤ −

∑k
i=j µi holds. We can interpret the λi values as weights

assigned to items of type i, let w(p) =
∑k
i=j λipi for p ∈ Tj , and thus the problem

reduces to �nding the pattern in Tj with maximum weight – a knapsack problem.
The µi-values de�ne the capacity of the knapsack. In order to solve this e�ciently,
we introduce a dominance notion for items.

De�nition 22. We say thatm2
items of size si dominate an item of size sj , denoted by

m2si � sj , if msi ≤ sj and m2λi ≥ λj .
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5.2. Lower bounds for general algorithms for rectangle packing

In the case that m2si-items dominate an sj -item, we can replace one item of size
sj by m2 items of size si (arranged in an m×m grid), as the items to do not take more
space. Furthermore, the weight of the pattern only increases by this replacement step,
so it su�ces to only examine the pattern without sj items. Note that the �-operator
is transitive.

For our input, we use the following dominance relations:

42s1 � s2 52s1 � s3 22s3 � s4
22s4 � s5 s5 � s6 22s6 � s7
22s7 � s8 s8 � s9 22s9 � s10

It is easy to check that these are indeed ful�lled by the λi-values given above.
The dominance relations give us that whenever a pattern contains s1-items, we can
replace all other items in this pattern by s1-items as well – thus, for set T1, we only
need to consider the pattern that contains only s1-items (and the maximal number of
them, i.e., 176400 such items). So using the dominance relation, we have reduced the
number of patterns dramatically. Similarly, for T3, . . . ,T10, we only have to consider
one pattern each. Only for T2, we have to be careful: As s3-items are not dominated
by s2 items, we also have to consider patterns that contain s2 and s3-items. The
following Lemma will show that the pattern that contains 6889 s3-items and 207
s2-items is the maximum weight pattern for this case.

Lemma 15. Among all patterns that only contain items of sizes s2 and s3, the pattern
with 6889 s3-items and 207 s2-items has the highest weight given the λi-values of
table 5.3.

Proof. Let p∗ be the pattern under consideration. We note that λ2
(1/105)2 <

λ3
(1/84)2 , i.e.,

the weight per area is larger for the s3-items than for the s2-items. Furthermore, p∗

occupies an area of
(

104
105 · (1 + ε)

)2
. Note that no pattern with these two item types

can cover a larger area. Hence, no pattern can achieve a larger weight.

In table 5.4, we list all patterns that need to be checked, together with their weight
and the knapsack capacity.

Finally, in order to determine the lower bound proven by this input, we compute
839λ1 + 10λ2 + 8λ3 + 4λ4 + 39λ5 + 8λ6 + 4λ7 + 7λ8 + 5λ9 +λ10 > 1.680783. This
concludes the proof of theorem 4.

5.2 Lower bounds for general algorithms for rectangle
packing

We will now present a lower bound on the more general two-dimensional online
bin packing, where items are allowed to be arbitrary rectangles and not necessarily
squares. In this setting, we receive a sequence of n items, where the i-th item has
width wi and height hi . The bins are still squares of side length one, and we are not
allowed to rotate the items. Note that the LP and its dual are still the same, however,
we need to adapt our de�nition of item dominance as follows.

De�nition 23. We say that m1 ×m2 items of size si dominate an item of size sj ,
denoted by (m1 ×m2)si � sj , if m1wi ≤ wj ,m2hi ≤ hj and m1m2λi ≥ λj . Instead of
(1× 1)si � sj , we will simply write si � sj .
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5. Lower Bounds in Multiple Dimensions

j heaviest pattern p w(p)/x knapsack capacity:
from Tj (

∑10
i=j −µi)/x

1 176400× s1 176400 176400
2 207× s2,6889× s3 175537 175537
3 6889× s3 172225 172225
4 1681× s4 168100 168100
5 400× s5 160000 160000
6 361× s6 144400 144400
7 81× s7 129600 129600
8 16× s8 102400 102400
9 9× s9 57600 57600
10 1× s10 25600 25600

Table 5.4: The patterns that have to be considered to verify the �rst set of constraints in the
dual LP. Again, x = 4410/338989303.

j wj hj
OPT(L1...Lj )

n

Level 1
1 1

4 − 300δ 1/6− 2ε 1/24
2 1

4 + 100δ 1/6− 2ε 1/12
3 1

4 + 200δ 1/6− 2ε 1/6

Level 2
4 1

4 − 30δ 1/3 + ε 1/4
5 1

4 + 10δ 1/3 + ε 1/3
6 1

4 + 20δ 1/3 + ε 1/2

Level 3
7 1

4 − 3δ 1/2 + ε 5/8
8 1

4 + 1δ 1/2 + ε 3/4
9 1

4 + 2δ 1/2 + ε 1

Table 5.5: The input sequence for the 1.859 lower bound. The table shows the items for the
�rst, second and third level. ε and δ are assumed to be su�ciently small positive constants.

Again, this means that we can replace one item of size sj by m1m2 items of size
si which are arranged in an m1 ×m2-grid, while only increasing the weight (sum of
λ-values) of the pattern.

5.2.1 A lower bound of 1.859 using nine item types

The construction for our lower bound relies on nine item types that are arranged in
3 groups, also called levels. Corresponding to these item types, we have nine lists
L1, . . . ,L9, where each Lj consists of n items of size sj . The item sizes are given in
table 5.5 together with the optimal solution values. The packings for the optimal
solution are depicted in �g. 5.3.
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(e) OPT(L1 . . .L5): We have n/4 bins with the left packing and
n/12 bins with the right packing
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(g) OPT(L1 . . .L7): We have n/4 bins with the left packing and
3/8 ·n bins with the right packing
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(h) OPT(L1 . . .L8): We have n/2 bins with the left packing and
n/4 bins with the right packing
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Figure 5.3: Optimal solutions for sublists L1 . . .Lj for all j = 1, . . . ,9. The number within every
item denotes its type.
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pattern s1 s2 s3 s4 s5 s6 s7 s8 s9 type x(p)

p(1) 24 - - - - - - - - T1 29/4956
p(2) 12 12 - - - - - - - T1 289/4956
p(3) 12 - 6 - - - - - - T1 11/826
p(4) - 6 6 - - - - - - T2 15/413
p(5) - 2 2 4 4 - - - - T2 17/1239
p(6) - 2 2 4 - 2 - - - T2 34/1239
p(7) - - 4 2 4 - - - - T3 64/413
p(8) - - - 8 - - - - - T4 55/1239
p(9) - - - 2 2 2 - - - T4 74/1239
p(10) - - - 1 1 1 4 - - T4 21/413
p(11) - - - - 1 1 2 2 - T5 32/413
p(12) - - - - 1 1 4 - - T5 3/413
p(13) - - - - 1 1 1 1 1 T5 29/413
p(14) - - - - - 2 1 1 - T6 128/413
p(15) - - - - - - 1 1 1 T7 96/413
p(16) - - - - - - - 1 1 T8 96/413
p(17) - - - - - - - - 1 T9 192/413

Table 5.6: The optimal primal solution for the 1.859 lower bound. The table gives the patterns,
the set Tj they belong to, and the value of the LP variable x(p) for each pattern.
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(c) p(14)

Figure 5.4: Packings of some of the patterns of the optimal LP solution from table 5.6. The
number within each item denotes its type.

We will now give an optimal solution for the primal LP and then verify its feasi-
bility by checking the constraints, and verify its optimality by giving a matching dual
solution and a proof of its feasibility. The optimal primal solution uses 15 di�erent
patterns as listed in table 5.6. The packings for some of these (where it is not that
easy to see how to pack the pattern) are depicted in �g. 5.4.

To verify feasibility of this solution, note that all the constraints hold with equality
(except for the non-negativity constraints of course) if we set R = 768/413 > 1.859.
For proving optimality, we use the dual solution given in table 5.7. In order to verify
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5.2. Lower bounds for general algorithms for rectangle packing

j λj · 413 −µj · 413 types to heaviest patterns p w(p) · 413 =

consider from Tj (
∑9
i=j −µi) · 413

1 48 288 1 24× s1 1152
2 48 48 2, 4 18× s2 864

6× s2,8× s4
12× s2,4× s4

3 96 240 3, 4 4× s3,6× s4 816
4 72 72 4 8× s4 576
5 72 72 5, 7 3× s5,4× s7 504
6 144 144 6, 7 2× s6,2× s7 432

1× s6,4× s7
7 72 72 7 4× s7 288
8 72 72 8 3× s8 216
9 144 144 9 1× s9 144

Table 5.7: The dual solution, the patterns that need to be considered for verifying its feasibility,
together with their weight and the knapsack capacity.

its feasibility, note that the dual LP constraint

−
k∑
j=1

µj · lim
n→∞

OPT(L1 . . .Lj )

n
≤ 1

is satis�ed with equality. It remains to check the other dual constraints, where
again we have to test whether maxp∈Tj w(p) = maxp∈Tj

∑k
i=j λipi ≤ −

∑k
i=j µi for

all j = 1, . . . , k. For solving the associated knapsack problem, we use the following
dominance relations to simplify our task:

s1 � s2 (2× 1)s2 � s3 (1× 2)s1 � s4
s4 � s5 (2× 1)s5 � s6 s4 � s7
s7 � s8 (2× 1)s8 � s9

We list the optimal patterns to be considered for the knapsack problem in table 5.7.
In the following lemmas, we will prove that it su�ces to consider these patterns.

Lemma 16. For T2, the patterns p
(1) = (0,6,0,8,0, . . . ,0), p(2) = (0,12,0,4,0, . . . ,0),

and p(3) = (0,18,0, . . . ,0) maximize w(p) =
∑k
i=2λipi , given the λi-values from ta-

ble 5.7.

Proof. In this proof, we abbreviate patterns by listing only their second and fourth
components. Any vertical line through a bin can intersect with at most two type 4
items, and any horizontal line with at most four. By arranging the items in two rows
of four, we see that (0,8) is a dominent pattern. There are only two options for a
horizontal line in a bin that contains only type 2 and type 4 items: Either, it crosses (at
most) four type 4 items, or it crosses at most three items (of any type). In general, if a
bin contains eight type 4 items, there is at least a height of 1/3−2ε where horizontal
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4 4 4 4

4
3

3
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3
4

Figure 5.5: A feasible packing for pattern p from lemma 17

lines cross with at most three items (this height can be more if the type 4 items are not
exactly aligned). This in turn implies that a volume of at least (1/3−2ε)(1/4−300δ)
must remain empty in any bin that contains eight type 4 items, as the maximum total
width of a set of three items is 3/4 + 300δ. It follows immediately that (6,8) is a
dominant pattern, as the free space in the packing tends to exactly 1/3×1/4 if ε→ 0
and δ→ 0 (and since it is indeed a pattern).

If there is a total height of more than 1/3 + ε at which a horizontal line intersects
with four items, then by considering the highest and the lowest such line, we can
identify eight distinct type 4 items. Therefore, in a bin with four to seven type 4
items, at a height of at least 2/3− ε, a horizontal line intersects with at most three
items, since you can only have one row of four type 4 items. Therefore, in such a bin,
there must be (2/3− ε)(1/4− 300δ) of empty space. We �nd the following patterns:
(6,7), (8,6), (10,5), (12,4) with weights 792

413 , 816
413 , 840

413 , 864
413 , respectively.

If there are at most three type 4 items, then any horizontal line intersects with
at most three items, the empty space is at least 1/4 − 300δ, and the patterns are
(12,3), (14,2), (16,1), (18,0) with weights 792

413 , 816
413 , 840

413 , 864
413 , respectively.

Lemma 17. For T3, the pattern p = (0,0,4,6,0, . . . ,0) maximizes w(p) =
∑k
i=2λipi ,

given the λi-values from table 5.7.

Proof. In this proof, we again abbreviate patterns by listing only their third and fourth
components. First of all, see �g. 5.5 for a feasible packing of p. Horizontal lines can
only intersect with these sets of items: Either three or four type 4 items, or at most
two items which have total width at most 3/4 + 170δ. As above, (0,8) is a dominant
pattern. There is at least a height of 1/3− 2ε at which horizontal lines intersect with
at most two items. There is at most a height of 1/3− 2ε at which horizontal lines
intersect with at most one type 4 item.

Since two type 3 items cannot be placed next to each other, this implies that (2,8)
is a (dominant) pattern, but with a smaller weight of 768

413 .
If there are seven type 4 items, again there is at most a height of 1/3−2ε at which

horizontal lines intersect with at most one type 4 item, so (3,7) is not a pattern. If there
are four to six type 4 items, there is an empty volume of at least (2/3−ε)(1/4−170δ),
so (4,6) is dominant. Moreover, there is at least a height of 2/3−ε at which horizontal
lines intersect with at most two items, so (5,5) and (5,4) are not patterns.

If there are three type 4 items, the empty volume is at least 1/4− 170δ, so (6,3)
is a dominant pattern with weight 792

413 . Finally, no bin can contain more than six type
3 items, so no other pattern can be heavier.
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Lemma 18. For T5, the pattern p = (0,0,0,0,3,0,4,0,0) maximizes w(p) =∑k
i=2λipi , given the λi-values from table 5.7.

Proof. Note that λ5 = λ7. Therefore the only question here is how many items of
these types can be packed together in a bin. No more than four type 7 items can be
packed in any bin, and at most three type 5 items can be packed with them (using
similar arguments as above). Moreover, no more than six type 5 items can be packed
in any bin, and if there are less than four type 7 items in any bin, then any horizontal
line in such a bin intersects with at most three items. Thus at most seven items can
be packed into any such bin.

Lemma 19. For T6, the patterns p(1) = (0,0,0,0,0,2,2,0,0) and p(2) =
(0,0,0,0,0,1,4,0,0) maximize w(p) =

∑k
i=2λipi , given the λi-values from table 5.7.

Proof. For a packing of p(1), see �g. 5.4c (we can replace one type 8 item by one type
7 item easily). Observe that a bin can never contain more than two s6-items, and
together with the fact that it is easy to see that no more than two s7-items can be
added to them, it follows that p(1) is a candidate for the heaviest pattern. Likewise, it
is clear that no bin can contain more than four s7-items, and it is easy to see that no
more than one s6-item can be added to those.

5.2.2 A be�er lower bound

We believe that our lower bound of 1.859 for rectangle packing could be further
improved to 1.907 by extending the input sequence as given in table 5.8. However,
we do not have a formal proof of what the heaviest patterns are for the sets Ti (our
conjectures are listed in table 5.9).

5.3 Lower bound for Harmonic-type algorithms

Now, we consider the hypercube packing problem in d dimensions, for any d ≥ 2. We
de�ne the class C(h) of Harmonic-type algorithms analogous to [95]. An algorithm
A in C(h) for any h ≥ 1 distinguishes, possibly among others, the following disjoint
subintervals

• I1 = (1− y1,1]

• I1,j =
(
1− yj+1,1− yj

]
, for every j ∈ {1, . . . ,h}

• I2 = (yh,1/2]

• I2,j =
(
yh−j , yh−j+1

]
, for every j ∈ {1, . . . ,h}

• Iλ = (0,λ]

for some parameters yj and λ, where 1/3 = y0 < y1 < . . . < yh < yh+1 = 1/2 and
0 < λ ≤ 1/3. For convenience, we assume that all yj are rational.

Algorithm A has to follow the following rules:

1. For each j ∈ {1, . . . ,h}, there is a constant mj s.t. a 1/mj-fraction of the items
of side length in I2,j is packed 2d − 1 per bin (“red items”), the rest are packed
2d per bin (“blue items”).
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type j width wj height hj
OPT(L1...Lj )

n · 7224

Level 1
1 1/4− 30000δ 1/1807 + ε 1
2 1/4 + 10000δ 1/1807 + ε 2
3 1/2 + 20000δ 1/1807 + ε 4

Level 2
4 1/4− 3000δ 1/43 + ε 46
5 1/4 + 1000δ 1/43 + ε 88
6 1/2 + 2000δ 1/43 + ε 172

Level 3
7 1/4− 300δ 1/7 + ε 430
8 1/4 + 100δ 1/7 + ε 688
9 1/2 + 200δ 1/7 + ε 1204

Level 4
10 1/4− 30δ 1/3 + ε 1806
11 1/4 + 10δ 1/3 + ε 2408
12 1/2 + 20δ 1/3 + ε 3612

Level 5
13 1/4− 3δ 1/2 + ε 4515
14 1/4 + δ 1/2 + ε 5418
15 1/2 + 2δ 1/2 + ε 7224

Table 5.8: The input items for a hypothesized lower bound of 1.907.

2. No bin contains an item of side length in I1,i and an item of side length in I2,j
if i + j ≤ h.

3. No bin contains an item of side length in I1 and an item of side length in I2,j .

4. No bin contains an item of side length in I1,j and an item of side length in I2.

5. No bin that contains an item of side length in Iλ contains an item of side length
in I1,j , I2,j , I1 or I2.

We will now de�ne 2h+ 1 input instances for the hypercube packing problem in
d dimensions, and for each instance we derive a lower bound on the number of bins
any C(h)-algorithm must use to pack this input.

Every such input instance consists of three types of items. The input will contain
N items of side length u, followed by (2d − 1)N items of side length v and �nally
followed by MN items of side length t, where u,v, t and M will be de�ned for each
instance di�erently. We will then show, for every instance, that one u-item, 2d − 1
v-items and M t-items can be packed together in one bin, thus the optimal packing
for this input uses at most N bins.
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5.3. Lower bound for Harmonic-type algorithms

j types to consider heaviest patterns p from Tj w(p) · 516211/516

1 1 7224× s1 7224
2 2, 4 5418× s2 5418
3 3,4 1806× s3,43× s4 4816

84× s3,166× s4
4 4 168× s4 4704
5 5, 7 126× s5 3528
6 6, 7 42× s6,7× s7 3136

12× s6,22× s7
7 7 24× s7 2688
8 8, 10 18× s8 2016

6× s8,8× s10

9 9, 10 4× s9,6× s10 1904
10 10 8× s10 1344
11 11, 13 3× s11,4× s13 1176
12 12,13 2× s12,2× s13 1008

1× s12,4× s13

13 13 4× s13 672
14 14 3× s14 504
15 15 1× s15 336

Table 5.9: We believe that these are the patterns that need to be considered for verifying the
feasibility of the dual solution of the 1.907 lower bound.

5.3.1 Instances 1, . . . ,h

Let ε > 0 be arbitrarily small. For every j ∈ {1, . . . ,h}, we de�ne the following instance
of the problem: Let u = 1+ε

2 ,v = (1 + ε)yh−j and t =
(1+ε)yh−j

2K for some large integer
K such that t ∈ Iλ and K

yh−j ∈N. Clearly, u ∈ I1,h and v ∈ I2,j .
In order to show that one u-item, 2d − 1 v-items and M t-items can be packed in

one bin, we will de�ne anchor points for each size and then place items at some of
these such that no two items are overlapping.

There is only one anchor point for u-items, namely (0, . . . ,0), i.e. the origin of the
bin. We place one u item there. For items of side length v, we de�ne anchor points
as all points having all coordinates equal to (1 + ε)/2 or (1 + ε)/2− (1 + ε)yh−j . This
de�nes 2d anchor points, but an anchor point can only be used for a v-item if at least
one coordinate is (1 + ε)/2. Hence, we can pack 2d − 1 v-items together with the
u-item placed before. For an illustration of this packing in two and three dimensions,
see �g. 5.6.

For items of side length t, the anchor points are all points with coordinates
equal to i (1+ε)yh−j

2K for i = 0, . . . , 2K
yh−j − 2, i.e. we have ( 2K

yh−j − 1)d anchor points for
these items. These anchor points form a superset of all previous anchor points for
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u

v

v

v

Figure 5.6: Packing of u- and v-items in two and three dimensions for j = h, i.e., v = (1 + ε)/3.

u- and v-items. Together with the fact that t divides u and v, we can conclude
that all larger items take away an integer amount of anchor points for the t-items.
To be precise, the u-item blocks (u/t)d =

(
K/yh−j

)d
anchor points for t-items and

each v-item blocks
(
v
t

)d
= (2K)d anchor points for t-items. Hence, we can add

M :=
(

2K−yh−j
yh−j

)d
−
(
K
yh−j

)d
− (2d − 1)(2K)d t-items to the items packed before.

A Harmonic-type algorithmA packs a 1/mj -fraction of theN (2d−1) v-items 2d−
1 per bin, using (2d−1)N/mj

2d−1
= N
mj

bins in total. The remaining N (2d − 1)(1− 1/mj ) v-

items are packed 2d per bin, adding anotherN (1−1/mj )
2d−1

2d
=N (1−1/mj )

(
1− 1

2d

)
bins.

N/mj of the u-items are added to bins with red v-items, the remainingN (1−1/mj )
items of side length u must be packed one per bin.

Finally, an algorithm in the class C(h) needs at least NM/
(

2K−yh−j
yh−j

)d
bins to pack

the t-items, giving

N

1−
(

K
2K − yh−j

)d
− (2d − 1)

(
2Kyh−j

2K − yh−j

)d
bins for these items. If we let K →∞, this tends to N

(
1− 1/2d − (2d − 1)ydh−j

)
.

