
32nd International Symposium
on Theoretical Aspects of
Computer Science

STACS’15, March 4–7, 2015, Garching, Germany

Edited by

Ernst W. Mayr
Nicolas Ollinger

LIPIcs – Vo l . 30 – STACS’15 www.dagstuh l .de/ l ip i c s

Editors
Ernst W. Mayr Nicolas Ollinger
Fakultät für Informatik LIFO
Technische Universität München Université d’Orléans
mayr@in.tum.de nicolas.ollinger@univ-orleans.fr

ACM Classification 1998
F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathematical Logic,
F.4.3 Formal Languages, G.2.1 Combinatorics, G.2.2 Graph Theory

ISBN 978-3-939897-78-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-78-1.

Publication date
February, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2015.i

ISBN 978-3-939897-78-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-78-1
http://www.dagstuhl.de/dagpub/978-3-939897-78-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-78-1
http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (RWTH Aachen)
Pascal Weil (Chair, CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

STACS’15

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Foreword

The Symposium on Theoretical Aspects of Computer Science (STACS) conference series
is an international forum for original research on theoretical aspects of computer science.
Typical areas are (cited from the call for papers for this year’s conference):

algorithms and data structures, including: parallel, distributed, approximation, and
randomized algorithms, computational geometry, cryptography, algorithmic learning theory,
algorithmic game theory, analysis of algorithms; automata and formal languages; computa-
tional complexity, parameterized complexity, randomness in computation; logic in computer
science, including: semantics, specification and verification, rewriting and deduction; current
challenges, for example: natural computing, quantum computing, mobile and net computing.

STACS is held alternately in France and in Germany. This year’s conference (taking
place March 4–7 in Garching near Munich) is the 32nd in the series. Previous meetings took
place in Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988),
Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen
(1994), München (1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille
(2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005),
Marseille (2006), Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund
(2011), Paris (2012), Kiel (2013), and Lyon (2014).

The interest in STACS has remained at a high level over the past years. The STACS
2015 call for papers led to 235 submissions with authors from 39 countries. Each paper
was assigned to three program committee members who, at their discretion, asked external
reviewers for reports. The committee selected 55 papers during a three-week electronic
meeting held in November/December. For the first time within the STACS conference series,
there was also a rebuttal period during which authors could submit remarks to the PC
concerning the reviews of their papers. As co-chairs of the program committee, we would
like to sincerely thank all its members and the many external referees for their valuable work.
In particular, there were intense and interesting discussions. The overall very high quality of
the submissions made the selection a difficult task.

This year, the conference includes two tutorials. We would like to express our thanks to
the speakers Felix Brandt (TUM) and Paul Goldberg (Oxford) for these tutorials, as well as
to the invited speakers, Sanjeev Arora (Princeton), Manuel Bodirsky (Dresden), and Peter
Sanders (Karlsruhe). Special thanks also go to Andrei Voronkov for his EasyChair software
(http://www.easychair.org). Moreover, we would like to warmly thank Christine Lissner
and Ernst Bayer for continuous help throughout the conference organization.

We would also like to thank Marc Herbstritt and Michael Wagner from the Dag-
stuhl/LIPIcs team for assisting us in the publication process and the final production
of the proceedings. These proceedings contain extended abstracts of the accepted contribu-
tions and abstracts of the invited talks and the tutorials. The authors retain their rights and
make their work available under a Creative Commons license. The proceedings are published
electronically by Schloss Dagstuhl – Leibniz-Center for Informatics within their LIPIcs series.

STACS 2015 has received funds and help from the Deutsche Forschungsgemeinschaft
(DFG), for which we are very grateful.

Munich and Orléans, February 2015 Ernst W. Mayr and Nicolas Ollinger

32nd International Symposium on Theoretical Aspects of Computer Science (STACS’15).
Editors: Ernst W. Mayr, Nicolas Ollinger

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.easychair.org
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Program Committee

Andris Ambainis FPM, U Riga
Hagit Attiya CS, Technion, Haifa
Johannes Blömer CS, U Paderborn
Mikołłaj Bojańczyk II, U Warsaw
Tomas Brazdil Masaryk U, Brno
Niv Buchbinder SOR, Tel Aviv U
Anuj Dawar CL, U Cambridge
Adrian Dumitrescu CS, U Wisconsin-Milwaukee
Matthias Englert DIMAP/DCS, U Warwick
Funda Ergun SCS SFU and SoIC Indiana U
Fedor Fomin IN, U Bergen
Tobias Friedrich FMI, FSU Jena
Christian Glaßer I1, U Würzburg
Etienne Grandjean GREYC, Caen
Tomasz Jurdzinski U Wroclaw
Manfred Kufleitner FMI, U Stuttgart
Jerome Leroux CNRS, LaBRI, Bordeaux
Ernst W. Mayr TUM, München (co-chair)
Peter Bro Miltersen CS, U Aarhus
Nicolas Ollinger LIFO, Orléans (co-chair)
Sylvain Perifel LIAFA, U Paris Diderot
Jayalal Sarma IIT, Madras
Nicolas Schabanel CNRS, LIAFA, Paris 7
Lutz Schröder FAU Erlangen-Nürnberg
Dimitrios M. Thilikos CNRS, LIRMM and U Athens
Gerhard Woeginger TUE, Eindhoven

Local Organization Committee

Ernst W. Mayr, TUM, München (chair)
Christine Lissner, TUM, München
Ernst Bayer, TUM, München

32nd International Symposium on Theoretical Aspects of Computer Science (STACS’15).
Editors: Ernst W. Mayr, Nicolas Ollinger

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Sebastian Abshoff
Oswin Aichholzer
Helmut Alt
Vikraman Arvind
James Aspnes
Mohamed Faouzi Atig
Erfan Sadeqi Azer
Golnaz Badkobeh
Christel Baier
Valeriy Balabanov
János Balogh
Evangelos Bampas
Hideo Bannai
Régis Barbanchon
Rafael Barbosa
Leonid Barenboim
Laurent Bartholdi
Surender Baswana
Tugkan Batu
Florent Becker
Petra Berenbrink
Attila Bernáth
Valérie Berthé
Dietmar Berwanger
Randeep Bhatia
Binay Bhattacharya
Arnab Bhattacharyya
Marcin Bieńkowski
Olivier Bodini
Manuel Bodirsky
Andrej Bogdanov
Bernard Boigelot
Udi Boker
Guillaume Bonfante
Paul Bonsma
Adam Bouland
Andreas Brandstadt
Simina Brânzei
Sascha Brauer
Michael Bremner
Karl Bringmann
Joshua Brody
Véronique Bruyère
Kevin Buchin
Kathrin Bujna
Jannis Bulian
Benjamin Burton

Jarosław Byrka
Daniel Cabarcas
Gruia Calinescu
Olivier Carton
Parinya Chalermsook
Jérémie Chalopin
Witold Charatonik
Krishnendu Chatterjee
Arkadev Chattopadhyay
Dimitris Chatzidimitriou
Kaustuv Chaudhuri
Ke Chen
Shahar Chen
Christine Cheng
Otfried Cheong
Mahdi Cheraghchi
Ferdinando Cicalese
Francisco Claude
Lorenzo Clemente
Ilan Cohen
Dinu Coltuc
Nadia Creignou
Maxime Crochemore
Marek Cygan
Artur Czumaj
Jurek Czyżowicz
Shantanu Das
Samir Datta
Mark de Berg
Bart de Keijzer
Nicolas de Rugy-Altherre
Ronald de Wolf
Emmanuel Delucchi
Dariusz Dereniowski
Krishnammorthy Dinesh
Michael Dinitz
Itai Dinur
Shahar Dobzinski
Laurent Doyen
Anne Driemel
Léo Ducas
Fabien Durand
Christoph Dürr
Zdeňek Dvořák
Stefan Dziembowski
Rüdiger Ehlers
Kord Eickmeyer

32nd International Symposium on Theoretical Aspects of Computer Science (STACS’15).
Editors: Ernst W. Mayr, Nicolas Ollinger

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

x External Reviewers

Martina Eikel
Yuval Emek
Alina Ene
David Eppstein
Leah Epstein
Bruno Escoffier
William Evans
Yuri Faenza
John Fearnley
Moran Feldman
Nathanaël Fijalkow
Aris Filos-Ratsikas
Samuel Fiorini
Lila Fontes
Vojtěch Forejt
Mathew Francis
Robert Fraser
Anna Frid
Oliver Friedmann
Alan Frieze
Travis Gagie
Anahi Gajardo
Jakub Gajarský
Iftah Gamzu
Robert Ganian
Pierre Ganty
Leszek Gąsieniec
Serge Gaspers
Philippe Gaucher
Paweł Gawrychowski
Guido Gherardi
Anirban Ghosh
Panos Giannopoulos
Archontia Giannopoulou
Hugo Gimbert
Tomasz Gogacz
Stefan Göller
Petr Golovach
Daniel Gonçalves
David Gosset
Dominique Gouyou-Beauchamps
Sathish Govindarajan
Vineet Goyal
Serge Grigorieff
Joshua Grochow
Peter Günther
Heng Guo
Rishi Gupta
Shalmoli Gupta
Christoph Haase

Magnús M. Halldórsson
Sean Hallgren
Michal Hańćkowiak
Kristoffer Arnsfelt Hansen
Thomas Dueholm Hansen
Sariel Har-Peled
Thomas Hayes
Pinar Heggernes
Lauri Hella
Benjamin Hellouin de Ménibus
Monika Henzinger
Frédéric Herbreteau
Ulrich Hertrampf
Cameron Donnay Hill
Jeff Hirst
Petr Hliněný
Martin Hoefer
Seok-Hee Hong
Florian Horn
Pavel Hrubes
Andreas Hülsing
Paul Hunter
John Iacono
Rasmus Ibsen-Jensen
Sungjin Im
Radu Iosif
Rani Izsak
Bart M.P. Jansen
Emmanuel Jeandel
Stacey Jeffery
Anders Jensen
Artur Jeż
Łukasz Jeż
Ajay Joneja
Mark Jones
Antoine Joux
Jakob Juhnke
Tomasz Jurkiewicz
Mark Kaminski
Marcin Kamiński
Mamadou Moustapha Kanté
Michael Kapralov
Juhani Karhumaki
Shiva Kasiviswanathan
Jonathan Kausch
Akitoshi Kawamura
Edon Kelmendi
Iordanis Kerenidis
Eun Jung Kim
Shelby Kimmel

External Reviewers xi

Valerie King
Hartmut Klauck
Bartek Klin
Peter Kling
Hirotada Kobayashi
Yusuke Kobayashi
Johannes Koebler
Pascal Koiran
Stavros Kolliopoulos
Balagopal Komarath
Eryk Kopczyński
Swastik Kopparty
Sajin Koroth
Guy Kortsarz
Adrian Kosowski
Robin Kothari
Lukasz Kowalik
Daniel Kral
Dieter Kratsch
Jan Krčál
Jan Křetínský
Stephan Kreutzer
Sebastian Krinninger
R. Krithika
Anton Krohmer
Antonín Kučera
Ravi Kumar
Piyush Kurur
Eyal Kushilevitz
Martin Kutrib
Roman Kuznets
Jakub Łącki
Peter Lammich
Michael Lampis
Kasper Green Larsen
Yanfang Le
Bastien Le Gloannec
Thierry Lecroq
Axel Legay
Daniel Lemire
Hendrik W. Lenstra
Anthony Leverrier
Asaf Levin
Nutan Limaye
Vincent Limouzy
Gennadij Liske
Maciej Liśkiewicz
Xiao Liu
Daniel Lokshtanov
Florian Lonsing

Krzysztof Loryś
Michael Ludwig
Frédéric Magniez
Meena Mahajan
Johann Makowsky
Ritankar Mandal
Spyridon Maniatis
Rajsekar Manokaran
Sabrina Mantaci
Bodo Manthey
Alberto Marchetti-Spaccamela
Jerzy Marcinkowski
Russell Martin
Dániel Marx
Tomas Masopust
Kevin Matulef
Elvira Mayordomo
Arne Meier
Daniel Meister
Stefan Mengel
George Mertzios
Pierre-Étienne Meunier
Friedhelm Meyer auf der Heide
Othon Michail
Henryk Michalewski
Matúš Mihalák
Samuel Mimram
Matteo Mio
Neeldhara Misra
Tal Mizrahi
Matthias Mnich
Morteza Monemizadeh
Walter Morris
Benjamin Moseley
Amer Mouawad
Jean-Yves Moyen
Yannis Moysoglou
Marcin Mucha
Partha Mukhopadhyay
Wolfgang Mulzer
Daniel Nagaj
Viswanath Nagarajan
Alberto Naibo
N. S. Narayanaswamy
Meghana Nasre
Gonzalo Navarro
Alantha Newman
Calvin Newport
Phong Nguyen
Patrick K. Nicholson

STACS’15

xii External Reviewers

Nicolas Nisse
Petr Novotný
Zeev Nutov
Jan Obdržálek
Alexander Okhotin
Alberto Ordóñez
Sebastian Ordyniak
Sigal Oren
Rotem Oshman
Yota Otachi
Youssouf Oualhadj
Kenta Ozeki
Katarzyna Paluch
Konstantinos Panagiotou
Fahad Panolan
Evanthia Papadopoulou
Charles Paperman
Mike Paterson
Boaz Patt-Shamir
Christophe Paul
Daniel Paulusma
Arno Pauly
Emmanuel Paviot-Adet
Ami Paz
Lehilton L.C. Pedrosa
Andrzej Pelc
Pablo Pérez-Lantero
Dominique Perrin
Leonid Petrov
Giovanni Pighizzini
Michał Pilipczuk
Chris Pinkau
Marek Piotrów
Thomas Place
Sebastian Pokutta
Valentin Polishchuk
Natacha Portier
Cristian Prisacariu
Ariel Procaccia
Kirk Pruhs
Simon Puglisi
Mikaël Rabie
M. S. Ramanujan
Narad Rampersad
Ramyaa Ramyaa
Mickael Randour
B.V. Raghavendra Rao
Baharak Rastegari
Saurabh Ray
Jean-Florent Raymond

Oded Regev
Vojtěch Řehák
Eric Remila
Pierre-Alain Reynier
Gaétan Richard
David Richerby
Liam Roditty
Martin Roetteler
Heiko Röglin
Adi Rosen
Günter Rote
Sasanka Roy
Alan Roytman
Michał Różański
Philipp Rümmer
Ignaz Rutter
Aleksi Saarela
Benjamin Sach
Sigve Hortemo Sæther
Ville Salo
Arnaud Sangnier
Piotr Sankowski
Kanthi Sarpatwar
Ignasi Sau
Nitin Saurabh
Saket Saurabh
Guido Schaefer
Marcus Schaefer
Patrick Scharpfenecker
Christian Scheffer
Christian Scheideler
Sven Schewe
Maximilian Schlund
Markus L. Schmid
Dominique Schmitt
Sylvain Schmitz
Henning Schnoor
Roy Schwartz
Luc Segoufin
Géraud Sénizergues
Olivier Serre
Jiří Sgall
Paul Shafer
Chintan Shah
Mordechai Shalom
Asaf Shapira
John Shareshi
Alexander Shen
Arseny Shur
Anastasios Sidiropoulos

External Reviewers xiii

Laurent Simon
Rakesh Sinha
Naveen Sivadasan
Alexander Skopalik
Shakhar Smorodinsky
Christian Sohler
Shay Solomon
Eric Sopena
Troels Bjerre Sørensen
Jiří Srba
Srikanth Srinivasan
Grzegorz Stachowiak
Gawiejnowicz Stanislaw
Daniel Stefankovic
Eckhard Steffen
Damien Stehlé
Darren Strash
Howard Straubing
Hsin-Hao Su
Scott Summers
Grégoire Sutre
Stefan Szeider
Luis Tabera
Avishay Tal
Navid Talebanfard
Tami Tamir
Pingzhong Tang
Till Tantau
Gabor Tardos
Hanjo Täubig
Sébastien Tavenas
Balder ten Cate
Lidia Tendera
Véronique Terrier
Raghunath Tewari
Abhradeep Thakurta
Johan Thapper
Guillaume Theyssier
Erez Timnat
Alexander Tiskin
Stefan Toman
Jacobo Torán
Eric Torng
Dave Touchette

Craig Tovey
Henry Towsner
Ashutosh Trivedi
Torsten Ueckerdt
Seeun Umboh
Pierre Valarcher
Leo van Iersel
Erik Jan van Leeuwen
Dieter van Melkebeek
Rob van Stee
Anke van Zuylen
Adi Vardi
Shai Vardi
Sergei Vassilvitskii
Sander Verdonschot
José Verschae
Aravindan Vijayaraghavan
Tobias Walter
Haitao Wang
Justin Ward
Xiangzhi Wei
Jeremias Weihmann
Armin Weiss
Matthias Westermann
James Wilson
Maximilian Witek
Philipp Woelfel
Alexander Wolff
Damien Woods
James Worrell
Thomas Worsch
Zhilin Wu
Christian Wulff-Nilsen
Tim Wylie
Mingyu Xiao
G Xu
Li Yan
Yuichi Yoshida
Victor Zamaraev
Meirav Zehavi
Marc Zeitoun
Jie Zhang
Yuan Zhou

STACS’15

Contents

Invited talks

Overcoming Intractability in Unsupervised Learning
Sanjeev Arora . 1

The Complexity of Constraint Satisfaction Problems
Manuel Bodirsky . 2

Parallel Algorithms Reconsidered
Peter Sanders . 10

Tutorials

Computational Social Choice
Felix Brandt . 19

Algorithmic Game Theory
Paul Goldberg . 20

Regular contributions

The Minimum Oracle Circuit Size Problem
Eric Allender, Dhiraj Holden, and Valentine Kabanets . 21

Graph Searching Games and Width Measures for Directed Graphs
Saeed Akhoondian Amiri, Łukasz Kaiser, Stephan Kreutzer, Roman Rabinovich, and
Sebastian Siebertz . 34

Subset Sum in the Absence of Concentration
Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof 48

On Sharing, Memoization, and Polynomial Time
Martin Avanzini and Ugo Dal Lago . 62

Proof Complexity of Resolution-based QBF Calculi
Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota . 76

Welfare Maximization with Friends-of-Friends Network Externalities
Sayan Bhattacharya, Wolfgang Dvořák, Monika Henzinger, and Martin Starnberger 90

Markov Decision Processes and Stochastic Games with Total Effective Payoff
Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino 103

Advice Complexity for a Class of Online Problems
Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen 116

Las Vegas Computability and Algorithmic Randomness
Vasco Brattka, Guido Gherardi, and Rupert Hölzl . 130

Understanding Model Counting for β-acyclic CNF-formulas
Johann Brault-Baron, Florent Capelli, and Stefan Mengel . 143

32nd International Symposium on Theoretical Aspects of Computer Science (STACS’15).
Editors: Ernst W. Mayr, Nicolas Ollinger

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xvi Contents

Parameterized Complexity Dichotomy for Steiner Multicut
Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen . . 157

Solving Totally Unimodular LPs with the Shadow Vertex Algorithm
Tobias Brunsch, Anna Großwendt, and Heiko Röglin . 171

Improved Local Search for Geometric Hitting Set
Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray 184

Arc Diagrams, Flip Distances, and Hamiltonian Triangulations
Jean Cardinal, Michael Hoffmann, Vincent Kusters, Csaba D. Tóth, and Manuel
Wettstein . 197

Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics
Pablo Castro, Cecilia Kilmurray, and Nir Piterman . 211

Tribes Is Hard in the Message Passing Model
Arkadev Chattopadhyay and Sagnik Mukhopadhyay . 224

Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees
Markus Chimani and Joachim Spoerhase . 238

Combinatorial Expressions and Lower Bounds
Thomas Colcombet and Amaldev Manuel . 249

Construction of µ-Limit Sets of Two-dimensional Cellular Automata
Martin Delacourt and Benjamin Hellouin de Menibus . 262

Derandomized Graph Product Results Using the Low Degree Long Code
Irit Dinur, Prahladh Harsha, Srikanth Srinivasan, and Girish Varma 275

Space-efficient Basic Graph Algorithms
Amr Elmasry, Torben Hagerup, and Frank Kammer . 288

Pattern Matching with Variables: Fast Algorithms and New Hardness Results
Henning Fernau, Florin Manea, Robert Mercaş, and Markus L. Schmid 302

Approximating the Generalized Terminal Backup Problem via Half-integral Multiflow
Relaxation

Takuro Fukunaga . 316

On Matrix Powering in Low Dimensions
Esther Galby, Joël Ouaknine, and James Worrell . 329

The Complexity of Recognizing Unique Sink Orientations
Bernd Gärtner and Antonis Thomas . 341

New Geometric Representations and Domination Problems on Tolerance and
Multitolerance Graphs

Archontia C. Giannopoulou and George B. Mertzios . 354

Comparing 1D and 2D Real Time on Cellular Automata
Anaël Grandjean and Victor Poupet . 367

Tropical Effective Primary and Dual Nullstellensätze
Dima Grigoriev and Vladimir V. Podolskii . 379

Upper Tail Estimates with Combinatorial Proofs
Jan Hązła and Thomas Holenstein . 392

Contents xvii

Minimum Cost Flows in Graphs with Unit Capacities
Andrew V. Goldberg, Haim Kaplan, Sagi Hed, and Robert E. Tarjan 406

Inductive Inference and Reverse Mathematics
Rupert Hölzl, Sanjay Jain, and Frank Stephan . 420

Dynamic Planar Embeddings of Dynamic Graphs
Jacob Holm and Eva Rotenberg . 434

On the Information Carried by Programs about the Objects They Compute
Mathieu Hoyrup and Cristóbal Rojas . 447

Communication Complexity of Approximate Matching in Distributed Graphs
Zengfeng Huang, Božidar Radunović, Milan Vojnović, and Qin Zhang 460

Stochastic Scheduling of Heavy-tailed Jobs
Sungjin Im, Benjamin Moseley, and Kirk Pruhs . 474

On Finding the Adams Consensus Tree
Jesper Jansson, Zhaoxian Li, and Wing-Kin Sung . 487

Flip Distance Is in FPT Time O(n+ k · ck)
Iyad Kanj and Ge Xia . 500

New Pairwise Spanners
Telikepalli Kavitha . 513

Multi-k-ic Depth Three Circuit Lower Bound
Neeraj Kayal and Chandan Saha . 527

Automorphism Groups of Geometrically Represented Graphs
Pavel Klavík and Peter Zeman . 540

Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs
Philip N. Klein, Claire Mathieu‡, and Hang Zhou‡ . 554

Extended Formulation Lower Bounds via Hypergraph Coloring?
Stavros G. Kolliopoulos and Yannis Moysoglou . 568

Lempel-Ziv Factorization May Be Harder Than Computing All Runs
Dmitry Kosolobov . 582

Visibly Counter Languages and Constant Depth Circuits
Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig . 594

Optimal Decremental Connectivity in Planar Graphs
Jakub Łącki and Piotr Sankowski . 608

Testing Small Set Expansion in General Graphs
Angsheng Li and Pan Peng . 622

Paid Exchanges are Worth the Price
Alejandro López-Ortiz, Marc P. Renault, and Adi Rosén . 636

Undecidability in Binary Tag Systems and the Post Correspondence Problem for Five
Pairs of Words

Turlough Neary . 649

STACS’15

xviii Contents

Separation and the Successor Relation
Thomas Place and Marc Zeitoun . 662

Computing 2-Walks in Polynomial Time
Andreas Schmid and Jens M. Schmidt . 676

Towards an Isomorphism Dichotomy for Hereditary Graph Classes
Pascal Schweitzer . 689

Existential Second-order Logic over Graphs: A Complete Complexity-theoretic
Classification

Till Tantau . 703

The Returning Secretary
Shai Vardi . 716

Homomorphism Reconfiguration via Homotopy
Marcin Wrochna . 730

Computing Downward Closures for Stacked Counter Automata
Georg Zetzsche . 743

Overcoming Intractability in Unsupervised
Learning
Sanjeev Arora

Computer Science Department, Princeton University
arora@princeton.edu

Abstract
Unsupervised learning – i.e., learning with unlabeled data - is increasingly important given today’s
data deluge. Most natural problems in this domain – e.g. for models such as mixture models,
HMMs, graphical models, topic models and sparse coding/dictionary learning, deep learning –
are NP-hard. Therefore researchers in practice use either heuristics or convex relaxations with
no concrete approximation bounds. Several nonconvex heuristics work well in practice, which is
also a mystery.

The talk will describe a sequence of recent results whereby rigorous approaches leading to
polynomial running time are possible for several problems in unsupervised learning. The proof
of polynomial running time usually relies upon nondegeneracy assumptions on the data and the
model parameters, and often also on stochastic properties of the data (average-case analysis). We
describe results for topic models, sparse coding, and deep learning. Some of these new algorithms
are very efficient and practical – e.g. for topic modeling.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
I.2 Artificial Intelligence

Keywords and phrases machine learning, unsupervised learning, intractability, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.1

Category Invited Talk

© Sanjeev Arora;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 1–1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The Complexity of Constraint Satisfaction
Problems∗

Manuel Bodirsky

Institut für Algebra, Technische Universität Dresden, Germany
Manuel.Bodirsky@tu-dresden.de

Abstract
The tractability conjecture for constraint satisfaction problems (CSPs) describes the constraint
languages over a finite domain whose CSP can be solved in polynomial-time. The precise for-
mulation of the conjecture uses basic notions from universal algebra. In this talk, we give a
short introduction to the universal-algebraic approach to the study of the complexity of CSPs.
Finally, we discuss attempts to generalise the tractability conjecture to large classes of constraint
languages over infinite domains, in particular for constraint languages that arise in qualitative
temporal and spatial reasoning.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases constraint satisfaction, universal algebra, model theory, clones, temporal
and spatial reasoning

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.2

Category Invited Talk

1 The Constraint Satisfaction Problem

Constraint satisfaction problems are computational problems that can be formalised in
several equivalent ways. A mathematically convenient way is to view CSPs as structural
homomorphism problems, as follows. Fix a structure Γ with a finite relational signature τ .
The domain of Γ need not be finite for the following computational problem to be well-defined.

I Definition 1 (CSP(Γ)). The constraint satisfaction problem for Γ, denoted by CSP(Γ), is
the computational problem to decide for a given finite τ -structure A whether there exists a
homomorphism to Γ.

The fixed structure Γ is often referred to as the constraint language of the constraint
satisfaction problem, since we choose from the relations in Γ to formulate our constraints in
the input structure A. We give some concrete examples of CSPs.
1. Graph n-colorability can be formulated as CSP(Kn) where Kn is the complete loopless

graph on n vertices.
2. The question whether a given finite digraph is acyclic, i.e., does not contain a directed

cycle, can be formulated as CSP(Q;<).
3. The question whether a given directed graph has a vertex bipartition such that both

parts are acyclic can be formulated as CSP(N;E) where

E := {(a, b) ∈ N2 | a < b or (a− b) is odd} .

∗ The author has received funding from the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 257039).

© Manuel Bodirsky;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 2–9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Bodirsky 3

4. CSP(R;≤, A,O) for A := {(a, b, c) ∈ R3 | a + b = c} and O := {1} is essentially the
feasibility problem for linear programs (see [5]).

The list can be prolonged easily, and contains a variety of problems that appeared in the
literature throughout theoretical computer science.

There is a great amount of work about the computational complexity of CSP(Γ) when
Γ is a finite structure (i.e., has a finite domain), stimulated by the following dichotomy
conjecture.

I Conjecture 1 (Feder and Vardi [18]). Let Γ be a finite structure with a finite relational
signature. Then CSP(Γ) is in P or NP-complete.

2 The Universal-Algebraic Approach

The central notion for the universal algebraic approach is the notion of a polymorphism of
a constraint language Γ. A polymorphism of Γ is a homomorphism h from finite powers
of Γ into Γ. In other words, when h has arity k, then we require for all relations R of
Γ and (a1

1, . . . , a
1
n) ∈ R, . . . , (ak

1 , . . . , a
k
n) ∈ R that (h(a1

1, . . . , a
k
1), . . . , h(a1

n, . . . , a
k
n)) ∈ R.

Unary polymorphisms are also known as endomorphisms. Thus, polymorphisms generalise
endomorphisms, and endomorphisms generalise automorphisms of Γ. We write Pol(Γ) for
the set of all polymorphisms of Γ, and Aut(Γ) for the set of all polymorphisms of Γ.

The following result for structures with a finite domain, which relies on a fundamental
theorem in universal algebra [19, 16], hints at the relevance of polymorphisms for CSPs.

I Theorem 2 ([23]). Let Γ1 and Γ2 be finite structures with the same domain and finite
relational signatures such that Pol(Γ1) ⊆ Pol(Γ2). Then there is a deterministic linear-time
many-one reduction from CSP(Γ2) to CSP(Γ1).

Theorem 2 has an important advancement, Theorem 3 below, which is particularly
important when we want to reduce between CSPs where the constraint languages have
different domains. Let us first mention that the set Pol(Γ) is a function clone. A function
clone is a set S of functions of finite arity that

is closed under composition: for k-ary g ∈ S and l-ary f1, . . . , fk ∈ S the l-ary function
g(f1, . . . , fk) given by (x1, . . . , xl) 7→ g(f1(x1, . . . , xl), . . . , fk(x1, . . . , xl)) is also in S, and
contains the projections πk

i given by (x1, . . . , xk) 7→ xi.
A map ξ : Pol(Γ1)→ Pol(Γ2) is called a clone homomorphism if for all g, f1, . . . , fk ∈ Pol(Γ1)

ξ(g(f1, . . . , fk)) = ξ(g)(ξ(f1), . . . , ξ(fk))

and ξ(πk
i) = πk

i for all 1 ≤ i ≤ k. A clone isomorphism is a bijective clone homomorphism.

I Theorem 3. Suppose that Γ1 and Γ2 are finite structures with finite relational signature
such that there exists a clone isomorphism between Pol(Γ1) to Pol(Γ2). Then CSP(Γ1) and
CSP(Γ2) are equivalent under deterministic linear-time many-one reductions.

3 The Finite Domain Tractability Conjecture

Theorem 3 from the previous section tells us that the computational complexity of CSP(Γ)
is coded into the equations that hold on the polymorphisms. We even have a candidate
equation that might characterise the CSPs in P.

STACS 2015

4 The Complexity of Constraint Satisfaction Problems

I Theorem 4 ([17, 28, 21]). Suppose that Γ is a finite structure. Then Γ has a Taylor1
polymorphism f , that is, when f has arity n then it satisfies for every i ≤ n an equation of
the form

∀x, y. f(x1, . . . , xn) = f(y1, . . . , y1) ,

where x1, . . . , xn, y1, . . . , yn ∈ {x, y} and xi 6= yi, or there is a structure Γ′ obtained from Γ
by dropping all but finitely many relations such that CSP(Γ′) is NP-complete.

The condition given in Theorem 4 has been improved recently: the existence of a Taylor
polymorphism is equivalent to the existence of an operation that satisfies an equation that is
must easier to grasp.

I Theorem 5 ([1]). A finite structure Γ has a Taylor polymorphism if and only if it has a
cyclic polymorphism f , that is, f has arity n ≥ 2 and satisfies

∀x1, . . . , xn. f(x1, . . . , xn) = f(x2, . . . , xn, x1) .

The following conjecture has been made in different form by Bulatov, Jeavons, and
Krokhin [17]; the formulation given below is equivalent by well-known facts. The conjecture
complements Theorem 4, and its truth would settle the dichotomy conjecture.

I Conjecture 2 (Tractability Conjecture). Let Γ be a finite structure with finite relational
signature and a Taylor (or, equivalently, cyclic) polymorphism. Then CSP(Γ) is in P.

4 Infinite Domains

The universal-algebraic approach can be generalised to constraint languages Γ over infinite
domains. This generalisation is most straightforward when the automorphism group of Γ is
large, in the following sense.

IDefinition 6. A permutation groupG on a setX is called oligomorphic if the componentwise
action of G on Xn has only finitely many orbits, for all n ∈ N.

An example of an oligomorphic permutation group is the automorphism group of (Q;<).
Countable structures Γ with an oligomorphic permutation group are well-known to model-
theorists: by a theorem independently due to Ryll-Nardzewski, Engeler, and Svenonius (see,
e.g., [22]), these are precisely the countable structures that are ω-categorical, that is, Γ has
the property that all countable models of the first-order theory of Γ are isomorphic to Γ.

A versatile method to construct ω-categorical structures is via Fraïssé-limits, and taking
reducts, which we briefly recall here. We need the standard notion of homogeneity (some-
times called ultrahomogeneity) from model theory. A structure Γ is called homogeneous
if all isomorphisms between finite substructures can be extended to automorphisms of Γ.
Homogeneous structures with finite relational signature are ω-categorical [22]. Homogeneous
structures are uniquely given by their age, which is the class of finite structures that embed
into them. The age of a homogeneous structure must have the amalgamation property (we
again refer to [22]), and every amalgamation class C gives rise to a homogeneous structure
of age C. The fundamental model theory of homogeneous structures goes back to Fraïssé,
and hence the unique homogeneous structure for a given amalgamation class is called the
Fraïssé-limit of this class.

1 Note that, contrary to what can often be found in the literature, in our definition of Taylor operations,
we do not insist on idempotency of f .

M. Bodirsky 5

A reduct of a structure ∆ is a structure Γ on the same domain such that all relations of Γ
are first-order definable (without parameters) in ∆. For example, the structure (Q; Betw)
where Betw := {(x, y, z) | x < y < z ∨ z < y < x} (the so-called Betweenness relation) is a
reduct of (Q;<). Reducts of homogeneous structures need not be homogeneous, but reducts
of ω-categorical structures remain ω-categorical.

When Γ is ω-categorical, then the complexity of Γ is still coded into the polymorphisms.

I Theorem 7 ([8]). Let Γ1 and Γ2 be ω-categorical structures with the same domain and
finite relational signatures such that Pol(Γ1) = Pol(Γ2). Then Γ1 and Γ2 are equivalent
under deterministic linear-time many-one reductions.

An example of a permutation group which is not oligomorphic is the automorphism group
of the structure (N;E) discussed in the introduction: it has infinitely many orbits in its
componentwise action on N2. However, in this case it is easy to come up with a structure
that has precisely the same CSP, but whose automorphism group is oligomorphic: let Q1, Q2
be a partition of Q such that both Q1 and Q2 are dense in Q, and consider the structure
(Q;E′) where

E′ := {(a, b) ∈ Q2 | a < b or a ∈ Q1 ⇔ b ∈ Q2} .

This is a frequent phenomenon: many computational problems in temporal and spatial
reasoning can be formulated as CSPs, but often some extra care is needed to show that
they can be formulated with ω-categorical constraint languages. A necessary and sufficient
Myhill-Nerode-type condition that characterises the CSPs that can be formulated with an
ω-categorical constraint language can be found in [3]. An example of a structure that does
not satisfy the mentioned Myhill-Nerode-type condition of Example 4, in the introduction.
Hence, CSP(R;A,O) (which is essentially the feasibility problem for linear programs) cannot
be formulated as CSP(Γ) with an ω-categorical constraint language.

We do not know whether Theorem 3 remains valid for ω-categorical structures Γ, that is,
whether the isomorphism type of the polymorphism clone of Γ determines the complexity of
CSP(Γ). However, the theorem can be rescued by a slight modification.

I Theorem 8 ([12]). Suppose that Γ1 and Γ2 are ω-categorical structures with finite relational
signature such that there exists a clone isomorphism between Pol(Γ1) and Pol(Γ2) which is
also a homeomorphism. Then CSP(Γ1) and CSP(Γ2) are equivalent under deterministic
linear-time many-one reductions.

The homeomorphicity requirement in Theorem 8 is with respect to the topology of
pointwise convergence on the space of all functions of finite arity, which is defined as follows.
For elements a, b1, . . . , bk of the domain D, define Fa,b1,...,bk

:= {f | f(b1, . . . , bk) = a}. Then
the topology of pointwise convergence is the smallest topology where the open sets include
{Fa,b1,...,bk

| k ∈ N, a, b1, . . . , bk ∈ D}. It is a basic fact that a clone C is closed in this space,
C = C, if and only if it is the polymorphism clone of a structure.

5 A general tractability conjecture

Cyclic polymorphisms do not characterise the tractability of the CSP for ω-categorical
structures: a simple counterexample is the structure (N; 6=, I4) where I4 is the quaternary
relation defined as I4 := {(a, b, c, d) ∈ N4 | a = b⇒ c = d}. The automorphism group of this
structure is the set of all permutations of N, which is clearly oligomorphic. The polymorphisms
of this structure are precisely all functions that are composed from injective functions and

STACS 2015

6 The Complexity of Constraint Satisfaction Problems

projections. Hence, the clone does not contain cyclic operations. But CSP(N; 6=, I4) is easily
seen to be in P; see [6].

The structure (N; 6=, I4) has polymorphisms that are almost as good as cyclic operations:
every binary injective operation f will be a polymorphism, and we can always pick an
injection i from N→ N such that the following holds:

∀x1, x2. f(x1, x2) = i(f(x2, x1)) .

We also have to describe an obstruction to general algorithmic results for the class of all
ω-categorical structures. Henson [20] constructed uncountably many homogeneous directed
graphs Γ, and all of these directed graphs have distinct CSPs. Since there are only countably
many algorithms, there must be directed graphs in this class with an undecidable CSP. There
are also CSPs of various intermediate complexities [2]. All of Henson’s digraphs have a binary
polymorphism f and endomorphisms e1, e2 satisfying

∀x1, x2. e1(f(x1, x2)) = e2(f(x2, x1)) ,

that is, from a universal-algebraic perspective, they all ‘look like easy CSPs’, but they are
not.

Henson’s directed homogeneous graphs are based on forbidding infinite families of finite
structures. On the other hand, the ω-categorical structures that appear ‘in nature’ (either in
mathematics or to formulate computational problems as CSPs) can typically be described by
forbidding only finitely many finite structures. More formally, we say that a homogeneous
structure Γ is finitely bounded if there exists a finite set F of finite structures such that the
age of Γ is given as the class of all finite structures that do not embed any of the structures
from F . We now generalise the tractability conjecture by modifying the idea of Taylor
polymorphisms so that it involves outside applications of endomorphisms, as follows.

I Conjecture 3. Let Γ be the reduct of a finitely bounded homogeneous structure. If Γ has a
polymorphism f of arity n ≥ 2 such that for every i ≤ n there are endomorphisms e1, e2 and
x1, . . . , xn, y1, . . . , yn ∈ {x, y} with xi 6= yi such that f satisfies

e1(f(x1, . . . , xn)) = e2(f(y1, . . . , yn))

then CSP(Γ) is in P. Otherwise, CSP(Γ) is NP-complete.

The conjecture has been verified for several classes of ω-categorical structures:
All reducts of (Q;<) in [7];
All reducts of the Random graph (the Fraïssé-limit of the class of all finite graphs) in [10];
All reducts of the homogeneous equivalence relation with infinitely many infinite classes
in [15].

The strongest tool we have for attacking this conjecture will be introduced in the next section.

6 Ramsey Theory

The complexity classification results for ω-categorical structures mentioned in Section 5 rely
on results from structural Ramsey theory. We say that a homogeneous structure Γ is Ramsey
if for all finite substructures A and B of Γ and every colouring of the embeddings of A into
Γ with finitely many colours, there exists an embedding e : B → Γ such that all embeddings
of A into e(B) have the same color. Examples of homogeneous Ramsey structures are

M. Bodirsky 7

(Q;<);
the ordered Random graph, and other generically ordered Fraïssé-limits of so-called free
amalgamation classes (examples are ordered versions of the Henson digraphs) [27];
the convexly ordered homogeneous binary branching C-relation, and other tree-like
structures [25, 26];
the lexicographically ordered vector space over a finite field (see [24]);
the lexicographically ordered atomless Boolean algebra (see [24]).

The fact that a structure is Ramsey can be exploited when analysing its automorphism
group, endomorphism monoid, or polymorphism clone. Our usage of Ramsey theory is
almost exclusively via the concept of canonical functions. For simplicity, we explain this
concept for unary functions only; however, the ideas generalize straightforwardly to finitary
functions; see [9] for an in-depth introduction to the method of canonical functions. A
function f : Γ→ Γ is called canonical if for all β ∈ Aut(Γ) we have f ◦β ∈ {αf | α ∈ Aut(Γ)}.
When Γ is an ordered Ramsey structure, then an arbitrary function ‘looks as a canonical
function on large parts of the domain’: formally, for every function f over the domain of
Γ, there exists a canonical function g in {αfβ | α, β ∈ Aut(Γ)} – the canonisation lemma.
In practice, we often use a generalisation of canonisation involving constants – we refer
to [9] for details. Suppose now that Γ is homogeneous in a finite relational signature. Then
there are only finitely many behaviours of canonical functions, and this is essential to break
classification arguments dealing with endomorphisms (and polymorphisms) into finitely many
cases. We hope that canonical functions and canonization can be used to reduce Conjecture 3
to Theorem 4 and Conjecture 2.

The method of canonical functions has been used extensively in [7, 13, 4, 10, 9, 15, 11], in
two contexts: complexity classification of CSPs and classification of reducts of homogeneous
structures.

When is it possible to apply this method to analyse the endomorphisms (and polymorph-
isms) of C? We do not need C to be Ramsey, it suffices that C has a homogeneous expansion
with finite relational signature which is Ramsey. The following question is therefore of
essential importance.

I Question 1 ([14]). Is it true that every homogeneous structure with finite relational
signature has a homogeneous Ramsey expansion with finite relational signature?

Similar in spirit, we ask the following.

I Question 2 ([14]). Can every ω-categorical structure be expanded to an ω-categorical
structure which is Ramsey?

These questions are closely related to recent research in topological dynamics – we refer
to a recent survey article for more on this connection [29]. A positive answer to Question 1
would imply that the method of Ramsey theory and canonical functions can be used to
approach the tractability conjecture from Section 5 in general.

References
1 Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms and the constraint

satisfaction problem. Logical Methods in Computer Science, 8/1(07):1–26, 2012.
2 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complex-

ity. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, Proceedings of the International Colloquium

STACS 2015

8 The Complexity of Constraint Satisfaction Problems

on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,
pages 184 –196. Springer Verlag, July 2008.

3 Manuel Bodirsky, Martin Hils, and Barnaby Martin. On the scope of the universal-algebraic
approach to constraint satisfaction. Logical Methods in Computer Science (LMCS), 8(3:13),
2012. An extended abstract that announced some of the results appeared in the proceedings
of Logic in Computer Science (LICS’10).

4 Manuel Bodirsky, Peter Jonsson, and Trung Van Pham. The reducts of the homogeneous
binary branching C-relation. Preprint arXiv:1408.2554, 2014.

5 Manuel Bodirsky, Peter Jonsson, and Timo von Oertzen. Essential convexity and com-
plexity of semi-algebraic constraints. Logical Methods in Computer Science, 8(4), 2012.
An extended abstract about a subset of the results has been published under the title
Semilinear Program Feasibility at ICALP’10.

6 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of Computer Science Russia (CSR’06).

7 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2):1–41, 2009. An extended abstract appeared in the Pro-
ceedings of the Symposium on Theory of Computing (STOC’08).

8 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogen-
eous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

9 Manuel Bodirsky and Michael Pinsker. Reducts of Ramsey structures. AMS Contemporary
Mathematics, vol. 558 (Model Theoretic Methods in Finite Combinatorics), pages 489–519,
2011.

10 Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. In Proceedings of
the Annual Symposium on Theory of Computing (STOC), pages 655–664, 2011. Preprint
of the long version available at arxiv.org/abs/1011.2894.

11 Manuel Bodirsky and Michael Pinsker. Minimal functions on the random graph. Israel
Journal of Mathematics, 200(1):251–296, 2014.

12 Manuel Bodirsky and Michael Pinsker. Topological Birkhoff. Transactions of the Amer-
ican Mathematical Society, 2014. To appear (electronic version is published). Preprint
arxiv.org/abs/1203.1876.

13 Manuel Bodirsky, Michael Pinsker, and András Pongrácz. The 42 reducts of the random
ordered graph. Preprint arXiv:1309.2165, 2013.

14 Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability. Journal
of Symbolic Logic, 78(4):1036–1054, 2013. A conference version appeared in the Proceedings
of LICS 2011, pages 321–328.

15 Manuel Bodirsky and Michał Wrona. Equivalence constraint satisfaction problems. In
Proceedings of Computer Science Logic, volume 16 of LIPICS, pages 122–136. Dagstuhl
Publishing, September 2012.

16 V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for Post
algebras, part I and II. Cybernetics, 5:243–539, 1969.

17 Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

18 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

19 David Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27:95–100, 1968.

20 C. Ward Henson. Countable homogeneous relational systems and categorical theories.
Journal of Symbolic Logic, 37:494–500, 1972.

M. Bodirsky 9

21 David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contem-
porary Mathematics. American Mathematical Society, 1988.

22 Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.
23 P. G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer

Science, 200:185–204, 1998.
24 Alexander Kechris, Vladimir Pestov, and Stevo Todorcevic. Fraissé limits, Ramsey theory,

and topological dynamics of automorphism groups. Geometric and Functional Analysis,
15(1):106–189, 2005.

25 Klaus Leeb. Vorlesungen über Pascaltheorie, volume 6 of Arbeitsberichte des Instituts
für Mathematische Maschinen und Datenverarbeitung. Friedrich-Alexander-Universität
Erlangen-Nürnberg, 1973.

26 Keith R. Milliken. A Ramsey theorem for trees. Journal of Combinatorial Theory, Series
A, 26(3):215 – 237, 1979.

27 Jaroslav Nešetřil and Vojtěch Rödl. The partite construction and Ramsey set systems.
Discrete Mathematics, 75(1-3):327–334, 1989.

28 Walter Taylor. Varieties obeying homotopy laws. Canadian Journal of Mathematics,
29:498–527, 1977.

29 Lionel Nguyen Van Thé. A survey on structural ramsey theory and topological dynamics
with the Kechris-Pestov-Todorcevic correspondence in mind. Accepted for publication in
Zb. Rad. (Beogr.), 2014. Preprint arXiv:1412.3254v2.

STACS 2015

Parallel Algorithms Reconsidered

Peter Sanders

Karlsruhe Institute of Technology
Karlsruhe, Germany
sanders@kit.edu

Abstract

Parallel algorithms have been a subject of intensive algorithmic research in the 1980s. This
research almost died out in the mid 1990s. In this paper we argue that it is high time to reconsider
this subject since a lot of things have changed. First and foremost, parallel processing has
moved from a niche application to something mandatory for any performance critical computer
applications. We will also point out that even very fundamental results can still be obtained. We
give examples and also formulate some open problems.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.1.2
Parallelism and Concurrency

Keywords and phrases parallel algorithm, algorithm engineering, communication efficient al-
gorithm, polylogarithmic time algorithm, parallel machine model

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.10

Category Invited Talk

1 Introduction

Parallel algorithms were a hot topic in the 1980 but then the subject almost died. For
example, a quick, subjective count of the parallel algorithm papers in STOC 1985, 1990,
1995, 2000, 2005, 2010, 2014 gave 13, 8, 11, 6, 1, 1, 6 papers respectively. The left column of
the following table gives a number of interrelated very strong reasons why this happened.
However, if you also look at the right column, you see that these reasons are not relevant
any more.

Parallel computing
was in practice used
rarely because paral-
lel computers were ex-
pensive and hard to
program due to exotic
hardware and software.

Today, parallel hardware is everywhere (see Figure 1). Even smart
phones have quad-core processors. The latest Intel server processors
support up to 18 cores. With multiple sockets and hardware
multithreading, this already ranges into three digit numbers of
threads. Graphics processors increasingly used for general purpose
computing (GPGPU) have thousands of cores. For example, the
NVidia GTX 980 card has 2048 cores and needs a number of
hardware threads at least an order of magnitude larger to achieve
full performance.

© Peter Sanders;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 10–18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Sanders 11

For most programmers,
it was easier to wait un-
til the microprocessor
industry provided new
processor designs that
translate the additional
transistor budget due to
Moore’s law into higher
clock frequency and
higher instruction paral-
lelism.

This stopped when processor design ran against the “power wall”
– it is no longer feasible to significantly increase processor clock
speeds since this increases the energy consumption to a point
where energy costs are too high and where cooling becomes too
expensive [16]. For example, in 2004, Intel presented the Pentium
4 Prescott microarchitecture that increased clock frequency and
energy consumption but not benchmark performance compared
to previous models. A short time later, the Netburst line of
microarchitectures used for the Pentium 4 was discontinued and
Intel started to design more conservative cores putting more and
more of them on the same chip.

The actual applications of paral-
lel computers were mostly numer-
ical simulations that needed little
of the results developed by the al-
gorithm theory community. Excep-
tions (that almost prove the rule)
can be found for lower level aspects
like network topologies, e.g. [21].

Now, we have to look for parallelization opportunities in
every performance critical application since this is the
only way to exploit the available hardware. Moreover,
the Big Data boom has produced many new applications
outside numerical simulations where massively parallel
processing is crucial. Furthermore, the methodology
of algorithm engineering (e.g. [29]) makes it easier to
bridge gaps between theory and practice.

The machine models used by
theorists, like the PRAM
model were widely criticized
as too remote from practice.

Message passing models (e.g., [41, 33]) or memory hierarchies
[4] avoid some of the pitfalls of PRAMs. Moreover, PRAM
algorithms are often not that impractical if we avoid the fallacy
of speeding up computations at the cost of highly inefficient
computing.

Most companies spe-
cializing in parallel
computers did go
bankrupt.

Now, parallel computers are mainstream products of the big players.
Big data and cloud is at the core of the business of some of the
worlds most profitable companies. Computer games proved to a be a
killer application (almost literally), catalyzing the use of architectures
(GPUs) that would otherwise have been dismissed as too exotic and
cumbersome.

In the late 1990s, the Internet boom (aka Dot-
com bubble) drew parallel algorithms researchers
into startups (e.g., Akamai) and into new research
fields related to emerging internet applications
(e.g., algorithmic game theory).

Some of these people and a new genera-
tion of researchers now look at parallel al-
gorithms from a fresh Big Data perspect-
ive. Indeed, in 2014 there were 6 STOC
papers on parallel algorithms again.

These observations indicate that parallel algorithms should be an even hotter topic than
in the 1980s. It seems that today the theory community is lagging behind an important trend.
One way to explain this lack of enthusiasm is the hypothesis that, perhaps, researchers may
have done a very thorough job in the past and discovered almost all the really interesting
parallel algorithms that are there to discover. The main purpose of the remainder of this
paper is to refute this hypothesis.

First it should be noted, that in the last two decades there have been important trends
in computer science that have a largely unaddressed parallel processing aspect:

There has been a lot of work on processing large data sets in the presence of memory
hierarchies (e.g., [23, 43]). Many of the techniques developed there, e.g., time forward
processing (e.g., [10, 11]), do not readily translate to parallel processing and thus pose
important open problems.

STACS 2015

12 Parallel Algorithms Reconsidered

 1

 10

 100

 1000

10 000

100 000

106

 1980 1985 1990 1995 2000 2005 2010 2015

co
re

s

year

fastest machine
Nvidia GPU
Intel Xeon

Figure 1 Number of processors (cores) in the worlds fastest supercomputers [40], Nvidia GPUs
[44], and Intel Xeon server processors (single chip) [45].

Data movement in memory hierarchies is vertical data movement between memory units
at different levels. Horizontal data movements between processors in a distributed memory
machine is an equally important related problem but has been studied much less. An
important difference is that horizontal communication volume can be sublinear in the
input size if we manage to solve problems by predominantly local computation. The
resulting area of communication efficient algorithms is full of interesting open problems
[33].
Streaming algorithms [18] have explicitly been developed to allow processing large data
sets. However, the basic model for streaming algorithms is inherently sequential and
needs parallel generalizations. See also [33].
Many succinct data structures (e.g. [17]) have been designed to handle large data sets.
However, for many of them it is not clear how to construct them efficiently in parallel.
Smoothed analysis [37] is a sound way to explain why certain algorithms for hard problems
are efficient in practice. However, few parallel algorithms have been analyzed in this
framework.
Fixed-parameter algorithms (e.g., [25]) study efficient algorithms for “easy” instances of
hard problems. Few of these algorithms have been parallelized so far.
There has been some early work on parallel approximation algorithms [22] but very little
on parallelizing the vast number of approximation algorithms studied since then. It is
particularly surprising that even the intensive work on scheduling parallel processors has
seen very few algorithms for doing that in parallel [3, 31].
Application areas like bioinformatics or computational finance recently had large impact
on algorithmic research. Many of the investigated problems require parallel algorithms to
be useful in practice.
The big data boom brought a large number of new applications into focus, in particular,
algorithms for data analysis and machine learning become important.
The energy consumption of computations is becoming more important than running time.
this should become important for algorithm design, in particular for exascale computing
where the computer architects are already basing most of their design decisions on energy
consumption (e.g. [20]).

P. Sanders 13

Applications on exascale computers and Big data also require fault tolerance. Building
that already into the algorithms is a promising research area. The algorithm theory
community has done some work on resilient algorithms [14] that can survive certain
memory corruptions but is has not embraced fault tolerant parallel algorithms. This is
surprising because fault tolerance is actually easier to achieve in a parallel system since
intact processors may step in for faulty ones.

2 Examples from our Work

In order to illustrate that there is a bonanza of quite fundamental results on parallel algorithms
still to be found, we describe a selection of our results on parallel algorithms published since
2013.

2.1 Sorting
Sorting is one of the most intensively studied algorithmic problems. It is of particular interest
to parallel computing since sorting is often used to bring data together that has to be
processed together. We were able to obtain several quite fundamental new results on sorting.

String sorting. is practically important since many big data applications have variable
length keys. The theoretical challenge here is to exploit that only distinguishing prefixes
need to be inspected – indeed sequential string sorting needs work only linear in the total
distinguishing prefix size. We found no previous work on parallel string sorting except
some PRAM algorithms always inspecting the entire input which are thus work-inefficient.
We adapted parallel sorting algorithms for atomic objects so that they only inspect the
distinguishing prefixes [8, 7].

Malleable sorting. In practice, parallel programs have to share resources (e.g. processors)
with other programs. Therefore, the amount of available resources for a particular program
may vary over time in an online fashion. Thus parallel algorithms should be able to
dynamically adapt to the amount of available resources. We have studied this phenomenon
for the example of sorting and show that this yields advantages over leaving this adaptivity
to the operating system [15].

Massively parallel sorting. There are many asymptotically efficient sorting algorithms
running in polylogarithmic time. However, all these algorithms require the data to be moved
at least a logarithmic number of times. On the other hand, there are algorithms that need
to move data only once which makes them much more practical for sorting large inputs on
distributed memory machines. However, these algorithms need a linear number of message
startups on the critical path which makes them impractical for large machines. We have
designed algorithms that interpolate between these to extremes – moving the data k times
reduces the critical path length to kp1/k [5]. There were similar algorithms but none with a
comparable worst case guarantee.

2.2 Data Structures
There has been a lot of work on concurrent data structures (e.g. [19]). However, much of
this is very slow in the worst case since contention of operations competing for the same

STACS 2015

14 Parallel Algorithms Reconsidered

place in the data structure can occur. It turns out that these problems can sometimes be
avoided by relaxing the data structure semantics or by considering bulk operations.

Relaxed Priority Queues. support concurrent insertions and deletions of elements that have
near minimum values. We have designed a very simple such data structure (MultiQueue)
based on multiple sequential priority queues. Insertions go to random queues and deletions
take the minimum from two randomly sampled queues [28]. This data structure considerably
outperforms much more complicated previous data structures.

Approximate Membership. Bloom filters save communication volume by providing a space
efficient data structure for approximate membership queries. However, there is surprisingly
little work on distributed Bloom filters. For example, a recent survey on Bloom filters in
distributed systems [39] mentions no less than 23 variants but none that truly distributes
the data structure over multiple processors and thus scales to the largest data sets. We have
designed such a structure and apply it for communication efficient duplicate detection and
database join [33].

2.3 Graph Algorithms
Multi-objective Shortest Paths. is an intensively studied problem of high practical relev-
ance where parallelization is attractive since it is computationally much more expensive than
the standard single-objective case. While the latter problem is difficult to parallelize in the
worst case, we have shown that the additional work due to the added objectives is easy to
parallelize. Indeed, a very simple generalization of Dijkstra’s well known single-objective
algorithm turns out to be a scalable parallel algorithm requiring the same number of n
iterations [32]. This algorithm also works well in practice [13]. Another interesting aspect of
this problem is that it combines graphs and computational geometry.

Maximal matchings. We give a simple linear work polylogarithmic time algorithm for
computing maximal matchings in [9]. The algorithm also computes 1/2-approximations of
weighted matchings and works well in practice.

Graph partitioning. asks for partitioning the vertex set of a graph into k pieces of about
equal size such that the number of cut edges is small. This is a frequently needed (NP-hard)
problem that is particularly important for processing graphs in parallel. Our partitioner
KaHIP [34] yields the highest quality world wide for a large spectrum of inputs including some
of the largest inputs considered so far [1, 24]. The algorithms used are complex heuristics
combining many techniques. What is interesting from an algorithm theory point of view
is that the practical quality improvements we achieve are in large parts due to integrating
solvers for graph theoretical subproblems for which polynomial time algorithms are known.
For example, this includes maximum flows, strongly connected components, negative cycle
detection, or edge coloring.

2.4 Linear Algebra
One criticism of classical PRAM algorithms is not so much founded in the machine model
but in the strive for polylogarithmic execution time even at the cost of inefficient algorithms.
One such example are algorithms for matrix inversion and related problems. Theoretical
research has found polylogarithmic time inefficient algorithms whereas the algorithms used

P. Sanders 15

in practice perform a near optimal amount of work yet need time Ω(n) where n is the matrix
dimension. We found an asymptotically efficient polylogarithmic time algorithm that also
works well in practice [35]. The algorithm combines Strassen’s recursive algorithm [38] with
an inefficient algorithm based on Newton’s method [26]. Overall, this reduces matrix inversion
to a polylogarithmic number of matrix multiplications. Since the inefficient algorithm is only
applied to small subproblems, the overall algorithm is efficient.

3 Selected Open Problems

To further underline that there is a lot to be done, we give a list of open problems selected
for being quite fundamentally interesting and spanning a wide range of topics. The ordering
is roughly from rather specific questions to quite general problem areas with a large number
of concrete possible projects.

1. Priority Queues: Show probabilistic quality guarantees for the MultiQueues from [28] or
design a comparably fast data structure with provable guarantees.

2. Strongly Connected Components: Is there a polylogarithmic time, work efficient algorithm
for finding strongly connected components? (Similar questions can be asked for many
graph problems.)

3. Matchings: Give a linear work polylogarithmic time parallel algorithm for (1 − ε)-
approximation of weighted matchings – perhaps by parallelizing [12]. Even the unweighted
case, or the 2/3 − ε-approximation algorithms like [27] would be an interesting result.

4. Data Exchange: There has been intensive work on routing in a wide spectrum of networks.
However, even very simple models have wide open problems. For example, consider a
half-duplex fully connected model: any one of p processors can move a data packet to any
other processor in one step. However, at any time, a processor can only be involved in a
single communication. Let h denote the maximum number of packets any processor is
involved in. Delivering the data directly is equivalent to edge coloring of multigraphs and
thus takes about 3

2h steps in the worst case [36]. We show that routing the packets on
detours can lower this to about 6

5h [30]. In the very special case that one fourth of the
processors need not communicate at all, this can be reduced to h steps [2]. An interesting
conjecture is that ≈ h steps also suffice as long as the total number of packets is at most
3
8hp.

5. Solving Systems of Linear Equations: Is there a polylogarithmic time algorithm with
work O(n3) that solves a system of equations Ax = b in a comparably stable way as
Gaussian elimination? The matrix inversion algorithm from [35] is not stable enough
for all applications, in particular if A is not symmetric. On the other hand, Gaussian
elimination is P-complete [42].

6. Compressed Text Indexing: Develop a polylogarithmic time work-efficient algorithm for
constructing compressed suffix arrays or related data structures.

7. Parallel Paging: A lot of work has been done on the sequential paging problem [6] – given
a single sequence of data block accesses, decide, which of them should be kept in cache at
what time to minimize the number of block transfers between slow memory and cache.
Very little is known on parallel paging. For example, given n such sequences representing
tasks, schedule them on p processors such that the bottleneck number of block transfers
is minimized. We may want to distinguish between shared and private caches, online and
offline strategies, . . .

8. Energy Efficient Computing: Find a simple model with high predictive value for the
actual energy efficiency of (parallel) algorithms.

STACS 2015

16 Parallel Algorithms Reconsidered

9. Communication Efficient Algorithms: For your favorite algorithmic problem, find out
whether there exists a communication efficient parallel algorithm for it.

10. Parallel Streaming Algorithms: Assume data arrives in data streams to p processors with
limited local memory. How can you approximate important information about the data
while keeping the communication volume small? The concrete problem considered could
be any problem previously considered in sequential streaming algorithms.

References
1 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. (semi-)external algorithms for

graph partitioning and clustering. In Alenex 2015, 2015.
2 Eric Anderson, Joseph Hall, Jason Hartline, Mick Hobbes, Anna Karlin, Jared Saia, Ram

Swaminathan, and John Wilkes. Algorithms for data migration. Algorithmica, 57(2):349–
380, 2010.

3 Richard J. Anderson, Ernst W. Mayr, and Manfred K. Warmuth. Parallel approximation
algorithms for bin packing. Inf. Comput., 82(3):262–277, 1989.

4 Lars Arge, Michael T Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamental par-
allel algorithms for private-cache chip multiprocessors. In 20th Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 197–206. ACM, 2008.

5 Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. Practical
massively parallel sorting–basic algorithmic ideas. arXiv preprint arXiv:1410.6754, 2014.

6 A. L. Belady. A study of replacement algorithms for virtual storage computers. IBM
Systems Journal, 5:78–101, 1966.

7 Timo Bingmann, Andreas Eberle, and Peter Sanders. Engineering parallel string sorting.
arXiv preprint arXiv:1403.2056, 2014.

8 Timo Bingmann and Peter Sanders. Parallel string sample sort. In 21st European Sym-
posium on Algorithme (ESA), volume 8125 of LNCS, pages 169–180. Springer, 2013.

9 Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava. Effi-
cient parallel and external matching. In Europar, LNCS. Springer, 2013.

10 Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External memory graph algorithms. In 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 139–149, 1995.

11 R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an external memory
minimum spanning tree algorithm. In IFIP TCS, pages 195–208, Toulouse, 2004.

12 Ran Duan and Seth Pettie. Approximating maximum weight matching in near-linear time.
In 51st IEEE Symposium on Foundations of Computer Science (FOCS), pages 673–682.
IEEE, 2010.

13 Stephan Erb, Moritz Kobitzsch, and Peter Sanders. Parallel bi-objective shortest paths
using weight-balanced B-trees with bulk updates. In 13th Symposium on Experimental
Algorithms (SEA), 2014.

14 Irene Finocchi, Fabrizio Grandoni, and Giuseppe F Italiano. Designing reliable algorithms
in unreliable memories. In Algorithms–ESA 2005, volume 3669 of LNCS, pages 1–8.
Springer, 2005.

15 Patrick Flick, Peter Sanders, and Jochen Speck. Malleable sorting. In 27th International
Symposium on Parallel & Distributed Processing (IPDPS), pages 418–426. IEEE, 2013.

16 Michael Flynn and Patrick Hung. Microprocessor design issues: thoughts on the road ahead.
Micro, IEEE, 25(3):16–31, 2005.

17 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing, 35(2):378–
407, 2005.

P. Sanders 17

18 Monika Henzinger, Prabhakar Raghavan, and Sridar Rajagopalan. Computing on data
streams. External Memory Algorithms: DIMACS Workshop External Memory and Visual-
ization, May 20-22, 1998, 50:107, 1999.

19 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

20 Peter Kogge et al. Exascale computing study: Technology challenges in achieving exascale
systems. Technical Report CSE-TR-2008-13, U. of Notre Dame / DARPA IPTO, 2008.

21 Charles E Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
Computers, IEEE Transactions on, 100(10):892–901, 1985.

22 Ernst W. Mayr. Parallel approximation algorithms. Technical Report STm-CS-88-1225,
Stanford University, 1988.

23 U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierarchies, volume
2625 of LNCS Tutorial. Springer, 2003.

24 Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel graph partitioning
for complex networks. In 29th IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS), 2015. to appear.

25 Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

26 Victor Pan and John Reif. Fast and efficient parallel solution of dense linear systems.
Computers & Mathematics with Applications, 17(11):1481 – 1491, 1989.

27 S. Pettie and P. Sanders. A simpler linear time 2/3− ε approximation for maximum weight
matching. Information Processing Letters, 91(6):271–276, 2004.

28 Hamza Rihani, Peter Sanders, and Roman Dementiev. Multiqueues: Simpler, faster, and
better relaxed concurrent priority queues. CoRR, abs/1411.1209, 2014.

29 P. Sanders. Algorithm engineering – an attempt at a definition. In Efficient Algorithms,
volume 5760 of LNCS, pages 321–340. Springer, 2009.

30 P. Sanders and R. Solis-Oba. How helpers hasten h-relations. Journal of Algorithms,
41:86–98, 2001.

31 P. Sanders and J. Speck. Exact parallel malleable scheduling for tasks with concave speedup
fun ctions. In 25th IEEE International Parallel and Distributed Processing Symposium,
pages 1156–1166, 2011.

32 Peter Sanders and Lawrence Mandow. Parallel label-setting multi-objective shortest path
search. In 27th IEEE International Parallel & Distributed Processing Symposium, pages
215–224, 2013.

33 Peter Sanders, Sebastian Schlag, and Ingo Müller. Communication efficient algorithms for
fundamental big data problems. In IEEE Int. Conf. on Big Data, 2013.

34 Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph
partitioning. In Experimental Algorithms, pages 164–175. Springer Berlin Heidelberg, 2013.

35 Peter Sanders, Jochen Speck, and Raoul Steffen. Work-efficient matrix inversion in polylog-
arithmic time. In 25th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 214–221. ACM, 2013.

36 C. E. Shannon. A theorem on colouring lines of a network. J. Math. Phys., 28(148–151),
1949.

37 D. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex algorithm
usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

38 Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356,
1969. 10.1007/BF02165411.

39 Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory and practice
of Bloom filters for distributed systems. Communications Surveys & Tutorials, IEEE,
14(1):131–155, 2012.

STACS 2015

18 Parallel Algorithms Reconsidered

40 TOP500 lists. http://www.top500.org. for data 1993–, Accessed: 2014-12-04.
41 L. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103–111, 1994.
42 Stephen A Vavasis. Gaussian elimination with pivoting is p-complete. SIAM journal on

discrete mathematics, 2(3):413–423, 1989.
43 Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundations

and Trends® in Theoretical Computer Science, 2(4):305–474, 2008.
44 Wikipedia – list of Nvidia graphics processing units. en.wikipedia.org/wiki/List_of_

Nvidia_graphics_processing_units. Accessed: 2014-12-04, sum of number of cores for
different purposes.

45 Wikipedia – list of Intel Xeon microprocessors. en.wikipedia.org/wiki/List_of_Intel_
Xeon_microprocessors. Accessed: 2014-12-04.

http://www.top500.org
en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors

Computational Social Choice∗

Felix Brandt

Faculty of Informatics
TU München, Germany
brandtf@in.tum.de

Abstract
Over the past few years there has been a lively exchange of ideas between computer science, in
particular theoretical computer science and artificial intelligence, on the one hand and economics,
in particular game theory and social choice, on the other. This exchange goes in both directions
and has produced active research areas such as algorithmic game theory and computational social
choice.

Social choice theory concerns the formal analysis and design of methods for aggregating
possibly conflicting preferences such as in voting, assignment, or matching problems. Much of
the work in classic social choice theory has focused on results concerning the formal possibility
and impossibility of aggregation functions that combine desirable properties.

This tutorial provided an overview of central results in social choice theory with a special
focus on axiomatic characterizations as well as computational aspects. While some aggregation
functions can be easily computed, others have been shown to be computationally intractable
(e.g., NP-hard or #P-hard). Topics that were covered in this tutorial included
(i) rational choice theory,
(ii) Arrow’s impossibility theorem,
(iii) tournament solutions (such as the top cycle, the uncovered set, the Banks set, or the tour-

nament equilibrium set), and
(iv) randomized social choice functions.
The overarching theme were escape routes from negative results such as Arrow’s impossibility
theorem.

1998 ACM Subject Classification F.2 Theory of Computation: Analysis of Algorithms and
Problem Complexity, J.4 Computer Applications: Social and Behavioral Sciences – Economics

Keywords and phrases social choice theory, economics, algorithms, theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.19

Category Tutorial

∗ This work was partially supported by the Deutsche Forschungsgemeinschaft under grant BR 2312/7-2.

© Felix Brandt;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 19–19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Algorithmic Game Theory∗

Paul W. Goldberg

Department of Computer Science
Oxford University, United Kingdom
Paul.Goldberg@cs.ox.ac.uk

Abstract
Game theory studies mathematical models of interactions amongst self-interested entities. A
“solution concept” means a description of the outcome of a game, and it is important that it
should be defined in such a way that a solution always exists (every game should have an outcome).
Nash’s famous theorem that mixed-strategy equilibria are guaranteed to exist, resulted in Nash
equilibrium being the most prominent solution concept in game theory.

As a result, computational challenges of the form “given a game, find a solution”, have the
property that we are searching for something whose existence is guaranteed (they are total search
problems). Moreover, these solutions belong to the complexity class NP, since it is usually straight-
forward to check whether a proposed solution is correct (an incorrect one will admit a profitable
deviation by one or more of the players, and this is usually easy to find). However, in versions of
the problem that appear to be computationally hard, we cannot apply NP-completeness, due to
a result of Megiddo saying that total search problems cannot be NP-complete unless NP is equal
to co-NP.

In this tutorial, which is intended for people familiar with NP-completeness, I give an over-
view of the alternative notions of computational hardness that apply to game-theoretic solution
concepts. I discuss the complexity class PPAD (introduced by Papadimitriou) which captures
the computational complexity of various classes of games that don’t seem to be solvable in poly-
nomial time. I also mention the complexity classes PLS and FIXP, and the kinds of games that
they apply to.

Suppose, alternatively, that we have a polynomial-time algorithm that applies to some given
class of games. A follow-up question is whether there exist algorithms that find a solution via
processes that reflect decentralised selfish behaviour. This is because a solution concept arguably
remains unrealistic if it can be efficiently computed, but only using a highly centralised algorithm.
In the second half of the tutorial I present some results on learning dynamics for equilibrium
computation, and mention recent work on communication complexity and query complexity.

I discuss some research directions and open problems, such as the following. What are the
prospects for proving that PPAD is as hard as NP? How about algorithms that find improved
approximate Nash equilibria? 2-player games are easy to solve in practice, using the Lemke-
Howson algorithm, so is there a satisfying mathematical sense in which 2-player games are easy
to solve? (For example, a sense in which Lemke-Howson works “most of the time”?)

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, J.4 Economics

Keywords and phrases equilibrium, non-cooperative games, computational complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.20

Category Invited Talk

∗ This work was partially supported by EPSRC under grant EP/K01000X/1.

© Paul W. Goldberg;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 20–20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The Minimum Oracle Circuit Size Problem
Eric Allender1, Dhiraj Holden2, and Valentine Kabanets3

1 Department of Computer Science, Rutgers University
Piscataway, NJ, USA
allender@cs.rutgers.edu

2 Department of Computer Science, California Institute of Technology
Pasadena, CA, USA
dholden@caltech.edu

3 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
kabanets@cs.sfu.ca

Abstract
We consider variants of the Minimum Circuit Size Problem MCSP, where the goal is to minimize
the size of oracle circuits computing a given function. When the oracle is QBF, the resulting
problem MCSPQBF is known to be complete for PSPACE under ZPP reductions. We show that it
is not complete under logspace reductions, and indeed it is not even hard for TC0 under uniform
AC0 reductions. We obtain a variety of consequences that follow if oracle versions of MCSP are
hard for various complexity classes under different types of reductions. We also prove analogous
results for the problem of determining the resource-bounded Kolmogorov complexity of strings,
for certain types of Kolmogorov complexity measures.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Kolmogorov complexity, minimum circuit size problem, PSPACE, NP-
intermediate sets

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.21

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks to decide, for a given truth table f of a
Boolean function and a parameter s, whether f is computable by a Boolean circuit of size at
most s. MCSP is a well-known example of a problem in NP that is widely believed to be
intractable, although it is not known to be NP-complete. MCSP is known to be hard for the
complexity class SZK under BPP-Turing reductions [4], which provides strong evidence for
intractability. On the other hand, Kabanets and Cai showed [11] that if MCSP is NP-complete
under the “usual” sort of polynomial-time reductions, then EXP 6⊆ P/poly. This can not be
interpreted as strong evidence against NP-completeness – since it is widely conjectured that
EXP 6⊆ P/poly – but it does indicate that it may be difficult to provide an NP-completeness
proof.

However, there are other ways to define what the “usual” sort of reductions are: e.g.,
logspace, (uniform) TC0, AC0, or NC0. The overwhelming majority of problems that are
known to be NP-complete are, in fact, NP-complete under very restricted kinds of reductions.
Can we rule out NP-hardness of MCSP under such reductions?

Very recently, Murray and Williams [13] have shown that MCSP is not even P-hard under
uniform NC0 reductions. Can MCSP be NP-hard under slightly stronger reductions, e.g.,
uniform AC0 reductions? We suspect that the answer is ‘No’, but so far we (like Murray

© Eric Allender, Dhiraj Holden, and Valentine Kabanets;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 21–33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22 The Minimum Oracle Circuit Size Problem

and Williams) can only show that P-hardness of MCSP under uniform AC0, TC0, or logspace
reductions would imply new (likely) complexity lower bounds (in the spirit of [11]).

The main focus of the present paper is an oracle version of MCSP, denoted MCSPA

for a language A, which asks to decide for a given truth table f and a parameter s if f is
computable by an A-oracle circuit of size at most s. We prove a number of implications of
hardness of MCSPA for various choices of the oracle A, and various reductions. In particular,
we prove for a PSPACE-complete A that MCSPA is not P-hard under uniform AC0 reductions.

The results presented here (along with the results recently reported by Murray and
Williams [13]) are the first results giving unlikely consequences that would follow if variants
of MCSP or the various oracle circuit minimization problems are hard under a natural notion
of reducibility. We also show that analogous results hold in the Kolmogorov complexity
setting due to the correspondence between circuit size and Kolmogorov complexity, using the
minimum-KT complexity problem defined in this paper.

Below we provide a summary of our main results.

1.1 Our results
Most of our results follow the template:

If MCSPA is hard for a complexity class C under reductions of type R, then complexity
statement S is true.

Table 1 below states our results for different instantiations of A, C, R, and S; note that
S = ⊥ means that the assumption is false, i.e., MCSPA is not C-hard under R-reductions.
Throughout, we assume that the reader is familiar with complexity classes such as NP,PP,
PSPACE, NEXP, etc. We denote the polynomial hierarchy by PH, and its linear-time version
(linear-time hierarchy) by LTH. The Counting Hierarchy, denoted CH, is the union of the
classes PP,PPPP, etc.

Table 1 Summary of main results: If MCSPA is C-hard under R, then S. The last column shows
the theorem where the result is stated in the paper.

oracle A class C reductions R statement S Theorem
PH-hard TC0 uniform AC0 ⊥ Theorem 20

any TC0 uniform AC0 LTH 6⊆ io-SIZEA[2Ω(n)] Lemma 21
any TC0 uniform AC0 NPA 6⊆ SIZEA[poly] Corollary 24

any in CH P uniform TC0 P 6= PP Corollary 13
∅ P logspace P 6= PSPACE Corollary 14

QBF P logspace EXP = PSPACE Corollary 18
QBF NP logspace NEXP = PSPACE Theorem 17
QBF PSPACE logspace ⊥ Corollary 19

EXP-complete NP polytime NEXP = EXP Theorem 15

For the most restricted reductions, uniform AC0, we get that MCSPA is not TC0-hard
for any oracle A such that PH ⊆ SIZEA[poly] (Theorem 20), e.g., for A = ⊕P (Corollary 23).
For any oracle A, we conclude new circuit lower bounds for the linear-time hierarchy and for
NPA (Lemma 21 and Corollary 241).

1 Prior to our work, Murray and Williams have shown that if SAT≤AC0

m MCSP, then NP 6⊆ P/poly [13].
Their result is similar to (and is implied by) our Corollary 24 for the case of A = ∅.

E. Allender, D. Holden, and V. Kabanets 23

If MCSP is P-hard under uniform TC0 or logspace reductions, then P is different from
PP or from PSPACE (Corollaries 13 and 14).

One of the more interesting oracle circuit minimization problems is MCSPQBF. It was
shown in [3] that MCSPQBF is complete for PSPACE under ZPP-Turing reductions, but the
question of whether it is complete for PSPACE under more restrictive reductions was left
open. For most natural complexity classes C above PSPACE, there is a corresponding oracle
circuit minimization problem (which we will sometimes denote MCSPC) that is known to be
complete under P/poly reductions, but is not known to be complete under more restrictive
reductions [3]. For the particular case of C = PSPACE, we denote this as MCSPQBF. We
show that MCSPQBF is not PSPACE-complete under logspace reductions (Corollary 19).
Furthermore, it is not even TC0-hard under uniform AC0 reductions (Theorem 20).

Finally, for even more powerful oracles A, we can handle even general polynomial-time
reductions. We show that if SAT≤pmMCSPEXP, then EXP = NEXP (Theorem 15).

We believe that MCSP is not TC0-hard under even nonuniform AC0 reductions. While we
are unable to prove this, we can rule out restricted AC0 reductions for a certain gap version
of MCSP. Define gap-MCSP as follows: Given a truth table f and a parameter s, output
‘Yes’ if f requires circuit size s, and output ‘No’ if f can be computed by a circuit of size at
most s/2. Call a mapping from n-bit strings to m-bit strings α(n)-stretching if m ≤ n · α(n),
for some function α : N→ R≥0.

We prove that gap-MCSP is not TC0-hard under nonuniform AC0 reductions that are
n1/31-stretching (Theorem 27).

1.2 Related work
The most closely related is the recent paper by Murray and Williams [13], which also considers
the question whether MCSP is NP-complete under weak reductions, and proves a number
of conditional and unconditional results. The main unconditional result is that MCSP
is not TC0-hard under uniform NC0 reductions (or more generally, under O(n1/2−ε)-time
projections, for every ε > 0); we give an alternative proof of this result (Theorem 25). For
conditional results, [13] shows that if MCSP is NP-hard under uniform AC0 reductions, then
NP 6⊂ P/poly and E 6⊂ io-SIZE[2Ω(n)] (also implied by our Corollary 24 and Lemma 21), and
that NP-hardness of MCSP under general polynomial-time reductions implies EXP 6= ZPP.

MCSP, MCSPQBF and other oracle circuit minimization problems are closely related to
notions of resource-bounded Kolmogorov complexity. Briefly, a small (oracle) circuit is a
short description of the string that represents the truth-table of the function computed by the
circuit. Notions of resource-bounded Kolmogorov complexity were presented and investigated
in [3] that are roughly equivalent to (oracle) circuit size.

In particular, there is a space-bounded notion of Kolmogorov complexity, KS, such that
the set of KS-random strings (denoted RKS) is complete for PSPACE under ZPP reductions.
It is shown in [3] that RKS is not even hard for TC0 under AC0 reductions, and RKS is not
hard for PSPACE under logspace-Turing reductions. The proof of this non-hardness result
also carries over to show that a set such as {f : f is the truth table of a function on n

variables that has QBF circuits of size at most 2n/2} is also not hard for TC0 under AC0

reductions, and is not hard for PSPACE under logspace-Turing reductions. However it does
not immediately carry over to MCSPQBF, which is defined as {(f, i) : f is the truth table
of a function on n variables that has QBF circuits of size at most i}; similarly it does not
carry over to the set {(x, i) : KS(x) ≤ i}. Also, the techniques presented in [3] have not
seemed to provide any tools to derive consequences assuming completeness results for oracle
circuit minimization problems for oracles less powerful than PSPACE. We should point out,

STACS 2015

24 The Minimum Oracle Circuit Size Problem

however, that [3] proves a result similar to (and weaker than) our Lemma 21 in the context of
time-bounded Kolmogorov complexity: if RKT is TC0-hard under AC0 many-one reductions,
then PH 6⊆ SIZE

[
2no(1)

]
.

1.3 Our techniques
To illustrate our proof techniques, let us sketch a proof of one of our results: If MCSP is
P-hard under uniform logspace reductions, then P 6= PSPACE (Corollary 14).

The proof is by contradiction. Suppose that P = PSPACE. Our logspace reduction maps
n-bit instances of QBF to nc-bit instances (f, s) of MCSP so that each bit of f is computable
in O(log n) space.
1. Imagine that our reduction is given as input a succinct version of QBF, where some

poly(log n)-size circuit D on each log n-bit input 1 ≤ i ≤ n computes the ith bit of the
QBF instance. It is not hard to see that our reduction, given the circuit D, can compute
each bit of f in poly(log n) space. Thus the Boolean function with the truth table f is
computable by a PSPACE = P algorithm (which also has the circuit D as an input). It
follows that this function f is computable by some polynomial-size Boolean circuit.

2. Next, since we know that f has at most polynomial circuit complexity, to decide the
MCSP instance (f, s), we only need to consider the case where s < poly (since for big
values of s, the answer is ‘Yes’). But deciding such MCSP instances (which we call
succinct MCSP) is possible in Σp

2: guess a circuit of size at most s, and verify that it
agrees with the given polynomial-size circuit for f on all inputs.

3. Finally, since Σp2 ⊆ PSPACE = P, we get that our succinct MCSP instances can be decided
in P. The reduction from succinct QBF to succinct MCSP is also in PSPACE = P. Hence,
succinct QBF is in P. But, succinct QBF is EXPSPACE-complete, and so we get the
collapse EXPSPACE = P, contradicting the hierarchy theorems.

In step (1) of the sketched proof, the uniformity of an assumed reduction to MCSP is
used to argue that the truth table f produced by the reduction is in fact “easy” to compute
uniformly. The uniform complexity of computing the function f is roughly the “exponential”
analogue of the uniform complexity of the reduction. For circuit classes such as AC0 and
TC0, we use the well-known connection between the “exponential” analog of uniform AC0

and PH, and between the “exponential” analog of uniform TC0 and CH.
We use the uniform easiness of the function f to conclude that f has small circuit

complexity (and hence our reduction actually outputs instances of succinct MCSP). To
get that conclusion, we need to assume (or derive) the collapse to P/poly of the uniform
complexity class that contains f ; in our example above, we got it from the assumption that
PSPACE = P.

Step (2) exploits the fact that succinct MCSP does not become “exponentially harder”
(unlike the usual succinct versions of hard problems), but is actually computable in Σp2.

In Step (3), we combine the algorithm for our reduction and the algorithm for succinct
MCSP to get an “efficient” algorithm for the succinct version of the input problem (succinct
QBF in our example). Since the succinct version of the input problem does become exponen-
tially harder than its non-succinct counterpart, we get some impossible collapse (which can
be disproved by diagonalization).

We use this style of proof for all our results involving reductions computable by uniform
TC0 and above. However, for the case of uniform AC0 (and below), we get stronger results
by replacing the diagonalization argument of Step (3) with the nonuniform AC0 circuit lower
bound for PARITY [10].

E. Allender, D. Holden, and V. Kabanets 25

Remainder of the paper. We state the necessary definitions and auxiliary results in Sec-
tion 2. Our main results are proved in Section 3, and some generalizations are given in
Section 4. We give concluding remarks in Section 5.

2 Definitions

I Definition 1. The minimum circuit size problem MCSP, as defined in [11], is defined as
{(f, s)|f has circuits of size s}, where f is a string of length 2m encoding the entire truth-table
of some m-variate Boolean function. (Versions of this problem have been studied long prior
to [11]. See [4, 17] for a discussion of this history.) We will also consider the analogous
problem for circuits with oracles, the Minimum A-Circuit Size problem MCSPA, defined
analogously, where instead of ordinary circuits, we use circuits that also have oracle gates
that query the oracle A. When A is a standard complete problem for some complexity class
C, we may refer to this as MCSPC .

We will not need to be very specific about the precise definition of the “size” of a circuit. Our
results hold if the “size” of a circuit is the number of gates (including oracle gates), or the
number of “wires”, or the number of bits used to describe a circuit in some standard encoding.
It is perhaps worth mentioning that the different versions of MCSP that one obtains using
these different notions of “size” are not known to be efficiently reducible to each other.

Circuit size relative to oracle A is polynomially-related to a version of time-bounded
Kolmogorov complexity, denoted KTA, which was defined and studied in [3].

I Definition 2. KTA(x) = min{|d| + t : ∀b ∈ {0, 1, ∗}∀i ≤ |x| + 1 UA(d, i, b) accepts in t

steps iff xi = b}. Here, U is some fixed universal Turing machine, which has random access
to the oracle A and to the input string (or “description”) d; xi denotes the i-th symbol of x,
where x|x|+1 = ∗.

By analogy to MCSPA, we define the “minimum KT problem”:

I Definition 3. MKTPA = {(x, i)|KTA(x) ≤ i}.

All of our results that deal with MCSPA also apply to MKTPA.
We wish to warn the reader that one’s intuition can be a poor guide, when judging how

MCSPA and MCSPB compare to each other, for given oracles A and B. For instance, it is
known that MCSPSAT ZPP-Turing reduces to MCSPQBF [3], but no deterministic reduction is
known. Similarly, no efficient reduction of any sort is known between MCSP and MCSPSAT.
Some of our theorems derive consequences from the assumption that MCSPSAT is hard
for some complexity class under AC0 reductions. Although one might suspect that this
is a weaker hypothesis than assuming that MCSP is hard for the same complexity class
under AC0 reductions – certainly the best upper bound for MCSPSAT is worse than the best
known upper bound for MCSP – nonetheless we are not able to derive the same consequences
assuming only that MCSP is hard. For essentially all time- and space-bounded complexity
classes C that contain PSPACE, MCSPC is complete for C/poly under P/poly reductions [3, 6],
but uniform reductions are known only for two cases [3]: when C = PSPACE (MCSPQBF is
complete for PSPACE under ZPP reductions) and when C = EXP (MCSPEXP is complete for
EXP under NP-Turing reductions).

STACS 2015

26 The Minimum Oracle Circuit Size Problem

2.1 Succinct Problems
The study of succinct encodings of computational problems was introduced by [9, 16], and
has been studied since then by [18, 7], among others. Succinct encodings play an important
role in the proofs of our main results.

I Definition 4. Given a language L, we define the succinct version of L (denoted succ.L) to
be the language {C|tt(C) ∈ L} where C is a Boolean Circuit and tt(C) is the truth-table for
C.

It will be necessary for us to consider “succinctly-presented” problems, where the circuit
that constitutes the succinct description is itself an oracle circuit:

I Definition 5. Given a language L and an oracle A, we define the A-succinct version of
L (denoted A-succ.L) to be the language {C|tt(C) ∈ L} where C is a Boolean Circuit with
oracle gates, and tt(C) is the truth-table for C, when it is evaluated with oracle A. If A = ∅,
we denote this language as succ.L.

The typical situation that arises is that the succinct version of a problem A has expo-
nentially greater complexity than A. In particular, this happens when A is complete for a
complexity class under “logtime reductions”.

I Definition 6. We say that a function f can be computed in logarithmic time if there
exists a random-access Turing machine that, given (x, i), computes the ith bit f(x) in time
O(log |x|).

Building on prior work of [16, 9, 18], Balcázar, Lozano, and Torán presented a large list
of complexity classes (C1, C2), where C1 is defined in terms of some resource bound B(n) and
C2 is defined in the same way, with resource bound B(2n), such that if a set A is complete for
C1 under logtime reductions, then succ.A is complete for C2 under polynomial-time many-one
reductions [7].

Somewhat surprisingly, the complexity of succ.MCSP appears not to be exponentially
greater than that of MCSP. (Related observations were made earlier by Williams [19].)

I Theorem 7. succ.MCSP ∈ Σp2

Proof. We present an algorithm in Σp
2 that decides succ.MCSP. Given an instance of

succinct MCSP C, note that C ∈ succ.MCSP iff z is a string of the form (f, s) ∈ MCSP,
where z = tt(C). By definition, |z| must be a power of 2, say |z| = 2r, and |f | must also
be a power of 2, say |f | = 2m for some m < r. Note also that if s > |f | = 2m, then (f, s)
should obviously be accepted, since every m-variate Boolean function has a circuit of size 2m.
To be precise, we will choose one particular convention for encoding the pair (f, s); other
reasonable conventions will also yield a Σp

2 upper bound. Let us encode (f, s) as a string
of length 2m+1, where the first 2m bits give the truth table for f , and the second 2m bits
give s in binary. Note that this means that C has m+ 1 input variables, and hardwiring the
high-order input bit of C to 0 results in a circuit C ′ for f (of size at most |C|).

Using this encoding, the “interesting” instances (f, s) are of the form where the second
half of the string is all zeros, except possibly for the low-order m bits (encoding a number
s ≤ 2m = |f |. The low-order m bits can be computed deterministically in polynomial time,
given C, by evaluating C on inputs 1m+1−logm0logm, 1m+1−logm0−1+logm1, . . . , 1m+1. Let
the number encoded by the low-order m bits be s′. Then C (an encoding of (f, s)) is in
succ.MCSP iff

E. Allender, D. Holden, and V. Kabanets 27

there is some bit position j corresponding to one of the high-order 2m −m bits of s such
that C(j) = 1, or
there exists a circuit D of size at most s′ such that, for all i,D(i) = C ′(i) and for all bit
positions j corresponding to one of the high-order 2m −m bits of s, C(j) = 0 (and thus
s = s′).

It is easily seen that this can be checked in Σp2. J

Because this proof relativizes, we obtain:

I Corollary 8. Let A and B be oracles such that B≤pTA. Then B-succ.MCSPA is in (Σp2)A.

Proof. We use the same encoding as in Theorem 7. Thus, an oracle circuit C encoding an
instance (f, s) (where f is an m-ary function) has m+ 1 input variables, and hardwiring the
high-order input bit of C to 0 results in an oracle circuit C ′ (with oracle B) for f (of size at
most |C|). But if B≤pTA, then this also gives us an oracle circuit C ′′ (with oracle A) for f
(of size at most |C|k for some k), where we can obtain C ′′ from C in polynomial time.

Then C (an encoding of (f, s)) is in B-succ.MCSPA iff
there is some bit position j corresponding to one of the high-order 2m −m bits of s such
that CB(j) = 1, or
there exists a circuit D of size at most s′ such that, for all i,DA(i) = C ′′A(i) and for all
bit positions j corresponding to one of the high-order 2m −m bits of s, CB(j) = 0 (and
thus s = s′).

It is easily seen that this can be checked in (Σp2)A. J

An analogous result also holds for MKTPA.

I Theorem 9. Let A and B be oracles such that B≤pTA. Then B-succ.MKTPA is in (Σp2)A.

2.2 Constant-Depth Reductions
I Proposition 10. Suppose that f is a uniform AC0 reduction from a problem A to a problem
B. Let C be an instance of succ.A. Then, the language {(C, i)| the ith bit of f(tt(C)) is 1}
is in LTH (the linear-time hierarchy).

Proof. Consider the unary version of the above language: {1(C,i)| the ith bit of f(tt(C)) is
1}; we claim that this language is in uniform AC0. To see this, note that after computing
the length of the input (in binary), and thus obtaining a description of C (of length log n),
an AC0 algorithm can compute each bit of tt(C). For instance, the ith bit of tt(C) can be
computed by guessing a bit vector of length log n recording the value of each gate of C on
input i, and then verifying that all of the guessed values are consistent. Once the bits of
tt(C) are available, then the AC0 algorithm computes f(tt(C)).

The result is now immediate, from [5, Proposition 5], which shows that the rudimentary
languages (that is, the languages in the linear-time version LTH of the polynomial-time
hierarchy PH) are precisely the sets whose unary encodings are in Dlogtime-uniform AC0. J

By an entirely analogous argument, we obtain:

I Proposition 11. Suppose that f is a uniform TC0 reduction from a problem A to a problem
B. Let C be an instance of succ.A. Then, the language {(C, i)| the ith bit of f(tt(C)) is 1}
is in CH.

STACS 2015

28 The Minimum Oracle Circuit Size Problem

3 Main Results

3.1 Conditional collapses and separations of complexity classes
Our first theorem shows that significant conclusions follow if MCSP is hard for P under AC0

reductions.

I Theorem 12. If there is any set A in the polynomial hierarchy such that MCSPA (or
MKTPA) is hard for P under AC0 reductions, then P 6= NP.

Proof. We present only the proof for MCSPA; the proof for MKTPA is identical. Suppose
that P = NP and MCSPA is hard for P under AC0 reductions. Thus, there is a family {Cn}
of AC0 circuits reducing SAT to MCSPA, such that Cn(φ) = f(φ), where f is the reduction
function and φ is an instance of SAT.

Now we claim that succ.SAT≤pmsucc.MCSPA. To see this, consider an instance D of
succ.SAT (that is, a circuit D on n variables that, when given input i, outputs the ith bit
of a SAT instance of size 2n). This problem has been shown to be complete for NEXP[15].
By Proposition 10, we have that the language {(D, i)| the ith bit of f(tt(D)) is 1} is in PH.
By our assumption that P = NP, we have that this language is in P . Let Em be a family
of circuits deciding this language. The function that takes input D and outputs E|(D,n)|
(with D hardwired in) is a polynomial-time reduction from succ.SAT to succ.MCSPA, which
is in (Σp

2)A, by Corollary 8. Since A ∈ P (by our assumption that P = NP), we have that
NEXP ⊆ P, which is a contradiction. J

I Corollary 13. If there is any set A ∈ CH such that MCSPA (or MKTPA) is hard for P
under TC0 reductions, then P 6= PP.

Due to space limitations, this proof and several others are omitted. A more complete
version may be found on ECCC.

I Corollary 14. Suppose that MCSP (or MKTP) is hard for P under logspace many-one
reductions. Then P 6= PSPACE.

I Theorem 15. Suppose that MCSPEXP is hard for NP under polynomial-time reductions.
Then NEXP = EXP.

Proof. Let f be the reduction taking an instance of SAT to an instance of MCSPEXP. We
construct a reduction from succ.SAT to B-succ.MCSPEXP for some B ∈ EXP.

Consider the language L = {(C, i)| the ith bit of f(φC) is 1}, where φC is the formula
described by the circuit C, viewed as an instance of succ.SAT with n input variables. We
can decide L in exponential time because we can write down φC in exponential time, and
then we can compute f(φC) in exponential time because f is a poly-time reduction on an
exponentially large instance. Let {Dm} be a family of oracle circuits for L, using an oracle
for an EXP-complete language B. Thus the mapping C 7→ D|C|+n is a polynomial-time
reduction from succ.SAT to B-succ.MCSPEXP, which is in (Σp

2)EXP = EXP (see, e.g., [6,
Theorem 24]), and thus EXP = NEXP. J

I Corollary 16. Consider Levin’s time-bounded Kolmogorov complexity measure Kt [12].
Suppose that {(x, i) : Kt(x) ≤ i} is hard for NP under polynomial-time reductions. Then
NEXP = EXP.

I Theorem 17. If MCSPQBF or MKTPQBF is hard for NP under logspace reductions, then
NEXP = PSPACE.

E. Allender, D. Holden, and V. Kabanets 29

I Corollary 18. If MCSPQBF (or MKTPQBF) is hard for P under logspace reductions, then
EXP = PSPACE.

Proof. The proof is identical to the proof of the preceding theorem, with NP replaced by P,
and with NEXP replaced by EXP. J

If we carry out a similar argument, replacing NP with PSPACE, we obtain the contradiction
EXPSPACE = PSPACE, yielding the following.

I Corollary 19. Neither MCSPQBF nor MKTPQBF is hard for PSPACE under logspace
reductions.

3.2 Impossibility of uniform AC0 reductions
I Theorem 20. For any language A that is hard for PH under P/poly reductions, MCSPA

is not hard for TC0 under uniform AC0 reductions.

The theorem will follow from the next lemma. Recall that LTH (linear-time hierarchy)
stands for the linear-time version of the polynomial-time hierarchy PH.

I Lemma 21. Suppose that, for some language A, MCSPA is TC0-hard under uniform AC0

reductions. Then LTH 6⊆ io-SIZEA[2Ω(n)].

Proof. It is shown in [1, Theorems 5.1 and 6.2] that if a set is hard for any class C that is
closed under TC0 reductions under uniform AC0 reductions, then it is hard under length-
increasing (uniform AC0)-uniform NC0 reductions. (Although Theorems 5.1 and 6.2 in [1]
are stated only for sets that are complete for C, they do hold also assuming only hardness [2],
using exactly the same proofs.) Here, the notion “AC0-uniform NC0” refers to NC0 circuits
with the property that direct connection language DCL = {(n, t, i, j)| gate i of Fn has type t
and has an edge leading from gate j} with n in unary is in Dlogtime-uniform AC0.

Hence, if MCSPA is hard for TC0 under uniform AC0 reductions, then we get that PARITY
is reducible to MCSPA under a length-increasing (uniform AC0)-uniform NC0 reduction. Such
a reduction R maps PARITY instances x ∈ {0, 1}n to MCSPA instances (f, s), where f is the
truth table of a Boolean function, f ∈ {0, 1}m, for some m such that n ≤ m ≤ nO(1), and
0 ≤ s ≤ m is the size parameter in binary, and hence |s| ≤ O(log n).

Being the output of an NC0 reduction, the binary string s depends on at most O(log n)
bits in the input string x. Imagine fixing these bits in x to achieve the minimum value
of the parameter s. Denote this minimum value of s by v. (We do not need for v to be
efficiently computable in any sense.) We get a nonuniform NC0 reduction from PARITY on
n−O(log n) ≥ n/2 bit strings to MCSPA with the size parameter fixed to the value v.

I Claim 22. For any language A and any 0 ≤ v ≤ m, MCSPA on inputs f ∈ {0, 1}m, with
the size parameter fixed to v, is solved by a DNF formula of size O(m · 2v2 log v).

Proof of Claim 22. Each A-oracle circuit of size v on logm inputs can be described by a
binary string of length at most O(v2 log v), since each of v gates has at most v inputs. Thus,
there are at most 2O(v2 log v) Boolean functions on logm inputs that are computable by
A-oracle circuits of size at most v. Checking if any one of these truth tables equals to the
input truth table f can be done by a DNF, where we take an OR over all easy functions,
and for each easy function we use an AND gate to check equality to the input f . J

STACS 2015

30 The Minimum Oracle Circuit Size Problem

We conclude that PARITY on n/2-bit strings is solvable by AC0 circuits of depth 3 and
size O(m · 2v2 log v). Indeed, each bit of the truth table f is computable by an NC0 circuit,
and hence by a DNF (and a CNF) of constant size. Plugging in these DNFs (or CNFs) for
the bits of f into the DNF formula from Claim 22 yields the required depth-3 AC0 circuit for
PARITY on inputs of length at least n/2.

Next, since PARITY on m-bit strings requires depth-3 AC0 circuits of size at least
2Ω(
√
m) [10], we get that v ≥ n1/5. Hence, on input 0n, our uniform NC0 reduction produces

(f, s) where f is the truth table of a Boolean function on r-bit inputs that has A-oracle
circuit complexity at least v ≥ n1/5 ≥ 2εr, for some ε > 0.

Finally, since the NC0 reduction is (uniform AC0)-uniform, we get that the Boolean
function whose truth table is f is computable in LTH. J

Proof of Theorem 20. Towards a contradiction, suppose that MCSPA is TC0-hard under
uniform AC0 reductions. Then, by Lemma 21, there is a language L ∈ PH that requires
A-oracle circuit complexity 2Ω(n) almost everywhere. However, since A is PH-hard under
P/poly reductions, we get that L ∈ SIZEA[poly]. A contradiction. J

I Corollary 23. MCSP⊕P is not TC0-hard under uniform AC0 reductions.

I Corollary 24. Suppose that, for some oracle A, MCSPA is TC0-hard under uniform AC0

reductions. Then NPA 6⊆ SIZEA[poly].

I Remark. Murray and Williams [13] prove results similar to (and implied by) our Lemma 21
and Corollary 24 for the case of the empty oracle A = ∅. Namely, they show that if MCSP is
NP-hard under uniform AC0 reductions, then NP 6⊆ P/poly and E 6⊆ io-SIZE[2Ω(n)].

Finally, we observe that the ideas in our proof of Lemma 21 yield an alternate proof of
the result by Murray and Williams [13] that PARITY is not reducible to MCSP via “local”
O(n1/2−ε)-time reductions. We prove the version for polylogtime-uniform NC0 reductions,
but the same argument applies also to the “local” reductions of [13].

I Theorem 25 ([13]). There is no polylogtime-uniform NC0 reduction from PARITY to
MCSP.

Proof. Suppose there is such a reduction. Similarly to the proof of Lemma 21, we conclude
that this NC0 reduction maps 0n to an MCSP instance (f, s) where f is the truth table of a
Boolean function on r := O(log n) inputs that requires exponential circuit size s ≥ 2Ω(r). On
the other hand, since our NC0 reduction is polylogtime-uniform, the Boolean function with
the truth table f is computable in P, and hence in SIZE[poly]. A contradiction. J

3.3 Gap MCSP
For 0 < ε < 1, we consider the following gap version of MCSP, denoted ε-gap MCSP: Given
(f, s), output ‘Yes’ if f requires circuits of size at least s, and output ‘No’ if f can be
computed by a circuit of size at most (1− ε)s.

For α : N→ R+, call a mapping R : {0, 1}n → {0, 1}m α-stretching if m ≤ α(n) · n. We
will prove that there is no nδ-stretching nonuniform AC0 reduction from PARITY to ε-gap
MCSP, for certain parameters 0 < ε, δ < 1. First, we rule out nonuniform NC0 reductions.

I Theorem 26. For every n−1/6 < ε < 1 and for every constant δ < 1/30, there is no
nδ-stretching (nonuniform) NC0 reduction from PARITY to ε-gap MCSP.

E. Allender, D. Holden, and V. Kabanets 31

Proof. Towards a contradiction, suppose there is an nδ-stretching NC0 reduction from
PARITY on inputs x ∈ {0, 1}n to ε-gap MCSP instances (f, s). Fix to zeros all O(log n) bit
positions in the string x that determine the value of the size parameter s. As in the proof of
Lemma 21, we get an NC0 reduction from PARITY on at least n/2 bits y to the ε-gap MCSP
instance with the size parameter fixed to some value v ≥ n1/5.

By our assumption, |f | ≤ n · nδ. Since each bit of f is computable by an NC0 circuit, we
get that each bit of f depends on at most c bits in the input y. The total number of pairs
(i, j) where fi depends on bit yj is at most c · |f |. By averaging, there is a bit yj , 1 ≤ j ≤ n/2,
that influences at most c|f |/(n/2) ≤ 2cnδ bit positions in the string f .

Fix y so that all bits are 0 except for yj (which is set to 1). This y is mapped by our
NC0 reduction to the truth table f ′ that is computable by a circuit of size at most (1− ε)v.
On the other hand, flipping the bit yj to 0 forces the reduction to output a truth table f ′′
of circuit complexity at least v. But, yj influences at most 2cnδ positions in f ′, and so the
circuit complexity of f ′′ differs from that of f ′ by at most O(nδ log n) gates (as we can just
construct a “difference” circuit of that size that is 1 on the at most 2cnδ affected positions of
f ′). We get εv ≤ O(nδ log n), which is impossible when δ < 1/30. J

Now we extend Theorem 26 to the case of nonuniform AC0 reductions.

I Theorem 27. For every n−1/7 < ε < 1 and for every constant δ < 1/31, there is no
nδ-stretching (nonuniform) AC0 reduction from PARITY to ε-gap MCSP.

Proof. Towards a contradiction, suppose there is a nδ-stretching AC0 reduction from PARITY
on n-bit strings to the ε-gap MCSP. We will show that this implies the existence of an NC0

reduction with parameters that contradict Theorem 26 above.

I Claim 28. For every constant γ > 0, there exist a constant a > 0 and a restriction of our
AC0 circuit satisfying the following: (1) each output of the restricted circuit depends on at
most a inputs, and (2) the number of unrestricted variables is at least n1−γ .

Proof of Claim 28. Recall that a random p-restriction of n variables x1, . . . , xn is defined
as follows: for each 1 ≤ i ≤ n, with probability p, leave xi unrestricted, and with probability
1−p, set xi to 0 or 1 uniformly at random. By Håstad’s Switching Lemma [10], the probability
that a given CNF on n variables with bottom fan-in at most t does not become a decision
tree of depth at most r after being hit with a random p-restriction is at most (5pt)r.

For an AC0 circuit of size nk and depth d, set p := (5a)−1n−2k/a for some constant a > 0
to be determined. Applying this random p-restriction d times will reduce the original circuit
to a decision tree of depth a with probability at least 1− dnk(5pa)a > 3/4. The expected
number of unrestricted variables at the end of this process is pdn ≥ Ω(n/n2kd/a) = Ω(n/nγ′),
for γ′ := 2kd/a. By Chernoff bounds, the actual number of unrestricted variables is at least
1/2 of the expectation with probability at least 3/4.

Thus, with probability at least 1/2, we get a restriction that makes the original AC0

circuit into an NC0 circuit on at least n/n2γ′ variables, where each output of the new circuit
depends on at most a input variables. Setting γ := 2γ′, we get that a = (4kd)/γ. J

We get an NC0 reduction from PARITY on n′ := n1−γ variables to ε-gap MCSP. This
reduction is at most (n′)(δ+γ)/(1−γ)-stretching. Choose 0 < γ < (1/31)2 so that (δ + γ)/(1−
γ) < 1/30, and ε > n−1/7 > (n′)−1/6. Finally, appeal to Theorem 26 for contradiction. J

STACS 2015

32 The Minimum Oracle Circuit Size Problem

4 Generalizations

Theorem 12 gives consequences of MCSP being hard for P. The property of P that is exploited
in the proof is that the polynomial hierarchy collapses to P if NP = P. (This is required, so
that we can efficiently a circuit that computes bits of the reduction, knowing only that it is
in the polynomial hierarchy.)

The next theorem formalizes this observation:

I Theorem 29. Let C be any class such that if NP = C, then PH = C. If there is a set
A ∈ PH that is hard for C under ≤pT reductions such that MCSPA (or MKTPA) is hard for C
under uniform AC0 reductions, then NP 6= C.

I Corollary 30. Let A be any set in the polynomial hierarchy. If MCSPA (or MKTPA) is
hard for AC0[6] under AC0 reductions, then AC0[6] 6= NP.

Recall that SZK denotes the class of languages with Statistical Zero-Knowledge proofs.

I Corollary 31. Let A be any set in the polynomial hierarchy that is hard for SZK under
≤pT reductions. If MCSPA is hard for SZK under AC0 reductions, then SZK 6= NP.

Proof. SZK is closed under complementation [14]. Thus if NP is equal to the class of
languages in SZK, then coNP = NP = SZK and PH collapses to SZK. Thus SZK satisfies the
hypothesis of Theorem 29. J

Similarly, we can state the following theorem about TC0 reductions.

I Theorem 32. Let C be any class such that if PP = C, then CH = C. If there is a set
A ∈ CH that is hard for C under ≤pT reductions such that MCSPA (or MKTPA) is hard for C
under uniform TC0 reductions, then PP 6= C.

Fenner, Fortnow, and Kurtz [8] introduced several complexity classes, including SPP and
WPP that are “low for PP”, in the sense that PP = PPSPP = PPWPP. Thus we obtain the
following corollary:

I Corollary 33. Let A be any set in the counting hierarchy that is hard for WPP under
≤pT reductions. If MCSPA is hard for WPP (or SPP) under uniform TC0 reductions, then
WPP 6= PP (respectively SPP 6= PP).

5 Discussion

The contrast between Theorem 12 and Corollary 18 is stark. Theorem 12 obtains a very
unsurprising consequence from the assumption that MCSP is hard for P under a very
restrictive class of reductions, while Corollary 18 obtains a very unlikely collapse from the
assumption that the apparently much harder problem MCSPQBF is hard for P under a much
less restrictive class of reductions. Yet, the absence of any known efficient reduction from
MCSP to MCSPQBF means that we have been unable to obtain any unlikely consequences by
assuming that MCSP is hard for P. We believe that it should be possible to provide evidence
that MCSP is not hard for P, and we pose this as an open question for further research.

Acknowledgments This research was supported in part by NSF grants CCF-1064785 and
CCF-1423544, and by an NSERC Discovery Grant. Some of this work was carried out at
the 2014 Dagstuhl Workshop on Algebra in Computational Complexity (Dagstuhl Seminar
14391). We also acknowledge helpful discussions with Ryan Williams, Chris Umans, Manindra
Agrawal, and Mitsunori Ogihara.

E. Allender, D. Holden, and V. Kabanets 33

References
1 Manindra Agrawal. The isomorphism conjecture for constant depth reductions. Journal of

Computer and System Sciences, 77(1):3–13, 2011.
2 Manindra Agrawal. Personal Communication, 2014.
3 Eric Allender, Harry Buhrman, Michal Kouckỳ, Dieter van Melkebeek, and Detlef Ron-

neburger. Power from random strings. SIAM Journal on Computing, 35(6):1467–1493,
2006.

4 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Mathematical
Foundations of Computer Science (MFCS), volume 8635 of Lecture Notes in Computer
Science, pages 25–32. Springer, 2014.

5 Eric Allender and Vivek Gore. On strong separations from AC0. In Jin-Yi Cai, editor,
Advances in Computational Complexity Theory, volume 13 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 21–37. AMS Press, 1993.

6 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive
reach of resource-bounded Kolmogorov complexity in computational complexity theory.
Journal of Computer and System Sciences, 77:14–40, 2010.

7 José L Balcázar, Antoni Lozano, and Jacobo Torán. The complexity of algorithmic problems
on succinct instances. In Computer Science, pages 351–377. Springer, 1992.

8 Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48(1):116–148, 1994.

9 Hana Galperin and Avi Wigderson. Succinct representations of graphs. Information and
Control, 56(3):183–198, 1983.

10 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

11 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 73–79. ACM, 2000.

12 Leonid Levin. Randomness conservation inequalities; information and independence in
mathematical theories. Information and Control, 61:15–37, 1984.

13 Cody Murray and Ryan Williams. On the (non) NP-hardness of computing circuit com-
plexity. In Electronic Colloquium on Computational Complexity (ECCC), 2014. TR14-164.

14 Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal of
Computer and System Sciences, 60(1):47–108, 2000.

15 Christos H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.
16 Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations of

graphs. Information and Control, 71(3):181–185, 1986.
17 Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)

algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.
18 Klaus W Wagner. The complexity of combinatorial problems with succinct input repres-

entation. Acta Informatica, 23(3):325–356, 1986.
19 Ryan Williams. http://cstheory.stackexchange.com/questions/10320/succinct-problems-in-

mathsfp/10546#10546, 2012.

STACS 2015

Graph Searching Games and Width Measures for
Directed Graphs
Saeed Akhoondian Amiri1, Łukasz Kaiser2, Stephan Kreutzer1,
Roman Rabinovich∗1, and Sebastian Siebertz1

1 Logic and Semantic, Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{saeed.akhoondianamiri,stephan.kreutzer,roman.rabinovich,
sebastian.siebertz}@tu-berlin.de

2 LIAFA, CNRS & Université Paris Diderot†, lukaszkaiser@google.com

Abstract
In cops and robber games a number of cops tries to capture a robber in a graph. A variant of
these games on undirected graphs characterises tree width by the least number of cops needed to
win. We consider cops and robber games on digraphs and width measures (such as DAG-width,
directed tree width or D-width) corresponding to them. All of them generalise tree width and
the game characterising it.

For the DAG-width game we prove that the problem to decide the minimal number of cops
required to capture the robber (which is the same as deciding DAG-width), is PSPACE-complete,
in contrast to most other similar games. We also show that the cop-monotonicity cost for directed
tree width games cannot be bounded by any function. As a consequence, D-width is not bounded
in directed tree width, refuting a conjecture by Safari.

A large number of directed width measures generalising tree width has been proposed in the
literature. However, only very little was known about the relation between them, in particular
about whether classes of digraphs of bounded width in one measure have bounded width in
another. In this paper we establish an almost complete order among the most prominent width
measures with respect to mutual boundedness.

1998 ACM Subject Classification G.2.m Graph Theory

Keywords and phrases cops and robber games, directed graphs, DAG-width

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.34

1 Introduction

Graph searching games, also known as cops and robber or pursuit-evasion games, are an
important type of games on graphs and digraphs studied intensively in the literature. While
there are many different forms of graph searching games, the basic idea is always that a
number of searchers tries to find or catch a fugitive hiding in the vertices or edges of a graph
or digraph. See Section 2 for details of the games used in this paper and see [15] for an
introduction and [12] for a comprehensive survey of graph searching games.

Graph searching games have originally been introduced to model the search of rescuers
trying to find a miner lost in a mine after some accident. Any graph searching game defines
a natural graph invariant assigning to every graph the minimal number of cops needed to

∗ Partially supported by ESF, http://www.esf.org.
† Currently at Google Inc.

© Saeed A. Amiri, Łukasz Kaiser, Stephan Kreutzer,
Roman Rabinovich, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 34–47

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.34
http://www.esf.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 35

guarantee capture of the robber. It has subsequently emerged that these graph invariants are
closely related to width measures such as directed or undirected tree or path width studied in
graph structure theory (see e.g. [8, 14, 2]).

In particular, a type of strategies for the cops called monotone strategies often corresponds
exactly to decompositions such as tree or path decompositions and hence concepts such as tree
width etc. can equivalently be defined by a particular variant of graph searching games. In
this paper we will therefore treat strategies for the cops and corresponding graph or digraph
decompositions equivalently, emphasising either of the two views whenever it seems more
appropriate.

Graph searching games can be defined on undirected or directed graphs. On undirected
graphs, the visible robber game defines exactly tree width, the invisible robber game defines
path width and a variation of the invisible game called the inert robber game again defines
tree width. These games can be generalised to digraphs in two different ways. In this way
we naturally obtain games on digraphs corresponding to directed width measures such as
directed tree width [14], DAG-width [4], Kelly-width [13] or directed path width [2]. We will
therefore refer to these games as the directed tree width games, DAG-width games etc.

Structural width measures such as tree and path width have found important applications
in algorithms and complexity theory. In view of the correspondence between graph searching
games and such structural decomposition based width measures, a natural question arising
is the problem of determining for a given graph or digraph the minimal number of cops
that guarantees to capture the robber in a particular game variant. For most game variants
including tree or path width games (both directed and undirected) one can show that this
problem is in NP: decompositions, i.e. monotone winning strategies for the cops (see below),
are of size polynomial in the input graph and one can therefore simply guess such a strategy
and verify the correctness of the guess. In this way for most game variants relevant in this
context it was shown that they can be decided in NP and they are usually NP-complete. Only
the complexity of DAG-width games was left as an open problem as there the corresponding
decompositions are DAG-like and hence not obviously seen to be polynomial.

Surprisingly, in this paper we show that deciding the DAG-width of a digraph is not
only not in NP (under standard complexity theoretical assumptions), it is in fact PSpace-
complete and therefore exhibits the worst case complexity of such games. This result is quite
unexpected and especially surprising as such a high complexity was to date only exhibited by
a form of graph searching games called domination games (see [10, 9, 16]). In these games,
each cop not only occupies his current vertex but a whole neighbourhood of fixed radius,
which essentially allows to simulate set quantification making the problem PSpace-complete.

The DAG-width game, however, is a straight forward translation of the NP-complete
game for tree width to digraphs and to the best of our knowledge this is the only graph
searching game with the usual capturing condition that exhibits such a complexity.

As a consequence of the proof technique used to prove this result we also show that there
are classes of graphs for which any DAG decomposition of optimal width must contain a
super polynomial number of bags. (If NP 6= PSpace, this would follow from the previous
result, but we show this unconditionally.) Furthermore, we obtain that there cannot be a
polynomial time approximation algorithm for DAG-width with only an additive error.

As explained above, the cop number of graph searching game variants is very closely
related, and often equivalent, to standard width measures for graphs and digraphs. In the
literature on digraph width measures a significant number of width measures have been
proposed as directed analogue of undirected tree width. Among these are directed tree
width [14], DAG-width [4], Kelly-width [13] and D-width [23]. Furthermore, there are some

STACS 2015

36 Graph Searching Games and Width Measures for Directed Graphs

game variants such as cop-monotone directed tree width games and non-monotone DAG-width
games, for which no corresponding width measure has been defined. The obvious question
is how these different measures compare to each other, i.e. whether a class of digraphs of
bounded width in one measure has bounded width in another. For some pairs of digraph
width measures the relation has been determined, but to date there is no clear picture.
In particular, the relation between DAG-width, Kelly-width, D-width and cop-monotone
directed tree width games is not known. As the second main result of this paper we establish
a nearly complete order among these width measures. The most difficult part hereby is to
show that any class of digraphs of bounded Kelly-width also has bounded DAG-width.

A crucial concept in graph searching games is monotonicity. A strategy for the cops is
robber-monotone if vertices unavailable for the robber at a position of a play never become
available later on and it is cop-monotone if the cops never go back to a vertex they have
left before. Monotone strategies are particularly well behaved and in fact, cop-monotone
strategies are very similar to decompositions such as tree or path decompositions. A highly
desirable property of a particular variant of graph searching games therefore is that the
number of cops needed to catch the robber on a graph or digraph G with a monotone strategy
is the same (or at least bounded in) the number of cops needed with any strategy. The
number of extra cops needed for monotone strategies is called the cop- or robber-monotonicity
cost of the game.

This monotonicity problem has driven the field of graph searching games from the very
beginning, see e.g. [18, 5, 24, 6, 2, 11, 25, 14, 1, 27, 26, 12, 19, 7]. For undirected graphs,
the monotonicity problem is by now well understood and most natural graph searching
variants are indeed monotone. For directed graphs, the situation is very different. The games
corresponding to directed path width are cop- and robber-monotone [2]. The games for
directed tree width are not robber- and not cop-monotone, but a robber-monotone strategy
requires at most three times the number of cops [14]. However, many important problems
regarding monotonicity on directed graphs are still wide open.

Among the most important open problems in this respect are the questions whether the
cop-monotonicity cost for the game corresponding to directed tree width can be bounded
by any function and whether the robber-monotonicity cost for the games corresponding
to DAG-width or Kelly-width can be bounded. In [23], it has been conjectured that the
cop-monotonicity cost for directed tree width games is bounded, but the problem was left
open to date. In this paper we refute this conjecture by showing that there is a class of
graphs such that on every digraph in this class, 4 cops have a robber-monotone winning
strategy in the directed tree width game, but the number of cops needed for cop-monotone
winning strategies is unbounded.

As a technical tool to show that DAG-width is bounded in Kelly-width we introduce
another notion of monotonicity for DAG-width games that we call weak monotonicity. The
core of the argument is to show that any weakly monotone strategy in the DAG-width game
can be translated into a fully monotone strategy with only a quadratic increase in the number
of cops. We can then show that strategies in the games corresponding to Kelly-width can be
translated into weakly monotone strategies in the DAG-width game and hence into monotone
strategies.

While this relation between Kelly and DAG-width is the most explicit application of
this concept of weak monotonicity, we believe that weak monotonicity will have many more
applications. In particular, as explained above, the outstanding open problem in the area
of digraph searching games is the monotonicity for DAG-width (and Kelly-width) games.
These games have been shown to be non-monotone in [17]. More precisely, in [17] it was

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 37

shown that there are classes of digraphs on which the cops need 4/3 times as many cops for
a monotone strategy than for an unrestricted strategy. However, all attempts to use the
techniques developed in [17] to show that the monotonicity costs cannot be bounded by any
constant, or any function at all, have failed. Our result on weak monotonicity proves that
these attempts are doomed to fail as the non-monotone strategy used by cops in the examples
in [17] is in fact weakly monotone. We therefore believe that weak monotonicity will prove
to be a valuable step towards a solution of the monotonicity problem of DAG-width games.
And indeed this was the original motivation for introducing weak monotonicity in [21]. It
is worth mentioning that the weakly monotone DAG-width games have a corresponding
decomposition. These weak DAG decompositions approximate DAG decompositions and
always have size polynomial in the size of the graph.

Our contributions. The main results of this paper are the following.

We show that deciding the DAG-width of a graph, or equivalently deciding the number
of cops needed to win the corresponding monotone graph searching game, is PSpace-
complete.
We show that there are graphs for which no DAG decomposition of polynomial size exist
whose width is at most an additive constant away from the optimal width.
We refute a conjecture by Safari [23] by showing that the cop-monotonicity costs for
the graph searching games corresponding to directed tree width are unbounded. As a
consequence, we obtain that D-width is not bounded by any function in the directed tree
width. In fact, D-width is not even bounded by any function in the number of cops needed
in the cop-monotone directed tree width game. Furthermore, we also show that D-width
cannot even be bounded by any function in the DAG-width and in the Kelly-width.
We show that DAG-width can be bounded by a quadratic function in the Kelly-width.
Together with the previous results, we obtain an almost complete classification of the
directed width measures proposed in the literature.

2 Preliminaries

We assume familiarity with basic concepts of graph theory and refer to [8] for background.
All graphs in this paper are finite, directed and simple, i.e. they do not have loops or multiple
edges between the same pair of vertices. Undirected graphs are digraphs with a symmetric
edge relation. We write Ḡ for the underlying undirected graph of G. If G is a graph, then
V (G) is its set of vertices and E(G) is its set of edges. For a set X ⊆ V (G) we write G[X] for
the subgraph of G induced by X and G−X for G[V (G) \X]. The set of vertices reachable
from a set V ′ ⊆ V (G) is denoted ReachG(V ′). If V ′ = {v}, we also write ReachG(v). A
strongly connected component of a digraph G is a maximal subgraph C of G which is strongly
connected, i.e. between any pair u, v ∈ V (C) there are directed paths from u to v and from
v to u. All components of digraphs considered in this paper will be strong and hence we
simply speak of components.

2.1 Graph Searching Games
A graph searching game (also known as cops and robber game and pursuit-evasion game) is
played on a graph G by a team of cops and a robber. The robber and each cop occupy a
vertex of G. Hence, a current game position can be described by a pair (C, v), where C is
the set of vertices occupied by cops and v is the current robber position. At the beginning

STACS 2015

38 Graph Searching Games and Width Measures for Directed Graphs

the robber chooses an arbitrary vertex v and the game starts at position (∅, v). The game
is played in rounds. In each round, from a position (C, v) the cops first announce their
next move, i.e. the set C ′ ⊆ V (G) of vertices that they will occupy next. Based on the
triple (C,C ′, v) the robber chooses his new vertex v′. This completes a round and the play
continues at position (C ′, v′). Variations of graph searching games are obtained by restricting
the moves allowed for the cops and the robber. In all game variants considered here, from
a position (C,C ′, v), i.e. when the cops move from their current position C to C ′ and the
robber is on v, the robber has exactly the same choice of moves from any vertex in the
component of G−C containing v. We will therefore describe game positions by a pair (C,R),
or a triple (C,C ′, R), where C,C ′ are as before and R induces a component of G− C.

A graph searching game on G is specified by a tuple G = (Pos(G), Moves(G),Mon),
where Pos(G) describes the set of possible positions, Moves(G) the set of legal moves and
Mon specifies the monotonicity condition used. In all game variants considered here, the set
Pos(G) of positions is Posc ∪ Posr where Posc = {(C,R) : C ⊆ V (G) , R ⊆ V (G) induces a
component of G−C} are cop positions and Posr = {(C,C ′, R) : C,C ′ ⊆ V (G) and R ⊆ V (G)
induces a component of G− C} are robber positions.

As far as legal moves are concerned, we distinguish between two different types of games,
called reachability and component games. In both cases the cops moves are

Movesc(G) := {
(
(C,R), (C,C ′, R)

)
: (C,R) ∈ Posc, (C,C ′, R) ∈ Posr} .

The difference is in the definition of the set of possible robber moves.

Reachability game

In the reachability game, we define Moves(G) as ReachMoves(G), where

ReachMoves(G) := Movesc(G) ∪ {
(
(C,C ′, R), (C ′, R′)

)
: (C,C ′, R) ∈ Posr,

(C ′, R′) ∈ Posc and R′ is a component of G− C ′ such that R′ ⊆ ReachG−(C∩C′)(R)} .

In other words, the robber can run along any directed path in the digraph which does not
contain a cop from C ∩ C ′ (i.e. one that remains on the board).

Component game

In the component game, we define Moves(G) as CompMoves(G), where

CompMoves(G) :=Movesc(G) ∪ {
(
(C,C ′, R), (C ′, R′)

)
: (C,C ′, R) ∈ Posr,

(C ′, R′) ∈ Posc and R′ is a component of G− C ′ such that R
and R′ are subsets of the same component of G− (C ∩ C ′)} .

That means, in the component game, the robber can only run to a new vertex within the
strongly connected component of G− (C ∩ C ′) that contains his current position.

Monotonicity

The component Mon is a set of finite plays. The cops win all plays (C0, R0), (C0, C1, R0),
(C1, R1), . . . in Mon where Ri = ∅ for some i (and the play stops here) and the robber wins all
other plays. Usually Mon describes cop- or robber-monotonicity: Mon ∈ {cm(G) ∪ rm(G)}.
A play (C0, R0), (C0, C1, R0), (C1, R1), . . . is

in cm(G), called cop-monotone, if for all i, j, k ≥ 0 with i < j < k we have Ci ∩ Ck ⊆ Cj ,

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 39

in rm(G), called robber-monotone, if Ri+1 ⊆ Ri for all i.

Cop-monotonicity means that the cops never reoccupy vertices. Robber-monotonicity
means that once the robber cannot reach a vertex, he will never be able to reach it in the
future. A strategy for the cops is cop- or robber-monotone if all plays consistent with that
strategy are cop- or robber-monotone, respectively.

By combining reachability or component games with monotonicity conditions we obtain a
range of different graph searching games. It follows immediately from the definition that on
every digraph the cops have a winning strategy in each of the graph searching games defined
above by simply placing a cop on every vertex. For a given digraph G, we are therefore
interested in the minimal number k such that the cops have a winning strategy in which no
cop position Ci contains more than k vertices.

I Definition 2.1. Let Fin be the set of all finite plays. For every digraph G and for

X ∈ {dtw, cmdtw, rmdtw, nmDAG, cmDAG,DAG}

let cnG(X) be the minimal number of cops that have a winning strategy in the game GG(X)
where

G(dtw, G) := (Pos(G), CompMoves(G), Mon = Fin),
G(cmdtw, G) := (Pos(G), CompMoves(G), Mon = cm(G)),
G(rmdtw, G) := (Pos(G), CompMoves(G), Mon = rm(G)),
G(nmDAG, G) := (Pos(G), ReachMoves(G), Mon = Fin),
G(cmDAG, G) := (Pos(G), ReachMoves(G), Mon = cm(G)),
G(DAG, G) := (Pos(G), ReachMoves(G), Mon = rm(G)).

It follows immediately from the definitions that, for all digraphs G,

cnG(dtw) ≤ cnG(cmdtw), cnG(rmdtw) and
cnG(cmdtw), cnG(rmdtw) ≤ cnG(nmDAG) ≤ cnG(DAG), cnG(cmDAG) .

(1)

The number cnG(cmdtw)− cnG(dtw) is called the cop-monotonicity cost for the component
game on G. Robber-monotonicity cost as well as monotonicity cost for other game variants
are defined analogously.

2.2 Decompositions and Widths
Most of the games described in Definition 2.1 can be characterised by widths of decompositions
of the graphs. In the following let G be an arbitrary graph. For v, w ∈ V (G) we write v ≤ w
if w ∈ ReachG(v) and v < w if, additionally, v 6= w.

Directed tree width [22, 14] was the first generalisation of tree width to digraphs. For
X,Y ⊆ V (G) we say that X is Y -normal if X is a union of components of G−Y . An arboreal
decomposition of G is a triple (R,X,W) where R is a directed tree with edges oriented away
from the root and X = {Xe : e ∈ E(R)} and W = {Wr : r ∈ V (R)} are collections of sets of
vertices of G such that

(i) W is a partition of V (G) into nonempty sets and
(ii) if e = (t, s) ∈ E(R), then W≥e is Xe-normal where W≥e =

⋃
{Wr : r ∈ V (R), r ≥ s}.

The width of (R,X,W) is maxr∈V (R) |Wr∪
⋃
e∼rXe|−1 where e ∼ r means that r is incident

with e. The directed tree width of G is the least width of an arboreal decomposition of G.
DAG-width was defined in [3] and simultaneously in [20]. A DAG decomposition of G is

a tuple (D,B) where D is a DAG and B = {Bd : d ∈ V (D)} is a set of bags, i.e. subsets of
V (G), such that

STACS 2015

40 Graph Searching Games and Width Measures for Directed Graphs

1.
⋃
d∈V (D) Bd = V (G),

2. for all a, b, c ∈ D, if a < b < c, then Ba ∩Bc ⊆ Bb,
3. for every root r ∈ V (D), ReachG(B≥r) = B≥r where B≥r =

⋃
r≤dBd,

4. for each (a, b) ∈ E(D), ReachG−(Ba∩Bb)(B≥b \Ba) = B≥b \Ba.

The width of (D,B) is maxd∈V (D) |Bd| and its size is |V (D)|. The DAG-width DAG-w(G)
of G is the minimal width of a DAG decomposition of G.

Kelly-width is a complexity measure for digraphs introduced in [13]. Similarly to tree
width, Kelly-width can be defined by a decomposition, by a graph searching game or by
an elimination order. We choose the latter definition. An elimination order C for a graph
G = (V,E) is a linear order on V . For a vertex v define VBv := {u ∈ V : vC u}. The support
of a vertex v with respect to C is

suppC(v) := {u ∈ V : v C u and there is v′ ∈ ReachG−VBv (v) with (v′, u) ∈ E} .

The width of an elimination order C is maxv∈V | suppC(v)|. The Kelly-width Kelly-w(G)
of G is one plus the minimum width of an elimination order of G.

In [23], Safari suggests D-width as another structural complexity measure. Let G be
a graph. A D-decomposition of G is a pair (T, (Xt)t∈V (T)) where T is an undirected tree
and Xt ⊆ V (G) for all t ∈ V (T) is a set of bags such that for all v ∈ V (G) the set
{t ∈ V (T) : v ∈ Xt} is non-empty and connected in T and for every edge (s, t) ∈ E(T) and
every strongly connected component C of G − (Xs ∩ Xt), either V (C) ⊆

⋃
r∈V (Ts) Xr or

V (C) ⊆
⋃
r∈V (Tt) Xr, where Ts, Tt are the two connected components of T − {(s, t), (t, s)}.

The width of (T, (Xt)) is maxt∈V (T) |Xt|. The D-width of G, D-w(G), is the minimum of the
widths of all D-decompositions of G. 1

2.3 Known Relations between Cop Numbers and Widths
We are interested in the question which cop numbers and widths are bounded in terms of
which (other) cop numbers and widths. For instance, for DAG-width and Kelly-width we
want to know whether there is a function f : N → N such that for all graphs G we have
DAG-w(G) ≤ f(Kelly-w(G)). Besides bounds from the inequalities in (1) the following
relations are known.

I Theorem 2.2 ([14, 4, 23] 2). Let G be a graph.
1. dtw(G), cnG(dtw) and cnG(rmdtw) are within factor 3 of each other.
2. cnG(DAG) = cnG(cmDAG) = DAG-w(G).
3. cnG(dtw) ≤ 2cnG(cmdtw) + 1 < D-w(G).

This allows us to call G(dtw, G) the directed tree width game and G(DAG, G) the DAG-width
game.

Berwanger et al. present a class of graphs certifying that DAG-width is not bounded in
directed tree width. The same holds if we substitute directed tree width by D-width and/or
DAG-width by Kelly-width (using the same class of graphs).

I Theorem 2.3 ([4]). There is a class of graphs Gn such that cnGn(dtw) = cnG(cmdtw) = 2
and cnG(rmdtw) = D-w(Gn) = 1, but DAG-w(G) and Kelly-w(G) are not bounded.

1 In [23] the width is maxt∈V (T) |Xt| − 1.
2 The second inequality in (3) is not proven in the cited works, but easy to prove, see Appendix.

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 41

3 The Complexity of DAG-width and the DAG-width Game

For all widths W considered in our work except DAG-width it is easy to see that the problem,
given a graph G and a natural number k, whether W (G) ≤ k, is in NP. The reason is that
the size of the corresponding decompositions is polynomial in the size of G. Because on
graphs with a symmetric edge relation all widths considered here are equal to tree width
and tree width is NP-hard, the width measures here are NP-complete. We show that the
situation with DAG-width is different, however. It turns out that DAGW, the problem
whether DAG-w(G) ≤ k, is PSpace-complete and, moreover, for some graphs, there are no
decompositions of polynomial size even if we allow a constant additive error in the width.

I Theorem 3.1. DAGW is PSpace-complete.

Proof sketch. The easier part is to show that DAGW is in PSpace. Due to the robber-mo-
notonicity, the length of every play in G(DAG, G) is linear in |G|. Hence the winner of the
game can be determined in alternating Ptime (by simply simulating the game) and thus in
PSpace.

For the hardness, we reduce QBF, which is PSpace-complete, to DAGW. A quantified
boolean formula ϕ is of the form ϕ = Q1X1 . . . QrXrψ(X1, . . . , Xr) where Qi is either ∀ or ∃
and ψ is a propositional formula in CNF with variables from X = {X1, . . . , Xr}. A formula
∃Xψ(X) is true if there is a value β(X) ∈ {0, 1} for X such that ψ is true. A formula
∀Xψ(X) is true if for both values β(X) ∈ {0, 1} for X, ψ is true.

It is very well known that deciding QBF, the problem whether a given quantified formula is
true, is PSpace-complete. The idea of our reduction is to simulate the choice of a truth value
for a variable by a quantifier in the game G(DAG, Sϕ), where Sϕ is some graph constructed
from ϕ. The choices are stored as vertices occupied by cops using the monotonicity of the
game. These cops only reflect the history of the play and do not change the flow of the
remaining play.

Let ϕ = Q1X1 Q2X2 . . . QrXr ψ(X1, . . . , Xr) be a quantified boolean formula. The graph
Sϕ is constructed inductively level by level, each of which corresponds to some Xi.

If ϕ has no variables, then if ϕ is true, Sϕ is a single vertex, and if ϕ is false, Sϕ is a
2-clique. Then one cop wins if, and only if, ϕ is true. Otherwise we start the construction
of Sϕ with a gadget Fψ. It has a vertex v and for every clause C = L1 ∨ L2 ∨ . . . Lr(C) an
r(C)-clique KC with vertices vC1 , vC2 , . . . , vCr(C). The edges go from v to every vertex of KC

and back, i.e. we have edges (v, vCi) and (vCi , v) for all clauses C and all i ∈ {1, . . . , r(C)}.
For j = r, r − 1, . . . , 1 we construct graphs Sjϕ such that S1

ϕ = Sϕ. For convenience, let
Sr+1
ϕ = Fψ.
Assume that Sj+1

ϕ has already been constructed. Then Sjϕ is the following graph. There
are two cases. If Qj = ∃, then the vertex set is

V (Sjϕ) = V∃(j) = V (Sj+1
ϕ) ·∪A(j) ·∪B(j) ·∪ C0(j) ·∪ C1(j) ·∪M(j) ·∪D(j) ·∪ {c0(j), c1(j)}

where |A(j)| = |B(j)| = |D(j)| = 2, |Ci(1)| = |M(1)| = 4, |Ci(k + 1)| = |M(k + 1)| =
|M(k)|+ 3 for all k ∈ {2, . . . , j − 1} and i ∈ {0, 1}. Furthermore, B(j) = {b0(j), b1(j)}. We
set N(j) = M(j) ·∪D(j).