So, the total number of bins needed is at least

N

(
1
mj

+
(
1− 1

mj

)(
1− 1

2d

)
+ 1− 1

mj
+ 1− 1

2d
− (2d − 1)ydh−j

)
=N

(
2 +

(
1− 1

mj

)(
1− 1

2d

)
− 1

2d
− (2d − 1)ydh−j

)
As the optimal solution uses at most N bins, the competitive ratio of any such

algorithm A must be at least

RA ≥ 2 + (1− 1/mj )(1− 1/2d)− 1/2d − (2d − 1)ydh−j j = 1, . . . ,h (5.1)
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5.3.2 Instances h+ 1, . . . ,2h

Another set of instances is given for any j ∈ {1, . . . ,h}, if we use u = (1 + ε)(1 −
yh−j+1),v = (1 + ε)yh−j and t =

(1+ε)yh−j (1−yh−j+1)
K for some large enough integer K

such that u ∈ I1,h−j ,v ∈ I2,j , t ∈ Iλ and K
yh−j ,

K
1−yh−j+1

∈N. For these item sizes, the
algorithm is not allowed to combine u-items with v-items in the same bin, although
space for items in I1,i with i > h − j is reserved in red bins containing v-items.
We de�ne the following anchor points: the point (0,0) for type u; all points with
all coordinates equal to (1 + ε)(1 − yh−j+1) or (1 + ε)(1 − yh−j+1) − (1 + ε)yh−j for
type v; and all points with all coordinates equal to i (1+ε)yh−j (1−yh−j+1)

K for some i ∈
{0, . . . , K

yh−j (1−yh−j+1) − 2} for type t. Again the anchor points for u- and v-items are
a subset of the anchor points for t-items, and hence with the same argumentation
as before we can pack one u-item together with 2d − 1 v-items and M t-items if we

chooseM =
(
K−yh−j (1−yh−j+1)
yh−j (1−yh−j+1)

)d
−
(
K
yh−j

)d
− (2d −1)

(
K

1−yh−j+1

)d
, as the u-item takes up(

K/yh−j
)d

anchor points of the t-items and each v-item takes up
(
K/(1− yh−j+1)

)d
of these anchor points.

A similar calculation to before can be done: An algorithm in class C(h) needs
N/mj +N (1−1/mj )(1−1/2d) bins for red and blue items of type v. It needs N bins
for u-items, as they are packed one per bin, and �nally

NM(
K−yh−j (1−yh−j+1)
yh−j (1−yh−j+1)

)d
=N

1−
(

K(1− yh−j+1)

K − yh−j (1− yh−j+1)

)d
− (2d − 1)

(
Kyh−j

K − yh−j (1− yh−j+1)

)d
K→∞−−−−−→N

(
1−

(
1− yh−j+1

)d − (2d − 1)ydh−j
)

bins are required to pack the t-items. Hence, we need at least

N

(
1
mj

+
(
1− 1

mj

)(
1− 1

2d

)
+ 1 + 1−

(
1− yh−j+1

)d − (2d − 1)ydh−j

)
=N

(
2 +

1
mj

+
(
1− 1

mj

)(
1− 1

2d

)
−
(
1− yh−j+1

)d − (2d − 1)ydh−j

)
bins in total. This gives the following lower bound for the competitive ratio:

RA ≥ 2 + 1/mj +
(
1− 1/mj

)(
1− 1/2d

)
−
(
1− yh−j+1

)d − (2d − 1)ydh−j (5.2)

j = 1, . . . ,h

5.3.3 Instance 2h+ 1

Let u = 1+ε
2 ,v = (1 + ε)yh and t = (1+ε)yh

2K for some large enough integer K such
that u ∈ I1,h,v ∈ I2, t ∈ Iλ and K

yh
∈ N. For these item sizes, the algorithm is not

allowed to combine u-items with v-items in the same bin. We de�ne anchor points as
follows: (0,0) for type u; all points with coordinates equal to 1+ε

2 or 1+ε
2 − (1 + ε)yh
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5. Lower Bounds in Multiple Dimensions

for type v; all points with coordinates equal to i (1+ε)yh
2K for type t. As before, the

anchor points for u and v-items are a subset of the t-items’ anchor points, and so
we can pack one u-item together with 2d − 1 v-items and M t-items if we choose
M =

(2K−yh
yh

)d − ( Kyh )d − (2d − 1)(2K)d .
For this input, any Harmonic-type algorithm uses at least N bins for u-items,

N 2d−1
2d

=N (1− 1
2d

) bins for v-items and NM(
2K−yh
yh

)d bins for t-items. This gives in total

N

2− 1
2d

+ 1−
(

K
2K − yh

)d
− (2d − 1)

(
2Kyh

2K − yh

)d
K→∞−−−−−→N

(
3− 1

2d−1
− (2d − 1)ydh

)
bins. We therefore can derive the following lower bound on the competitive ratio:

RA ≥ 3− 1/2d−1 − (2d − 1)ydh (5.3)

5.3.4 Combined Lower Bound

Given a certain set of parameters (yj and mj ), the maximum of the three right sides
of inequalities (5.1) to (5.3) give us a bound on the competitive ratio of any Harmonic-
type algorithm with this set of parameters. In order to get a general (worst-case)
lower bound on RA, we need to �nd the minimum of this maximum over all possible
sets of parameters.

This lower bound for RA is obtained when equality holds in all of inequalities (5.1)
to (5.3). To see this, consider the following: We have 2h + 1 variables and 2h + 1
constraints. For j ∈ {1, . . . ,h}, we see that ineq. (5.1) is increasing in mj and ineq. (5.2)
is decreasing in mj . Next, let c ∈ {1, . . . ,h− 1}. We see that ineq. (5.1) for j = h− c ∈
{1, . . . ,h−1} is decreasing in yc , and ineq. (5.2) for j = h−c+1 ∈ {2, . . . ,h} is increasing
in yc. Finally, we have that ineq. (5.2) for j = 1 is increasing in yh and ineq. (5.3) is
decreasing in yh. This means, given certain parameters yj and mj , if e.g. ineq. (5.3)
gives a smaller lower bound on RA than ineq. (5.2) with j = 1 does, we can decrease
the value of yh such that the maximum of the three lower bounds becomes smaller.

Setting the right hand side of ineq. (5.1) equal to the right hand side of ineq. (5.2),
gives us 1

mj
= (1−yh−j+1)d − 1

2d
or alternatively 1

mh−j+1
= (1−yj )d − 1

2d
. Plugging this

into ineq. (5.1) (replacing j by h− j + 1), we �nd that

yj = 1−
−2dRA + 2dydj−1 − 4dydj−1 − 1 + 3 · 2d − 1/2d

2d − 1


1/d

(5.4)

Recall that we require 1/3 = y0 < y1. From this, combined with eq. (5.4) for j = 1, we
obtain that

RA ≥ 3− 2
2d − 1

3d
− 2d + 1

4d

We list some values of the lower bound for several values of d in table 5.10.
Note that for d = 1, our formula yields the bound of Ramanan et al. [95]. Surpris-

ingly, it does not seem to help to analyze the values of y2, . . . , yh. Especially, equations
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5.4. Further lower bounds

d 1 2 3 4 5 6 ∞
RA > 1.58333 2.02083 2.34085 2.56322 2.71262 2.81129 3

Table 5.10: Lower bounds for Harmonic-type algorithms in dimensions 1 to 6 and limit for
d→∞.

involving yj for j > 1 become quite messy due to the recursive nature of eq. (5.4).
If h is a very small constant like 1 or 2, we can derive better lower bounds for RA.
For larger h, we can use the inequalities y1 < yh, y2 < yh, y3 < yh (i.e. assuming that
h > 3) to derive upper bounds on the best value RA that could possibly be proven
using this technique. These upper bounds are very close to 2.02 and suggest that for
larger h, an algorithm in the class C(h) could come very close to achieving a ratio of
2.02 for these inputs. However, since the inequalities become very unwieldy, we do
not prove this formally.

Theorem 5. No Harmonic-type algorithm for two-dimensional online hypercube pack-

ing can achieve an asymptotic competitive ratio better than 2.0208.

5.4 Further lower bounds

Inspired by Extreme Harmonic as described in chapter 4, one could try to improve
online algorithms for packing 2-dimensional squares by incorporating two ideas from
the one-dimensional case: combining large items (i.e. items larger than 1/2) and
medium items (i.e. items with size in (1/3,1/2]) whenever they �t together (ignoring
their type), and postponing the coloring decision. The former is intuitive, while the
idea of the latter would be the following: When items of a certain type arrive, we
�rst give them provisional colors and pack them into separate bins (i.e. one item per
bin). After several items of this type arrived, we choose the smallest of them to be
red and all others are colored blue. With following items of this type, we �ll up the
bins with additional items. However, simply adding two more red items to the bin
with a single red item might be problematic: When �lling up the red bins with two
more red items, it could happen that these later red items are larger than the �rst one
- negating the advantage of having the �rst red item be relatively small. Alternatively,
we could leave the red item alone in its bin. This way, we make sure that at most 3/4
of the blue items of a certain medium type are smaller than the smallest red item of
this type, but we have more wasted space in this bin.

For both approaches discussed above we will show lower bounds on the competi-
tive ratio that are only slightly lower or even higher than the lower bound established
in section 5.3 for Harmonic-type algorithms.

5.4.1 Always combining large and medium items

First, we consider algorithms that combine small and large items whenever they �t
together. We de�ne a class of algorithms B1 that distinguish, possibly among others,
the following disjoint subintervals (types):

• Im = (1/3, y] for some y ∈ (1/3,1/2]

• Iλ = (0,λ]

91



5. Lower Bounds in Multiple Dimensions

These algorithms satisfy the following rules:

1. There is a parameter α s.t. an α-fraction of the items of side length in Im are
packed 3 per bin (“red items”), the rest are packed 4 per bin (“blue items”).

2. No bin that contains an item of side length in Iλ contains an item of side length
larger than 1/2 or an item of side length in Im.

3. Items of type Im are packed without regard to their size.

Let a,b ∈ Im, a < b. We consider two di�erent inputs, both starting with the same
set of items: α3N items of size b and (1−α/3)N items of size a (i.e. in totalN items of
size a and b). By rule 3, the adversary knows beforehand which item will be packed
in which bin, as they belong to the same type. Hence, the adversary can order these
items in such a way that the items colored blue by the algorithm are all a-items, and
in each bin with red items, there are two a- and one b-item. By rule 1, the online
algorithm uses (α3 + 1−α

4 )N = 3+α
12 N bins for items of this type.

The sizes a and b will tend towards 1/3, as this way the adversary can maximize
the total volume of sand (in�nitesimally small items) that can be added to any bin
in the optimal solution while not changing the way the algorithm packs these items
and increasing the number of bins the algorithm needs for packing the sand items.
Therefore, we will assume that a and b are arbitrarily close to 1/3.

In the �rst input, after these medium items, (1−α/3)N
3 items of size 1− a arrive,

followed by sand of total volume 24+7α
324 N . In the optimal solution, we can pack α

12N

bins with four b-items and sand of volume 5/9 each, and (1−α/3)N
3 bins with three

a-items, one (1−a)-item and sand of volume α
12N · 29 each. Hence, the optimal solution

uses α
12N + (1−α/3)N

3 = 12−α
36 N bins.

The algorithm, however, cannot pack a large item into any of the bins with red
medium items, as these always contain a b-item. Hence, in addition to the 3+α

12 N

bins for medium items, the algorithm needs (1−α/3)N
3 bins for large items and at least

24+7α
324 N bins for sand. This gives in total at least 213−2α

324 N bins, and a competitive
ratio of at least

213−2α
324 N

12−α
36 N

=
213− 2α
9(12−α)

(5.5)

In the second input, after the medium items, N/3 items of size 1/2 + ε will arrive,
followed by sand of total volume 5

36N . The optimal solution packs all medium items
three per bin, using N/3 bins, and adds one large item and sand of volume 15/36 in
each such bin. In the algorithm’s solution, large items can only be added to the αN/3
bins containing three red items, i.e. it needs additional N/3 − αN/3 bins for the
remaining N/3−αN/3 large items. Finally, the algorithm uses at least 5/36N bins
for sand. The algorithm therefore uses in total at least 3+α

12 N +(1−α)N/3+5/36N =
26−9α

36 N bins. This gives a competitive ratio of at least

3(26− 9α)
36

=
26− 9α

12
(5.6)

Observe that eq. (5.5) is increasing in α, while eq. (5.6) is decreasing in α. Hence,
the minimum over the maximum of the two bounds is obtained for the α-value that
makes both bounds equal, which is α = 197−√36541

27 ≈ 0.2164. For this α, both bounds
become larger than 2.0043.
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5.4. Further lower bounds

Theorem 6. No algorithm in class B1 for two-dimensional online hypercube packing

can achieve a competitive ratio of less than 2.0043.

5.4.2 Packing red medium items one per bin, postponing the coloring

Now, consider the algorithm that packs red items alone into bins and makes sure
that at most 3/4 of the blue items of a certain type are smaller than the smallest red
item of this type. We de�ne a new class of algorithms B2 that distinguishes, possibly
among others, the following disjoint subintervals (types):

• Im = (1/3, y]

• Iλ = (0,λ]

Furthermore, algorithms in B2 satisfy the following rules:

1. There is a parameter α s.t. an α-fraction of the items of side length in Im are
packed 1 per bin (“red items”), the rest are packed 4 per bin (“blue items”).

2. No bin that contains an item of side length in Iλ contains an item of side length
larger than 1/2 or an item of side length in Im.

3. Items of side length in Im are initially packed one per bin. At some regular
intervals, the algorithm �xes some of these items to be red, and does not pack
additional items of the same type with them.

From rule 3 we can conclude that the algorithm gives the following guarantee:
1/4 of the blue items with size in Im are not smaller than the smallest red item with
size in Im.

Let a,b ∈ Im, a < b as before. We again consider two di�erent inputs, both starting
with the same set of items: αN + 1−α

4 N items of size b, and 3(1−α)
4 N items of size a.

They arrive in such an order that all red items are b-items, and all bins with blue items
contain one b- and three a-items. We require the b-item in the blue bins because of
the postponement of the coloring: If the �rst blue item in a bin was an a-item, the
algorithm would choose this item to become red and not one of the b-items. By rule
1, the algorithm needs 1−α

4 N +αN = 1+3α
4 N bins for these N items.

In the �rst input, after the medium items arrived, we get 1−α
4 N large items of size

1− a, followed by sand of total volume 13+7α
144 N . The optimal solution can pack the

a-items three per bin together with one (1−a)-item, using 1−α
4 N bins for these items.

The b-items are packed four per bin, using (α4 + 1−α
16 )N bins. Note that the empty

volume in all bins of these two types is 1−α
4 N · 2

9 + (α4 + 1−α
16 )N · 5

9 = 13+7α
144 N , i.e. it

equals exactly the volume of the sand, so the sand can be �lled in these holes without
using further bins. Hence, the optimal number of bins is 1−α

4 N +(α4 + 1−α
16 )N = 5−α

16 N .
The algorithm uses, as discussed before, 1+3α

4 N bins for the medium items of size
a and b. The large items cannot be added to red medium items, as they do not �t
together, thus the algorithm uses 1−α

4 N additional bins for the large items. Finally,
according to rule 2, at least 13+7α

144 N additional bins are needed to pack the sand. This
gives in total at least 1+3α

4 N + 1−α
4 N + 13+7α

144 N = 85+79α
144 N bins. We �nd that the

competitive ratio is at least
85+79α

144 N
5−α
16 N

=
85 + 79α
9(5−α)

(5.7)
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5. Lower Bounds in Multiple Dimensions

In the second input, N/3 items of size 1/2 + ε arrive after the medium items,
followed by sand of total volume 5/36N . The algorithm packs this input the same
way as a B1 algorithm, so the analysis carries over. We get a competitive ratio of at
least

26−9α
36 N

N/3
=

26− 9α
12

(5.8)

It can be seen that eq. (5.7) is a function increasing inα, while eq. (5.8) is decreasing
in α, hence the minimum over the maximum of two bounds is reached when they
are equal. In that case, α = 529−√274441

54 ≈ 0.0950, and the lower bound for the
competitive ratio becomes larger than 2.0954.

Theorem 7. No algorithm in class B2 for two-dimensional online hypercube packing

can achieve a competitive ratio of less than 2.0954.

Note here that this is an even higher lower bound than the one shown in the
previous section 5.4.1, although we use postponement of the coloring here. This
indicates that the space we waste by packing red medium items separately outweighs
the advantage we get by having a guarantee about the size of the red item.

5.5 Discussion and directions for future work

We gave new lower bounds for general algorithms and several speci�c classes of
algorithms for the online bin packing problem in higher dimensions. We also showed
that by transfering some of the ideas from the one-dimensional case to the two-
dimensional case, one cannot easily gain improved algorithms as similarly high lower
bounds can be found.

Lower bounds generally serve two purposes: Providing some guidance which
results are worth tackling, and more importantly, giving an intuition on which di�-
culties prevent algorithms from performing better. Our result on general algorithms
mainly serves the �rst purpose, while especially lower bound results for speci�c
classes of algorithms such as the ones presented in sections 5.3 and 5.4 can illustrate
the limitations of certain algorithms and inspire new approaches.

To that end, we gave a lower bound for Harmonic-type algorithms as Ramanan
et al. [95] de�ned them. In the second step, we tackled the question of whether our
improvements from Extreme Harmonic (see chapter 4), which helped to overcome
this exact lower bound in the one-dimensional case, could also help to overcome these
lower bounds for higher dimensions. The answer we found is that such Extreme
Harmonic-inspired algorithms do indeed not seem to allow for improvements even
in only two dimensions.

Why is this the case? Our lower bound for Extreme Harmonic-inspired two-
dimensional algorithms basically deals with the interesting question of how to avoid
that some of the red medium items in a bin are too large to allow large items to be
added to this bin. In the one-dimensional case, it was feasible to pack items separately
�rst and then decide on the smallest one to become red. This gave us guarantees
about the size of half of the blue items.

In two dimensions, this is not so easy; we basically have two possibilities. Either
we pack three red medium items into a bin; in that case, it is hard to control the size
of the largest of them. Or, alternatively, we pack only one medium red item into a bin.
This would give us guarantees of the desired form, however, these guarantees are
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5.5. Discussion and directions for future work

much weaker than before, as now we can only make statements about one quarter of
the blue items instead of half of them. Additionally, with this approach we also waste
much more space in such bins.

In essence, the increased complexity due to the additional dimension means that
the additional structural information we gain by postponing the coloring does not
su�ce to improve our results signi�cantly. For the second suggested approach, we
even obtained a higher lower bound than for Harmonic-type algorithms. Thus, here
the loss due to wasted space seems to be more severe than the gain we get from item
size guarantees.

A possible solution to this problem and therefore an interesting direction for future
work could be to �ll the space that is wasted when packing only one medium red item
with a large item with items of a third, smaller type. However, this would probably
require a larger number of weighting functions – possibly also more complex – in
order to correctly count all bins. This would �nally also increase the complexity of the
linear programs that need to be solved. Thus, novel ideas are needed to incorporate
such ideas.
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Part II

Geometric Knapsack Problems
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6An Overview of Geometric Knapsack

The knapsack problem can be considered a natural dual of the bin packing problem:
Instead of packing all items into as few as possible containers, we now want to pack
a maximum weight subset of items into a single container. In order to illustrate
this connection, let us again describe the cutting stock problem from chapter 3. A
merchant o�ers some sheet material such as sheet metal and has a supply of sheets of
�xed dimensions. Customers request rectangular cutouts of certain dimensions which
are at most the dimensions of one sheet. While one can see this as a bin packing
problem as described in chapter 3, one can also imagine knapsack-type questions,
e.g., what is the maximum pro�t one can make from a single sheet of material. This
also illustrates that the knapsack problem is often a subproblem (e.g. in form of a
separation problem for linear programs) when considering bin packing problems;
note that we also used one-dimensional knapsack problems for our result in chapter 4.

The one-dimensional knapsack problem has a long history because of its funda-
mental question: Among a set of alternatives, choose (binarily) the maximum pro�t
subset, while adhering to some resource constraints. One can imagine a huge number
of practical examples for this problem: For example, consider a �nancial decision
problem, where given a collection of investment opportunities, each with a (expected)
pro�t and cost (the sum you need to invest), choose a subset with maximum expected
pro�t subject to a budget constraint. There are other applications in e.g. cargo loading
or cryptography; see Kellerer et al. [81] for more detailed examples. The number of
example applications one can imagine for the geometric two-dimensional problem is
of course similarly vast. Recall for example the advertisement placement problem
from the introduction; for literature on this and similar problems, see e.g. Freund and
Naor [47].

6.1 Problem definition

The one-dimensional knapsack problem asks the following question: Given a knapsack
of unit size and a set of items I , each item i with a particular size si and a pro�t
or weight pi , select a maximum pro�t subset I ′ ⊆ I of these items that �t into the
knapsack, that is,

∑
i∈I ′ si ≤ 1.

As for bin packing, we might consider two di�erent generalizations of this problem
to higher dimensions. In the two-dimensional (vector) knapsack problem, each item i
has d sizes s1i , . . . , s

d
i for some dimension d and we have d capacities c1, . . . , cd . Our

objective is to select a subset of items I ′ such that
∑
i∈I ′ s

j
i ≤ cj for any j ≤ d. This

setting represents the generalization where we have a number of restricted resources
(e.g. size, weight) and each item requests a certain amount of these resources.