STACS 2015

42 Graph Searching Games and Width Measures for Directed Graphs

The set of edges is

E(Sjϕ) = E(Sj+1
ϕ) ∪

(
N(j)

2

)
∪

1⋃
i=0

(
Ci(j)

2

)
∪
(
A(j)

2

)

∪
1⋃
i=0

((
N(j)× {ci(j)}

)
∪
(
{ci(j)} × Ci(j)

)
∪
(
Ci(j)×D(j)

)
∪
(
Ci(j)× {bi(j)}

))
∪
(
B(j)×A(j)

)
∪
(
A(j)×B(j)

)
∪
(
A(j)×M(j)

)
∪
(
N(j)× V (Sj+1

ϕ)
)
∪
(
A(j)× V (Sj+1

ϕ)
)
∪
(
V (Sj+1

ϕ)×A(j)
)
∪ E(j) .

Hereby, for a set X, the notation
(
X
2
)
means {(a, b) ∈ X2 : a 6= b} and E(j) is the set of edges

connecting Fψ to the new level defined as follows. Let KC be a clique in Fψ corresponding
to the clause C = L1 ∨ . . . ∨ Lr. If Xj = Li, then (vCi , b1(j)) ∈ E(j). If ¬Xj = Li, then
(vCi , b0(j)) ∈ E(j). Otherwise (i.e. if Xj does not appear in C) {(vCi , b0(j)), (vCi , b1(j))} ⊆
E(j).

In the second case Qj = ∀. Then V (Sϕ(j)) = V∀(j) = V∃(j) \ {c0(j), c1(j)} and the
edges are as in an existential level (including edges connecting the level and Fψ), but edges
containing ci(j) are replaced by edges

⋃1
i=0 N(j) × Ci(j). In other words, the paths that

lead from N(j) to Ci(j) through ci(j) are replaced by direct edges.
One can show that r + 1 cops win on Sϕ if, and only if, the formula ϕ is true. The main

ingredient of the proof is that in the cops and robber game on Sϕ, the cops can expel the
robber from a level ` only in one way up to irrelevant changes. Hereby, exactly `− 3 cops
remain free for use in the next level `− 3. They occupy N(`), the robber goes to one of the
Ci(`) and a cop is placed to bi(`). If now the robber remains in Ci(`), he is captured there
by the cops from M(`), so he goes to A(`) or to the next level. In any case the cops from
D(`) move to A(`) and the robber is in the next level `− 3. Note that the cops occupy A(`)
(blocking the robber in lower levels) and one vertex from B(`). This one vertex encodes the
choice for the value of the variable from ϕ that corresponds to that level. In universal levels
it is the robber who makes the choice and in the existential these are the cops.

If the level is universal, the robber determines which vertex from B(`) will be occupied
by deciding in which Ci(`) he goes after the cops occupy N(`). In the existential level, the
cops can determine in which Ci(`) the robber must go. If they want b1−i(`) to be occupied
when the robber leaves level `, they place a cop on ci(`) before occupying N(`). Then the
cops expel the robber from Ci(`) if he is there and occupy N(`). The robber goes to C1−i(`)
(all paths to Ci(`) are blocked) or directly to A(`) ∪B(`) ∪ S`−3

ϕ . In any case the cop from
ci(`) moves to b1−i(`). If the robber was in C1−i(`) and remains there, he is captured by the
cops from M(`) as before, so after b1−i(`) is occupied, the robber is in A(`) and after the
cops from D(`) occupy A(`), he is in the next level.

When the robber leaves the last level and proceeds to Fψ, one cop remains free and goes
to v. The robber chooses a clique KC corresponding to the clause C in ψ. At this point,
the value for Xj from C is α(Xj) = i if and only if a cop occupies bi(j). Furthermore, the
construction of edges between Fψ and the levels guarantees that α |= C if and only if the cop
from B(j) can be reused without violating robber-monotonicity. Finally, the cops capture
the robber in KC if and only if they have one free cop. Summing up, the cops win if and
only if ϕ is true. J

We can change the construction of Sϕ to obtain graphs that have no polynomial size
DAG decomposition of width that differs from the optimal one in at most a fixed additive
constant. We replace Fψ in Sϕ by a single vertex, make every level universal and adjust the

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 43

sizes of A(`), B(`) and D(`) by setting |A(`)| = |B(`)| = |D(`)| = b `
log `c. Then a careful

calculation of used cops proves the following theorem.

I Theorem 3.2. There is no polynomial size approximation of an optimal DAG decomposition
of Gn(s, t) with an additive constant error.

4 Comparing Width Measures with Respect to Generality

By Theorem 2.2, directed tree width and the robber-monotone variant of the corresponding
game are bounded in each other. One would expect that the same holds for the cop-monotone
variant. This was implicitly assumed by Safari in [23] who conjectured that D-width and
directed tree width are the same. Note that by Theorem 2.2, s · cnG(dtw) + 1 ≤ D-w(G), so if
dtw(G) = D-w(G), then the cop-monotonicity cost for directed tree width is zero. We show,
however, that it is not only positive, but, moreover, cannot be bounded by any function.

I Theorem 4.1. There is a class {Gn : n > 2} of graphs such that for all n > 2, cnG(dtw) =
cnGn(rmdtw) ≤ 4 and cnGn(cmdtw) ≥ n.

Proof. Let n > 2. We inductively define a sequence of graphs Gmn and sets of marked vertices
M(Gmn) ⊆ V (Gmn) for m ∈ {1, . . . , n+ 1}. We then define Gn as Gn+1

n .
First G1

n is an edgeless graph with a single vertex and M(G1
n) = V (G1

n), i.e. the vertex
of G1

n is marked. Assume that (Gmn ,M(Gmn)) has been constructed. Let T d` denote the
complete undirected tree of branching degree d and depth ` (the depth is the maximum
number of vertices on the path from the root to a leaf). One part of Gm+1

n is a copy of
Tn+1
n+2 , which has (n+ 1)n+2 leaves vs for s ∈ {1, . . . , (n+ 1)n+2}. The graph Gm+1

n is the
disjoint union of Tn+1

n+2 and n · (n+ 1)n+2 copies Hm+1
j (vs) of Gmn where j ∈ {1, . . . , n} and

s ∈ {1, . . . , (n+ 1)n+2} plus some additional edges which we describe next. We denote the
subgraph of Gm+1

n induced by Tn+1
n+2 by T (Gm+1

n) and the root of Hm+1
j (vs) by r(Hm+1

j (vs))
for all m, j and s.

For every leaf v ∈ {vs : 1 ≤ s ≤ (n + 1)n+2} of T (Gm+1
n) there is an undirected edge

from v to the root of Hm+1
i (v). Let xm+1

i (v) be the ith vertex on the path from the root of
T (Gm+1

n) to v. For all leaves v of T (Gm+1
n) and all 1 ≤ i ≤ n we add directed edges from

xm+1
i (v) to all marked verticesM(Hm+1

i (v)) of Hm+1
i (v). Finally, for all leaves v of T (Gm+1

n)
and all leaves of Hm+1

i (v) we add a directed edge to v. We define M(Gm+1
n) := V (T (Gm+1

n)).
Let us describe a non-cop-monotone winning strategy for 4 cops on Gn. Observe that

Gn = Gn+1
n is an undirected tree with additional edges that connect only vertices of the

same branch. In particular, for each subgraph Hi
j(v), if the robber is in Hi

j(v) and the cops
block the root of T (Hi

j(v)) and xi+1
j (v), then the robber cannot leave Hi

j(v) as he cannot
re-enter Hi

j(v).
The cops chase the robber from the root of Gn downwards. In T (Gn), two cops suffice for

that. Consider a position where the cops just expelled the robber from T (Gn). The robber
is in some Hn

j (v) and the cops occupy v and its predecessor w. Now the cop from w goes
to xnj (v) (here non-cop-monotonicity occurs) and a third cop occupies r(Hn

j (v)). The cop
on r(Hn

j (v)) together with the cop on xnj (v) block all paths from T (Gn) to the robber in
Hn
j (v)− r(Hn

j (v)), so the cops on v and w are not needed any more. These two cops chase
the robber down the tree further, while the other cops remains on r(Hn

j (v)) and xnj (v).
In general, assume for some i < n, j and v (j and v are new), the robber is blocked in Hi

j(v)
by cops on v, on r(Hi+1

j′ (v′)) and on xi+1
j (v). Hereby j′ and v′ are such that r(Hi+1

j′ (v′)) is
on the path from r(Hi

j(v)) to the root of Gn. Now the cop from the predecessor of v goes to
xi+1
j (v) (again non-monotonicity occurs). Then the cop from r(Hi+1

j′ (v′)) goes to r(Hi
j(v)).

STACS 2015

44 Graph Searching Games and Width Measures for Directed Graphs

These two cops block all paths from Gn −Hi
j(v) to Hi

j(v)− r(Hi
j(v)). Hence the other two

cops can chase the robber down the tree further. Finally the robber is captured in some leaf
of Gn.

Now we construct a robber strategy that wins against all cop-monotone strategies for n
cops if n > 2. For a vertex v and subtree T of Gn we say that T is a subtree of v if the root
of T is a direct successor of v. The robber resides on a vertex of T (Gn) that has the least
distance to the root of Gn as long as this is possible. When a cop occupies his vertex v the
robber proceeds to a directed successor of v such that the subtree of v is cop free. Such a
successor always exists due to the high branching degree of T (Gn). When the robber reaches
a leaf wn of T (Gn), every vertex on the path from the root of Gn to wn has been occupied
by a cop. As the length of the path is greater that the number of cops, there is a vertex
xnin(wn) that has been left by a cop. When a cop occupies wn, the robber goes to Gnin(wn).
Now on Gnin(wn) (which is isomorphic to Gn−1

n) the robber plays in the same way as on Gn
and so on recursively for each m on Gmim(wm). Note that until the robber is captured, there
is a path from this vertex to a leaf of Gn and then to all already chosen wj .

Consider a position when the robber arrives at a leaf v of Gn and a cop is landing on
this vertex. Then at most n− 1 cops are on the graph and there is some j such that there is
no cop in T (Gjij (wj)). Thus there is a cop free path from v to wj , then to xjij (wj) within
T (Gjij (wj)) and then via xj−1

ij−1
(wj−1), xj−2

ij−2
(wj−2), . . . , x2

i2
(w2) back to v. Note that all

those x-vertices are not occupied by cops by construction of the robber strategy. Thus the
robber can return to wj and play from wj as before. In this way the robber will never be
captured. J

I Corollary 4.2. D-width is not bounded in directed tree width.

There is yet another reason why Corollary 4.2 holds. In the definition of D-width we have
the condition that the set of bags containing a vertex v is connected in the decomposition
tree. This implies cop-monotonicity in the directed tree width game. Moreover, this forbids
the existence of two distinct plays such that the cops are placed on v in both plays, but not
in their common prefix. However, one can construct graphs where this restriction leads to an
unbounded blow up of the number of needed cops. As the DAG-width and the Kelly-width
of those graphs are bounded, we obtain the following theorem3.

I Theorem 4.3. D-w(G) is bounded neither in cnG(cmdtw), nor in DAG-w(G), nor in
Kelly-w(G). More precisely, there is a class of graphs Gn such that 3 cops have a cop- and
robber-monotone winning strategy in the directed tree width and DAG-width games on each
Gn and Kelly-w(Gn) = 4, but D-w(Gn) ≥ n.

4.1 Kelly-width is Bounded in DAG-width
We show that DAG-width is bounded in Kelly-width by a quadratic function.

I Theorem 4.4. If Kelly-w(G) = k + 1, then DAG-w(G) ≤ 72k2 + 42k + 18.

In order to prove this we introduce a weaker notion of robber-monotonicity for the DAG-width
games. Then we show that with a quadratic number of additional cops one can turn a
winning cop strategy for the game with weak monotonicity into a winning strategy for the
game with strong (i.e. usual) monotonicity. By a construction from [13], if Kelly-w(G) = k,

3 See the appendix for a proof.

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 45

dtw

rmdtw

cmdtw DAG-w K-w

D-w

=

< < ≤

< <

<

<>

Figure 1 The boundedness relation between different measures. “=” means mutually bounded,
“<” means bounded only in one direction, “≤” at least in one direction, “≶” not bounded in any
direction.

then 2k − 1 cops have a (possibly non-monotone) winning strategy in the DAG-width game.
We observe that this strategy is, in fact, weakly monotone and thus can be converted into a
strongly monotone one.

Weak monotonicity relaxes the winning condition for the cops, so that they win more
plays. Formally, for a digraph G we define the set wm(G) as the set of all finite plays
(C0, R0), (C0, C1, R0), (C1, R1), . . . such that the following condition is satisfied. For all i let
c(i) := Ci+1 ∩Ri be the cops which move into the component of G− Ci currently used by
the robber. We call these cops the chasers. All other cops being placed, i.e. the cops in
(Ci+1 \Ci) \ c(i) are guards. The play (C0, R0), (C0, C1, R0), (C1, R1), . . . is weakly monotone
if for all i and all j with j < i, no vertex in c(j) is reachable by a directed path from any
vertex in Ri in G− (Ci ∩Ci+1). That is, for weak monotonicity we only require monotonicity
in the cops that are used to shrink the robber space but not in the cops placed outside
of the component to block the paths to previous cop positions. The set wm(G) is the set
of all weakly monotone plays on G. The weakly monotone game is the game defined by
G(wmDAGW, G) = (Pos(G), ReachMoves(G),Mon = wm(G)).

I Lemma 4.5. cnG(wmDAG) ≤ 18 · cnG(DAG)2 + 3 · cnG(DAG).

As, clearly, cnG(DAG) ≤ cnG(wmDAG), we obtain that weakening the monotonicity in
the DAG-width game does not change the boundedness of cnG(DAG).

We remark that it is possible to define a decomposition corresponding to the weakly
monotone game. Unlike DAG decompositions a weak DAG decomposition is always of
polynomial size in the size of G. Hence we have an NP-algorithm that computes a succinct
representation of a DAG decomposition whose width is at most quadratically worse than the
optimum.

I Lemma 4.6. If Kelly-w(G) = k + 1, then cnG(wmDAG) ≤ 2k + 1.

The other direction, i.e. whether DAG-width is bounded in Kelly-width, is the last open
question in our scheme.

We obtain the picture shown in Figure 1. The only blank spot is the strictness of the
inequality DAG-w(G) ≤ Kelly-w(G), i.e. whether Kelly-width is a function of DAG-width.
It was conjectured that Kelly-width and DAG-width differ by at most a constant factor [13,
Conjecture 30]. However, methods we used to show a weaker version of one direction of the
conjecture do not seem to apply for the other direction.

References
1 I. Adler. Directed tree-width examples. J. Comb. Theory, Ser. B, 97(5):718–725, 2007.
2 J. Barát. Directed Path-width and Monotonicity in Digraph Searching. Graphs and Comb.,

22(2), 2006.

STACS 2015

46 Graph Searching Games and Width Measures for Directed Graphs

3 D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity games. In
STACS ’06, volume 3884 of LNCS. Springer, 2006.

4 D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdržálek. The DAG-width of
directed graphs. J. Comb. Theory, 102(4):900–923, 2012.

5 D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algorithms,
12(2):239–245, 1991.

6 N. Dendris, L. Kirousis, and D. Thilikos. Fugitive search games on graphs and related
parameters. Theoretical Computer Science, 172(1–2):233 – 254, 1997.

7 D. Dereniowski. From pathwidth to connected pathwidth. In 28th Symposium on Theoret-
ical Aspects of Computer Science (STACS), 2011.

8 R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
9 F. Fomin, P. Golovach, and D. Thilikos. Approximation algorithms for domination search.

In Klaus Jansen and Roberto Solis-Oba, editors, Approximation and Online Algorithms
(WAOA), volume 6534 of Lecture Notes in Computer Science, pages 130–141. Springer
Berlin / Heidelberg, 2011.

10 F. Fomin, D. Kratsch, and H. Müller. On the domination search number. Discrete Applied
Mathematics, 127(3):565–580, 2003.

11 F. Fomin and D. Thilikos. On the monotonicity of games generated by symmetric submod-
ular functions. Discrete Applied Mathematics, 131(2):323 – 335, 2003.

12 F. Fomin and D. Thilikos. An annotated bibliography on guaranteed graph searching.
Theoretical Computer Science, 399(3):236–245, 2008.

13 P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games, and orderings.
Theor. Comput. Sci., 399(3), 2008.

14 T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Directed Tree-Width. J. Comb.
Theory, Ser. B, 82(1), 2001.

15 S. Kreutzer. Graph searching games. In Krzysztof R. Apt and Erich Grädel, editors,
Lectures in Game Theory for Computer Scientists, chapter 7, pages 213–263. CUP, 2011.

16 S. Kreutzer and S. Ordyniak. Distance-d-domination games. In 34th International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG), 2009.

17 S. Kreutzer and S. Ordyniak. Digraph decompositions and monotonicity in digraph search-
ing. Theor. Comput. Sci., 412(35):4688–4703, 2011.

18 A. S. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM,
40:224–245, 1993.

19 F. Mazoit and N. Nisse. Monotonicity of non-deterministic graph searching. Theor. Comput.
Sci., 399(3):169–178, 2008.

20 J. Obdržálek. Algorithmic analysis of parity games. PhD thesis, School of Informatics,
University of Edinburgh, 2006.

21 R. Rabinovich. Graph Complexity Measures and Monotonicity. PhD thesis, RWTH Aachen
University, 2013.

22 B. Reed. Introducing directed tree-width. Electronic Notes in Discrete Mathematics, 3:222
– 229, 1999.

23 M. A. Safari. D-width: A more natural measure for directed tree width. In Joanna
Jedrzejowicz and Andrzej Szepietowski, editors, MFCS, volume 3618 of Lecture Notes in
Computer Science, pages 745–756. Springer, 2005.

24 P. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width. J.
Comb. Theory Ser. B, 58(1), 1993.

25 Y. Stamatiou and D. Thilikos. Monotonicity and inert fugitive search games. In 6th
Twente Workshop on Graphs and Combinatorial Optimization CTW 1999. University of
Twente, Enschede, 1999.

S. A. Amiri, Ł. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz 47

26 B. Yang and Y. Cao. Monotonicity of strong searching on digraphs. J. Comb. Optim.,
14(4):411–425, 2007.

27 B. Yang and Y. Cao. On the monotonicity of weak searching. In COCOON, pages 52–61,
2008.

STACS 2015

Subset Sum in the Absence of Concentration
Per Austrin1, Petteri Kaski2, Mikko Koivisto3, and
Jesper Nederlof4

1 School of Computer Science and Communication, KTH Royal Institute of
Technology, Sweden
austrin@csc.kth.se

2 Helsinki Institute for Information Technology HIIT & Department of
Computer Science, Aalto University, Finland
petteri.kaski@aalto.fi

3 Helsinki Institute for Information Technology HIIT & Department of
Computer Science, University of Helsinki, Finland
mikko.koivisto@helsinki.fi

4 Department of Mathematics and Computer Science, Technical University of
Eindhoven, The Netherlands
jespernederlof@hotmail.com

Abstract
We study the exact time complexity of the Subset Sum problem. Our focus is on instances that
lack additive structure in the sense that the sums one can form from the subsets of the given
integers are not strongly concentrated on any particular integer value. We present a randomized
algorithm that runs in O

(
20.3399nB4) time on instances with the property that no value can arise

as a sum of more than B different subsets of the n given integers.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, F.2.2 Nonnumer-
ical Algorithms and Problems, G.2.1 Combinatorics

Keywords and phrases subset sum, additive combinatorics, exponential-time algorithm, homo-
morphic hashing, Littlewood–Offord problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.48

1 Introduction

Given integers a1, a2, . . . , an ∈ Z and a target integer t ∈ Z as input, the NP-complete
Subset Sum problem asks whether there exists a subset S ⊆ [n] with

∑
j∈S aj = t. Despite

the apparent simplicity of the problem statement, to date there has been modest progress on
exact algorithms [11] for Subset Sum. Indeed, from a worst-case performance perspective
the fastest known algorithm runs in O∗(2n/2) time1 and dates back to the 1974 work of
Horowitz and Sahni [13]. Improving the worst-case running time is a well-established open
problem [28, §53].

Improved algorithms are known in special cases where one assumes control on the ad-
ditive structure in the steps2 a1, a2, . . . , an. In particular this is the case if we assume

1 The O∗(·) notation suppresses a multiplicative factor polynomial in the input size.
2 The term step originates from the study of the Littlewood–Offord problem in additive combinatorics,

see e.g. Tao and Vu [26] and [25, §7]. In this context the integers a = (a1, a2, . . . , an) define the
step-lengths of an n-step random walk on Z given by the random variable S(a) =

∑n

i=1 aiεi, where
the values ε1, ε2, . . . , εn ∈ {−1, 1} are selected independently and uniformly at random. (The Subset

© Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 48–61

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 49

that the possible sums that one can form out of the steps are supported by a small set of
values. Assuming such additive structure is available, a number of algorithmic techniques
exist to improve upon the Horowitz–Sahni bound, ranging from Bellman’s classical dynamic
programming [5] to algebraization [16, 18] and to parameterized techniques [9].

Given that additive structure enables improved algorithms, it would thus be natural to
expect, a priori, that the worst-case instances are the ones that lack any additive struc-
ture. In a cryptographic context such instances are frequently assumed to be random. Yet,
recently Howgrave-Graham and Joux [14] made a breakthrough by showing that random
instances can in fact be solved in O∗(20.337n) time; a correct derivation of this bound and
an improvement to O∗(20.291n) are given by Becker, Coron, and Joux [4].

The results of Joux et al. raise a number of intriguing combinatorial and algorithmic
questions. Given that improved algorithms exist for random instances, precisely what types
of hard instances remain from a worst-case analysis perspective? What are the combinatorial
properties that the hard instances must have? Conversely, from an algorithms standpoint one
would like to narrow down precisely what intrinsic property of the steps a1, a2, . . . , an enables
algorithm designs such as the Joux et al. results. Such a quest for intrinsic control is further
motivated by the relatively recent identification of a large number of natural dichotomies
between structure and randomness in combinatorics (cf. Tao [22, 23, 24], Trevisan [27], and
Bibak [6]). Do there exist algorithm designs that capitalize on pseudorandomness (absence
of structure) to improve over the worst-case performance?

In this paper we seek to take algorithmic advantage of the absence of additive structure in
instances of Subset Sum. A prerequisite to such a goal is to have a combinatorial parameter
that measures the extent of additive structure in an instance. The close relationship between
the Subset Sum problem and the Littlewood–Offord problem in additive combinatorics [25,
§7] suggests that one should study measures of additive structure in the context of the latter.

We show that such transfer is indeed possible, and leads to improved exact algorithms
for pseudorandom instances of Subset Sum. Our measure of choice for pseudorandomness
is the concentration probability employed, for example, by Tao and Vu [26] in the context of
inverse theorems in Littlewood–Offord theory. We use an equivalent but fully combinatorial
definition that will be more convenient in the context of Subset Sum. Define the set
function a : 2[n] → Z for all X ⊆ [n] by a(X) =

∑
j∈X aj . We now assume that we have

a uniform upper bound on the size of the preimages a−1(u) = {X ⊆ [n] : a(X) = u} for
u ∈ Z. For B ≥ 1 we say that the instance a1, a2, . . . , an has B-bounded concentration if
for all u ∈ Z it holds that |a−1(u)| ≤ B.3 That is, no value u ∈ Z may occur as a sum
a(X) = u for more than B different subsets X ⊆ [n]. The extreme case B = 1 captures the
notion of additive independence or dissociativity in additive combinatorics [25, §4.32]. The
other extreme case B = 2n is achieved by a1 = a2 = . . . = an = 0, and more generally, an
instance of high density (see §1.2) automatically has high concentration.

Our main result is that all instances without strong additive structure (without expo-
nential concentration of sums) can be solved faster than the Horowitz–Sahni time bound
O∗(2n/2). A quantitative claim is as follows.4

Sum problem is equivalent to asking whether the outcome S(a) = s has positive probability for s =
2t−

∑n

j=1 aj .)
3 In terms of the Littlewood–Offord random walk, B-bounded concentration is equivalent to the assertion

that for all u ∈ Z the probability of the outcome S(a) = u is at most B/2n.
4 The running time versus the concentration bound in Theorem 1 can be sharpened somewhat; our

subsequent analysis enables a more precise smooth tradeoff curve between the concentration bound B
and the running time of the algorithm captured by Equation (5) in what follows. When the instance

STACS 2015

50 Subset Sum in the Absence of Concentration

I Theorem 1. There exists a randomized algorithm for Subset Sum that with probability
1− o(1) solves instances with B-bounded concentration in time O∗

(
20.3399nB4).

Theorem 1 shows that we can afford quite considerable additive structure (exponen-
tial concentration of sums) in an instance, and still remain below the Horowitz–Sahni
O∗(2n/2) worst-case upper bound. Here we should note that we do not show how to decide
whether a given instance has B-bounded concentration. Yet, by invoking our algorithm
with B = 1, 2, 4, . . . we can conclude within the time bound in Theorem 1 that we have de-
cided the instance correctly with high probability or the instance does not have B-bounded
concentration. Thus, we are left with a dichotomy of possibilities from the perspective of
worst-case algorithm design:

Either worst-case instances must have considerable additive structure (and the Horo-
witz–Sahni bound thus remains uncontested), or Subset Sum has improved worst-
case algorithms.

1.1 Methodology and Contributions
Our main challenge is to show that having control only on the concentration parameter B
enables algorithmic implications. Here our approach is to alleviate the randomness assump-
tions on one of the aforementioned Joux et al. algorithm designs by injecting extra entropy
into the algorithm.

In particular, we view the choice of the moduli in the algorithm as defining a family of
hash functions. We show that control only on B suffices for probabilistic control on the
extent to which a fixed solution is witnessed in the codomain of a random hash function.
Thus, we obtain an algorithm design by (i) selecting a random hash function, (ii) selecting
a random element in the codomain, and (iii) searching the preimage for solutions.

The Howgrave-Graham–Joux two-level design. To highlight our contribution in more
detail, let us begin with a high-level review of a Howgrave-Graham–Joux [14] design, adapted
from the careful presentation by Becker [3, §4.2], that we then proceed to analyze and
instrument in what follows. The algorithm searches for a solution S by building the solution
from four disjoint parts

S = S1 ∪ S2 ∪ S3 ∪ S4 with |S1| = |S2| = |S3| = |S4| = |S|/4 . (1)

The search is executed along what can be viewed as a two-level recursion tree, which is best
analyzed from a top-down perspective. (The actual algorithm will operate in the reverse
direction from the bottom up when searching for S.) The first level splits S into two halves
T and S \T for some T ∈

(
S
|S|/2

)
. The second level then splits T and S \T into halves. That

is, T splits to L and T \ L for some L ∈
(

T
|S|/4

)
, and S \ T splits to R and (S \ T) \ R for

some R ∈
(
S\T
|S|/4

)
. The triple (T, L,R) now naturally splits S into four parts

S1 = L , S2 = T \ L , S3 = R , S4 = (S \ T) \R . (2)

The advantage of the tree-like design over a flat design (1) is that subtrees at T and S \ T
are (essentially) independent and the T -component of the three-tuple (T, L,R) gives direct
control on what happens at nodes T and S\T in the tree. The design now controls the size of

does not have B-bounded concentration, the algorithm will run in the claimed time in the parameters
n and B, but in this case the algorithm is not guaranteed to find a solution with high probability.

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 51

the search space by fixing two |S|/2-bit coprime moduli, M1 and M2, and then constraining
uniformly at random the congruence classes of the values a(T), a(L), and a(R), which are
constrained modulo M1M2, M1, and M1, respectively.5 A clever application of a theorem
of Nguyen, Shparlinski, and Stern [19, Theorem 3.2] on the distribution of modular sums
across the ensemble of all instances a1, a2, . . . , an then enables Howgrave-Graham and Joux
to control on the size of the search space on all but an exponentially negligible fraction of
instances to obtain O∗(20.337n) running time on random instances. This is the starting point
of our present work.

Our contributions. In contrast to the Howgrave-Graham–Joux analysis, our objective is
to localize the ensemble analysis to individual instances with control only on the instance-
specific additive structure captured by B. Our central observation is that we can obtain
further probabilistic control on the algorithm by studying how the selection of the moduli
M1 and M2 affects the search space. In particular it makes sense to treat the selection of
M1 and M2 as the task of selecting a hash function from a formal family of hash functions
hM1,M2 with

hM1,M2(T, L,R) =
(
a(T) mod M1M2, a(L) mod M1, a(R) mod M1

)
∈ ZM1M2×ZM1×ZM1 .

Our main contribution is now that, assuming control only on B, and letting M1 = p and
M2 = q to be distinct random primes, we find that any fixed solution S is extensively
witnessed in the codomain Zpq × Zp × Zp of a random hp,q (Lemma 3). Furthermore, we
show that the size of the search space traversed by (a minor instrumentation of) the two-
level Howgrave-Graham–Joux design is bounded with essentially the same running time
guarantee (Lemma 4).6 Here we stress that our main contribution is analytical (Lemma 3)
and in explicating the relevance of the hash family that enables us to inject entropy into the
algorithm to cope with control on B only. In essence, our contribution is in localizing the
outliers substantially deviating from the ensemble average (Nguyen et al. [19, Theorem 3.2])
to instances with substantial additive structure (exponential concentration of sums).

1.2 Related Work
The complexity of a Subset Sum instance is commonly measured by the density, defined
as n/(log2 maxi ai). From the perspective of worst-case guarantees, the Schroeppel–Shamir
algorithm [21] that uses O∗(2n/2) time and O∗(2n/4) space remains uncontested for instances
of density at most 2. However, improved space–time tradeoffs have been discovered recently
first for random instances by Dinur, Dunkelman, Keller, and Shamir [8], and then generalized
to worst-case instances by Austrin, Kaski, Koivisto, and Määttä [2]. For worst-case instances
with density greater than 2, Bellman’s classical dynamic programming algorithm [5] remains
the fastest. If allowed only polynomial space, improving the O∗(2n)-time exhaustive search

5 Because the set function a is modular and a solution satisfies a(S) = t, control on T,L,R gives control
on the corresponding right siblings S \T , T \L, (S \T)\R and hence gives control on the entire search.

6 Observe that our bound O∗(20.3399nB4) is worse than the O∗(20.337n) obtainable for random instances
with a corrected version of the original Howgrave-Graham and Joux [14] design (as described by Becker,
Coron, and Joux [4] and Becker [3, §4.2]). This results from the fact that we analyze only the two-
level design relative to control on B, whereas O∗(20.337n) time would require the analysis of a more
intricate three-level design for a gain in the third decimal digit of the exponent of the running time.
Our contribution in the present work should be viewed as not optimizing the base of the exponential
via increasingly careful constructions but rather showing that control on B alone is sufficient to go
below the Horowitz–Sahni bound by a slightly more refined analysis of the Howgrave-Graham–Joux
design.

STACS 2015

52 Subset Sum in the Absence of Concentration

algorithm for density at most 1 is an open problem, while for density 1 + Θ(1) there is an
improved algorithm by Lokshtanov and Nederlof [18].

Impagliazzo and Naor [15] show that, with respect to polynomial time solvability, ran-
dom instances are the hardest when the density is close to 1. As already mentioned, for
such instances the O∗(2n/2) time bound was recently improved to O∗(20.337n) [14] and sub-
sequently to O∗(20.291n) [4, 3]. Interestingly, almost all instances of density at most 0.94
can be reduced to the problem of finding shortest non-zero vectors in lattices (cf. Lagarias
and Odlyzko [17] and Coster et al. [7]). Flaxman and Przydatek’s algorithm [10] solves
random instances in expected polynomial time if the density is Ω(n/ log2 n), or equivalently,
log2 maxi ai = O((log2 n)2).

Random instances have been studied also for other NP-hard problems; see, for example,
Achlioptas’s survey on random satisfiability [1]. We are not aware of prior work on exact
algorithms that make use of pseudorandomness (absence of structure) and improve over the
worst case in such an explicit way as we do in the present work.

2 Preliminaries

This section makes a review of standard notation and results used in this paper.
We write [n] for the set {1, 2, . . . , n}. For a finite set U , we write 2U for the set of

all subsets of U and
(
U
k

)
for the set of all subsets of U of size k. For 0 ≤ σ ≤ 1 let

H(σ) = −σ log2 σ−(1−σ) log2 (1−σ) be the binary entropy function with H(0) = H(1) = 0.
For all integers n ≥ 1 and 0 ≤ σ ≤ 1 such that σn is an integer, we have by Stirling’s
formula [20] that

(
n
σn

)
≤ 2nH(σ).

We write Z for the set of integers and Z≥1 for the set of all positive integers. We will
need the following weak version of the Prime Number Theorem [12, p. 494, Eq. (22.19.3)].

I Lemma 2. For all large enough integers b it holds that there exist at least 2b/b prime
numbers p in the interval 2b < p < 2b+1.

For a modulus M ∈ Z≥1 and x, y ∈ Z, we write x ≡ y (mod M), or x ≡M y for short,
to indicate that M divides x− y.

For a logical proposition P , we write [P] to indicate a 1 if P is true and a 0 if P is false.

3 The Algorithm

This section proves Theorem 1. Suppose we are given an instance a1, a2, . . . , an, t ∈ Z as
input. We assume that the instance has B-bounded concentration.

3.1 Preprocessing and Parameters of the Input
By resorting to routine randomized preprocessing (detailed in the full version) and then
invoking the main algorithm (to be described) a polynomial (in the original input size)
number of times, we may assume that the input to the main algorithm has the following
structure:
(a) the input a1, a2, . . . , an, t consists of positive integers only,
(b) a1 + a2 + . . .+ an + t ≤ 2τn for τ > 0 a constant independent of n,
(c) the solution S ⊆ [n], if any, has size s = |S| that is known to us,
(d) n/100 ≤ s ≤ n/2,
(e) both n and s are multiples of 8, and
(f) the instance has B-bounded concentration.
Define σ = s/n. In particular, 1/100 ≤ σ ≤ 1/2.

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 53

3.2 The Hash Functions
We are interested in discovering the set S (if such a set exists) by assembling it from four
equally-sized disjoint parts. Recalling our discussion in §1.1, we will follow a tree-based
design with domain

D(S) =
{

(T, L,R) : T ∈
(
S
s/2
)
, L ∈

(
T
s/4
)
, R ∈

(
S\T
s/4
)}
.

Since we are always analyzing a fixed arbitrary solution S, we suppress S and simply write
D . The following family of hash functions seeks to witness at least one split from D with
high probability. Towards this end, for p, q ∈ Z≥1 define the function

hp,q : D → Zpq × Zp × Zp

for all (T, L,R) ∈ D by

hp,q(T, L,R) =
(
a(T) mod pq, a(L) mod p, a(R) mod p

)
. (3)

Our main lemma shows that D is indeed extensively witnessed in the codomain Zpq ×
Zp × Zp. The sizes of p and q will be judiciously chosen as follows. Let p∗ =

(
s/2
s/4
)
/B and

q∗ =
(
s
s/2
)
/(Bp∗).7 Let λ = log(p∗)/n ≈ σ/2− log(B)/n.

I Lemma 3. Let p and q be independently chosen random primes in the range [p∗, 2p∗]
and [q∗, 2q∗], respectively. Then with probability at least 1/2, it holds that |hp,q(D)| ≥
2−(19+3τ/λ)s−6p3q.

Observe in particular that the codomain has size p3q. We will prove Lemma 3 in §4.

3.3 The Search Subroutine
Once p and q have been fixed, we need a compatible search subroutine that carries out the
search in a random preimage of h−1

p,q. Towards this end, let us assume that p and q are fixed
and coprime.

The high-level structure of the search subroutine is captured in the following lemma.

I Lemma 4. Suppose that kT ∈ Zpq, kL ∈ Zp, and kR ∈ Zp have been chosen independently
and uniformly at random. Then, there exists a randomized algorithm that searches for
subsets S ∈

([n]
s

)
such that both of the following requirements hold:

(i) a(S) = t; and
(ii) there exist sets T ∈

(
S
s/2
)
, L ∈

(
S
s/4
)
, and R ∈

(
S\T
s/4
)
such that we have

a(T) ≡ kT (mod pq) , a(L) ≡ kL (mod p) , and a(R) ≡ kR (mod p) .

For every choice of kT, kL, kR, and every subset S satisfying these conditions, the algorithm
finds S with probability at least 1/n2 (over the internal randomness of the algorithm).

The expected running time of the algorithm over the choice of (kT, kL, kR) is

O
(
n2 · 2 1

2H(σ/4) + n2 · 2H(σ/4)n/p+ n2B · 22H(σ/4)n/(p2q)
)
. (4)

The running time bound holds uniformly for all coprime choices of p and q.

The proof of this lemma is given in §5.

7 For completeness, we round p∗ to 1 if p∗ < 1. However, in this case the running time becomes
Ω
((

s/2
s/4

)4)
, rendering the algorithm slow and uninteresting.

STACS 2015

54 Subset Sum in the Absence of Concentration

3.4 Completing the Proof of Theorem 1
We now combine Lemma 3 and Lemma 4 to yield the algorithm design for Theorem 1.

The algorithm starts by selecting a random independent pair p, q of primes with p ∈
[p∗, 2p∗] and q ∈ [q∗, 2q∗] and then selects uniform and independent kT ∈ Zpq, kL ∈ Zp,
kR ∈ Zp. Then we run the algorithm of Lemma 4 with these parameters. If we find a
solution, the algorithm reports that solution. Otherwise the algorithm reports that the
instance has no solution.

Let us now analyze the success probability and running time of the algorithm. The output
of the algorithm is always correct if the instance has no solution, so let us assume that the
instance has a solution S. Let α = 2−(19+3τ/λ)s−6, and note that α is inversely polynomial
in the input size. From Lemma 3 we have that with probability at least 1/2 we obtain a
pair of primes p, q such that |hp,q(D)| ≥ αp3q. Conditioning on this event, we have that
(kT, kL, kR) ∈ hp,q(D) with probability at least α. Conditioned on (kT, kL, kR) ∈ hp,q(D),
the algorithm of Lemma 4 finds the solution S with probability at least 1/n2. In total, the
probability that the algorithm finds a solution S is at least α′ := α/(2n2).

The algorithm runs in expected time

T = n2 ·O
(
2 1

2H(σ/4)n + 2H(σ/4)n/p+B · 22H(σ/4)n/(p2q)
)
.

By Markov’s inequality, with probability at most α′/2 it runs in time at most 2T/α′, so
even if we terminate it after 2T/α′ steps, it still has an α′/2 chance of finding S. To amplify
this to 1− o(1) we repeat the whole procedure n/α′ times, and the overall running time for
the algorithm is (suppressing terms polynomial in n)

2nT/(α′)2 = O∗
(
2 1

2H(σ/4)n + 2H(σ/4)n/p+B · 22H(σ/4)n/(p2q)
)

= O∗
(
2 1

2H(σ/4)n +B2(H(σ/4)−σ/2)n +B4 · 2(2H(σ/4)−3σ/2)n), (5)

where we used that p ≥ p∗ =
(
s/2
s/4
)
/B ≥ 2s/2/(Bs) and q ≥ q∗ =

(
s
s/2
)
/(Bp∗) ≥ 2s/2/(Bs).

The first two summands in (5) are maximized in the range 0 ≤ σ ≤ 1/2 when σ = 1/2
and are both bounded by B20.3n. The third summand is maximized when σ = 4/9 where it
is roughly B420.3399n, giving the claimed time bound in Theorem 1. The proof of Theorem 1
is now complete.

4 Analysis of the Hash Function

This section proves Lemma 3.

4.1 Size of the Image Under Bounded Collisions
Our first objective is to bound the size of the image hp,q(D) from below subject to the
assumption that the parameters p, q have “few collisions” in a sense to be made precise
under the assumptions in Lemma 5.

For a subset X ⊆ S, a modulus M ∈ Z≥1, and k ∈ ZM , let us count the number of
halves of X that land in the congruence class of k modulo M by

fM,k(X) =
∣∣{Y ∈ (X

|X|/2
)

: a(Y) ≡ k (mod M)
}∣∣ . (6)

Let us say that a set X ⊆ S is γ-well-spread relative to a modulus M ∈ Z if

CM (X) =
∑
k∈ZM

fM,k(X)2 ≤ γ

(|X|
|X|/2

)2

M
. (7)

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 55

Note that if a(Y) over Y ∈
(

X
|X|/2

)
is evenly distributed over all M modular classes, we

would have CM (X) =
(
s
s/2
)2
/M .

I Lemma 5. Let p, q ∈ Z≥1 be fixed so that
(i) S is γ-well-spread relative to the modulus pq, and
(ii) for at least half of all T ∈

(
S
s/2
)
, it holds that both T and S \T are γ-well-spread relative

to the modulus p.
Then |hp,q(D)| ≥ p3q/(2γ3).

Proof. Let Tp consist of all T ∈
(
S
s/2
)
such that both T and S \ T are γ-well-spread relative

to p. Let us write Dp for the subfamily of D consisting of all triples (T, L,R) ∈ D such that
T ∈ Tp. We thus have by assumption (ii) that

|Dp| ≥
1
2 |D | =

1
2

(
s

s/2

)(
s/2
s/4

)2
. (8)

It suffices to establish the conclusion for m = |hp,q(Dp)|. Towards this end, let us analyze
collisions of hp,q on Dp. Let Cp consist of all pairs (T1, L1, R1), (T2, L2, R2) ∈ Dp with
hp,q(T1, L1, R1) = hp,q(T2, L2, R2).

We start with a routine quadratic bound. Let c1, c2, . . . , cm be the sizes of preimages of
hp,q on Dp. We have |Cp| =

∑m
i=1 c

2
i and |Dp| =

∑m
i=1 ci. By the Cauchy–Schwarz inequality

we thus have

|hp,q(Dp)| = m ≥ |Dp|2/|Cp| . (9)

The claim thus follows by (8) and (9) if we can obtain sufficient control on |Cp|. Recalling
(3) and (6), we have

|Cp| =
∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)]
∑

L1∈(T1
s/4)

L2∈(T2
s/4)

[a(L1) ≡p a(L2)]
∑

R1∈(S\T1
s/4)

R2∈(S\T2
s/4)

[a(R1) ≡p a(R2)]

=
∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)]
∑
`∈Zp

fp,`(T1)fp,`(T2)
∑
`∈Zp

fp,`(S \ T1)fp,`(S \ T2)

≤
∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)]

︸ ︷︷ ︸
(a)

max
T1∈Tp

T2∈Tp

∑
`∈Zp

fp,`(T1)fp,`(T2)

︸ ︷︷ ︸
(b)

max
T1∈Tp

T2∈Tp

∑
`∈Zp

fp,`(S \ T1)fp,`(S \ T2)

︸ ︷︷ ︸
(c)

.

Using (6) we can bound (a) from above by∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)] ≤
∑
k∈Zpq

fpq,k(S)2 = Cpq(S) .

Using the Cauchy–Schwarz inequality we can bound (b) from above by

max
T1∈Tp

T2∈Tp

∑
`∈Zp

fp,`(T1)fp,`(T2) ≤ max
T∈Tp

∑
`∈Zp

fp,`(T)2 = max
T∈Tp

Cp(T) .

This bound on (b) applies also to (c) because we have T ∈ Tp if and only if S \ T ∈ Tp.
Combining the bounds on (a)–(c) and then using the conditions of S and every T ∈ Tp being

STACS 2015

56 Subset Sum in the Absence of Concentration

γ-well-spread, we conclude that

|Cp| ≤ Cpq(S) ·
(

max
T∈Tp

Cp(T)
)2
≤ γ

(
s
s/2
)

pq

(
γ

(
s/2
s/4
)

p

)2

= γ3|D |
p3q

. (10)

The lemma follows now follows from (8), (9), and (10). J

4.2 Bounded Collisions Happen with High Probability
This section shows that well-spread moduli are a high-probability event for p, q ∈ Z≥1
selected from an appropriate random ensemble.

Besides control on collisions over a modulus (7), we require control on collisions over the
integers. This control is available via bounded concentration. For all X ⊆ S define

C∞(X) =
∑

Y1,Y2∈
(

X
|X|/2

)[a(Y1) = a(Y2)] . (11)

I Lemma 6. For all X ⊆ S we have C∞(X) ≤
(|X|
|X|/2

)
B.

Proof. From (11) we have that there are at most
(|X|
|X|/2

)
ways to select Y1. By B-bounded

concentration, there are at most B ways to select an Y2 ∈ a−1(a(Y1)). J

For the next lemma, we recall the parameter τ from §3.1, satisfying a1+. . .+an+t ≤ 2τn.

I Lemma 7. Let M be a nonempty set of integers each of which has all prime factors at
least 2λn for some λ > 0. Suppose that we select an M ∈M uniformly at random. Then,
for any T ⊆ S it holds that

EM∈M

[
CM (T)

]
≤
(
|T |
|T |/2

)
B +

(|T |
|T |/2

)2

|M |
· 2τ/λ .

Proof. Fix a nonempty T ⊆ S. For an arbitrary M ∈M we have from (7) and (6) that

CM (T) =
∑

L1,L2∈(T
|T |/2)

[a(L1) ≡M a(L2)] =
∑

L1,L2∈(T
|T |/2)

[M divides a(L1)− a(L2)] .

By linearity of expectation thus

EM∈M

[
CM (T)

]
=

∑
L1,L2∈(T

|T |/2)
Pr

M∈M

[
M divides a(L1)− a(L2)

]
. (12)

The terms in the sum (12) split into two cases. If a(L1) = a(L2), then M divides a(L1) −
a(L2) with probability 1. From (11) we observe that the sum of these terms is exactly
C∞(T). Apply Lemma 6 to bound C∞(T) from above. If a(L1) 6= a(L2), then we observe
that, by virtue of preprocessing, |a(L1) − a(L2)| ≤ 2τn. This implies that a(L1) − a(L2)
has at most τ/λ prime factors (with repetition) of size at least 2λn. Any M that divides
a(L1) − a(L2) must be created from these τ/λ factors and hence there are at most 2τ/λ
possible values for M . J

For the next lemma, recall that p∗ =
(
s/2
s/4
)
/B and q∗ =

(
s
s/2
)
/(Bp∗).

I Lemma 8. With probability at least 1/2, a random independent pair (p, q) of primes from
[p∗, 2p∗]×[q∗, 2q∗] satisfies the assumptions of Lemma 5 with γ = 26+τ/λs2, where λ = log p∗

n .

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 57

Proof. Let us start with assumption (ii) in Lemma 5. Take M to be the set of primes p in
the interval [p∗, 2p∗]. Define Z(p) = ET∈(S

s/2)
[
Cp(T)

]
. We then have

Ep∈M [Z(p)] = Ep∈M

[
ET∈(S

s/2)
[
Cp(T)

]]
= ET∈(S

s/2)
[
Ep∈M

[
Cp(T)

]]
≤
(
s/2
s/4

)
B +

(
s/2
s/4
)2

|M |
· 2τ/λ =

(
s/2
s/4

)2(1
p∗

+ 2τ/λ

|M |

)
,

where the inequality is Lemma 7. Applying Markov’s inequality and |M | ≥ p∗/ log(p∗) (due
to Lemma 2), we conclude that with probability ≥ 3/4 over a random p ∈M it holds that

Z(p) ≤ 4
(
s/2
s/4

)2
· 1 + log(p∗)

p∗
2τ/λ ≤ 8s2τ/λ

(
s/2
s/4
)2

p
.

Conditioning on such a p, at least a 3/4 fraction of T ∈
(
S
s/2
)

satisfies Cp(T) ≤

32s2τ/λ
(
s/2
s/4
)2
/p. Since T ∈

(
S
s/2
)
if and only if S \ T ∈

(
S
s/2
)
, we get by the union bound

that half of all T ∈
(
S
s/2
)
satisfy

Cp(T) ≤ 32s2τ/λ
(
s/2
s/4

)2
/p , Cp(S \ T) ≤ 32s2τ/λ

(
s/2
s/4

)2
/p . (13)

We thus conclude that that assumption (ii) in Lemma 5 holds with probability at least 3/4
over p ∈M .

Next let us consider assumption (i) in Lemma 5. We now take M to be the set of
products pq of primes p in the interval [p∗, 2p∗] and primes q in the interval [q∗, 2q∗]. By
Lemma 2, we have |M | ≥ p∗q∗

log(p∗) log(q∗) ≥ p∗q∗/s
2, so Lemma 7 implies

Epq∈M

[
Cpq(S)

]
≤
(
s

s/2

)
B +

(
s

s/2

)2
s22τ/λ

p∗q∗
=
(
s

s/2

)2(1
p∗q∗

+ s22τ/λ

p∗q∗

)
.

Markov’s inequality then implies that with probability at least 3/4 over pq ∈M , we have

Cpq(S) ≤ 64s22τ/λ
(
s
s/2
)2

pq
. (14)

Taking the union bound, we conclude that with probability at least 1/2 over the choice
of p, q both assumptions (i) and (ii) in Lemma 5 hold, with γ = 64s22τ/λ. J

4.3 Combining the Two Parts
By Lemma 8, we have for a random independent pair p, q that S is γ-well-spread relative
to the modulus pq, and for at least half of all T ∈

(
S
s/2
)
, it holds that both T and S \ T

are γ-well-spread relative to the modulus p, with γ = 26+τ/λs2. Then Lemma 5 gives that
|hp,q(D)| ≥ p3q/(2(26+τ/λs2)3) = 2−(19+3τ/λ)s−6p3q.

5 The Search Subroutine

Our goal in this section is to build the search subroutine in Lemma 4. We build the sub-
routine from the bottom up, starting in §5.1 from subroutines that build bottom-level can-
didate partial solutions of size s/4, then in §5.2 proceeding to the mid-level subroutines that
assemble the candidate partial solutions of size s/2, and finally arrive in §5.3 at root-level
node that assembles all the sets S of size s required by Lemma 4.

STACS 2015

58 Subset Sum in the Absence of Concentration

5.1 Subroutine for Bottom-Level Nodes
Let p ∈ Z≥1 be fixed. The following subroutine is executed in the four bottom-level nodes.

I Lemma 9. There is a randomized algorithm for listing solutions Z ∈
([n]
s/4
)
to a(Z) ≡ k

(mod p) with the following properties:
(i) For every fixed k, every solution Z gets listed by the algorithm with probability at least

1/
√
n (over the internal randomness of the algorithm).

(ii) If k is picked uniformly at random, the expected running time of the algorithm over the
choice of k is O

(
n2(n/2

s/8
)

+ n2(n/2
s/8
)2
/p
)
and the expected number of solutions found is

at most
(
n/2
s/8
)2
/p.

Proof. The algorithm starts by picking a random subset N ∈
([n]
n/2
)
.

Next, we construct L =
(

N
s/8
)
, R =

([n]\N
s/8

)
, the subsets of N and [n] \N of size s/8.

For each X ∈ L ∪ R we compute the residue of a(X) modulo p and sort the two lists in
increasing order of residue.

Initialize S to an empty list. Using the sorted lists, for each j ∈ Zp do the following.
Iterate over all X ∈ L such that a(X) ≡ j (mod p) and over all Y ∈ R such that a(Y) ≡
k − j (mod p). (Note that we do this implicitly by simultaneously scanning the two lists,
not with an explicit loop that considers each j in turn.) For each such pair we append X∪Y
to S .

Let us now analyze success probability and running time.
For success probability, note that any fixed solution Z ∈

([n]
s/4
)
gets split perfectly by N

(i.e., |N ∩Z| = s/8) with probability
(
n/2
s/8
)2
/
(
n
s/4
)
≥ 1/

√
n over the choice of N . Whenever

this happens, the algorithm finds Z.
For the running time, constructing the lists L and R can be done with brute force in

O
(
n2(n/2

s/8
))

time and space.8 The running time of the merge step is bounded by O(n2) times

the number of solutions, which on average over a random k ∈ Zp is
(
n/2
s/8
)2
/p (since the total

number of solutions over all k ∈ Zp is simply |L | · |R|). J

5.2 Subroutine for Mid-Level Nodes
We now proceed to the subroutine executed by the two mid-level nodes. Let M = pq for
two distinct primes p, q.

I Lemma 10. There is a randomized algorithm for listing solutions (X,Y) ∈
([n]
s/4
)2

to
a(X) + a(Y) ≡ kM (mod M) and a(X) ≡ kp (mod p) with X ∩ Y = ∅, with the following
properties:
(i) For every fixed kM , kp, every solution (X,Y) gets listed by the algorithm with probability

at least 1/n (over the internal randomness of the algorithm).
(ii) If kM , kp are picked uniformly at random from ZM and Zp, respectively, the expected

running time of the algorithm over the choice of kM , kp is O
(
n2(n/2

s/8
)

+ n2(n/2
s/8
)2
/p +

n2(n/2
s/8
)4
/(Mp)

)
and the expected number of solutions found is at most

(
n/2
s/8
)4
/(Mp).

Proof. The algorithm starts by picking kp ∈ Zp uniformly at random. It then executes the
algorithm of Lemma 9 twice, with parameters k = kp and k = (kM − kp) mod p, yielding

8 We are sorting 2Ω(n) items and comparing each pair of items takes Ω(n) time.

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 59

two lists L (of solutions Z ∈
(
n
s/8
)
to a(Z) ≡ kp (mod p)) and R (of solutions Z ∈

(
n
s/8
)
to

a(Z) ≡ kM − kp (mod p)).
We now merge these in a similar way as the proof of Lemma 9, except that we filter out

all (X,Y) which are not disjoint and simply don’t add them to the result.
The success probability follows because the two calls to the bottom-level algorithm are

independent in terms of the internal randomness used by the calls.
For the running time, note that the two parameters kp and (kM − kp) mod p to the

bottom-level algorithm are both uniformly random so that the expected sizes (over kp and
kM) of L and R are at most

(
n/2
s/8
)2
/p. Furthermore, since p divides M , kM mod p is

uniformly random and the two parameters are independent, implying that the expectation
of |L | · |R| is at most

(
n/2
s/8
)4
/p2.

By the Chinese Remainder Theorem, kM mod q is independent of kM mod p, so con-
ditioned on kp, kM mod p, L and R, the expected running time of the merge step is
O(|L | · |R|/q). Thus in overall expectation over the choice of kp and kM , the running time
is
(
n/2
s/8
)4
/(p2q). J

5.3 The Root-Level Node

We are now ready to complete the proof of Lemma 4.

Proof of Lemma 4. Apply the algorithm of Lemma 10 twice, first with parameters
(kM , kp) = (kT, kL), then with parameters (kM , kp) = ((t − kT) mod M,kR). Thus we
get a list L of solutions (X,Y) ∈

([n]
s/4
)2

such that X ∩Y = ∅, a(X) + a(Y) ≡ kM (mod M)

and a(X) = kp (mod p). Similarly we have a list R of solutions (Z,W) ∈
([n]
s/4
)2

such that
Z ∩W = ∅, a(Z) + a(W) ≡ t− kM (mod M), a(Z) ≡ kR (mod p).

We now merge these lists to construct solutions (X,Y, Z,W) ∈
([n]
s

)
to a(X) + a(Y) +

a(Z) + a(W) = t, and if (X ∪ Y) ∩ (Z ∪W) = ∅, we output the solution X ∪ Y ∪ Z ∪W .
For every fixed choice of (kT, kL, kR) and solution X ∪ Y ∪ Z ∪W , the probability that

we find the solution is at least 1/n2 by independence of the internal randomness employed
by the two applications of Lemma 10.

By B-bounded concentration, for any choice a(X) + a(Y) from L , there are at most B
solutions (Z,W) from R to a(Z) + a(W) = t − a(X) − a(Y). This implies that the merge
step runs in time O(n2(|L | + |R|)B). Since in expectation over the targets k· the sizes of
L and R are bounded by

(
n/2
s/8
)4
/(Mp), it follows that the merge step runs in expected time

O
(
n2(n/2

s/8
)4
B/(Mp)

)
.

Substituting s = σn and and bounding the binomial coefficients from above with Stirl-
ing’s formula [20], we obtain the desired running time bound (4) required by Lemma 4. This
completes the proof of Lemma 4. J

Acknowledgements This research was funded in part by the European Research Coun-
cil, Advanced Grant 226203 and Swedish Research Council, Grant 621-2012-4546 (P.A.),
the European Research Council, Starting Grant 338077 “Theory and Practice of Advanced
Search and Enumeration” (P.K.), the Academy of Finland, Grant 276864 “Supple Exponen-
tial Algorithms” (M.K.), and by the NWO VENI project 639.021.438 (J.N.).

STACS 2015

60 Subset Sum in the Absence of Concentration

References
1 Dimitris Achlioptas. Random satisfiability. In Armin Biere, Marijn Heule, Hans van

Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 245–270. IOS Press, 2009.

2 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Määttä. Space-time tradeoffs for
Subset Sum: An improved worst case algorithm. In Fedor V. Fomin, Rusins Freivalds,
Marta Z. Kwiatkowska, and David Peleg, editors, ICALP (1), volume 7965 of Lecture
Notes in Computer Science, pages 45–56. Springer, 2013.

3 Anja Becker. The Representation Technique: Application to Hard Problems in Crypto-
graphy. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, 2012.

4 Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for
hard knapsacks. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture
Notes in Computer Science, pages 364–385. Springer, 2011.

5 Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, N. J.,
1957.

6 Khodakhast Bibak. Additive combinatorics: With a view towards computer science and
cryptography - an exposition. In Jonathan M. Borwein, Igor Shparlinski, and Wadim
Zudilin, editors, Number Theory and Related Fields, pages 99–128. Springer, 2013.

7 Matthijs J. Coster, Antoine Joux, Brian A. Lamacchia, Andrew M. Odlyzko, Claus-Peter
Schnorr, and Jacques Stern. Improved low-density subset sum algorithms. Computational
Complexity, 2:111–128, 1992.

8 Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of com-
posite problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of
Lecture Notes in Computer Science, pages 719–740. Springer, 2012.

9 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Parameterizing by the
number of numbers. Theory Comput. Syst., 50(4):675–693, 2012.

10 Abraham D. Flaxman and Bartosz Przydatek. Solving medium-density subset sum prob-
lems in expected polynomial time. In Volker Diekert and Bruno Durand, editors, STACS
2005, volume 3404 of Lecture Notes in Computer Science, pages 305–314. Springer Berlin
Heidelberg, 2005.

11 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010.

12 Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and
J. H. Silverman, With a foreword by Andrew Wiles.

13 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. J. Assoc. Comput. Mach., 21:277–292, 1974.

14 Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 235–256. Springer, 2010.

15 Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. Journal of Cryptology, 9(4):199–216, 1996.

16 Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Homomorphic hashing for sparse
coefficient extraction. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, IPEC,
volume 7535 of Lecture Notes in Computer Science, pages 147–158. Springer, 2012.

17 Jeffrey C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems. J.
ACM, 32(1):229–246, 1985.

18 Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Leonard J.
Schulman, editor, STOC, pages 321–330. ACM, 2010.

P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof 61

19 Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular sums
and the security of the server aided exponentiation. In Kwok-Yan Lam, Igor Shparlinski,
Huaxlong Wang, and Chaoping Xing, editors, Cryptography and Computational Number
Theory, volume 20 of Progress in Computer Science and Applied Logic, pages 331–342.
Birkhäuser, 2001.

20 Herbert Robbins. A remark on Stirling’s formula. The American Mathematical Monthly,
62(1):26–29, 1955.

21 Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput., 10(3):456–464, 1981.

22 Terence Tao. The dichotomy between structure and randomness, arithmetic progressions,
and the primes. In International Congress of Mathematicians. Vol. I, pages 581–608. Eur.
Math. Soc., Zürich, 2007.

23 Terence Tao. Structure and randomness in combinatorics. In FOCS, pages 3–15. IEEE
Computer Society, 2007.

24 Terence Tao. Structure and Randomness. American Mathematical Society, Providence, RI,
2008.

25 Terence Tao and Van Vu. Additive Combinatorics, volume 105 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2006.

26 Terence Tao and Van Vu. A sharp inverse Littlewood-Offord theorem. Random Structures
Algorithms, 37(4):525–539, 2010.

27 Luca Trevisan. Pseudorandomness in computer science and in additive combinatorics. In
An irregular mind, volume 21 of Bolyai Soc. Math. Stud., pages 619–650. János Bolyai
Math. Soc., Budapest, 2010.

28 Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Mi-
chael Jünger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial Optimization,
volume 2570 of Lecture Notes in Computer Science, pages 185–208. Springer, 2001.

STACS 2015

On Sharing, Memoization, and Polynomial Time∗

Martin Avanzini and Ugo Dal Lago

Università di Bologna & INRIA, Sophia Antipolis
martin.avanzini@uibk.ac.at and dallago@cs.unibo.it

Abstract
We study how the adoption of an evaluation mechanism with sharing and memoization impacts
the class of functions which can be computed in polynomial time. We first show how a natural
cost model in which lookup for an already computed result has no cost is indeed invariant.
As a corollary, we then prove that the most general notion of ramified recurrence is sound for
polynomial time, this way settling an open problem in implicit computational complexity.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.3.2 Semantics
of Programming Languages, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting
Systems

Keywords and phrases implicit computational complexity, data-tiering, polynomial time

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.62

1 Introduction

Traditionally, complexity classes are defined by giving bounds on the amount of resources
algorithms are allowed to use while solving problems. This, in principle, leaves open the
task of understanding the structure of complexity classes. As an example, a given class of
functions is not necessarily closed under composition or, more interestingly, under various
forms of recursion. When the class under consideration is not too large, say close enough to
the class of polytime computable functions, closure under recursion does not hold: iterating
over an efficiently computable function is not necessarily efficiently computable, e.g. when
the iterated function grows more than linearly. In other words, characterizing complexity
classes by purely recursion-theoretical means is non-trivial.

In the past twenty years, this challenge has been successfully tackled, by giving restricted
forms of recursion for which not only certain complexity classes are closed, but which precisely
generate the class. This has been proved for classes like PTime, PSpace, the polynomial
hierarchy PH, or even smaller ones like NC. A particularly fruitful direction has been the
one initiated by Bellantoni and Cook, and independently by Leivant, which consists in
restricting the primitive recursive scheme by making it predicative, thus forbidding those
nested recursive definitions which lead outside the classes cited above. Once this is settled,
one can tune the obtained scheme by either adding features (e.g. parameter substitutions) or
further restricting the scheme (e.g. by way of linearization).

Something a bit disappointing in this field is that the expressive power of the simplest
(and most general) form of predicative recurrence, namely simultaneous recurrence on generic
algebras is unknown. If algebras are restricted to be string algebras, or if recursion is not
simultaneous, soundness for polynomial time computation is known to hold [21, 16]. The two
soundness results are obtained by quite different means, however: in presence of trees, one is

∗ This work was partially supported by FWF project number J 3563 and by French ANR project Elica
ANR-14-CE25-0005.

© Martin Avanzini and Ugo Dal Lago;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 62–75

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Avanzini and U. Dal Lago 63

forced to handle sharing [16] of common sub-expressions, while simultaneous definitions by
recursion requires a form of memoization [21].

In this paper, we show that sharing and memoization can indeed be reconciled, and we
exploit both to give a new invariant time cost model for the evaluation of rewrite systems.
This paves the way towards polytime soundness for simultaneous predicative recursion on
generic algebras, thus solving the open problem we were mentioning. More precisely, with
the present paper we make the following contributions:

1. We define a simple functional programming language. The domain of the defined functions
is a free algebra formed from constructors. Hence we can deal with functions over strings,
lists, but also trees (see Section 3). We then extend the underlying rewriting based
semantics with memoization, i.e. intermediate results are automatically tabulated to
avoid expensive re-computation (Section 4). As standard for functional programming
languages such as Haskell or OCaml, data is stored in a heap, facilitating sharing of
common sub-expression. To measure the runtime of such programs, we employ a novel
cost model, called memoized runtime complexity, where each function application counts
one time unit, but lookups of tabulated calls do not have to be accounted.

2. Our invariance theorem (see Theorem 17) relates, within a polynomial overhead, the
memoized runtime complexity of programs to the cost of implementing the defined
functions on a classical model of computation, e.g. Turing or random access machines.
The invariance theorem thus confirms that our cost model truthfully represents the
computational complexity of the defined function.

3. We extend upon Leivant’s notion of ramified recursive functions [20] by allowing definitions
by generalised ramified simultaneous recurrence (GRSR for short). We show that the
resulting class of functions, defined over arbitrary free algebras have, when implemented as
programs, polynomial memoized runtime complexity (see Theorem 21). By our invariance
theorem, the function algebra is sound for polynomial time, and consequently GRSR
characterizes the class of polytime computable functions.

An extended version of this paper with more details, including all proofs, is also available [4].

1.1 Related Work
That predicative recursion on strings is sound for polynomial time, even in presence of simul-
taneous recursive definitions, is known for a long time [9]. Variations of predicative recursion
have been later considered and proved to characterize classes like PH [10], PSpace [23],
ExpTime [3] or NC [12]. Predicative recursion on trees has been claimed to be sound
for polynomial time in the original paper by Leivant [20], the long version of which only
deals with strings [21]. After fifteen years, the non-simultaneous case has been settled by
the second author with Martini and Zorzi [16]; their proof, however, relies on an ad-hoc,
infinitary, notion of graph rewriting. Recently, ramification has been studied in the context
of a simply-typed λ-calculus in an unpublished manuscript [17]; the authors claim that a
form of ramified recurrence on trees captures polynomial time; this, again, does not take
simultaneous recursion into account.

The formalism presented here is partly inspired by the work of Hoffmann [19], where
sharing and memoization are shown to work well together in the realm of term graph rewriting.
The proposed machinery, although powerful, is unnecessarily complicated for our purposes.
Speaking in Hoffmann’s terms, our results require a form of full memoization, which is
definable in Hoffmann’s system. However, most crucially for our concerns, it is unclear how
the overall system incorporating full memoization can be implemented efficiently, if at all.

STACS 2015

64 On Sharing, Memoization and Polynomial Time

B

B

B

B

L L

B

L L

B

B

L L

B

L L

B

B

B

L L

B

L L

B

B

L L

B

L L
(a) Explicit tree representation.

B

B

B

B

L
(b) Compact DAG.

Figure 1 Complete Binary Tree of Height Four, as Computed by tree(S4(0)).

2 The Need for Sharing and Memoisation

This Section is an informal, example-driven, introduction to ramified recursive definitions and
their complexity. Our objective is to convince the reader that those definitions do not give
rise to polynomial time computations if naively evaluated, and that sharing and memoization
are both necessary to avoid exponential blowups.

In Leivant’s system [21], functions and variables are equipped with a tier. Composition
must preserve tiers and, crucially, in a function defined by primitive recursion the tier of
the recurrence parameter must be higher than the tier of the recursive call. This form of
ramification of functions effectively tames primitive recursion, resulting in a characterisation
of the class of polytime computable functions.

Of course, ramification also controls the growth rate of functions. However, as soon as we
switch from strings to a domain where tree structures are definable, this control is apparently
lost. For illustration, consider the following definition:

tree(0) = L tree(S(n)) = br(tree(n)) br(t) = B(t, t) .

The function tree is defined by primitive recursion, essentially from basic functions. As a
consequence, it is easily seen to be ramified in the sense of Leivant. Even though the number
of recursive steps is linear in the input, the result of tree(Sn(0)) is the complete binary
tree of height n. As thus the length of the output is exponential in the one of its input,
there is, at least apparently, little hope to prove tree a polytime function. The way out is
sharing: the complete binary tree of height n can be compactly represented as a directed
acyclic graph (DAG for short) of linear size (see Figure 1). Indeed, using the compact DAG
representation it is easy to see that the function tree is computable in polynomial time.
This is the starting point of [16], in which general ramified recurrence is proved sound for
polynomial time. A crucial observation here is that not only the output’s size, but also
the total amount of work can be kept under control, thanks to the fact that evaluating a
primitive recursive definition on a compactly represented input can be done by constructing
an isomorphic DAG of recursive calls.

This does not scale up to simultaneous ramified recurrence. The following example com-
putes the genealogical tree associated with Fibonacci’s rabbit problem for n ∈ N generations.
Rabbits come in pairs. After one generation, each baby rabbit pair (N) matures. In each

M. Avanzini and U. Dal Lago 65

N

M

M

M

M

ML NL

N

ML

N

M

ML NL

N

M

M

ML NL

N

ML

(a) Explicit tree representation.

N

M

M

M

M

ML NL

N

N

N

(b) Compact DAG.

Figure 2 Genealogical Rabbit Tree up to the Sixth Generation, as Computed by rabbits(S6(0)).

generation, an adult rabbit pair (M) bears one pair of babies.

rabbits(0) = NL a(0) = ML b(0) = NL

rabbits(S(n)) = b(n) a(S(n)) = M(a(n), b(n)) b(S(n)) = N(a(n)) .

The function rabbits is obtained by case analysis from the functions a and b, which are
defined by simultaneous primitive recursion: the former recursively calls itself and the latter,
while the latter makes a recursive call to the former. The output of rabbits(Sn(0)) is tightly
related to the sequence of Fibonacci numbers: the number of nodes at depth i is given by
the ith Fibonacci number. Hence the output tree has exponential size in n but, again, can
be represented compactly (see Figure 2). This does not suffice for our purposes, however. In
presence of simultaneous definitions, indeed, avoiding re-computation of previously computed
values becomes more difficult, the trick described above does not work, and the key idea
towards that is the use of memoization.

What we prove in this paper is precisely that sharing and memoization can indeed be
made to work together, and that they together allow to prove polytime soundness for all
ramified recursive functions, also in presence of tree algebras and simultaneous definitions.

3 Preliminaries

General Ramified Simultaneous Recurrence

Let A denote a (finite and untyped) signatures of constructors c1, . . . , ck, each equipped with
an arity ar(ci). In the following, the set of terms T (A) over the signature A, defined as usual,
is also denoted by A if this does not create ambiguities. We are interested in total functions
from An = A× . . .× A︸ ︷︷ ︸

n times
to A.

I Definition 1. The following are so-called basic functions:
For each constructor c, the constructor function fc : Aar(c) → A for c, defined as follows:
fc(x1, . . . , xar(c)) = c(x1, . . . , xar(c))
For each 1 ≤ n ≤ m, the (m,n)-projection function Πm

n : Am → A defined as follows:
Πm

n (x1 . . . , xm) = xn.

STACS 2015

66 On Sharing, Memoization and Polynomial Time

fc . Aar(c)
n → An Πn

m . Ap1 × . . .× Apm → Apn

fi . Aar(ci)
p ×A→ Am

case({fi}1≤i≤k) . Ap ×A→ Am

f . Ap1 × . . .× Apn
→ Am gi .A→ Api

f ◦ (g1, . . . , gn) .A→ Am

fj
i . A

ar(ci)
p × An·ar(ci)

m ×A→ Am p > m

simrec({fj
i}1≤i≤k,1≤j≤n) . Ap ×A→ Am

Figure 3 Tiering as a Formal System.

I Definition 2.
Given a function f : An → A and n functions g1, . . . , gn, all of them from Am to A,
the composition h = f ◦ (g1, . . . , gn) is a function from Am to A defined as follows:
h(~x) = f(g1(~x), . . . , gn(~x)).
Suppose given the functions fi where 1 ≤ i ≤ k such that for somem, fi : Aar(ci)×An → A.
Then the function g = case({fi}1≤i≤k) defined by case distinction from {fi}1≤i≤k is a
function from A× An to A defined as follows: g(ci(~x), ~y) = fi(~x, ~y).
Suppose given the functions fj

i , where 1 ≤ i ≤ k and 1 ≤ j ≤ n, such that for some m,
fj

i : Aar(ci) × An·ar(ci) × Am → A. The functions {gj}1≤j≤n = simrec({fj
i}1≤i≤k,1≤j≤n)

defined by simultaneous primitive recursion from {fj
i}1≤i≤k,1≤j≤n are all functions from

A× Am to A such that for ~x = x1, . . . , xar(ci),

gj(ci(~x), ~y) = fj
i (~x, g1(x1, ~y), . . . , g1(xar(ci), ~y), . . . , gn(x1, ~y), . . . , gn(xar(ci), ~y), ~y) .

We denote by SimRec(A) the class of simultaneous recursive functions over A, defined as
the smallest class containing the basic functions of Definition 1 and that is closed under the
schemes of Definition 2.

Tiering, the central notion underlying Leivant’s definition of ramified recurrence, consists
in attributing tiers to inputs and outputs of some functions among the ones constructed as
above, with the goal of isolating the polytime computable ones. Roughly speaking, the role
of tiers is to single out “a copy” of the signature by a level: this level permits to control the
recursion nesting. Tiering can be given as a formal system, in which judgments have the
form f . Ap1 × . . .× Apar(f) → Am for p1, . . . , par(f),m natural numbers and f ∈ SimRec(A).
The system is defined in Figure 3, where A denotes the expression Aq1 × . . .× Aqk

for some
q1, . . . , qk ∈ N. Notice that composition preserves tiers. Moreover, recursion is allowed only
on inputs of tier higher than the tier of the function (in the case f = simrec({fj

i}1≤i≤k,1≤j≤n),
we require p > m).

I Definition 3. We call a function f ∈ SimRec(A) definable by general ramified simultaneous
recurrence (GRSR for short) if f . Ap1 × . . .× Apar(f) → Am holds.

I Remark. Consider the word algebra W = {ε, a,b} consisting of a constant ε and two unary
constructors a and b, which is in bijective correspondence to the set of binary words. Then
the functions definable by ramified simultaneous recurrence over W includes the ramified
recursive functions from Leivant [21], and consequently all polytime computable functions.

I Example 4.

1. Consider N := {0,S} with ar(0) = 0 and ar(S) = 1, which is in bijective correspondence
to the set of natural numbers. We can define addition add : Ni × Nj → Nj for i > j, by

add(0, y) = Π1
1(y) = y add(S(x), y) = (fS ◦Π3

2)(x, add(x, y), y) = S(add(x, y)) ,

using general simultaneous ramified recursion, i.e. {add} = simrec({{Π1
1, fS ◦Π3

2}}).

M. Avanzini and U. Dal Lago 67

f ∈ F ti ↓ vi f(v1, . . . , vk) ↓ v
f(t1, . . . , tk) ↓ v

c ∈ C ti ↓ vi

c(t1, . . . , tk) ↓ c(v1, . . . , vk)

f(p1, . . . , pk)→ r ∈ R ∀i. piσ = vi rσ ↓ v
f(v1, . . . , vk) ↓ v

Figure 4 Operational Semantics for Program (F , C, R).

2. Let T := {NL,ML,N,M}, where ar(NL) = ar(ML) = 0, ar(N) = 1 and ar(M) = 2. Then
we can define the functions rabbits : Ni → Tj for i > j from Section 2 by composition
from the following two functions, defined by simultaneous ramified recurrence.

a(0) = ML a(S(n)) = (fM ◦ (Π3
2,Π3

3)) (n, a(n), b(n)) = M(a(n), b(n))
b(0) = NL b(S(n)) = (fN ◦Π3

3) (n, a(n), b(n)) = N(a(n)) .

3. We can define a function #leafs : T → N by simultaneous primitive recursion which
counts the number of leafs in T-trees as follows.

#leafs(NL) = S(0) #leafs(ML) = S(0)
#leafs(N(t)) = #leafs(t) #leafs(M(l, r)) = add(#leafs(l),#leafs(r)) .

However, this function cannot be ramified, since add in the last equation requires different
tiers. Indeed, having a ramified recursive function #leafs : Ti → N1 (for some i > 1)
defined as above would allow us to ramify fib = #leafs ◦ rabbits which on input n
computes the nth Fibonacci number, and is thus an exponential function.

Computational Model, Syntax and Semantics

We introduce a simple, rewriting based, notion of program for computing functions over term
algebras. Let V denote a set of variables. Terms over a signature F that include variables
from V are denoted by T (F ,V). A term t ∈ T (F ,V) is called linear if each variable occurs at
most once in t. The set of subterms STs(t) of a term t is defined by STs(t) := {t} if t ∈ V and
STs(t) :=

⋃
1≤i≤ar(f) STs(ti) ∪ {t} if t = f(t1, . . . , tar(f)). A substitution, is a finite mapping

σ from variables to terms. By tσ we denote the term obtained by replacing in t all variables
x ∈ dom(σ) by σ(x).

I Definition 5. A program P is given as a triple (F , C,R) consisting of two disjoint signatures
F and C of operation symbols f1, . . . , fm and constructors c1, . . . , cn respectively, and a finite
set R of rules l → r over terms l, r ∈ T (F ∪ C,V). For each rule, the left-hand side l is
of the form fi(p1, . . . , pk) for some i, where the patterns pj consist only of variables and
constructors, and all variables occurring in the right-hand side r also occur in the left-hand
side l.

We keep the program P = (F , C,R) fixed throughout the following. Moreover, we require
that P is orthogonal, that is, the following two requirements are met:
1. left-linearity: the left-hand sides l of each rule l→ r ∈ R is linear ; and
2. non-ambiguity: there are no two rules with overlapping left-hand sides in R.
Orthogonal programs define a class of deterministic first-order functional programs, see e.g.
[6]. The domain of the defined functions is the constructor algebra T (C). Correspondingly,
elements of T (C) are called values, which we denote by v, u,

STACS 2015

68 On Sharing, Memoization and Polynomial Time

In Figure 4 we present the operational semantics, realizing standard call-by-value eval-
uation order. The statement t ↓ v means that the term t reduces to the value v. We say
that P computes the function f : T (C)k → T (C) if there exists an operation f ∈ F such that
f(v1, . . . , vk) = v if and only if f(v1, . . . , vk) ↓ v holds for all inputs vi ∈ T (C).

I Example 6 (Continued from Example 4). The definition of rabbits from Section 2 can
be turned into a program PR over constructors of N and T, by orienting the underlying
equations from left to right and replacing applications of functions f ∈ {rabbits, a, b} with
corresponding operation symbols f ∈ {rabbits, a, b}. For instance, concerning the function
a, the defining equations are turned into a(0)→ML and a(S(n))→M(a(n), b(n)).

The example hints at a systematic construction of programs Pf computing functions f ∈
SimRec(A), which can be made precise [4].

Term Graphs

We borrow key concepts from term graph rewriting (see e.g. the survey of Plump [25] for
an overview) and follow the presentation of Barendregt et al. [8]. A term graph T over a
signature F is a directed acyclic graph whose nodes are labeled by symbols in F ∪ V, and
where outgoing edges are ordered. Formally, T is a triple (N, suc, lab) consisting of nodes N, a
successors function suc : N → N∗ and a labeling function lab : N → F ∪ V . We require that
term graphs are compatible with F , in the sense that for each node o ∈ N, if labT (o) = f ∈ F
then sucT (o) = [o1, . . . , oar(f)] and otherwise, if labT (o) = x ∈ V , sucT (o) = []. In the former
case, we also write T (o) = f(o1, . . . , oar(f)), the latter case is denoted by T (o) = x. We define
the successor relation ⇀T on nodes in T such that o ⇀T p holds iff p occurs in suc(o), if
p occurs at the ith position we also write o i−⇀T p. Throughout the following, we consider
only acyclic term graphs, that is, when ⇀T is acyclic. Hence the unfolding [o]T of T at
node o, defined by [o]T := x if T (o) = x ∈ V , and otherwise [o]T := f([o1]T , . . . , [ok]T) where
T (o) = f(o1, . . . , ok), results in a finite term. We called the term graph T rooted if there
exists a unique node o, the root of T , with o ⇀∗T p for every p ∈ N. We denote by T �o the
sub-graph of T rooted at o. Consider a symbol f ∈ F and nodes {o1, . . . , oar(f)} ⊆ N of T .
The extension S of T by a fresh node of 6∈ N with S(of) = f(o1, . . . , oar(f)) is denoted by
T] {of 7→ f(o1, . . . , oar(f))}. We write f(T �o1, . . . , T �oar(f)) for the term graph S�of .

For two rooted term graphs T = (NT , sucT , labT) and S = (NS , sucS , labS), a mapping
m : NT → NS is called morphic in o ∈ NT if (i) labT (o) = labS(m(o)) and (ii) o i−⇀T p

implies m(o) i−⇀S m(p) for all appropriate i. A homomorphism from T to S is a mapping
m : NT → NS that (i) maps the root of T to the root of S and that (ii) is morphic in all
nodes o ∈ NT not labeled by a variable. We write T ·>m S to indicate that m is, possibly an
extension of, a homomorphism from T to S.

Every term t is trivially representable as a canonical tree 4(t) unfolding to t, using a
fresh node for each occurrence of a subterm in t. For t a linear term, to each variable x in t
we can associate a unique node in 4(t) labeled by x, which we denote by ox. The following
proposition relates matching on terms and homomorphisms on trees. It essentially relies on
the imposed linearity condition.

I Proposition 7 (Matching on Graphs). Let t be a linear term, T be a term graph and let o
be a node of T .
1. If 4(t) ·>m T �o then there exists a substitution σ such that tσ = [o]T .
2. Vice versa, if tσ = [o]T holds for some substitution σ then there exists a homomorphism
4(t) ·>m T �o.

M. Avanzini and U. Dal Lago 69

f ∈ F (Ci−1, ti) ⇓ni
(Ci, vi) (Ck, f(v1, . . . , vk)) ⇓n (Ck+1, v) m = n+

∑k
i=1 ni

(C0, f(t1, . . . , tk)) ⇓m (Ck+1, v)
(Split)

c ∈ C (Ci−1, ti) ⇓ni
(Ci, vi) m =

∑k
i=1 ni

(C0, c(t1, . . . , tk)) ⇓m (Ck, c(v1, . . . , vk))
(Con)

(f(v1, . . . , vk), v) ∈ C
(C, f(v1, . . . , vk)) ⇓0 (C, v)

(Read)

(f(v1, . . . , vk), v) 6∈ C f(p1, . . . , pk)→ r ∈ R ∀i. piσ = vi (C, rσ) ⇓m (D, v)
(C, f(v1, . . . , vk)) ⇓m+1 (D ∪ {(f(v1, . . . , vk), v)}, v)

(Update)

Figure 5 Cost Annotated Operational Semantics with Memoization for Program (F , C, R).

Here, the substitution σ and homomorphism m satisfy σ(x) = [m(ox)]T for all variables x
in t.

4 Memoization and Sharing, Formally

To implement memoization, we make use of a cache C which stores results of intermediate
functions calls. A cache C is modeled as a set of tuples (f(v1, . . . , var(f)), v), where f ∈ F
and v1, . . . , var(f) as well as v are values.

Figure 5 collects the memoizing operational semantics with respect to the program
P = (F , C,R). Here, a statement (C, t) ⇓m (D, v) means that starting with a cache C, the
term t reduces to the value v with updated cache D. The natural number m indicates the
cost of this reduction. The definition is along the lines of the standard semantics (Figure 4),
carrying the cache throughout the reduction of the given term. The last rule of Figure 4
is split into two rules (Read) and (Update). The former performs a read from the cache,
the latter the reduction in case the corresponding function call is not tabulated, updating
the cache with the computed result. Notice that in the semantics, a read is attributed
zero cost, whereas an update is accounted with a cost of one. Consequently the cost m in
(C, t) ⇓m (D, v) refers to the number of non-tabulated function applications.

I Lemma 8. We have (∅, t) ⇓m (C, v) for some m ∈ N and cache C if and only if t ↓ v.

The lemma confirms that the call-by-value semantics of Section 3 is correctly implemented
by the memoizing semantics. To tame the growth rate of values, we define small-step semantics
corresponding to the memoizing semantics, facilitating sharing of common sub-expressions.

Small-Step Semantics with Memoization and Sharing

To incorporate sharing, we extend the pairs (C, t) by a heap, and allow references to the
heap both in terms and in caches. Let Loc denote a countably infinite set of locations. We
overload the notion of value, and define expressions e and (evaluation) contexts E according
to the following grammar:

v := ` | c(v1, . . . , vk);
e := ` | 〈f(`1, . . . , `k), e〉 | f(e1, . . . , ek) | c(e1, . . . , ek);
E := � | 〈f(`1, . . . , `k), E〉 | f(`1, . . . , `i−1, E, ei+1, . . . , ek) |c(`1, . . . , `i−1, E, ei+1, . . . , ek).

Here, `1, . . . , `k, ` ∈ Loc, f ∈ F and c ∈ C are k-ary symbols. An expression is a term
including references to values that will be stored on the heap. The additional construct
〈f(`1, . . . , `k), e〉 indicates that the partially evaluated expression e descends from a call

STACS 2015

70 On Sharing, Memoization and Polynomial Time

(f(`1, . . . , `k), `) 6∈ D f(p1, . . . , pk)→ r ∈ R T := 4(f(p1, . . . , pk))
T ·>m f(H�`1, . . . ,H�`k) σm := {x 7→ m(`x) | `x ∈ Loc, T (`x) = x ∈ V}

(D,H,E[f(`1, . . . , `k)]) −→R (D,H,E[〈f(`1, . . . , `k), rσm〉])
(apply)

(f(`1, . . . , `k), `) ∈ D
(D,H,E[f(`1, . . . , `k)]) −→r (D,H,E[`])

(read)

(D,H,E[〈f(`1, . . . , `k), `〉]) −→s (D ∪ {(f(`1, . . . , `k), `)}, H,E[`])
(store)

(H ′, `) = merge(H, c(`1, . . . , `k))
(D,H,E[c(`1, . . . , `k)]) −→m (D,H ′, E[`])

(merge)

Figure 6 Small Step Semantics with Memoization and Sharing for Program (F , C, R).

f(v1, . . . , vk), with arguments vi stored at location `i on the heap. A context E is an
expression with a unique hole, denoted as �, where all sub-expression to the left of the
hole are references pointing to values. This syntactic restriction is used to implement a
left-to-right, call-by-value evaluation order. We denote by E[e] the expression obtained by
replacing the hole in E by e.

A configuration is a triple (D,H, e) consisting of a cache D, heap H and expression e.
Unlike before, the cache D consists of pairs of the form (f(`1, . . . , `k), `) where instead of
values, we store references `1, . . . , `k, ` pointing to the heap. The heap H is represented
as a (multi-rooted) term graph H with nodes in Loc and constructors C as labels. If
` is a node of H, then we say that H stores at location ` the value [`]H obtained by
unfolding H starting from location `. We keep the heap in a maximally shared form, that is,
H(`a) = c(`1, . . . , `k) = H(`b) implies `a = `b for two locations `a, `b of H. Thus crucially,
values are stored once only, by the following lemma.

I Lemma 9. Let H be a maximally shared heap with locations `1, `2. If [`1]H = [`2]H then
`1 = `2.

The operation merge(H, c(`1, . . . , `k)), defined as follows, is used to extend the heap H with
a constructor c whose arguments point to `1, . . . , `k, retaining maximal sharing. Let `f be
the first location not occurring in the nodes N of H (with respect to an arbitrary, but fixed
enumeration on Loc). For `1, . . . , `k ∈ N we define

merge(H, c(`1, . . . , `k)) :=
{

(H, `) if H(`) = c(`1, . . . , `k),
(H ∪ {`f 7→ c(`1, . . . , `k)}, `f) otherwise.

Observe that the first clause is unambiguous on maximally shared heaps.
Figure 6 collects the small step semantics with respect to a program P = (F , C,R). We

use −→rsm to abbreviate the relation −→r ∪−→s ∪−→m and likewise we abbreviate −→R ∪−→rsm by
−→Rrsm. Furthermore, we define −→R/rsm := −→∗rsm · −→R · −→∗rsm. Hence the m-fold composition
−→m

R/rsm corresponds to a −→Rrsm-reduction with precisely m applications of −→R.
It is now time to show that the model of computation we have just introduced fits our

needs, namely that it faithfully simulates big-step semantics as in Figure 5 (itself a correct
implementation of call-by-value evaluation from Section 3). This is proved by first showing
how big-step semantics can be simulated by small-step semantics, later proving that the
latter is in fact deterministic.

In the following, we denote by [e]H the term obtained from e by following pointers to the

M. Avanzini and U. Dal Lago 71

heap, ignoring the annotations 〈f(`1, . . . , `k), ·〉. Formally, we define

[e]H :=
{
f([e1]H , . . . , [ek]H) if e = f(e1, . . . , ek),
[e′]H if e = 〈f(`1, . . . , `k), e′〉.

Observe that this definition is well-defined as long as H contains all locations occurring in e
(a property that is preserved by −→Rrsm-reductions). An initial configuration is a configuration
of the form (∅, H, e) with H a maximally shared heap and e = f(v1, . . . , vk) an expression
unfolding to a function call. Notice that the arguments v1, . . . , vk are allowed to contain
references to the heap H.

I Lemma 10 (Simulation). Let (∅, H, e) be an initial configuration. If (∅, [e]H) ⇓m (C, v)
holds for m ≥ 1 then (∅, H, e) −→m

R/rsm (D,G, `) for a location ` in G with [`]G = v.

The next lemma shows that the established simulation is unique, that is, there is exactly
one derivation (∅, H, e) −→m

R/rsm (D,G, `). Here, a relation −→ is called deterministic on a set
A if b1 ←− a −→ b2 implies b1 = b2 for all a ∈ A.

I Lemma 11 (Determinism). The relation −→Rrsm is deterministic on all configurations
reachable from initial configurations.

I Theorem 12. Suppose (∅, f(v1, . . . , vk)) ⇓m (C, v) holds for a reducible term f(v1, . . . , vk).
Then for each initial configuration (∅, H, e) with [e]H = f(v1, . . . , vk), there exists a unique
sequence (∅, H, e) −→m

R/rsm (D,G, `) for a location ` in G with [`]G = v.

Proof. As f(v1, . . . , vk) is reducible, it follows that m ≥ 1. Hence the theorem follows from
Lemma 10 and Lemma 11. J

Invariance

Theorem 12 tells us that a term-based semantics (in which sharing is not exploited) can be
simulated step-by-step by another, more sophisticated, graph-based semantics. The latter’s
advantage is that each computation step does not require copying, and thus does not increase
the size of the underlying configuration too much. This is the key observation towards
invariance: the number of reduction step is a sensible cost model from a complexity-theoretic
perspective. Precisely this will be proved in the remaining of the section.

Define the size |e| of an expression recursively by |`| := 1, |f(e1, . . . , ek)| := 1 +
∑k

i=1|ei|
and |〈f(`1, . . . , `k), e〉| := 1 + |e|. In correspondence we define the weight wt(e) by ignoring
locations, i.e. wt(`) := 0. Recall that a reduction (D1, H1, e1) −→m

R/rsm (D2, H2, e2) consists of
m applications of −→R, all possibly interleaved by −→rsm-reductions. As a first step, we thus
estimate the overall length of the reduction (D1, H1, e1) −→m

R/rsm (D2, H2, e2) in m and the
size of e1. Set ∆ := max{|r| | l→ r ∈ R}. The following serves as an intermediate lemma.

I Lemma 13. The following properties hold:
1. If (D1, H1, e1) −→rsm (D2, H2, e2) then wt(e2) < wt(e1).
2. If (D1, H1, e1) −→R (D2, H2, e2) then wt(e2) ≤ wt(e1) + ∆.

Then essentially an application of the weight gap principle [18], a form of amortized cost
analysis, binds the overall length of an −→m

R/rsm-reduction suitably.

I Lemma 14. If (D1, H1, e1) −→m
R/rsm (D2, H2, e2) then (D1, H1, e1) −→n

Rrsm (D2, H2, e2) for
n ≤ (1 + ∆) ·m+ wt(e) and ∆ ∈ N a constant depending only on P.

STACS 2015

72 On Sharing, Memoization and Polynomial Time

Define the size of a configuration |(D,H, e)| as the sum of the sizes of its components.
Here, the size |D| of a cache D is defined as its cardinality, similar, the size |H| of a heap is
defined as the cardinality of its set of nodes. Notice that a configuration (D,H, e) can be
straightforwardly encoded within logarithmic space-overhead as a string d(D,H, e)e, i.e. the
length of the string d(D,H, e)e is bounded by a function in O(log(n) · n) in |(D,H, e)|, using
constants to encode symbols and an encoding of locations logarithmic in |H|. Crucially, a
step in the small-step semantics increases the size of a configuration only by a constant.

I Lemma 15. If (D1, H1, e1) −→Rrsm (D2, H2, e2) then |(D2, H2, e2)| ≤ |(D1, H1, e1)| + ∆.

I Theorem 16. There exists a polynomial p : N × N → N such that for every initial
configuration (∅, H1, e1), a configuration (D2, H2, e2) with (∅, H1, e1) −→m

R/rsm (D2, H2, e2) is
computable from (∅, H1, e1) in time p(|H1| + |e1|,m).

Proof. It is tedious, but not difficult to show that the function which implements a step
c −→Rrsm d, i.e. which maps dce to dde, is computable in polynomial time in dce, and thus in the
size |c| of the configuration c. Iterating this function at most n := (1 + ∆) ·m+ |(∅, H1, e1)|
times on input d(∅, H1, e1)e, yields the desired result d(D2, H2, e2)e by Lemma 14. Since
each iteration increases the size of a configuration by at most the constant ∆ (Lemma 15),
in particular the size of each intermediate configuration is bounded by a linear function in
|(∅, H1, e1)| = |H1| + |e1| and n, the theorem follows. J

Combining Theorem 12 and Theorem 16 we thus obtain the following.

I Theorem 17. There exists a polynomial p : N×N→ N such that for (∅, f(v1, . . . , vk)) ⇓m

(C, v), the value v represented as DAG is computable from v1, . . . , vk in time p(
∑k

i=1|vi|,m).

Theorem 17 thus confirms that the cost m of a reduction (∅, f(v1, . . . , vk)) ⇓m (C, v) is
a suitable cost measure. In other words, the memoized runtime complexity of a function f,
relating input size n ∈ N to the maximal cost m of evaluating f on arguments v1, . . . , vk of
size up to n, i.e. (∅, f(v1, . . . , vk)) ⇓m (C, v) with

∑k
i=1|vi| ≤ n, is an invariant cost model.

I Example 18 (Continued from Example 6). Reconsider the program PR and the evaluation
of a call rabbits(Sn(0)) which results in the genealogical tree vn of height n ∈ N associated
with Fibonacci’s rabbit problem. Then one can show that rabbits(Sn(0)) ⇓m vn with
m ≤ 2 ·n+ 1. Crucially here, the two intermediate functions a and b defined by simultaneous
recursion are called only on proper subterms of the input Sn(0), hence in particular the
rules defining a and b respectively, are unfolded at most n times. As a consequence of the
bound on m and Theorem 17 we obtain that the function rabbits from the introduction is
polytime computable.

I Remark. Strictly speaking, our DAG representation of a value v, viz the part of the
final heap reachable from a corresponding location `, is not an encoding in the classical,
complexity theoretic setting. Different computations resulting in the same value v can
produce different DAG representations of v, however, these representations differ only in the
naming of locations. Even though our encoding can be exponentially compact in comparison
to a linear representation without sharing, it is not exponentially more succinct than a
reasonable encoding for graphs (e.g. representations as circuits, see Papadimitriou [24]). In
such succinct encodings not even equality can be decided in polynomial time. Our form of
representation does clearly not fall into this category. In particular, in our setting it can be
easily checked in polynomial time that two DAGs represent the same value.

M. Avanzini and U. Dal Lago 73

5 GRSR is Sound for Polynomial Time

Sometimes (e.g., in [11]), the first step towards a proof of soundness for ramified recursive
systems consists in giving a proper bound precisely relating the size of the result and the
size of the inputs. More specifically, if the result has tier n, then the size of it depends
polynomially on the size of the inputs of tier higher than n, but only linearly, and in very
restricted way, on the size of inputs of tier n. Here, a similar result holds, but size is replaced
by minimal shared size.

The minimal shared size ‖v1, . . . , vk‖ for a sequence of elements v1, . . . , vk ∈ A is defined
as the number of subterms in v1, . . . , vk, i.e. the cardinality of the set

⋃
1≤i≤k STs(vi). Then

‖v1, . . . , vk‖ corresponds to the number of locations necessary to store the values v1, . . . , vk

on a heap (compare Lemma 9). If A is the expression An1× . . .×Anm
, n is a natural number,

and ~t is a sequence of m terms, then ‖~t‖>n
A is defined to be ‖ti1 , . . . , tik

‖ where i1, . . . , ik are
precisely those indices such that ni1 , . . . , nik

> n. Similarly for ‖~t‖=n
A .

I Proposition 19 (Max-Poly). If f .A→ An, then there is a polynomial pf : N→ N such
that ‖f(~v)‖ ≤ ‖~v‖=n

A + pf(‖~v‖>n
A).

Once we know that ramified recursive definitions are not too fast-growing for the minimal
shared size, we know that all terms around do not have a too-big minimal shared size. As a
consequence:

I Proposition 20. If f .A→ An, then there is a polynomial pf : N→ N such that for every
v, (∅, f(~v)) ⇓m (C, v), with m ≤ pf(‖~v‖).

The following, then, is just a corollary of Proposition 20 and Invariance (Theorem 17).

I Theorem 21. Let f : Ap1 × . . . × Apk
→ Am be a function defined by general ramified

simultaneous recursion. There exists then a polynomial pf : Nk → N such that for all inputs
v1, . . . , vk, a DAG representation of f(v1, . . . , vk) is computable in time pf(|v1|, . . . , |vn|).

I Example 22 (Continued from Example 18). In Example 4 we indicated that the function
rabbits : N→ T from Section 2 is definable by GRSR. As a consequence of Theorem 21,
it is computable in polynomial time, e.g. on a Turing machine. Similar, we can prove the
function tree from Section 2 polytime computable.

6 Conclusion

In this work we have shown that simultaneous ramified recurrence on generic algebras is
sound for polynomial time, resolving a long-lasting open problem in implicit computational
complexity theory. We believe that with this work we have reached the end of a quest. Slight
extensions, e.g. the inclusion of parameter substitution, lead outside polynomial time as soon
as simultaneous recursion over trees is permissible.

Towards our main result, we introduced the notion of memoized runtime complexity, and
we have shown that this cost model is invariant under polynomial time. Crucially, we use
a compact DAG representation of values to control duplication, and tabulation to avoid
expensive re-computations. To the authors best knowledge, our work is the first where
sharing and memoization are reconciled, in the context of implicit computational complexity
theory. Both techniques have been extensively employed, however separately. Essentially
relying on sharing, the invariance of the unitary cost model in various rewriting based models
of computation, e.g. the λ-calculus [1, 15, 2] and term rewrite systems [14, 5] could be proved.

STACS 2015

74 On Sharing, Memoization and Polynomial Time

Several works (e.g. [22, 13, 7]) rely on memoization, employing a measure close to our notion
of memoized runtime complexity. None of these works integrate sharing, instead, inputs are
either restricted to strings or dedicated bounds on the size of intermediate values have to
be imposed. We are confident that our second result is readily applicable to resolve such
restrictions.

References
1 B. Accattoli and U. Dal Lago. On the Invariance of the Unitary Cost Model for Head

Reduction. In Proc. of 23rd RTA, volume 15 of LIPIcs, pages 22–37. Dagstuhl, 2012.
2 B. Accattoli and U. Dal Lago. Beta Reduction is Invariant, Indeed. In Joint Proc. of 23rd

CSL and 29th LICS, page 8. ACM, 2014.
3 T. Arai and N. Eguchi. A New Function Algebra of EXPTIME Functions by Safe Nested

Recursion. TOCL, 10(4), 2009.
4 M. Avanzini and U. Dal Lago. On Sharing, Memoization, and Polynomial Time. Technical

report, University of Bologna, 2014. Available at http://arxiv.org/abs/1501.00894.
5 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime

Computability. In Proc. of 21st RTA, volume 6 of LIPIcs, pages 33–48. Dagstuhl, 2010.
6 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
7 P. Baillot, U. Dal Lago, and J.-Y. Moyen. On Quasi-interpretations, Blind Abstractions

and Implicit Complexity. MSCS, 22(4):549–580, 2012.
8 H. P. Barendregt, M. v. Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J. Plasmeijer, and

M. R. Sleep. Term Graph Rewriting. In PARLE (2), volume 259 of LNCS, pages 141–158.
Springer, 1987.

9 S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis, University
of Toronto, 1992.

10 S. Bellantoni. Predicative Recursion and the Polytime Hierarchy. In Feasible Mathematics
II. Birkhäuser Boston, 1994.

11 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime
Functions. CC, 2(2):97–110, 1992.

12 G. Bonfante, R. Kahle, J.-Y. Marion, and I. Oitavem. Recursion Schemata for NCk. In
Proc. of 22nd CSL, volume 5213 of LNCS, pages 49–63. Springer, 2008.

13 G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations: A Way to Control
Resources. Theoretical Computer Science, 412(25):2776–2796, 2011.

14 U. Dal Lago and S. Martini. Derivational Complexity is an Invariant Cost Model. In
Revised Selected Papers of 1st FOPARA, volume 6324 of LNCS, pages 100–113. Springer,
2009.

15 U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda Calculus.
LMCS, 8(3):1–27, 2012.

16 U. Dal Lago, S. Martini, and M. Zorzi. General Ramified Recurrence is Sound for Polyno-
mial Time. In Proc. of 1st DICE, volume 23 of EPTCS, pages 47–62, 2010.

17 N. Danner and J. S. Royer. Ramified Structural Recursion and Corecursion. CoRR,
abs/1201.4567, 2012.

18 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency
Pair Method. In Proc. of 4th IJCAR, volume 5195 of LNAI, pages 364–380. Springer, 2008.

19 B. Hoffmann. Term Rewriting with Sharing and Memoization. In Proc. of 3rd ALP, volume
632 of LNCS, pages 128–142. Springer, 1992.

20 D. Leivant. Stratified Functional Programs and Computational Complexity. In Proc. of
20th POPL, pages 325–333. ACM, 1993.

http://arxiv.org/abs/1501.00894

M. Avanzini and U. Dal Lago 75

21 D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recurrence and
Poly-time. In Feasible Mathematics II, volume 13, pages 320–343. Birkhäuser Boston, 1995.

22 J.-Y. Marion. Analysing the Implicit Complexity of Programs. IC, 183:2–18, 2003.
23 I. Oitavem. Implicit Characterizations of Pspace. In PTCS, pages 170–190, 2001.
24 C. H. Papadimitriou. Computational Complexity. AddisonWesley Longman, second edition,

1995.
25 D. Plump. Essentials of Term Graph Rewriting. ENTCS, 51:277–289, 2001.

STACS 2015

Proof Complexity of Resolution-based QBF Calculi
Olaf Beyersdorff1, Leroy Chew1, and Mikoláš Janota2

1 School of Computing, University of Leeds, UK
2 INESC-ID, Lisbon, Portugal

Abstract
Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning for the
performance of important QBF solvers. However, the proof complexity of these proof systems is
currently not well understood and in particular lower bound techniques are missing. In this paper
we exhibit a new and elegant proof technique for showing lower bounds in QBF proof systems
based on strategy extraction. This technique provides a direct transfer of circuit lower bounds
to lengths of proofs lower bounds. We use our method to show the hardness of a natural class of
parity formulas for Q-resolution and universal Q-resolution. Variants of the formulas are hard for
even stronger systems as long-distance Q-resolution and extensions. With a completely different
lower bound argument we show the hardness of the prominent formulas of Kleine Büning et al.
[34] for the strong expansion-based calculus IR-calc. Our lower bounds imply new exponential
separations between two different types of resolution-based QBF calculi: proof systems for CDCL-
based solvers (Q-resolution, long-distance Q-resolution) and proof systems for expansion-based
solvers (∀Exp+Res and its generalizations IR-calc and IRM-calc). The relations between proof
systems from the two different classes were not known before.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Complexity
of proof procedures

Keywords and phrases proof complexity, QBF, lower bound techniques, separations

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.76

1 Introduction

Proof complexity studies the complexity of theorem proving in various formal systems,
providing both sharp lower and upper bounds for the size of proofs of important combinatorial
statements. One motivation for this research comes from its close connection to fundamental
questions in computational complexity, and this connection has been present since the very
beginnings of the field [20]. Another motivation is the tremendous success of SAT solvers,
which today solve huge industrial instances of the NP-hard SAT problem with even millions
of variables. Proof complexity provides the main theoretical tool for an understanding of
the power and limitations of these algorithms. As most modern SAT solvers are based on
resolution, this proof system has received a key attention; and many ingenious techniques
have been devised to understand the complexity of resolution proofs (cf. [40, 17] for surveys).

During the last decade there has been a great interest and research activity to extend the
success of SAT solvers to the more expressive quantified Boolean formulas (QBF). Due to
its PSPACE completeness (even for restricted versions [2]), QBF is far more expressive than
SAT and thus applies to further fields such as formal verification or planning [38, 7, 21]. As
for SAT solvers, runs of QBF solvers produce witnesses of unsatisfiability (proofs), and there
has been a lot of interest in the correspondence between the formal systems and solvers.

In particular, Kleine Büning et al. [34] define a resolution-like calculus called Q-resolution
(Q-Res). There are several extensions of Q-Res; notably long-distance Q-resolution (LD-Q-

© Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 76–89

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. Beyersdorff, L. Chew, and M. Janota 77

Res) [3], which is more powerful than the standard Q-Res [22]. Q-Res and its extensions
are important as they model QBF solving based on CDCL [24]. While Q-Res can only
resolve on existential variables, the proof system QU-Res, introduced by Van Gelder [43], also
allows to resolve on universal variables. Combining universal and long-distance Q-resolution,
Balabanov et al. [4] recently considered the system LQU+-Res. Apart from CDCL, another
main approach to QBF-solving is through expansion of quantifiers [14, 6, 28]. Recently, a
proof system ∀Exp+Res was introduced with the motivation to trace expansion-based QBF
solvers [29]. ∀Exp+Res also uses resolution, but is conceptually very different from Q-Res.

In the recent work [8] two further proof systems IR-calc and IRM-calc are introduced,
which unify the CDCL and expansion based approaches in the sense that IR-calc simulates
both Q-Res and ∀Exp+Res. The system IRM-calc enhances IR-calc and additionally simulates
long-distance Q-resolution. While IR-calc and IRM-calc are quite powerful, they still preserve
the property of strategy extraction, which is important for verifying runs of QBF solvers.

In general, it is fair to say that the complexity and relations between QBF proof systems
are not well understood. In particular, in sharp contrast to propositional proof complexity,
we currently lack lower bound techniques for QBF proof systems.1

Our contributions
In this paper we aim towards a significantly better understanding of proof complexity of
QBF proof systems. Our main contributions are the following:

1. A new lower bound method based on strategy extraction. We exhibit a new method
to obtain lower bounds to the proof size in QBF proof systems, which directly allows to
transfer circuit lower bounds to size of proof lower bounds. This method is based on the
property of strategy extraction, which is known to hold for many resolution-based QBF proof
systems. A QBF proof system has strategy extraction if given a refutation of a false QBF ϕ

it is possible to efficiently compute a winning strategy for the universal player for ϕ.
The basic idea of our method is both conceptually simple and elegant: If we know that a

family ϕn of false QBFs requires large winning strategies, then proofs of ϕn must be large
in all proof systems with feasible strategy extraction. Now we need suitable formulas ϕn.
Starting with a language L – for which we know (or conjecture) circuit lower bounds – we
construct a family of false QBFs ϕn such that every winning strategy of the universal player
for ϕn will have to compute L for inputs of length n. Consequently, a circuit lower bound for
L directly translates into a lower bound for the winning strategy and therefore the proof size.

This immediately implies conditional lower bounds. However, if carefully implemented,
our method also yields unconditional lower bounds. For Q-Res (and QU-Res) it is known that
strategy extraction is computationally easy [3]; it is in fact possible in AC0 as we verify here.
Using the hardness of parity for AC0 we can therefore construct formulas QParityn that
require exponential-size proofs in Q-Res (and QU-Res).

Conceptually, our lower bound method via strategy extraction is similar to the feasible
interpolation technique [35], which is one of the most successful techniques in classical proof
complexity. In feasible interpolation, circuit lower bounds are also translated into proof size
lower bounds. However, feasible interpolation only works for formulas of a special syntactic

1 We note the very recent game technique for tree-like Q-Res [9], inspired by [10, 11, 12]. Further, [5]
introduces a technique that lifts known hardness results for Q-Res to stronger systems by modifying the
formula. We use that idea in Sec. 5.

STACS 2015

78 Proof Complexity of Resolution-based QBF Calculi

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

5

9

43

1 2

6

97 8

10

1112
13

strictly stronger (p-simulates,
but exponentially separated)

incomparable (mutual
exponential separations)

new results

expansion solving

CDCL solving

Figure 1 The simulation order of QBF resolution systems (references in the table below).

form, while our technique directly applies to arbitrary languages. It is a long-standing belief
in the proof complexity community that there exists a direct connection between progress
for showing lower bounds in circuit complexity and for proof systems (cf. [19]). For QBF
proof systems our technique makes such a connection very explicit.

2. Lower bounds for QBF proof systems. Our new lower bound method directly gives a
new lower bound for Q-Res for the parity formulas. In addition, we transfer this lower bound
to the stronger systems LD-Q-Res and QU-Res by arguing that neither long-distance nor
universal resolution gives any advantage on a suitable modification of the parity formulas.

For the strong system IR-calc from [8] we show that the strategy extraction method is not

Simulation/Separation Incomparable

1 [31] [31] 10 [30], Cor. 16
2 by Def. [16] 11 [4]
3 [8] [30], [8] 12 Cor. 8, Cor. 24
4 [8] Cor. 16 13 Cor. 8, Cor. 24
5 by Def. [22]
6 by Def. [43]
7 by Def. [8], Cor. 8
8 [8] Cor. 24
9 by Def. [4]

directly applicable (at least for uncondi-
tional bounds in the way we use it here).
However, we use a completely different lower
bound argument to obtain an exponential
lower bound for the well-known formulas
KBKF(t) of Kleine Büning, Karpinski and
Flögel [34] in IR-calc. In the same work [34],
where Q-Res was introduced, these formulas
were suggested as hard formulas for Q-Res. In
fact, a number of further separations of QBF
proof systems builds on this [22, 4]. Here we
show in a technically involved counting argu-

ment that the formulas are even hard for IR-calc. As IR-calc simulates Q-Res [8] we obtain as
a by-product a formal proof of the hardness of KBKF(t) in Q-Res.

3. Separations between QBF proof systems. Our lower bounds imply a number of new
separations and incomparability results. The two main new results are: (i) IR-calc does not
simulate LD-Q-Res; (ii) LQU+-Res does not simulate ∀Exp+Res. Both are in fact exponential
separations. Item (i) is obtained from the lower bound for KBKF(t), while (ii) follows
from the lower bound on a variant of the parity formulas. In contrast to separations by
KBKF(t), all separations derived from (ii) even hold for formulas of bounded quantifier
complexity. Together with previous simulation results these imply many further separations.

O. Beyersdorff, L. Chew, and M. Janota 79

Figure 1 depicts the simulation order of QBF resolution systems together with the separations.
Combined with previous simulations and separations (cf. the table accompanying Fig. 1) this
yields an almost complete understanding of the simulation order of QBF resolution systems.

2 Preliminaries

A literal is a Boolean variable or its negation. If l is a literal, ¬l denotes the complementary
literal, i.e. ¬¬x = x. A clause is a disjunction of literals and a term is a conjunction of
literals. The empty clause is denoted by ⊥, which is semantically equivalent to false. A
formula in conjunctive normal form (CNF) is a conjunction of clauses. For a literal l = x or
l = ¬x, we write var(l) for x and extend this notation to var(C) for a clause C.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and
lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x} (Res)
C1 ∪ C2 ∪ U

We consider four instantiations of the Res-rule:
S∃R: x is existential.
If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U = ∅.
S∀R: x is universal. Otherwise same conditions as S∃R.
L∃R: x is existential.
If l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6=
z∗. U1, U2 contain only universal literals with var(U1) =
var(U2). ind(x) < ind(u) for each u ∈ var(U1).
If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 =
¬w2, w1 = u∗ or w2 = u∗. U = {u∗ | u ∈ var(U1)}.
L∀R: x is universal. Otherwise same conditions as L∃R.

Figure 2 The rules of CDCL-based proof systems.

Quantified Boolean Formulas
(QBFs) [33] extend propositional
logic with quantifiers with the
standard semantics that ∀x.Ψ is
satisfied by the same truth as-
signments as Ψ[0/x]∧Ψ[1/x] and
∃x.Ψ as Ψ[0/x] ∨ Ψ[1/x]. Un-
less specified otherwise, we as-
sume that QBFs are in closed
prenex form with a CNF mat-
rix, i.e., we consider the form
Q1X1 . . .QkXk. φ, where Xi are
pairwise disjoint (ordered) sets
of variables; Qi ∈ {∃, ∀} and
Qi 6= Qi+1. The formula φ is
in CNF and is defined only on
variables X1 ∪ . . .∪Xk. The pro-
positional part φ is called the
matrix and the rest the prefix.
If x ∈ Xi, we say that x is at
level i and write lv(x) = i; we
write lv(l) for lv(var(l)). In con-

trast to the level, the index ind(x) provides the more detailed information on the actual
position of x in the prefix, i.e. all variables are indexed by 1, . . . , n from left to right.

(Ax){
l[τ] | l ∈ C, l exist.

}
∪{τ(l) | l ∈ C, l univ.}

C is a clause from the matrix and τ is an assignment
to all universal variables.

C1 ∨ xτ C2 ∨ ¬xτ

(Res)
C1 ∪ C2

Figure 3 The rules of ∀Exp+Res [31].

Often it is useful to think of a
QBF Q1X1 . . .QkXk. φ as a game
between the universal and the exist-
ential player. In the i-th step of the
game, the player Qi assigns values to
all the variables Xi. The existential
player wins the game iff the matrix φ
evaluates to 1 under the assignment
constructed in the game. The uni-
versal player wins iff the matrix φ

evaluates to 0. Given a universal
variable u with index i, a strategy for

u is a function from all variables of index < i to {0, 1}. A QBF is false iff there exists a

STACS 2015

80 Proof Complexity of Resolution-based QBF Calculi

winning strategy for the universal player, i.e. if the universal player has a strategy for all
universal variables that wins any possible game [25][1, Sec. 4.2.2][37, Chap. 19].

A proof system [20] for a language L over Γ is a poly-time computable function f : Γ? → Γ?
with rng(f) = L. If f(x) = y then x is called an f -proof for y. For L = QBF we speak of
a QBF proof system. In our systems here, proofs are sequences of clauses; a refutation is a
proof deriving ⊥. A proof system S for L simulates a proof system P for L if there exists a
polynomial p such that for all P -proofs π of x there is an S-proof π′ of x with |π′| ≤ p (|π|).

Resolution-based calculi for QBF. We now give a brief overview of the main existing
resolution-based calculi for QBF. We start by describing the proof systems modelling CDCL-

(Ax){
x[τ] | x ∈ C, x is existential

}
C is a non-tautological clause from the
matrix.
τ = {0/u | u is universal in C}, where
the notation 0/u for literals u is short-
hand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables
with rng(τ) ⊆ {0, 1}.

Figure 4 The rules of IR-calc [8].

based QBF solving; their rules are summarized in
Figure 2. The most basic and important system is
Q-resolution (Q-Res) by Kleine Büning et al. [34]. It
is a resolution-like calculus that operates on QBFs
in prenex form with CNF matrix. In addition to
the axioms, Q-Res comprises the resolution rule
S∃R and universal reduction ∀-Red (cf. Fig. 2).

Long-distance resolution (LD-Q-Res) appears
originally in the work of Zhang and Malik [44]
and was formalized into a calculus by Balabanov
and Jiang [3]. It merges complementary literals
of a universal variable u into the special literal u∗.
These special literals prohibit certain resolution
steps. In particular, different literals of a universal
variable u may be merged only if lv(x) < lv(u),
where x is the resolution variable. LD-Q-Res uses
the rules L∃R, ∀-Red and ∀-Red∗.

QU-resolution (QU-Res) [43] removes the restric-
tion from Q-Res that the resolved variable must be
an existential variable and allows resolution of uni-

versal variables. The rules of QU-Res are S∃R, S∀R and ∀-Red. LQU+-Res [4] extends
LD-Q-Res by allowing short and long distance resolution pivots to be universal, however, the
pivot is never a merged literal z∗. LQU+-Res uses the rules L∃R, L∀R, ∀-Red and ∀-Red∗.

Axiom and instantiation rules as in IR-
calc in Figure 4.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Res)
inst(σ,C1)∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are
mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ

(Merging)
C ∨ bξ

dom(µ) = dom(σ).
ξ = {c/u | c/u ∈ µ, c/u ∈ σ}∪
{∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}

Figure 5 The rules of IRM-calc [8].

The second type of calculi models expansion-
based QBF solving. These calculi are based on
instantiation of universal variables: ∀Exp+Res [31],
IR-calc, and IRM-calc [8]. All these calculi oper-
ate on clauses that comprise only existential vari-
ables from the original QBF, which are addition-
ally annotated by a substitution to some universal
variables, e.g. ¬x0/u11/u2 . For any annotated lit-
eral lσ, the substitution σ must not make assign-
ments to variables at a higher quantification level
than l, i.e. if u ∈ dom(σ), then u is universal and
lv(u) < lv(l). To preserve this invariant, we use
the auxiliary notation l[σ], which for an existen-
tial literal l and an assignment σ to the universal
variables filters out all assignments that are not
permitted, i.e. l[σ] = l{c/u∈σ | lv(u)<lv(l)}.

O. Beyersdorff, L. Chew, and M. Janota 81

The simplest instantiation-based calculus we consider is the calculus ∀Exp+Res, whose
rules are presented in Figure 3. The system IR-calc extends ∀Exp+Res by enabling partial
assignments in annotations. To do so, we utilize the auxiliary operations of completion and
instantiation. For assignments τ and µ, we write τ Y µ for the assignment σ defined as
follows: σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = µ(x) if x ∈ dom(µ). The operation
τ Y µ is called completion because µ provides values for variables not defined in τ . The
operation is associative and therefore we can omit parentheses. For an assignment τ and an
annotated clause C the function inst(τ, C) returns the annotated clause

{
l[σ Y τ] | lσ ∈ C

}
.

The system IR-calc is defined in Figure 4.
The calculus IRM-calc further extends IR-calc by enabling annotations containing ∗. The

rules of the calculus IRM-calc are presented in Figure 5. The symbol ∗ may be introduced
by the merge rule, e.g. by collapsing x0/u ∨ x1/u into x∗/u. The calculus IR-calc p-simulates
∀Exp+Res as well as Q-Res. The calculus IRM-calc p-simulates IR-calc as well as LD-Q-Res [8].

3 A lower bound in IR-calc for the formulas of Kleine Büning et al.

Our first main result is a proof complexity analysis of a well-known family of formulas
KBKF(t) first defined by Kleine Büning et al. [34]. Here we prove that the KBKF(t)
formulas are hard for IR-calc, which is stronger than Q-Res (Cor. 16,[8, Thm 6]). This
provides the first non-trivial lower bound for IR-calc, and further even separates the system
from LD-Q-Res.

I Definition 1 (Kleine Büning, Karpinski and Flögel [34]). The formula KBKF(t) has prefix
∃y0, y1,0, y1,1 ∀x1 ∃y2,0, y2,1 ∀x2 . . . ∀xt−1 ∃yt,0, yt,1 ∀xt ∃yt+1 . . . yt+t and matrix clauses

C− = {¬y0} C0 = {y0,¬y1,0,¬y1,1}
C0
i = {yi,0, xi,¬yi+1,0,¬yi+1,1} C1

i = {yi,1,¬xi,¬yi+1,0,¬yi+1,1} for i ∈ [t− 1]
C0
t = {yt,0, xt,¬yt+1, . . . ,¬yt+t} C1

t = {yt,1,¬xt,¬yt+1, . . . ,¬yt+t}
C0
t+i = {xi, yt+i} C1

t+i = {¬xi, yt+i} for i ∈ [t].

Let us verify that the KBKF(t) formulas are indeed false QBFs and – at the same time –
provide some intuition about them. The existential player starts by playing y0 = 0 because
of clause C−. Clause C0 forces the existential player to set one of y1,0, y1,1 to 0. Assume
the existential chooses y1,0 = 0 and y1,1 = 1. If the universal player tries to win, he will
counter with x1 = 0, thus forcing the existential player again to set one of y2,0, y2,1 to 0.
This continues for t rounds, leaving in each round a choice of yi,0 = 0 or yi,1 = 0 to the
existential player, to which the universal counters by setting xi accordingly. Finally, the
existential player is forced to set one of yt+1, . . . , y2t to 0. This will contradict one of the
clauses C0

t+1, C
1
t+1, . . . , C

0
2t, C

1
2t, and the universal player wins.

It is clear from this explanation, that the existential player has exponentially many choices
and the universal player likewise needs to uniquely counter to all these choices to win. The
aim of this section is to show that IR-calc and therefore Q-Res in some sense need to go
through all these exponentially many options in order to refute the formula, thus forcing
IR-calc and Q-Res proofs of exponential size.

Syntactically, KBKF(t) are existential Horn formulas, i.e., they contain at most one
positive existential literal per clause. In fact, they even have a stronger property: C− is the
only clause without a head (a positive existential literal). We will strengthen this in the next
lemma by a simple modification such that now all clauses have a head.

I Lemma 2. We can transform every IR-calc refutation π of KBKF(t) into a IR-calc proof
π′ of y0 from KBKF(t) \ {¬y0}. We perform this by: (i) deleting every instance of the axiom

STACS 2015

82 Proof Complexity of Resolution-based QBF Calculi

{¬y0}; (ii) for every clause without a positive existential literal we add the literal y0 to the
clause with the empty annotation.

After this transformation, which preserves proof length, we can focus on proofs of y0 from
KBKF(t) \ {¬y0}. Exploiting that all axioms now contain exactly one positive literal we
show a number of invariants, which hold for all clauses in all IR-calc proofs of the formulas.

I Lemma 3. Let C be an annotated clause in an IR-calc proof of y0 from KBKF(t) \ {¬y0}.
Then the following invariants hold for C:
1. C has exactly one positive literal yAh,a for h ≤ t or yAh for h > t (or y0 with no annotation).

We call this unique literal the head of C and use the indices h and a also in the following
invariants to denote its position as well as A for its annotation.

2. If, for some j ∈ [2t], b ∈ {0, 1} and B some annotation, ¬yBj,b ∈ C (or ¬yBj ∈ C), then
j > h. i.e. literals in the body are always at a higher quantification level than the head.

3. If ¬yBj,b ∈ C (or ¬yBj ∈ C), then A ∪ {a/xh} ⊆ B, where all extra annotations in B are
of the form ck/xk for k > h. This invariant acts vacuously for h > t where the clauses
contain no negative literals.

4. If ¬yBj,b ∈ C (or ¬yBj ∈ C) then for all k, h ≤ k < j (or h ≤ k ≤ t, when j > t) there is
ck ∈ {0, 1} such that ck/xk ∈ B.

5. If ¬yBj,b ∈ C with j ≤ t, then for k ∈ [t], d ∈ {0, 1} and D some annotation, there is no
¬yDk,d ∈ C nor ¬yDt+k ∈ C such that B ∪ {b/xj} ⊆ D.

We will now give the overall idea of our lower bound argument. For a clause C we define
a set Σ(C) of annotations associated with C. Our lower bound argument then rests on
counting the set Σ(C) as we progress through the proof. More precisely, we show that axioms
have empty Σ and that instantiation steps do not change Σ at all. In a resolution step
D1 D2

C , the set Σ(C) either equals Σ(D1) ∪ Σ(D2) or grows by exactly one new element. In
some sense, we only make progress in the proof in the latter case, and we need exponentially
many resolution steps of this kind. Putting everything together we find that by the end of
the proof we must have collected all the exponentially many annotations in Σ(y0), implying
an exponential lower bound to the proof length (Theorem 6).

We now just give the skeleton of the formal argument. We start with the definition of Σ.

I Definition 4. Let C be a clause in an IR-calc proof of y0 from KBKF(t)\{¬y0}. We define
the set Σ(C) of complete annotations (to all xi) by the following rules.

1. Σ(C) = ∅ when C = {yBt+j} (type-1 clause).
Assume now that C is not type-1 and has the head yAh,a.

2. Σ(C) = ∅ when some xj , j < h is not given a value in A (type-2 clause).
3. Otherwise (type-3 clause), Σ(C) is defined by the following process of adding and removing

assignments according to C, which now has complete annotations for each literal by
Invariant 4. We start by initialising Σ(C) as all complete annotations X to x1, . . . , xt
such that A ∪ {a/xh} ⊆ X (if y0 is the head we add the complete set of annotations).
For each ¬yBj,b ∈ C with j ≤ t we remove from Σ(C) all complete annotations X such
that B ∪ {b/xj} ⊆ X. Invariant 5 ensures that annotations will not be deleted twice here.
Finally, we remove annotations B for all yBj ∈ C with j > t (note that B is necessarily
complete by Invariants 3 and 4).

For type-3 clauses C, Σ(C) counts the complete annotations (and their corresponding
literals) resolved away, negative literals are required to be removed and positive literals
increase Σ because they can be used to remove a negative literal by resolving. It works by

O. Beyersdorff, L. Chew, and M. Janota 83

making each yi,j worth twice as much as yi+1,k because of the Cji axioms. Types 1 and 2 are
special cases.

The next lemma is the key to our lower bound.

I Lemma 5. Let C be a clause in an IR-calc proof from KBKF(t) \ {¬y0}.
1. If C is the instantiation of an axiom, then Σ(C) = ∅.
2. If C is derived by instantiating D, then Σ(C) = Σ(D).
3. Let C be derived by resolving D1 and D2. Let t denote disjoint union. If D1 is a type-3

clause that is resolved with the type-1 clause D2 = {yBt+j} for j > 0 and there is no
k > 0, k 6= j such that ¬yBt+k ∈ D1, then Σ(C) = Σ(D1) t Σ(D2) t {B} = Σ(D1) t {B}.
Otherwise Σ(C) = Σ(D1) t Σ(D2).

We can now deduce that all proofs of KBKF(t) in IR-calc are of at least exponential size.

I Theorem 6. All proofs of KBKF(t) in IR-calc have length at least 2t.

Since IR-calc simulates Q-Res [8], we get as a corollary the hardness of KBKF(t) for Q-Res
as already stated in [34].

I Corollary 7. All proofs of KBKF(t) in Q-Res are of at least exponential size.

As the formulas KBKF(t) are easy for long-distance and universal resolution [22, 43] we
obtain the following exponential separations.

I Corollary 8. IR-calc does neither simulate LD-Q-Res nor QU-Res.

4 Lower bounds for Q-Res and QU-Res via strategy extraction

This section shows a new and conceptually very different lower bound for QU-Res (and thus
for Q-Res). This lower bound constitutes in fact a new lower bound technique that is widely
applicable (cf. Sec. 6). We illustrate this technique here with an exponential lower bound for
parity formulas in QU-Res. This provides a separation between QU-Res and ∀Exp+Res.

The lower bound argument hinges on strategy extraction, which is a widely used paradigm
in QBF solving and proof systems. We recall that QU-Res admits strategy extraction via a
computationally very restricted model, namely decision lists.

I Definition 9 (decision list [39]). A decision list D = (t1, c1), . . . , (tn, cn) is a finite sequence
of pairs where ti is a term and ci ∈ {0, 1} is a Boolean constant. Additionally, the last term
is the empty term (equivalent to true). For an assignment µ, a decision list D evaluates to ci
if i is the least index such that µ |= ti, in such case we say that (ti, ci) triggers under µ.

Winning strategies in form of decision lists can be efficiently extracted from QU-Res proofs:

I Theorem 10 (Balabanov, Jiang, Widl [3, 4]). Given a Q-Res or QU-Res refutation π of
QBF φ, there exists a winning strategy for the universal player for φ, such that each of its
strategies for the universal variables is computable by a decision list of size polynomial in |π|.

Balabanov et al. use a different form than decision lists, but it is semantically equivalent.
We deem decision lists as more intuitive for our purposes. Note that that under our definition,
a strategy for a universal variable may take as input outputs of strategy functions of smaller
index (similarly as in the strategy construction by Goultiaeva et al. [25]).

The general idea behind our lower bound technique is as follows. First, we observe that
we can define a family of QBFs φf , such that every winning strategy of the universal player

STACS 2015

84 Proof Complexity of Resolution-based QBF Calculi

must compute a unique Boolean function f (Lemma 12). If we know that strategy extraction
is possible by a weak computational model, say AC0, we can carefully choose the Boolean
formula φf such that the unique winning strategy f cannot be computed by AC0 circuits.
As the extracted strategy is polynomial in the proof, this implies a lower bound on the proof
size. Thus we immediately turn circuit lower bounds to lower bounds for the proof size.

We will now implement this idea for the parity function Parity(x1, . . . , xn) = x1⊕· · ·⊕xn,
which is the classical example of a function not computable in AC0.

I Theorem 11 (Furst, Saxe, Sipser [23], Håstad [26]). Parity /∈ AC0. In fact, every non-
uniform family of bounded-depth circuits computing Parity is of exponential size.

We first observe how to construct a QBF that forces a unique winning strategy.

I Lemma 12. Consider the QBF ∃x1, . . . , xn∀z. (z ∨ φf) ∧ (¬z ∨ ¬φf), where φf is a
propositional formula depending only on the variables x1, . . . , xn. Let f : 2n → {0, 1} be a
Boolean function that returns 1 iff φf evaluates to true. Then there is a unique strategy for
the universal player for z, which is z ← f .

We will now use this idea specifically for the parity function. Consider the QBF Φ =
∃X∀z∃T. (F+ ∧ F−) where F+ is a CNF encoding of z ∨ Parity(X) and F− encodes
¬z∨¬Parity(X). Both F+ and F− use additional variables in T . More precisely, for N > 1
define QParityN as follows. Let xor(o1, o2, o) be the set of clauses {¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨
o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}, which defines o to be o1 ⊕ o2. Define QParityN as

∃x1, . . . , xN ∀z ∃t2, . . . , tN . xor(x1, x2, t2) ∪
⋃N
i=3 xor(ti−1, xi, ti) ∪ {z ∨ tN ,¬z ∨ ¬tN}.

Note that since we want to encode parity in CNF, i.e. a bounded-depth formula, and
Parity /∈ AC0, we need to use further existential variables (recall that existential AC0

characterises all of NP). Choosing existential variables ti to encode the prefix sums x1⊕· · ·⊕xi
of the parity x1 ⊕ · · · ⊕ xN provides the canonical CNF formulation of parity.

To use the lower bound of Theorem 11 we need to verify that QU-Res enables strategy
extraction in AC0. This holds as decision lists can be turned into bounded-depth circuits.

I Lemma 13. If fD can be represented as a polynomial-size decision list D, then fD ∈ AC0.

Proof. Let S = {i | (ti, 1) ∈ D} be the indices of all pairs in D with 1 as the second
component. Observe that fD evaluates to 1 under µ iff one of the ti with i ∈ S triggers under
µ. For each ti with i ∈ S construct a function fi = ti ∧

∧i−1
l=1 ¬tl. Construct a circuit for the

function
∨
i∈S fi, which is equal to fD and is computable in AC0 as all ti are just terms. J

We can now put everything together and turn the circuit lower bound of Theorem 11
into a lower bound for proof size in QU-Res.

I Theorem 14. Any QU-Res refutation of QParityN is of exponential size in N .

Proof. By Lemma 12 there is a unique strategy for the variable z in QParityN , which is
the Parity function on N variables. From Theorem 10, there is a polynomial-time algorithm
for constructing a decision list DN from any QU-Res refutation of QParityN . Such decision
list can be converted in polynomial time into a circuit with bounded depth by Lemma 13.
Hence, the decision list must be of exponential size in N due to Theorem 11. J

In contrast to this lower bound, the parity formulas are easy in ∀Exp+Res.

I Lemma 15. The formulas QParityN have polynomial-size ∀Exp+Res refutations.

O. Beyersdorff, L. Chew, and M. Janota 85

Proof sketch. Expand z in both polarities, which generates the clauses xor(x1, x2, t
0/z
2) ∪⋃N

i=3 xor(t0/zi−1, xi, t
0/z
i) ∪ {t0/zN } and xor(x1, x2, t

1/z
2) ∪

⋃N
i=3 xor(t1/zi−1, xi, t

1/z
i) ∪ {¬t1/zN }.

Inductively, for i = 2, . . . , N derive clauses representing t0/zi = t
1/z
i . This lets us derive a

contradiction using the clauses t0/zN and ¬t1/zN . J

Theorem 14 together with Lemma 15 immediately give the following separations.

I Corollary 16. Q-Res and QU-Res do not simulate ∀Exp+Res, IR-calc, IRM-calc.

This also has consequences for the complexity of strategy extraction in ∀Exp+Res.

I Corollary 17. Winning strategies for ∀Exp+Res cannot be computed in AC0. This even
holds when the system ∀Exp+Res is restricted to formulas with constant quantifier complexity.

Note, however, that strategy extraction for IRM-calc is in P due to [8, Thm. 4].

5 Extending the lower bound to LD-Q-Res and LQU+-Res

We now aim to extend the lower bound from the previous section to stronger QBF proof
systems using long-distance resolution. For this we cannot directly use the strategy extraction
method from the last section. However, we will slightly modify the parity formulas and then
reduce the hardness of those in the stronger systems to the hardness of QParity in Q-Res.
As the modified formulas remain easy for ∀Exp+Res, these lower bounds imply many new
separations between the proof systems involved.

We start by extending the lower bound to LD-Q-Res, which will provide a separation of
LD-Q-Res and ∀Exp+Res. For this we consider a variant of the parity formulas from the last
section. Let xorl(o1, o2, o, z) be the set of clauses {z ∨ ¬o1 ∨ ¬o2 ∨ ¬o, z ∨ o1 ∨ o2 ∨ ¬o, z ∨
¬o1 ∨ o2 ∨ o, z ∨ o1 ∨ ¬o2 ∨ o} (xorl defines o to be equal to o1 ⊕ o2 if z = 0). The formulas
LQParityN are constructed from QParityN by replacing each occurrence of xor(. . .) by
two copies xorl(. . . , z) and xorl(. . . ,¬z). It is easy to verify that the same arguments as for
QParity in Section 4 also apply to LQParity, yielding:

I Proposition 18. The formulas LQParityN have polynomial-size ∀Exp+Res refutations,
but require exponential-size Q-Res refutations.

We now want to show that LQParity is hard for LD-Q-Res by arguing that long-distance
steps do not help to refute these formulas. In the next two lemmas we will show that this
actually applies to all QBFs Φ meeting the following condition.

I Definition 19. We say that z is completely blocked in a QBF Φ, if all clauses of Φ contain
the universal variable z and some existential literal l such that lv(z) < lv(l).

I Lemma 20. Let Φ be a QBF and z be completely blocked in Φ. Let further C be a clause
derived from Φ by LD-Q-Res. If C contains some existential literal l such that lv(z) < lv(l),
then z ∈ C or ¬z ∈ C, or z∗ ∈ C.

I Lemma 21. Let Φ be a QBF such that z is completely blocked in Φ and let π be a refutation
of Φ such that the variable z is ∀-reduced as early as possible. Then the derivation of the
empty clause in π does not contain z∗ in any of its clauses.

This enables us to prove the hardness of LQParity in LD-Q-Res.

I Theorem 22. Any refutation of LQParityN in LD-Q-Res is exponential in N .

STACS 2015

86 Proof Complexity of Resolution-based QBF Calculi

Proof. Any LD-Q-Res refutation π can be in polynomial time translated into a refutation π′
such that ∀-reductions are carried out as soon as possible (such a refutation has clauses that
are equal to the clauses of π or some universal literals are missing). From Lemma 21, the
derivation of ⊥ in π′ contains no occurrences of the merged literal z∗, hence any such clauses
can be removed from the refutation. Therefore π′ is in fact also a Q-Res refutation. Hence,
π must be exponential in N due to Proposition 18. J

Our next goal is to extend the lower bound for the parity formulas for the system LQU+-
Res, which enables both long-distance and universal resolution. For such we again modify
the formula QParity, using a similar technique as in [4]. The trick is essentially to double
the universal literals so they form tautological clauses when resolved. This way resolution on
universal variables does not give any advantage.