In the two-dimensional geometric knapsack problem, the knapsack is – in the
most general setting – a rectangle of size N ×N ′ , and each item i has a particular
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6. An Overview of Geometric Knapsack

width wi ≤ N , height hi ≤ N ′ and pro�t pi . The goal is to select a subset of the
input items and pack them into the knapsack such that the items are axis-aligned
and no two items overlap. In the most general version, items might not be rotated
but must be packed with the orientation given in the input. The objective function
is to maximize the total pro�t of the selected items. In this problem, the full�lment
of the constraints cannot be checked independently as in the non-geometric setting;
instead, we do not only need to select the items but also specify a position where to
pack them. This thesis focuses on the geometric knapsack problem.

For this problem, many variants can and have been considered. We list those
relevant for this thesis below:

Square knapsack This is one of the most common problem variants, in which we
assume N =N ′ .

Square items All input items are squares. We denote by si the side length of item i.

Rotatable items Items can be rotated by 90 degrees.

Resource augmentation While the optimal solution uses a knapsack of sizeN×N ′ ,
the algorithm is allowed to use a knapsack of size (1 + ε)N × (1 + ε)N ′ (two-
dimensional resource augmentation) or (1 + ε)N ×N ′ or N × (1 + ε)N ′ (one-
dimensional resource augmentation). Here, ε is some small positive constant,
and usually the approximation factor and running time of such an algorithm
depends on ε.

Unweighted items Items have uniform pro�ts, i.e., all items have pro�t pi = 1.

In this part we consider the absolute approximation ratio, unless stated otherwise.

6.2 Related work

Early literature on the one-dimensional knapsack problem dates back to the 19th
century [92], where it was basically shown that a general integer program can be
reduced to the knapsack problem, namely by aggregating the constraints into a
single knapsack constraint. This illustrates nicely the fundamental importance of the
knapsack problem. In-depth research on it started in the 1950s [34]. The problem is
NP-complete and there is a vast amount of literature on approximation algorithms
for it, peaking in an FPTAS [69]. See Kellerer et al. [81] for an extensive discussion of
this problem and many variants of it.

For the two-dimensional vector knapsack problem, a PTAS has been known since
the 1980s due to Frieze and Clarke [48]. Later, a PTAS with improved running time
was given by Caprara et al. [24]. On the other hand, it has been known since the
1980s that no FPTAS can exist [90], and it is also impossible to obtain an EPTAS [85].

We now discuss in more detail the generalization of this problem to the two-
dimensional geometric setting. The problem of �nding a maximum pro�t packing
of rectangles into a knapsack is NP-hard [87]. Caprara and Monaci [23] were the
�rst to give an approximation algorithm for this problem, the approximation ratio
being 3 + ε. Jansen and Zhang [74] gave a (2 + ε)-approximation algorithm for the
case that the pro�ts are all equal (also called cardinality case). The same authors
gave a 2 + ε approximation for the general geometric knapsack problem [75]. Very
recently, Gálvez et al. [51] improved this to a 17/9 +ε approximation. They also gave
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6.3. Results in this thesis

a 558
325 + ε ≈ 1.72 + ε approximation for the cardinality case, a 3/2 + ε approximation

for the weighted case with rotation and a 4/3 + ε approximation for the cardinality
case with rotation. Moreover, there is a PTAS with quasi-polynomial running time
(also called QPTAS) when the input is quasi-polynomially bounded by Adamaszek
and Wiese [1].

In the special case where all input items are squares, Baker et al. [6] gave a 4/3
approximation for the cardinality case. This was improved to an AFPTAS by Jansen
and Zhang [74]. For the weighted case, Harren [62] gave a 5/4 + ε approximation,
and a PTAS is known due to Jansen and Solis-Oba [72]. Harren [62] also showed that
his algorithm can be generalized to higher dimensions, yielding an approximation
ratio of 1 + 1/2d + ε for d dimensions.

While for the general problem with rectangles, no PTAS is known so far, we
can achieve an approximation guarantee of 1 + ε when we allow the algorithm
slightly more space in the knapsack than the optimal solution is allowed to use. To
be more precise, [46] gave an algorithm that �nds a packing of pro�t (1 − ε)OPT
into a knapsack of size (1 + ε)× (1 + ε), where OPT is the optimal pro�t that can be
packed into a 1× 1 knapsack. Similarly, in [71], it was shown how to obtain a 1 + ε
approximation in a 1×(1+ε) knapsack. We refer to these settings as two-dimensional
and one-dimensional resource augmentation, respectively.

When the pro�t of the items equals their area, Fishkin et al. [46] achieved a PTAS
for packing square items and Bansal et al. [16] achieved a PTAS for packing general
rectangles.

6.3 Results in this thesis

We present two results regarding geometric knapsack: In chapter 7, we improve
the running time of the PTAS for square packing by Jansen and Solis-Oba [72] from
Ω

(
n221/ε

)
to Oε(1)nO(1), i.e., we present an EPTAS. In chapter 8, we show how to

even obtain an algorithm that returns an optimal solution for packing rectangles
using two-dimensional resource augmentation, while still using only EPTAS running
time – previously, a PTAS was the best result known.
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7Geometric Knapsack with Squares

In this chapter, we discuss the two-dimensional geometric knapsack problem with a
square knapsack and square items. Items have di�erent pro�ts and are not rotatable.
For this problem, the best known algorithm so far was a PTAS given by Jansen and
Solis-Oba [72]. It has a running time of the form Ω

(
n221/ε

)
, i.e., the exponent of n is

triple exponential in 1/ε. In this chapter, we give an EPTAS for this problem.
For many geometric problems in combinatorial optimization, a common and

widely applied technique is the so-called shifting technique. In knapsack problems,
for instance, items are classi�ed into large and small items with the intention – simply
speaking – that large items are much larger than small items. This classi�cation is
done such that the “medium” items inbetween can be neglected since, e.g., they give
very little pro�t in the optimal solution. Producing this gap between the size of large
and small items is then used to argue di�erently about these subsets: Large items
can often be enumerated (as there cannot be too many of them) and small items are
small enough to simplify packing them (having small items compared to the knapsack
size is a much easier setting; see e.g. [45]). However, when using this approach the
relative size of the large squares can then be very small, in the order of ε1/ε , and since
most algorithms enumerate them, this leads to a running time whose exponent of n
is exponential in 1/ε.

This raises the question whether this highly impractical running time is truly
necessary or whether better running times are possible, for instance of the form
nO(1/ε) or even Oε(1) · nO(1). We answer this question for the geometric knapsack
problem with squares by providing an EPTAS. As this problem cannot have an FPTAS
[87], we thus achieve the best possible running time up to constant factors.

Results in this chapter and organization Our result largely builds on the pre-
vious PTAS by Jansen and Solis-Oba [72]. We thus brie�y describe the main ideas
behind their algorithm in section 7.1. In the subsequent sections 7.2 to 7.4, we then
show how to improve the running time of some steps of this PTAS in order to obtain
our EPTAS. In the �nal section 7.5, we present our EPTAS as a whole and summarize
the total running time.

7.1 PTAS by Jansen and Solis-Oba

The PTAS by Jansen and Solis-Oba [72] follows a general approach that many al-
gorithms for geometric packing problems implement. First, they give a structural
result, showing that a near-optimal packing P ∗ with a speci�c structure must exist
(near-optimal means having approximation ratio 1 + ε). Then, they argue how one
can enumerate all such structured packings in polynomial time, implying that one
can �nd a solution which is at least as good as P ∗ and thus a (1 + ε)-approximation.

103



7. Geometric Knapsack with Sqares

Our EPTAS builds on their approach, and we show how some of their crucial steps
can be speeded up signi�cantly by examining the input items more carefully.

7.1.1 Prerequisites

Before diving into the result by Jansen and Solis-Oba [72], we will �rst clarify some
terminology and techniques used in this chapter, which are very common in the
community of geometric packing problems, but might not be obvious to readers not
familiar with such results. For showing the structural result – i.e., that there exists a
near-optimal packing with a certain structure – one usually starts from some optimal
packing and then changes the packing to obtain the desired structure. Such changes
might e.g. include removal of items, where we need to make sure that the pro�t of the
removed items is at most a 1

1+ε -fraction of the total pro�t of the packing. We might
also change the input by e.g. rounding down the weights of some input items. This is
possible as long as the values to which we want to round them can be computed in
polynomial time from the input.

A second terminology often used is that of guessing a certain parameter. This
simply means that we enumerate all possibile choices for this parameter and continue
our algorithm with these choices; i.e., we branch our algorithm’s execution. We then
know that in at least one of these branches we “guessed” the right value, and thus, if
we return in the end the best result of all branches, we are at least as good as if we
knew the right choice of this parameter right from the start and have used this value.

The last prerequisite we want to mention here is the very basic knapsack algorithm
Next-Fit Decreasing Height (NFDH). Items are packed from left to right into rows or
shelves (rectangular areas with the same width as the knapsack) and the shelves are
stacked on top of each other within the knapsack. Within a shelf, the items are aligned
with the bottom of the shelf. There is always a current shelf, initially its bottom line
is the bottom of the knapsack. The algorithm sorts the items in decreasing order of
height (for squares, this is of course the same as sorting by width, but this algorithm
can also be used for packing rectangles) and then processes each item in this order.
If the current item can be packed into the current shelf (as far left as possible, next
to the last packed item), pack it there. Otherwise, open a new shelf with bottom
line equal to the top of the �rst item in the current shelf, make this new shelf the
current shelf, and pack the item there. Stop packing when the next item cannot be
packed anymore into the current shelf and there is not enough space for opening a
new shelf. A packing resulting from NFDH is illustrated in �g. 7.1. We will later use
the following lemma about NFDH which follows directly from lemma 5.1 in Jansen
and Solis-Oba [72]; intuitively, NFDH waists almost no area in the knapsack if the
items are small compared to the knapsack size:

Lemma 20. Let S be a set of squares each of size at most δ and let R be a rectangular

area of length a and width b. NFDH either packs in R all squares from S , or it packs
squares of total area at least (b − 2δ)× (a− δ).

7.1.2 KR-packings

Jansen and Solis-Oba [72] show the existence of a near-optimal packing using the
algorithm due to Kenyon and Rémila [82]. We refer to the type of packing result-
ing from Kenyon and Rémila’s algorithm as a KR-packing, see �g. 7.2 for a sketch.
Intuitively, when packing squares into a rectangular region that has much larger
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7.1. PTAS by Jansen and Solis-Oba

Figure 7.1: A packing produced by NFDH. The blue lines show the bottom lines of the shelves.

hC

wC

frame FC,1

wC,1

frame FC,2

wC,2

kf (C,2,1)

subframe FC,2,1

subframe FC,2,2

> kf (C,2,3)−1

. . .
frame FC,t−1

wC,t−1

frame FC,t

wC,t

block subframes

Figure 7.2: Illustration of a KR-packing with t frames.

width than height1, the KR-algorithm partitions this region into frames (vertical slots
within the region), and each frame into subframes (horizontal slots within the frame).
There are two types of such subframes: row subframes, which contain squares of
roughly the same size; and block subframes, which contain squares that are very
small compared to the size of the subframe. In addition, for the heights of the row
subframes, there are only few possible values, and within each row subframe, squares
are only packed in one row from left to right (i.e. any vertical line going through a
row subframe intersects at most one square).

1Kenyon and R’emila’s algorithm was originally intended for solving the strip packing problem.

105



7. Geometric Knapsack with Sqares

De�nition 24 (KR-packing). Consider a rectangular area C with height hC and width

wC and a set of squares S . Assume w.l.o.g. that hC ≤ wC . We say that the squares in S
are packed into C in a KR-packing if

• there are values k0, ..., k1/ε4 ∈ R with k0 = ε4 · hC ≤ k1 ≤ . . . ≤ k1/ε4 such that

each ki is the size of some input item,

• the area C is partitioned (vertically) into at most ( 2+ε2

ε2 )2 =O(1/ε4) rectangular
frames FC,1,FC,2, ... of height hC and widths wC,1,wC,2, ...,

• each frame FC,` is (horizontally) partitioned into at most 1/ε2
subframes

FC,`,1,FC,`,2, .... For each such subframe FC,`,j denote by wC,`,j its width and by

hC,`,j its height. We have that wC,`,j ≥ ε2 · hC . For a subframe FC,`,j we have
that either

1. there is an index f (C,`, j) ∈ {1, ...,1/ε4} such that hC,`,j = kf (C,`,j), each

vertical line crossing FC,`,j intersects at most one square i packed in FC,`,j ,
and for this square i we have that si ∈ (kf (C,`,j)−1, kf (C,`,j)] and if FC,`,j
containswC,`,j such squares thenwC,`,j ≥ wC,`,j ·kf (C,`,j) (a row subframe

or a row for short) or

2. it contains only squares i with si ≤ ε4 · hC and hC,`,j ≥ ε2 · hC (a block
subframe or a block for short) or

3. it does not contain any squares (an empty subframe).

• each frame FC,` has at most one subframe which is a block or empty.

We de�ne KR-packings for areasC with hC > wC (vertical KR-packings) in a similar
manner. For the sake of simplicity of presentation, we will only speak of horizontal
KR-packings (as de�ned in de�nition 24) in this chapter, but every statement about
them also holds analogously for vertical KR-packings.

Note that all squares i with si > ε4 · hC are packed into row subframes and
all squares i′ with si′ ≤ ε4 · hC are packed into block subframes; that is, given a
rectangular area that is packed with a KR-packing and a set of items that shall be
packed into it, we can immediately partition the input items into two sets which are
packed in di�erent subcontainers of the packing.

7.1.3 Structured packing

We can now formulate the structural result by Jansen and Solis-Oba:

Lemma 21 (Structured packing [72]). For any instance there exists a solution consisting
of a set of squares I ′ ⊆ I such that p(I ′) ≥ (1−O(ε))OPT and there is a packing for I ′
with the following properties:

• there is a subset I ′L ⊆ I ′ of squares with |I ′L| ≤ F(ε) that are labeled as big squares,
where F(ε) = (1/ε)2O(1/ε4)

,

• the space not occupied by the big squares can be partitioned into at most F(ε)
rectangular cells C,

• each square in I ′S := I ′ \ I ′L is packed into a cell such that it does not overlap any

cell boundary,
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7.1. PTAS by Jansen and Solis-Oba

• each cell in C is either labeled as a block cell or as an elongated cell. Denote its

height by hC and its width by wC .

– For each block cell C ∈ C we have that each square i ∈ I ′S packed into C
satis�es si ≤ ε2 ·min{hC ,wC}.

– For each elongated cell C ∈ C we have that the squares in it are packed in a

KR packing.

Unfortunately, F(ε) can be as large as (1/ε)2O(1/ε4) . Using lemma 21 one can obtain
a PTAS with a running time of nO(F(ε)) = nOε(1): �rst, we guess the at most F(ε) large
squares in time nO(F(ε)). Secondly, we guess the sizes of the cells in C. This can be
done directly in pseudopolynomial running time (n ·maxi si)O(F(ε)) or in time nO(F(ε))

by exploiting some further properties of the decomposition (not stated above, see
[72] for details). Then we compute a packing for the guessed large squares and the
cells. It remains to select some of the remaining squares and to pack them into the
cells. To this end, we guess the heights and widths of all frames and subframes in
each elongated cell (again, either directly in pseudo-polynomial time or in polynomial
time using some further properties of the decomposition). This splits each elongated
cell into a set of rows and a set of blocks. It remains to pack squares such that

• into each block cell or block subframe C we pack only squares i ∈ I with
si ≤ ε2 ·min{hC ,wC} such that the total area of the assigned squares does not
exceed the area of C

• into each row subframe C we pack only squares i with si ≤ hC . Also, we ensure
that if C is contained in an elongated cell C′ with hC′ ≤ wC′ then each vertical
line intersects at most one square packed into C. (If hC′ ≥ wC′ , the same holds
for horizontal lines.)

This yields an instance of the generalized assignment problem (GAP) [100] with a con-
stant number of containers (or machines as stated in the terminology of Shmoys and
Tardos [100]). In particular, we can compute a (1 + ε)-approximation for this instance
in time nOε(1). One can show that the squares assigned to a block cell/subframe can
be packed into them in a greedy manner, while losing only a factor of 1 + ε in the
objective. This yields a PTAS for the overall problem.

There are two crucial steps in which this algorithm needs a running time of nOε(1):

• guessing the large squares

• guessing the sizes of all cells and all subframes

In the next sections, we explain how we address these two problems. In section 7.2
we present a technique that allows us to guess the large squares in time Oε(1) ·nO(1).
Then in section 7.3 we present an EPTAS for the special case that N �N ′ , i.e., the
knapsack is a rectangle with very large aspect ratio. In that case, there is a near-
optimal packing with no large squares and only one cell that is elongated. This case
will illustrate our techniques to address the second issue: to guess the sizes of all
cells and frames. As we will see, this step will be interlaced with the selection of
the squares and the computation of their packing. Building on these techniques, in
section 7.4 we present our overall approach for the general case.
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7. Geometric Knapsack with Sqares

7.2 Guessing large squares faster

First, by losing at most a factor of 1 +O(ε) we round the pro�ts of the squares to
powers of 1 + ε in the range [1,n/ε).

Lemma 22. We can modify the input such that there are only k∗ =O( logn
log(1+ε) ) di�erent

square pro�ts while losing at most a factor of 1 +O(ε).

Proof. In a �rst step, we rescale the pro�ts of the squares such that the square with
largest pro�t has pro�t 1 and all pro�ts lie in the interval [0,1]. We now know that
the optimal solution for this rescaled instance has pro�t at least 1. Therefore, we
lose at most a factor 1 + ε if we remove all squares from the input that have pro�t
less than ε/n, as these squares can never contribute more than εOPT to the solution.
Finally, we multiply each pro�t by n/ε and hence end up with an instance where
square pro�ts are in the range [1,n/ε]. Losing another factor of 1+ε, we round down
the pro�t of each square to the next smaller powers of 1 + ε. As a result, we obtain
k∗ = log1+ε(n/ε) =O( logn

log(1+ε) ) di�erent values for the square pro�ts.

As a result, we obtain k∗ di�erent values for the square pro�ts and we de�ne
I (k) := {i ∈ I |pi = (1 + ε)k} for each k = 0, ..., k∗. This is a standard step that can be
applied to any packing problem where we are guaranteed that |OPT| ≤ n.

We would like to guess the large squares I ′L. Unfortunately, |I ′L| can be as large
as F(ε) = (1/ε)2O(1/ε4) so we cannot a�ord to enumerate all possibilities for I ′L. Also,
for a square i ∈ I it is a priori not even clear whether it appears as a large or small
square in I ′ (some square in I ′L might even be smaller than some square in I ′S ). To
address this, �rst we guess B := |I ′L|; there are onlyOε(1) possibilities. Then we do the
following transformation of I ′ . If for a pro�t class I (k) we have that |I ′ ∩ I (k)| ≥ B/ε
then we remove all squares in I ′L ∩ I (k) from I ′ .

Lemma 23. Suppose that |I ′ ∩ I (k)| ≥ B/ε. Then p(I ′L ∩ I (k)) ≤ ε · p(I ′ ∩ I (k)).

Proof. All squares in I (k) have the same pro�t and we have that |I ′L| = B, hence

|I ′L ∩ I (k)| ≤ B. Therefore, |I ′S ∩ I (k)| ≥ B(1−ε)
ε and p(I ′L∩I (k))

p(I ′∩I (k))
≤ B

B+ B(1−ε)
ε

= ε.

Denote by I ′′ the resulting solution and let I ′′L := I ′L ∩ (
⋃
k:|I ′∩I (k) |<B/ε I (k)). In I ′′

each pro�t class contributes at most B/ε squares in total or no large squares. This is
useful since we can guess now the large squares in I ′′ fast. If a class I (k) contributes nk
squares to the solution we can assume w.l.o.g. that those are the nk smallest squares
of this class (since they are squares and all have roughly the same weight). Therefore,
let Ĩ denote the union of the B/ε smallest squares from each class I (k). We know
that |Ĩ | ≤ O( logn

log(1+ε) ) · B/ε and that I ′′L ⊆ Ĩ . We can now guess the correct choice

of the at most B squares in I ′′L in time
(|Ĩ |
B

) ≤ (log1+ε(n/ε) · B/ε)B = ( logn
log(1+ε) )F(ε) ≤

( 1
log(1+ε) )O(F(ε)) ·n. This culminates in the following lemma.

Lemma 24. There are only Oε(1) ·n possibilities for the large squares I ′′L in I ′′ .
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7.3 Indirect guessing technique - special case

Suppose that the input knapsack has sizeN×N ′ withN ≥ 1
ε4N

′ . For such an instance,
there exists a (1 + ε)-approximative solution which is a KR-packing (i.e., behaves like
a single elongated cell) and there are no big squares [72].

From this packing, we �rst guess the number of frames and the number of sub-
frames of each of them. There are 1/εO(1/ε4) possibilities. For each subframe we guess
whether it is a row subframe, a block subframe, or an empty subframe.

7.3.1 Guessing the block sizes

Then we guess the heights and widths of all block subframes, or blocks for short. This
needs some preparation. Denote by K the number of blocks (which is implied by our
previous guesses). We have that K ≤O(1/ε4) as each frame can contain at most one
block subframe. Let α be the area of the block with largest area. We �rst guess an
estimate of α. Intuitively, for doing this we use that α is by at most a factor O(n)
larger than the area of the largest square contained in the largest block.