We define formulas QUParityN from LQParityN as follows: replace the universal
quantifier ∀z by two new quantifiers ∀z1∀z2 and replace all occurrences of the literal z by
z1 ∨ z2 and likewise of ¬z by ¬z1 ∨ ¬z2. It is clear that these formulas are false as the
universal player should play both z1 and z2 as they would z in QParity. In a similar
argument as for LQParity we now show that neither long-distance nor universal resolution
steps help to refute QUParity

I Theorem 23. QUParityN require exponential-size refutations in LQU+-Res.

As QUParityN still remains easy for ∀Exp+Res in a proof similar to Lemma 15 we get the
following separations.

I Corollary 24. LQU+-Res does not simulate ∀Exp+Res, IR-calc, and IRM-calc.

6 Strategy extraction as a general lower bound technique

The results of Sect. 4 can be vastly generalised. We say that a QBF proof system P has
strategy extraction in complexity class C if from each proof π of a QBF ϕ, a winning strategy
for the universal player, i.e. strategies for all universal variables, can be computed from π

in C.
Let L be a language in Σp

k/poly for some k ≥ 0. Let L = {x ∈ Σ? | ∃y1∀y2 . . . Qyk. A(x, y)},
where A is a predicate computable in P/poly. We can thus compute A by a sequence of
polynomial-size circuits An. The computation of each such circuit An can be described
by a CNF Cn(x̄, ȳ, w̄), where x̄ are the propositional variables associated with the input x,
ȳ1, . . . , ȳk are the propositional variables for the witnesses y1, . . . , yk, and w̄ are auxiliary
propositional variables describing the gates of the circuit An.

Now let ΦL,n(x̄, ȳ1, . . . , ȳk, z, w̄) = ∃x̄∀z∃ȳ1∀ȳ2 . . . Qȳk∃w̄. (z ↔ Cn(x̄, ȳ1, . . . , ȳk, w̄)).
Clearly, this is a false QBF as it expresses that x is both in and outside L. Moreover,
from the construction of the formula it is clear that the only winning strategy for the
universal player is to play z = 1−χL(x), where χL is the characteristic function of L, and to
supply arbitrary values for the remaining universal variables ȳ2 etc. Therefore each winning
strategy for the universal player for ΦL will have to compute the characteristic function of L.
This immediately yields conditional lower bounds for proof systems with strategy extraction:

I Theorem 25. Let P be QBF proof system with strategy extraction in P/poly. Then P is
not polynomially bounded, unless PH ⊆ P/poly.

Note that the assumption PH 6⊆ P/poly is considered very weak. In fact, even NP∩coNP ⊆
P/poly is considered unlikely as factoring is in NP ∩ coNP. Also by the Karp-Lipton

O. Beyersdorff, L. Chew, and M. Janota 87

theorem [32], NP ⊆ P/poly implies that the polynomial hierarchy collapses to the second
level, and there are even stronger Karp-Lipton collapse consequences known (cf. [18, 13]).

Theorem 25 can be applied e.g. to IRM-calc, which has strategy extraction in P [8].

I Corollary 26. IRM-calc is not polynomially bounded unless PH ⊆ P/poly.

If the proof system allows for strategy extraction via weaker models, then we can improve
the conditional lower bounds to unconditional lower bounds, possibly even exponential. We
exemplify this paradigm in our next results.

I Theorem 27. Let P be a QBF proof system.
1. Let P have strategy extraction in a complexity class C such that the non-uniform version

of C is strictly weaker than NP/poly. Then P is not polynomially bounded.
2. If P has strategy extraction in AC0, then P requires exponential-size proofs, even for

formulas of bounded quantifier complexity.

Our previous Theorem 14 is an instance of item 2 of Theorem 27. In contrast, we can
show that the method of strategy extraction is not effective for ∀Exp+Res (and therefore
neither for IR-calc nor IRM-calc), because all formulas that are potentially hard via the
strategy extraction method are easy for ∀Exp+Res, similarly as in Lemma 15.

I Proposition 28. For every language L ∈ P/poly the formulas ΦL,n have polynomial-size
∀Exp+Res refutations.

We remark that the same method of constructing short ∀Exp+Res proofs does not work
once we have further universal or existential variables in the formulas, i.e. if L is a language
from a level Σp

i or Πp
i with i ≥ 1.

7 Conclusion

We have shown new lower bounds for Q-Res, IR-calc, LD-Q-Res and LQU+-Res, and thereby
settled the relative complexity of the main resolution-based QBF calculi. This reveals an
almost complete picture of the simulation order of these proof systems (cf. Fig. 1). Most
importantly, our results show striking separations between all proof systems modelling CDCL-
based QBF solving vs. proof systems modelling expansion-based solving. This provides
theoretical evidence that these two paradigms for QBF-solving are indeed complementary
and should enhance the power of the solvers when carefully used in conjunction.

Two specific questions that remain open are to show explicit lower bounds for natural
QBF formulas in IRM-calc and to fully explore the relationship of this system to universal
resolution. With respect to lower bounds for IRM-calc we remark that it is easy to transfer
classical resolution lower bounds to this system (e.g., use the existentially closed version
of the pigeonhole principle) and thereby improve Corollary 26 to an unconditional lower
bound. However, it would be interesting to find meaningful classes of QBFs that are hard for
IRM-calc. Regarding the relationship to universal resolution we leave open whether IRM-calc
can simulate LQU+-Res (but conjecture incomparability of the systems).

A more general and challenging open problem is to determine the extent of the applicability
of our new lower bound method via strategy extraction. Here we have shown that this
method is very effective for ∃∀∃-formulas in Q-Res, but fails for exactly these formulas in
expansion-based systems as ∀Exp+Res and stronger. Is it possible to use the technique
for different types of QBFs even for unconditional lower bounds for stronger QBF proof
systems? On open question remains how these techniques apply to the recent systems
Q(D)-resolution [42] and QRAT [27].

STACS 2015

88 Proof Complexity of Resolution-based QBF Calculi

Acknowledgments This work was partially supported by CMU-Portugal grant AMOS
(CMUP-EPB/TIC/0049/2013), FCT grant POLARIS (PTDC/EIA-CCO/123051/2010),
INESC-ID’s multiannual PIDDAC funding PEst-OE/EEI/LA0021/2011, EPSRC grant
EP/L024233/1, and a grant from the John Templeton Foundation. The second author was
supported by a Doctoral Training Grant from EPSRC.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-

bridge University Press, 2009.
2 Albert Atserias and Sergi Oliva. Bounded-width QBF is PSPACE-complete. J. Comput.

Syst. Sci., 80(7):1415–1429, 2014.
3 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.

Formal Methods in System Design, 41(1):45–65, 2012.
4 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and

their proof complexities. In Sinz and Egly [41], pages 154–169.
5 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and

their proof complexities. In SAT, pages 154–169, 2014.
6 Marco Benedetti. Evaluating QBFs via symbolic Skolemization. In Franz Baader and

Andrei Voronkov, editors, LPAR, volume 3452, pages 285–300. Springer, 2004.
7 Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience

and perspectives. JSAT, 5(1-4):133–191, 2008.
8 Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. On unification of QBF resolution-based

calculi. In MFCS, II, pages 81–93, 2014.
9 Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of

tree-like Q-resolution size. In LATA. Springer, 2015.
10 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower bound for the pigeonhole prin-

ciple in tree-like resolution by asymmetric prover-delayer games. Information Processing
Letters, 110(23):1074–1077, 2010.

11 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resol-
ution size. Information Processing Letters, 113(18):666–671, 2013.

12 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity of DPLL
search procedures. ACM Transactions on Computational Logic, 14(3), 2013.

13 Olaf Beyersdorff and Sebastian Müller. A tight Karp-Lipton collapse result in bounded
arithmetic. ACM Transactions on Computational Logic, 11(4), 2010.

14 Armin Biere. Resolve and expand. In SAT, pages 238–246, 2004.
15 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of

Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

16 Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM J. Comput.,
30(5):1462–1484, 2000.

17 Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic,
163(7):906–917, 2012.

18 Jin-Yi Cai. Sp2 ⊆ ZPPNP . Journal of Computer and System Sciences, 73(1):25–35, 2007.
19 Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge

University Press, 2010.
20 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof

systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.
21 Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. Conformant planning

as a case study of incremental QBF solving. CoRR, abs/1405.7253, 2014.

O. Beyersdorff, L. Chew, and M. Janota 89

22 Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof genera-
tion and strategy extraction in search-based QBF solving. In McMillan et al. [36], pages
291–308.

23 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

24 Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Reasoning with quantified
boolean formulas. In Biere et al. [15], pages 761–780.

25 Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform approach for
generating proofs and strategies for both true and false QBF formulas. In Toby Walsh,
editor, IJCAI, pages 546–553. IJCAI/AAAI, 2011.

26 Johan Håstad. Computational Limitations of Small-depth Circuits. MIT Press, Cambridge,
MA, USA, 1987.

27 Marijn Heule, Martina Seidl, and Armin Biere. A unified proof system for QBF prepro-
cessing. In Automated Reasoning – 7th International Joint Conference, IJCAR, volume
8562, pages 91–106. Springer, 2014.

28 Mikoláš Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke. Solving
QBF with counterexample guided refinement. In Alessandro Cimatti and Roberto Sebasti-
ani, editors, SAT, volume 7317, pages 114–128. Springer, 2012.

29 Mikoláš Janota, Radu Grigore, and Joao Marques-Silva. On QBF proofs and preprocessing.
In McMillan et al. [36], pages 473–489.

30 Mikoláš Janota and Joao Marques-Silva. ∀Exp+Res does not P-Simulate Q-resolution.
International Workshop on Quantified Boolean Formulas, 2013.

31 Mikoláš Janota and Joao Marques-Silva. On propositional QBF expansions and Q-
resolution. In M. Järvisalo and A. Van Gelder, editors, SAT, pages 67–82. Springer, 2013.

32 Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uni-
form complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, pages
302–309. ACM Press, 1980.

33 Hans Kleine Büning and Uwe Bubeck. Theory of quantified boolean formulas. In Biere
et al. [15], pages 735–760.

34 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

35 Jan Krajíček. Interpolation theorems, lower bounds for proof systems and independence
results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997.

36 Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors. Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR. Springer, 2013.

37 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
38 Jussi Rintanen. Asymptotically optimal encodings of conformant planning in QBF. In

AAAI, pages 1045–1050. AAAI Press, 2007.
39 Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.
40 Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,

13(4):417–481, 2007.
41 Carsten Sinz and Uwe Egly, editors. Theory and Applications of Satisfiability Testing -

SAT, volume 8561. Springer, 2014.
42 Friedrich Slivovsky and Stefan Szeider. Variable dependencies and Q-resolution. In Sinz

and Egly [41], pages 269–284.
43 Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula

solving. In Michela Milano, editor, CP, volume 7514, pages 647–663. Springer, 2012.
44 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean satisfiab-

ility solver. In ICCAD, pages 442–449, 2002.

STACS 2015

Welfare Maximization with Friends-of-Friends
Network Externalities
Sayan Bhattacharya∗1, Wolfgang Dvořák2, Monika Henzinger2, and
Martin Starnberger2

1 Institute of Mathematical Sciences, Chennai, India.
2 University of Vienna, Faculty of Computer Science, Austria

Abstract
Online social networks allow the collection of large amounts of data about the influence between
users connected by a friendship-like relationship. When distributing items among agents forming
a social network, this information allows us to exploit network externalities that each agent
receives from his neighbors that get the same item. In this paper we consider Friends-of-Friends
(2-hop) network externalities, i.e., externalities that not only depend on the neighbors that get
the same item but also on neighbors of neighbors. For these externalities we study a setting where
multiple different items are assigned to unit-demand agents. Specifically, we study the problem
of welfare maximization under different types of externality functions. Let n be the number of
agents and m be the number of items. Our contributions are the following: (1) We show that
welfare maximization is APX-hard; we show that even for step functions with 2-hop (and also with
1-hop) externalities it is NP-hard to approximate social welfare better than (1−1/e). (2) On the
positive side we present (i) an O(

√
n)-approximation algorithm for general concave externality

functions, (ii) an O(logm)-approximation algorithm for linear externality functions, and (iii)
an (1 − 1/e) 1

6 -approximation algorithm for 2-hop step function externalities. We also improve
the result from [6] for 1-hop step function externalities by giving a (1 − 1/e)/2-approximation
algorithm.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity, G.1.2
Approximation

Keywords and phrases network externalities, welfare maximization, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.90

1 Introduction

Assume you have to form a committee and need to decide whom to choose as a member. It
seems like a good strategy to select members from your network that are well-connected to
the whole field so that not only the knowledge of the actual members but also of their whole
network can be called upon when needed. Along the same vein assume you want to play a
multiplayer online game but you do not have enough friends who are willing to play with
you. Then it is a good idea to ask these friends to contact their friends whether they are
willing to play as well. Both these settings can be modeled by a social network graph and
in both settings not the direct (or 1-hop) neighbors alone, but instead the 1-hop neighbors
in combination with the neighbors of neighbors (or 2-hop neighbors) are the decisive factor.
Note that the 2-hop neighborhoods cannot be modeled by 1-hop neighborhoods through the

∗ The work was done while the author was at the University of Vienna, Faculty of Computer Science.

© Sayan Bhattacharya, Wolfgang Dvořák, Monika Henzinger, and Martin Starnberger;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 90–102

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.90
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Bhattacharya, W. Dvořák, M. Henzinger, and M. Starnberger 91

insertion of an additional edge (to the neighbor of the neighbor) as we require that every
participating neighbor of a neighbor is adjacent to a participating neighbor. In the above
example, we can only get the opinion of a contact of a contact if we asked the contact before.
In the same way, the participation of a friend of a friend will only be possible if there is a
participating friend that invites him.

There has been a large body of work by social scientists and, in the last decade, also by
computer scientists (see e.g., the influential paper by Kempe, Kleinberg, and Tardos [18]
and its citations) to model and analyze the effect of 1-hop neighborhoods. The study of
2-hop neighborhoods has received much less attention (see e.g., [10, 17]). This is surprising
as a recent study [14] of the Facebook network shows that the median Facebook user has
31k people as “friends of friends” and due to some users with very large friend lists, the
average number of friends-of-friends reaches even 156k. Thus, even if each individual friend
of a friend has only a small influence on a Facebook user, in aggregate the influence of the
friends-of-friends might be large and should not be ignored.

We, therefore, initiate the study of the influence of 2-hop neighborhoods in the popular
assignment setting, where items are assigned to users whose values for the item depend on
who else in their neighborhood has the item. There is a large body of work on mechanisms
and pricing strategies for this problem with a single [5, 15, 4, 1, 7, 19, 11, 3, 13] or multiple
items [8, 2, 6, 12, 21, 22, 20, 16] when the valuation function of a user depends solely on
the 1-hop neighborhood of a user and the user itself. All this work assumes that there is
an infinite supply of items (of each type if there are different items) and the users have
unit-demand, that is, they want to buy only one item. This is frequently the case, for
example, if the items model competing products or if the user has to make a binary decision
between participating or not participating. In the above examples, this requirement would
model that each user can only be in one committee or play one game at a time.

Thus, we study the allocation of items to users in a setting with 2-hop network externalities,
where the valuation that a user derives from the products depends on herself, her 1-hop, and
her 2-hop neighborhood with the goal of maximizing the social welfare of the allocation. The
prior work that is most closely related to our work is the work by Bhalgat et al. [6], where
they study the multi-item setting with 1-hop externality functions and give approximation
algorithms for different classes of externality functions. For linear externalities they give a
1/64-approximation algorithm and for step function externalities they get an approximation
ratio of (1 − 1/e)/16 ≈ 0.04. Additionally they present a 2O(d)-approximation algorithm
for convex externalities that are bounded by polynomials of degree d and a polylogarithmic
approximation algorithm for submodular externalities.

1.1 Our Results
The Model: Let G = (V,E) be an undirected graph modeling the social network. Consider
any agent j ∈ V who receives item i ∈ I, and let Sij ⊆ V \ {j} denote the (2-hop) support
of agent j for item i: this is the set of agents who contribute towards the valuation of j.
Specifically, an agent j′ ∈ V \ {j} belongs to the set Sij iff j′ gets item i and the following
condition holds: either j′ is a neighbor of j (i.e., (j, j′) ∈ E), or j and j′ have a common
neighbor j′′ who also gets item i. The valuation received by agent j is equal to λij ·extij(|Sij |),
where λij is the agent’s intrinsic valuation and extij(|Sij |) is her 2-hop externality for item
i. The goal is to compute an assignment of items to the agents that maximizes the social
welfare, which is defined as the sum of the valuations obtained by the agents.

We study three types of 2-hop externality functions, namely concave, linear and step
function externalities.

STACS 2015

92 Welfare Maximization with Friends-of-Friends Network Externalities

Step-function externalities: Consider a game requiring a minimal or fixed number of
players (larger than two), e.g., Bridge or Canasta, then the externality is a step function.
For step functions we show that it is NP-hard to approximate the social welfare within a
factor of (1− 1/e). The result holds for 1-hop and 2-hop externalities. We also show that
the problem remains APX-hard when the number of items is restricted to 2. Then we give
an (1− 1/e)/6 ≈ 0.1-approximation algorithm for 2-hop step function externalities. Note
that this is within a factor of 1/6 of the hardness bound. Our technique also leads to a
combinatorial (1−1/e)/2 ≈ 0.3-approximation algorithm for 1-hop step function externalities,
improving the approximation ratio of the LP-based algorithm in [6].

Linear externalities: First we show that social welfare maximization for linear 2-hop ex-
ternality functions is NP-hard.1 Then we give an O(log n)-approximation algorithm for linear
2-hop externalities. For these externality functions we can relax the unit-demand requirement.
Specifically, we can handle the setting where each user j can buy up to cj different items,
where cj is a parameter given in the input.2

Concave externalities: We give an O(
√
n) -approximation algorithm when the externality

functions extij(.) are concave and monotone.

Extensions: Our algorithms for linear and concave externalities can be further generalized
to allow a weighting of 2-hop neighbors so that 2-hop neighbors have a lower weight than
1-hop neighbors. This can be useful if it is important that the influence of 2-hop neighbors
does not completely dominate the influence of the 1-hop neighbors.

Techniques: The main challenge in dealing with 2-hop externalities is as follows. Fix an
agent j who gets an item i, and let Vi ⊆ V denote the set of all agents who get item i. Recall
that the agent j’s externality is given by extij(|Sij |), where the set Sij is called the support
of agent j. The problem is that |Sij |, as a function of Vi \ {j}, is not submodular. This is in
sharp contrast with the 1-hop setting, where the support for the agent’s externality comes
only from the set of her 1-hop neighbors who receive item i.

All the mechanisms in [6] use the same basic approach: First solve a suitable LP-relaxation
and then round its values independently for each item i. In the 2-hop setting, however, the
lack of submodularity of the support size (as described above) leads to many dependencies
in the rounding step. Nevertheless, we show how to extend the technique in [6] to achieve
the approximation algorithm for linear 2-hop externality functions, using a novel LP. We
further give a simple combinatorial algorithm with an approximation guarantee of O(

√
n)

for 2-hop concave externalities. For this, we show that either an Ω(1/
√
n)-fraction of the

optimal social welfare comes from a single item, or we can reduce our problem to a setting
with 1-hop step function externalities by losing an (1− Ω(1/

√
n))-fraction of the objective.

Our approach for 2-hop step functions is different. We use a novel decomposition of the
graph into a maximal set of disjoint connected sets of size 3, 2, and 1. We say an assignment
is consistent if it assigns all the nodes (i.e., users) in the same connected set the same item.

1 Theorem 3.1 in [6] claims that the welfare maximization problem for linear 1-hop externality functions
in complete graphs is MaxSNP-hard, which would imply our result, but, as we show in the full version,
this claim is not true.

2 This is also true for the results in [6]. In both results, the assumption is that the valuation functions
are additive over the items.

S. Bhattacharya, W. Dvořák, M. Henzinger, and M. Starnberger 93

We show first that restricting ourself to consistent assignments reduces the maximum welfare
by at most a factor of 1/6. Finally, we show that finding the optimal consistent assignment
is equal to maximizing social welfare in a scenario where agents are not unit demand, do
not influence each other, and have valuation functions that are fractionally subadditive in
the items they get assigned. For the latter we use the (1− 1/e)-approximation algorithm by
Feige [9].

2 Notations and Preliminaries

We are given a simple undirected graph G = (V,E) with |V | = n nodes. Each node j ∈ V in
this graph is an agent, and there is an edge (j, j′) ∈ E iff the agents j and j′ are friends with
each other. There is a set of m items I = {1, . . . ,m}. Each item is available in unlimited
supply, and each agent wants to get at most one item. An assignment A : V → I specifies
the item received by every agent, and under this assignment, uj(A, G) gives the valuation
of an agent j ∈ V . Our goal is to find an assignment that maximizes the social welfare∑

j∈V uj(A, G), i.e., the sum of the valuations of the agents.
Let F 1

j (G) (resp. F 2
j (G)) be the 1-hop (resp. 2-hop) neighborhood of node j.

F 1
j (G) = {j′ ∈ V : (j, j′) ∈ E}, F 2

j (G) =
⋃

j′∈F 1
j

(G) F
1
j′(G) \ (F 1

j (G) ∪ {j}).

Define Vi(A, G) = {j ∈ V : A(j) = i} to be the set of agents who receive item i ∈ I under
the assignment A. Let N1

j (i,A, G) = F 1
j (G) ∩ Vi(A, G) denote the set of agents in F 1

j (G)
who receive item i under the assignment A. Further, let N2

j (i,A, G) = F 2
j (G) ∩ Vi(A, G) ∩(⋃

j′′∈N1
j

(i,A,G) F
1
j′′(G)

)
denote the set of agents in F 2

j (G) who receive item i under the
assignment A and are adjacent to some node in N1

j (i,A, G).
The support of an agent j ∈ V for item i ∈ I is defined as Sij(A, G) = N1

j (i,A, G) ∪
N2

j (i,A, G). This is the set of agents contributing towards the valuation of j for item i.
Let λij be the intrinsic valuation of agent j for item i, and let extij(|Sij(A, G)|) be the
externality of the agent for the same item. The agent’s valuation from the assignment A is
given by the following equality.

uj(A, G) = λA(j),j · extA(j),j(|SA(j),j(A, G)|).

We consider three types of externalities in this paper.

I Definition 1. In concave externality it holds that extij(t) is a monotone and concave
function of t, with extij(0) = 0, for every item i ∈ I and agent j ∈ V .

I Definition 2. In linear externality it holds that for all j ∈ V , i ∈ I and every nonnegative
integer t, we have extij(t) = t.

We extend the step function definition of [6] as follows to 2-hop neighborhoods.

I Definition 3. For integer s ≥ 1, in s-step function externality it holds that for all j ∈ V ,
i ∈ I and every nonnegative integer t, we have extij(t) is 1 if t ≥ s and 0 otherwise.

We omit the symbol G from these notations if the underlying graph is clear from the context.
Some proofs are omitted due to space restrictions but are provided in a full version available
at http://eprints.cs.univie.ac.at/4240/1/paper-full.pdf.

STACS 2015

http://eprints.cs.univie.ac.at/4240/1/paper-full.pdf

94 Welfare Maximization with Friends-of-Friends Network Externalities

3 An O(
√

n)-Approximation for Concave Externalities

For the rest of this section, we fix the underlying graph G, and assume that the agents have
concave externalities as per Definition 1. We also fix the intrinsic valuations λij and the
externality functions extij(.).

Let A∗ ∈ argmaxA
{∑

j∈V uj(A)
}

be an assignment that maximizes the social welfare,
and let Opt =

∑
j∈V uj(A∗) be the optimal social welfare.

Let X∗ = {j ∈ V : |SA∗(j),j(A∗)| ≥
√
n} be the set of agents with support size at least√

n under the assignment A∗, and let Y ∗ = V \X∗ be the remaining set of agents.
Since X∗ and Y ∗ partition the set of agents V , there can be two possible cases. Half of the
social welfare under A∗ is coming (1) either from the agents in X∗, or (2) from the agents
in Y ∗. Lemma 4 shows that in the former case there is a uniform assignment, where every
agent gets the same item, that retrieves 1/(2

√
n)-fraction of the optimal social welfare. We

consider the latter case in Lemma 5, and reduce it to a problem with 1-hop externalities.

I Lemma 4. If
∑

j∈X∗ uj(A∗) ≥Opt/2, then there is an item i ∈ I such that
∑

j∈V uj(Ai) ≥
Opt/(2

√
n), where Ai is the assignment that gives item i to every agent in V , that is,

Ai(j) = i for all j ∈ V .

Proof. Define the set of items I(X∗) =
⋃

j∈X∗{A∗(j)}.
We claim that |I(X∗)| ≤

√
n. To see why the claim holds, let V ∗i = {j ∈ V : A∗(j) = i}

be the set of agents who receive item i under A∗. Now, fix any item i ∈ I(X∗), and note that,
by definition, there is an agent j ∈ X∗ with A∗(j) = i. Thus, we have |V ∗i | ≥ |Sij(A∗)| ≥

√
n.

We conclude that |V ∗i | ≥
√
n for every item i ∈ I(X∗). Since

∑
i∈I(X∗) |V ∗i | ≤ |V | = n, it

follows that |I(X∗)| ≤
√
n.

To conclude the proof of the lemma, we now make the following observations.

∑
j∈X∗

uj(A∗) =
∑

i∈I(X∗)

∑
j∈X∗ :A∗(j)=i

uj(A∗) ≤ |I(X∗)| · max
i∈I(X∗)

 ∑
j∈X∗ :A∗(j)=i

uj(A∗)

≤
√
n · max

i∈I(X∗)

 ∑
j∈X∗ :A∗(j)=i

uj(Ai)

 ≤ √n · max
i∈I(X∗)

∑
j∈V

uj(Ai)

The lemma holds since Opt/(2

√
n)≤

∑
j∈X∗ uj(A∗)/

√
n ≤ maxi∈I(X∗)

(∑
j∈V uj(Ai)

)
. J

For every item i ∈ I and agent j ∈ V , we now define the externality function ˆextij(t) and
the valuation function ûj(A).

ˆextij(t) =
{
extij(1) if t ≥ 1;
0 otherwise.

ûj(A) = λA(j),j · ˆextij(|N1
j (i,A)|) (1)

Clearly, for every assignment A : V → I, we have 0 ≤
∑

j∈V ûj(A) ≤
∑

j∈V uj(A). Also
note that the valuation function ûj(.) depends only on the 1-hop neighborhood of the agent
j. Specifically, if an agent j gets an item i, then her valuation is λij · extij(1) if at least
one of her 1-hop neighbors also gets the same item i, and zero otherwise. Bhalgat et al. [6]
gave an LP-based O(1)-approximation for finding an assignment A : V → I that maximizes
the social welfare in this setting (also see Section 5 for a combinatorial algorithm). In the
lemma below, we show that if the agents in Y ∗ contribute sufficiently towards Opt under the
assignment A∗, then by losing an O(

√
n)-factor in the objective, we can reduce our original

problem to the one where the externalities are ˆextij(.) and the valuations are ûj(.).

S. Bhattacharya, W. Dvořák, M. Henzinger, and M. Starnberger 95

I Lemma 5. If
∑

j∈Y ∗ uj(A∗) ≥ Opt/2, then
∑

j∈V ûj(A∗) ≥ Opt/(2
√
n).

Proof. Consider a node j ∈ Y ∗ that makes nonzero contribution towards the objective (i.e.,
uj(A∗) > 0) and suppose that it gets items i (i.e., A∗(j) = i). Since uj(A∗) > 0, we have
Sij(A∗) = N1

j (i,A∗) ∪N2
j (i,A∗) 6= ∅, which in turn implies that N1

j (i,A∗) 6= ∅. Thus, we
have ûj(A∗) = λij ·extij(1). Since |Sij(A∗)| ≤

√
n and extij(.) is a concave function, we have

extij(1) ≥ extij(|Sij(A∗)|)/|Sj(A∗)| ≥ extij(|Sij(A∗)|)/
√
n. Multiplying both sides of this

inequality by λij , we conclude that ûj(A∗) ≥ uj(A∗)/
√
n for all agents j ∈ Y ∗ with uj(A∗) >

0. In contrast, if uj(A∗) = 0, then the inequality ûj(A∗) ≥ uj(A∗)/
√
n is trivially true.

Thus, summing over all j ∈ Y ∗, we infer that
∑

j∈Y ∗ ûj(A∗, G) ≥
∑

j∈Y ∗ uj(A∗, G)/
√
n ≥

Opt/(2
√
n). The lemma now follows since

∑
j∈V ûj(A∗, G) ≥

∑
j∈Y ∗ ûj(A∗, G). J

The algorithm for concave externalities. We run two procedures. Procedure (1) returns
an assignment A′ ∈ arg maxi∈I

(∑
j∈V uj(Ai)

)
, where Ai(j) = i for all i ∈ I and j ∈

V . Procedure (2) invokes the algorithm in [6] and returns an assignment A′′ such that∑
j∈V ûj(A′′) ≥ (1/α) ·maxA

(∑
j∈V ûj(A)

)
for some constant α ≥ 1, where the function

ûj(.) is defined as in equation 1. Our algorithm now compares these two assignments A′ and
A′′ and returns the one that gives maximum social welfare, i.e, we output an assignment
A′′′ ∈ arg maxA∈{A′,A′′}

(∑
j∈V uj(A)

)
.

I Theorem 6. The algorithm described above gives an O(
√
n)-approximation for social

welfare under 2-hop, concave externalities.

Proof. Recall the notations introduced in the beginning of Section 3. Since the set of
agents V is partitioned into X∗ ⊆ V and Y ∗ = V \X∗, either

∑
j∈X∗ uj(A∗) ≥ Opt/2 or∑

j∈Y ∗ uj(A∗) ≥ Opt/2. In the former case, Lemma 4 guarantees that
∑

j∈A′′′ uj(A′′′) ≥∑
j∈A′ uj(A′) ≥ Opt/(2

√
n). In the latter case, by Lemma 5 we have

∑
j∈A′′′ uj(A′′′) ≥∑

j∈A′′ uj(A′′) ≥
∑

j∈A′′ ûj(A′′) ≥
∑

j∈A∗ ûj(A∗)/α ≥ Opt/(2α
√
n). Since α is a constant,

we conclude that the social welfare returned by our algorithm is always within an O(
√
n)-factor

of the optimal social welfare. J

4 An O(log m)-Approximation for Linear Externalities

In this section, we assume that the input graph G = (V,E) is of the following form. The set
V is partitioned into three groups V1, V2 and V3. Further, an edge in E either connects a
node in V1 with a node in V2, or connects a node in V2 with a node in V3. Our goal is to
assign the items to the agents in such a way as to maximize the social welfare from the set
V1. We refer to this problem as Restricted-Welfare.

I Theorem 7. Any α-approximation algorithm for the Restricted-Welfare problem can
be converted into an O(α)-approximation algorithm for the welfare-maximization problem in
general graphs with linear (or even concave) externalities.

Consider the LP below. Here, the variable α(i, j, k) indicates if both the agents j ∈ V1
and k ∈ F 1

j received item i ∈ I. If this variable is set to one, then agent j gets one unit
of externality from agent k. Similarly, the variable β(i, j, l) indicates if both the agents
j ∈ V1, l ∈ V3 ∩ F 2

j received item i ∈ I and there is at least one agent k ∈ F 1
j ∩ F 1

l who
also received the same item. If this variable is set to one, then agent j gets one unit of
externality from agent l. Clearly, the total valuation of agent j for item i is given by∑

k∈V2∩F 1
j
λij · α(i, j, k) +

∑
l∈V3∩F 2

j
λij · β(i, j, l). Summing over all the items and all the

agents in V1, we see that the LP-objective encodes the social welfare of the set V1.

STACS 2015

96 Welfare Maximization with Friends-of-Friends Network Externalities

Maximize:
∑
j∈V1

∑
i∈I

λij ·
(∑

k∈V2∩F 1
j

α(i, j, k) +
∑

l∈V3∩F 2
j

β(i, j, l)
)

(2)

β(i, j, l) ≤ min{w(i, l), y(i, j)} ∀i ∈ I, j ∈ V1, l ∈ V3 ∩ F 2
j (3)

β(i, j, l) ≤
∑

k∈F 1
j
∩F 1

l
z(i, k) ∀i ∈ I, j ∈ V1, l ∈ V3 ∩ F 2

j (4)

α(i, j, k) ≤ min{y(i, j), z(i, k)} ∀i ∈ I, j ∈ V1, k ∈ V2 ∩ F 1
j (5)∑

i y(i, j)≤ 1,
∑

i z(i, k) ≤ 1,
∑

i w(i, l) ≤ 1 ∀j, k, l (6)
0 ≤ z(i, k), y(i, j), w(i, l), α(i, j, k), β(i, j, l) ∀i, j, k, l (7)

The variables y(i, j), z(i, k) and w(i, l) respectively indicate if an agent j ∈ V1, k ∈ V2,
l ∈ V3 received item i ∈ I. Constraints 6 state that an agent can get at most one item.
Constraint 5 says that if α(i, j, k) = 1, then both y(i, j) and z(i, k) must also be equal to
one. Constraint 3 states that if β(i, j, l) = 1, then both y(i, j) and w(i, l) must also be equal
to one. Finally, note that if an agent l ∈ V3 contributes one unit of externality to an agent
j ∈ V1 for an item i ∈ I, then there must be some agent k ∈ F 1

j ∩ F 1
l in V2 who received the

same item. This condition is encoded in constraint 4. Thus, we have the following lemma.

I Lemma 8. The LP is a valid relaxation of the Restricted-Welfare problem.

Before proceeding towards the rounding scheme, we perform a preprocessing step as
described in the next lemma.

I Lemma 9. In polynomial time, we can get a feasible solution to the LP that gives an
O(logm) approximation to the optimal objective, and ensures that each α(i, j, k), β(i, j, l),
y(i, j), w(i, l) ∈ {0, γ} for some real number γ ∈ [0, 1], and that each z(i, k) ≤ γ.

We now present the rounding scheme for LP (see Algorithm 1). Here, the set Wi denotes
the set of agents that have not yet been assigned any item when the rounding scheme enters
the For loop for item i (see Step 2). Note that the sets Ti might overlap, but these conflicts
are resolved in Line 9 by intersecting Ti with Wi, which is disjoint with all previous Tj , j < i.

Algorithm 1 Rounding Scheme for LP
1. In accordance with Lemma 9, compute a feasible solution to the LP.

Set T0 ← ∅, and W0 ← V = V1 ∪ V2 ∪ V3.
2. For all items i ∈ I = {1, . . . ,m}:
3. Set Wi ←Wi−1 \ Ti−1, and Ti ← ∅.
4. Pick a value ηi uniformly at random from [0, 1].
5. If ηi ≤ γ:
6. For all nodes j ∈ V1:

If y(i, j) = γ, then with probability 1/4, set Ti ← Ti ∪ {j}.
7. For all nodes l ∈ V3:

If w(i, l) = γ, then with probability 1/4, set Ti ← Ti ∪ {l}.
8. For all nodes k ∈ V2:

With probability z(i, k)/(4γ), set Ti ← Ti ∪ {k}.
9. Assign item i to all nodes in Wi ∩ Ti, i.e., set A(t)← i for all t ∈Wi ∩ Ti.
10. Return the (random) assignment A.

I Lemma 10. For all t ∈ V and all i ∈ I, we have P[t ∈Wi] ≥ 3/4. Thus, P[{t1, t2, t3} ⊆
Wi] ≥ 1/4 for all t1, t2, t3 ∈ V .

S. Bhattacharya, W. Dvořák, M. Henzinger, and M. Starnberger 97

Proof. We will prove the lemma for a node in V1, the argument extends to V2 ∪ V3.
Fix any node j ∈ V1 and any item i ∈ I, and consider an indicator random variable Γi′j

that is set to one iff j ∈ Ti′ . It is easy to check that E[Γi′j] = y(i′, j)/4 for all items i′ ∈ I. By
constraint 6 and linearity of expectation, we thus have: E[

∑
i′<i Γi′j] =

∑
i′<i y(i′, j)/4 ≤ 1/4.

Applying Markov’s inequality, we get P[
∑

i′<i Γi′j = 0] ≥ 3/4. In other words, with
probability at least 3/4, we have that j /∈ Ti′ for all i′ < i. Under this event, we must have
j ∈Wi.

We have P[t /∈ Wi] ≤ 1/4 for all t ∈ {t1, t2, t3}. P[{t1, t2, t3} ⊆ Wi] ≥ 1/4 now follows
from applying union-bound over these three events. J

In the first step, when we find a feasible solution to the LP in accordance with Lemma 9,
we lose a factor of O(logm) in the objective. Below, we will show that the remaining steps in
the rounding scheme result in a loss of at most a constant factor in the approximation ratio.

For all items i ∈ I, nodes j ∈ V1, and nodes k ∈ F 1
j , l ∈ F 2

j , we define the random
variables X(i, j, k) and Y (i, j, l). Their values are determined by the outcome A of our
randomized rounding. To be more specific, we have that X(i, j, k) = 1 if both j and k receive
item i, and X(i, j, k) = 0 otherwise. Further, Y (i, j, l) = 1 if both j and l receive item i and
there is some node in F 1

j ∩ F 1
l that also received item i, and Y (i, j, l) = 0 otherwise. Now,

the valuation of any agent j ∈ V1 from the (random) assignment A is:

uj(A) =
∑
i∈I

(∑
k∈F 1

j

λij ·X(i, j, k) +
∑
l∈F 2

j

λij · Y (i, j, l)
)

(8)

We will analyze the expected contribution of the rounding scheme to each term in the
LP-objective. Towards this end, we prove the following lemmas.

I Lemma 11. For all i ∈ I, j ∈ V1, k ∈ F 1
j , we have EA[X(i, j, k)] ≥ δ · α(i, j, k), where

δ > 0 is a sufficiently small constant.

I Lemma 12. For all i ∈ I, j ∈ V1, l ∈ F 2
j , we have EA[Y (i, j, l)] ≥ δ · β(i, j, l), where δ is a

sufficiently small constant.

Proof. Fix an item i ∈ I, a node j ∈ V1 and a node l ∈ F 2
j . If β(i, j, l) = 0 the lemma is

trivially true. Otherwise suppose for the rest of the proof that β(i, j, l) = y(i, j) = w(i, l) = γ.
Let Ei be the event that ηi ≤ γ (see Step 4 in Algorithm 1). Let Z(i, k) be an indicator

random variable that is set to one iff node k ∈ V2 is included in the set Ti by our rounding
scheme (see Step 8 in Algorithm 1). We have:

P[Ei] = γ, and P[Z(i, k) = 1 | Ei] = z(i, k)/4γ for all k ∈ V2 (9)

Thus, conditioned on the event Ei, the expected number of common neighbors of j and l
who are included in the set Ti is given by

µi := E
[∑

k∈F 1
j
∩F 1

l

Z(i, k)
∣∣∣ Ei

]
=

∑
k∈F 1

j
∩F 1

l

z(i, k)/4γ ≥ 1/4 (10)

Note that conditioned on the event Ei, the random variables Z(i, k) are mutually independent.
Thus, applying Chernoff bound on Equation 10, we infer that with constant probability, at
least one common neighbor of j and l will be included in the set Ti. To be more precise,
define Ti,j,l = Ti ∩ F 1

j ∩ F 1
l . For some sufficiently small constant δ1, we have:

P
[
Ti,j,l 6= ∅

∣∣∣ Ei

]
= P

[∑
k∈F 1

j
∩F 1

l

Z(i, k) > 0
∣∣∣ Ei

]
≥ 1− e−1/8 = δ1 (11)

STACS 2015

98 Welfare Maximization with Friends-of-Friends Network Externalities

Let Ei,j,l be the event that the following two conditions hold simultaneously: (a) Ti,j,l 6= ∅,
and (b) j, l, and an arbitrary node from Ti,j,l—each of these three nodes is included
in Wi. Now, Equation 11 and Lemma 10 imply that P[Ei,j,l | Ei] ≥ δ2 for δ2 = δ1/4.
Putting all these observations together, we obtain that P[Y (i, j, l) = 1] = P[Ei] ·P[Ei,j,l | Ei]·
P[j, l ∈ Ti | Ei,j,l ∩ Ei] = γ · δ2 · (1/4) · (1/4) = δ · γ = δ · β(i, j, l) for δ = δ2/16. J

I Theorem 13. The rounding scheme in Algorithm 1 gives an O(logm)-approximation to
the Restricted-Welfare problem.

Proof. In the first step, when we find a feasible solution to the LP in accordance with
Lemma 9, we lose a factor of O(logm) in the objective. At the end of the remaining steps,
the expected valuation of an agent j ∈ V1 is given by:

EA[uj(A)] =
∑
i∈I

λij ·
(∑

k∈F 1
j

EA[X(i, j, k)] +
∑
l∈F 1

l

EA[Y (i, j, l)]
)

= Θ
(∑

i∈I

λij ·
(∑

k∈F 1
j

α(i, j, k) +
∑
l∈F 1

l

β(i, j, l)
))

The first equality follows from linearity of expectation, while the second equality follows
from Lemma 11 and Lemma 12. Thus, the expected valuation of any agent in V1 is within a
constant factor of the fractional valuation of the same agent under the feasible solution to
the LP obtained at the end of Step 1 (see Algorithm 1). Summing over all the agents in V1,
we get the theorem. J

We can generalize the above approach to the following setting: Each user j is given
an integer cj and can be assigned up to cj different items (each at most once). For this
we replace for each item i and node j the constraint

∑
i y(i, j) ≤ 1 by the two constraints∑

i y(i, j) ≤ cj and y(i, j) ≤ 1 and adapt the proof of Lemma 10.
Finally, we state NP-hardness for linear externalities, not only in the 2-hop setting but

also for 1-hop. 3

I Theorem 14. Maximizing social welfare under linear externalities is NP-hard.

5 Constant Approximation for Step Function Externalities

In this section, our goal is to maximize the social welfare when the agents have general
step function externalities, i.e., to receive externality an agent needs a certain number of
1- and 2-hop neighbors having the same product. We will show that no constant factor
approximation is possible unless a bound on the number of neighbors an agent needs to
receive externality is given. Thus we consider the case of 2-step function externalities, where
only two neighbors are needed (see Definition 3) and give a 1

6 · (1 − 1/e)-approximation
algorithm for this problem. Notice that if we consider step functions that just require one
neighbor the problem reduces to the 1-hop step function scenario in [6]. However, our
algorithm gives a 1

2 · (1− 1/e)-approximation for this scenario improving the result in [6].
In the following we assume 2-step function externalities. Let GV ′ denote the subgraph

induced by V ′ ⊆ V . For the rest of this section, the term “triple” will refer to any (unordered)

3 Theorem 3.1 in [6] claims that the welfare maximization problem for linear 1-hop externality functions
in complete graphs is MaxSNP-hard, which would imply our result, but this claim is not true.

S. Bhattacharya, W. Dvořák, M. Henzinger, and M. Starnberger 99

set of three nodes T = {j1, j2, j3} such that GT is connected. Similarly, the term “pair” will
refer to any (unordered) set of two nodes {j1, j2} that are connected by an edge in E.

We first compute a maximal collection of mutually disjoint triples in the graph G. We
denote this collection by T , and let V (T) =

⋃
T∈T T ⊆ V . The graph GV \V (T), by definition,

consists of a mutually disjoint collection of pairs (say P) and a set of isolated nodes (say B).
We thus have the following lemma.

I Lemma 15. In G = (V,E), there is no edge that connects a node j ∈ B with another node
in B or with a node belonging to a pair in P. Furthermore, there is no edge that connects
two nodes j, j′ belonging to two different pairs P, P ′ ∈ P.

I Definition 16. An assignment A is consistent iff two agents get the same item whenever
they belong to the same triple or the same pair. To be more specific, for all j, j′ ∈ V , we
have that A(j) = A(j′) if either (a) j, j′ ∈ T for some triple T ∈ T or (b) {j, j′} ∈ P.

The next lemma shows that by losing a factor of 6 in the approximation ratio, we can
focus on maximizing the social welfare via a consistent assignment.

I Lemma 17. The social welfare from the optimal consistent assignment is at least (1/6)·Opt,
where Opt is the maximum social welfare over all assignments.

Proof. Let A∗ be an assignment (not necessarily consistent) that gives maximum social
welfare. We convert it into a (random) consistent assignment A as follows. For each triple
{j1, j2, j3} ∈ T , we pick one of the items A∗(j1),A∗(j2),A∗(j3) uniformly at random, and
assign that item to all the three agents j1, j2, j3. Similarly, for each pair {j1, j2} ∈ P , we pick
one of the items A∗(j1),A∗(j2) uniformly at random, and assign that item to both the agents
j1, j2. The events corresponding to different triples and pairs are mutually independent.
Finally, the remaining agents (those who are in B) get the same items as in A∗. It is easy to
see that the resulting assignment A is consistent. We claim that E[uj(A)] ≥ (1/6) · uj(A∗)
for all j ∈ V . To prove this claim, we consider three cases.

Case 1 (j ∈ B): Let A∗(j) = i. Since j ∈ B, it always gets the same item under A, i.e.,
A(j) = i. Now, if uj(A∗) = 0, then the claim is trivially true. Otherwise it must be the case
that A∗(j′) = i for some neighbor j′ of j. Since j ∈ B, this neighbor j′ must be part of some
triple T ∈ T (see Lemma 15). With probability at least 1/3 all the three nodes in T are
assigned item i under A and at least two nodes of T are in the 2-hop neighborhood of j. In
that event j gets the same valuation as in A∗, and we have that E[uj(A)] ≥ (1/3) · uj(A∗).

Case 2 (j belongs to a pair in P): Consider the pair P = {j, j′} ∈ P , which has j and another
node (say j′) as its members. Let A∗(j) = i. As in Case 1, if uj(A∗) = 0, then the claim is
trivially true. Otherwise it must be the case that there exists a node j′′ with A∗(j′′) = i

such that j′′ is either a neighbor of j or a neighbor of j′. Since {j, j′} ∈ P, this agent j′′
must be part of some triple T ∈ T (see Lemma 15). Let E1 be the event that all the three
nodes in T are assigned item i under A. Similarly, let E2 be the event that both the nodes
j, j′ ∈ P get the same item i under A. Since these two events are mutually independent, we
have that P[E1 ∩E2] ≥ (1/3) · (1/2) = 1/6, and in the event E1 ∩E2, we have uj(A) = uj(A∗).
It follows that E[uj(A)] ≥ (1/6) · uj(A∗).

Case 3 (j belongs to a triple in T): Consider the triple T = {j, j′, j′′} ∈ T which has, besides
j, two other nodes (say j′ and j′′) as its members. With probability at least 1/3, all these
three nodes are assigned item A∗(j) under A, and in this event we have uj(A) ≥ uj(A∗). It
follows that E[uj(A)] ≥ (1/3) · uj(A∗).

STACS 2015

100 Welfare Maximization with Friends-of-Friends Network Externalities

Now, we take a sum of the inequalities E[uj(A)] ≥ (1/6) · uj(A∗) over all agents j ∈ V ,
and by linearity of expectation infer that the expected social welfare under the consistent
assignment A is within a factor of 6 of the optimal social welfare. This concludes the proof
of the lemma. J

Next, we will give an (1−1/e)-approximation algorithm for finding a consistent assignment
of items that maximizes the social welfare. Along with Lemma 17, this will imply the main
result of this section (see Theorem 20).

We use the term “resource” to refer to either a pair P ∈ P or an agent j ∈ B. Let
R = P ∪B denote the set of all resources. We say that a resource r ∈ R neighbors a triple
T ∈ T iff in the graph G = (V,E) either (a) r = {j, j′} ∈ P and some node in {j, j′} is
adjacent to some node in T , or (b) r = j ∈ B and j is adjacent to some node in T . We
slightly abuse the notation (see Section 2) and let N(T) ⊆ R denote the set of resources that
are neighbors of T ∈ T .

By definition, every consistent assignment ensures that if two agents belong to the same
triple in T (resp. the same pair in P), then both of them get the same item. We say that
the item is assigned to a triple (resp. resource). Note that the triples do not need externality
from outside. To be more specific, the contribution of a triple T ∈ T to the social welfare is
always equal to

∑
j∈T λi,j , where i is the item assigned to T . Resources, however, do need

outside externality, which by Lemma 15 can come only from a triple in T .

I Lemma 18. In a consistent assignment, if a resource r ∈ R makes a positive contribution
to the social welfare, then it neighbors some triple Tr ∈ T , and both the resource r and the
triple Tr receive the same item.

Proof. If a resource contributes a nonzero amount to the social welfare, then it must receive
nonzero externality from the assignment. By Lemma 15, such externality can come only
from a triple in T . The lemma follows. J

Thus, given a consistent assignment A consider the following mapping TA(r) of a resource
r ∈ R to triples in T in accordance with Lemma 18: If the resource r makes zero contribution
towards the social welfare (a case not covered by the lemma), then we let TA(r) be any
arbitrary triple from T . Otherwise TA(r) denotes an (arbitrary) neighboring triple of T that
receives the same item as r. We say that the triple TA(r) claims the resource r.

For ease of exposition, let λi,r(T) be the valuation of the resource r when both the
resource and the triple T that claims it get item i ∈ I, i.e.,

λi,r(T) =

λi,j + λi,j′ if r = {j, j′} ∈ P and r ∈ N(T);
λi,j if r = j ∈ B and r ∈ N(T);
0 if r /∈ N(T).

Now, any consistent assignment A can be interpreted as follows. Under such an assignment,
every triple T ∈ T claims the subset of the resources ST = {r ∈ R : TA(r) = T}; the
subsets corresponding to different triples being mutually exclusive. A triple T and the
resources in ST all get the same item (say i ∈ I). The valuation obtained from them is
uT (ST , i) =

∑
j∈T λi,j +

∑
r∈ST

λi,r(T).
If our goal is to maximize the social welfare, then, naturally, for every triple T , we will pick

the item that maximizes uT (ST , i), thereby extracting a valuation of uT (ST) = maxi uT (ST , i).
The next lemma shows that this function is fractionally subadditive.

I Lemma 19. The function uT (ST) is fractionally subadditive in ST .

S. Bhattacharya, W. Dvořák, M. Henzinger, and M. Starnberger 101

The preceding discussion shows that the problem of computing a consistent assignment
for welfare maximization is equivalent to the following setting. We have a collection of triples
T , and a set of resources R. We will distribute these resources amongst the triples, i.e., every
triple T will get a subset ST ⊆ R, and these subsets will be mutually exclusive. The goal is
to maximize the sum

∑
T∈T uT (ST), where the functions uT (·)’s are fractionally subadditive.

By a celebrated result of Feige [9], we can get an (1− 1/e)-approximation algorithm for this
problem if we can implement the following subroutine (called demand oracle) in polynomial
time: Each resource r is given a “cost” p(r) and we need to determine for each triple T a set
of resources S∗T that maximizes uT (ST)−

∑
r∈ST

p(r) over all sets ST . Such a demand oracle
can be implemented in polynomial time using a simple greedy algorithm for each T and each
item i: Add a resource r to S∗T iff λi,r(T) > p(r). The result of the approximation algorithm
assigns each triple T a subset ST and we then pick the item i that maximizes uT (ST , i) over
all items i. Together with Lemma 15, this implies the theorem stated below.

I Theorem 20. We can get a polynomial-time 1
6 · (1− 1/e)-approximation algorithm for the

problem of maximizing social welfare under 2-step function externalities.

The algorithm can be easily adapted for 1-hop step function externalities. The difference
is that instead of computing a maximal collection T of mutually disjoint triples, one computes
a maximal collection of mutually disjoint pairs.

I Theorem 21. We can get a polynomial-time 1
2 · (1 − 1/e)-approximation algorithm for

maximizing social welfare under 1-step function externalities.

Finally, we present our hardness results for step functions. By a reduction from Max
Independent Set we can show that, for unbounded s, there is no constant factor approxim-
ation. The main idea is that we modify the graph such that we replace each edge by a path
of length three and each of the original nodes j wants a different item, while j can only get
positive externalities when having a support of 2δj (δj the node degree of j). The valuations
of the newly introduced nodes are set to 0. That is, nodes that are adjacent in the original
graph have two common neighbors in the constructed graph, want different items, need all
their neighbors as support, and thus only one of them can have positive valuation.

I Theorem 22. For any ε > 0 the problem of maximizing social welfare under arbitrary
s-step function externalities is not approximable within O(n1/4−ε) unless NP = P, and not
approximable within O(n1/2−ε) unless NP = ZPP.

Second, we show that maximizing social welfare under 2-step function externalities is
APX-hard and thus no PTAS can exists. This is by a reduction from Max Coverage. The
APX-hardness for two items is by a reduction from SAT.

I Theorem 23. The problem of maximizing social welfare under step function externalities
is APX-hard, in particular, there is no polynomial time 1− 1

e + ε-approximation algorithm
(unless P = NP). Furthermore, the problem remains APX-hard (although with a larger
constant) even if there are only two items.

Acknowledgments The research leading to these results has received funding from the
European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 317532 and from the Vienna Science and Technology Fund (WWTF) through project
ICT10-002.

STACS 2015

102 Welfare Maximization with Friends-of-Friends Network Externalities

References
1 Hessameddin Akhlaghpour, Mohammad Ghodsi, Nima Haghpanah, Vahab S. Mirrokni,

Hamid Mahini, and Afshin Nikzad. Optimal iterative pricing over social networks. In 6th
WINE, pages 415–423, 2010.

2 Noga Alon, Michal Feldman, Ariel D. Procaccia, and Moshe Tennenholtz. A note on
competitive diffusion through social networks. Inf. Process. Lett., 110(6):221–225, 2010.

3 Nima Anari, Shayan Ehsani, Mohammad Ghodsi, Nima Haghpanah, Nicole Immorlica,
Hamid Mahini, and Vahab S. Mirrokni. Equilibrium pricing with positive externalities.
Theor. Comput. Sci., 476:1–15, 2013.

4 David Arthur, Rajeev Motwani, Aneesh Sharma, and Ying Xu. Pricing strategies for viral
marketing on social networks. In 5th WINE, pages 101–112, 2009.

5 Bernard Bensaid and Jean-Philippe Lesne. Dynamic monopoly pricing with network ex-
ternalities. Int. J. of Industrial Organization, 14(6):837–855, 1996.

6 Anand Bhalgat, Sreenivas Gollapudi, and Kamesh Munagala. Mechanisms and allocations
with positive network externalities. In 13th EC, pages 179–196, 2012.

7 Sayan Bhattacharya, Dmytro Korzhyk, and Vincent Conitzer. Computing a profit-
maximizing sequence of offers to agents in a social network. In 8th WINE, pages 482–488,
2012.

8 Pradeep Dubey, Rahul Garg, and Bernard De Meyer. Competing for customers in a social
network: The quasi-linear case. In 2nd WINE, pages 162–173, 2006.

9 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Com-
put., 39(1):122–142, 2009.

10 Scott L. Feld. Why your friends have more friends than you do. American J. of Sociology,
96(6):1464–1477, 1991.

11 Dimitris Fotakis and Paris Siminelakis. On the efficiency of influence-and-exploit strategies
for revenue maximization under positive externalities. In 8th WINE, pages 270–283, 2012.

12 Sanjeev Goyal and Michael Kearns. Competitive contagion in networks. In 44th STOC,
pages 759–774, 2012.

13 Nima Haghpanah, Nicole Immorlica, Vahab S. Mirrokni, and Kamesh Munagala. Op-
timal auctions with positive network externalities. ACM Trans. Economics and Comput.,
1(2):13:1–13:24, 2013.

14 Keith N. Hampton, Lauren Sessions Goulet, Cameron Marlow, and Lee Rainie. Why most
facebook users get more than they give. Pew Internet & American Life Project, 2012.

15 Jason Hartline, Vahab S. Mirrokni, and Mukund Sundararajan. Optimal marketing
strategies over social networks. In 17th WWW, pages 189–198, 2008.

16 Xinran He and David Kempe. Price of anarchy for the n-player competitive cascade game
with submodular activation functions. In 9th WINE, pages 232–248, 2013.

17 Matthew O. Jackson and Brian W. Rogers. Meeting strangers and friends of friends: How
random are social networks? American Economic Review, 97(3):890–915, 2007.

18 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In 9th KDD, pages 137–146, 2003.

19 Vahab S. Mirrokni, Sebastien Roch, and Mukund Sundararajan. On fixed-price marketing
for goods with positive network externalities. In 8th WINE, pages 532–538, 2012.

20 Sunil Simon and Krzysztof R. Apt. Choosing products in social networks. In 8th WINE,
pages 100–113, 2012.

21 Reiko Takehara, Masahiro Hachimori, and Maiko Shigeno. A comment on pure-strategy
nash equilibria in competitive diffusion games. Inf. Process. Lett., 112(3):59–60, 2012.

22 Vasileios Tzoumas, Christos Amanatidis, and Evangelos Markakis. A game-theoretic ana-
lysis of a competitive diffusion process over social networks. In 8th WINE, pages 1–14,
2012.

Markov Decision Processes and Stochastic Games
with Total Effective Payoff ∗

Endre Boros1, Khaled Elbassioni2, Vladimir Gurvich1, and
Kazuhisa Makino4

1 MSIS Dep. of RBS and RUTCOR, Rutgers University; 100 Rockafeller Road,
Piscataway, NJ 08854-8054, USA
{endre.boros,vladimir.gurvich}@rutgers.edu

2 Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE
kelbassioni@masdar.ac.ae

3 Research Institute for Mathematical Sciences (RIMS) Kyoto University, Kyoto
606-8502, Japan
makino@kurims.kyoto-u.ac.jp

Abstract
We consider finite Markov decision processes (MDPs) with undiscounted total effective payoff.
We show that there exist uniformly optimal pure stationary strategies that can be computed by
solving a polynomial number of linear programs. We apply this result to two-player zero-sum
stochastic games with perfect information and undiscounted total effective payoff, and derive the
existence of a saddle point in uniformly optimal pure stationary strategies.

1998 ACM Subject Classification G.3 Probability and Statistics, G.1.6 Optimization

Keywords and phrases Markov decision processes, undiscounted stochastic games, linear pro-
gramming, mean payoff, total payoff

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.103

1 Introduction

1.1 Basic concepts

1.1.1 Markov decision proccesses
We will consider Markov decision processes (MDPs) with total effective payoff. Let G = (V,E)
be a finite directed graph (digraph) in which loops and multiple arcs are allowed. The vertices
v ∈ V are called positions (or states) and the arcs e ∈ E are called moves (or transitions).
The vertex-set V is partitioned into two subsets V = VW ∪ VR that correspond to white
and random positions, controlled respectively, by a player (decision maker), who will be
called Max, and by nature. Let us denote by E(u) the set of arcs leaving u and assume that
E(u) 6= ∅ in every position u ∈ V .

For all random positions u ∈ VR we are given probabilities p(u, v) > 0 for all random
moves (u, v) ∈ E(u) such that

∑
(u,v)∈E(u) p(u, v) = 1. There is also a local reward function

r : E → Z given. The the triplet Γ = (G, p, r) will be called an MDP.

∗ This research was partially supported by the Scientific Grant-in-Aid from Ministry of Education, Science,
Sports and Culture of Japan. The first author also thanks for partial support the National Science
Foundation (Grant and IIS-1161476).

© Endre Boros, Khaled Elbassioni,
Vladimir Gurvich, and Kazuhisa Makino;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 103–115

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.103
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

104 MDPs and Stochastic Games with Total Effective Payoff

1.1.2 Strategies
The vertices represent the states of a finite state dynamical system. If at time t the system
is in state vt = u ∈ VW then the controller (Max) chooses (as an action) one of the outgoing
arcs (u, v) ∈ E(u) with some probability and the system moves with this probability to
vt+1 = v. If vt = u ∈ VR, then the system moves to vt+1 = v with probability p(u, v)
(Max has no influence over this move.)

A strategy (policy) of Max is a mapping s that for every possible vt = u ∈ VW provides
a probability distribution over E(u). These probabilities may depend, in general, not only
on u and t but also on the entire history of the system up to time t. If these probabilities
take only values 0 and 1, then the strategy s is called pure; if these probabilities depend only
on the current state u, then s is called stationary. A pure stationary strategy is also called
positional. We shall denote by S the set of all possible strategies and by Ŝ the set of all
positional strategies.

Once Max chooses a strategy s ∈ S, and we fix an initial state v0, the above process
produces a series of states vt(s) ∈ V , t = 0, 1, . . ., which generally are random variables for
t > 0. We associate to such a process the sequence of expected local rewards

at(s) = Es[r(vt(s), vt+1(s)] for t = 0, 1, . . . ,

and set a(s) = 〈a0(s), a1(s), . . .〉. For simplicity we will omit in the sequel the argument s

and write vt and Es(r(vt, vt+1) rather than vt(s) and Es[r(vt(s), vt+1(s))] for t = 0, 1 . . .

1.1.3 Effective payoffs
We consider an effective payoff function π : R∗ → R, where R = R ∪ {−∞,+∞} and R∗
standardly denotes the set of all real sequences. The objective of Max is to find a strategy
s ∈ S such that π(a(s)) = πs(v0) is as large as possible. A strategy s is called uniformly
optimal if πs(v0) ≥ πs′(v0) for any strategy s′ ∈ S and any initial position v0 ∈ V .

In this paper we consider the following two effective payoff functions:

φs(v0) = lim inf
T→∞

1
T + 1

T∑
t=0

Es[r(vt, vt+1)], (1)

ψs(v0) = lim inf
T→∞

1
T + 1

T∑
t=0

t∑
j=0

Es[r(vj , vj+1)]. (2)

The first one, called mean payoff, is classic [12, 4]. The second one, called total payoff or
total reward, was introduced by Thuijsman and Vrieze [27], as a “refinement" of the mean
payoff. Let us note however that in fact total payoff MDPs can be shown to include mean
payoff MDPs as a special case.

We note that in many earlier works the effective payoff of a play was defined as the sum
of all local rewards assigned to the moves of this play. Yet, evaluation of the infinite plays
may constitute a problem. For that reason, in most of the papers an assumption has to be
made such as termination with probability one [7, 9, 25, 3, 31, 30]; in fact definition (2) is
a generalization of the sum of local rewards, taking properly into account how to handle
cycling in an infinite (non-terminating) play; see Section 1.3.

For an MDP Γ, payoff function π, and a node u, let us define

πΓ(u) = sup
s∈S

πs(u),

as the value of the MDP at node u.

E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 105

1.1.4 Stochastic games with perfect information: The BWR model
We also consider the following natural and standard generalization. Assume that the finite
vertex set V of a given finite directed graph G = (V,E) is partitioned into three (rather
than two) subsets V = VB ∪ VW ∪ VR that correspond to black, white, and random positions,
controlled respectively, by two players, Min and Max, and nature.

Analogously to MDPs, we can define strategies for the players, and denote by SB and SW

the sets of strategies of Min and Max, respectively. Given a pair of strategies s = (sB , sW)
of the players and an initial vertex v0 ∈ V , we can associate a sequence of expected rewards
Es[r(vt(s), vt+1(s))] to these, just like we did for MDPs. The objectives of Min and Max are
to minimize and respectively maximize the expected effective payoff πsB ,sW (v0) = πs(v0).

Given a stochastic game with a fixed initial position v0, a saddle point is defined as a
pair of strategies s∗B ∈ SB and s∗W ∈ SW such that

πs∗
B
,sW (v0) ≤ πs∗

B
,s∗
W

(v0) ≤ πsB ,s∗W (v0) for all sB ∈ SB and sW ∈ SW . (3)

If such a pair exists, the quantity πs∗
B
,s∗
W

(v0) is called the value of the game at node v0. The
saddle point (s∗B , s∗W) is called uniform (subgame perfect) if the above inequalities hold for
all initial positions v0 ∈ V .

For π = φ, such a model was first mentioned in [13], and it was shown in [6] that it is
polynomially equivalent with stochastic games with perfect information [12]. For π = ψ, this
model is the same as the one introduced in [27] in case of perfect information. The concept
was further developed in [8, 28].

1.2 Main results
We first consider total-payoff MDPs and prove the following result.

I Theorem 1. In every MDP with total effective payoff, π = ψ, Max possesses a uniformly
optimal positional strategy. Moreover, such a strategy, together with the optimal value can be
found in polynomial time.

For mean payoff MDPs, the analogous result is well-known, see, e.g. [16, 4, 7, 23]. In
fact there are several known approaches to construct the optimal stationary strategies. For
instance, a polynomial-time algorithm to solve mean payoff MDPs is based on solving two
associated linear programs, see, e.g., [7].

Our approach for proving Theorem 1 is inspired by a result of [28]. We extend this result
to characterize the existence of pure and stationary optima within all possible strategies
by the feasibility of an associated linear system. Next, we show that this system is always
feasible and a solution can be obtained by solving a polynomial number of linear programming
problems.
I Remark. If there are no random nodes in the MDP, then a uniformly optimal stationary
strategy can be found by a combinatorial algorithm that solves a polynomial number of
minimum mean-cycle problems [18]; we omit the details from this version.

I Theorem 2. Every BWR-game with total effective payoff, π = ψ, has a saddle point in
uniformly optimal positional strategies.

For the mean payoff games with perfect information the above result is well-known
[12, 22].

Let us note that there may be no stationary best response against a non-stationary
strategy of the opponent. However, for the case of total payoff BWR-games, Theorem 1

STACS 2015

106 MDPs and Stochastic Games with Total Effective Payoff

implies that for any stationary strategy of a player there is a pure stationary best response
(among all strategies) of the opponent. This fact implies that it is enough to construct a
saddle point within the family of positional strategies. This latter can be shown by using the
discounted formulation of the game.

1.3 Applications of the total payoff

1.3.1 Total payoff MDPs/games with a terminating condition
This is the special case of MDPs/ stochastic games with one special terminal state, which is
absorbing (that is, p(t, t) = 1) and cost free (that is, r(t, t) = 0). The payoff function, which
is also sometimes called “Total Payoff’ is defined as the sum

θs(v0) = lim inf
T→∞

T∑
t=0

Es[r(vt, vt+1)].

This type of MDPs/games have been considered under different names, such as stochastic
shortest path problems/games, first passage problems and transient programming problems
[1, 2, 3, 7, 14, 25, 29, 31, 30]. This can be thought of as a generalization of the classical
(deterministic) shortest path problem on graphs, with the difference that, at each node, one
should select a probability distribution over successor nodes, out of a given set of probability
distributions. The objective is that the chosen random path leads to the terminal node with
probability one and with the smallest expected cost. In order to establish the existence of
optimal stationary strategies that can derived by the solutions of Bellman-type equations,
several assumptions have been made in earlier works, most notably, the existence of a proper
stationary strategy, i.e., one that guarantees termination from every state with probability
1. Note that for such a proper strategy s, the resulting Markov chain contains exactly one
absorbing class, namely the terminal node, and this case, it is not hard to see that the
values obtained from sum payoff θs and the total payoff ψs are the same. Thus total payoff
MDPs/games considered in this paper can be thought of as a generalization of shortest path
problems/games, when we do not assume that there is a single terminal.

1.3.2 The shortest path interdiction problem (SPIP)
This is the special case of shortest path games when there are no random nodes. More
precisely, in this problem, edges have positive lengths and there is a dedicated terminal
vertex to which the minimizer tries to find a short path, while the opponent tries to block
such paths. It is easy to see that if we add a loop with zero length on the terminal vertex
then the total payoff ψ will be exactly the length of the path for every terminating path,
and will be +∞ otherwise.

The problem was introduced by Fulkerson and Harding [10]; see a short survey by Israely
and Wood [17]. The simplest version is as follows: Given a digraph G = (V,E), with weighted
arcs r : E → Z+, and two vertices s, t ∈ V , eliminate (at most) k arcs of E to maximize
the length of a shortest (s, t)-path. While this problem is APX-hard [20], the following
vertex-wise budget SPIP is tractable [21, 20]: we are given a budget allowing to eliminate (at
most) k(v) arcs going from each state v ∈ V . This version was considered in [21], where an
efficient interdiction algorithm was obtained. Given a digraph G = (V,E), an integer-valued
local cost function r : E → Z+, a constraint k(v) in every vertex v ∈ V , and an initial vertex
s, this algorithm finds in quadratic time an interdiction that maximizes simultaneously the

E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 107

lengths of all shortest paths from s to each vertex v ∈ V . The execution time is just slightly
larger than for the classic Dijkstra shortest path algorithm.

Waving the non-negativity condition from the latter version, we obtain another interesting
relation: In this case, the SPIP becomes equivalent [21] with solving mean payoff BW-games
(no random nodes). Although the latter problem is known to be in the intersection of NP
and co-NP [19, 32], yet, it is not known to be polynomial.

1.3.3 Scheduling with and/or precedence constraints
[24] is another application of the total payoff with r ≥ 0. Given a digraph G = (V,E), whose
states are interpreted as jobs, the and/or precedence constraints require that some jobs u ∈ V
cannot be started before all immediate predecessors (v such that (v, u) ∈ E) are completed,
while some other jobs w ∈ V cannot be started before at least one immediate predecessor is
complete. It is easy to see that this model is equivalent with a total reward BW-game which
has nonnegative local rewards. For this problem [24] provides a polynomial time algorithm.

2 Characterization of pure stationary optima in total MDPs

Our proof of Theorem 1 is based on strengthening a result of Thuijsman and Vrieze (The-
orem 5.3 in [28]) which gives a sufficient and necessary condition for a general total reward
stochastic game to have a saddle point when both players are restricted to stationary strategies.
In case of MDPs, this amounts to the feasibility of a linear program of the form that will
be described in Section 3. In this section, we show that the existence of a solution for this
LP implies in fact the existence of an optimal solution in positional strategies, even if each
player is allowed to choose from the space of all, possibly history-dependent, strategies. Our
proof relies heavily on the concept of a potential transformation and relating the total and
mean effective payoffs of a transformed game to those in the original game.

2.1 Potential transformation
Let us consider a mapping x : V → R, whose values x(v) will be called potentials, and define
the transformed reward local function r[x] : E → R as:

r[x](u, v) = r(u, v)− x(u) + x(v), where (u, v) ∈ E. (4)

Potential transforms were first introduced in 1958 by Gallai [11], then applied to stochastic
games in 1966 by Hoffman and Karp [15] and to B-games (that is, min mean-cycles) in 1978
by Karp [18].

Given a potential transformation x, and an MDP Γ = (G, p, r), let us denote by φ[x]
(similarly, ψ[x]) the optimal effective payoff vectors in the transformed MDP Γ[x] = (G, p, r[x]).
Let us further associate to such a potential vector the quantity M(x) = 2 maxv∈V |x(v)|.

Let us also introduce

φ̂s[x](v0) = lim sup
T→∞

1
T + 1

T∑
t=0

Es[r[x](vt, vt+1)], and

ψ̂s[x](v0) = lim sup
T→∞

1
T + 1

T∑
t=0

t∑
i=0

Es[r[x](vi, vi+1)],

and for x = 0 write φ̂s[0](v0) = φ̂s(v0), and analogously ψ̂s[0](v0) = ψ̂s(v0).

STACS 2015

108 MDPs and Stochastic Games with Total Effective Payoff

I Fact 1 (see, e.g., [6]). For any MDP Γ, there exists a potential y such that, if v0 = v ∈ V
is the initial vertex and t ∈ Z+, then
(i) Es[r[y](vt, vt+1)] ≤ φΓ(v) for any arbitrary strategy s;
(ii) Es∗ [r[y](vt, vt+1)] = φΓ(v) for some positional strategy s∗.

2.2 Characterization of pure and stationary optima
Let us start with a few useful properties connecting mean payoff and total payoff values.

I Lemma 3. If for a strategy s ∈ S and initial vertex v0 ∈ V we have φs(v0) > 0, then
ψs(v0) = +∞. Analogously, if we have φ̂s(v0) < 0, then ψ̂s(v0) = −∞.

I Lemma 4. Assume that sups φs(v) ≤ 0 for all v ∈ V , and denote by y a corresponding
potential transformation as in Fact 1. Then we have the following relations hold for all
strategies s ∈ S and initial vertices v0 ∈ V :

φs(v0) = φs[y](v0) ≤ 0, (5a)

φ̂s(v0) = φ̂s[y](v0) ≤ 0, (5b)

and

ψs(v0) ≤ ψ̂s(v0) ≤ M(y) < ∞. (5c)

I Lemma 5. Assume that sups φs(v) ≤ 0 for all v0 ∈ V . Then if φs(v0) < 0 for a strategy
s ∈ S, then ψ̂s(v0) = −∞.

The following corollary of Lemma 3 and Fact 1 states that the total payoff in an MDP is
not finite if the mean payoff is not zero.

I Corollary 6. For an MDP and a node u, we have

φΓ(u) > 0 =⇒ ψΓ(u) = ψ̂Γ(u) = +∞,
φΓ(u) < 0 =⇒ ψΓ(u) = ψ̂Γ(u) = −∞.

I Lemma 7. Assume that sups φs(v) ≤ 0 for all v ∈ V , and that s ∈ S is a strategy with
initial vertex v0 such that ψs(v0) is finite. Then we have

φs(v0) = φ̂s(v0) = 0.

For brevity, we will use the following notation throughout the rest of this section: Given
a mapping f : E(u)→ R and a subset F ⊆ E(u) we write

M(u,v)∈F [f] =
{

max(u,v)∈F f(u, v), for u ∈ VW ,
avg (u,v)∈F f(u, v), for u ∈ VR,

where avg (u,v)∈F (f(v, u)) :=
∑

(u,v)∈F p(u, v) f(u, v).

I Theorem 8. For a total reward MDP Γ = (G,P, r), the following two statements are
equivalent:
(i) the value vector ψΓ exists, is finite, and Max possesses a uniformly optimal positional

strategy (optimal among all strategies);

E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 109

(ii) the following set of equations has a (finite) solution for variables µ, x ∈ RV , α ∈ R+:

µ(u) = M(u,v)∈E(u)[r(u, v) + µ(v)] for all u ∈ V, (6a)
µ(u) = M(u,v)∈E(u)[αr(u, v) + x(v)− x(u)] for all u ∈ V, (6b)
µ(u) = M(u,v)∈EXT(u)[αr(u, v) + x(v)− x(u)] for all u ∈ VW , (6c)

where, for a vertex u ∈ VW , EXT(u) denotes the set of arcs in E(u) attaining equality in
(6a).

Let us remark that the series of Lemmas we used to prove the above theorem remain true
if we replace in the definitions of φ and ψ the operator lim inf with lim sup. Thus, Theorem
8 also holds with this modified definition, too. Consequently, switching the controller to a
“minimizer" an analogous theorem will hold, since we can obtain this situation by changing
the sign of all local rewards, switching to lim sup in the definitions of φ and ψ, and then
applying the above theorem with a “maximizer." This observation will be useful for using
the “symmetry" between the players in proving Theorem 2.

3 LP formulation

Our purpose in this section is to show that in a total reward MDP, the optimal solution can
always be realized by a positional strategy that can be obtained in polynomial time. One of
the main ingredients in this proof is the treatment of the case when

φΓ(u) = 0 ∀u ∈ V. (A)

In this section we shall assume that the above condition holds, and show that in this case
the optimal solution can be obtained via solving a small series of linear programs. To arrive
to the proof of this statement, we need a series of technical lemmas.

Based on the idea of [28] let us associate to Γ the following linear programming problem
LP(α), where α ∈ R is a real parameter. Recall that E(u) = {(u, v) ∈ E | v ∈ N+(u)},
where N+(u) is the set of out-neighbors of vertex u.

min
∑
u∈V

y(u)

s.t. (7a)
y(u) ≥ r(u, v) + y(v) ∀ u ∈ VW , (u, v) ∈ E(u) (7b)

y(u) ≥ avg
v∈N+(u)

(r(u, v) + y(v)) ∀ u ∈ VR (7c)

y(u) ≥ αr(u, v)− x(u) + x(v) ∀ u ∈ VW , (u, v) ∈ E(u) (7d)

y(u) ≥ avg
v∈N+(u)

(αr(u, v)− x(u) + x(v)) ∀ u ∈ VR. (7e)

The main idea is to show that this LP has an optimal solution satisfying conditions (6a)-
(6c) of Theorem 8 (with y(u) = µ(u)). For this we need to show that, starting from an
arbitrary optimal solution (x, y), we can construct another optimal solution (x∗, y∗) such
that for all u ∈ VW , there is an arc (u, v) ∈ E such that the inequalities (7b) and (7d),
corresponding to this arc, are tight at (x∗, y∗).

Given a feasible solution (x, y) of LP(α), let us denote by Iu(y) the set of arcs (u, v) ∈ E(u)
for which (7b) holds with equality, and let Juα(x, y) denote the set of arcs (u, v) ∈ E(u) for
which (7d) is an equality. Furthermore, let us denote by IR(y) the set of vertices u ∈ VR for

STACS 2015

110 MDPs and Stochastic Games with Total Effective Payoff

which (7c) holds with equality, and let JRα (x, y) denote the set of vertices u ∈ VR for which
(7e) holds with equality.

In view of Theorem 8, it will be enough to show the following:

I Theorem 9. Under Assumption (A), if α > 0 is large enough then LP (α) has an optimal
solution (x∗, y∗) such that

∅ 6= Juα(x∗, y∗) ⊆ Iu(y∗) and JRα (x∗, y∗) = IR(y∗) = VR.

To arrive to the proof of this claim, we need several technical lemmas. Let us first show
that this linear program has a finite optimum whenever α is nonnegative. We break this
claim into two lemmas:

I Lemma 10. Problem LP(α) is feasible, if α ≥ 0.

I Lemma 11. Problem LP(α) is bounded.

Let us then denote by Z(α) the optimum value of LP(α).

I Corollary 12. The value Z(α) exists and is finite for all α ≥ 0.

Strengthening Lemma 11, we can get an explicit lower bound on Z(α), of polynomial
bit-length in terms of the input size (assuming rational input), as follows.

I Lemma 13. For any feasible solution (x, y) in LP (α), α ≥ 0, and for any vertex u ∈ V
and any strategy s ∈ S, we have y(u) ≥ ψs(u).

I Corollary 14. There exists a real L ∈ R such that we have L ≤ Z(α) for all α ≥ 0.

Proof. By Lemma 13 we have
∑
u∈V y(u) ≥

∑
u∈V ψs(u), for all feasible solutions (x, y) of

LP (α), α ≥ 0 and for any strategy s ∈ S. Let us now fix a uniformly optimal stationary
strategy s of the mean-payoff MDP (which we know to exist, see, e.g., [23]). It was shown
in [28] that under the assumption (A) we have ψs(u) finite for all vertices u ∈ V (see
Proposition 1 in Section 5.2 for an explicit formula). Consequently, L =

∑
u∈V ψs(u) is a

finite lower bound (of polynomial bit-length) on the objective function value of any feasible
solution of LP (α) for any α ≥ 0. J

I Lemma 15. There exists a finite real α0 (of polynomial bit-length in terms of the input
size), such that Z(α) = Z(α0) for all α > α0.

I Lemma 16. Let us consider α ≥ α0 and denote by (x∗, y∗) an arbitrary optimal solution
of LP(α). Then, we have IR(y∗) = VR and Iu(y∗) 6= ∅ for all u ∈ VW .

To arrive to a proof of Theorem 9, which is the main aim of this section, it will not be
enough simply to take an optimal solution of LP (α) for a large enough value of α, e.g., for
α ≥ α0. While the optimal values in y∗ will be indeed optimal in the MDP, the additional
conditions of Theorem 9 call for a careful selection of an optimal x∗. In fact LP (α) typically
has many optimal solutions, even if we fix the values in y∗, and the rest of the proof will
focus on showing how can we find efficiently an appropriate x∗ satisfying all conditions of
Theorem 9.

To this end let us fix an optimal solution (x∗, y∗) of LP (α) for some α ≥ α0, and consider
the polyhedron Xα(y∗) defined as the set of feasible x ∈ RV vectors in the following system
of inequalities:

0 ≥ αr(u, v)− y∗(u)− x(u) + x(v) ∀ u ∈ VW , (u, v) ∈ Iu(y∗)
0 ≥ avg

v∈N+(u)
(αr(u, v)− y∗(u)− x(u) + x(v)) ∀ u ∈ VR.

E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 111

Note that out of the inequalities of (7d) we have included only those to which the
corresponding inequalities in (7b)-(7c) are tight at y∗. Since x∗ ∈ Xα(y∗), this set is a
nonempty, closed convex set.

I Lemma 17. For all x ∈ Xα(y∗) there exists a finite ∆(x) ≥ 0 such that (x+ ∆y∗, y∗) is
feasible in LP (α+ ∆) for all ∆ ≥ ∆(x).

Given a vector x ∈ Xα(y∗) let us call a vertex u ∈ VR tight if u ∈ JRα (x, y∗). Analogously,
we call a vertex u ∈ VW tight if 0 = αr(u, v)−y∗(u)−x(u)+x(v) for some arc (u, v) ∈ Iu(y∗).
Let us finally denote by T (x) the set of tight vertices. We will be done if we show that there
is a potential vector x ∈ Xα(y∗) such that T (x) = V , and which can be found by linear
programming.

Let us define the set of vertices which belong to all tight sets:

U =
⋂

x∈Xα(y∗)

T (x).

I Lemma 18. If α ≥ α0, then U 6= ∅.

I Lemma 19. For all vertices w ∈ V we can test if w ∈ U , and if not, find xw ∈ Xα(y∗)
such that w 6∈ T (xw) in polynomial time.

I Corollary 20. For each α ≥ 0 we can find the set U ⊆ V , and a vector x ∈ Xα(y∗) such
that U = T (x) in polynomial time.

I Lemma 21. For all x ∈ Xα(y∗) and for all v 6∈ T (x) there exists a small ε > 0 such that
for the vector

x′(u) =
{
x(u) if u 6= v,

x(u)− ε if u = v

we have x′ ∈ Xα(y∗).

We shall prove next, with the above lemma in mind, that there exists a vector in Xα(y∗),
if α ≥ α0, at which all vertices are tight. To this end let us consider the set U and the vector
x, as in Corollary 20, and the following linear programming problem:

max
∑
u∈V

z(u) s.t. (x− z) ∈ Xα(y∗), z ≥ 0, z(u) = 0 ∀ u ∈ U. (LPZ)

Let us note that in this linear program α, r, y∗, and x are all constants, just like the
z(u) = 0 values for u ∈ U , and hence z(v) for v ∈ V \ U are the only variables.

I Lemma 22. If α ≥ α0 then problem (LPZ) has a finite optimum.

I Corollary 23. If α ≥ α0, and z is an optimum solution of (LPZ), then T (x− z) = V .

Proof of Theorem 9. For an α′ ≥ α0, let y∗ be optimal in LP (α′), let x be as in Corollary
20 and z as in Corollary 23, and define x∗ = x− z + ∆(x− z)y∗ and α = α′ + ∆(x− z).
Then, by Lemma 17 and Corollary 23 it follows that (x∗, y∗) is an optimal solution in LP (α),
satisfying all conditions of the theorem. J

STACS 2015

112 MDPs and Stochastic Games with Total Effective Payoff

4 General MDPs

In this section we extend the result of the previous section to the more general case when
φΓ(u) 6= 0 for some u ∈ V .

I Lemma 24. Let u denote a vertex with φΓ(u) ≤ 0, and let s denote a strategy in S. If,
starting from initial vertex v0 = u strategy s uses with positive probability an arc (v, w) such
that v ∈ VW and 0 ≥ φΓ(v) > φΓ(w), then we have ψs(v0) = −∞.

Let us introduce a new MDP Γ′ = (G′ = (V,E′), p, r′) obtained from Γ = (G, p, r) as
follows:
1. Delete all the arcs (u, v) from G such that u ∈ VW and φΓ(u) > φΓ(v)
2. Define r′(u, v) = r(u, v)− φΓ(u) for all the remaining arcs (u, v).
Let us denote by E′ the set of arcs of G′, and by E′(u) the set of arcs in G′ leaving vertex
u ∈ V . Clearly, E′(u) = E(u) for u ∈ VR.

Let us note that we have φΓ(u) = φΓ(v) for all (u, v) ∈ E′(u), u ∈ VW , since Max could
not have an arc (u, v) ∈ E(u), u ∈ VW such that φΓ(u) < φΓ(v), and all arcs going down in
value are removed in Γ′. Let us also note that φΓ′(u) = 0 for all vertices u.

It is easy to see that an optimal strategy with respect to the mean payoff function φ in
Γ′ is also optimal in Γ. We shall prove below in two lemmas that the same essentially holds
in positional strategies with respect to the total payoff function ψ.

I Lemma 25. Fix an initial vertex v0 = u such that φΓ(u) = 0. Then any strategy s in Γ′
satisfies Es[r′(vj , vj+1)] = Es[r(vj , vj+1)].

Since φΓ′(u) = 0 for all u ∈ V , Theorems 8 and 9 imply that Γ′ possesses a uniformly
optimal positional strategy s∗ with respect to the total payoff function ψ.

I Lemma 26. s∗ is also optimal in Γ.

Proof. Let u be an initial vertex. By Lemmas 24 and 25, s∗ is optimal in Γ, if u satisfies
φΓ(u) = 0. On the other hand, if φΓ(u) > 0 (resp., < 0), let us note that φΓ(v) = φΓ(w) if
v ∈ VW and (v, w) ∈ E′(v), and φΓ(v) = avg (v,w)∈E′(v) φΓ(w) if v ∈ VR. This implies that
Es[φΓ(vt)] = φΓ(v0) for all t. Since by our construction we have, for any strategy s ∈ S,

Es[r(vt, vt+1)] = Es[r′(vt, vt+1)] + Es[φΓ(vt)] = Es[r′(vt, vt+1)] + φΓ(v0) (8)

and ψs(v) is finite for all v ∈ V , the equality ψΓ(v0) = +∞ (resp., −∞) follows. Indeed, if
φΓ′(v0) > 0, then (8) implies for s = s∗ that ψs∗(v0) = +∞; on the other hand, if φΓ′(v0) < 0,
then (8) together with Lemma 24 imply for any s ∈ S that ψs(v0) = −∞. J

5 Two-player zero-sum games with perfect information
(BWR-games)

We now turn our attention to two-person zero-sum stochastic games with perfect information
and total effective payoff.

E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 113

5.1 Discounted BWR-games
Let β be a number in ∈ (0, 1] called the discount factor. Discounted mean payoff stochastic
games were introduced by Shapley [26] and have payoff function:

φβs (v0) = (1− β)
∞∑
j=0

βjEs[rs(vt, vt+1)], (9)

where a(s) = 〈Es[rs(v0, v1)],Es[rs(v1, v2)], . . .〉 is the sequence of expected rewards incurred
at steps 0, 1, . . . of the play, according to the pair of strategies s = (sB , sW).

Discounted games, in general, are easier to solve, due to the fact that a standard value
iteration is in fact a fast converging contraction. Hence, they are widely used in the literature
of stochastic games together with the above limit equality. In fact, for mean payoff BW-games
with n vertices and integral rewards of maximum absolute value R it is known [32] that for two
pairs of stationary strategies s, s′ ∈ Ŝ we have φβs (u) < φβs′(u) if and only if φs(u) < φs′(u)
whenever 1− β ≤ 1

4n3R .
If the discount factor β is strictly less than 1, we obtain the following result, which follows

essentially from [26].
I Fact 2 ([26]). A BWR-game with the discounted mean payoff function φβ has a saddle
point in uniformly optimal positional strategies, for all 0 < β < 1.

We show in the next subsection that the same pair of stationary strategies form a uniform
Nash equilibrium with respect to the total payoff ψ, if β is sufficiently close enough to 1.

5.2 Existence of a saddle point in positional strategies
When the mean payoff values are zero, there is an explicit formula for computing the total
reward values, corresponding to a stationary strategy, as a function of the limiting probability
matrix. To write this formula, we need first to introduce some notation. Given a BWR-game
Γ = (G, p, r) and a pair of positional strategies s = (sB , sW), we obtain a weighted Markov
chain Γs = (Ps, r) with transition matrix Ps in the obvious way:

ps(u, v) =

1 if u ∈ VW ∪ VB and (u, v) is chosen by s;
0 if u ∈ VW ∪ VB and (u, v) is not chosen by s;
p(v, u) if v ∈ VR.

We define the expected local reward rs : V → R, corresponding to the pair s as

rs(u) =
{

r(u, v) if u ∈ VW ∪ VB and (u, v) is chosen by s;∑
(u,v)∈E(u) p(u, v)r(u, v) if v ∈ VR.

Finally, we will denote by Qs the (unique) limiting average probability matrix satisfying
QsPs = PsQs = Qs. Note that φs = Qsrs and φβs = (1− β)(I − βPs)−1rs.
I Proposition 1 ([28]). If s is stationary strategy such that φs = 0, then ψs = (I−Ps+Qs)−1rs,
where I is the |V | × |V | identity matrix.

To prove our main result for BWR-games (Theorem 2), it will be enough to consider
games in which φΓ(u) = 0 for all u ∈ V .

I Theorem 27. Consider an undiscounted BWR-game Γ such that φΓ = 0. Then there is a
uniformly optimal pair of positional strategies (sB , sW) satisfying:

πs∗
B
,sW (v0) ≤ πs∗

B
,s∗
W

(v0) ≤ πsB ,s∗W (v0) for all sB ∈ ŜB , sW ∈ ŜW and for all v0 ∈ V.

STACS 2015

114 MDPs and Stochastic Games with Total Effective Payoff

If |V | = n, all rewards are integral with maximum absolute value R, and all transition
probabilities are rational with maximum common denominator D > 0, then such a saddle
point can be found by solving a discounted game with β = 1− 1

(nD)O(n2)R
.

Proof. We start with the following claim.
I Claim 1. Let s = (sB , sW) be a pair of positional strategies such that φs(v) = 0 for all
v ∈ V . Then, we have

lim
β→1−

ψs − (I − βPs)−1rs
1− β = Ps(I − Ps +Qs)−2rs.

Let γ = min
u∈V

min
s,s′∈Ŝ

ψs(u)6=ψs′ (u)

|ψs(u)− ψs′(u)| and κ = max
u∈V

max
s∈Ŝ
|Ps(I − Ps +Qs)−2rs|.

Standard estimation arguments (see, e.g., [5]) give γ ≥ 1
(nD)O(n2) and κ ≤ (nD)O(n2)R.

Claim 1 implies that, for any sufficiently small ε > 0, there exists a β(ε) ∈ (0, 1) such
that, for all pairs of positional strategies s ∈ Ŝ, we have

‖(1− β(ε))ψs − φβ(ε)
s ‖∞ < (1− β(ε))2(ε+ κ) ≤ 2(1− β(ε))2κ. (10)

Let us choose ε such that β(ε) > 1 − γ
4κ . Then for any two pairs of positional strategies

s, s′ ∈ Ŝ, such that ψs(u) > ψs′(u), we have ψs(u) − ψs′(u) ≥ γ. On the other hand, by
(10), we get∣∣∣(1 − β(ε))ψs(u) − φ

β(ε)
s (u)

∣∣∣ < 2(1−β(ε))2κ and
∣∣∣(1 − β(ε))ψs′(u) − φ

β(ε)
s′ (u)

∣∣∣ < 2(1−β(ε))2κ.

Consequently, by our choice of ε, φβ(ε)
s > φ

β(ε)
s′ follows, proving the claim of the theorem. J

Proof of Theorem 2. First assume that φΓ(u) = 0 for all u ∈ V . Then Theorem 27 implies
the existence of saddle point s∗ = (s∗B , s∗W), among uniformly optimal positional strategies.
Since, by Theorem 1, the best response in the MDP obtained by fixing Max’s strategy to
s∗W (resp., Min’s strategy to s∗B) is positional, it follows that s∗ is a saddle point among all
strategies of the two players. The case when φΓ(u) 6= 0 for some u ∈ V is handled using the
same approach used in Section 4. J

References
1 D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1987.
2 D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems.

Mathematics of Operations Research, 16(3):580–595, 1991.
3 D. P. Bertsekas and H. Yuz. Stochastic shortest path problems, under weak conditions,

lids report 2909. Technical report, MIT, 2013.
4 D. Blackwell. Discrete dynamic programming. Ann. Math. Statist., 33:719–726, 1962.
5 E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. A pumping algorithm for ergodic

stochastic mean payoff games with perfect information. In Proc. 14th IPCO, volume 6080
of LNCS, pages 341–354. Springer, 2010.

6 E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On canonical forms for zero-sum
stochastic mean payoff games. Dynamic Games and Applications, 3(2):128–161, 2013.

7 C. Derman. Finite State Markov decision processes. Academic Press, New York and London,
1970.

E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 115

8 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, Berlin, 1996.
9 O. Friedmann, T. D. Hansen, and U. Zwick. Subexponential lower bounds for randomized

pivoting rules for the simplex algorithm. In STOC, pages 283–292, 2011.
10 D.R. Fulkerson and G.C. Harding. Maximizing the minimum source-sink path subject to

a budget constraint. Mathematical Programming, 13:116–118, 1977.
11 T. Gallai. Maximum-minimum Sätze über Graphen. Acta Mathematica Academiae Scien-

tiarum Hungaricae, 9:395–434, 1958.
12 D. Gillette. Stochastic games with zero stop probabilities. In M. Dresher, A. W. Tucker,

and P. Wolfe, editors, Contribution to the Theory of Games III, volume 39 of Annals of
Mathematics Studies, pages 179–187. Princeton University Press, 1957.

13 V.A. Gurvich, A.V. Karzanov, and L.G. Khachiyan. Cyclic games and an algorithm to find
minimax cycle means in directed graphs. USSR Comput. Math. Math. Phys., 28:85–91,
1988.

14 O. O. Hernández-Lerma and J.-B. Lasserre. Further topics on discrete-time Markov control
processes. Applications of mathematics. Springer, New York, 1999.

15 A. J. Hoffman and R. M. Karp. On non-terminating stochastic games. Management Science,
12:359–370, 1966.

16 R. A. Howard. Dynamic programming and Markov processes. Technology press and Willey,
New York, 1960.

17 E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks, 40(2):97–111,
2002.

18 R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Math.,
23:309–311, 1978.

19 A. V. Karzanov and V. N. Lebedev. Cyclical games with prohibition. Mathematical Pro-
gramming, 60:277–293, 1993.

20 L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao.
On short paths interdiction problems: Total and node-wise limited interdiction. Theory
Comput. Syst., 43(2):204–233, 2008.

21 L. Khachiyan, V. Gurvich, and J. Zhao. Extending dijkstra’s algorithm to maximize the
shortest path by node-wise limited arc interdiction. In CSR, pages 221–234, 2006.

22 T. M. Liggett and S. A. Lippman. Stochastic games with perfect information and time-
average payoff. SIAM Review, 4:604–607, 1969.

23 H. Mine and S. Osaki. Markovian decision process. American Elsevier Publishing Co., New
York, 1970.

24 R. H. Möhring, M. Skutella, and F. Stork. Scheduling with and/or precedence constraints.
SIAM J. Comput., 33(2):393–415, 2004.

25 S. D. Patek and D. P. Bertsekas. Stochastic shortest path games. SIAM Journal on Control
and Optimization, 37:804–824, 1997.

26 L. Shapley. Stochastic games. Proc. Nat. Acad. Sci. USA, 39:1095–1100, 1953.
27 F. Thuijsman and O. J. Vrieze. The bad match, a total reward stochastic game. Operations

Research Spektrum, 9:93–99, 1987.
28 F. Thuijsman and O. J. Vrieze. Total reward stochastic games and sensitive average reward

strategies. Journal of Optimization Theory and Applications, 98:175–196, 1998.
29 P. Whittle. Optimization over Time. John Wiley & Sons, Inc., New York, NY, USA, 1982.
30 H. Yu and D. P. Bertsekas. Q-learning and policy iteration algorithms for stochastic shortest

path problems. Annals OR, 208(1):95–132, 2013.
31 H. Yuz. Stochastic shortest path games and q-learning, lids report 2875. Technical report,

MIT, 2011.
32 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical

Computer Science, 158(1-2):343 – 359, 1996.

STACS 2015

Advice Complexity for a Class of Online Problems∗

Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W.
Mikkelsen

University of Southern Denmark
{joan,lenem,kudahl,jesperwm}@imada.sdu.dk

Abstract
The advice complexity of an online problem is a measure of how much knowledge of the future
an online algorithm needs in order to achieve a certain competitive ratio. We determine the
advice complexity of a number of hard online problems including independent set, vertex cover,
dominating set and several others. These problems are hard, since a single wrong answer by the
online algorithm can have devastating consequences. For each of these problems, we show that
log
(

1 + (c−1)c−1

cc

)
n = Θ(n/c) bits of advice are necessary and sufficient (up to an additive term

of O(log n)) to achieve a competitive ratio of c. This is done by introducing a new string guessing
problem related to those of Emek et al. (TCS 2011) and Böckenhauer et al. (TCS 2014). It turns
out that this gives a powerful but easy-to-use method for providing both upper and lower bounds
on the advice complexity of an entire class of online problems.

Previous results of Halldórsson et al. (TCS 2002) on online independent set, in a related
model, imply that the advice complexity of the problem is Θ(n/c). Our results improve on this
by providing an exact formula for the higher-order term. Böckenhauer et al. (ISAAC 2009) gave
a lower bound of Ω(n/c) and an upper bound of O((n log c)/c) on the advice complexity of online
disjoint path allocation. We improve on the upper bound by a factor of log c. For the remaining
problems, no bounds on their advice complexity were previously known.

1998 ACM Subject Classification F.1.2 Models of Computation (online computation)

Keywords and phrases online algorithms, advice complexity, asymmetric string guessing, advice
complexity class AOC, covering designs

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.116

1 Introduction

An online problem is an optimization problem in which the input is divided into small pieces,
usually called requests, arriving sequentially. Throughout the paper, we let n denote the
number of requests. An online algorithm must serve each request without any knowledge of
future requests, and the decisions made by the online algorithm are irrevocable. The goal
is to minimize or maximize some objective function. Traditionally, competitive analysis is
used to measure the quality of an online algorithm: The solution produced by the algorithm
is compared to the solution produced by an optimal offline algorithm, OPT, which knows the
entire request sequence in advance. While competitive analysis has been very successful and
led to the design of many interesting online algorithms, it sometimes gives overly pessimistic
results. Comparing an online algorithm, which knows nothing about the future, to an
optimal offline algorithm, which knows the entire input, can be rather crude.

∗ This work was partially supported by the Villum Foundation and the Danish Council for Independent
Research, Natural Sciences. Most proofs have been omitted due to space restrictions. These can be
found in the full version of the paper [9].

© Joan Boyar, Lene M. Favrholdt,
Christian Kudahl, and Jesper W. Mikkelsen;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 116–129

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.116
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 117

As an example, consider the classical problem of finding a maximum independent set in
a graph. Suppose that, at some point, an online algorithm decides to include a vertex v in
its solution. It then turns out that all forthcoming vertices in the graph are connected to
v and no other vertices. Thus, the online algorithm cannot include any of these vertices.
On the other hand, OPT knows the entire graph, and so it rejects v and instead takes all
forthcoming vertices. In fact, one can easily show that no online algorithm, even if we allow
randomization, can obtain a competitive ratio better than Ω(n) for this problem.

This paper studies the maximum independent set problem and other similarly hard online
problems. Many papers have studied special cases or relaxed versions of such problems, see
e.g., [12, 20–22, 25, 33]. Often it is the online constraint that is relaxed, resulting in various
semi-online models. The notion of advice complexity offers a quantitative and standardized,
i.e., problem independent, way of relaxing the online constraint.

Advice complexity. The main idea of advice complexity is to provide an online algorithm,
ALG, with some advice bits. These bits are provided by a trusted oracle, O, which has
unlimited computational power and knows the entire request sequence. In the first model
proposed [15], the advice bits were given as answers (of varying lengths) to questions posed
by ALG. One difficulty with this model is that using at most 1 bit, three different options
can be encoded (giving no bits, a 0, or a 1). This problem was addressed by the model
proposed in [16], where the oracle is required to send a fixed number of advice bits per
request. However, for the problems we consider, one bit per request is enough to guarantee
an optimal solution, and so this model is not applicable. Instead, we will use the “advice-
on-tape” model [7], which allows for a sublinear number of advice bits while avoiding the
problem of encoding information in the length of each answer. Before the first request
arrives, the oracle prepares an advice tape, an infinite binary string. The algorithm ALG
may, at any point, read some bits from the advice tape. The advice complexity of ALG is
the maximum number of bits read by ALG for any input sequence of at most a given length.
When advice complexity is combined with competitive analysis, the central question is: How
many bits of advice are necessary and sufficient to achieve a given competitive ratio c?

I Definition 1 (Advice complexity [7, 24] and competitive ratio [26, 32]). The input to an
online problem, P, is a request sequence σ = (r1, . . . , rn). An online algorithm with advice,
ALG, computes the output y = (y1, . . . , yn), under the constraint that yi is computed from
ϕ, r1, . . . , ri, where ϕ is the content of the advice tape. The advice complexity, b(n), of ALG
is the largest number of bits of ϕ read by ALG over all possible inputs of length at most n.

Each possible output for P is associated with a score. For a request sequence σ, ALG(σ)
(OPT(σ)) denotes the score of the output computed by ALG (OPT) when serving σ. If P
is a maximization problem, then ALG is c(n)-competitive if there exists a constant α such
that OPT(σ) ≤ c(n) · ALG(σ) + α for all request sequences σ of length at most n. If P is a
minimization problem, then ALG is c(n)-competitive if there exists a constant α such that
ALG(σ) ≤ c(n) · OPT(σ) + α for all request sequences σ of length at most n. In both cases,
if the inequality holds with α = 0, we say that ALG is strictly c(n)-competitive. For c ≥ 1,
the advice complexity, f(n, c), of a problem P is the smallest possible advice complexity of
a c-competitive online algorithm for P.

We only consider deterministic online algorithms (with advice). Note that both the
advice read and the competitive ratio may depend on n, but, for ease of notation, we often
write b and c instead of b(n) and c(n). Also, by this definition, c ≥ 1, for both minimization
and maximization problems. Lower and upper bounds on the advice complexity have been
obtained for many problems, see e.g., [2, 4–8,10,11,14–16,18,19,24,27,28,30,31].

STACS 2015

118 Advice Complexity for a Class of Online Problems

Online string guessing. In [5, 16], the advice complexity of the following string guessing
problem, SG, is studied: For each request, which is simply empty and contains no infor-
mation, the algorithm tries to guess a single bit (or more generally, a character from some
finite alphabet). The correct answer is either revealed as soon as the algorithm has made
its guess (known history), or all of the correct answers are revealed together at the very end
of the request sequence (unknown history). The goal is to guess correctly as many bits as
possible. This problem was first introduced (under the name generalized matching pennies)
in [16], where a lower bound for randomized algorithms with advice was given. In [5], the
lower bound was improved for the case of deterministic algorithms. In fact, the lower bound
given in [5] is tight up to lower-order terms. While SG is rather uninteresting in the view
of traditional competitive analysis, it is very useful in an advice complexity setting. Indeed,
it has been shown that the string guessing problem can be reduced to many classical online
problems, thereby giving lower bounds on the advice complexity for these problems. This in-
cludes bin packing [11], the k-server problem [19], list update [10], metrical task system [16],
set cover [5] and a certain version of maximum clique [5].

Our contribution. In this paper, we introduce a new asymmetric string guessing problem,
ASG, formally defined in Section 2. The rules are similar to those of the original string
guessing problem with an alphabet of size two, but the score function is asymmetric: If
the algorithm answers 1 and the correct answer is 0, then this counts as a single wrong
answer (as in the original problem). On the other hand, if the algorithm answers 0 and the
correct answer is 1, the solution is infeasible and has an infinite penalty. This asymmetry
in the score function forces the algorithm to be very cautious when making its guesses. It
turns out that ASG captures, in a very precise way, the hardness of problems such as online
independent set and online vertex cover.

We give lower and upper bounds on the advice complexity of the new asymmetric string
guessing problem, ASG. The bounds are tight up to an additive term of O(log n). More
precisely, if b is the number of advice bits necessary and sufficient to achieve a (strict)1
competitive ratio of c > 1, then we show that2

1
e ln 2

n

c
−Θ(log n) ≤ b = log

(
1 + (c− 1)c−1

cc

)
n±Θ(log n) ≤ n

c
+ Θ (log n) .

This holds for all variants of the asymmetric string guessing problem (minimization/-
maximization and known/unknown history). See Figure 1 on page 122 for a graphical plot.

We introduce a class, AOC, of online problems. The class AOC essentially consists of
those problems which can be reduced to ASG. In particular, for any problem in AOC, our
upper bound on the advice complexity for ASG applies. This is one of the few known
examples of a general technique for constructing online algorithms with advice, which works
for an entire class of problems.

On the hardness side, we show that several online problems, including vertex cover, cycle
finding, dominating set, independent set, set cover and disjoint path allocation (described
in Section 5) are AOC-complete, that is, they have the same advice complexity as ASG. We

1 The upper bound holds for being strictly c-competitive, while the lower bound also holds for being
c-competitive. For the lower bound, the constant hidden in Θ(log n) depends on the additive constant
α of the c-competitive algorithm.

2 We only consider c > 1 since in order to be strictly 1-competitive, an algorithm needs to correctly guess
every single bit. It is easy to show that this requires n bits of advice (see e.g. [5]). By Remark 9, this
also gives a lower bound for being 1-competitive.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 119

prove this by providing reductions from ASG to each of these problems. The reductions
preserve the competitive ratio and only increase the advice read by an additive term of
O(log n). Thus, we obtain bounds on the advice complexity of each of these problems which
are essentially tight.

As a key step in obtaining our results, we establish a connection between the advice
complexity of ASG and the size of covering designs (a well-studied object from the field of
combinatorial designs).

Comparison with previous results. The original string guessing problem, SG, can be
viewed as a maximization problem, the goal being to correctly guess as many of the n

bits as possible. Clearly, OPT always obtains a profit of n. With a single bit of advice,
an algorithm can achieve a strict competitive ratio of 2: The advice bit simply indicates
whether the algorithm should always guess 0 or always guess 1. This is in stark contrast to
ASG, where linear advice is needed to achieve any constant competitive ratio. On the other
hand, for both SG and ASG, achieving a constant competitive ratio c < 2 requires linear
advice. However, the exact amount of advice required to achieve a particular competitive
ratio c < 2 is larger for ASG than for SG. See Figure 1 for a graphical comparison.

The problems online independent set and online disjoint path allocation, which we show
to be AOC-complete, have previously been studied in the context of advice complexity or
similar models. In [7], the advice complexity of online disjoint path allocation is considered.
It is shown that a strictly c-competitive algorithm must read at least n+2

2c − 2 bits of advice.
On the other hand, the authors show that for any c ≥ 2, there exists a strictly c-competitive
online algorithm reading at most min

{
n log

(
c

(c−1)(c−1)/c

)
, n logn

c

}
+ 3 log n + O(1) bits of

advice. We remark that (n log c)/c < n log
(
c/(c− 1)(c−1)/c) < 2(n log c)/c, for c ≥ 2. Thus,

this older upper bound is Θ((n log c)/c) and at least a factor of 2 log c away from the lower
bound. We improve on these bounds, removing the gap between the upper and lower bound.

In [21], the online independent set problem is considered in a multi-solution model. In
this model, an online algorithm is allowed to maintain multiple solutions. The algorithm
knows (a priori) the number n of vertices in the input graph, and the model is parametrized
by a function r(n). Whenever a vertex v is revealed, the algorithm can include v in at most
r(n) different solutions (some of which might be new solutions with v as the first vertex).
At the end, the algorithm outputs the solution containing the most vertices. The multi-
solution model is closely related to the advice complexity model. Simple conversions allow
one to translate both upper and lower bounds between the two models almost exactly, up
to an additive term of O(log n). Doing so, the results of [21] can be summarized as follows:
For any c ≥ 1, there is a strictly c-competitive independent set algorithm reading at most
dn/ce + O(log n) bits of advice. On the other hand, any strictly c-competitive algorithm
for independent set must read at least n

2c − log n bits of advice. Our improvement for this
problem consists of determining the exact coefficient of the higher-order term.

One important feature of the framework that we introduce in this paper is that obtaining
tight bounds on the advice complexity for problems like online independent set and online
disjoint path allocation becomes very easy. We remark that the reductions we use to show the
hardness of these two problems reduce instances of ASG to instances of online independent
set (resp. disjoint path allocation) that are identical to the hard instances used in [21]
(resp. [7]). What enables us to improve the previous bounds, even though we use the same
hard instances, is that we have a detailed analysis of the advice complexity of ASG at our
disposal.

STACS 2015

120 Advice Complexity for a Class of Online Problems

Related work. The advice complexity of online disjoint path allocation has also been stud-
ied as a function of the length of the path (as opposed to the number of requests), see [3,7].
The advice complexity of online independent set on bipartite graphs and on sparse graphs
has been determined in [14]. The advice complexity of an online set cover problem [1] has
been studied in [27]. However, the version of online set cover that we consider is different
and so our results and those of [27] are incomparable.

Preliminaries. Let log denote the binary logarithm log2 and ln the natural logarithm loge.
By a string we always mean a bit string. For a string x ∈ {0, 1}n, we denote by |x|1 the
Hamming weight of x (that is, the number of 1s in x) and we define |x|0 = n−|x|1. Also, we
denote the i’th bit of x by xi, so that x = x1x2 . . . xn. For n ∈ N, define [n] = {1, 2, . . . , n}.
For a subset Y ⊆ [n], the characteristic vector of Y is the string y = y1, . . . , yn ∈ {0, 1}n
such that, for all i ∈ [n], yi = 1 if and only if i ∈ Y . For x, y ∈ {0, 1}n, we write x v y if
xi = 1⇒ yi = 1 for all 1 ≤ i ≤ n.

If the oracle needs to communicate some integer m to the algorithm, and if the algorithm
does not know of any upper bound on m, the oracle needs to use a self-delimiting encoding.
For instance, the oracle can write dlogme in unary (a string of 1’s followed by a 0) before
writing m itself in binary. In total, this encoding uses O(logm) bits. Slightly more efficient
encodings exist, see e.g. [6].

2 Asymmetric String Guessing

In this section, we formally define the asymmetric string guessing problem. There are
four variants of the problem, one for each combination of minimization/maximization and
known/unknown history. Collectively, these four problems will be referred to as ASG. We
have deliberately tried to mimic the definition of the string guessing problem SG from [5].

I Definition 2. The minimum asymmetric string guessing problem with unknown history,
minASGu, has input (?1, . . . , ?n, x), where x ∈ {0, 1}n, for some n ∈ N. For 1 ≤ i ≤ n,
round i proceeds as follows:

1. The algorithm receives request ?i which contains no information.
2. The algorithm answers yi, where yi ∈ {0, 1}.
The output y = y1 . . . yn computed by the algorithm is feasible, if x v y. Otherwise, y is
infeasible. The cost of a feasible output is |y|1, and the cost of an infeasible output is ∞.

I Definition 3. The minimum asymmetric string guessing problem with known history,
minASGk, has input x = (?, x1, . . . , xn), where x ∈ {0, 1}n, for some n ∈ N. For 1 ≤ i ≤ n,
round i proceeds as follows:

1. If i > 1, the algorithm learns the correct answer, xi−1, to the request in the previous
round.

2. The algorithm answers yi = f(x1, . . . , xi−1) ∈ {0, 1}, where f is a function defined by
the algorithm.

The output y = y1 . . . yn computed by the algorithm is feasible, if x v y. Otherwise, y is
infeasible. The cost of a feasible output is |y|1, and the cost of an infeasible output is ∞.

We collectively refer to minASGk and minASGu as minASG. The string x in either
version of minASG will be referred to as the input string or the correct string. Note that
the number of requests in both versions of minASG is n + 1, since there is a final request
that does not require any response from the algorithm. This final request ensures that the

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 121

entire string x is eventually known. For simplicity, we will measure the advice complexity
of minASG as a function of n (this choice is not important as it changes the complexity by
at most one bit).

Without advice the situation is the following. For any deterministic minASG algorithm
which sometimes answers 0, there exists an input string on which the algorithm gets a cost
of ∞. However, if an algorithm always answers 1, the input string could consist solely of
0s. Thus, no deterministic algorithm can achieve a finite competitive ratio. One can easily
show that the same holds for any randomized algorithm.

We now give a simple algorithm for minASG which reads O(n/c) bits of advice and
achieves a strict competitive ratio of dce.

I Theorem 4. For any c ≥ 1, there is a strictly dce-competitive algorithm for minASGu
which reads dnc e+O(log(n/c)) bits of advice.

Proof. Let x = x1 . . . xn be the input string. The oracle encodes p = dn/ce in a self-
delimiting way, which requires O(log(n/c)) bits of advice. For 0 ≤ j < p, define Cj = {xi :
i ≡ j (mod p)}. These p sets partition the input string, and the size of each Cj is at most
dn/pe ≤ dce. The oracle writes one bit, bj , for each set Cj . If Cj contains only 0s, bj is set
to 0. Otherwise, bj is set to 1.

The algorithm learns p and the bits b0, . . . , bp−1 from the advice tape. In round i, the
algorithm answers with the bit bimod p. Clearly, this algorithm is strictly dce-competitive. J

The definition of the maximization version of ASG is similar to the definition of minASG:

I Definition 5. The maximum asymmetric string guessing problem with unknown history,
maxASGu, is identical to the minASGu problem with unknown history, except that the
score function is different. In the maxASGu problem, the score of a feasible output y is |y|0.
The score of an infeasible output is −∞. The goal is to maximize the score. The maximum
asymmetric string guessing problem with known history, maxASGk, is defined similarly.

We collectively refer to the two maximization problems as maxASG.
An algorithm for maxASG without advice cannot attain a finite competitive ratio. If

such an algorithm would ever answer 0 in some round, an adversary would let the correct
answer be 1 and the algorithm’s output would be infeasible. On the other hand, answering
1 in every round gives an output with a profit of zero.

I Theorem 6. For any c ≥ 1, there is a strictly dce-competitive algorithm for maxASGu
which reads dn/ce+O(log n) bits of advice.

Proof. The oracle partitions the input string x = x1 . . . xn into dce disjoint blocks, each
containing (at most) dnc e consecutive bits. Note that there must exist a block where the
number of 0s is at least |x|0 /dce. The oracle uses O(log n) bits to encode the index i at
which this block starts and the index i′ at which it ends. Furthermore, the oracle writes the
string xi . . . xi′ onto the advice tape, which requires at most dnc e bits, since this is the largest
possible size of a block. The algorithm learns the string xi . . . xi′ and answers accordingly
in rounds i to i′. In all other rounds, the algorithm answers 1. J

In the following sections, we determine the amount of advice necessary and sufficient
to achieve some (strict) competitive ratio c > 1. It turns out that the algorithms from
Theorems 4 and 6 use the asymptotically smallest possible number of advice bits, but the
coefficient in front of the term n/c can be improved.

STACS 2015

122 Advice Complexity for a Class of Online Problems

0.0

0.2

0.4

0.6

0.8

1.0

A
d
v
ic
e
b
it
s
p
er

re
q
u
es
t

1 2 3 4 5
Competitive ratio c

ASG SG
1

c

1

e ln(2)c

Figure 1 The upper solid line (green) shows the number of advice bits per request which are
necessary and sufficient for obtaining a (strict) competitive ratio of c for ASG (ignoring lower-order
terms). The lower solid line (brown) shows the same number for the original string guessing problem
SG [5]. The dashed lines are the functions 1/c and 1/(e ln(2)c).

3 Advice Complexity of ASG

In order to determine the advice complexity of ASG, we will use some basic results from
the theory of combinatorial designs. Let v ≥ k ≥ t be integers. A (v,k,t)-covering design is
a family of k-subsets (called blocks) of a v-set, X, such that any t-subset of X is contained
in at least one block. The size of a covering design, D, is the number of blocks in D. The
covering number, C(v, k, t), is the smallest possible size of a (v, k, t)-covering design. The
connection to ASG is that for inputs to minASG where the number of 1s is t, an (n, ct, t)-
covering design can be used to obtain a strictly c-competitive algorithm. Many papers have
been devoted to the study of covering numbers. See [13] for a survey. We make use of the
following bounds on the size of a covering design:

I Lemma 7 (Erdős, Spencer [17]). For all natural numbers v ≥ k ≥ t,(
v
t

)(
k
t

) ≤ C(v, k, t) ≤
(
v
t

)(
k
t

) (1 + ln
(
k

t

))
(1)

We will state the obtained advice complexity bounds in terms of the following function:

B(n, c) = log
(

1 + (c− 1)c−1

cc

)
n (2)

For c > 1, we show that B(n, c) ± O(log n) bits of advice are necessary and sufficient to
achieve a (strict) competitive ratio of c, for any version of ASG. See Figure 1 for a graphical
view. It can be shown that n/(a · c) ≤ B(n, c) ≤ n/c, where a = e ln(2). In particular, if
c = o(n/ log n), we see that O(log n) becomes a lower-order term. Thus, for this range of c,
we determine exactly the higher-order term in the advice complexity of ASG. Since this is
the main focus of our paper, we will consider O(log n) a lower-order term. The case where
c = Ω(n/ log n) is treated in the full version of the paper [9].

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 123

3.1 Advice Complexity of minASG
The following theorems show that covering numbers are closely related to the amount of
advice needed for an algorithm, ALG, to achieve a strict competitive ratio of c for minASG.

I Theorem 8. For any c > 1, there exists a strictly c-competitive algorithm for minASGu
and minASGk reading b bits of advice, where

b = log
(

max
t:bctc<n

C(n, bctc, t)
)

+O(log n) = B(n, c) +O(log n).

Proof (sketch). Let x = x1 . . . xn be an input string to minASG and set t = |x|1. The oracle
encodes n and t in a self-delimiting way. If t = 0 or ct ≥ n, it is trivial to output a solution of
the desired quality. In all other cases, ALG computes an optimal (n, bctc, t)-covering design
by making a systematic enumeration of all possible solutions (using lexicographic order, say).
Note there must exist a bctc-block Y from this covering design such that the characteristic
vector y of Y satisfies x v y. Using dlogC(n, bctc, t)e bits of advice, the oracle can encode
the index of Y . A lengthy calculation using (1) allows us to express this upper bound in
terms of the function B(n, c) defined in (2). J

Note that an algorithm for minASGu reading b(n) bits of advice can only produce 2b(n)

different outputs, one for each possible advice string. Consider the set of input strings In,t =
{x ∈ {0, 1}n : |x|1 = t}, and let Yn,t be the corresponding set of output strings produced by
the algorithm. If the algorithm is strictly c-competitive, then Yn,t can be converted into an
(n, bctc, t)-covering design. This gives a lower bound of log

(
maxt:bctc<n C(n, bctc, t)

)
on the

advice needed to achieve a strict competitive ratio of c for minASGu.
Recall that for minASGk, the output produced by an algorithm can depend on both the

advice read and the correct answer to requests in previous rounds. In particular, the proof
of the lower bound for minASGu sketched above breaks down for minASGk. However, by
using a more complicated argument, Theorem 10 gives a lower bound of B(n, c)−O(log n)
on the advice needed to achieve a strict competitive ratio of c for minASGk. Note that this
matches the upper bound from Theorem 8 up to an additive term of O(log n).

Before proving Theorem 10, we remark that there is a close connection between results
on the competitive ratio and the strict competitive ratio:
I Remark 9. Suppose that a minASG algorithm, ALG, is c-competitive. By definition,
there exists a constant, α, such that ALG(σ) ≤ c · OPT(σ) + α. Then, one can construct
a new algorithm, ALG′, which is strictly c-competitive and uses O(log n) additional advice
bits as follows: Use O(log n) bits of advice to encode the length n of the input and use
α · dlog ne = O(log n) bits of advice to encode the index of (at most) α rounds in which ALG
guesses 1 but where the correct answer is 0. Clearly, ALG′ can use this additional advice to
achieve a strict competitive ratio of c. This also means that a lower bound of b on the number
of advice bits required to be strictly c-competitive implies a lower bound of b−O(log n) advice
bits for being c-competitive (where the constant hidden in O(log n) depends on the additive
constant α of the c-competitive algorithm). We will use this observation in Theorem 10.
Note that the same technique can be used for maxASG.

I Theorem 10. For any c > 1, a c-competitive algorithm for minASGk or minASGu must
read at least b bits of advice, where

b ≥ log
(

max
t:bctc<n

(
n
t

)(bctc
t

))−O(log n) = B(n, c)−O(log n) (3)

STACS 2015

124 Advice Complexity for a Class of Online Problems

Proof (sketch). Fix n, c and let b be the maximum number of advice bits read by the strictly
c-competitive algorithm, ALG, over all inputs of length n. Suppose, by way of contradiction,
that there exists some t such that bctc < n and b < log(

(
n
t

)
/
(bctc
t

)
). Let In,t be the set of

input strings of length n and Hamming weight t. We achieve the desired contradiction by
showing that there is some input string in In,t on which the algorithm incurs a cost of at
least bctc+ 1.

Note that |In,t| =
(
n
t

)
. By the pigeonhole principle, there must exist some advice string,

ϕ, such that the set of input strings, Iϕn,t ⊆ In,t, of length n and Hamming weight t for which
ALG reads the advice ϕ has size

∣∣Iϕn,t∣∣ > (bctct).
We consider the computation of ALG, when reading the advice ϕ, as a game between ALG

and an adversary, ADV. From the advice, ALG learns that the input string belongs to Iϕn,t.
Because of the known history, at the beginning of round i, ALG also knows the first i − 1
bits of the input string. We say that a string s ∈ Iϕn,t is alive in round i if the first i − 1
bits of s are identical to those revealed in the first i− 1 rounds. If, in round i, there exists
some string s such that s is still alive and si = 1, then ALG must answer 1. If not, ADV could
pick s as the input string and hence ALG would incur a cost of ∞. On the other hand, if
no such s exists in round i, we may assume (without loss of generality) that ALG answers 0.
Intuitively, ADV wants to maximize the number of rounds where ALG is forced to answer 1
but where ADV can still give 0 as the correct answer.

Suppose that in some round, there are m strings from Iϕn,t which are alive. Let h be the
number of 1s that have yet to be revealed in each of these strings (this is well-defined since
all strings from Iϕn,t have the same number of 1s). We let L1(m,h) denote the minimum
cost that the adversary can force ALG to incur in the remaining rounds when starting from
this situation. The proof is finished by showing that for any m,h ≥ 1,

L1(m,h) ≥ min
{
d : m ≤

(
d

h

)}
. (4)

Indeed, it follows from (4) that L1
(∣∣Iϕn,t∣∣ , t) ≥ bctc+ 1. By induction on m and h, one can

show that (4) is true by using the following adversary strategy: Let m the number of strings
alive in the current round, i. Furthermore, let m0 be the number of the m alive strings for
which the ith bit is 0, and let m1 = m −m0. If m0 = m, then ADV has to choose 0 as the
correct bit in round i. If m0 < m, let d1 be the smallest integer such that m1 ≤

(
d1
h−1
)
and

let d be the smallest integer such that m ≤
(
d
h

)
. If d1 ≤ d + 1, the adversary chooses 1 as

the correct bit in round i and otherwise it chooses 0.
By Remark 9, the first inequality of (3) follows. The last equality follows from a simple

but lengthy calculation showing that log
(

maxt:bctc<n
(
n
t

)
/
(bctc
t

))
= B(n, c)−O(log n). J

3.2 Advice Complexity of maxASG
The advice complexity of maxASG is the same as that of minASG, up to an additive
O(log n) term. This is not immediately obvious, but one can show that computing a c-
competitive solution for maxASG, on input strings where the number of 0s is u, requires
roughly the same amount of advice as computing a c-competitive solution for minASG, on
input strings where the number of 1s is du/ce.

I Theorem 11. For maxASGu and maxASGk and for any c > 1,

b = B(n, c)±O(log n) (5)

bits of advice are necessary and sufficient to achieve a (strict) competitive ratio of c.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 125

4 The Complexity Class AOC

In this section, we define a class of problems, AOC, and show that for each problem, P, in
AOC, the advice complexity of P is at most that of ASG.

I Definition 12. A problem P is in AOC (Asymmetric Online Covering) if it can be defined
as follows: The input to an instance of P consists of a sequence of n requests σ = (r1, . . . , rn)
and possibly one final dummy request. An algorithm for P computes a binary output string
y = y1 . . . yn ∈ {0, 1}n, where yi = f(r1, . . . , ri) for some function f .

For minimization (maximization) problems, the score function s maps a pair (σ, y) of
input and output to a cost (profit) in N∪{∞} (N∪{−∞}). For an input σ and an output y,
y is feasible if s(σ, y) ∈ N. Otherwise, y is infeasible. There must exist at least one feasible
output. Let Smin(σ) (Smax(σ)) be the set of those outputs that minimize (maximize) s for
a given input σ.

If P is a minimization problem, then for every input σ, the following must hold:

1. For a feasible output y, s(σ, y) = |y|1.
2. An output y is feasible if there exists a y′ ∈ Smin(σ) such that y′ v y.

If there is no such y′, the output may or may not be feasible.

If P is a maximization problem, then for every input σ, the following must hold:

1. For a feasible output y, s(σ, y) = |y|0.
2. An output y is feasible if there exists a y′ ∈ Smax(σ) such that y′ v y.

If there is no such y′, the output may or may not be feasible.

The dummy request is a request that does not require an answer and is not counted
when we count the number of requests. Most of the problems that we consider will not have
such a dummy request, but it is necessary to make sure that ASG belongs to AOC.

The input σ to a problem P in AOC can contain any kind of information. However,
for each request, an algorithm for P only needs to make a binary decision. If the problem
is a minimization problem, it is useful to think of answering 1 as accepting the request
and answering 0 as rejecting the request (e.g., vertices in a vertex cover). The output is
guaranteed to be feasible if the accepted requests are a superset of the requests accepted in
some optimal solution. If the problem is a maximization problem, it is useful to think of
answering 0 as accepting the request and answering 1 as rejecting the request (e.g., vertices
in an independent set). The output is guaranteed to be feasible if the accepted requests are
a subset of the requests accepted in an optimal solution.

The key point of Definition 12 is that an ASGu algorithm works for every problem
in AOC. Thus, by Theorems 8 and 11, we get the following upper bound on the advice
complexity for problems in AOC.

I Theorem 13. Let P be a problem in AOC. There exists a strictly c-competitive online
algorithm for P reading b bits of advice, where

b = log
(

1 + (c− 1)c−1

cc

)
n+O(log n) = B(n, c) +O(log n).

For all variants of ASG, we know that this upper bound is tight up to an O(log n) term.
This leads us to the following definition of completeness.

STACS 2015

126 Advice Complexity for a Class of Online Problems

I Definition 14. A problem P is AOC-complete if P belongs to AOC and if, for all c > 1,
any c-competitive algorithm for P must read at least b bits of advice, where

b = log
(

1 + (c− 1)c−1

cc

)
n−O(log n) = B(n, c)−O(log n).

The constant hidden in O(log n) in Definition 14 is allowed to depend on the additive
constant α of the c-competitive algorithm.

Note that the advice complexity of an AOC-complete problem must be identical to the
upper bound from Theorem 13, up to a lower-order term of O(log n). By Theorems 10 and
11, all of minASGu, minASGk, maxASGu and maxASGk are AOC-complete. When we
show that some problem P is AOC-complete, we do this by giving a reduction from a known
AOC-complete problem to P, which preserves the competitive ratio and increases the number
of advice bits by at most O(log n). ASGk is especially well-suited as a starting point for such
reductions. We allow for an additional O(log n) bits of advice in Definition 14 in order to be
able to use the reduction between the strict and non-strict competitive ratios as explained
in Remark 9 and in order to encode some natural parameters of the problem, such as the
input length or the score of an optimal solution. For most values of c, it seems reasonable
to allow these additional advice bits. However, it does mean that for c = Ω(n/ log n), the
requirement in the definition of AOC-complete is vacuously true.

5 Applications

By definition, showing that a problem is AOC-complete gives (almost) tight bounds on its
advice complexity. We show that several natural online problems are AOC-complete.

Many of the problems that we consider are graph problems. Unless otherwise mentioned,
the problems are studied in the vertex-arrival model. In this model, the vertices of an
unknown graph are revealed one by one. That is, in each round, a vertex is revealed together
with all edges connecting it to previously revealed vertices. For the problems we study in
the vertex-arrival model, whenever a vertex, v, is revealed, an online algorithm ALG must
(irrevocably) decide if v should be included in its solution or not. The individual graph
problems are defined by specifying the set of feasible solutions. For all of the problems, the
cost (or profit) of a feasible solution is the number of vertices in that solution. The cost
(profit) of an infeasible solution is ∞ (−∞). The problems we consider in this model are:

Online Vertex Cover. A solution is feasible if all edges in the input graph have an
endpoint at some vertex in the solution. The problem is a minimization problem.
Online Cycle Finding. A solution is feasible if the subgraph induced by the vertices
in the solution contains a cycle. We assume that the presented graph always contains a
cycle. The problem is a minimization problem
Online Dominating Set. A solution is feasible if each vertex in the input graph is in
the solution or has a neighbor in the solution. The problem is a minimization problem.
Online Independent Set. A solution is feasible if no two vertices in the solution are
neighbors. The problem is a maximization problem.

We also consider the following online problems. Again, the cost (profit) of an infeasible
solution is ∞ (−∞).

Online Disjoint Path Allocation. A path, P , is given. Each request is a subpath
of P and must immediately be either accepted or rejected. A solution is feasible if the
accepted subpaths are edge disjoint. The profit of a feasible solution is the number of
accepted paths. The problem is a maximization problem.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 127

Online Set Cover (set-arrival version). A finite set U known as the universe is given.
The input is a sequence of finite subsets of U , (A1, . . . , An), where ∪1≤i≤nAi = U . On
arrival, a subset must either be accepted or rejected. Denote by S the set of indices of the
subsets in some solution. The solution is feasible if ∪i∈SAi = U . The cost of a feasible
solution is the number of accepted subsets. The problem is a minimization problem.

Note that the offline version of the problems we study have very different properties.
Finding the shortest cycle in a graph can be done in polynomial time. There is a 2-
approximation algorithm for finding a minimum vertex cover3. No o(log n)-approximation
algorithm exists for finding a minimum set cover (or a minimum dominating set), unless
P = NP [29]. For any ε > 0, no n1−ε-approximation algorithm exists for finding a maximum
independent set, unless ZPP = NP [23].

The following theorem shows that all of the problems defined above are AOC-complete.

I Theorem 15. For the problems Online Vertex Cover, Online Cycle Finding,
Online Dominating Set, Online Set Cover, Online Independent Set and Online
Disjoint Path Allocation and for any c > 1, possibly a function of the input length n,

b = log
(

1 + (c− 1)c−1

cc

)
n±O(log n)

bits of advice are necessary and sufficient to achieve a (strict) competitive ratio of c.

It is easy to check that each of these problems belongs to AOC. To show completeness,
we use reductions from ASG. Here, we sketch the reduction from minASGk to Online
Vertex Cover4. For an input string x = x1 . . . xn ∈ {0, 1}n, define Gx = (V,E) as follows:
V = {v1, . . . , vn} and E = {(vi, vj) : xi = 1 and i < j}. Furthermore, let V1 = {vi : xi = 1}.
The vertices will be revealed in the order (v1, . . . , vn). Note that V1 \ {vn} is a minimum
vertex cover of Gx. Also, if an algorithm rejects just a single vertex from V1, it must accept
all forthcoming vertices in order to produce a feasible solution. Using these observations, one
can show that Online Vertex Cover is AOC-complete. The details, and the reductions
for the remaining problems, can be found in the full version [9].

6 Conclusion and Open Problems

As with the original string guessing problem SG [5,16], we have shown that ASG is a useful
tool for determining the advice complexity of online problems. It seems plausible that one
could identify other variants of online string guessing and obtain classes similar to AOC.
This could lead to an entire hierarchy of string guessing problems and related classes.

More concretely, there are various possibilities of generalizing ASG. One could associate
some positive weight to each bit xi in the input string. The goal would then be to produce
a feasible output of minimum (or maximum) weight. Such a string guessing problem would
model minimum weight vertex cover (or maximum weight independent set). Note that for
maxASG, the algorithm from Theorem 6 works in the weighted version. However, the same
is not true for any of the algorithms we have given for minASG. Thus, it remains an open
problem if O(n/c) bits of advice suffice to achieve a competitive ratio of c for the weighted
version of minASG.

3 We emphasize that the 2-approximation algorithm which greedily covers the edges (by selecting both
endpoints) one by one cannot be used in the online vertex-arrival model.

4 The graph used in this reduction is identical to the graph used in [21] to show hardness of Online
Independent Set in the multi-solution model.

STACS 2015

128 Advice Complexity for a Class of Online Problems

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online

set cover problem. SIAM J. Comput., 39(2):361–370, 2009.
2 Kfir Barhum. Tight bounds for the advice complexity of the online minimum steiner tree

problem. In SOFSEM, pages 77–88, 2014.
3 Kfir Barhum, Hans-Joachim Böckenhauer, Michal Forišek, Heidi Gebauer, Juraj

Hromkovič, Sacha Krug, Jasmin Smula, and Björn Steffen. On the power of advice and
randomization for the disjoint path allocation problem. In SOFSEM, pages 89–101, 2014.

4 Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovič, and Lucia Keller. On-
line coloring of bipartite graphs with and without advice. Algorithmica, 70(1):92–111, 2014.

5 Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm, Sacha Krug, Jasmin Smula,
and Andreas Sprock. The string guessing problem as a method to prove lower bounds on
the advice complexity. Theor. Comput. Sci., 2014.

6 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and Richard Královič. On
the advice complexity of the k-server problem. In ICALP (1), pages 207–218, 2011.

7 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and To-
bias Mömke. On the advice complexity of online problems. In ISAAC, pages 331–340,
2009.

8 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith. The
online knapsack problem: Advice and randomization. Theor. Comput. Sci., 527:61–72,
2014.

9 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen. The Advice
Complexity of a Class of Hard Online Problems. arXiv, 1408.7033 (cs.DS), August 2014.

10 Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. On the list update
problem with advice. In LATA, pages 210–221, 2014.

11 Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. Online bin packing
with advice. In STACS, pages 174–186, 2014. Full paper to appear in Algorithmica.

12 Marc Demange and Vangelis Th. Paschos. On-line vertex-covering. Theor. Comput. Sci.,
332(1-3):83–108, 2005.

13 Jeffrey H. Dinitz and Douglas R. Stinson, editors. Contemporary Design Theory: a Collec-
tion of Surveys. Wiley-Interscience series in discrete mathematics and optimization. Wiley,
New York, 1992.

14 Stefan Dobrev, Rastislav Královič, and Richard Královič. Independent set with advice:
The impact of graph knowledge - (extended abstract). In WAOA, pages 2–15, 2012.

15 Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant
information in input. RAIRO - Theor. Inf. Appl., 43(3):585–613, 2009.

16 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with
advice. Theor. Comput. Sci., 412(24):2642–2656, 2011.

17 Paul Erdős and Joel Spencer. Probabilistic Methods in Combinatorics. Academic Press,
1974.

18 Michal Forišek, Lucia Keller, and Monika Steinová. Advice complexity of online coloring
for paths. In LATA, pages 228–239, 2012.

19 Sushmita Gupta, Shahin Kamali, and Alejandro López-Ortiz. On advice complexity of the
k-server problem under sparse metrics. In SIROCCO, pages 55–67, 2013.

20 Magnús M. Halldórsson. Online coloring known graphs. Electronic J. of Combinatorics,
7(R7), 2000.

21 Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online
independent sets. Theor. Comput. Sci., 289(2):953–962, 2002.

22 Magnús M. Halldórsson and Hadas Shachnai. Return of the boss problem: Competing
online against a non-adaptive adversary. In FUN, pages 237–248, 2010.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 129

23 Johan Håstad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):105–142,
1999.

24 Juraj Hromkovič, Rastislav Královič, and Richard Královič. Information complexity of
online problems. In MFCS, pages 24–36, 2010.