Lemma 25. We can compute a set of T ≤ n logn
log(1+ε) values α1, ...,αT such that there

exists an i ∈ {1, ...,T } such that αi ≤ α ≤ (1 + ε)αi . De�ne α̃ := αi .

Proof. Denote by ŝ the size of the largest square packed in a block in the near-optimal
solution we are considering. We have that ŝ2 ≤ α ≤ nŝ2. Therefore, consider the set{

(1 + ε)js2i | ∀si ∈ I,∀j ∈ {0, . . . , log1+ε n}
}
.

It contains log1+ε n values between s2i and ns2i for every square size si , hence at most
n log1+ε n values in total. As the values are by at most a factor 1 + ε apart, the claim
follows by choosing αi to be the largest value in this set below α.

We guess α̃ in time n logn/ log(1 + ε).
We will now prove the following useful lemma, which we will use at various

places:

Lemma 26. Let R be a rectangle of side lengths a,b and S a set of squares of total

pro�t p(S) such that each of the squares in S has side length at most εmin{a,b} and
the total area of S is a(S) ≤ ab. Then we can pack a subset S ′ ⊆ S with total pro�t

p(S ′) ≥ (1−O(ε))p(S) into R.

Proof. Each square has area at most ε2 min{a,b}2 ≤ ε2ab. If a(S) ≤ ab(1−2ε)2, then
a(S) ≤ a(1 − ε)b(1 − 2ε) ≤ (a − ε)(b − 2ε) and hence by lemma 20 we can pack all
squares from S into the rectangle R. Therefore, assume that a(S) > ab(1− 2ε)2, and
try to �nd a subset of squares from S that has small pro�t (at most O(ε)p(S)) such
that when we remove these squares from S , the total area drops below the bound from
lemma 20. We assign the squares to groups such that each group contains squares
with a total area between 4εab and (4ε + ε2)ab (we can achieve this by a simple
greedy algorithm: assign squares into one group until the total area of squares in this
group is at least 4εab; the upper bound follows from the upper bound on the square
size). We get that ab(1−2ε)2

(4ε+ε2)ab =Ω (1/ε), and thus there is one group j whose squares Sj
have a total pro�t of at most O(ε)p(S). The squares in this group have an area of at
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w ∈ [ αN ,N ]

h ∈ [ αN ,N ] b

a = εw

p(Si) minimal for this stripe

Largest block B Small block B′

w′ ≤ ε αN

h′ ≤ ε αN

s ≤ εw′

s ≤ εh′

Figure 7.3: Illustration for proof of lemma 27.

least 4εab ≥ (1− (1− 2ε)2)ab and hence the squares in S\Sj have total area at most
ab − (1− (1− 2ε)2)ab = (1− 2ε)2ab and we can pack them using lemma 20.

Next, we simplify the packing by removing blocks that are very small.

Lemma 27. By losing a factor 1 +O(ε) we can remove all blocks with area less than

α̃ ε
KN .

Proof. Consider the largest block (according to area) B, let w be its width and h its
height and suppose that w ≥ h. De�ne 1/ε vertical strips of equal width in this cell,
and let p(Si) (“the pro�t of strip Si”) denote the total pro�t of all squares intersecting
the i-th strip. A square cannot intersect more than two strips, as the square size is
at most εw and this is also the width of the strips. This means that

∑1/ε
i=1p(Si) ≤

2
∑
i packed in Bpi = 2p(B) (where p(B) denotes the total pro�t of squares in block

B). Consider the strip with smallest pro�t. It must have total pro�t p(Si) ≤ 2εp(B).
Hence, we can remove all squares touching the strip with lowest p(Si) at cost of at
most anO(ε) fraction of the pro�t of all squares in this cell. See �g. 7.3 for illustration.

The free strip has width a := εw and height b := h and thus an area of α∗ :=
εhw = εα, and we now pack the squares of the small blocks (i.e. blocks with area less
than ε α̃

KN ) into this strip using NFDH. Let S be the set of these squares. The squares
in S have a total area of at most ε α̃N ≤ ε αN = α∗.

Let now B′ be one of the small blocks with width w′ and height h′ , and let s be the
size of a square in this block. We want to show that s ≤ εmin{a,b}, and then argue
that this gives us the desired result. We know from the de�nition of small blocks
that h′w′ ≤ ε α

KN , and as w′ ,h′ ≥ 1, we know that both h′ and w′ must be at most
ε α
KN ≤ ε αN . We know min{a,b} ≥ ε αN (as again max{a,b} ≤ N and ab = εα) and
s ≤ εw′ , and thus s ≤ εw′ ≤ ε2 α

N ≤ εmin{a,b}.
Now consider lemma 26. In our case, the rectangular area in which we want to

pack the squares from small blocks has side lengths a = εw and b = h. These squares
have size at most εmin{a,b} and total area at most that of the free area, as established
above. Hence, NFDH will pack a subset of S of pro�t at least (1−O(ε))p(S) into the
largest block by lemma 26.

Using that our input squares are squares and that no cell can contain more than n
squares we can prove the following lemma.
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Lemma 28. For each block of width wC,`,j and height hC,`,j we can assume that

hC,`,j ,wC,`,j ∈

√

εα̃
nKN

,
√

(1 + ε)α̃n

 .
Proof. Consider a block B of height and width h,w. Let ŝi be the size of the largest
square in this block, then we have that h,w ≥ ŝi (as this square must �t in the block).
We can assume that h ≤ nŝi ≤ nw and w ≤ nŝi ≤ nh (since at most n squares can
be packed in this box and each of them has size at most ŝi by de�nition of ŝi ), and
hence w ≥ h/n, which �nally gives h2

n ≤ w · h ≤ (1 + ε)α̃ ⇔ h ≤ √
(1 + ε)α̃n and

ε α̃
KN ≤ wh ≤ nh2⇔ h ≥√

α̃ ε
nKN and therefore we get h ∈ [

√
α̃ε
nKN ,

√
(1 + ε)α̃n] (the

claim for w follows analogously).

This ensures that there is a polynomial range for the sizes of the cells. Next, we
show that we can round down the side lengths of the blocks.

Lemma 29. By losing a factor 1 +O(ε) we can round down the height and width of

each block such that it becomes a power of 1 + ε.

Proof. We down round each block height and width to the nearest power of 1 + ε.
This results in O(log1+ε n) di�erent values. Now, to show that we can still pack the
squares into the blocks without losing too much pro�t, we do the following: Let B
be some block of width wB and height hB and assume w.l.o.g. that wB ≤ hB; denote
by w′B and h′B the rounded side lengths of B. Assume w′B = (1 + ε)j and h′B = (1 + ε)i ,
then we know that wB < (1 + ε)j+1 and hB < (1 + ε)i+1. We divide B into 1

2ε many
strips of equal width 2εhB. Each square touches at most two strips, so there is a
strip s.t. all squares who touch this strip have total pro�t at most O(εpB) (where
pB is the total pro�t of squares in block B). We remove the squares from this strip
and hence gain some free space of area 2εhBwB. The squares touching the area
that we lose due to shrinking have total area at most (hB − h′B)wB + (wB −w′B)hB ≤
((1+ε)i+1−(1+ε)i)wB+((1+ε)j+1−(1+ε)j )hB ≤ εh′BwB+εw′BhB ≤ 2εwBhB. Hence,
we can pack a subset of these squares into the free area using NFDH (see lemma 26)
and lose only an ε fraction of the pro�t.

After applying lemma 29 for each of the rounded values there are onlyO
( logn

log(1+ε)

)
possibilities left. Thus, we can guess all these values in running time

( logn
log(1+ε)

)O(1/ε4)
.

In the special case studied in this section all squares i with si ≤ ε4 · wC are
packed into the blocks. We call them small squares. All squares i with si > ε4 ·wC
are packed into the rows, we call them the row squares. Each edge of each block
is by a factor Ω(1/ε2) larger than the size of any small square by the de�nition of
KR-packings. Thus, we can �nd a (1 + ε)-approximation for the small squares using
greedy algorithms for selecting and packing the squares.

Lemma 30. There is a (1 + ε)-approximation algorithm with a running time of nO(1)

for computing the most pro�table set of small squares that can be packed into the blocks.

Proof. According to lemma 26, it su�ces to select some set of small squares S that
has total area at most that of the blocks. The condition that squares are by a factor ε2

smaller than the blocks is already established by the de�nition of KR-packings (the

111



7. Geometric Knapsack with Sqares

squares have si ≤ ε4hC while the width and height of the block are at least ε2hC ).
We do the selection of squares by solving a simple Knapsack problem that selects the
most-pro�table set of squares whose total area does not exceed the blocks’ total area
(for this problem, an FPTAS exists, see [69]).

7.3.2 Packing row subframes via indirect guessing

The packing decision for the row squares is more challenging. First, for each subframe
FC,`,j we guess the value f (C,`, j). For each row subframe FC,`,j denote by wC,`,j
the number of squares packed in FC,`,j . Observe that they all �t into FC,`,j even if
each of them has a width of up to kf (C,`,j) since wC,`,j ≥ wC,`,j · kf (C,`,j). As the next
lemma shows we can guess the values wC,`,j approximately by, intuitively, allowing
only powers of 1 + ε for them.

Lemma 31. There is a set L with |L| =O
( logn

log(1+ε)

)
such that by losing a factor 1+O(ε)

we can assume that wC,`,j ∈ L for each subframe FC,`,j .

Proof. We can assume that for each C,`, j we have that 1 ≤ wC,`,j ≤ n. We de�ne
L :=

{
b(1 + ε)ic

∣∣∣ ∀i ≥ 0, (1 + ε)i ≤ n
}

and thus |L| =O(log1+ε n) =O
( logn

log(1+ε)

)
.

Now, we round down each valuewC,`,j to the nearest value in L. Consider one such
value wC,`,j and let w̃C,`,j = (1 + ε)i be the new (smaller) value. When we do this, we
might lose at mostwC,`,j −w̃C,`,j ≤ (1+ε)i+1−(1+ε)i = ε(1+ε)i = εw̃C,`,j ≤ εwC,`,j
many squares. For these, we pick the ones with smallest pro�t in FC,`,j , so we lose
pro�t of at most an ε fraction of the total pro�t of the squares packed in FC,`,j .

We guess all values wC,`,j in time
( logn

log(1+ε)

)O(F(ε))
= Oε(1) · nO(1). Ideally, we

would like to guess the values kj , which give us the heights of the row subframes.
Then it would be very easy to compute the packing: for each index r the squares i
with si ∈ (kr−1, kr ] form a group Ir . In the packing that we aim at (see lemma 21) each
row of height kr contains only squares from Ir . We already guessed the total number
of squares in each row and this yields the total number of squares from each group
Ir . Denote by nr this value, i.e., nr :=

∑
`
∑
j:f (C,`,j)=rwC,`,j . We simply select the nr

most pro�table squares from Ir and pack them greedily into the rows of height kr .
Unfortunately, we cannot guess the values kj directly, as we have O(n) candidate

values for those (the sizes of the input squares) and we have Oε(1) of these values.
Instead, we guess approximations for them indirectly. Recall that k0 = ε4 ·wC . We
want to guess a value k′1 with k′1 ≤ k1 such that if we de�ne the �rst group to be
I ′1 :=

{
i | si ∈ (k0, k

′
1]
}

(instead of I1 := { i | si ∈ (k0, k1]}) then the greedy packing of a
subset of the squares in this group yields a pro�t that is almost as large as p(OPT∩I1).
To this end we ask ourselves: how much pro�t could we obtain from group I ′1 if
we de�ned I ′1 to contain all squares in the size range (k0,x]? We know that in the
KR-packing the squares from group I1 are packed only into the rows of height k1 and
we know already that there are n1 slots for them.

We want to de�ne k′1, then I ′1 := {i | si ∈ (k0, k
′
1]}, and then pack the n1 most

pro�table squares from I ′1 into the n1 slots in the rows of height k1 (strictly speaking
we make the rows less high such that they have height k′1 ≤ k1).

We want to allow only few candidate values for k′1. To this end, we de�ne a
function p1(x) where each value x is mapped to the total pro�t of the n1 most
pro�table squares i with si ∈ (k0,x], i.e., the total pro�t of the �rst n1 squares from
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p̄1(x)

x
s̄1 s̄2 s̄3 s̄4 s̄5 s̄6 s̄7 s̄8 s̄9

Figure 7.4: Example how the function p1(x) might look like. s1, . . . , s9 denote the distinct
square sizes in increasing order. The graph shows the function p1(x). Dashed lines denote
powers of (1 + ε), and the points highlighted with blue circles denote which values (i.e. which
si ’s) are under consideration for k′1.

group I ′1 if we de�ned I ′1 := {i | si ∈ (k0,x]}. Note that p1 is a non-decreasing step-
function with at most n steps. Due to the rounding of the square pro�ts, we know
that maxx p1(x) ≤ n2/ε. Now instead of allowing all possible values (all input item
sizes) for k′1, we allow only those values x where p1(x) increases by a power of
1 + ε, i.e., such that there is a κ ∈ N with (1 + ε)κ ∈ (

p1(x − δ),p1(x)
]

for each δ > 0.
For an illustration, see �g. 7.4. As a result, there are only O(logn/ log(1 + ε)) such
values and we de�ne one of them to be k′1 such that our pro�t from the resulting
group I ′1 := {i | si ∈ (k0, k

′
1]} will be at least 1

1+ε · p(OPT∩ I1) and k′1 ≤ k1. The latter
inequality is important because our rows must �t into C, i.e., the rows and blocks
intersected by each vertical line must not have a total height of more than hC . Thus,
we guess k′1 in time O(logn/ log(1 + ε)).

Lemma 32. Given p1 we can compute a set of O(logn/ log(1 + ε)) values which
contains a value k′1 ≤ k1 such that p1(k′1) ≥ 1

1+εp1(k1) = 1
1+εp(OPT∩ I1).

Proof. Let s1, . . . , sn′ denote the distinct sizes of large squares (i.e. squares with size
> k0). We compute p1. Note that p1 is a step function having all its steps at points x
such that x = si for some square i, as only for these values of x new squares become
part of the set I1 (there does not have to be a step at such a point x; e.g., consider
the case that the new squares of size x have very little pro�t and therefore they are
not included in the subset of the n1 most pro�table squares of I1). Intuitively, we
de�ne C to be those points where the function p1 “jumps” over a value (1+ε)j for the
�rst time. Formally, let C :=

{
si | ∃j : p1(si−1) < (1 + ε)j ≤ p1(si)

}
where we de�ne

for convenience p1(s0) = 0. We have |C| ≤ log1+ε
n2

ε =O
( logn

log(1+ε)

)
.

Now, let k′1 be the largest value in C that is not larger than k1. Then there is a j
s.t. p1(k′1) ≥ (1 + ε)j and p1(k1) < (1 + ε)j+1 and thus p1(k′1) ≥ 1

1+εp1(k1).

We iterate and we want to guess a value k′2 (instead of k2). Recall that there are
n2 slots for the group I2 and in the optimal packing we select the n2 most pro�table
squares in I2. We want to de�ne k′2 such that k′2 ≤ k2 and such that if we pack the n2
most pro�table squares from the group I ′2 := {i | si ∈ (k′1, k

′
2]} then we obtain almost

the same pro�t as p(OPT∩ I2). We use the same approach as for de�ning k′1. We
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de�ne a function p2(x) that maps each value x to the pro�t of the n2 most pro�table
squares i with si ∈ [k′1,x). Observe that p2(k2) ≥ p(OPT∩ I2) because k′1 ≤ k1. Like
before, for de�ning k′2 we allow only values x where p2(x) increases by a factor of
1 + ε. There are only O(logn/ log(1 + ε)) such values.

Lemma 33. Given p2 we can compute a set of O(logn/ log(1 + ε)) values which
contains a value k′2 ≤ k2 such that p2(k′2) ≥ 1

1+εp2(k2) ≥ 1
1+εp(OPT∩ I2).

Proof. The argumentation is basically analogous to the proof of the previous lemma,
however, there is one di�erence. As I ′2 = {i | si ∈ (k′1, k

′
2]}, this set also depends on the

previous guess k′1. We de�ne the set C as before and let k′2 be the largest value in C
that is not larger than k2 as before. As k′1 ≤ k1, we know that the set {i | si ∈ (k′1, k

′
2]}

is a superset of {i | si ∈ (k1, k
′
2]}, therefore the argumentation carries over.

We guess the value k′2 in time O(logn/ log(1 + ε)) and we de�ne I ′2 := {i | si ∈
(k′1, k

′
2]}. We continue in this way until for each j we guessed a value k′j and the

corresponding set I ′j := {i | si ∈ (k′j−1, k
′
j ]}. Since there are 1/ε4 such values and

for each of them there are O(logn/ log(1 + ε)) possibilities, this yields (logn)Oε(1)

possibilities in total. Observe that each function pj depends on the previous guess
k′j−1. There are (logn)Oε(1) guesses overall and we can enumerate all of them in time
Oε(n) · (logn)Oε(1).

The values k′j imply the height of each row: for each row subframe FC,`,j we
de�ne its height hC,`,j to be k′f (C,`,j). In case that one frame FC,` is higher than hC ,
i.e.,

∑
j hC,`,j > hC , then we reject this set of guesses. In particular, then there must

be some value k′j with k′j > kj and thus our guess was wrong. Among all remaining
guesses, we select the one that yields the maximum total pro�t if we take the nr most
pro�table squares from each group I ′r .

Theorem 8. There is a (1 +ε)-approximation algorithm for the two-dimensional knap-

sack problem for squares if the height and the width of the knapsack di�er by more than

a factor of 1/ε4
. The running time of the algorithm is Oε(1) ·nO(1)

.

Proof. The algorithm proceeds as follows: We �rst guess the number of frames and
the number of subframes of each frame in time 1/εO(1/ε4) =Oε(1). Then we guess
α̃ in time n logn

log(1+ε) =Oε(1) ·nO(1) and use it to guess the rounded width and height

of each of the O(1/ε4) blocks in time ( logn
log(1+ε) )O(1/ε4) =Oε(1) · nO(1). Row squares

can be packed into the corresponding row subframes in a greedy manner and are
guaranteed to �t. We can use an FPTAS for the knapsack problem to select a set of
small items whose total area does not exceed the area of the blocks while maximizing
their total pro�t. Using lemma 26, we can pack almost all of these into the blocks while
losing at most an ε fraction of the pro�t. The total running time is Oε(1) ·nO(1).

7.4 Indirect guessing technique - general case

We present our EPTAS for the general case now. There are two new di�culties
compared to the special case from section 7.3:
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• There can be several elongated cells now (rather than only one that spans
the entire knapsack). For elongated cells C with wC ≥ hC we cannot guess
the height in time Oε(1) ·nO(1) and for elongated cells C′ with hC′ ≥ wC′ we
cannot guess the width in time Oε(1) · nO(1). Therefore, we incorporate the
guessing of these values into the indirect guessing framework for the heights
of the horizontal (widths of the vertical) row subframes.

• We can no longer partition the input squares into two groups such that the
squares from one group are assigned only to the blocks (like the squares i with
si ≤ ε4 · hC in the previous special case) and the others are only assigned to
the rows (like the squares i with si > ε4 · hC ). Therefore, for each group Ir we
guess an estimate of either the total number of squares in each block or the
total occupied area in each block in order to apply our framework for indirect
guessing.

First, we guess the large squares I ′L as described in section 7.2. Next, we guess the
number of block and elongated cells, and for each elongated cell the number of frames
and the number of subframes in each frame as well as the type of each subframe
(block subframe, row subframe, empty subframe). We will use the term block for a
block cell or a block subframe. We guess the sizes of all blocks like in section 7.3,
with the only di�erence that we can now have up to O(F(ε)) many blocks instead
of O(1/ε4): we �rst guess the value α̃ in time O( n logn

log(1+ε) ) and then the heights and

widths of all blocks in time ( logn
log(1+ε) )O(F(ε)).

Lemma 34. By losing a factor 1 + O(ε) we can round the heights and widths of

all block cells and all block subframes such that we can guess all of them in time

n logn
log(1+ε) · (

logn
log(1+ε) )O(F(ε)) ≤Oε(1) ·nO(1)

.

In the packing given by lemma 21 each elongated cell is packed as a KR-packing.
Therefore, for each horizontal elongated cell C there is a set of at most 1/ε4 values
k0, k1, k2, ... de�ned locally for C, such that for the height of each row subframe
FC,`,j of C there is an integer f (C,`, j) ≥ 1 such that hC,`,j = kf (C,`,j) and FC,`,j
contains only squares i with si ∈ (kf (C,`,j)−1, kf (C,`,j)], while we assume that k0 = 0.
We establish now that we can assume that there are Oε(1) global values with these
properties.

Lemma 35. Let k0 = 0. By losing a factor 1 +O(ε) and by increasing the number of

elongated cells within the knapsack and the total number of row subframes in all elon-

gated cells to O(1/ε10F(ε)3) each we can assume that there are at most O(1/ε4F(ε)2)
(global) values k1 ≤ k2 ≤ ... such that for each horizontal (or vertical) row subframe

FC,`,j there is a value f (C,`, j) ≥ 1 such that hC,`,j = kf (C,`,j) (or wC,`,j = kf (C,`,j))

and FC,`,j contains only squares i with si ∈ (kf (C,`,j)−1, kf (C,`,j)]. Furthermore, for each

block B of height hB and widthwB and each r , we know that either kr ≤ ε2 min{wB,hB}
or kr−1 ≥ ε2 min{wB,hB}.
Proof. Let C1,C2, . . . be the elongated cells. Denote by k(i)

1 , k
(i)
2 , . . . the local kr -values

for cell Ci . We de�ne the set

K =
{
k

(i)
j

∣∣∣∣ ∀i, j}∪{
ε2 min{wB,hB}

∣∣∣ ∀ blocks B of width wB and height hB
}
.
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Clearly, |K | ≤ 1/ε4 ·F(ε) +F(ε) =O(1/ε4F(ε)2).
It remains to show that there is a KR-packing that corresponds to these global

k-values. Consider the original KR-packing of one elongated cell, i.e. the one using
local kr-values. We will show how to transform it into another KR-packing that
adheres to the global values K . Consider a row subframe FC,`,j of height k(i)

r . Assume
that the largest value smaller than k(i)

r in K , k∗, is a value that does not belong to the
local kr -values of this cell (it might be some k(i′)

r ′ for i′ , i or a value ε2 min{wB,hB});
so in particular k∗ ∈ (k(i)

r−1, k
(i)
r ). The subframe FC,`,j might now contain squares of

side length in (k(i)
r−1, k

(i)
r ], i.e. in particular squares with size smaller than k∗ and also

squares with size larger than k∗.
In a KR-packing that adheres to the values K , these squares must not be packed

in the same row subframe. We therefore do the following: Assume w.l.o.g. that the
squares packed in subframe FC,`,j are sorted in decreasing order of size from left to
right. We split this one elongated cell into several smaller ones: the �rst one contains
all frames above the “problematic” frame FC,` , the second contains all frames below
FC,` , the third consists of one frame that has subframes FC,`,1, . . . ,FC,`,j−1, the fourth
ones contains subframes FC,`,j+1, . . . ,FC,`,p (where p is the number of subframes of
FC,`) contained in one single frame and the �fth consists only of the subframe FC,`,j
(see �g. 7.5 for illustration). Note that all these are valid KR-packings. Now, in the
new elongated cell that only contains subframe FC,`,j , we can split the frame into
two frames, each having one subframe: one subframe has height k(i)

r and contains
only squares of size in (k∗, k(i)

r ], the other one has height k∗ and contains squares of
size in (k(i)

r−1, k
∗].

The number of row subframes before this splitting of elongated cells was at most
O(F(ε))·O(1/ε6). In the worst case, we splitted each row subframe intoO(1/ε4F(ε)2)
row subframes, hence after this process we have at most O(1/ε10F(ε)3) many row
subframes. As each elongated cell must contain at least one row subframe or block
subframe and the number of block subframes stays unchanged, we have at most
O(1/ε10F(ε)3) many elongated cells as well.

By introducing kr-values of the form ε2 min{wB,hB} for each block B, we also
made sure that for each B and kr ∈ K , it either holds that kr ≤ ε2 min{wB,hB} or
kr−1 ≥ ε2 min{wB,hB}.

In the next step, we guess some quantities for the row subframes (similar to
section 7.3).

Lemma 36. By losing a factor 1 +O(ε) in time Oε(1) · n we can guess for each row

subframe FC,`,j

• the number wC,`,j of squares packed in FC,`,j ,

• the value f (C,`, j) indicating that if FC,`,j is a horizontal row then for its height

hC,`,j it holds that hC,`,j = kf (C,`,j), and if FC,`,j is a vertical row then for its

width wC,`,j it holds that wC,`,j = kf (C,`,j)

Proof. First, we want to guess the values wC,`,j for each row subframe FC,`,j . Similar
to lemma 31, we round down wC,`,j to the nearest value in L (as de�ned in the proof
of lemma 31), and by throwing away the least pro�table squares we lose at most an
ε fraction of the total pro�t in FC,`,j . For each row subframe, we have O

( logn
log(1+ε)

)
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frame FC,1

frame FC,2

. . .

frame FC,`

. . .

frame FC,t−1

frame FC,t

⇒

. . . . . .

Figure 7.5: Splitting one elongated cell into �ve.

possible values, i.e., we can guess the wC,`,j-values for all row subframes in time( logn
log(1+ε)

)O(1/ε10F(ε)3)
= (logn)Oε(1) ≤Oε(1) ·n.

Second, we need to guess f (C,`, j) for each of the at most O(1/ε10F(ε)3) row
subframes. There are O(1/ε4F(ε)2) many possibilities per subframe, so there are at
most (1/ε4 ·F(ε)2)O(1/ε10F(ε)3) possibilities in total, which is a constant only depending
on ε.

Hence, in total we need time Oε(1) ·n to guess the values wC,`,j and f (C,`, j) for
all row subframes.

As before, for each r denote by nr the total number of squares in rows of height
kr , i.e., nr :=

∑
C
∑
`
∑
j:f (C,`,j)=rwC,`,j .

Note that we did not guess the heights and widths for the row subframes. Those
are implied once we guess the values k1, k2, ... since the height/width of each verti-
cal/horizontal row subframe FC,`,j is at leastwC,`,j ·kf (C,`,j) and a larger height/width
is not necessary to �t wC,`,j squares of size at most kf (C,`,j). In contrast to section 7.3
a square i with size i ∈ (kr , kr+1] might be assigned to a row (of height kr+1) or to a
block. In our indirect guessing framework, we need in particular a function p1(x) that
maps each x to the pro�t we would obtain from group I1 if the group I1 contained
all squares i with si ∈ (k0,x]. This pro�t depends now not only on the number of
slots in the rows for the squares in I1 but also in the space that we allocate to I1 in
each block. In order to handle this, we �rst guess for each kr -value for r ≥ 2, whether
kr
kr−1

> 1 + ε or kr
kr−1
≤ 1 + ε. We denote by KL the set

{
kr | kr

kr−1
> 1 + ε

}
∪ {k1} of all
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kr -values for which the �rst inequality holds (plus k1) and by KS all values with the
latter property, i.e.,

{
kr | kr

kr−1
≤ 1 + ε

}
. If kr ∈ KL then we guess for the set Ir and each

block B the area that squares from Ir occupy in B. Otherwise, if kr ∈ KS then for each
block B we guess the number of squares from Ir packed in B. Recall that for each
block B we already guessed its height and width.

Lemma 37. We can compute for each kr two sets L′r ,L′′r which satisfy |L′r |, |L′′r | =
O(logn/ log(1 + ε)) and such that by losing a factor 1 +O(ε), we can assume that for

each block B and each group Ir = { i | si ∈ (kr−1, kr ]} the following holds:
• If kr ∈ KL, then there is a value aB,r ∈ L′r such that the total area used by squares

of group Ir in B is bounded by aB,r and either aB,r = 0 or aB,rk
2
r ≥ 1

ε k
2
r .

• If kr ∈ KS , then there is a value nB,r ∈ L′′r such that the number of squares of

group Ir packed in B is bounded by nB,r .

Moreover, for each block B we have

∑
r∈KL aB,r +

∑
r∈KS nB,rk

2
r ≤ (1 + ε)aB where aB

denotes the area of B.

Proof. We will prove the two statements of the lemma separately.

Case 1: kr ∈ KL Let L′r =
{
(1 + ε)i

∣∣∣ 1/ε ≤ (1 + ε)i ≤ n
}
∪ {0}. Clearly, the size of L′r

is at most log1+ε(n) + 1 =O( logn
log(1+ε) ). Consider a block B and a group Ir ; let A∗B,r be

the area of squares of Ir inB in the solution under consideration and let a∗B,r := A∗B,r /k
2
r .

At a �rst glance, we would want to guess a value aB,r such that AB,r := aB,r ·k2
r ≤ A∗B,r

and most of the squares of Ir still �t in an area of size AB,r (most of the squares means
enough squares so we do not lose too much pro�t). However, we will later see why
this might not be good enough. Thus, we will make a case distinction on A∗B,r . Let L∗

be the largest value in L′r that is at most A∗B,r /k2
r .

First, assume that L∗ ≥ 1/ε. In that case, de�ne aB,r := L∗, and thus AB,r ≥ 1/εk2
r .

Say AB,r = (1 + ε)ik2
r , thus we know A∗B,r < (1 + ε)i+1k2

r and therefore A∗B,r −AB,r <(
(1 + ε)i+1 − (1 + ε)i

)
k2
r = ε(1 + ε)ik2

r = εAB,r . That is, we lose some area by our
guess of the area for items of group r in B, but this “lost” area is at most an ε fraction
of the guessed area. Hence, we can do the following: Consider the squares of Ir
packed in B in any order. We want to create buckets containing squares of total area
εAB,r , therefore, add squares to the �rst bucket until the total area reaches εAB,r ,
possibly including one square only partially. Continue to create buckets this way,
starting by adding the remaining partial square (if existing). We get A∗B,r

εAB,r
≥ 1/ε many

buckets, of which at least 1/ε − 1 contain squares of total area εAB,r (the last bucket
might not be full and contain less squares). Each square is contained in at most two
buckets (it might be split in the creation of buckets, however, we have εAB,r ≥ k2

r by
our assumption aB,r ≥ 1/ε so it cannot be spread over more than two buckets). Hence,
in one of the buckets, (parts of) squares of total pro�t at most a O(ε) fraction of the
total pro�t of all squares of Ir packed in B are contained. Discard these squares, and
thus the total area of the remaining items is at most AB,r while their pro�t is at least
a (1−O(ε)) fraction of the pro�t we obtained from Ir squares packed in B before.

For the second case, asumme that L∗ < 1/ε, which means that L∗ = 0. That means,
if we de�ne as before aB,r = L∗ = 0, we will not pack any Ir squares into B, but
these squares might carry a signi�cant amount of pro�t. In this case, we want to
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overestimate the area instead, i.e., we set aB,r = min(L′r\{0}) ≤ (1 + ε)/ε. However,
now we need to argue that items of this area still �t into B, especially as it could
happen that many groups Ir have a∗B,r < 1/ε for one block B (i.e. B contains squares of
many di�erent groups, and of each group only few squares are packed inB). Therefore,
we want to bound the total area by which we overload block B for all these groups.
To formalize this, let S denote the set of all indices r s.t. kr ∈ KL and group r has
L∗ < 1/ε. For such r , we have 1/ε ≤ aB,r ≤ (1 + ε)/ε.

So far, we only have the upper bound (1 + ε)k2
r /ε on AB,r , which might be large

compared to the area of B. Here, we use the second property that we have proven in
lemma 35: either kr ≤ ε2 min{wB,hB}, or kr−1 ≥ ε2 min{wB,hB}, which means that if
any square of the group Ir is packed into B, then the upper bound for square sizes
in this group, kr , is at most ε2 min{wB,hB}. Thus we get AB,r ≤ (1 + ε)(1/εk2

r ) ≤
(1 + ε)1/ε · ε4 min{wB,hB}2 =O(ε3)aB.

Also note that for r ′ ∈ S such that kr > kr ′ ,

kr
kr ′

> 1 + ε

⇒
(
kr
kr ′

)2

> (1 + ε)2

⇒
1
ε k

2
r

1
ε k

2
r ′ · (1 + ε)

> 1 + ε

⇒ AB,r
AB,r ′

> 1 + ε

where the last step follows from the fact that 1
ε k

2
r ≤ AB,r ≤ 1

ε k
2
r · (1 + ε) (which holds

for both r and r ′ , as both are in S).
Sort the indices in S in decreasing order of the size of the corresponding squares;

let r1, r2, . . . be this sorted sequence. We know that two of the corresponding kr-
values of S are always at least a factor 1 + ε apart (as we are talking about values
in KL). Using a geometric sum argument, we have that

∑
ri∈S AB,ri = AB,r1 +AB,r2 +

AB,r3 +. . . ≤ AB,r1 + 1
1+εAB,r1 + 1

(1+ε)2AB,r1 +. . . = AB,r1
∑|S |−1
i=0 ( 1

1+ε )i = AB,r1
1−( 1

1+ε )|S |

1− 1
1+ε

≤
O(ε3)aB

1+ε
ε = O(ε)aB, i.e. the total area of all these excess squares is at most an ε

fraction of the total area of B. Thus, with similar arguments as before, we can remove
squares of total area at least this excess area from B at cost of at most anO(ε) fraction
of the total pro�t and hence the lemma holds.

Case 2: kr ∈ KS Now, we consider a kr-value that is in KS , i.e., we need to
guess the number of squares of this group that are packed in B. We de�ne L′′r ={
b(1 + ε)ic

∣∣∣ 1 ≤ (1 + ε)i ≤ n
}
∪ {0}, and clearly |L′′r | ≤ O(log1+ε n). Let n∗B,r denote

the number of squares of group Ir that are packed in B, and let S be the set of these
squares; we want to guess a value nB,r ≤ n∗B,r ,nB,r ∈ L′′r , such that the nB,r most
pro�table squares from S still give pro�t at least a 1

1+ε fraction of the pro�t of S .
Let nB,r be the largest value in L′′r that is smaller than n∗B,r , i.e. nB,r = (1 + ε)i for

some i and n∗B,r < (1 +ε)i+1. The di�erence between the two numbers is n∗B,r −nB,r <
εnB,r ≤ εn∗B,r similar as before. Therefore, if we select the nB,r most pro�table squares
from S , they have pro�t at least 1 − ε times the pro�t of S . It could now however
happen that these squares selected by the algorithm have larger area than the ones
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7. Geometric Knapsack with Sqares

selected by the optimal solution and hence do not �t into the block. However, as
these squares belong to groups Ir with r ∈ KS , we know, that they are by at most a
factor 1 + ε larger than the squares selected by the optimal solution. Thus the lemma
is proven.

Using lemma 37 we guess the values aB,r and nB,r for each of the Oε(1) blocks B
and each of the Oε(1) values r in time (logn)Oε(1).

7.4.1 Indirect guessing

We perform the indirect guessing of the values k1, k2, ... similarly as in section 7.3.
Recall that k0 = 0. We de�ne a function p1(x) that in an approximative sense maps
each value x to the maximum pro�t that we can obtain from the group I1 if we
de�ned I1 to contain all squares i with si ∈ (0,x]. Formally, we de�ne p1(x) to be
the maximum pro�t of a subset Ĩ ⊆ { i | si ∈ (0,x]} such that we can assign n1 squares
from Ĩ to the rows FC,`,j with f (C,`, j) = 1 and the remaining squares of Ĩ can be
assigned to the blocks such that for each block B either the squares of Ĩ assigned to B
have a total area of at most aB,1 (since k1 ∈ KL; later, for kr ∈ KS we replace the latter
condition by requiring that at most nB,r squares of the respective set Ĩ are assigned
to B if kr ∈ KS ). We say that such a set Ĩ �ts into the space for group I1. Unfortunately,
in contrast to section 7.3 it is NP-hard to compute p1(x) since it is a generalization
of the multi-dimensional knapsack problem. However, in polynomial time we can
compute an approximation for it, using that aB,r ∈ {0} ∪ [ 1

ε kr ,∞) for each B,r with
kr ∈ KL.

Lemma 38. In timeOε(1)·nO(1)
we can compute a function p̃1(x) such that 1

1+εp1(x) ≤
p̃1(x) ≤ p1(x) for each x. The function p̃1(x) is a step-function withO(n) steps. Moreover,

for each x in timeOε(1)·nO(1)
we can compute a set Ĩ ⊆ { i | si ∈ (0,x]}with p(Ĩ) = p̃1(x)

such that Ĩ �ts into the space for group I1.

The proof for this uses LP-rounding similarly as in [68].

Proof. As before, we can argue that p1(x) is a step-function with at most n steps: Let
s1, . . . , sn′ be the distinct sizes of squares in I1. The value of the function p1(x) will
only change when the set I1 = {i|si ∈ (0,x]} changes, which is only the case when x
is one of these si-values. For the function p̃1(x), we de�ne the values at points si to
be the values of p1(x) at these points; in between two such points, p̃1(x) is de�ned to
be constant.

In order to compute p1, we therefore need to evaluate for each si , what is the
maximum pro�t we can gain from a set Ĩ1 ⊆ I1 such that Ĩ1 �ts into the space for I1.
Solving this exactly is NP-hard, thus we compute an approximation for this function,
p̃1(x). We formulate the problem as an LP and then perform a rounding similar to
[68] (which is based on a method for the generalized assignment problem [100]). We
describe the following process for some �xed value of r . For such a value, we do all
that follows for each s̄i separately; let x denote the currently considered value.

Notation and LP formulation When considering a certain value r , let Rr be
the set of all row subframes of height (for horizontal row subframes) or width (for
vertical row subframes) kr . Ir now denotes all items with size in (kr−1,x] (note that
kr−1 was guessed before). For a square i, let Bi be the set of all blocks B such that
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7.4. Indirect guessing technique - general case

si ≤ ε2 min{wB,hB}, where wB,hB are the width and height of B (which we guessed
already). We introduce binary variables xi,R for each square i ∈ Ir and R ∈ Rr that
indicates whether square i is packed in row subframe R, and variables xi,B for each
square i ∈ Ir and block B ∈ Bi (i.e. we only introduce these variables for pairs of
squares and blocks s.t. the square is small enough to be packed in the block). Now,
consider the following LP, which assumes that kr ∈ KL:

max
∑
i∈Ir

(
pi ·

(∑
R∈Rr xi,R +

∑
B∈Bi xi,B

))
s.t.

∑
i∈Ir

xi,R ≤ wR ∀R ∈ Rr (7.1)∑
i∈Ir

xi,B · s2i ≤ aB,r · x2 ∀ blocks B (7.2)∑
R∈Rr

xi,R +
∑
B∈Bi

xi,B ≤ 1 ∀i ∈ Ir (7.3)

xi,B ≥ 0 ∀i ∈ Ir ,∀B ∈ Bi
xi,R ≥ 0 ∀i ∈ Ir ,∀R ∈ Rr

Constraint (7.1) ensures that the number of squares packed into each row subframe
is at most the number of squares that should be packed in this row subframe according
to our guess. Constraint (7.2) ensures that the total area of squares from this group
packed into any block B does not exceed the guessed area aB,r . Constraint (7.3)
ensures that each square is packed at most once. If instead kr ∈ KS , we replace
constraint (7.2) by

∑
i∈Ir xi,B ≤ nB,r . This LP gives an upper bound for OPT, given that

our guesses for wR, aB,r , and nB,r are correct. Note that the number of variables is at
most n·O(1/ε10F(ε)3), and the number of constraints is also at most n·O(1/ε10F(ε)3).
Therefore, we can solve this LP in EPTAS-time nO(1) ·Oε(1).

Rounding the fractional LP solution We can compute a vertex solution to this
LP and we will now discuss how to round this solution x∗ to a feasible integral one.
We create a bipartite graph such that the fractional LP-solution corresponds to a
fractional matching in this bipartite graph. The vertices on the left side of the graph
correspond to the squares in Ir ; call these vertices v1, . . . , v|Ir |. The vertices on the
right side of the graph correspond to the row subframes and blocks in the following
way: for each row subframe R of height kr (or width kr , if it is a vertical one), we
createwR many vertices vR1 , . . . , v

R
wR

, for each block B that can get squares from Ir , we
create tB = d∑i∈Ir x

∗
i,Be ≤ n many vertices vB1 , . . . , v

B
tB

. Now, we will de�ne edges and
at the same time specify the fractional matching Mfr by de�ning values ye ∈ (0,1]
for each edge e.

Consider the left hand side vertices in some order v1, . . . , v|Ir | and consider a single
row R ∈ Rr ; for vertex vi , denote by fi the remaining fraction of edges, initially
x∗i,R, and for a vertex vRk , denote by f Rk the sum over ye for all incident edges e
(initially this is zero). Let the current vertex be vi , let vRk be the vertex for R with
the smallest index k such that f Rk < 1. Create an edge between vi and vRk , and let
yvi ,vRk

= max{fi ,1 − f Rk } =: p. Set fi := fi − p. Repeat this with the next vRk+1 until
fi = 0, then go on to the next vertex vi+1. Now, we de�ne the fractional matching
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7. Geometric Knapsack with Sqares

Mfr to be the set of all edges, each edge e having weight ye . Note that the weights ye
assigned to the edges incident to a certain left side vertex vi sum to x∗i,R.

Now, for a block B, we consider the squares fractionally assigned to B by the
LP solution in decreasing order of their area. For the B-vertices we do the same
procedure as for the R-vertices and consider the squares in this order to create edges
and augment our fractional matching (here, initially fi = x∗i,B). Finally, to each edge
incident to a left side vertex vi , we assign pro�t pi . This way, the total pro�t of
Mfr,

∑
e=(vi ,u)∈G yepi , is the same as the objective value of the LP for x∗, which is∑

i,R,B(x∗i,R + x∗i,B)pi . The number of nodes in this graph is n on the left side and
Oε(1) ·n on the right side.

We can now �nd an integral matching in this graph with at least the same pro�t
asMfr (this is a standard result in matching theory, see e.g. Lovász and Plummer [89];
the running time can be bounded by O(|V |4), where |V | is the number of nodes, i.e.,
running time Oε(1) ·n4 in our case). It remains to show how to construct a solution
for our original packing problem from this integral matching. First of all, if an edge
between vi and vRj is taken by the integral matching M int, we assign this square i to
row R. By construction of the graph, we cannot assign more than wR squares to a
speci�c row subframe, and these squares surely �t into the row subframe.