25 Sandy Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53–72, 1994.
26 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive

snoopy caching. Algorithmica, 3:77–119, 1988.
27 Dennis Komm, Richard Královič, and Tobias Mömke. On the advice complexity of the set

cover problem. In CSR, pages 241–252, 2012.
28 Shuichi Miyazaki. On the advice complexity of online bipartite matching and online stable

marriage. Inf. Process. Lett., 114(12):714–717, 2014.
29 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In STOC, pages 475–484, 1997.
30 Marc P. Renault, Adi Rosén, and Rob van Stee. Online algorithms with advice for bin

packing and scheduling problems. CoRR, abs/1311.7589, 2013.
31 Sebastian Seibert, Andreas Sprock, and Walter Unger. Advice complexity of the online

coloring problem. In CIAC, pages 345–357, 2013.
32 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging

rules. Commun. ACM, 28(2):202–208, 1985.
33 Wen-Guey Tzeng. On-line dominating set problems for graphs. In D.-Z. Ding and Pardalos,

editors, Handbook of Combinatorial Optimization. Kluwer Academic Publishers, Boston,
1998.

STACS 2015

Las Vegas Computability and Algorithmic
Randomness∗

Vasco Brattka1,2, Guido Gherardi2, and Rupert Hölzl3

1 Department of Mathematics & Applied Mathematics,
University of Cape Town,
South Africa,
Vasco.Brattka@cca-net.de

2 Faculty of Computer Science,
Universität der Bundeswehr München,
Germany,
Guido.Gherardi@gmail.com

3 Department of Mathematics,
National University of Singapore,
Republic of Singapore,
r@hoelzl.fr

Abstract
In this article we try to formalize the question “What can be computed with access to ran-
domness?” We propose the very fine-grained Weihrauch lattice as an approach to differentiate
between different types of computation with access to randomness. In particular, we show that a
natural concept of Las Vegas computability on infinite objects is more powerful than mere oracle
access to a Martin-Löf random object. As a concrete problem that is Las Vegas computable but
not computable with access to a Martin-Löf random oracle we study the problem of finding Nash
equilibria.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Weihrauch degrees, weak weak Kőnig’s lemma, Las Vegas computability,
algorithmic randomness, Nash equilibria

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.130

1 Introduction

Studying how access to sources of random information can enable or simplify the computation
of certain mathematical objects is a recurring theme of theoretical computer science. This
is particularly evident in the context of complexity theory, where for example the difficult
question of whether P is equal to BPP has been studied for a long time—so far without an
answer.

But the initial question can also be studied in more general settings. Many different
versions have been studied in the field of algorithmic randomness. Here, the main subject
is to find the correct formalization of what a random object is. The field has very strong
interactions with the subject of computability theory (or, in the older terminology, recursion

∗ Vasco Brattka is supported by the National Research Foundation of South Africa. Rupert Hölzl
was supported by a Feodor Lynen postdoctoral research fellowship of the Alexander von Humboldt
Foundation and is supported by the Ministry of Education of Singapore through grant R146-000-184-112
(MOE2013-T2-1-062).

© Vasco Brattka, Guido Gherardi, and Rupert Hölzl;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 130–142

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.130
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

V. Brattka, G. Gherardi, and R. Hölzl 131

theory), and it has been extensively studied what computational properties random objects
possess (see [17, 12] for recent monographs on algorithmic randomness).

It can be argued that this approach better represents the original question of what can be
computed with access to randomness than, for example, the complexity-theoretic approach;
the argument being that space or time bounds are not considered, meaning we are getting a
better idea of the real computational content of random objects—as opposed to a gauge of
their ability to speed up a computation until it can be performed within polynomial time. For
this reason, the results from algorithmic randomness and computability theory certainly are
of high importance. But in this article we will argue that one further ingredient is missing to
capture best the intuitive idea behind the above question.

When thinking about the question in the setting of algorithmic randomness, maybe the
first classic result that comes to mind is the following well-known theorem (this and the
following Theorem 2 are discussed in [17, 12]).

I Theorem 1 (Kučera-Gács Theorem). Every sequence A ∈ 2N is computable from some
Martin-Löf random sequence X ∈ 2N.

Informally this means that random objects compute everything. While it may seem at
first that this result settles the initial question once and for all, it is not in fact a satisfactory
answer. This is because it is not actually the randomness of X that is used to compute A; if
this were the case then X could be replaced with any other “similarly random” set Y and it
would still compute A. But this is not so: it is well known that the Turing upper cone of any
non-computable set has measure 0 (we will discuss this in more detail in a moment).

This is a clear indication that in fact the computation of A does not really use the
randomness of X. Instead, by studying the proof of the theorem, it becomes apparent that
X is in fact “tailor-made” (or, perhaps, “tailor-chosen”) to compute A. The randomness only
enters the picture insofar as in order to be able to choose an X that computes A we need
a large class of sets to choose from, and the class MLR happens to be large enough. Other
sufficiently rich classes can be imagined where the same construction would be possible,
a trivial example being the class of sets generated from Martin-Löf random sequences by
inserting the symbol 0 in every second place.

So the Kučera-Gács Theorem does not settle our initial question, or only a very weak
formalization of it. What we would rather like to know is what can be computed given access
to any sufficiently random sequence. A second possible approach to the question might be
Sacks’ Measure Theorem.

I Theorem 2 (Sacks’ Measure Theorem). If A ∈ 2N is computable from every X in a subset
of 2N of positive measure, then A is computable.

Once again it might seem that this settles the question, as this states that randomness cannot
compute anything of interest (i.e., that cannot be computed without randomness in any
case). But again, this is not quite the answer to the question we are investigating. Sacks’
theorem only applies if we want to compute a single set A. This is because the proof relies
essentially on a majority vote argument.

But there are many very valid settings where this is not the case: often we are given
a mathematical problem and want to find a solution to it, and we want to know whether
randomness can help us to find such a solution. For a given instance of such a task there
may be many admissible solutions; and each of these solutions may have a low probability of
being produced by a Turing machine, so that a majority vote mechanic would fail.

To overcome this limitation we therefore need to work within a framework that is more
involved while still holding on to the ideas of computability theory. This new framework is

STACS 2015

132 Las Vegas Computability and Algorithmic Randomness

provided by the Weihrauch degrees. The general idea here is to think about a mathematical
task as a black box to which we pass an encoding of an instance of the mathematical problem
at hand, and the black box has to return an encoding of one of the admissible solutions. One
example might be a black box NASH which, given a bi-matrix game (A,B), will produce one
of the possible Nash equilibria (x, y) of this game.

Once having established this framework we can now ask questions such as the following:
Assume we have a black box solving a certain problem A. Can we use it to solve another
problem B? The approach here is heavily inspired by many-one reducibility in computability
theory, but applies (in general) to infinite objects instead of finite ones: we code an instance B
of problem B into a valid instance A of problem A. We then run the black box for A on A.
The black box provides a solution for A. We then need to convert the solution for A back
into a solution for B.

The reducibility sketched above is called Weihrauch reducibility and is uniform. That is,
the pre-processing and post-processing steps in the above sketch are required to be performed
by a pair of Turing machines uniformly for all instances of B. The reducibility induces a rich
lattice of mathematical problems of different difficulties.

In this article we will let A be a source of randomness, and then study which problems B
are reducible to it. The randomness source A will be multi-valued, that is, while it is obliged
to output random objects, it has free choice as to which specific random object it outputs.
A problem B is only reducible to A if the pair of Turing machines is able to uniformly produce
a solution for the given instances B of B, no matter which choice the black box for A makes.
The idea is that then the operations by the Turing machines can rely on no property of the
black box’s output except on its randomness to fulfill their task.1 It is for this reason that
we believe this approach correctly formalizes the initial question of “What can be computed
with access to randomness?”

More concretely, we will identify two types of computations with access to random sources;
we will determine their location in the Weihrauch lattice; and we will separate them by
showing that one of them is significantly stronger than the other.

For the purposes of this extended abstract we focus on a number of key results and
include only proof sketches; we also use a minimum of mathematical formalism. The present
article focuses primarily on the interaction between computable analysis and algorithmic
randomness; the results are presented in a form targeting a computer science audience. We
rely to a large degree on computable analysis results from our forthcoming related article [7].
That article, in contrast to the present one, uses the full computable analysis formalism,
presents the proofs of its results with all details, and contains much additional material.

2 The Weihrauch Lattice

The original definition of Weihrauch reducibility is due to Klaus Weihrauch [24] and has
been studied for many years. More recently it has been noticed that a certain variant of
this reducibility yields a lattice that is very suitable for the classification of the uniform

1 For the sake of precision we should add that this idea is only perfectly realized for the randomness
source MLR we study below; and only to a lesser degree by the randomness sources derived from WWKL,
where the Turing machines actually can rely on some (very limited) additional property of the black
box’s output, namely the fact that it is guaranteed to be contained in some positive measure set. One
could interpret the differences in computational strength of the different randomness sources studied in
this article as stemming from this distinction.

V. Brattka, G. Gherardi, and R. Hölzl 133

black box gK H

f

Figure 1 A visualization of the Weihrauch reducibility of f to g via Turing machines K and H.

computational content of mathematical problems (see [13, 20, 19, 6, 5, 4, 8, 11]). The basic
reference for all notions from computable analysis is Weihrauch’s textbook [25].

Formally, the Weihrauch lattice is formed by equivalence classes of partial multi-valued
functions f :⊆ X ⇒ Y on represented spaces X,Y . A multi-valued function is considered as
a computational problem in the sense that for every x ∈ dom(f) the goal is to find some
y ∈ f(x). A typical mathematical problem f would be the problem of solving some type of
equation or to determine Nash equilibria, as mentioned above. In this case dom(f) would
contain the admissible instances x of the problem and for each instance x the set f(x) would
contain the corresponding solutions.

A represented space (X, δ) is a set X together with a surjective partial map δ :⊆ NN → X

that assigns names p ∈ NN to points δ(p) = x ∈ X. These representations allow us to
describe computations on all representable spaces using Turing machines that operate on
the names corresponding to points in the space. In order to keep the presentation here as
accessible as possible, we will not make any technical use of the machinery of representations
and we refer the reader to [7] for all details.

The intuition behind Weihrauch reducibility is that f ≤W g holds if there is a compu-
tational procedure for solving f when allowed a single application of the computational
resource g. We make this somewhat more precise.

I Definition 3 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆W ⇒ Z be multi-valued
functions on represented spaces. Then f is called Weihrauch reducible to g, in symbols
f ≤W g, if f can be simulated through an oracle computational process that accesses the
oracle g exactly once; that is, if given a name x̂ of an input x ∈ dom(f) it is effectively
possible to compute a name ŷ of some value y ∈ f(x) consulting the oracle function g

exactly on one input w ∈ dom(g). Formally, the computation works by having a pair of two
Turing machines K and H. K operates on x̂ to generate ŵ, a name for w. The result z of
the evaluation of g on w will again be represented by a name ẑ. Then the second Turing
machine H operates on ẑ to generate ŷ, the name representing the final output y.

The concept of Weihrauch reducibility can be seen as a variant of many-one reducibility
for multi-valued functions on infinite objects. The informal definition above is equivalent to
the more formal definition in [7] via [23, Theorem 7.2].

Weihrauch reducibility induces a lattice with a rich and very natural algebraic struc-
ture. We briefly summarize some of these algebraic operations for mathematical problems
f :⊆ X ⇒ Y and g :⊆W ⇒ Z:

f × g is the product of f and g and represents the parallel evaluation of problem f on
some input x and g on some input w.
f t g is the coproduct of f and g and represents the alternative evaluation of f on some
input x or g on some input w (where the input set is the disjoint union X tW and the
output set is Y t Z).

STACS 2015

134 Las Vegas Computability and Algorithmic Randomness

If Z = X, then f ◦ g :⊆W ⇒ Y is the composition of f and g. Note that since f and g
can be partial the following careful definition is needed.

dom(f ◦ g) := {w ∈W : g(w) ⊆ dom(f)} and
(f ◦ g)(w) := {y ∈ Y : (∃x ∈ X)(y ∈ f(x) and x ∈ g(w))}.

f ∗ g := sup{f0 ◦ g0 : f0≤W f and g0≤W g} is the compositional product and represents
the consecutive usage of the problem f after the problem g.
f∗ :=

⊔∞
n=0 f

n is the finite parallelization and allows an evaluation of the n–fold
product fn for some arbitrary given n ∈ N.

The coproduct f t g is the supremum in the Weihrauch lattice (and we do not specify
the infimum operation here). The lattice is not complete as infinite suprema do not need to
exist, but the supremum f ∗ g always exists. The finite parallelization is a closure operator
in the Weihrauch lattice. Further details can be found in [7].

3 Las Vegas Computability

Randomized algorithms have been studied in the discrete setting for a long time (see for
instance Motwani and Raghavan [15]), but very little is known for computations on infinite
objects. We will now present a formalization of Las Vegas computability with probabilistic
Turing machines that is very close to Babai’s original understanding of this concept [3].

I Definition 4 (Las Vegas computability). A partial multi-valued function f :⊆ X ⇒ Y on
represented spaces is called Las Vegas computable, if there exists a Turing machine M that
given some input p ∈ NN and some auxiliary input r ∈ 2N (the “random advice”) computes f
in the following way. The machine M either produces some infinite output q ∈ NN or stops
after a finite number of steps and signals a failure with the following additional constraints:

1. if p is a name of some input x ∈ dom(f) and M does not fail, then q has to be a name of
a correct output y ∈ f(x),

2. for any fixed such p there is a positive probability that for some random advice r the
machine M does not fail.

The aforementioned condition can be made precise by requiring that the set Sp of
successful random advices r for which the machine computes without failure has positive
measure µ(Sp) > 0 for every fixed p that is a name of some x ∈ dom(f). Here µ denotes the
uniform measure on 2N.

The essential feature of a Las Vegas computation is that it produces a result with positive
probability, and if it produces a result, then this result is correct. Hence, the correctness of
the computation is never compromised, only the success of the computation is subject to
randomization.

We mention that Las Vegas computability as defined above is a refinement of the definition
of non-deterministically computable functions, as originally introduced by Martin Ziegler
[26] and further studied in [4]. The difference between Las Vegas computability and non-
deterministic computability is that in the former case one asks for a positive probability that
a piece of advice is successful whereas in the latter case one just asks for the existence of a
successful piece of advice.

We now show that the class of Las Vegas computable functions is closed under composition,
which means that this class is “reasonable” in a certain sense. The proof of the following
theorem is a refined version of the corresponding proof for non-deterministic functions in [4]
with an additional invocation of Fubini’s Theorem.

V. Brattka, G. Gherardi, and R. Hölzl 135

I Theorem 5 (Independent Choice). The class of Las Vegas computable multi-valued functions
on represented spaces is closed under composition.

Proof sketch. Let f :⊆ Y ⇒ Z and g :⊆ X ⇒ Y be Las Vegas computable, witnessed by
two probabilistic Turing machines Mf and Mg. We describe the construction of a suitable
probabilistic Turing machine M for f ◦g. Given a name p of some x ∈ dom(f ◦g) as an input
for M , we just interpret the random advice of M as a pair 〈r, s〉 ∈ 2N and we use s as random
advice in order to simulate Mg on input p and then we simulate Mf on the corresponding
output with advice r. The composed machine M fails if either of the simulations of the two
machines Mg or Mf fails in this process. It is clear that the composed machine will produce
a correct result for f ◦ g if it does not fail. We now have to look at the success probabilities
of the corresponding machines, i.e., at the measures of the following sets:

Sp is the set of successful advices s of Mg on input p;
Rp,s is the set of successful advices r of Mf on the output q that Mg produces on input
p with advice s;
Tp is the set of successful advices 〈r, s〉 of M on input p.

We know that µ(Sp) > 0 for all p that are names of elements of dom(g) and µ(Rp,s) > 0
for all combinations of p, s that lead to an output q of Mg that is the name of an element
of dom(f). We need to prove µ(Tp) > 0 for all p that are names of elements of dom(f ◦ g).
We obtain

Tp = {〈r, s〉 ∈ 2N : s ∈ Sp and r ∈ Rp,s},

which implies by the Theorem of Fubini for measurable sets and (strict) monotonicity of the
integral for non-negative functions that

µ(Tp) =
∫

Sp
µ(Rp,s) dµ > 0.

Here the integrand is understood to be the function s 7→ µ(Rp,s). This proves that M
satisfies the necessary conditions. J

4 Weak Weak Kőnig’s Lemma

In this section we will see that we can also characterize Las Vegas computability with the
help of Weihrauch reducibility and Weak Weak Kőnig’s Lemma. Weak Kőnig’s Lemma is a
principle that has been intensively studied in reverse mathematics [22]. The classical lemma
of Kőnig says (in its weak version) that every infinite binary tree has an infinite path. Here we
understand Weak Kőnig’s Lemma as the mathematical problem WKL :⊆ Tr⇒ 2N, T 7→ [T]
that maps an infinite binary tree T ⊆ 2<N to an infinite path p ∈ [T] of this tree. By Tr we
denote the set of all binary trees (represented via their characteristic functions) and by [T]
we denote the set of infinite paths of such a tree. We assume that dom(WKL) is the set of
infinite binary trees. In [4] it was proved that

f ≤W WKL ⇐⇒ f is non-deterministically computable,

and here we prove a similar result for the so-called Weak Weak Kőnig’s Lemma and Las
Vegas computability. Weak Weak Kőnig’s Lemma has also been introduced in reverse
mathematics and for us it is the problem to find an infinite path in a binary tree of positive
measure, i.e., WWKL :⊆ Tr ⇒ 2N, T 7→ [T], which is the restriction of WKL to the set
dom(WWKL) := {T ∈ Tr : µ([T]) > 0}. Using this notation we obtain the following result.

STACS 2015

136 Las Vegas Computability and Algorithmic Randomness

I Theorem 6 (Las Vegas computability). For f :⊆ X ⇒ Y we obtain:

f ≤W WWKL ⇐⇒ f is Las Vegas computable.

Proof sketch. There is a computable map from infinite binary trees to closed sets given by
T 7→ [T] and this map has a computable multi-valued right inverse. Here trees T ⊆ 2<N are
represented via their characteristic functions cfT : 2<N → {0, 1} and closed sets A ⊆ 2N are
represented by negative information, for instance by an enumeration of sufficiently many
balls w2N that exhaust the complement of A. Now the fact that f is Las Vegas computable
means that f can be computed by a probabilistic machine that takes advantage of a random
input r ∈ 2N. For any fixed input p this machine can also identify the unsuccessful advices,
which means that the set Sp ⊆ 2N of successful advices is co-c.e. closed in p, i.e., we can
compute it with respect to negative information. This information can be converted into the
characteristic function of a tree T with [T] = Sp and this yields a reduction f ≤W WWKL,
since µ(Sp) > 0. Vice versa any such reduction can be converted into a corresponding Las
Vegas machine. J

Using a result of Jockusch and Soare that generalizes Theorem 2, one can prove
WKL 6≤W WWKL (see [10, Theorem 20]). This means that WWKL is strictly below WKL.

I Proposition 7. WWKL<W WKL.

We can also rephrase this result as follows.

I Corollary 8. Every Las Vegas computable multi-valued function is non-deterministically
computable, but there are non-deterministically computable multi-valued functions that are
not Las Vegas computable.

In [7] we prove (with a finite extension argument) that determining zeros of continuous
functions with sign changes is a concrete problem that is non-deterministically computable
but not Las Vegas computable. We close this section by mentioning another important
observation.

I Proposition 9. WWKL≡W WWKL∗.

Proof. The reduction WWKL≤W WWKL∗ is obvious. For the other direction, notice that
for any two multi-valued functions f and g we have f × g = (id × g) ◦ (f × id) where
f × id≤W f and id × g≤W g. Then Theorems 6 and 5 applied to f = g = WWKL show
WWKL2≤W WWKL. Iteration of this argument concludes the proof. J

5 Dependence on the Probability

Next one could ask whether there is a difference between the setting described so far (i.e., the
setting where we only demand positivity of the success probabilities µ(Sp)) and a setting
where one demands fixed minimum probabilities µ(Sp) > ε for some ε > 0.

This question can and has already been studied in the form of a corresponding restriction
of Weak Weak Kőnig’s Lemma: Dorais et al. [11] have introduced the problem ε-WWKL,
which is WWKL restricted to dom(ε-WWKL) := {T ∈ Tr : µ([T]) > ε}, i.e., to trees whose
sets of infinite paths have measure larger than ε. It is clear that if the lower probability bound
ε decreases, then one can compute at least as much as before, i.e., the map ε 7→ ε-WWKL is
anti-monotone with regards to Weihrauch reducibility. We have proved that it is even strictly
anti-monotone, a result that has independently been obtained by Dorais et al. [11]. Our proof

V. Brattka, G. Gherardi, and R. Hölzl 137

is essentially a combination of a combinatorial argument that is based on a certain version of
the pigeonhole principle, combined with a topological and measure-theoretic reasoning. We
just sketch the idea.

I Theorem 10. ε ≥ δ ⇐⇒ ε-WWKL≤W δ-WWKL for ε, δ ∈ [0, 1].

Proof idea. We only need to prove “⇐=”. Let ε < δ. Then there are positive integers
a < b with ε < a

b < δ. We consider the problem Ca,b of finding a point in a closed subset
A ⊆ {0, ..., b−1} (given by negative information) of cardinality |A| ≥ a. One can easily prove
that Ca,b≤W ε-WWKL; and a more involved argument based on a corresponding pigeonhole
principle shows Ca,b 6≤W δ-WWKL. This proves ε-WWKL 6≤W δ-WWKL. J

The aforementioned result can be interpreted such that probability amplification fails
for Las Vegas computable functions. Intuitively, this is because we are dealing with infinite
computations and even if we perform two randomized computations in parallel we need to
start producing some definite output without ever knowing whether one of the involved
computations might turn out to be a failure at some later stage.

At one extreme end of the probability spectrum we have 0-WWKL, which is identical
to WWKL and hence it represents Las Vegas computations. On the other hand, we have
1-WWKL, which is easily seen to be computable (since every closed set A ⊆ 2N of measure 1
needs to be the full space A = 2N). However, there is still a non-computable problem below
all the ε-WWKL with ε ∈ [0, 1) that is of interest to us, and in a certain sense it is the
infimum of all problems ε-WWKL: this is (1− ∗)-WWKL :⊆ TrN ⇒ 2N, defined by

(1− ∗)-WWKL((Tn)n∈N) :=
⊔

n∈N
(1− 2−n)-WWKL(Tn),

where dom((1 − ∗)-WWKL) := {(Tn)n∈N ∈ TrN : (∀n ∈ N) µ([Tn]) > 1 − 2−n}. Intuit-
ively, this problem is the following: given a sequence of infinite binary trees (Tn)n∈N with
µ([Tn]) > 1− 2−n for all n, we want to find one infinite path p ∈ [Tn] in one of the trees Tn.
One easily obtains the following corollary from Theorem 10.

I Corollary 11. (1− ∗)-WWKL<W ε-WWKL for every ε ∈ [0, 1).

6 Algorithmic Randomness

With the arguments in the previous sections we were able to identify the Weihrauch degree
of WWKL as that of a natural kind of randomized computation. Having done this, we are
now able to locate this type of randomized computation in the Weihrauch lattice and to
compare it with other types. Another natural type is computation with access to Martin-Löf
oracles. We recall that this has been extensively studied from a non-uniform perspective in
computability theory (see [17, 12]). But of course, here we will again take the Weihrauch
lattice perspective: we ask what can be reduced to the principle MLR :⊆ 2N ⇒ 2N, which
maps an arbitrary input x ∈ 2N to an output y ∈ 2N that is Martin-Löf random relative to x.
In fact, we call the functions f :⊆ X ⇒ Y with

f ≤W MLR

Martin-Löf computable and they can be seen as those functions that are computable on a
Martin-Löf machine, i.e., on a machine that can request a Martin-Löf random sequence
(relative to the input) exactly once during the course of its computation. Now the obvious
question is: how does the power of Martin-Löf machines compare to Las Vegas machines?

STACS 2015

138 Las Vegas Computability and Algorithmic Randomness

We will see that in the Weihrauch lattice MLR is strictly weaker than WWKL and that
the distance in the lattice is in fact quite large. This follows from the following result.

I Theorem 12 (Martin-Löf computability). MLR<W(1− ∗)-WWKL.

Proof sketch of Theorem 12. We recall (see [17, 12]) that there is a universal Martin-Löf
test, which is a computable sequence (Ui)i∈N of c.e. open sets Ui ⊆ 2N such that µ(Ui) < 2−n

and
⋂∞

i=0 Ui is exactly the set of all sequences which are not Martin-Löf random. Hence,
each complement Ai := 2N \ Ui is a co-c.e. closed set with µ(Ai) > 1− 2−n and each Ai only
contains Martin-Löf random sequences. Hence, we can compute a corresponding sequence
(Ti)i∈N of infinite binary trees with [Ti] = Ai. Upon input of this sequence, (1− ∗)-WWKL
yields a Martin-Löf random sequence. The entire argument can be relativized, i.e., it also
works in the presence of some oracle p ∈ 2N. This yields the reduction MLR≤W(1−∗)-WWKL,
and this reduction is strict according to [9, Lemma 7.4]. J

Together with Corollary 11 the previous theorem yields the following statement which
constitutes one of the central results of this article.

I Corollary 13. Every Martin-Löf computable multi-valued function is also Las Vegas com-
putable, but there are Las Vegas computable multi-valued functions which are not Martin-Löf
computable.

Notice the stark contrast with reverse mathematics, where the principles WWKL and MLR
are equivalent over RCA0. This follows essentially from a formalization of a theorem of
Kučera [14]; a detailed alternate proof, which even works over the weaker proof system RCA∗0,
has been given by Avigad et al. [2, Theorem 3.1].

In the next section we will see a concrete example of a problem that is Las Vegas
computable, but not Martin-Löf computable.

7 Nash Equilibria

To show that Las Vegas computability is more than just a purely theoretical notion, we will
give a concrete example of a useful mathematical task that can be performed with it but not
with the weaker types of randomized computation studied in this article.

To this end we have proved (based on results of Arno Pauly) that there is a Las Vegas
algorithm to compute Nash equilibria. We recall from [19, 18] that a pair A,B ∈ Rm×n of
m × n–matrices is called a bi-matrix game. Any vector s = (s1, ..., sm) ∈ Rm with si ≥ 0
for all i = 1, ...,m and

∑m
j=1 sj = 1 is called a mixed strategy. By Sm we denote the set of

these mixed strategies of dimension m. Then a Nash equilibrium is a pair (x, y) ∈ Sn × Sm

of strategies such that

1. xTAy ≥ wTAy for all w ∈ Sn and
2. xTBy ≥ xTBz for all z ∈ Sm.

Nash [16] proved that for any bi-matrix game there exists a Nash equilibrium. By
NASHn,m : Rm×n × Rm×n ⇒ Rn × Rm we denote the corresponding problem

NASHn,m(A,B) := {(x, y) ∈ Rn × Rm : (x, y) is a Nash equilibrium for (A,B)}

of finding a Nash-equilibrium for an m×n bi-matrix game and by NASH :=
⊔

n,m∈N NASHn,m

we denote the coproduct of all such games for finite m,n ∈ N. This means intuitively that
NASH is the following problem: given a bi-matrix game (A,B) of arbitrary known dimension

V. Brattka, G. Gherardi, and R. Hölzl 139

m× n, find a Nash equilibrium (x, y) of (A,B). Pauly [19, 21] proved the following theorem
asserting that the problem NASH is Weihrauch equivalent to the idempotent closure of robust
division RDIV on the unit interval.

I Theorem 14 (Nash equilibria). NASH≡W RDIV∗.

Robust division is the multi-valued function RDIV : [0, 1]2 ⇒ [0, 1] with

RDIV(x, y) :=
{
{ x

max(x,y)} if y > 0,
[0, 1] otherwise.

In other words, RDIV is essentially the problem of computing the fraction x
y within [0, 1],

where the result is allowed to be arbitrary in case that the denominator y is zero. It is easy
to see that RDIV is discontinuous and hence not computable. The result NASH≡W RDIV∗

means that one can compute Nash equilibria with a certain number of parallel robust divisions
(where the number of divisions needed is known a priori). The intuition behind this is that
robust division can be used to solve linear equations and linear inequalities in a compact
domain and repeated operations of this type can lead (in a rather involved way) to a Nash
equilibrium. In order to prove that Nash equilibria are Las Vegas computable it suffices by
Proposition 9 to show that RDIV is Las Vegas computable, i.e., RDIV≤W WWKL.

I Proposition 15. RDIV≤W WWKL.

We do not give a full proof but describe the idea behind the Las Vegas algorithm for
robust division RDIV informally (we note that r ∈ [0, 1] can be used equivalently instead of
r ∈ 2N as random advice):

1. Given x, y ∈ [0, 1] and a random advice r ∈ [0, 1], we aim to compute the fraction
z = x

max(x,y) .
2. We guess that r is a correct solution, in particular r = z if y > 0, and we start to output

longer and longer approximations of r (in form of rational intervals [a, b] with a < r < b).
3. Simultaneously, we try to find out whether y > 0, which we will eventually recognize, if

this is correct.
4. As soon as we find that y > 0, we can compute the true result z = x

max(x,y) and in this
case we start to produce approximations of z as output.

5. If at some stage we find that the best approximation [a, b] of r that was already produced
as output is incompatible with z, i.e., if z 6∈ [a, b], then we stop the computation and
indicate that it failed.

This algorithm produces a correct result z ∈ RDIV(x, y) whenever it does not fail. It can
only fail if y > 0. In the moment when the algorithm detects y > 0, then there is still a
positive probability µ([a, b]) = b − a > 0 that the random advice r, which has only been
approximated up to [a, b] so far, is compatible with the true result z = x

max(x,y) . Hence, the
above algorithm constitutes a Las Vegas algorithm for robust division. Altogether we obtain
the following.

I Corollary 16. NASH≤W WWKL.

The above algorithm for robust division only yields success probabilities arbitrarily close
to zero (depending on when it is recognized that the denominator is positive). In fact, one
can prove that robust division (and hence Nash equilibria) cannot be computed with any
fixed positive success probability.

STACS 2015

140 Las Vegas Computability and Algorithmic Randomness

I Proposition 17. RDIV 6≤W ε-WWKL for ε > 0.

In particular, this implies the following by Corollary 11 and Theorem 12.

I Corollary 18. Computing Nash equilibria is Las Vegas computable but not Martin-Löf
computable.

Also note that Proposition 17 implies that the reducibility in Corollary 16 is strict.

8 Conclusions

In this paper we have introduced the class of Las Vegas computable functions (for computa-
tions with infinite objects), and we have proved that it is strictly included in between the
classes of Martin-Löf computable functions and non-deterministically computable functions.
As a natural example of a Las Vegas computable problem that is not Martin-Löf computable,
we have discussed the problem of finding Nash equilibria. Principles very closely related to
MLR and WWKL turned out to be equivalent to each other in the non-uniform and more
coarse-grained setting of reverse mathematics [14, 2]. Hence, reverse mathematics could
not uncover the fine-grained uniform distinctions that we have made with the help of the
Weihrauch lattice.

Having presented our above results, we should at the closure of this article mention other
existing work in which the question “What can be computed with access to randomness?”
was studied in other contexts, and clarify how these settings differ from ours. The work
concerning the complexity-theoretic setting may be the most well-known one. There, similar
motivations to the ones behind our present article have led, among other questions, to the
study of the inclusion chain P ⊆ ZPP ⊆ BPP ⊆ NP. The central open question in this area
is whether P = BPP. The setting differs very much from ours: First of all, it is discrete, that
is, the objects computed are finite strings. Furthermore, resource bounds are present in this
setting; they are in fact required to make this study interesting, as without them there is no
computability-theoretic difference between deterministic and randomized computation.

Note that there is also a body of work by Allender et al. in the complexity-theoretic
setting (see, for example, [1]). While it may seem closely related to the initial question at
first, we would like to point out that the computations studied there are not truly taking
advantage of randomness as a resource for computation. Rather, in this work, computations
are made using reductions to the sets RC, RK, and so on. These are the sets containing the
information about which finite strings are compressible and which are not; therefore the
work by Allender et al. can be thought of as not being about computation from randomness,
but rather about computation from the knowledge about what is random.

Once we leave the domain of complexity theory, that is, give up resource bounds on
the computations, we need to look at the computation of infinite objects if we want to find
interesting insights into the power of randomness. In this area the important distinction is
then that between uniform and non-uniform computation. This paper has focused on the
levels of computation power that are needed in the uniform, infinite setting. If one wants to
look at the non-uniform counterpart of our work then that is the work on WWKL and MLR
in reverse mathematics, as cited above.

Acknowledgments. The authors would like to thank the referees for their detailed feedback.

V. Brattka, G. Gherardi, and R. Hölzl 141

References
1 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-

neburger. Power from random strings. SIAM Journal on Computing, 35(6):1467–1493,
2006.

2 Jeremy Avigad, Edward T. Dean, and Jason Rute. Algorithmic randomness, reverse math-
ematics, and the dominated convergence theorem. Annals of Pure and Applied Logic,
163(12):1854–1864, 2012.

3 László Babai. Monte-Carlo algorithms in graph isomorphism testing. Technical Report
No. 79-10, Université de Montréal, Département de Mathématique et de Statistique, 1979.

4 Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a uniform low basis
theorem. Annals of Pure and Applied Logic, 163(8):986–1008, 2012.

5 Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in com-
putable analysis. The Bulletin of Symbolic Logic, 17(1):73–117, 2011.

6 Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak
computability. The Journal of Symbolic Logic, 76(1):143–176, 2011.

7 Vasco Brattka, Guido Gherardi, and Rupert Hölzl. Probabilistic computability and choice.
July 2014. Preliminary version available at http://arxiv.org/abs/1312.7305.

8 Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-Weierstrass theorem
is the jump of weak Kőnig’s lemma. Annals of Pure and Applied Logic, 163(6):623–655,
2012.

9 Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. On the uniform compu-
tational content of computability theory. January 2015. Preliminary version available at
http://arxiv.org/abs/1501.00433.

10 Vasco Brattka and Arno Pauly. Computation with advice. In Xizhong Zheng and Ning
Zhong, editors, CCA 2010, Proceedings of the Seventh International Conference on Com-
putability and Complexity in Analysis, Electronic Proceedings in Theoretical Computer
Science, pages 41–55, 2010.

11 François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer.
On uniform relationships between combinatorial problems. Transactions of the AMS, 2014.
Accepted for publication. Preliminary version available at http://arxiv.org/abs/1212.0157.

12 Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity.
Theory and Applications of Computability. Springer, New York, 2010.

13 Guido Gherardi and Alberto Marcone. How incomputable is the separable Hahn-Banach
theorem? Notre Dame Journal of Formal Logic, 50(4):393–425, 2009.

14 Antonín Kučera. Measure, Π0
1-classes and complete extensions of PA. In Heinz-Dieter

Ebbinghaus, Gert H. Müller, and Gerald E. Sacks, editors, Recursion Theory Week. Pro-
ceedings of the Conference Held at the Mathematisches Forschungsinstitut in Oberwolfach,
April 15–21, 1984, volume 1141 of Lecture Notes in Mathematics, pages 245–259. Springer,
Berlin, 1985.

15 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, 1995.

16 John Nash. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.
17 André Nies. Computability and Randomness, volume 51 of Oxford Logic Guides. Oxford

University Press, New York, 2009.
18 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorithmic

Game Theory. Cambridge University Press, Cambridge, 2007.
19 Arno Pauly. How incomputable is finding Nash equilibria? Journal of Universal Computer

Science, 16(18):2686–2710, 2010.
20 Arno Pauly. On the (semi)lattices induced by continuous reducibilities. Mathematical Logic

Quarterly, 56(5):488–502, 2010.

STACS 2015

142 Las Vegas Computability and Algorithmic Randomness

21 Arno Pauly. Computable Metamathematics and its Application to Game Theory. PhD
thesis, University of Cambridge, Computer Laboratory, Clare College, Cambridge, 2011.

22 Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic, Asso-
ciation for Symbolic Logic. Cambridge University Press, Poughkeepsie, 2009.

23 Nazanin R. Tavana and Klaus Weihrauch. Turing machines on represented sets, a model
of computation for analysis. Logical Methods in Computer Science, 7(2:19):1–21, 2011.

24 Klaus Weihrauch. The degrees of discontinuity of some translators between representations
of the real numbers. Technical Report TR-92-050, International Computer Science Institute,
Berkeley, July 1992.

25 Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
26 Martin Ziegler. Real hypercomputation and continuity. Theory of Computing Systems,

41(1):177–206, 2007.

Understanding Model Counting for β-acyclic
CNF-formulas
Johann Brault-Baron∗1, Florent Capelli†2, and Stefan Mengel‡3

1 LSV UMR 8643, ENS Cachan and Inria, France
2 IMJ UMR 7586 - Logique, Université Paris Diderot, France
3 LIX UMR 7161, École Polytechnique, France

Abstract
We show that #SAT on β-acyclic CNF-formulas can be solved in polynomial time. In contrast
to previous algorithms for other structurally restricted classes of formulas, our algorithm does
not proceed by dynamic programming. Instead, it works along an elimination order, solving
a weighted version of constraint satisfaction. We give evidence that this deviation from more
standard algorithms is no coincidence by showing that it is outside of the framework recently
proposed by Sæther et al. (SAT 2014) which subsumes all other structural tractability results for
#SAT known so far.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combi-
natorics, G.2.2 Graph Theory

Keywords and phrases model counting, hypergraph acyclicity, structural tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.143

1 Introduction

The propositional model counting problem #SAT is, given a CNF-formula F , to count
the satisfying assignments of F . #SAT is the canonical #P-complete problem and is thus
central to the area of counting complexity. Moreover, many important problems in artificial
intelligence research reduce to #SAT (see e.g. [19]), so there is also great interest in the
problem from a practical point of view.

Unfortunately, #SAT is computationally very hard: even for very restricted CNF-
formulas, e.g. monotone 2-CNF-formulas, the problem is #P-hard and in fact even #P-
hard to approximate [19]. Thus the focus of research in finding tractable classes of #SAT-
instances has turned to so-called structural classes, which one gets by assigning a graph or
hypergraph to a CNF-formula and then restricting the class of (hyper)graphs considered.
The general idea is that if the (hyper)graph associated with an instance has a treelike de-
composition that is “nice” enough, e.g. a tree decomposition of small width, then there is
a dynamic programming algorithm that solves #SAT for the instance. In the recent years,
many such dynamic programming algorithms for ever more general classes of graphs and
hypergraphs have been found, see e.g. [13, 21, 18, 22, 7].

It had been an open question for some time how far this approach could be pushed, until
very recently Sæther, Telle and Vatshelle, in a striking contribution [20], introduced a new

∗ This work has received support from the French Agence Nationale dela Recherche, AGGREG project
reference ANR-14-CE25-0017-01.
† Partially supported by ANR Blanc CompA ANR-13-BS02-0001.
‡ Partially supported by a grant from Qualcomm.

© Johann Brault-Baron, Florent Capelli, and Stefan Mengel;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 143–156

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

144 Understanding Model Counting for β-acyclic CNF-formulas

framework for #SAT. This framework which we call STV-framework is centered around
a new width measure called PS-width and aims to formalize the most general class for
which efficient dynamic programming for #SAT is possible (see Section 2.5 for details). We
consider the STV-framework to be a very convincing formalization, delineating the limits
of dynamic programming for #SAT. This belief is supported by the fact that in the full
version of this paper we show that the STV-framework gives a uniform explanation for all
previously known structural tractability results for #SAT.

In this article, we focus on β-acyclic CNF-formulas, i.e., formulas whose associated
hypergraph is β-acyclic. There are several different reasonable ways of defining acyclicity of
hypergraphs that have been proposed [12, 11], and β-acyclicity is the most general acyclicity
notion generally considered in the literature for which #SAT could be tractable (see the
discussions in [17, 7]). The complexity of #SAT for β-acyclic formulas is left as an open
problem in [7] because it is interesting for several reasons: First, up to this paper, it was
the only structural class of formulas for which we know that SAT is tractable [17] without
this directly generalizing to a tractability result for #SAT. This is because the algorithm
of [17] does not proceed by dynamic programming but uses resolution, a technique that is
known to generally not generalize to counting. Moreover, β-acyclicity can be generalized to
a width-measure [15], so there is hope that a good algorithm for β-acyclic formulas might
generalize to wider classes for which even the status for SAT is left as an open problem
in [17]. Since decomposition techniques based on hypergraph acyclicity tend to be more
general than graph-based techniques [14], this might lead to large, new classes of tractable
#SAT-instances.

The contribution of this paper is twofold: First, we show that #SAT on β-acyclic formu-
las is tractable. In fact, we show that a more general counting problem which we call weighted
counting for constraint satisfaction with default values, for short #CSPdef , is tractable on
β-acyclic hypergraphs. We remark that there is another line of research on #CSP, the
counting problem related to constraint satisfaction, where dichotomy theorems for weighted
#CSP depending on fixed constraint languages are proven, see e.g. [5, 6]. We stress that
we do not assume that the relations of our instances are fixed but we consider them as
part of the input. Thus our results and those on fixed constraint languages are completely
unrelated. Instead, the structural restrictions we consider are similar to those considered
e.g. in [9], but since we allow clauses, resp. relations, of unbounded arity, our results and
those of [9] are incomparable as well.

We note that our algorithm is very different in style from the algorithms for structural
#SAT in the literature. Instead of doing dynamic programming along a decomposition,
we proceed along a vertex elimination order which is more similar to the approach to SAT
in [17]. But in contrast to using well-understood resolution techniques, we develop from
scratch a procedure to update the weights of our #CSPdef instance along the elimination
order. Our algorithm is non-obvious and novel, but it is relatively easy to write down and its
correctness is easy to prove. Indeed, most of the work in the full version of this paper is spent
on showing the polynomial runtime bound which requires a thorough understanding of how
the weights of instances evolve during the algorithm. Unfortunately, these considerations
cannot be presented in this version of this paper due to space restrictions.

Our second contribution is showing that our tractability result is not covered by the
STV-framework, which, as discussed before, covers all other known structural tractability
results for #SAT. In fact, we show that from [20] we cannot even get subexponential runtime
bounds for β-acyclic #SAT. This can be seen as an explanation for why the algorithm for
β-acyclic #SAT is so substantially different from the algorithms from the literature. We

J. Brault-Baron, F. Capelli, and S. Mengel 145

feel that the deviation from the usual dynamic programming techniques is not a coincidence
but instead due to the fact that β-acyclic #SAT is the first known tractable class which is
not explained by the unifying framework of [20]. Thus, our algorithm indeed introduces a
new algorithmic technique for #SAT that allows the solution of instances that could not be
solved with techniques known before.

2 Preliminaries and notation

2.1 Weighted counting for constraint satisfaction with default values
Let D and X be two sets. DX denotes the set of functions from X to D. We think of X
as a set of variables and of D as a domain, and thus we call a ∈ DX an assignment to the
variables X. A partial assignment to the variables X is a mapping in DY where Y ⊆ X. If
a ∈ DX and Y ⊆ X, we denote by a|Y the restriction of a onto Y . For a ∈ DX and b ∈ DY ,
we write a ∼ b if a|X∩Y = b|X∩Y and if a ∼ b, we denote by a ∪ b the mapping in DX∪Y

with (a ∪ b)(x) = a(x) if x ∈ X and (a ∪ b)(x) = b(x) otherwise. Let a ∈ DX , y /∈ X and
d ∈ D. We write a⊕y d := a∪ {y 7→ d}. We denote by Q+ the set of nonnegative rationals.

I Definition 1. A weighted constraint with default value c = (f, µ) on variables X and
domain D is a function f : S → Q+ with S ⊆ DX and µ ∈ Q+. S = supp(c) is called the
support of c, µ(c) = µ is called the default value and we denote by var(c) = X the variables
of c. We define the size |c| of the constraint c to be |c| := |S| · |var(c)|. The constraint c
naturally induces a total function on DX , also denoted by c, defined by c(a) := f(a) if a ∈ S
and c(a) := µ otherwise.

To ease the notation, when a is an assignment to a setX ⊇ var(c), we make the convention
c(a) = c(a|var(c)). Observe that we do not assume var(c) to be non-empty. A constraint whose
set of variables is empty has only one possible value in its support: the value associated with
the empty assignment (the assignment that assigns no variable).

Since we only consider weighted constraints with default value in this paper, we will only
say weighted constraint where the default value is always implicitly understood. Note that
we restrict ourselves to non-negative weights, because non-negativity will be crucial in the
proofs. This is not a problem in our context, non-negative numbers are sufficient to encode
#SAT as we will see in Section 2.3. We however use rational numbers for convenience and
all our results can be extended easily to non-negative algebraic numbers.

I Definition 2. The problem #CSPdef is the problem of computing, given a finite set I of
weighted constraints on domain D, the partition function

w(I) =
∑

a∈Dvar(I)

∏
c∈I

c(a),

where var(I) :=
⋃

c∈I var(c).
The size ‖I‖ of a #CSPdef -instance I is defined to be ‖I‖ :=

∑
c∈I |c|. Its structural size

s(I) of I is defined to be s(I) :=
∑

c∈I |var(c)|.

Note that the size of an instance as defined above roughly corresponds to that of an
encoding in which the non-default values, i.e., the values on the support, are given by listing
the support and the associated values in one table for each relation. We consider this
convention as very natural and indeed it is near to the conventions in database theory and
artificial intelligence.

STACS 2015

146 Understanding Model Counting for β-acyclic CNF-formulas

Given an instance I, it will be useful to refer to subinstances of I, that is a set J ⊆ I.
We will also refer to partition function of subinstances under some partial assignment, that
is, the partition function of J where some of its variables are forced to a certain value. To
this end, for a ∈ DW , with W ⊆ var(I), and J ⊆ I with V ′ = var(J) we define

w(J, a) :=
∑

b∈DV ′

a∼b

∏
c∈J

c(b).

2.2 Graphs and hypergraphs associated to CNF-formulas

We use standard notation for graphs which can e.g. be found in [10]. A hypergraph H =
(V,E) consists of a finite set V and a set E of non-empty subsets of V . The elements of V are
called vertices while the elements of E are called edges. As usual for graphs, we sometimes
denote the vertex set of a hypergraph H by V (H) and the edge set of H by E(H). The size
of a hypergraph is defined to be ‖H‖ =

∑
e∈E(H) |e|.

We denote by H \ v the hypergraph we get from H after deleting v from V (H) and all
edges e ∈ E(H) and then deleting the empty edge if it occurs.

We are interested in structural restrictions of the problem #CSPdef . i.e., we restrict
the way the variables interact in the different constraints. To formalize this, we introduce
the hypergraph associated to an instance of #CSPdef : The hypergraph H(I) associated to
#CSPdef -instance I is the hypergraph H(I) := (var(I), EI) where EI := {var(c) | c ∈ I}.
The hypergraph of a CNF-formula is defined as H(F) := (var(F), EF) where EF := {var(C) |
C ∈ cla(F)} where var(F) denotes the set of variables of F and cla(F) denotes the set of
clauses of F .

The incidence graph I(H) of a hypergraph H = (V,E) is the bipartite graph with the
vertex set V ∪ E and an edge between v ∈ V, e ∈ E if and only if v ∈ e. Similarly, the
incidence graph I(F) of a CNF-formula F has the vertex set var(F)∪ cla(F) and x ∈ var(F)
and C ∈ cla(F) are connected by an edge if and only if x appears in C.

2.3 Relation to #SAT

We show in this section how we can encode #SAT into #CSPdef -instances with the same
hypergraphs.

Classically, in CSP, all the solutions to a constraint are explicitly listed. For a CNF-
formula however, each clause with n variables has 2n − 1 solutions, which would lead to a
CSP-representation exponentially bigger than the CNF-formula. One way of dealing with
this is encoding CNF-formulas into CSP-instances by listing all assignments that are not
solution of a constraint, see e.g. [8]. In this encoding, each clause has only one counter-
example and the corresponding CSP-instance is roughly of the same size as the CNF-formula.

The strength of the CSP with default values is that it can easily embed both represen-
tations. This leads to a polynomial reduction from #SAT to #CSPdef .

I Lemma 3. Given a CNF-formula F one can construct in polynomial time a #CSPdef-
instance I on variables var(F) and domain {0, 1} such that
H(F) = H(I),
for all a ∈ {0, 1}var(F), a is a solution of F if and only if

∏
c∈I c(a) = 1, and 0 otherwise,

and
s(I) = ‖I‖ = |F |.

J. Brault-Baron, F. Capelli, and S. Mengel 147

Proof. For each clause C of F , we define a constraint c with default value 1 whose variables
are the variables of C and such that supp(c) = {a} and c(a) = 0, where a is the only
assignment of var(C) that is not a solution of C. It is easy to check that this construction
has the above properties. J

2.4 β-acyclicity of hypergraphs
In this section we introduce the characterizations of β-acyclicity of hypergraphs we will use
in this paper. We remark that there are many more characterizations, see e.g. [12, 3, 4].

I Definition 4. Let H be a hypergraph. A vertex x ∈ V (H) is called a nest point if
{e ∈ E(H) | x ∈ e} forms a sequence of sets increasing with respect to inclusion, that is
{e ∈ E(H) | x ∈ e} = {e1, . . . , ek} with ei ⊆ ei+1 for i ∈ {1, . . . , k − 1}.

A β-elimination order for H is defined inductively as follows:
If H = ∅, then only the empty tuple is a β-elimination order for H.
Otherwise, (x1, . . . , xn) is a β-elimination for H if x1 is a nest point of H and (x2, . . . , xn)
is a β-elimination order for H \ x1.

A hypergraph H called β-acyclic if and only if there exists a β-elimination order for H.

One can easily show [4] that removing a nest point in a hypergraph does not change its
β-acyclicity. Since deciding if a vertex is a nest point could be done in polnomial time, a
greedy elimination of nest points yields a polynomial time algorithm to test the β-acyclicity
of a hypergraph and to compute a β-elimination order if it exists.

We will also make use of another equivalent characterization of β-acyclic hypergraphs.
A graph G is defined to be chordal bipartite if it is bipartite and every cycle of length at
least 6 in G has a chord.

I Theorem 5 ([1]). A hypergraph is β-acyclic if and only if its incidence graph is chordal
bipartite.

We say that a #CSPdef -instance I is β-acyclic ifH(I) is β-acyclic and we use an analogous
convention for #SAT. Note that the incidence graph of an instance I and that of its
hypergraph in general do not coincide, because I might contain several constraints with the
same sets of variables. But with Theorem 5, it is not hard to see that the incidence graph of
an instance I is chordal bipartite if and only if the incidence graph of the hypergraph of I
is chordal bipartite, so we can interchangeably use both notions of incidence graphs in this
paper without changing the class of instances.

Using Lemma 3 gives the following easy corollary.

I Corollary 6. #SAT is polynomial time reducible to #CSPdef . Moreover, #SAT restricted
to β-acyclic formulas is polynomial time reducible to #CSPdef restricted to β-acyclic in-
stances.

2.5 Width measures of graphs and CNF-Formulas
In this section we introduce several width measures on graphs and CNF-formulas that are
used when relating our algorithm for β-acyclic #CSPdef to the framework of Sæther, Telle
and Vatshelle [20]. Readers only interested in the algorithmic part of this paper may safely
skip to Section 3.

We consider several width notions that are mainly defined by branch decompositions.
For an introduction into this area and many more details see [23]. For a tree T we denote by

STACS 2015

148 Understanding Model Counting for β-acyclic CNF-formulas

L(T) the set of the leaves of T and by V (T) the set of vertices of T . A branch decomposition
(T, δ) of a graph G = (V,E) consists of a subcubic tree T , i.e., a tree in which every vertex
has degree at most 3, and a bijection δ between L(T) and V . For convenience we often
identify L(T) and V . Moreover, it is often convenient to see a branch decomposition as
rooted tree, and as this does not change any of the notions we define (see [23]), we generally
follow this convention. For every x ∈ V (T) we define Tx be the subtree of T rooted in x.
From x we get a partition or cut of V into two sets defined by (L(Tx), V \L(Tx)). For a set
X ⊆ V we often write X̄ for V \X.

Given a symmetric function f : 2V × 2V → R we define the f -width of a branch decom-
position (T, δ) to be maxx∈V (T) f(L(Tx), V \L(Tx)), i.e., the f -width is the maximum value
of f over all cuts of the vertices of T . The f -branch width of a graph G is defined as the
minimum f -width of all branch decompositions of G.

Given a graph G = (V,E) and a cut (X, X̄) of V , we define G[X, X̄] to be the graph
with vertex set V and edge set {uv | u ∈ X, v ∈ X̄, uv ∈ E}.

We will use at several places the well-known notion of treewidth of a graph G, denoted
by tw(G). Instead of working with the usual definition of treewidth (see e.g. [2]), it is more
convenient for us to work with the strongly related notion of Maximum-Matching-width (for
short MM-width) introduced by Vatshelle [23]. The MM-width of a graph G, denoted by
mmw(G), is defined as the f -branch width of G for the function f that, given a cut (X, X̄)
of G, computes the size of the maximum matching of G[X, X̄]. MM-width and treewidth
are linearly related [23, p. 28].

I Lemma 7. Let G be a graph, then 1
3 (tw(G) + 1) ≤mmw(G) ≤ tw(G) + 1.

The Maximum-Induced-Matching-width (for short MIM-width) is another width measure
of graphs that we will use extensively: The MIM-width of a graph G, denoted by mimw(G),
is defined as the f -branch width of G for the function f that, given a cut (X, X̄) of G,
computes the size of the maximum induced matching of G[X, X̄].

Given a CNF-formula F , we say that a set of clauses C ⊆ cla(F) is projection satisfiable
if there is an assignment to F that satisfies all clauses in C and no clause in cla(F) \ C. The
PS-value of F is defined to be the number of projection satisfiable subsets of cla(F). Let F
be a CNF-formula, X ⊆ var(F) and C ⊆ cla(F). Then we denote by FX,C the formula we
get from F by deleting first every clause not in C and then every variable not in X.

Let I(F) be the incidence graph of F and let (A, Ā) be a cut of I(F). LetX := var(F)∩A,
X̄ := var(F)∩ Ā, C := cla(F)∩A and C̄ := cla(F)∩ Ā. Let ps(A, Ā) be the maximum of the
PS-values of FX,C̄ and FX̄,C . Then the PS-width of a branch decomposition (T, δ) of I(F)
is defined as the ps-branch width of (T, δ). Moreover, the PS-width of F , denoted psw(F),
is defined to be the ps-branch width of I(F).

Let us try to give an intuition why we believe that PS-width is a good notion to model the
limits of tractable dynamic programming for #SAT: The dynamic programming algorithms
in the literature typically proceed by cutting instances into subinstances and then iteratively
solving the instance along these cuts. During this process, some information has to be
propagated between the subinstances. Intuitively, a minimum amount of such information
is which sets of clauses are already satisfied by certain assignments and which clauses still
have to be satisfied later in the process. In doing this, the individual clauses can be “bundled
together” if they are satisfied by an assignment simultaneously. The number such bundles
is exactly the PS-width of a cut, so we feel that PS-width is a good formalization of the
minimum amount of information that has to be propagated during dynamic programming
in the style of the algorithms from the literature.

J. Brault-Baron, F. Capelli, and S. Mengel 149

Not only is PS-width in our opinion a good measure for the limits of dynamic program-
ming, but Sæther, Telle and Vatshelle also showed that it allows efficient solving of #SAT.

I Theorem 8 ([20]). Given a CNF-formula F with n variables and m clauses and of size
s, and a branch decomposition (T, δ) of the incidence graph I(F) of F with PS-width k, one
can count the number of satisfying assignments of F in time O(k3s(m+ n)).

We admit that the intuition explained above is rather vague and informal, so the reader
might or might not share it, but we stress that it is supported more rigorously by the fact that
all known tractability results from the literature that were shown by dynamic programming
can be explained by a combination of PS-width and Theorem 8 (see the full version of this
paper).

3 The algorithm

In this section we describe an algorithm that, given an instance I of #CSPdef on domain D
and a nest point x of H(I), constructs in a polynomial number of arithmetic operations an
instance I ′ such that H(I ′) = H(I) \ x, ‖I ′‖ ≤ ‖I‖ and w(I) = |D|w(I ′). We then explain
that if I is β-acyclic, we can iterate the procedure to compute w(I) in a polynomial number
of arithmetic operations.

To make the presentation of the algorithm more clear, we will first consider a special
case before presenting the algorithm for the general case.

3.1 The special case of nested constraints
In this section we consider #CSPdef -instances whose variable scopes are nested, i.e., in-
stances of the form I = {c1, . . . , cp} where var(c1) ⊆ . . . ⊆ var(cp). Note that these instances
are β-acyclic, but of course there are β-acyclic instances not of this form which will be
treated in the next section. Let us first sketch the idea behind the algorithm.

Fix an instance I as above and let x ∈ var(c1). Observe that x chosen this way is a nest
point of H(I). We want to eliminate x from I to get an instance I ′ such that

w(I) = |D|w(I ′). (1)

For each constraint ci, the instance I ′ will have a constraint c′i in the variables var(ci) \ {x}.
The idea behind the computation of the weights of I ′ is as follows: For every subinstance

Ii = {c1, . . . , ci} we want for all assignments a to var(I ′) that w(Ii, a) = |D|w(I ′i, a) where
I ′i = {c′1, . . . , c′i}. Note that (1) follows directly from this. Since a is an assignment to all
the variables of I ′, we have w(I ′i, a) =

∏i
j=1 c

′
j(a). So let us compute the weights of the c′j .

For i = 1 we have

c′1(a) = w(I ′1, a) = w(I1, a)
|D|

=
∑

d∈D c1(a⊕x d)
|D|

.

For i > 1 we have |D|
∏i

j=1 c
′
j(a) = |D|w(I ′i, a) = w(Ii, a) =

∑
d∈D

∏i
j=1 ci(a⊕x d). It

follows that

c′i(a) =
∑

d∈D

∏i
j=1 ci(a⊕x d)

|D|
∏i−1

j=1 c
′
j(a)

=
∑

d∈D

∏i
j=1 ci(a⊕x d)

|D|w(I ′i−1, a) .

By construction we have |D|w(I ′i−1, a) = w(Ii−1, a) =
∑

d∈D

∏i−1
j=1 cj(a ⊕x d). The case

where the denominator is zero will be dealt with in the proof Theorem 9.

STACS 2015

150 Understanding Model Counting for β-acyclic CNF-formulas

Choosing the weights for the c′i as described above, yields an instance I ′ that satisfies (1).
Iterating this process then yields an algorithm to solve the instance I. The following theorem
formalizes the above discussion, applies some arithmetic simplifications and analyzes the
number of arithmetic operations performed in the procedure.

I Theorem 9. Let I be a set of weighted constraints on domain D of the form I =
{c1, . . . , cp} where var(c1) ⊆ . . . ⊆ var(cp). Let x ∈ var(c1).

We define a new instance I ′ := {c′1, . . . , c′p} such that c′i := (f ′i , µi) is the weighted
constraint on variables var(c′i) = var(ci) \ {x}, with default value µ(ci) and supp(c′i) := {a ∈
Dvar(c′i) | ∃d ∈ D, (a⊕x d) ∈ supp(ci)}. Moreover, for all a ∈ supp(c′i), define

f ′1(a) :=
∑

d∈D c1(a⊕x d)
|D|

, and f ′i(a) :=
∑

d∈D

∏i
j=1 cj(a⊕x d)∑

d∈D

∏i−1
j=1 cj(a⊕x d)

, for i > 1

if the denominator is non-zero and f ′i(a) := 0 otherwise.
Then H(I ′) = H(I) \ x, ‖I ′‖ ≤ ‖I‖ and w(I) = |D|w(I ′). Moreover, one can compute

I ′ with O(p‖I‖) arithmetic operations.

Proof. Observe first that for a ∈ supp(c′i) and j ≤ i and d ∈ D, the assignment a ⊕x d

assigns values to all variables of cj , since var(cj) ⊆ var(ci) and thus all terms defined above
are well-defined.
H(I ′) = H(I) \ x is obvious because for every i we have var(c′i) = var(ci) \ {x}.
Moreover, ‖I ′‖ ≤ ‖I‖ because for every i, |c′i| ≤ |ci| since |supp(c′i)| = |{a ∈ Dvar(c′i) |

∃d ∈ D, (a⊕x d) ∈ supp(ci)}| ≤ |supp(ci)|.
Inspired by the discussion at the beginning of this section, we now show by induction on

i that for all a ∈ Dvar(c′i),

|D|
i∏

j=1
c′j(a) =

∑
d∈D

i∏
j=1

cj(a⊕x d).

For i = 1, let a ∈ Dvar(c′1). If a ∈ supp(c′1), this statement is clear from the definition.
If a /∈ supp(c′1), then for all d ∈ D, (a ⊕x d) /∈ supp(c1). Thus c1(a ⊕x d) = µ1 for all d

and consequently
∑

d∈D c1(a⊕x d) = |D|µ1 = |D|c′1(a).
Now suppose that the result holds for i. Let a ∈ Dvar(c′i). Then we get by induction

|D|
i+1∏
j=1

c′j(a) =
(∑

d∈D

i∏
j=1

cj(a⊕x d)
)
c′i+1(a).

First, assume that
∑

d∈D

∏i
j=1 cj(a ⊕x d) = 0. Since this is a sum of non-negative

rationals, we have that for all d,
∏i

j=1 cj(a ⊕x d) = 0. Thus,
∏i+1

j=1 cj(a ⊕x d) = 0 for all d
and it follows that

∑
d∈D

∏i+1
j=1 cj(a⊕x d) = 0 which proves the claim.

Now assume that
∑

d∈D

∏i
j=1 cj(a ⊕x d) 6= 0. If a ∈ supp(c′i+1), then by definition of

c′i+1, the claim follows directly.
If a /∈ supp(ci+1), then

∏i+1
j=1 cj(a⊕x d) = µi+1

∏i
j=1 cj(a⊕x d) for all d. Thus

∑
d∈D

i+1∏
j=1

cj(a⊕x d) = µi+1
∑
d∈D

i∏
j=1

cj(a⊕x d) = c′i+1(a)
∑
d∈D

i∏
j=1

cj(a⊕x d),

which establishes the claim for i+ 1.

J. Brault-Baron, F. Capelli, and S. Mengel 151

Applying the result for i = p, we get

|D|w(I ′, a) = |D|
p∏

j=1
c′j(a) =

∑
d∈D

p∏
j=1

cj(a⊕x d) = w(I, a).

It follows directly that w(I) = |D|w(I ′) as desired.
We now analyze the number of arithmetic operations we make in the construction of

I ′. Clearly, if we have computed the
∑

d∈D

∏i
j=1 cj(a ⊕x d) for all i ≤ p and a ∈ supp(c′i)

then we can compute c′i(a) with one division. Thus we need to do p divisions. Moreover, if
we have computed

∏i
j=1 cj(a⊕x d), then we only need one more multiplication to compute∏i+1

j=1 cj(a⊕x d).
Now, we prove by induction on i that

∏i
j=1 cj(a ⊕x d) can take at most 1 +

∑i
j=1 |cj |

different values when a varies. This is trivial for i = 0. Now remark that if a⊕xd /∈ supp(ci),
then

∏i
j=1 cj(a⊕x d) = µi

∏i−1
j=1 cj(a⊕x d), thus by induction, we have at most 1+

∑i−1
j=1 |cj |

different values for
∏i

j=1 cj(a ⊕x d). Moreover, there are at most |supp(ci)| ≤ |ci| other
values for a⊕x d ∈ supp(ci), which completes the induction.

It follows that we have to compute at most O(p‖I‖) different values for the
∏i

j=1 cj(a⊕xd)
which can be done with O(p‖I‖) multiplications. Now if i is fixed, for all a, the sum∑

d∈D

∏i
j=1 cj(a⊕x d) has at most 1 +

∑i
j=1 |cj | different terms that are already computed.

Thus we only need O(‖I‖) operations to compute each of them. As there are p different
sums to compute, we can do everything with O(p‖I‖) arithmetic operations. J

3.2 The general case
In this section, we extend Theorem 9 to the case where we have a general nest point in a
#CSPdef -instance. This will allow us to solve #CSPdef for all β-acyclic instances.

In the following, for x ∈ var(I), we denote by I(x) = {c ∈ I | x ∈ var(c)}.

I Theorem 10. Let I be a set of weighted constraints on domain D and x a nest point of
H(I). Let I(x) = {c1, . . . , cp} with var(c1) ⊆ . . . ⊆ var(cp). Let I ′ = {c′ | c ∈ I} where

if c /∈ I(x) then c′ := c

if c = ci, then c′i := (f ′i , µi) is the weighted constraint on variables var(c′i) = var(ci)\{x},
with default value µ(ci) and supp(c′i) := {a ∈ Dvar(c′i) | ∃d ∈ D, (a ⊕x d) ∈ supp(ci)}.
Moreover, for all a ∈ supp(c′i), define

f ′1(a) :=
∑

d∈D c1(a⊕x d)
|D|

and f ′i(a) :=
∑

d∈D

∏i
j=1 cj(a⊕x d)∑

d∈D

∏i−1
j=1 cj(a⊕x d)

, for i > 1

if the denominator is non-zero and f ′i(a) := 0 otherwise.

Then H(I ′) = H(I) \ x, ‖I ′‖ ≤ ‖I‖ and w(I) = |D|w(I ′). Moreover, one can compute I ′
with a O(p‖I(x)‖) arithmetic operations.

Proof. Note first that the definition of the c′i is identical to the construction in Theorem 9.
Let us explain why I ′ is well-defined. As x is a nest point, we can write I(x) = {c1, . . . , cp}

with var(c1) ⊆ . . . ⊆ var(cp). If two constraints have the same variables, we choose an
arbitrary order for them. Note that in the full version we will choose a specific order that
ensures that the algorithm runs in polynomial time on a RAM, but in this proof any order
will do.

STACS 2015

152 Understanding Model Counting for β-acyclic CNF-formulas

H(I ′) = H(I)\x and ‖I ′‖ ≤ ‖I‖ is shown as before. Moreover, the bound on the number
of arithmetic operations follows from Theorem 9.

We have w(I) =
∑

a∈Dvar(I)\{x}
∑

d∈D

∏p
i=1 ci(a ⊕x d)

∏
c/∈I(x) c(a ⊕x d). For c /∈ I(x)

we have c(a ⊕x d) = c(a) = c′(a) by definition. Moreover, we have seen in the proof of
Theorem 9 that

∑
d∈D

∏p
i=1 ci(a⊕x d) = |D|

∏p
i=1 c

′
i(a). It follows that

w(I) = |D|
∑

a∈Dvar(I)\{x}

p∏
i=1

c′i(a)
∏

c/∈I(x)

c′(a) = |D|w(I ′).

J

Our algorithm for #CSPdef iteratively applies the procedure of Theorem 10 along a β-
elimination order. Clearly, this only uses a polynomial number of arithmetic operations,
because applying Theorem 10 only needs a polynomial number of arithmetic operations
and the size of the instances is decreasing. Note that this does not directly give that the
algorithm runs in polynomial time. We iteratively multiply and divide numbers which could
lead to an iterative squaring effect and result in numbers of exponential bitsize. However,
in the full version of this paper, we show that this actually does not happen: The weights
computed in each step are essentially a ratio of weights of two subinstances of the original
instance. It follows that the bitsize of the numerator and the denominator of all numbers is
polynomially bounded and thus all arithmetic operations can be done in polynomial time.
Implementing this yields the following result.

I Theorem 11. There exists an algorithm that, given a β-acyclic instance I of #CSPdef ,
computes w(I) in polynomial time.

Combining Theorem 11 and Corollary 6 we get the main tractability result for #SAT.

I Corollary 12. #SAT on β-acyclic CNF-formulas can be solved in polynomial time.