Now, consider squares matched to block-vertices. First assume that kr ∈ KL and
thus, we used the area-based block constraints in the LP. It might now be the case
that the total area assigned to this block by the LP (in a fractional way) is less than
the total area of the integral assignment, hence we cannot assign all squares that
are matched to this block in the integral solution to this block without violating the
constraint. We will now argue that it is nevertheless possible to assign squares to
B that ful�ll the constraint and have pro�t at least 1

1+ε of the pro�t of all squares
matched to B in the integral matching.

Consider a speci�c block B, and let xi,B,k denote the fraction with which the
edge (vi ,v

B
k ) was selected in Mfr. We call the area that is assigned to B in the

fractional solution due to vertex vBk the load of this vertex. This load is de�ned as
LBk :=

∑
i∈Ir xi,B,ks

2
i . Now, denote by vik the left hand side vertex of the graph that is

matched to the right hand side vertex vBk in M int. Due to the sorting of the squares
in decreasing order of size when creating edges and Mfr, and due to the fact that∑
i xi,B,k = 1 for k < tB, we know that the load of vertex vBk is at least s2ik+1

for k < tB:
all vertices having edges to vBk have area at least as large as square ik+1, as this square
has an edge to vBk+1. Now, it follows that the total load of all vertices from the LP
solution is LPB :=

∑tB
k=1L

B
k ≥

∑tB−1
k=1 s

2
ik+1

=
∑tB
k=2 s

2
ik

, which is the total area assigned
to B by the integral matching for vertices vB2 , . . . , v

B
tB

. Hence, these squares must �t
into the area in B reserved for Ir squares, due to constraint (7.2) in the LP. Thus, the
integral solution might exceed this area only due to the square i1, which is matched
to vertex vB1 . Now it comes into play that we guaranteed in lemma 37 that if aB,r > 0,
then we have aB,r ≥ 1/ε. Partition the squares into buckets in the following way:
Consider squares in any order, add squares to one bucket until the total area of squares
in this bucket is at least k2

r ; then start �lling the next bucket. The area of squares
within one bucket is at most 2k2

r as each square has area at most k2
r , thus we have at

least 2/ε many buckets. The pro�t in the least-pro�table bucket is hence at most an
O(ε) fraction of the total pro�t of these squares, and we can remove them. The free
area is at least k2

r , which �ts the excess square i1.
Now, assume that kr ∈ KS . In this case, we replace constraint (7.2) by the simpler
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7.5. An EPTAS for geometric knapsack with squares

∑
i∈Ir xi,B ≤ nB,r . We need to argue that again for each block B, the squares assigned

by the integral solution do not violate this constraint. In this case, tB ≤ nB,r , thus
we have at most that many squares matched to this block, hence the constraint is
trivially satis�ed by the integral solution.

Like before, we guess a value k′1 ≤ k1 and for k′1 we allow only those values where
p̃1(x) increases by a factor of 1 + ε. Therefore, there are only Oε(logn) possibilities.
We de�ne I ′1 :=

{
i | si ∈ (0, k′1]

}
. We iterate as in section 7.3. We next guess a value k′2

and we de�ne the function p2(x) similarly as above. Note that p2(k2) ≥ p(OPT∩ I2)
since k′1 ≤ k1 and our condition for when a set Ĩ �ts into the space for group I1 is a
relaxation.

Again, we can compute an approximation p̃2(x) for p2(x). Overall, there are
(logn)Oε(1) guesses and we can enumerate all of them in running time Oε(n) ·
(logn)Oε(1).

Lemma 39. In time Oε(n) · (logn)Oε(1) =Oε(1) ·nO(1)
we can enumerate guesses for

all values kj such that for one such guess k′1, k
′
2, ... we have for each j that k

′
j ≤ kj and

there is a set Ĩj ⊆ I ′j =
{
i | si ∈ (k′j−1, k

′
j ]
}
with p(OPT∩ Ij ) ≤ (1 +O(ε))p(Ĩj ).

Proof. We iterate the process described in lemma 38 for all kr -values: First, compute
the function p̃1(x) (i.e., compute for all square sizes si the value p̃1(si)) in time
Oε(1) ·nO(1) by solving the LP and then �nding an integral matching in the bipartite
graph de�ned by this LP solution as described in the proof of lemma 38). We get, as
before, O( logn

log(1+ε) ) many candidate values for k1 at those points where the function
“jumps” over a power of 1 + ε, and guess the correct one, k′1. So far, this takes time
Oε(1) ·nO(1) +O( logn

log(1+ε) ). For each of the k′1-guesses, we now compute in the same

manner the function p̃2(x), which givesO( logn
log(1+ε) ) possible choices for k′2. Note here

that p̃2(k′2) ≥ p2(k2), as k′1 ≤ k1, k
′
2 ≤ k2, and again the corresponding LP gives an

upper bound on the optimal solution. We continue like that until we have guessed all
k′r -values. The total running time becomesOε(1) ·nO(1) +O( logn

log(1+ε) ) · (Oε(1) ·nO(1) +

O( logn
log(1+ε) ) · (. . .)) =

( logn
log(1+ε)

)O(1/ε10F(ε)3) ·Oε(1) ·nO(1) =Oε(1) ·nO(1).

7.5 An EPTAS for geometric knapsack with squares

The guessed values k′j imply the heights and widths of the elongated cells in the
following way. Consider an elongated cell C and assume w.l.o.g. that hC ≤ wC . Then
hC is the maximum height of a frame of C, i.e., hC := max`

∑
j hC,`,j where for each

row subframe FC,`,j we have that hC,`,j := k′f (C,`,j) (for block subframes we already
guessed the height and the width). The width wC of C is the total width of all its
frames, i.e.,wC :=

∑
`wC,` where for each frame FC,` its width is the maximum width

of a subframe, i.e., wC,` := maxjwC,`,j and for each row subframe FC,`,j we de�ne
wC,`,j := wC,`,j · kf (C,`,j) (again, for block subframes we already guessed the height
and the width).

We obtained O(F(ε)) large squares and O(F(ε)) cells for which we now know all
heights and widths. We verify in Oε(1) time that there exists a feasible packing for
them (if not then we reject our guess). Observe that we underestimated all guessed
quantities and therefore for the correct guesses a feasible packing must exist.
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7. Geometric Knapsack with Sqares

For each group I ′j we obtained a set Ĩj that �ts into the space of group Ij . We take
the union of all these sets Ĩj . This is not yet a feasible solution: even though each
block B gets squares assigned whose total size does not exceed the size of B, a feasible
packing is not guaranteed to exist. However, we can remove some of the squares
such that we lose at most a factor of 1 + ε and the squares assigned to the blocks can
be packed in a greedy manner. Thus, we obtain a globally feasible solution Ĩ with
p(Ĩ) ≥ (1 +O(ε))−1 ∑

j p(Ĩj ) ≥ (1 +O(ε))−1OPT.

Theorem 9. There is a (1 +ε)-approximation algorithm for the two-dimensional knap-

sack problem for squares with a running time of 222O(1/ε4) ·nO(1) =Oε(1) ·nO(1)
.

Proof. We will now discuss step by step how our algorithm proceeds and which
running time each step incurs.

Step 1: Guessing large squares and number of cells, frames and subframes

As described in section 7.2, we guess B in time O(F(ε)), then we guess the at most B
large squares in time

(
1

log(1+ε)

)O(F(ε)) ·n.
Guessing the number of cells (block cells and elongated cells) takes at most

O(1/ε10F(ε)3) time, guessing the number of frames for each elongated cell takes total
time (1/ε)O(1/ε10F(ε)3), and guessing the number of subframes for each frame takes

total time (1/ε)O(1/ε14F(ε)3). This gives a total running time of
(

1
ε log(1+ε)

)O(1/ε14F(ε)3)·n
for this step.

Step 2: Guessing dimensions of blocks As described in section 7.3, we �rst
guess α̃ in time n logn

log(1+ε) . Guessing the height and width of one block then takes time

O( logn
log(1+ε) ). The number of blocks in the whole knapsack is the initial number of

elongated cells in the knapsack (i.e. before application of lemma 35, as these do not
create new block subframes although they increase the number of elongated cells)
times O(1/ε2) (as in each frame we might have at most one block subframe) plus the
number of block cells, i.e., in total we have at mostO(1/ε2F(ε)+F(ε)) =O(1/ε2F(ε))
blocks. Therefore, the total time for step 2 is n logn

log(1+ε) · (
logn

log(1+ε) )O(1/ε2F(ε)) = n ·
( logn

log(1+ε) )O(1/ε2F(ε)) = n2 · ( 1
log(1+ε) )O(1/ε2F(ε)).

Step 3: Guessing wC,`,j and f (C,`, j) for row subframes After lemma 35, the
number of row subframes is at most O(1/ε10F(ε)3). For wC,`,j there are log1+ε n

many possibilities, for f (C,`, j) there are O(1/ε4F(ε)2) many possibilities as de-
scribed in the proof of lemma 36, and hence we need time(

logn
log(1 + ε)

O(1/ε4F(ε)2)
)O(1/ε10F(ε)3)

= n · ( 1/εF(ε)
log(1 + ε)

)O(1/ε10F(ε)3)

for this step.
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Step 4: Guessing area of square groups and number of squares in blocks In
the next step, we want to guess the quantities aB,r and nB,r as described in lemma 37
for all blocks B and all groups Ir (number of blocks is at most O(1/ε2F(ε)) and
number of groups is at most O(1/ε4F(ε)2)). For each block B and group Ir , we have
O( logn

log(1+ε) ) many possibilities, hence the total time for step 4 is ( logn
log(1+ε) )O(1/ε6F(ε)3) =

n · ( 1
log(1+ε) )O(1/ε6F(ε)3).

Step 5: Guessing the values kr There are O(1/ε4F(ε)2) values to guess. In order
to guess each value, we �rst need to compute the function pr (x), or, to be more precise,
for each square size we need to evaluate the function at this point. Evaluating the
function at one point takes time (n ·1/ε ·F(ε))O(1) for solving the LP and time (n ·1/ε ·
F(ε))O(1) for �nding the integral matching (as the graph has at mostO(1/ε10F(ε)3 ·n)
many nodes). Thus guessing all kr -values can be done in time nO(1) ·O(F(ε)/ε)O(1) ·
( logn

log(1+ε) )O(1/ε4F(ε)2) = nO(1) · ( F(ε)
ε log(1+ε) )O(1/ε4F(ε)3).

Step 6: Checking whether cells and large squares can be packed into the

knapsack We need to enumerate all possible packings of these rectangular re-
gions into the knapsack. When packing L rectangles into one rectangle, we need
running time LO(L), hence in this case we obtain a total running time of (F(ε) +
1/ε10F(ε)3)O(F(ε)+1/ε10F(ε)3) = (F(ε)/ε)O(1/ε10F(ε)3).

Step 7: Packing squares into blocks and row subframes Notice that, in con-
trast to lemma 30, we do not know beforehand which squares can go into which
blocks, as some squares might be small compared to one block (i.e., the square’s size is
at most an ε2 fraction of the block’s side lengths) but not compared to another block.
However, a feasible assignment of squares to blocks is given by the integral matching
computed as described in the proof of lemma 38, as well as an assignment of squares
to the row subframes. We simply pack squares into the corresponding row subframes,
and squares assigned to blocks are packed using NFDH (running time nO(1)). We
know from the matching solution and lemma 37 that the area of the selected squares
exceeds the area of the block by at most a factor 1 + ε. We can apply lemma 26 to
ensure that we pack a subset of these squares of pro�t at least 1−O(ε) times the total
pro�t of assigned squares into each block.

7.6 Discussion and directions for future work

For the geometric knapsack problem with squares, we presented an EPTAS that
improved the running time of the previous known PTAS from Ω

(
n221/ε

)
to Oε(1) ·

nO(1). In our work, we tried to improve the large running times of some of the PTAS-
steps. Our result bene�ts from not guessing certain values and quantities directly,
but rather analysing carefully how the pro�t changes with these values, reducing the
number of candidate values. Thus we speed up the guessing process signi�cantly. In
essence, we use structural information about the input as follows:

• When guessing the large items, we make use of the fact that among a group
of items with similar pro�t, it is always the best option to choose the smallest
ones as large items, instead of testing every possible choice.
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7. Geometric Knapsack with Sqares

• When guessing the structure of elongated cells, recall that we need to �nd some
items in the input whose sizes give us the heights of the row subframes. We
showed that when a factor of 1 + ε does not matter, only few input items make
a di�erence for the overall pro�t of the solution, thus allowing us to reduce the
number of candidate values signi�cantly.

The larger running time of the PTAS resulted in parts from standard techniques such
as the shifting technique and more fundamentally from guessing certain quantities out
of large candidate sets. Such approaches are widely applied to geometric problems and
often yield these large running times. Our result shows that such running times are
not always necessary and can be overcome by guessing certain items and parameters
more carefully. It would be interesting to see if our ideas can be transferred to other
problems that use similar techniques.
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8Geometric Knapsack with Resource
Augmentation

In this chapter, we study the two-dimensional geometric knapsack problem with a
square knapsack and rectangular items, a more general problem setting than the one
considered in the previous chapter. However, we allow ourselves two-dimensional
resource augmentation in this setting, meaning that, while the optimal solution
uses a knapsack of size N ×N , the algorithm is allowed to use a knapsack of size
(1 + ε)N × (1 + ε)N . For this problem, the best known PTAS so far was given by
Fishkin et al. [44]. It has a running time of the form Ω

(
n1/ε1/ε), i.e., the exponent of

n is double exponential in 1/ε.

Results in this chapter and organization In this chapter, we give an algorithm
with running time of the form Oε(1) · nO(1) and which even computes an optimal

solution. The improvement in the running time results from new guessing techniques
for the selection and placement of the large squares, while the improvement in approx-
imation factor (from 1 + ε to 1) is made possible by using the resource augmentation.
In section 8.1, we describe the classi�cation of the rectangles into di�erent sets. In
section 8.2, we describe a grid inside the knapsack that gives the desired structure of
the packing. Finally, in section 8.3 we describe how to pack items into this structure.
We �rst focus on the case where rotation of the items is not allowed; at the end of
section 8.3 we talk shortly about the setting with rotation.

8.1 Rectangle classification

We classify rectangles into large, medium, horizontal, vertical, and small rectangles
according to their side lengths, using constants µ,δ > 0 de�ned below. We use a
separate routine for the medium rectangles. Using the next lemma we ensure that
they have small total area in the optimal solution.

Lemma 40. There is a universal set D = {(µ0,δ0), (µ1,δ1), ..., (µ1/ε,δ1/ε)} with µi =
ε2 · δ3

i < ε and µi ,δi ∈Ωε(1) for each (µi ,δi) ∈D such that for each input there exists

a pair (µ,δ) ∈ D and the total area of rectangles i ∈ OPT with µ ·N < wi < δ ·N or

µ ·N < hi < δ ·N is bounded by 2ε ·N2
.

Proof. Our construction is similar to [44]. De�ne δj := ε2·3j−1 and µj := δj+1 =

ε2·3j+1−1 for 0 ≤ j ≤ 1/ε. De�ne MV
j :=

{
i ∈OPT | µjN < hi < δjN

}
and MH

j :={
i ∈OPT | µjN < wi < δN

}
. It holds that MV

j ∩MV
k = ∅ and MH

j ∩MH
k = ∅ for

j , k, as the intervals (µj ,δj ) are disjoint. Therefore, each rectangle from the optimal
solution occurs in at most one of the sets MH

j and at most one of the sets MV
j , and

thus
∑1/ε
j=1 a(M

H
j ∪MV

j ) ≤ 2N2 as the total area of all rectangles in OPT is at most
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8. Geometric Knapsack with Resource Augmentation

N2 (we denote by a(S) the total area of the rectangles in set S). Therefore, there is
one value j such that a(MH

j ∪MV
j ) ≤ 2εN2.

We guess the correct pair (µ,δ) ∈ D due to lemma 40. Note that µ might be
as small as εO(1/ε). We denote by L the set of all rectangles i with wi > δ ·N and
hi > δ ·N , by V all rectangles i with wi < µ ·N and hi > δ ·N , by H all rectangles i
with wi > δ ·N and hi < µ ·N , and by S all rectangles i with wi < µ ·N and hi < µ ·N .
We de�ne M := I \ (L∪V ∪H ∪ S), i.e., all rectangles i with µ ·N < wi < δ ·N or
µ ·N < hi < δ ·N .

We treat the rectangles inM separately using the following lemma and pack them
into the additional space gained by increasing the size of the knapsack (a similar
argumentation was used in [1]). The intuition is that increasing the size of the
knapsack by a factor 1 +O(ε) gains free space that is by a constant factor larger than
the total space needed for the medium rectangles. This makes the packing easy.

Lemma 41. There is a polynomial time algorithm that computes a setM ′ ⊆M with

p(M ′) ≥ p(M ∩OPT) and a packing forM ′ into two boxes of sizes O(ε) ·N ×N and

N ×O(ε) ·N , respectively.

Proof. We know from lemma 40 that a(M ∩OPT) ≤ 2εN2 and for all rectangles in
M we have µN < wi < δN or µN < hi < δN . Let MV := {i ∈M |µN < wi < δN } and
MH := {i ∈M |µN < hi < δN }. We want to select subsets M ′V ⊆MV and M ′H ⊆MH
s.t. a(M ′V ) ≤ 4εN2 and a(M ′H ) ≤ 4εN2. Then, we can use the algorithm NFDH
from [28], which packs M ′H into an area of width N and height 2a(M ′H )/N + hmax
where hmax denotes the maximum height of rectangles in M ′H . As rectangles in M ′H
have height at most δN ≤ εN , we need height at most 2 · 4 · εN2/N + εN =O(ε)N .
Analogously we can pack the rectangles M ′V into an area of height N and width
O(ε)N .

For selecting the rectangles M ′H , we consider a knapsack problem: For each
rectangle i ∈ MH , we create an item with size equal to the area of i and pro�t
equal to the pro�t of i. The knapsack has capacity 2εN2. We use the simple greedy
Knapsack algorithm with one modi�cation: the last item (that is not taken into the
Knapsack because it would exceed the capacity) is also selected. Since this item has
size at most 2εN2, we get that all selected items have total size at most 4εN2 (and
thus all rectangles from MH corresponding to these items have total area at most
4εN2). Moreover, the selected rectangles have pro�t at least p(MH ∩OPT). The
same selection procedure can be applied to rectangles in MV .

Lemma 41 ensures that p(M ′) ≥ p(M ∩OPT) and thus our medium rectangles
are as pro�table as the medium rectangles in the optimal solution. In contrast, the
algorithm in [44] loses a factor of 1 + ε in the approximation ratio in this step. From
now on we consider only the rectangles in L∪H ∪V ∪ S .

8.2 Placing a grid

Using the argumentation in [44], by enlarging the knapsack by a factor 1 + ε we
can round up the heights of the rectangles in L∪V and the widths of the rectangles
in L ∪ H to integral multiples of ε · δ · N . Even more, we can ensure that they
are aligned with a grid G of granularity ε · δ ·N , see �g. 8.1. Formally, we de�ne
G := { (x,k · εδN ) | k ∈N,x ∈R} ∪ { (k · εδN,x) | k ∈N,x ∈R}.
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8.3. Packing the rectangles

large rectangles

horizontal rectangles

vertical rectangles

Figure 8.1: The grid G and rectangles aligned with it.

Lemma 42 ([44]). By enlarging the knapsack by a factor 1 + ε we can assume for the

input and the optimal solution that

• for each i ∈ L∪H we have that wi and the x-coordinates of all corners of i are
integral multiples of εδN ,

• for each i ∈ L∪V we have that hi and the y-coordinates of all corners of i are
integral multiples of εδN ,

• the height and width of the knapsack is an integral multiple of εδN .

Proof. We follow the argumentation from [44]. Enlarge the knapsack and rectangles
in L∪H ∪V by a factor of 1 + ε (the packing is still feasible). De�ne the induced

space of some rectangle i ∈ L∪H ∪V to be the space that i occupies in this enlarged
packing. Reduce the rectangles (but not the knapsack) back to their original size.
Consider some rectangle i in L∪H ; we will shift i horizontally inside its induced
space in order to align it with the grid (the argumentation is analogous for rectangles
in L∪ V to align them vertically with the grid). For illustration see �g. 8.2b. The
distance between a vertical boundary of i and the corresponding vertical boundary
of its induced space is at least εδN/2 as the rectangle has width at least δN . As the
grid lines are εδN apart and we can shift i by εδN/2 to the left or to the right, we
can shift it in either direction s.t. one of its vertical boundaries is aligned with one of
the grid lines (see �g. 8.2c). Now, we can enlarge the rectangle again by a factor of
at most 1 + ε until its other vertical boundary is aligned with another grid line. In
order to do this (without knowing the optimal solution), we simply round all side
lengths to the next larger multiple of εδN . The enlarged rectangle will still reside
inside its induced space. Finally, by enlarging the knapsack by a factor 1 + ε we can
easily ensure that its height and width are integral multiples of εδN .

8.3 Packing the rectangles

The grid G divides the knapsack into 1/δ2 ≤
(

1
ε

)O(1/ε)
= Oε(1) grid cells. In the

packing due to lemma 42, each such cell is either fully covered by a large rectangle or
does not intersect a large rectangle at all. At this point, the algorithm in [44] guesses
the large rectangles directly which leads to a running time of

( n
1/δ2

)
which might be as

largeΩ
(
n1/ε1/ε) since δ can be as small as ε1/ε . Instead, we now guess the boundaries

of the large rectangles in this packing, without guessing the rectangles themselves.
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8. Geometric Knapsack with Resource Augmentation

(a) Initial instance. (b) Instance after enlarging and
then shrinking the rectangles
and enlarging the knapsack.
Gray areas denote the induced
spaces.

εδN

≥ εδN/2

(c) Shifting of a large or horizon-
tal rectangle. The dashed lines
denote grid lines.

Figure 8.2: For aligning large, horizontal and vertical rectangles with the grid, we �rst enlarge
them, and then shrink them again. The third picture illustrates that we have enough space
inside the induced space to align the rectangle with a grid line.

Since there areOε(1) grid cells, this can be done in timeOε(1). Given the boundaries,
we compute the best choice for the large rectangles using a greedy algorithm.

Lemma 43. Given the boundaries of the large rectangles in the optimal solution, we

can compute a set L′ ⊆ L with p(L′) ≥ p(L∩OPT) in timeOε(n) that �ts into the space
given by these boundaries.

Proof. We consider the boundaries one by one in arbitrary order. For each boundary,
search for the most pro�table rectangle in L that �ts into this space, pack it there,
and remove it from the list of candidates for the next boundaries. Clearly, the optimal
solution cannot pack any more pro�table rectangles into these boundaries.

Each remaining grid cell (i.e., that is not covered by a large rectangle) is either
intersected by a horizontal rectangle, or by a vertical rectangle, or by no rectangle
in H ∪V at all. First, we guess the total area of the selected horizontal and vertical
rectangles in the optimal solution. Then, as in [31, 44], we use techniques from strip
packing to compute a pro�table packing for the horizontal and vertical rectangles
while enlarging the knapsack slightly.

Lemma 44. When enlarging the knapsack by a factor 1 +O(ε) there is an algorithm

with running time Oε(1) ·nO(1)
that computes sets H ′ ⊆H and V ′ ⊆ V and a packing

for them in the space of the knapsack that is not occupied by rectangles in L′ such that

p(H ′) ≥ p(H∩OPT), p(V ′) ≥ p(V ∩OPT), a(H ′∪V ′) ≤ a((H∪V )∩OPT)+O(ε)·N
and the space of the knapsack not used by rectangles in L′ ∪V ′ ∪H ′ can be partitioned

into O
((

1
εδ

)2
)

=Oε(1) rectangular boxes.

Proof. Our reasoning essentially reiterates the argumentation in [31, 44], we refer
to these papers for more details. Consider the horizontal rectangles H . They have
up to 1

εδ many widths and their minimum width is εδ. For each width class we
guess the total height of the rectangles in OPT of this width in integral multiples of
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8.3. Packing the rectangles

ε2δN , i.e., for each width class we guess an integer k ∈O( 1
ε3δ2 ) such that the guessed

height equals k · ε2δN . By increasing the size of the knapsack by a factor 1 + ε this
discretization is justi�ed since then we gain additional space of width N and height
εN which is enough to accommodate one rectangle of height ε2δN of each width
class. Also, we can restrict to values of k with k ∈ O( 1

ε3δ2 ) since for larger values
the total area of the rectangles in this width class would be larger than the size of
the knapsack. For each i we denote by Ai the guessed total height of the rectangles
of width i · εδ. We do a similar operation for the rectangles in V . Note that for the
guesses there are only Oε(1) possibilities.

Then we guess which of the O(ε2δ2) grid cells are used by horizontal rectangles
and which are used by vertical rectangles. Note that a grid cell can be used by only one
of these two types of rectangles so the guessing can be done in time 2O(ε2δ2) =Oε(1).
Consider the cells that we guessed to be used by horizontal rectangles. For each grid
row we partition them into sets of connected components. We call these connected
components blocks. Then we use a con�guration-LP to pack horizontal rectangles
into the blocks. Each con�guration is a vector (b1, ...,b1/(εδ)) with

∑
i bi · i ≤ 1/(εδ)

that speci�es bi slots for rectangles of width bi · i for each i. For each block there
are ( 1

εδ )
1
εδ many con�gurations with at most 1/(εδ) slots each. Based on this we

formulate a con�guration LP that ensures that

• in each block the total height of assigned con�gurations is at most the height
of the block, i.e., εδN , and

• in all horizontal blocks B for each rectangle width i · εδ there are slots whose
total height is at least Ai .

The resulting LP has Oε(1) variables and constraints and we compute an extreme
point solution for it. The number of constraints in the LP is bounded by the number
of blocks plus the number of rectangle widths, i.e., by 2

(
1
εδ

)2
, and thus the number

of non-zero entries in our solution is bounded by the same value. This yields a
partition of the blocks for horizontal rectangles into at most 2

(
1
εδ

)3
slots, each slot

corresponding to one rectangle width. We now �ll the rectangles in H fractionally
into these slots. We do this in a greedy manner, i.e., for each rectangle width we order
the rectangles non-increasingly by density pi /hi and assign them greedily in this
order into the slots (the slots are ordered arbitrarily). If a rectangle does not �t entirely
into the remaining space in a considered slot, we split the rectangle horizontally and
assign one part of it to the current slot and the remainder to the next slot (we iterate
this procedure if the remaining part does not �t into the next slot). The obtained
pro�t of the rectangles assigned in this way is at least p(H ∩OPT) (also counting
the whole pro�t of the last rectangle that might be only partially assigned). At the
end, there are at most 2

(
1
εδ

)3
rectangles that are split. Their total height is bounded

by µN · 2
(

1
εδ

)3 ≤ O(ε) ·N and thus we can place them into an additional block of
height O(ε) ·N and width N . By enlarging the size of the knapsack by a factor 1 + ε
we gain additional free space of this size. By construction, the empty space in the so
far considered blocks can be partitioned into at most O

((
1
εδ

)2
)

rectangular boxes.
We do the same operation for the vertical rectangles in V .

Finally, we add the small rectangles. We select a set of small rectangles whose
total area is at most the area of the remaining space which yields an instance of
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8. Geometric Knapsack with Resource Augmentation

one-dimensional knapsack. Using that the rectangles are all very small and that we
can increase the capacity of our knapsack, we can select small rectangles that are
as pro�table as the small rectangles in OPT and we can �nd a packing for all the
selected rectangles. In contrast, in this step the algorithm in [44] loses a factor 1 + ε
in the approximation ratio (instead of increasing the size of the knapsack).

Lemma 45. When enlarging the knapsack by a factor 1 + ε there is a polynomial time

algorithm that computes a set of rectangles S ′ ⊆ S with p(S ′) ≥ p(S ∩OPT) and a

packing for S ′ into the remaining space that is not used by the rectangles in L′∪H ′∪V ′ .

Proof. Consider the free space in the knapsack that is not used by L′ ∪H ′ ∪ V ′ .
According to lemma 44, this space can be partitioned into O

((
1
εδ

)2
)

rectangular
areas; from now on we will call them boxes. Our goal is to �nd a set of rectangles
S ′ ⊆ S which we can pack into the free space and the area that we gain by resource
augmentation, and we want to have p(S ′) ≥ p(S ∩OPT).

To this end we de�ne an instance of the one-dimensional knapsack problem: For
each rectangle i ∈ S , create an item i′ for the knapsack instance with pro�t equal to
the pro�t of i and size equal to the area of i. The capacity of the knapsack is the total
area of all boxes; denote this quantity byA. For solving this problem we use the simple
greedy algorithm for knapsack. This algorithm sorts the items in non-increasing
order of their pro�t-to-size-ratios, and then greedily packs items into the knapsack
in this order until an item does not �t. We put all rectangles corresponding to items
selected by this algorithm into S ′ and we also add into S ′ the rectangle corresponding
to the �rst item that is not taken into the knapsack by the greedy algorithm because
it would exceed the capacity A. It has size at most µ2N2. The pro�t of S ′ is now at
least that of the optimal solution (which is only allowed to use capacity A). This is
the case since our pro�t is at least the pro�t of the optimal solution to the canonical
LP-relaxation for our knapsack instance.

From now on, we use a standard argumentation to place the items in S ′ greedily
into the remaining space (see, e.g., [94]): We ignore all boxes that are too small, i.e.
boxes that have one side length ≤ µN . Let k be the number of boxes that are large
enough and k be the number of boxes that are too small, k,k ≤O

((
1
εδ

)2
)
. The area

of a box that is too small is at most µN2 (its larger side might be as large as N ), and
thus we lose in total an area of at most kµN2 by this.

We �ll the rectangles S ′ into all other boxes using NFDH. The total area that is
available for this is at least A− kµN2. Let B1, . . . ,Bk be the boxes in the order they
are used by NFDH. Let wj ,hj be the side lengths of Bj and let ij be the �rst rectangle
packed into Bj (by our constraint on the size of the boxes used we know that at least
one rectangle �ts into each box). If all rectangles were packed into the boxes, we
are done, so assume this is not the case, i.e. some rectangles remain unpacked. For
box Bj , the NFDH-algorithm packs rectangles into a sub-box B̂j of size wj × ĥj , i.e. a
sub-box of height hj − ĥj and width wj is unused by the algorithm (see �g. 8.3 for
illustration). This means that hj − ĥj ≤ µN (otherwise it would be possible to pack
another rectangle there). In [28] it is proven that the wasted space inside B̂j is at most
hij ·wj . Thus, the total unused space inside Bj is at most hij ·wj +µN ·wj ≤ 2µN2

and the unused space in all boxes is at most 2µN2 · k. The total unused space in the
whole knapsack (i.e. the space not used within B1, . . . ,Bk and the space in the small
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boxes) is therefore at most 2kµN2 + kµN2 = O
(

1
ε2δ2

)
µN2 = O(ε)N2. In addition,

we need additional space because the rectangles in S ′ have area larger thanA, but this
additional space is again in O(ε)N2. By again using NFDH and the bounds derived
in [28], we can pack all remaining rectangles into an area of width N and height
µN +2 ·O(ε)N2/N =O(ε)N gained by enlarging the size of the knapsack by a factor
1 + ε.

empty space: ≤ µN · w̄j

B̂j

Bj

empty space: ≤ hij · w̄j

Figure 8.3: Packing produced by NFDH inside one box.

Overall, we obtain a solution whose pro�t is at least p(OPT) and which is packed
into a knapsack of size (1 +O(ε))N × (1 +O(ε))N . If the algorithm is allowed to
rotate rectangles by 90 degrees then it is straight forward to adjust lemmas 43 and 44
accordingly. Also, lemma 45 still holds, even if we do not rotate any rectangle in S
(while OPT might still do this).

Theorem10. For any ε > 0 there is an algorithmwith a running time ofOε(1)·nO(1)
for

the two-dimensional geometric knapsack problem for rectangles under (1 + ε)-resource
augmentation in both dimensions that computes a solution whose pro�t is at least

p(OPT). This holds for the settings with and without rotation.

8.4 Discussion and directions for future work

In this chapter, we gave an e�cient algorithm for the geometric knapsack problem
with rectangular items that achieves an optimal solution under resource augmentation.
For this result, we again guess some items more carefully in order to reduce the
running time. Furthermore, we make use of resource augmentation to improve the
approximation factor up to the point where we obtain an optimal solution. This
shows that relaxing constraints and assumptions such as the size of the knapsack
can be helpful in order to achieve better results than those that are possible without
such relaxations. The crucial insight for our result was that the shifting technique
incurs a loss of factor 1 + ε in the approximation guarantee in order to remove some
items from the input. However, these items can easily be taken care of as soon as we
augment the size of the knapsack. Such a removal of items in order to allow for an
easier packing of the rest of the items is a standard technique in geometric packing
problems. Future work could thus try to obtain improved results for other problems
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8. Geometric Knapsack with Resource Augmentation

where resource augmentation or some other form of constraint relaxation might be
useful to avoid excluding items from the solution and thus to �nd an optimal solution.

Note that if we assume P , NP, it is not possible to obtain the same result we
showed in this chapter using only one-dimensional resource augmentation if the
direction of this resource augmentation is �xed. If we could do this, we could also solve
the NP-complete partition problem1 in polynomial time: Assume that the knapsack
can only be stretched vertically, then for each number ai in the partition problem,
create an item of width ai and height N/2, and consider a knapsack of size N ×N
with N =

∑
i ai
2 . Resource augmentation does not help to solve the problem because

even if we increase the height of the knapsack slightly, we can still only �t two items
on top of each other. Therefore, �nding an optimal solution for the knapsack problem
in polynomial time would imply �nding an optimal solution for the partition problem
in polynomial time, contradicting the P , NP assumption.

It would, however, be interesting to consider the case that the algorithm is allowed
to choose the dimension which can be extended.

1In the partition problem, we are given n numbers a1, . . . , an and want to �nd a partition of these
numbers into two sets A1,A2 such that the sum of the numbers in A1 equals the sum of the numbers in
A2.
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9Conclusion
In this thesis, we contributed new algorithms and lower bounds to two fundamental
packing problems, online bin packing and the geometric knapsack problem.

For online bin packing, we de�ned a new algorithm framework called Extreme
Harmonic and showed that an algorithm in this framework can yield a competitive
ratio of at most 1.5813. Additionally, with a small improvement we can reach a
competitive ratio of 1.5787. Both these results beat the lower bound of 1.58333 by
Ramanan et al. [95], which applied to all previously known algorithms, and reduce
the gap to the general lower bound by more than 15% and more than 20%, respectively.
The key to this improvement was to introduce new analytical tools to keep track
of the existing items and their packing, so that we could improve the bounds given
by the standard weighting function based analysis. Essentially, we could identify
three di�erent packing structures that are all advantageous to our algorithm in a
di�erent way, and we could combine all of these cases in one uni�ed analysis by
using a marking scheme and extending the linear program bounding the competitive
ratio. Furthermore, we deviated from previous more restrictive approaches in some
situations where we could anticipate that this deviation would be helpful.

We also studied lower bounds for general algorithms as well as for several special
algorithm classes for two-dimensional online bin packing. This analysis shows that
our ideas from the one-dimensional case do not su�ce to improve upon previous,
more restricted algorithms like Harmonic-type algorithms. There is, however, still
some gap to the general lower bound, which means that new ideas are needed in
order to obtain a better two-dimensional algorithm.

In the geometric knapsack problem, we reduce the running time of known PTAS

results from Ω

(
n221/ε

)
to Oε(1) ·nO(1). Thus, we obtain an EPTAS which is the best

result we can hope for1, as an FPTAS cannot exist for this strongly NP-complete
problem unless P = NP [87]. In essence, we use careful examination of the input items
to make this improvement possible. The crucial observation was that for identifying
some interesting items in the input, we do not need to consider all input items as
candidates and guess the right ones directly, but we can reduce the running time
signi�cantly by chosing the candidates more cleverly. To this end, we �rst analyze
how much pro�t di�erent choices could give us and then select candidate values
for the guessing using this information. That way, we obtained an EPTAS for two-
dimensional geometric knapsack with square items. In addition, by making use of
resource augmentation, we could give an optimal algorithm with EPTAS running
time for two-dimensional geometric knapsack with rectangular items.

Although these problems obviously di�er in their methods and techniques, the
key to most of our results is to leverage knowledge about the input structure in

1up to improving the constant factors
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9. Conclusion

order to improve previous results. While this is a straightforward idea, it can be
very challenging to understand how to incorporate such structural knowledge into
algorithms and their analysis. This thesis shows that this is indeed possible and
facilitates signi�cantly improved algorithms. Thus we hope that some of our results
and techniques give inspiration for further advances in this �eld.
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AParameters for a 1.583-Competitive
Extreme Harmonic-Algorithm

We provide parameters of an Extreme Harmonic-algorithm with a competitive ratio
of 1.583. These are provided to show that the Ramanan et al. [95] lower bound of
1.58333 can be beaten with much simpler input that also produces very few knapsack
problems only (indeed 23 knapsack problems need to be considered). Thus, we hope
that this enables a reader to check rather easily that we can indeed break this lower
bound.

First, let us provide the input given to our parameter optimization program (i.e.,
the manual input without automatically generated types) in table A.1.

Parameter Value

c 1583
1000

tN
1

100
Γ 2

7 (starting from 1
12 )

T 1
30

(a) Parameters

Item size redi

335/1000 0
334/1000 0

5/18 2/100
7/27 105/1000
1/4 106/1000
8/39 8/100
1/5 93/1000
3/17 3/100
1/6 8/100
3/20 0

29/200 0
1/7 135/1000
1/13 1/10
1/14 1/13

(b) Size lower bounds and initial
values redi

Table A.1: Parameters and item types.

In table A.2, we again list some excerpt of the complete list of types with their
parameters redi ,redfiti ,needs(i), and leaves(i). For i > 42, we have ti = 1/(i − 26).

Type i ti redi redfiti needs(i) leaves(i)

3 1/2 0 0 0 0
4 41783/100000 ≈ 0.0158 1 23 0
5 41/100 ≈ 0.0360 1 22 2
6 40/100 ≈ 0.0562 1 21 3
7 39/100 ≈ 0.0764 1 20 4
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Type i ti redi redfiti needs(i) leaves(i)

8 38/100 ≈ 0.0966 1 19 6
9 37/100 ≈ 0.1168 1 18 7

10 36/100 ≈ 0.1370 1 17 8
11 35/100 ≈ 0.1572 1 16 9
12 34/100 ≈ 0.1673 1 15 10
13 335/1000 ≈ 0.1694 1 14 11
14 334/1000 ≈ 0.1707 1 13 11
15 1/3 0 0 0 0
16 29/90 ≈ 0.3222 0 0 0 0
17 11/36 ≈ 0.3056 ≈ 0.0200 1 10 0
18 5/18 ≈ 0.2778 ≈ 0.1050 1 8 1
19 7/27 ≈ 0.2593 ≈ 0.1060 1 7 5
20 1/4 ≈ 0.0800 1 7 0
21 8/39 ≈ 0.2051 ≈ 0.0930 1 4 2
22 1/5 ≈ 0.0300 1 3 0
23 3/17 ≈ 0.1765 ≈ 0.0800 1 2 0
24 1/6 ≈ 0.1667 ≈ 0.0333 1 1 0
25 29/180 ≈ 0.1611 ≈ 0.0833 2 11 0
26 11/72 ≈ 0.1528 ≈ 0.1000 2 10 0
27 15/100 ≈ 0.1300 2 9 0
28 145/1000 ≈ 0.1429 2 9 0
29 1/7 ≈ 0.1429 ≈ 0.1250 2 9 0
30 1/8 = 0.125 ≈ 0.1111 2 7 0
31 1/9 ≈ 0.1111 ≈ 0.0333 2 5 0
32 29/270 ≈ 0.1074 ≈ 0.0833 3 11 0
33 11/108 =≈ 0.1019 ≈ 0.1000 3 10 0
34 1/10 = 0.1 ≈ 0.0909 3 9 0
35 1/11 ≈ 0.0909 ≈ 0.0833 3 8 0
36 1/12 ≈ 0.0833 ≈ 0.0333 3 7 0
37 29/360 ≈ 0.0806 ≈ 0.1231 3 7 0
38 1/13 ≈ 0.0769 ≈ 0.0566 3 6 0
39 11/144 ≈ 0.0764 ≈ 0.1179 3 6 0
40 1/14 ≈ 0.0714 ≈ 0.1133 4 9 0
41 1/15 ≈ 0.0667 ≈ 0.1094 4 8 0
42 1/16 = 0.0625 ≈ 0.1059 4 7 0

...
123 1/97 ≈ 0.0103 ≈ 0.0107 27 8 0
124 1/98 ≈ 0.0102 ≈ 0.0106 28 9 0
125 1/99 ≈ 0.0101 ≈ 0.0105 28 9 0

Table A.2: Parameters of a 1.583-competitive Extreme Harmonic-algorithm.

We give a list of all redspace-values that are at most 1/3 in table A.3. The
redspace-values above 1/3 are equal to the ti-values above 1/3.

Finally, there were only two di�erent y∗3-values used to establish the feasibility
of the dual LPs: y∗3 = 9/32 for the cases k = 2,3,4,6,7,9,10,11 and y∗3 = 3/16 in all
other cases.
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index i redspacei
0 0
1 1/6
2 3/17
3 1/5

index i redspacei
4 11/50
5 2/9
6 6/25
7 13/50

index i redspacei
8 7/25
9 3/10

10 8/25
11 33/100

Table A.3: redspace-values below 1/3 in the 1.583-competitive algorithm.

141



142



BImproved Parameters for a
1.5884-Competitive Super

Harmonic-Algorithm

Finally, we want to give some improved parameters for the Super Harmonic frame-
work in order to show that a competitive ratio of 1.5884 is possible for this framework.
In particular, the parameters used here are much simpler than the ones used by Seiden
(which were manually optimized up to a precision of 10−7). The type thresholds are
the same, we mainly optimized the redi-values. Also note that the redfiti-values for
small types with ti > 1/18 are computed di�erently than in Harmonic++: we have
redfiti = b24/83

ti
c (unless redi = 0, in which case of course redfiti = 0).

Type i ti redi redfiti needs(i) leaves(i)

1 1 0 0 0 0
2 341/512 ≈ 0.6660 0 0 0 13
3 511/768 ≈ 0.6654 0 0 0 14
4 85/128 ≈ 0.6641 0 0 0 15
5 127/192 ≈ 0.6615 0 0 0 16
6 21/32 ≈ 0.6563 0 0 0 17
7 31/48 ≈ 0.6458 0 0 0 18
8 5/8 = 0.625 0 0 0 19
9 7/12 ≈ 0.5833 0 0 0 20

10 1/2 0 0 0 0
11 5/12 ≈ 0.4167 ≈ 0.0900 1 20 4
12 3/8 = 0.375 ≈ 0.1335 1 19 6
13 17/48 ≈ 0.3542 ≈ 0.1555 1 18 7
14 11/32 ≈ 0.3438 ≈ 0.1658 1 17 8
15 65/192 ≈ 0.3385 ≈ 0.1712 1 16 9
16 43/128 ≈ 0.3359 ≈ 0.1740 1 15 10
17 257/768 ≈ 0.3346 ≈ 0.1750 1 14 11
18 171/512 ≈ 0.3340 ≈ 0.1754 1 13 12
19 1/3 0 0 0 0
20 13/48 ≈ 0.2708 ≈ 0.0925 1 7 5
21 1/4 = 0.25 ≈ 0.0736 1 6 0
22 13/63 ≈ 0.2063 ≈ 0.1000 1 6 5
23 1/5 = 0.2 ≈ 0.0350 1 6 0
24 15/88 ≈ 0.1705 ≈ 0.0830 1 5 3
25 1/6 ≈ 0.1667 ≈ 0.0789 1 4 0
26 12/83 ≈ 0.1446 ≈ 0.1300 2 7 2
27 1/7 ≈ 0.1429 ≈ 0.0145 2 7 0
28 11/83 ≈ 0.1325 ≈ 0.0710 2 7 1
29 1/8 = 0.125 ≈ 0.0596 2 6 0
30 1/9 ≈ 0.1111 ≈ 0.0500 2 6 0
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B. Improved Parameters for a 1.5884-Competitive Super Harmonic-Algorithm

Type i ti redi redfiti needs(i) leaves(i)

31 1/10 = 0.1 ≈ 0.0450 2 6 0
32 1/11 ≈ 0.0909 ≈ 0.0320 3 7 0
33 1/12 ≈ 0.0833 ≈ 0.0220 3 6 0
34 1/13 ≈ 0.0769 ≈ 0.0355 3 6 0
35 1/14 ≈ 0.0714 ≈ 0.0085 4 7 0
36 1/15 ≈ 0.0667 ≈ 0.0100 4 7 0
37 1/16 = 0.0625 ≈ 0.0100 4 6 0
38 1/17 ≈ 0.0588 ≈ 0.0100 4 6 0
39 1/18 ≈ 0.0556 0 0 0 0

...
68 1/47 ≈ 0.0213 0 0 0 0
69 1/48 ≈ 0.0208 0 0 0 0

Table B.1: Parameters used for our improvement of Harmonic++.
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CParameters for a Competitive Ratio of
1.5787

In this chapter, we want to give parameters for a Extreme Harmonic algorithm that
uses red sand as described in section 4.6 and that achieves a competitive ratio of
1.5787. We start by giving the redspace-values; these are mostly de�ned by the types
(see table C.3).

Table C.1: redspace-values for the 1.5787-competitive algorithm.

k redspacek
1 1− 2 · t22 = 89/500
2 . . .22 1− 2 · t22+k = (89 + k)/500
23 2/9
24 . . .236 1− 2 · t21+k
237 . . .491 t495−k

We list the y∗1, y
∗
2, and y∗3 values in table C.2.

For the types, we only list type thresholds below 1/2 in table C.3, as types above
this are determined depending on the case as described in section 4.2.7. For type
N = 753, we have redN = 3/20 and redspaceneeds(N ) = 17/60. For many of the
medium types, the parameter redi is determined by the following linear function
f (i) = 18977

25800 − 368
215 · ti+1.

Type i ti redi redfiti needs(i) leaves(i)

3 1/2 0 0 0 0
4 . . .21 429

1000 − i−4
1000 1183/10000 1 495− i 0

22 411/1000 1183/10000 1 473 1
23 . . .44 41

100 − i−23
1000 1183/10000 1 495− i i − 22

45 . . .74 41
100 − i−23

1000 1183/10000 1 495− i i − 21
75 43/120 311/2500 1 420 54
76 179/500 311/2500 1 419 55
77 357/1000 311/2500 1 418 56
78 89/250 311/2500 1 417 57
79 59/166 1339/10000 1 416 58

80 . . .84 71
200 − i−80

1000 1339/10000 1 495− i i − 21
85 . . .94 7

20 − i−85
9600 71/500 1 495− i i − 21

95 349/1000 71/500 1 400 74
96 . . .105 67

192 − i−96
9600 71/500 1 495− i i − 21

106 87/250 71/500 1 389 85
107 . . .115 167

480 − i−107
9600 71/500 1 495− i i − 21
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C. Parameters for a Competitive Ratio of 1.5787

Type i ti redi redfiti needs(i) leaves(i)

116 347/1000 71/500 1 379 95
117 3331/9600 71/500 1 378 96
118 111/320 71/500 1 377 97

119 . . .126 3329
9600 − i−119

9600 33/200 1 495− i i − 21
127 173/500 33/200 1 368 106

128 . . .146 1107
3200 − i−128

9600 33/200 1 495− i i − 21
147 43/125 33/200 1 348 126

148 . . .157 1651
4800 − i−148

9600 33/200 1 495− i i − 21
158 343/1000 33/200 1 337 137

159 . . .163 823
2400 − i−159

9600 33/200 1 495− i i − 21
164 . . .167 823

2400 − i−159
9600 f (i) 1 495− i i − 21

168 171/500 f (i) 1 327 147
169 . . .178 3283

9600 − i−169
9600 f (i) 1 495− i i − 21

179 341/1000 f (i) 1 316 158
180 . . .198 1091

3200 − i−180
9600 f (i) 1 495− i i − 21

199 339/1000 f (i) 1 296 178
200 . . .209 1627

4800 − i−200
9600 f (i) 1 495− i i − 21

210 169/500 f (i) 1 285 189
211 . . .219 811

2400 − i−211
9600 f (i) 1 495− i i − 21

220 337/1000 f (i) 1 275 199
221 . . .230 647

1920 − i−221
9600 f (i) 1 495− i i − 21

231 42/125 f (i) 1 264 210
232 . . .250 43

128 − i−232
9600 f (i) 1 495− i i − 21

251 167/500 f (i) 1 244 230
252 1603/4800 f (i) 1 243 231
253 641/1920 f (i) 1 242 232
254 267/800 f (i) 1 241 233
255 3203/9600 f (i) 1 240 234
256 1601/4800 f (i) 1 239 235
257 1067/3200 f (i) 1 238 236
258 1/3 0 0 0 0
259 49/150 0 0 0 0
260 19/60 1/50 1 151 0
261 5/18 21/200 1 51 0
262 7/27 53/500 1 42 23
263 23/90 93/1000 1 40 28
264 63/250 97/1000 1 38 34
265 1/4 7/100 1 37 0
266 2/9 2/25 1 23 0
267 8/39 211/2500 1 14 1
268 1/5 3/100 1 11 0
269 3/17 143/10000 1 1 0

270 . . .275 1/2− t528−i 29/250 2 507− i 0
276 . . .279 1/2− t528−i 237/2000 2 507− i 0
280 . . .356 1/2− t528−i 11949/100000 2 507− i 0

357 633/4000 11949/100000 2 151 0
358 . . .443 1/2− t529−i 11949/100000 2 508− i 0
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Type i ti redi redfiti needs(i) leaves(i)

444 3/20 4/25 2 64 0
445 599/4000 4/25 2 64 0

446 . . .450 1/2− t530−i 4/25 2 509− i 0
451 579/4000 4/25 2 59 0

452 . . .454 1/2− t531−i 167/1000 2 510− i 0
455 1/7 971/10000 2 56 0

456 . . .465 1/2− t532−i 971/1000 2 511− i 0
466 . . .473 1/2− t532−i 18/125 2 511− i 0
474 . . .481 1/2− t532−i 33/250 2 511− i 0

482 471/4000 33/250 2 30 0
483 . . .488 1/2− t533−i 33/250 2 512− i 0

489 1/9 3/25 2 23 0
490 . . .492 1/2− t534−i 3/25 2 512− i 0

493 49/450 3/25 2 20 0
494 . . .496 1/2− t535−i 3/25 2 513− i 0

497 19/180 3/25 2 17 0
498 . . .502 1/2− t536−i 3/25 2 514− i 0
503 . . .512 1/2− t536−i 109/1000 2 514− i 0

513 1/11 491/5000 3 49 0
514 . . .517 1/2− t537−i 491/5000 3 561− i 0
518 . . .519 1/2− t537−i 491/5000 3 559− i 0

520 1/2− t17 491/5000 3 38 0
521 1/12 31/250 3 37 0
522 1/2− t16 31/250 3 37 0
523 1/2− t15 31/250 3 35 0
524 49/600 31/250 3 35 0
525 1/2− t14 31/250 3 34 0
526 1/2− t13 31/250 3 32 0
527 19/240 31/250 3 31 0
528 1/2− t12 31/250 3 31 0
529 1/2− t11 31/250 3 29 0
530 1/2− t10 31/250 3 28 0
531 1/13 127/1000 3 28 0
532 19/250 127/1000 3 26 0
533 3/40 127/1000 3 25 0
534 37/500 127/1000 3 22 0
535 73/1000 127/1000 3 21 0
536 9/125 127/1000 3 19 0
537 1/14 1/10 3 19 0
538 71/1000 1/10 3 18 0
539 1/15 1089/10000 4 46 0
540 1/16 1147/10000 4 37 0
541 1/17 1071/10000 4 30 0
542 1/18 1019/10000 5 51 0
543 1/19 269/2500 5 44 0
544 1/20 1/10 5 37 0
545 1/21 1/10 5 32 0
546 1/22 123/1250 6 49 0
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C. Parameters for a Competitive Ratio of 1.5787

Type i ti redi redfiti needs(i) leaves(i)

547 1/23 233/2500 6 43 0
548 1/24 1023/10000 6 37 0
549 1/25 987/10000 7 52 0
550 1/26 59/625 7 47 0
551 1/27 91/1000 7 42 0
552 1/28 871/10000 7 37 0
553 1/29 1001/10000 8 50 0
554 1/30 49/400 8 46 0
555 1/31 263/2000 8 42 0
556 1/32 903/10000 9 53 0
557 1/33 871/10000 9 49 0
558 1/34 21/250 9 45 0
559 1/35 83/1000 9 41 0
560 1/36 41/500 10 51 0
561 1/37 41/500 10 48 0
562 1/38 173/2000 10 44 0
563 1/39 421/5000 11 54 0
564 1/40 893/10000 11 50 0
565 1/41 87/1000 11 47 0
566 1/42 849/10000 11 43 0
567 1/43 849/10000 12 52 0
568 1/44 849/10000 12 49 0
569 1/45 849/10000 12 46 0
570 1/46 849/10000 12 43 0
571 1/47 849/10000 13 51 0
572 1/48 849/10000 13 48 0
573 1/49 849/10000 13 45 0
574 1/50 3479/19980 14 52 0
575 1/51 10031/57720 14 50 0
576 1/52 61229/352980 14 47 0
577 1/53 7784/44955 14 45 0
578 1/54 1407/8140 15 51 0
579 1/55 4597/26640 15 49 0
580 1/56 65401/379620 15 46 0
581 1/57 5537/32190 15 44 0
582 1/58 67487/392940 16 50 0
583 1/59 6853/39960 16 48 0
584 1/60 23191/135420 16 46 0
585 1/61 8827/51615 17 52 0
586 1/62 10237/59940 17 50 0
587 1/63 4039/23680 17 47 0
588 1/64 14749/86580 17 45 0
589 1/65 18697/109890 18 51 0
590 1/66 25277/148740 18 49 0
591 1/67 2261/13320 18 47 0
592 1/68 77917/459540 19 52 0
593 1/69 94/555 19 50 0
594 1/70 80003/472860 19 48 0
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Type i ti redi redfiti needs(i) leaves(i)

595 1/71 40523/239760 19 46 0
596 1/72 9121/54020 20 51 0
597 1/73 20783/123210 20 49 0
598 1/74 91/540 20 48 0
599 1/75 14203/84360 21 52 0
600 1/76 12323/73260 21 51 0
601 1/77 10913/64935 21 49 0
602 1/78 29449/175380 21 47 0
603 1/79 8939/53280 22 52 0
604 1/80 90433/539460 22 50 0
605 1/81 2541/15170 22 48 0
606 1/82 92519/552780 22 47 0
607 1/83 6683/39960 23 51 0
608 1/84 371/2220 23 49 0
609 1/85 11956/71595 23 48 0
610 1/86 96691/579420 24 52 0
611 1/87 16289/97680 24 50 0
612 1/88 98777/592740 24 49 0
613 1/89 4991/29970 24 47 0
614 1/90 1601/9620 25 51 0
615 1/91 50953/306360 25 50 0
616 1/92 102949/619380 25 48 0
617 1/93 4333/26085 26 52 0
618 1/94 21007/126540 26 51 0
619 1/95 53039/319680 26 49 0
620 1/96 35707/215340 26 48 0
621 1/97 3863/23310 27 52 0
622 1/98 109207/659340 27 50 0
623 1/99 49/296 27 49 0
624 1/100 3479/19980 28 52 0
625 1/102 10031/57720 28 50 0
626 1/104 61229/352980 29 52 0
627 1/106 7784/44955 29 49 0
628 1/108 1407/8140 30 51 0
629 1/110 4597/26640 30 49 0
630 1/112 65401/379620 31 51 0
631 1/114 5537/32190 31 48 0
632 1/116 67487/392940 32 50 0
633 1/118 6853/39960 33 52 0
634 1/120 23191/135420 33 50 0
635 1/122 8827/51615 34 52 0
636 1/124 10237/59940 34 50 0
637 1/126 4039/23680 35 51 0
638 1/128 14749/86580 35 49 0
639 1/130 18697/109890 36 51 0
640 1/132 25277/148740 36 49 0
641 1/134 2261/13320 37 51 0
642 1/136 77917/459540 38 52 0
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C. Parameters for a Competitive Ratio of 1.5787

Type i ti redi redfiti needs(i) leaves(i)

643 1/138 94/555 38 50 0
644 1/140 80003/472860 39 52 0
645 1/142 40523/239760 39 50 0
646 1/144 9121/54020 40 51 0
647 1/146 20783/123210 40 49 0
648 1/148 91/540 41 51 0
649 1/150 3479/19980 42 52 0
650 1/153 10031/57720 42 50 0
651 1/156 61229/352980 43 50 0
652 1/159 7784/44955 44 51 0
653 1/162 1407/8140 45 51 0
654 1/165 4597/26640 46 52 0
655 1/168 65401/379620 47 52 0
656 1/171 5537/32190 47 50 0
657 1/174 67487/392940 48 50 0
658 1/177 6853/39960 49 51 0
659 1/180 23191/135420 50 51 0
660 1/183 8827/51615 51 52 0
661 1/186 10237/59940 52 52 0
662 1/189 4039/23680 52 50 0
663 1/192 14749/86580 53 51 0
664 1/195 18697/109890 54 51 0
665 1/198 25277/148740 55 51 0
666 1/201 15841/91020 56 52 0
667 1/205 241787/1391940 57 52 0
668 1/209 245959/1418580 58 51 0
669 1/213 11911/68820 59 51 0
670 1/217 14959/86580 60 51 0
671 1/221 10339/59940 61 51 0
672 1/225 29183/169460 63 52 0
673 1/229 266819/1551780 64 52 0
674 1/233 270991/1578420 65 52 0
675 1/237 91721/535020 66 52 0
676 1/241 7981/46620 67 52 0
677 1/245 283507/1658340 68 51 0
678 1/249 95893/561660 69 51 0
679 1/253 74711/429570 70 51 0
680 1/258 101353/583860 72 52 0
681 1/263 154637/892440 73 51 0
682 1/268 44927/259740 75 52 0
683 1/273 13321/77145 76 52 0
684 1/278 324919/1884780 77 51 0
685 1/283 165067/959040 79 52 0
686 1/288 37261/216820 80 51 0
687 1/293 85141/496170 82 52 0
688 1/298 345779/2017980 83 52 0
689 1/303 119329/685980 84 51 0
690 1/309 3469/19980 86 52 0
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Type i ti redi redfiti needs(i) leaves(i)

691 1/315 41167/237540 88 52 0
692 1/321 125587/725940 89 51 0
693 1/327 127673/739260 91 52 0
694 1/333 1169/6780 93 52 0
695 1/339 26369/153180 94 51 0
696 1/345 133931/779220 96 52 0
697 1/351 11529/66230 98 52 0
698 1/358 84469/486180 100 52 0
699 1/365 214823/1238760 102 52 0
700 1/372 145649/841380 104 52 0
701 1/379 55531/321345 106 52 0
702 1/386 451549/2617380 108 52 0
703 1/393 3059/17760 110 52 0
704 1/400 3479/19980 112 52 0
705 1/408 10031/57720 114 52 0
706 1/416 61229/352980 116 52 0
707 1/424 7784/44955 118 52 0
708 1/432 1407/8140 120 51 0
709 1/440 4597/26640 123 52 0
710 1/448 65401/379620 125 52 0
711 1/456 35903/206460 127 52 0
712 1/465 45661/263070 130 52 0
713 1/474 26539/153180 132 52 0
714 1/483 94451/546120 135 52 0
715 1/492 192031/1112220 137 52 0
716 1/501 28213/162060 140 52 0
717 1/511 602903/3469860 143 52 0
718 1/521 613333/3536460 145 52 0
719 1/531 69307/400340 148 52 0
720 1/541 634193/3669660 151 52 0
721 1/551 81452/467865 154 52 0
722 1/562 663089/3816180 157 52 0
723 1/573 112427/648240 160 52 0
724 1/584 1153/6660 163 52 0
725 1/595 174377/1008990 166 52 0
726 1/606 119329/685980 169 52 0
727 1/618 3469/19980 173 52 0
728 1/630 41167/237540 176 52 0
729 1/642 125587/725940 179 52 0
730 1/654 257677/1480740 183 52 0
731 1/667 4627/26640 186 52 0
732 1/680 114307/659340 190 52 0
733 1/693 22603/130610 194 52 0
734 1/706 41713/239760 197 52 0
735 1/720 47159/271580 201 52 0
736 1/734 6349/36630 205 52 0
737 1/748 439033/2537460 209 52 0
738 1/762 42841/246420 213 52 0
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C. Parameters for a Competitive Ratio of 1.5787

Type i ti redi redfiti needs(i) leaves(i)

739 1/777 4123/23760 217 52 0
740 1/792 103439/597180 221 52 0
741 1/807 317863/1827060 225 52 0
742 1/823 970277/5587740 230 52 0
743 1/839 197393/1138860 234 52 0
744 1/855 56147/322640 239 52 0
745 1/872 146911/845820 244 52 0
746 1/889 261527/1508490 248 52 0
747 1/906 3187/18315 253 52 0
748 1/924 181601/1045620 258 52 0
749 1/942 18473/106560 263 52 0
750 1/960 378049/2173380 268 52 0
751 1/979 288491/1661670 274 52 0
752 1/998 10549/66600 279 52 0

Table C.3: Parameters for the 1.5787 algorithm.
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Table C.2: y∗1-, y∗2- and y∗3-values for the 1.5787-competitive algorithm. In cases where no
y∗1-value is given, Dk,sml

w was used. Note that only three di�erent values for y∗3 were used.

k y∗1 = y∗2
2 y∗3

≤ 229 – 1
4

230 . . .237 – 7
32

238 . . .243 37000301
10153836000

3
16

244 4515397
1269229500

3
16

245 12138517
3384612000

3
16

246 . . .263 37000301
10153836000

3
16

264 12138517
3384612000

3
16

265 4515397
1269229500

3
16

266 . . .274 37000301
10153836000

3
16

275 35830801
10153836000

1
4

276 18353963
5076918000

3
16

277 . . .284 37000301
10153836000

1
4

285 18353963
5076918000

1
4

286 35830801
10153836000

1
4

287 . . .295 37000301
10153836000

1
4

296 4515397
1269229500

1
4

297 12138517
3384612000

1
4

298 . . .315 37000301
10153836000

1
4

316 12138517
3384612000

1
4

317 4515397
1269229500

1
4

318 . . .326 37000301
10153836000

1
4

327 35830801
10153836000

1
4

k y∗1 = y∗2
2 y∗3

328 18353963
5076918000

1
4

329 . . .336 37000301
10153836000

1
4

337 18353963
5076918000

1
4

338 35830801
10153836000

1
4

339 . . .347 37000301
10153836000

1
4

348 4515397
1269229500

1
4

349 12138517
3384612000

1
4

350 . . .367 37000301
10153836000

1
4

368 12138517
3384612000

1
4

369 4515397
1269229500

1
4

370 . . .378 37000301
10153836000

1
4

379 35830801
10153836000

1
4

380 18353963
5076918000

1
4

381 . . .388 37000301
10153836000

1
4

389 18353963
5076918000

1
4

390 35830801
10153836000

1
4

391 . . .399 37000301
10153836000

1
4

400 4515397
1269229500

1
4

401 12138517
3384612000

1
4

402 . . .410 37000301
10153836000

1
4

411 . . .491 – 1
4
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