4 Relation to the STV-framework

In this section we compare our algorithmic result for #SAT on β-acyclic hypergraphs to
the framework proposed by Sæther, Telle and Vatshelle in [20] which we call for short the
STV-framework. In the full version of this paper we show that the STV-framework gives
a uniform explanation of all tractability results for #SAT in the literature, extending the
results of [20]. We see this as strong evidence that the STV-framework is indeed a good
formalization of the intuitive notion of “dynamic programming for #SAT”.

To show that our result is not covered by the STV-framework, we now show that it
cannot give any subexponential time algorithms for β-acyclic #SAT. To this end, we prove
an exponential lower bound on the PS-width of β-acyclic CNF-formulas.

We start off with a simple lemma.
We remind the reader that a CNF-formula F is called monotone if all variables appear

only positively in F .

I Lemma 13. For every bipartite graph G there is a monotone CNF-formula F such that
F has the incidence graph G and psw(F) ≥ 2mimw(G)/2.

Proof. We construct F by choosing arbitrarily one color class of G to represent clauses and
the other one to represent variables. This choice then uniquely yields a monotone formula
where a clause C contains a variable x if and only if x is connected to C by an edge in G.

J. Brault-Baron, F. Capelli, and S. Mengel 153

Let (T, δ) be a branch decomposition of G and F . Let t be a vertex of T with cut (A, Ā).
Set X := var(F) ∩ A, X̄ := var(F) ∩ Ā, C := cla(F) ∩ A and C̄ := cla(F) ∩ Ā. Moreover, let
M be a maximum induced matching of G[A, Ā] and let VM be the end vertices of M .

First assume that |C ∩ VM | ≥ |C̄ ∩ VM |. Let C1, . . . , Ck be the clauses in C ∩ VM and let
x1, . . . , xk be variables in X̄ ∩ VM . Note that k ≥ |M |/2. Since M is an induced matching,
every clause Ci contains exactly one of the variables xj , and we assume w.l.o.g. that Ci

contains xi. Let a be an assignment to the xi and let a′ be the extended assignment of X̄
that we get by assigning 0 to all other variables. Then a′ satisfies in FX̄,C exactly the clauses
Ci for which a(xi) = 1 since the formula is monotone. Since there are 2k assignments to the
xi, we have |PS(FX̄,C)| ≥ 2k ≥ 2|M |/2.

For |C∩VM | ≤ |C̄∩VM | it follows symmetrically that |PS(FX,C̄)| ≥ 2|M |/2. Consequently,
we have in either case that the PS-width of F is at least 2|M |/2 and the claim follows. J

We will now define for every graph G a graph G′. The construction will be such that,
if G is chosen in the right way, then G′ will be chordal bipartite and of high MIM-width.
Combining this with Lemma 13 yields a class of β-acyclic CNF-formulas of high PS-width.
Since PS-width is the crucial parameter in the STV-framework, this shows that β-acyclic
#SAT cannot be solved efficiently by this framework.

Given a graph G = (V,E) we define G′ = (V ′, E′) as follows:
for every v ∈ V there are two vertices xv, yv ∈ V ′,
for every edge e = uv ∈ E there are four vertices pe,u, qe,u, pe,v, qe,v ∈ V ′,
every u, v ∈ V we add the edge xvyu to E′, and
for every edge e = uv ∈ E we add the edges pe,uqe,u, pe,vqe,v, xupe,u, yvqe,u, xvpe,v, yuqe,v.

These are all vertices and edges of G′.

I Lemma 14. G′ is chordal bipartite.

I Lemma 15. Let G be bipartite. Then tw(G) ≤ 6mimw(G′).

Proof. Let (T ′, δ′) be a branch decomposition of G′. Let A,B ⊆ V (G) be the two colour
classes of G. We construct a branch decomposition (T, δ) of G by deleting the leaves labeled
with pe,u, qe,u, pe,v, qe,v, and those labeled xv for v ∈ A or with yv for v ∈ B. Then we
delete all internal vertices of of T ′ that have become leaves by these deletions until we get
a branch decomposition T with the leaves xv for v ∈ B and yv for v ∈ A. For the leaves of
T we define δ(t) := v where v ∈ V is such that δ′(t) = xv or δ′(t) = yv. The result (T, δ) is
a branch decomposition of G.

Let t be a vertex of T with the corresponding cut (X, X̄). Let M ⊆ E be a matching in
G[X, X̄]. Let (X ′, X̄ ′) be the cut of t in (T ′, δ′). Let e = uv ∈ M , then xu and yv are on
different sides of the cut X ′ and they are connected by the path xupe,uqe,uyv. Consequently,
there is at least one edge along this path in G′[X ′, X̄ ′]. Choose one such edge arbitrarily.

Let M ′ be the set of edges we have chosen for the different edges in M . Let M ′x be the
set of edges in M ′ that do not have an end vertex yv and let M ′y be the set of edges in M ′
that do not have an end vertex xv. Let M ′′ be the bigger of these two sets. Since e′ ∈ M ′
can only have an end vertex xv or yu but not both, we have |M ′x| + |M ′y| ≥ |M ′| and thus
|M ′′| ≥ |M ′|/2.

We claim thatM ′′ is an induced matching in G′. Clearly, M ′ is a matching becauseM is
one. Consequently, M ′′ ⊆M ′ is also a matching. We now show that M ′′ is also induced. By
way of contradiction, assume this were not true. Then there must be two adjacent vertices
u, v ∈ V ′ that are end vertices of edges in M ′′ but not in the same edge in M ′′. If u = pe′,w

for some e′ ∈ E and w ∈ V , then v must be xw. But then by construction of M ′, the vertex

STACS 2015

154 Understanding Model Counting for β-acyclic CNF-formulas

w must be incident to two edges in M which contradicts M being a matching. Similarly,
we can rule out that v is qe,w. Thus, u must be xw or yw and v must be xw′ or yw′ . Since
xw and xw′ are in the same colour class of G′, they are not adjacent. Similarly yw and yw′

are not adjacent. Consequently, we may assume that u = xw and v = yw′ . But then they
cannot both be an endpoint of an edge in M ′′ by construction of M ′′. Thus M ′′ is induced.

By Lemma 7 we know that there is a t ∈ T with cut (X, X̄) such that we can find a
matching M of size at least tw(G)

3 in G[X, X̄]. By the construction above the corresponding
cut (X ′, X̄ ′) yields an induced matching of size tw(G)

6 in G′[X ′, X̄ ′]. This completes the
proof. J

The connection between expansion and treewidth (see [16]) yields the following lemma.

I Lemma 16. There is a family G of graphs and constants c > 0 and d ∈ N such that for
every G ∈ G the graph G has maximum degree d and we have tw(G) ≥ c|E(G)|.

I Corollary 17. There is a family G′ of chordal bipartite graphs and a constant c such that
for every graph G ∈ G we have mimw(G) ≥ c|V (G)|.

Proof. Let G be the class of Lemma 16. We first transform every graph G ∈ G into a
bipartite one G1 by subdividing every edge, i.e., by introducing for each edge e = uv a new
vertex we and by replacing e by uwe and wev. It is well-known that subdividing edges does
not decrease the treewidth of a graph (see e.g. [10]), and thus tw(G) ≤ tw(G1). Moreover,
|E(G1)| = 2|E(G)|, and thus tw(G1) ≥ 1

2c|E(G1)|. Now let G′ = {G′1 | G ∈ G}. Then the
graphs in G′ are chordal bipartite by Lemma 14 and the bound on the MIM-width follows
by combining Lemma 16 and Lemma 15. J

Combining Corollary 17 and Lemma 13 yields the main result of this section.

I Corollary 18. There is a family of monotone β-acyclic CNF-formulas of PS-width 2Ω(n)

where n is the number of variables in the formulas.

Since the runtime in Theorem 8 depends linearly on the PS-width, we get that the STV-
framework cannot prove subexponential runtime bounds for #SAT on β-acyclic formulas.

5 Conclusion

We have shown that β-acyclic #SAT can be solved in polynomial time, a question left open
in [7]. Our algorithm does not follow the dynamic programming approach that was used
in all other structural tractability results that were known before, and as we have seen this
is no coincidence. Instead, β-acyclic #SAT lies outside the STV-framework of [20] that
explains all earlier results in a uniform way.

We close this paper with several open problems that we feel should be explored in the
future. First, our algorithm for #SAT is specifically designed for the case of β-acyclic
formulas, but we feel that the techniques developed might possibly be extended to other
classes of hypergraphs that one can characterize by elimination orders. In this direction, it
would be interesting to see if hypergraphs of bounded β-hypertree width, a width measure
generalizing β-acyclicity proposed in [15], can be characterized by elimination orders and if
such a characterization can be used to solve #SAT on the respective instances. Note that
this case lies outside of the STV-framework, therefore dynamic programming without new
ingredients is unlikely to work. Also, even the complexity of deciding SAT on instances of
bounded β-hypertree width is an open problem [17].

J. Brault-Baron, F. Capelli, and S. Mengel 155

It might also be interesting to generalize our algorithm to solve cases for which we
already have polynomial time algorithms. For example, is there any uniform explanation
for tractability of bounded cliquewidth #SAT and β-acyclic #SAT, similarly to the way in
which the framework of [20] explains tractability for all previously known results?

Finally, we feel that, although we have shown that the STV-framework does not explain
all tractability results for #SAT, it is still a framework that should be studied in the future.
We believe that there are still many classes to be captured by it and thus we see a better
understanding of the framework as an important goal for future research. One question
is the complexity of computing branch decompositions of (approximately) minimal MIM-
width or PS-width. Alternatively, one could try to find more classes of bipartite graphs for
which one can efficiently compute branch decompositions of small MIM-width. This would
then directly extend the knowledge on structural classes of CNF-formulas for which dynamic
programming can efficiently solve #SAT.

References
1 G. Ausiello, A. D’Atri, and M. Moscarini. Chordality properties on graphs and minimal

conceptual connections in semantic data models. J. Comput. Syst. Sci., 33(2):179–202,
1986.

2 H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.
3 A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1999.
4 J. Brault-Baron. Hypergraph Acyclicity Revisited. ArXiv e-prints, March 2014.
5 A. Bulatov, M. Dyer, L.A. Goldberg, M. Jalsenius, M. Jerrum, and D. Richerby. The

complexity of weighted and unweighted #CSP. Journal of Computer and System Sciences,
78(2):681–688, March 2012.

6 J.-Y. Cai and X. Chen. Complexity of counting CSP with complex weights. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, page
909–920, New York, NY, USA, 2012. ACM.

7 F. Capelli, A. Durand, and S. Mengel. Hypergraph Acyclicity and Propositional Model
Counting. In Theory and Applications of Satisfiability Testing - SAT 2014 - 17th Interna-
tional Conference, pages 399–414, 2014.

8 D.A. Cohen, M.J. Green, and C. Houghton. Constraint representations and structural
tractability. In Principles and Practice of Constraint Programming - CP 2009, pages 289–
303, 2009.

9 V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 D. Duris. Some characterizations of γ and β-acyclicity of hypergraphs. Inf. Process. Lett.,
112(16):617–620, 2012.

12 R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal
of the ACM, 30(3):514–550, 1983.

13 E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–529, 2008.

14 G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposition
methods. Artif. Intell., 124(2):243–282, 2000.

15 G. Gottlob and R. Pichler. Hypergraphs in Model Checking: Acyclicity and Hypertree-
Width versus Clique-Width. SIAM Journal on Computing, 33(2), 2004.

STACS 2015

156 Understanding Model Counting for β-acyclic CNF-formulas

16 M. Grohe and D. Marx. On tree width, bramble size, and expansion. J. Comb. Theory,
Ser. B, 99(1):218–228, 2009.

17 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF
formulas. Theoretical Computer Science, 481:85–99, 2013.

18 D. Paulusma, F. Slivovsky, and S. Szeider. Model Counting for CNF Formulas of Bounded
Modular Treewidth. In 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013, pages 55–66, 2013.

19 D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2):273 –
302, 1996.

20 S. Hortemo Sæther, J.A. Telle, and M. Vatshelle. Solving MaxSAT and #SAT on structured
CNF formulas. In Theory and Applications of Satisfiability Testing - SAT 2014 - 17th
International Conference, pages 16–31, 2014.

21 M. Samer and S. Szeider. Algorithms for propositional model counting. Journal of Discrete
Algorithms, 8(1):50–64, 2010.

22 F. Slivovsky and S. Szeider. Model Counting for Formulas of Bounded Clique-Width. In
Algorithms and Computation - 24th International Symposium, ISAAC 2013, pages 677–687,
2013.

23 M. Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.

Parameterized Complexity Dichotomy for Steiner
Multicut∗

Karl Bringmann1, Danny Hermelin2, Matthias Mnich3, and Erik
Jan van Leeuwen4

1 Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
karlb@inf.ethz.ch

2 Ben Gurion University of the Negev, Israel
hermelin@bgu.ac.il

3 Universität Bonn, Bonn, Germany
mmnich@uni-bonn.de

4 Max Planck Institut für Informatik, Saarbrücken, Germany
erikjan@mpi-inf.mpg.de

Abstract
We consider the Steiner Multicut problem, which asks, given an undirected graph G, a col-
lection T = {T1, . . . , Tt}, Ti ⊆ V (G), of terminal sets of size at most p, and an integer k, whether
there is a set S of at most k edges or nodes such that of each set Ti at least one pair of termin-
als is in different connected components of G \ S. This problem generalizes several well-studied
graph cut problems, in particular the Multicut problem, which corresponds to the case p = 2.
The Multicut problem was recently shown to be fixed-parameter tractable for parameter k

[Marx and Razgon, Bousquet et al., STOC 2011]. The question whether this result generalizes
to Steiner Multicut motivates the present work.

We answer the question that motivated this work, and in fact provide a dichotomy of the
parameterized complexity of Steiner Multicut on general graphs. That is, for any combination
of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of
the problem (edge deletion and node deletion with and without deletable terminals), we prove
either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or
even (para-)NP-complete). Among the many results in the paper, we highlight that:

The edge deletion version of Steiner Multicut is fixed-parameter tractable for parameter
k + t on general graphs (but has no polynomial kernel, even on trees).
In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the para-
meter k + t on general graphs.
All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p = 3 and
the graph is a tree plus one node.

Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy
for Steiner Multicut on trees (for tw(G) = 1) as well as a polynomial time versus NP-hardness
dichotomy (by restricting k, t, p, tw(G) to constant or unbounded).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases graph cut problems, Steiner cut, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.157

∗ K. Bringmann is supported by the ETH Zurich Postdoctoral Fellowship Program. D. Hermelin has
received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement number 631163.11, and by the
ISRAEL SCIENCE FOUNDATION (grant No. 551145/14).

© Karl Bringmann, Danny Hermelin,
Matthias Mnich, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 157–170

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.157
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

158 Parameterized Complexity Dichotomy for Steiner Multicut

1 Introduction

Graph cut problems are among the most fundamental problems in algorithmic research. The
classic result in this area is the polynomial-time algorithm for the s–t cut problem of Ford and
Fulkerson [19] (independently proven by Elias et al. [17] and Dantzig and Fulkerson [13]). This
result inspired a research program to discover the computational complexity of this problem
and of more general graph cut problems. One well-studied generalization of the s–t cut
problem is the Multicut problem, in which we want to disconnect t pairs of nodes instead
of just one pair. In a recent major advance of the research program on graph cut problems,
Bousquet et al. [3] and Marx and Razgon [32] showed that Multicut is fixed-parameter
tractable in the size k of the cut only, meaning that it has an algorithm running in time
f(k) · poly(|V (G)|) for some function f , resolving a longstanding problem in parameterized
complexity (with many papers [30, 33, 21, 31] building up to this result).

In this paper, we continue the research program on generalized graph cut problems, and
consider the Steiner Multicut problem. This problem was proposed by Klein et al. [25],
and appears in several versions, depending on whether we want to delete edges or nodes, and
whether we are allowed to delete terminal nodes. Formally, these versions of the Steiner
Multicut problem are defined as follows:

{Edge, Node, Restr. Node} Steiner Multicut
Input: An undirected graph G with terminal sets T1, . . . , Tt ⊆ V (G), and integer k ∈ N.
Task: Find a set S of k {edges, nodes, non-terminal nodes} such that for i = 1, . . . , t

and at least one pair u, v ∈ Ti there is no u− v path in G \ S.

Observe that Multicut is the special case of Steiner Multicut in which each terminal
set has size two. In general, the terminal sets of Steiner Multicut can have arbitrary size,
and we use p to denote maxi |Ti|.

The complexity of Steiner Multicut has been investigated extensively, but so far
only from the perspective of approximability. This line of work was initiated by Klein et
al. [25], who gave an LP-based O(log3(kp))-approximation algorithm. The approximability of
several variations of the problem has also been considered [35, 20, 2]; in particular, Garg et
al. [20] give an O(log t)-approximation algorithm for Multicut. On the hardness side, even
Multicut is APX-hard [12, 4] and cannot be approximated within any constant factor
assuming the Unique Games Conjecture [6]. We also remark that Steiner cuts (the case when
t = 1) are of interest: they are an ingredient in several LP-based approximation algorithms
(for example for Steiner Forest [1, 26]) and there is a connection to the number of
edge-disjoint Steiner trees that each connect all terminals [29]. To the best of our knowledge,
however, Steiner Multicut in its general form has not yet been considered from the
perspective of parameterized complexity.

1.1 Our Contributions
In this paper, we fully chart the (parameterized) complexity landscape of Steiner Multicut
according to k, t, p (defined as above), and the treewidth tw(G). For all three versions of
Steiner Multicut, for each possible combination of k, t, p, and tw(G), where each may
be either chosen as a constant, a parameter, or unbounded, we consider the complexity of
Steiner Multicut. We show a complete dichotomy: either we provide a fixed-parameter
algorithm with respect to the chosen parameters, or we prove a W[1]-hardness or (para-)
NP-completeness result that rules out a fixed-parameter algorithm (unless many canonical
NP-complete problems have subexponential- or polynomial-time algorithms respectively).

K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen 159

Table 1 Summary of known and new complexity results for Steiner Multicut, where new
results are marked with ?; the other entries are either known or follow easily from known results in
the literature. Only maximal FPT results and minimal W[·]- or NP-hardness results are listed; empty
cells are dominated by other results. E.g. Edge Steiner Multicut with parameter t is hard, since
it is already NP-hard for t = 3, p = 2. For Node Steiner Multicut, one also has to apply the rule
that k < t (see Section 2) to generate a full characterization of all cases. Tree diagrams of this table
are offered in the full version of this paper.

Edge Node Restr. Node
constants params Steiner MC Steiner MC Steiner MC

k — poly (Sect. 2) poly (Sect. 2) poly (Sect. 2)
t ≤ 2 — poly (Sect. 2) poly (Sect. 2)
t = 3, p = 2 — NP-h [12] NP-h [12]
— k, t ?FPT (Thm. 1) ?W[1]-h (Thm. 2) ?W[1]-h (Thm. 2)
— k, p, t FPT (Sect. 2) FPT (Sect. 2)
t k FPT (Sect. 2)
p = 2 k FPT [3, 32] FPT [3, 32] FPT [3, 32]
p = 3, tw = 2 k ?W[1]-h (Thm. 3) ?W[1]-h (Thm. 3) ?W[1]-h (Thm. 3)
— t, tw ?FPT (Thm. 13) ?FPT (Thm. 13) ?FPT (Thm. 13)
tw = 1 — ?poly (Thm. 15)
tw = 1 k ?W[2]-h (Thm. 16) ?W[2]-h (Thm. 16)
tw = 1 k, p ?FPT (Thm. 18) ?FPT (Thm. 18)
tw = 1, p = 2 — NP-h [4] NP-h [4]
tw = 2, p = 2 — NP-h [4]

The dichotomy is composed of three main results, along with many smaller ones (see
Table 1). These three main results are stated in the three theorems below:

I Theorem 1. Edge Steiner Multicut is fixed-parameter tractable for parameter k + t.

I Theorem 2. Node Steiner Multicut and Restr. Node Steiner Multicut are
W[1]-hard for the parameter k + t.

I Theorem 3. Node Steiner Multicut, Edge Steiner Multicut, and Restr. Node
Steiner Multicut are W[1]-hard for the parameter k, even if p = 3 and tw(G) = 2.

Observe the sharp gap described by Theorem 1 and Theorem 2 between the parameterized
complexity of the edge deletion version versus the node deletion version; this gap does not
exist for the Multicut problem. Also note that Theorem 3 implies that the fixed-parameter
algorithms for Multicut for parameter k [3, 32] do not generalize to Steiner Multicut.

To obtain the fixed-parameter algorithm of Theorem 1, we have to avoid the brute-force
choice of a pair of separated terminals of each terminal set: Although one can trivially
reduce every instance of the Edge Steiner Multicut problem to at most

(
p
2
)t instances

of Multicut parameterized by k, this only yields an f(k) · nO(t)-time algorithm (for
unbounded p). Our contribution in Theorem 1 is that we improve on this simple algorithm
and obtain a runtime of f(k, t) · nO(1). We give two independent proofs of Theorem 1:

Our first proof uses a variation of the recent technique of Chitnis et al. [8] known
as randomized contractions (even though the technique actually yields deterministic
algorithms). The rough idea of the algorithm is to first determine a large subgraph G′

STACS 2015

160 Parameterized Complexity Dichotomy for Steiner Multicut

of the input graph G, such that G′ has no small cut and only has a small interface
(i.e. a small number of vertices that connect the subgraph to the rest of the graph).
We can then branch on the behavior of a solution on the interface to determine a set
U ⊆ E(G′) of ‘useless’ edges, in the sense that when U is contracted in G a smallest
solution (of size at most k) persists in the remaining graph. By iterating this procedure,
we can reduce the size of the graph until it is small enough to be handled by exhaustive
enumeration. Our algorithm is similar to the one for Edge Multiway Cut-Uncut in
the paper by Chitnis et al. [8]; however, in contrast to that problem, there seems to be
no straightforward projection of the instance onto G′ in our case, and therefore more
involved arguments are needed to determine the set U .
Our second proof (presented only in the full version) is based on several novel structural
lemmas that show that a minimal edge Steiner cut can be decomposed into important
separators and minimal s-t cuts. Using a branching strategy, we ascertain the topology of
the decomposition that is promised by the structural lemmas. Since there are only few
important separators of bounded size [30, 7, 32] and all relevant minimal s-t cuts lie in a
graph of bounded treewidth (following the treewidth reduction techniques of Marx et
al. [31]), we can then optimize over important separators and minimal s-t cuts.

The advantage of the first algorithm over the second is that it runs in single-exponential
time, instead of double-exponential time. However, the second algorithm is slightly faster in
terms of n. Moreover, as part of the correctness proof of the second algorithm, we present
some structural lemmas that give additional insight into the properties of the cut, which
may be of independent interest. Therefore, we present both algorithms in the full version,
but only show the first algorithm in this extended abstract.

The W[1]-hardness results of Theorem 2 and 3 all rely on reductions from the Multi-
colored Clique problem [18]. For the proof of Theorem 3, we introduce a novel intermediate
problem, NAE-Integer-3-SAT, which is an integer variant of the better known Not-All-
Equal-3-SAT problem. We show that NAE-Integer-3-SAT is W[1]-hard parameterized
by the number of variables. This is a powerful starting point for parameterized hardness
reductions and should turn out to be useful to prove the hardness of other problems.

To complete our dichotomy, we chart the full (parameterized) complexity of Steiner
Multicut on trees, that is, for graphs G with tw(G) = 1 (these results are mostly deferred
to the full version of this paper). In fact, some of the hardness results that we prove for
Steiner Multicut on general graphs even hold for trees. We also show that many of the
results for trees do not carry over to graphs of bounded treewidth, the only exception being
a fixed-parameter algorithm for parameters tw(G) + t.

We remark that our characterization induces a polynomial time vs. NP-hardness dichotomy
for Steiner Multicut, i.e., for any choice of k, p, t, tw(G) as any constants or unbounded
(and all three problem variants), we either prove that Steiner Multicut is in P or that
it is NP-hard. This characterization can be obtained from Table 1 by considering all its
polynomial time and NP-hardness results as well as using the rule that any fixed-parameter
algorithm induces a polynomial-time algorithm by setting all parameters to O(1).

1.2 Related Work
We already mentioned several results on the special case of Steiner Multicut when p = 2
(Multicut) [30, 33, 21, 3, 32, 31]. Multicut is itself a generalization of Multiway Cut,
also known as Multiterminal Cut, where the goal is to delete k edges or nodes to separate
all terminals from each other. This problem is NP-complete even for three terminals [12]

K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen 161

and has been extensively studied from a parameterized point of view (see, e.g., the work of
Cao et al. [5] or Cygan et al. [11]). The parameterized complexity of many different other
graph cut problems has also been considered in recent years [16, 8, 24, 30]. On trees, we only
mention here that Edge Multicut and Restr. Node Multicut remain NP-hard [4], but
are fixed-parameter tractable [23, 22]. In contrast, Node Multicut has a polynomial-time
algorithm on trees [4].

Organization. We begin our exposition in Section 2 by giving easy results for certain
parameter combinations of Steiner Multicut. Thereafter, we present our fixed-parameter
algorithm for Edge Steiner Multicut (Theorem 1) in Section 3. Following this, in the two
subsequent sections, we present our W[1]-hardness proofs: the proof of Theorem 3 in Section 4,
and of Theorem 2 in Section 5. Section 6 then focuses on trees to complete our dichotomy. We
conclude with some discussion and open problems in Section 7. The full version of this paper
is included as an appendix; there we also define basic notions of parameterized complexity.

2 Easy and Known Results

In this section, we collect easy and known results about the Steiner Multicut problem.
Some of these results are scattered throughout the literature, while others are new. First,
observe that whenever the cut size k is constant, we can solve the problem in polynomial
time by simply guessing the desired set S of at most k edges or nodes.

Furthermore, Node Steiner Multicut is trivially solvable when t ≤ k, as in this case
we may simply delete an arbitrary terminal node from each set Ti, resulting in a solution of
size at most k; thus, any instance is always a “yes”-instance in this case.

We may reduce Steiner Multicut to
(

p
2
)t instances of Multicut by branching for

each terminal set over its separated terminals. Since Multicut is in FPT for parameter k,
we obtain a fixed-parameter algorithm for Steiner Multicut for parameter k + t + p. Also,
since

(
p
2
)t ≤ nO(t), Steiner Multicut is in FPT for parameter k and any constant t.

Now, Multicut on instances with t = 1 (i.e. instances that have only one terminal
pair |T1| = {s, t}) is polynomial-time solvable by running an s− t cut algorithm. For t = 2
a result by Yannakakis et al. [34, Lemma 1] also yields a polynomial time algorithm for
Multicut. Again by branching over the separated terminals in both terminal sets, we obtain
a polynomial time algorithm for Steiner Multicut for t ≤ 2.

When there are three or more terminal sets, then Steiner Multicut generalizes
Multiway Cut and thus is NP-complete [12] even when p = 2.

We next show that Restr. Node Steiner Multicut is as least as hard as Node
Steiner Multicut. Therefore, whenever Node Steiner Multicut is W[1]-hard (or NP-
hard) for a certain combination of parameters, then so is Restr. Node Steiner Multicut.

I Lemma 4. Any instance of Node Steiner Multicut can be reduced in polynomial time
to an instance of Restr. Node Steiner Multicut with the same parameter values k, t,
p, and tw(G).

Proof. Take an instance (G, T , k), T = {T1, . . . , Tt}, of Node Steiner Multicut and
transform it to an instance of Restr. Node Steiner Multicut by adding for each terminal
node v ∈ T1 ∪ . . . ∪ Tt a new pendant node v′. Then replace v by v′ in every terminal set Ti.
It is easy to see that the original instance admits a node cut of size k if and only if the new
instance admits a node cut of size k that does not use any terminal nodes. J

STACS 2015

162 Parameterized Complexity Dichotomy for Steiner Multicut

3 Tractability for Edge Deletion and Parameter k + t

In this section, we prove Theorem 1, namely that Edge Steiner Multicut parameterized
by k + t is fixed-parameter tractable. The proof uses the technique of randomized contractions
pioneered by Chitnis et al. [8]; a second, independent proof is deferred to the full version.
Later we will see that Theorem 1 is “maximal”, in the sense that Edge Steiner Multicut
is W[1]-hard parameterized by k or t alone (this follows from Theorem 16 and the fact that
even Edge Multicut is NP-hard when t = 3 [12] respectively), that the corresponding node
deletion problem is W[1]-hard parameterized by k + t (Theorem 2), and that there exists no
polynomial kernel for Edge Steiner Multicut parameterized by k + t (Theorem 17).

We first state some notions and supporting lemmas from the paper of Chitnis et al. [8],
which are needed to make our proof work. The identification of two vertices v, w ∈ V (G)
results in a graph G′ by removing v, w, adding a new vertex vw, and if v or w is an endpoint
of an edge, then we replace this endpoint by vw. Note that the identification of two vertices
does not remove any edges, and generally results in a multigraph (with parallel edges and
self-loops). Without confusion, we may sometimes refer to vw by its old names v or w.

The contraction of an edge (v, w) ∈ E(G) results in a graph G′ by removing all edges
between v and w, and then identifying v and w. This is also known as contraction without
removing parallel edges. Again, the result of a contraction is generally a multigraph. Given a
set F ⊆ E(G) of edges that induce a connected subgraph of G with a + 1 vertices of which v

is one, after contracting all edges of F , we say that a vertices were contracted onto v.

I Definition 5 ([8]). Given two integers a, b, an (a, b)-good edge separation of a connected
graph G is a partition (V1, V2) of V (G) such that |V1|, |V2| > a, G[V1] and G[V2] are connected,
and the number of edges between V1 and V2 is at most b.

We now define several notions and prove a few lemmas that are implicit in the work of
Chitnis et al. [8].

I Definition 6. A b-bordered subgraph of G is a connected induced subgraph G′ of G such
that in G at most b vertices of V (G′) have an edge to a vertex of V (G) \ V (G′). We call the
vertices of G′ that have an edge in G to a vertex of V (G) \ V (G′) the border vertices of G′.

I Lemma 7. Given a connected graph G and two integers a, b (b even), one can find in time
2O(min{a,b} log(a+b)) |V (G)|4 log |V (G)| a b-bordered subgraph of G that does not admit an
(a, b/2)-good edge separation.

Let G be a connected graph and let a be an integer. Given a set F ⊆ E(G), let GF denote
the graph obtained from G by contracting all edges of F , and then identifying into a single
vertex (which we denote by hF) all vertices onto which at least a vertices were contracted.
Observe that GF is potentially a multigraph, and that hF might not exist.

A subset Y of the edges of a connected graph G is a separator if G \ Y has more than
one connected component. The set Y is a minimal separator if there is no Y ′ ⊂ Y such that
G \ Y ′ has the same connected components as G \ Y .

I Lemma 8 ([8]). Let G be a connected graph, let a, b be two integers (b even), and let
F ⊆ E(G) with |F | ≤ b/2. If G admits no (a, b/2)-good edge separation, then G \ F has at
most (b/2) + 1 connected components, of which at most one has more than a vertices.

I Lemma 9. Let G be a connected graph, let a, b be any two integers (b even) such that G

does not admit an (a, b/2)-good edge separation and such that |V (G)| > a(b/2 + 1), and let
Y ⊆ E(G) with |Y | ≤ b/2 be a minimal separator. In time 2O(b log(a+b)) |E(G)| log |E(G)|

K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen 163

one can find a family F of 2O(b log(a+b)) log |E(G)| subsets of E(G) that contains a set
F0 ⊆ E(G) with the following properties: (1) F0 ∩ Y = ∅, (2) hF0 exists in GF0 , (3) hF0 is
the identification of a subset of the vertices of a connected component of G \ Y , and (4) for
each connected component C of GF0 \ {hF0}, Y either contains all edges of GF0 [C ∪ {hF0}]
or none of these edges.

It is important to observe that the construction of the family F does not require knowledge
of Y itself, beyond that it has size at most b/2. Moreover, note that all edges of Y are present
in GF0 , as F0 ∩ Y = ∅.

We are now ready to describe the algorithm for Edge Steiner Multicut for the
parameter k + t. The basic intuition is to find a part of the graph that does not have a
(q, k)-good edge separation for some q, but that only has a small number of border vertices.
In this part of the graph we find and contract a set of edges that are provably not part
of some smallest edge Steiner multicut. We repeat this procedure until the graph is small
enough to be handled by an exhaustive enumeration algorithm.

Consider an instance (G, T , k) with T = {T1, . . . , Tt} of Edge Steiner Multicut. We
may assume that G is connected. Let q be an integer determined later (q will depend on k

and t only). We assume that |E(G)| > q, or we can use exhaustive enumeration to solve the
problem in t qO(k) time.

We apply the algorithm of Lemma 7 to find a 2k-bordered subgraph G′ of G that does
not admit a (q, k)-good edge separation. Let B denote the set of border vertices of G′. Note
that possibly G′ = G, in which case B = ∅. The idea is now to determine a set of edges of G′

that is not used by some optimal solution.
Let S be a smallest edge Steiner multicut of (G, T). Let G′′ denote the graph (B∪(V (G)\

V (G′)), E(G) \ E(G′)). Observe that E(G′) and E(G′′) partition E(G). Let S′ = S ∩ E(G′)
and let S′′ = S ∩E(G′′). We call a terminal set active if it is not separated in G \S′′. We call
border vertices b, b′ ∈ B paired if there is a path between b and b′ in G′′ \ S′′. Note that this
defines an equivalence relation on B. We call an equivalence class B′ of this relation i-active
if the terminal set Ti is active and the component of G′′ \ S′′ that contains B′ contains a
terminal of Ti. Intuitively, this information suffices to compute a set Z ⊆ E(G′) such that
Z ∪ S′′ is a smallest edge Steiner multicut of (G, T). Then we could contract (in G) all other
edges of G′ to get a smaller instance, and repeat this until the instance is small enough to be
solved by exhaustive enumeration.

Of course, we do not know S, and thus we do not know this equivalence relation on B nor
which classes are i-active for each i = 1, . . . , t. However, we can branch over all possibilities.
In each branch, we find a small set of edges, which we mark. At the end, we contract (in G)
the set of edges of G′ that were not marked, and thus reduce the size of the instance. We will
prove that in one of the branches, we mark a smallest set Z of edges (of size at most k) such
that (Z ∪ S′′) is a smallest edge Steiner multicut (of size at most k) of (G, T). Therefore,
after contraction, a smallest edge Steiner multicut (of size at most k) of (G, T) persists (if
such a cut existed in the first place). In particular, we argue that we mark Z in the branch
with the active classes T S , the equivalence relation BS , and i-active classes BS

i of BS for
i = 1, . . . , |T S | that are induced by S.

The algorithm proceeds by branching over all possibilities. Let T ′ = {T ′1, . . . , T ′t′} be an
arbitrary subset of T , let B be an arbitrary equivalence relation on B, and let Bi denote
an arbitrary subset of B for i = 1, . . . , t′. We say that we made the right choice if T ′ = T S ,
B = BS , and Bi = BS

i for i = 1, . . . , t′. The algorithm considers two cases.

Case 1: If |V (G′)| ≤ q(k + 1), then we can essentially use exhaustive enumeration. Let G̃

be the graph obtained from G′ by identifying two border vertices if they are in the same

STACS 2015

164 Parameterized Complexity Dichotomy for Steiner Multicut

equivalence class of B. This also makes each Bi a set of vertices, which by abuse of notation,
we denote by Bi as well. For i = 1, . . . , t′, let T̃i be equal to Bi ∪ (T ′i ∩ (V (G′) \B)). Then
T̃ = {T̃1, . . . , T̃t′}. We verify that no terminal set in T̃ is a singleton; otherwise, we can
continue with the next branch.

I Lemma 10. Assume we made the right choice. Then S′ is an edge Steiner multicut of
(G̃, T̃). Moreover, for any edge Steiner multicut X of (G̃, T̃), X ∪ S′′ is an edge Steiner
multicut of (G, T).

Now the algorithm uses exhaustive enumeration to find a smallest edge Steiner multicut
of (G̃, T̃) of size at most k (if one exists) in t(qk)O(k) time. Mark this set of edges in G′.

By Lemma 10, if we made the right choice, we mark a set Z such that Z ∪S′′ is a smallest
edge Steiner multicut of (G, T).

Case 2: If |V (G′)| > q(k + 1), then a more complicated approach is needed, because we
cannot just use exhaustive enumeration. In fact, we cannot work with (G̃, T̃) directly here,
as G̃ might have a (q, k)-good edge separation, even though G′ does not.

We proceed as follows. Apply Lemma 9 with a = q and b = 2k to G′ with respect
to Y := S′, and let F be the resulting family. Note that Y = S′ is a minimal separator,
|V (G′)| > q(k + 1) = a(b/2 + 1), and G′ has no (a, b/2)-good edge separation, and thus the
lemma indeed applies. Consider an arbitrary F ∈ F . We augment our definition of the right
choice by adding the condition that F = F0, where F0 is the family that Lemma 9 promises
exists in F . Now find G′F . If hF does not exist in G′F , then we proceed to the next set F , as
Lemma 9 promises that hF exists if we made the right choice.

We call a set X ⊆ E(G′F) an all-or-nothing cut if for each connected component C ′ of
G′F \ {hF }, X either contains all edges of G′F [C ′ ∪ {hF }] or none of these edges. Note that
Lemma 9 promises that S′ is an all-or-nothing cut in G′F for F = F0 ∈ F .

Let C denote the set of connected components of G′F \ {hF } that contain a vertex onto
which a border vertex was contracted. Let Y ⊆

⋃
C∈C E(G′F [C ∪ {hF }]) be an arbitrary set

of edges that contains for each C ∈ C either all edges of G′F [C ∪{hF }] or none of these edges.
Note that Y is basically an all-or-nothing cut restricted to the edges induced by C. The
algorithm will consider all possible choices of Y . We augment our definition of the right choice
again, by adding the condition that Y = Y0, where Y0 := S′ ∩ (

⋃
C∈C E(G′F [C ∪ {hF }])).

Now the algorithm deletes all edges in Y and contracts any edges in (
⋃

C∈C E(G′F [C ∪
{hF }])) \ Y . Denote the resulting graph by HF . Let Ĝ be the graph obtained from HF

by identifying two border vertices if they are in the same equivalence class of B. This also
compresses each Bi into a set of vertices, which by abuse of notation, we denote by Bi as
well. For i = 1, . . . , t′, let T̂i be equal to Bi ∪ (T ′i ∩ (V (Ĝ) \ B)). Then T̂ consists of all T̂i

that are not already separated in HF . We verify that no terminal set in T̂ is a singleton;
otherwise, we can continue with the next branch.

I Lemma 11. Assume that we made the right choice. Then S′ \Y is an edge Steiner multicut
of (Ĝ, T̂) that is an all-or-nothing cut. Moreover, for any edge Steiner multicut X of (Ĝ, T̂),
Y ∪X ∪ S′′ is an edge Steiner multicut of (G, T).

We now aim to find a smallest edge Steiner multicut X of (Ĝ, T̂) that is an all-or-nothing
cut. Let {C ′1, . . . , C ′u} be the set of connected components of Ĝ \ {hF }. Let T̂ |i denote the
set of terminal sets in T̂ that are separated if one removes all edges of E(Ĝ[{hF } ∪C ′i]) from
G′F . Define z[U , i], where U ⊆ T̂ and 1 ≤ i ≤ u, as the size of the smallest all-or-nothing cut

K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen 165

of the terminal sets in U using only edges in or going out of C ′1, . . . , C ′i. Then for any U ⊆ T̂ ,

z[U , 1] =
{
∞ if U 6⊆ T̂ |1
|E(G′F [{hF } ∪ C ′1])| otherwise (i.e. if U ⊆ T̂ |1)

and for i > 1, z[U , i] = min
{

z[U , i− 1], |E(G′F [{hF } ∪ C ′i])|+ z[U \ T̂ |i, i− 1]
}

. Note that
z[T̂ , u] holds the size of the smallest edge Steiner multicut of (Ĝ, T̂) that is an all-or-nothing
cut (if one exists). Finding the set achieving this smallest size is straightforward from the
dynamic-programming table. Finally, over all choices of F and all choices of Y , mark in G′

the smallest set of edges that was found if it has size at most k.
By Lemma 11, if we made the right choice, we mark a set Z such that Z ∪S′′ is a smallest

edge Steiner multicut of (G, T).

In both cases, let M be the set of marked edges. Now we contract all unmarked edges
E(G′) \M in G. Let G̃ denote the resulting graph; note that in general G̃ is a multigraph.
Each time we contract an edge between two vertices u and v, we replace u and v by uv in all
terminal sets in T . Let T̃ denote the resulting set of terminal sets. Observe that if a terminal
set T̃i in T̃ is a singleton set and Ti was not a singleton set in T , then we can answer “no”.
Now it remains to prove that (G, T , k) is a “yes”-instance if and only if (G̃, T̃ , k) is. For this,
it suffices to note that an edge Steiner multicut of (G̃, T̃) corresponds directly to an edge
Steiner multicut of (G, T), and that for any smallest edge Steiner multicut S of (G, T) there
is a smallest edge Steiner multicut Z ∪ (S \ E(G′)) of (G, T) such that Z ⊆M .

Since there are at most 2k border vertices and t terminal sets, there are r = 2O(kt log k)

different branches that we consider for T ′, B, and Bi, and in each we mark at most k edges.
Choose q = rk + 1. Now note that |E(G′)| ≥ q. If G = G′, then this follows from the
assumption that |E(G)| > q. If G 6= G′, then G′ was obtained after considering multiple
(q, k)-good separations. Hence, |V (G′)| > q, and since G′ is connected, |E(G′)| ≥ q. Since
q = rk + 1, at least one edge of G′ was not marked and thus contracted. Therefore, |V (G)|
decreases by at least one, and the entire procedure finishes after at most |V (G)| iterations.

To analyze the running time, note that the dynamic-programming algorithm requires time
2O(t)k+O(t|E(G)|). The family F contains 2O(k2t log k) log |E(G)| sets and can be constructed
in 2O(k2t log k) |E(G)| log |E(G)| time. Hence, Case 2 runs in 2O(k2t log k) |E(G)| log |E(G)|
time. Case 1 runs in 2O(k2t log k) time. Since there are r = 2O(kt log k) different branches for
T ′, B, and Bi that we consider, and it takes 2O(k2t log k) |V (G)|4 log |V (G)| time to find a
2k-bordered subgraph that does not admit a (q, k)-good separation, each iteration takes
2O(k2t log k) |V (G)|4 log |V (G)| time. Since there are at most |V (G)| iterations, the total
running time is 2O(k2t log k) |V (G)|5 log |V (G)|. Actually, using the recurrence outlined by
Chitnis et al. [8], one can show a bound on the running time of 2O(k2t log k) |V (G)|4 log |V (G)|.

4 Steiner Multicuts for Graphs of Bounded Treewidth

In this section, we consider Steiner Multicut on graphs of bounded treewidth. To start the
exposition, we note that Edge Steiner Multicut and Restr. Node Steiner Multicut
are NP-complete for trees and Node Steiner Multicut is NP-complete on series-parallel
graphs [4], which are graphs of treewidth two. This means that any efficient algorithm for
Steiner Multicut on graphs of bounded treewidth needs an additional parameter.

We first show Theorem 3, namely that all variants of Steiner Multicut for the
parameter k are W[1]-hard, even if p = 3 and tw(G) = 2 (but t is unbounded). The graph G

is in fact a tree plus one node. We then contrast this result by showing that the problem is
fixed-parameter tractable on bounded treewidth graphs when t is a parameter.

STACS 2015

166 Parameterized Complexity Dichotomy for Steiner Multicut

The reduction for Theorem 3 is from an intermediate problem, (Monotone) NAE-
Integer-3-SAT. In this problem, we are given variables x1, . . . , xk that each take a value in
{1, . . . , n} and clauses C1, . . . , Cm of the form NAE(xi1 ≤ a1, xi2 ≤ a2, xi3 ≤ a3), a1, a2, a3 ∈
{1, . . . , n}, which is satisfied if not all three inequalities are true and not all are false (i.e.,
they are “not all equal”). The goal is to find an assignment of the variables that satisfies all
given clauses. We remark that NAE-Integer-3-SAT generalizes Monotone NAE-3-SAT
(by restriction to n = 2), and that NAE-Integer-3-SAT can be solved in time O(m · nk),
by enumerating all assignments.

I Lemma 12. NAE-Integer-3-SAT is W[1]-hard for parameter k.

Proof. Let (G, k) be an instance of Multicolored Clique [18]. We use Vi to denote the set
of vertices of color i, ni = |Vi|, and Ei,j to denote the set of edges with one endpoint in Vi and
the other in Vj . We create an instance of NAE-Integer-3-SAT on variables xi, one for each
color 1 ≤ i ≤ k, and yij , one for each pair of colors 1 ≤ i < j ≤ k. We identify the vertices
Vi with the integers {1, . . . , ni} in an arbitrary way. We restrict xi to {1, . . . , ni} using the
clause NAE(xi ≤ 0, xi ≤ 0, xi ≤ ni), and write xi = u if the number xi corresponds to vertex
u. Analogously, we can identify the edges uv ∈ Ei,j with numbers in {1, . . . , |Ei,j |} and write
yij = uv if we pick the number corresponding to edge uv. Consider the following constraints
(for any edge uv, with u of color i and v of color j), yij = uv ⇒ xi = u, yij = uv ⇒ xj = v.

If we can encode these constraints with NAE-clauses, then any satisfying assignment of
the constructed NAE-Integer-3-SAT instance corresponds to a clique in G, as all chosen
pairs yij correspond to edges, and edges sharing a color i picked the same vertex xi. We
focus on the first constraint; the second is similar. Note that the constraint is equivalent
to yij = uv ⇒ xi ≥ u, yij = uv ⇒ xi ≤ u. Again, w.l.o.g., we focus on the first of these
constraints. It is equivalent to yij < uv ∨ yij > uv ∨ xi ≥ u, which in turn can be written
as NAE(yij < uv, yij > uv, xi ≥ u), since yij < uv, yij > uv cannot both be true. Note
that we can replace any inequality x < a by x ≤ a − 1 (and similarly for x > a). Hence,
we can encode all desired constraints if we may use “≤” and “≥” inequalities, not only “≤”
inequalities, as is the case in the definition of NAE-Integer-3-SAT.

In the remainder of this proof, we reduce NAE-Integer-3-SAT with “≤” and “≥”
inequalities to the original variant with only “≤” inequalities. Given any instance of NAE-
Integer-3-SAT with both types of inequalities, for any variable x we introduce a new
variable x̄. For any 1 ≤ v ≤ n, we add the constraint NAE(x ≤ v, x ≤ v, x̄ ≤ n− v). This
enforces x̄ = n + 1− x. Finally, we replace any inequality x ≥ v by x̄ ≤ n + 1− v. This yields
an equivalent NAE-Integer-3-SAT instance with only “≤” inequalities. J

Proof of Theorem 3. We first give a reduction from NAE-Integer-3-SAT to Edge
Steiner Multicut (satisfying p = 3 and tw(G) = 2). Consider an instance of NAE-
Integer-3-SAT on variables x1, . . . , xk taking values in {1, . . . , n} with clauses C1, . . . , Cm.
Take k paths consisting of n edges and identify their start nodes (to a common node s) and
end nodes (to a common node t), respectively. The resulting graph G has tw(G) = 2, since it
is not a tree, but becomes a tree after deleting s (or t). Let vi

j be the j-th node on the i-th
path from s to t, so that vi

0 = s and vi
n = t. For each clause NAE(xi1 ≤ a1, xi2 ≤ a2, xi3 ≤ a3)

we introduce a terminal set {vi1
a1

, vi2
a2

, vi3
a3
} (note that we can assume 0 ≤ aj ≤ n without loss

of generality). Further, we let {s, t} be a terminal set and set the cut size to k, i.e., we allow
to delete k edges. This finishes the construction. In order to separate s from t we need to cut
at least one edge of each of the k paths that connect s and t, and because the cut size is k

we have to delete exactly one edge per path. Say we delete the xi-th edge on the i-th path.
This splits G into two components, one containing s and the other containing t. Note that

K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen 167

we separate nodes vi
j and vi′

j′ by cutting at xi ≤ j and xi′ > j′ (or with both inequalities the
other way round), since then vi

j is in the t-component and vi′

j′ in the s-component. Hence,
the following are equivalent:

the terminal set {vi1
a1

, vi2
a2

, vi3
a3
} is disconnected;

some pair of nodes in this set is disconnected;
among the inequalities xij ≤ aj , j = 1, 2, 3, one is true and one is false;
the clause NAE(xi1 ≤ a1, xi2 ≤ a2, xi3 ≤ a3) is satisfied.

Therefore, the given NAE-Integer-3-SAT instance is equivalent to the constructed Edge
Steiner Multicut instance.

We can adapt this construction to prove hardness of Node Steiner Multicut; hardness
of Restr. Node Steiner Multicut then follows from Lemma 4. J

We contrast the above theorem with the following result by showing that Steiner
Multicut is fixed-parameter tractable for the parameter t if the graph has bounded
treewidth, through an MSOL-formula.

I Theorem 13. Node Steiner Multicut, Edge Steiner Multicut, and Restr. Node
Steiner Multicut are fixed-parameter tractable for the parameter t + tw(G).

5 Hardness for Cutsize k and Number of Terminal Sets t

In this section, we consider the Steiner Multicut problem on general graphs parameterized
by k+t. We show that both node deletion versions of the problem, Node Steiner Multicut
and Restr. Node Steiner Multicut, are W[1]-hard for this parameter.

I Theorem 14. Node Steiner Multicut and Restr. Node Steiner Multicut are
W[1]-hard for the parameter k + t.

Proof. We present a parameterized reduction from the Multicolored Clique problem [18]
to Node Steiner Multicut. Let (H, k) be an instance of Multicolored Clique, and
let Vi and Ei,j be as in the definition of Multicolored Clique. We then create the
following instance of Node Steiner Multicut. First, we subdivide each edge of H, and
let Ni,j denote the set of nodes that were created when subdividing the edges of Ei,j . Then,
add a complete graph C with 2k nodes, where we denote the nodes of C by c1, . . . , c2k,
and make all nodes of Vi adjacent to c2i−1 and c2i for each i = 1, . . . , k. Let G denote
the resulting graph. Observe that G[V (H)] and G[

⋃
i,j Ni,j] are both independent sets of

G. We then create terminal sets Ti = Vi ∪ {c2i−1} and T ′i = Vi ∪ {c2i}, and terminal sets
Ti,j = Ni,j ∪ V (C). Let T = {Ti, T ′i | i = 1, . . . , k} ∪ {Ti,j | i 6= j, i, j = 1, . . . , k}. Then the
created instance is (G, T , k).

Suppose that (H, k) is a “yes”-instance of Multicolored Clique, and let K denote
a clique of H such that V (K) ∩ Vi 6= ∅ for each i. Pick a node vi ∈ V (K) ∩ Vi and let
S = {vi | i = 1, . . . , k}. Observe that vi disconnects terminal sets Ti and T ′i . Further, if we
let ni,j denote the subdivision node of the edge (vi, vj) ∈ E(H), then vi and vj disconnect
ni,j from the rest of Ti,j . Finally, |S| = k. Therefore, (G, T , k) is a “yes”-instance of Node
Steiner Multicut.

Suppose that (G, T , k) is a “yes”-instance of Node Steiner Multicut, and let S ⊆ V (G)
denote a node Steiner multicut of G with respect to terminal sets T such that |S| ≤ k. We
claim that H[S] is a multicolored clique of H. First, observe that to disconnect Ti and T ′i ,
we need that S ∩ Ti 6= ∅ and S ∩ T ′i 6= ∅. Since |S| ≤ k, we know that S ∩ Ti ∩ T ′i 6= ∅ for
each i = 1, . . . , k. This implies that |S| = k, that S ⊆ V (H), and that S ∩ Vi 6= ∅ for each

STACS 2015

168 Parameterized Complexity Dichotomy for Steiner Multicut

i = 1, . . . , k. It remains to show that H[S] is a clique. Let vi denote the node in S ∩ Vi.
Suppose that (vi, vj) 6∈ E(H) for some i, j. Then consider the terminal set Ti,j , and observe
that for any node n ∈ Ni,j at least one endpoint of the edge corresponding to n is not in
S. Since S ∩ V (C) = ∅, this implies that Ti,j is not disconnected by S, a contradiction. It
follows that H [S] is a clique, and thus (H, k) is a “yes”-instance of Multicolored Clique.

For Restr. Node Steiner Multicut hardness follows from the statement for Node
Steiner Multicut and Lemma 4. J

6 Steiner Multicuts in Trees

We state the following results on trees; the proofs are in the full version. The first theorem
generalizes the algorithm for Node Multicut on trees [4].

I Theorem 15. Node Steiner Multicut can be decided in linear time on trees.

The next theorems follow from a reduction from Hitting Set [15, 14].

I Theorem 16. Edge Steiner Multicut and Restr. Node Steiner Multicut are
W[2]-hard on trees for the parameter k.

I Theorem 17. Edge Steiner Multicut and Restr. Node Steiner Multicut have no
polynomial kernel on trees for the parameter k + t, unless the polynomial hierarchy collapses
to the third level.

Note that the above theorem complements the FPT result of Theorem 1.
The final theorem uses a branching strategy in which an incident edge or neighbor needs

to be chosen for the lowest common ancestor of the terminals in any terminal set.

I Theorem 18. Edge Steiner Multicut and Restr. Node Steiner Multicut are
fixed-parameter tractable on trees for the parameter k + p.

7 Discussion

We provided a comprehensive computational complexity analysis of the Steiner Multicut
problem with respect to fundamental parameters, culminating in either a fixed-parameter
algorithm or a W[1]-hardness result for every combination of parameters. This way, we
generalize known tractability results for special cases of Steiner Multicut, and chart the
boundary of tractability for other cases. See Table 1 for a complete overview.

We leave several interesting questions for future research. A possible extension is to
consider directed graphs. Already Multicut is W[1]-hard in this case [32] for parameter cut
size k, even on acyclic directed graphs [27]. On the other hand, Multicut is fixed-parameter
tractable for the parameter k + t in directed acyclic graphs [27]. It would be interesting
whether this result generalizes to Steiner Multicut.

Another possible extension is to investigate which problems admit polynomial kernels.
While we have resolved many kernelization questions in the full version of this paper, several
open problems remain, in particular whether there is a polynomial kernel for the parameters
k + t + p on general graphs. Answers in this research direction might shed new light on some
long-standing open questions [9] on the existence of polynomial kernels for Multicut for
parameter k + t (currently, only a kernel of size kO(

√
t) is known [28], and there is no kernel

of size polynomial in k only [10]).

K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen 169

Acknowledgements. We thank Magnus Wahlström for an insight that helped in proving
Lemma 12.

References
1 Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: an approximation algorithm

for the generalized Steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.
2 Adi Avidor and Michael Langberg. The multi-multiway cut problem. Theoret. Comput.

Sci., 377(1-3):35–42, 2007.
3 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. In Proc.

STOC 2011, pages 459–468, New York, NY, USA, 2011. ACM.
4 Gruia Călinescu, Cristina G. Fernandes, and Bruce Reed. Multicuts in unweighted graphs

and digraphs with bounded degree and bounded tree-width. J. Algorithms, 48(2):333–359,
2003.

5 Yixin Cao, Jianer Chen, and Jia-Hao Fan. An O∗(1.84k) parameterized algorithm for the
multiterminal cut problem. Information Processing Letters, 114(4):167–173, 2014.

6 Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On
the hardness of approximating multicut and sparsest-cut. Comput. Complexity, 15(2):94–
114, 2006.

7 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

8 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. In
Proc. FOCS 2012, pages 460–469, Washington, DC, USA, 2012. IEEE Computer Society.

9 Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. Open problems from workshop on
kernels, April 2013. http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf.

10 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.
Clique cover and graph separation: new incompressibility results. ACM Transactions on
Computation Theory (TOCT), 6(2), 2014.

11 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Transactions on Computation The-
ory (TOCT), 5(1), 2013.

12 E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

13 G. B. Dantzig and D. R. Fulkerson. On the max-flow min-cut theorem of networks. In
Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, pages 215–
221. Princeton University Press, Princeton, N. J., 1956.

14 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors
and IDs. In Proc. ICALP 2009, volume 5555 of Lecture Notes Comput. Sci., pages 378–389.
Springer, Berlin, 2009.

15 R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer
Science. Springer-Verlag, New York, 1999.

16 Rodney G. Downey, Vladimir Estivill-Castro, Michael Fellows, Elena Prieto, and Frances A.
Rosamond. Cutting up is hard to do: The parameterised complexity of k-cut and related
problems. Electr. Notes Theor. Comput. Sci., 78(0):209 – 222, 2003.

17 P. Elias, A. Feinstein, and C.E. Shannon. A note on the maximum flow through a network.
Information Theory, IRE Transactions on, 2(4):117–119, 1956.

18 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theoret. Comput. Sci.,
410(1):53–61, 2009.

STACS 2015

http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf

170 Parameterized Complexity Dichotomy for Steiner Multicut

19 L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math.,
8:399–404, 1956.

20 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM J. Comput., 25(2):235–251, 1996.

21 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optim., 8(1):61–71, 2011.

22 Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Com-
plexity and exact algorithms for multicut. In Proc. SOFSEM 2006, volume 3831 of Lecture
Notes Comput. Sci., pages 303–312, Berlin, 2006. Springer.

23 Jiong Guo and Rolf Niedermeier. Fixed-parameter tractability and data reduction for
multicut in trees. Networks, 46(3):124–135, 2005.

24 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In Proc. FOCS 2011, pages 160–169. IEEE Computer Soc., Los
Alamitos, CA, 2011.

25 Philip N. Klein, Serge A. Plotkin, Satish Rao, and Éva Tardos. Approximation algorithms
for Steiner and directed multicuts. J. Algorithms, 22(2):241–269, 1997.

26 Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan H. M. van Zwam. A group-
strategyproof cost sharing mechanism for the Steiner Forest game. SIAM J. Comput.,
37(5):1319–1341, 2008.

27 Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström. Fixed-
parameter tractability of multicut in directed acyclic graphs. In Proc. ICALP 2012, volume
7391 of Lecture Notes Comput. Sci., pages 581–593. Springer, Berlin, 2012.

28 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In Proc. FOCS 2012, pages 450–459, 2012.

29 Lap Chi Lau. An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Com-
binatorica, 27(1):71–90, 2007.

30 Dániel Marx. Parameterized graph separation problems. Theoret. Comput. Sci., 351(3):394–
406, 2006.

31 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time
via treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, October 2013.

32 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In Proc. STOC 2011, pages 469–478, New York, NY, USA, 2011.
ACM.

33 Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal cuts. The-
ory Comput. Syst., 46(4):723–736, 2010.

34 Mihalis Yannakakis, Paris C. Kanellakis, Stavros S. Cosmadakis, and Christos H. Papadi-
mitriou. Cutting and partitioning a graph after a fixed pattern (extended abstract). In
Proc. ICALP 1983, volume 154 of Lecture Notes Comput. Sci., pages 712–722, London, UK,
UK, 1983. Springer-Verlag.

35 Bo Yu and Joseph Cheriyan. Approximation algorithms for feasible cut and multicut
problems. In Proc. ESA 1995, volume 979 of Lecture Notes Comput. Sci., pages 394–408.
Springer, Berlin, 1995.

Solving Totally Unimodular LPs with the Shadow
Vertex Algorithm∗

Tobias Brunsch, Anna Großwendt, and Heiko Röglin

Department of Computer Science
University of Bonn, Germany
{brunsch,grosswen,roeglin}@cs.uni-bonn.de

Abstract
We show that the shadow vertex simplex algorithm can be used to solve linear programs in
strongly polynomial time with respect to the number n of variables, the number m of constraints,
and 1/δ, where δ is a parameter that measures the flatness of the vertices of the polyhedron.
This extends our recent result that the shadow vertex algorithm finds paths of polynomial length
(w.r.t. n, m, and 1/δ) between two given vertices of a polyhedron [4].

Our result also complements a recent result due to Eisenbrand and Vempala [6] who have
shown that a certain version of the random edge pivot rule solves linear programs with a running
time that is strongly polynomial in the number of variables n and 1/δ, but independent of the
number m of constraints. Even though the running time of our algorithm depends on m, it
is significantly faster for the important special case of totally unimodular linear programs, for
which 1/δ ≤ n and which have only O(n2) constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases linear optimization, simplex algorithm, shadow vertex method

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.171

1 Introduction

The shadow vertex algorithm is a well-known pivoting rule for the simplex method that has
gained attention in recent years because it was shown to have polynomial running time in
the model of smoothed analysis [8]. Recently we have observed that it can also be used
to find short paths between given vertices of a polyhedron [4]. Here short means that the
path length is O(mn

2

δ2), where n denotes the number of variables, m denotes the number of
constraints, and δ is a parameter of the polyhedron that we will define shortly.

Our result left open the question whether or not it is also possible to solve linear programs
in polynomial time with respect to n, m, and 1/δ by the shadow vertex simplex algorithm.
In this article we resolve this question and introduce a variant of the shadow vertex simplex
algorithm that solves linear programs in strongly polynomial time with respect to these
parameters.

For a given matrix A = [a1, . . . , am]T ∈ Rm×n and vectors b ∈ Rm and c0 ∈ Rn our goal
is to solve the linear program max{c0

Tx |Ax ≤ b}. We assume without loss of generality
that ‖c0‖ = 1 and ‖ai‖ = 1 for every row ai of the constraint matrix.

I Definition 1. The matrix A satisfies the δ-distance property if the following condi-
tion holds: For any I ⊆ {1, . . . ,m} and any j ∈ {1, . . . ,m}, if aj /∈ span{ai | i ∈ I}

∗ This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

© Tobias Brunsch, Anna Großwendt, and Heiko Röglin;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 171–183

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.171
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

172 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

then dist(aj , span{ai | i ∈ I}) ≥ δ. In other words, if aj does not lie in the subspace spanned
by the ai, i ∈ I, then its distance to this subspace is at least δ.

We present a variant of the shadow vertex simplex algorithm that solves linear programs
in strongly polynomial time with respect to n, m, and 1/δ, where δ denotes the largest δ′ for
which the constraint matrix of the linear program satisfies the δ′-distance property. (In the
following theorems, we assume m ≥ n. If this is not the case, we use a method described
in [3] to add irrelevant constraints so that A has rank n. Hence, for instances that have fewer
constraints than variables, the parameter m should be replaced by n in all bounds.)

I Theorem 2. There exists a randomized variant of the shadow vertex simplex algorithm
(described in Section 2) that solves linear programs with n variables and m constraints
satisfying the δ-distance property using O

(
mn3

δ2 · log
(1
δ

))
pivots in expectation if a basic

feasible solution is given. A basic feasible solution can be found using O
(
m5

δ2 · log
(1
δ

))
pivots

in expectation.

We stress that the algorithm can be implemented without knowing the parameter δ. From the
theorem it follows that the running time of the algorithm is strongly polynomial with respect
to the number n of variables, the number m of constraints, and 1/δ because every pivot can
be performed in time O(mn) in the arithmetic model of computation (see Section 2.2).1

Let A ∈ Zm×n be an integer matrix and let A′ ∈ Rm×n be the matrix that arises
from A by scaling each row such that its norm equals 1. If ∆ denotes an upper bound for
the absolute value of any sub-determinant of A, then A′ satisfies the δ-distance property
for δ = 1/(∆2n) [4]. For such matrices A Phase 1 of the simplex method can be implemented
more efficiently and we obtain the following result.

I Theorem 3. For integer matrices A ∈ Zm×n, there exists a randomized variant of the
shadow vertex simplex algorithm (described in Section 2) that solves linear programs with
n variables and m constraints using O

(
mn5∆4 log(∆ + 1)

)
pivots in expectation if a basic

feasible solution is given, where ∆ denotes an upper bound for the absolute value of any
sub-determinant of A. A basic feasible solution can be found using O

(
m6∆4 log(∆ + 1)

)
pivots in expectation.

Theorem 3 implies in particular that totally unimodular linear programs can be solved
by our algorithm with O

(
mn5) pivots in expectation if a basic feasible solution is given and

with O
(
m6) pivots in expectation otherwise.

Besides totally unimodular matrices there are also other classes of matrices for which 1/δ
is polynomially bounded in n. Eisenbrand and Vempala [6] observed, for example, that δ =
Ω(1/

√
n) for edge-node incidence matrices of undirected graphs with n vertices. One can

also argue that δ can be interpreted as a condition number of the matrix A in the following
sense: If 1/δ is large then there must be an (n× n)-submatrix of A of rank n that is almost
singular.

1.1 Related Work
Shadow vertex simplex algorithm

We will briefly explain the geometric intuition behind the shadow vertex simplex algorithm.
For a complete and more formal description, we refer the reader to [2] or [8]. Let us consider

1 By strongly polynomial with respect to n, m, and 1/δ we mean that the number of steps in the arithmetic
model of computation is bounded polynomially in n, m, and 1/δ and the size of the numbers occurring
during the algorithm is polynomially bounded in the encoding size of the input.

T. Brunsch, A. Großwendt, and H. Röglin 173

the linear program max{c0
Tx |Ax ≤ b} and let P = {x ∈ Rn |Ax ≤ b} denote the polyhedron

of feasible solutions. Assume that an initial vertex x1 of P is known and assume, for the
sake of simplicity, that there is a unique optimal vertex x? of P that maximizes the objective
function c0

Tx. The shadow vertex pivot rule first computes a vector w ∈ Rn such that the
vertex x1 minimizes the objective function wTx subject to x ∈ P . Again for the sake of
simplicity, let us assume that the vectors c0 and w are linearly independent.

In the second step, the polyhedron P is projected onto the plane spanned by the vectors c0
and w. The resulting projection is a (possibly open) polygon P ′ and one can show that
the projections of both the initial vertex x1 and the optimal vertex x? are vertices of this
polygon. Additionally, every edge between two vertices x and y of P ′ corresponds to an
edge of P between two vertices that are projected onto x and y, respectively. Due to these
properties a path from the projection of x1 to the projection of x? along the edges of P ′
corresponds to a path from x1 to x? along the edges of P .

This way, the problem of finding a path from x1 to x? on the polyhedron P is reduced to
finding a path between two vertices of a polygon. There are at most two such paths and the
shadow vertex pivot rule chooses the one along which the objective c0

Tx improves.

Finding short paths

In [4] we considered the problem of finding a short path between two given vertices x1 and x2
of the polyhedron P along the edges of P . Our algorithm is the following variant of the shadow
vertex algorithm: Choose two vectors w1, w2 ∈ Rn such that x1 uniquely minimizes w1

Tx

subject to x ∈ P and x2 uniquely maximizes w2
Tx subject to x ∈ P . Then project the

polyhedron P onto the plane spanned by w1 and w2 in order to obtain a polygon P ′. Let us
call the projection π. By the same arguments as above, it follows that π(x1) and π(x2) are
vertices of P ′ and that a path from π(x1) to π(x2) along the edges of P ′ can be translated
into a path from x1 to x2 along the edges of P . Hence, it suffices to compute such a path to
solve the problem. Again computing such a path is easy because P ′ is a two-dimensional
polygon.

The vectors w1 and w2 are not uniquely determined, but they can be chosen from cones
that are determined by the vertices x1 and x2 and the polyhedron P . We proved in [4] that
the expected path length is O(mn

2

δ2) if w1 and w2 are chosen randomly from these cones. For
totally unimodular matrices this implies that the diameter of the polyhedron is bounded
by O(mn4), which improved a previous result by Dyer and Frieze [5] who showed that for
this special case paths of length O(m3n16 log(mn)) can be computed efficiently.

Additionally, Bonifas et al. [1] proved that in a polyhedron defined by an integer matrix A
between any pair of vertices there exists a path of length O(∆2n4 log(n∆)) where ∆ is the
largest absolute value of any sub-determinant of A. For the special case that A is a totally
unimodular matrix, this bound simplifies to O(n4 log n). Their proof is non-constructive,
however.

Geometric random edge

Eisenbrand and Vempala [6] have presented an algorithm that solves a linear program
max{c0

Tx|Ax ≤ b} in strongly polynomial time with respect to the parameters n and 1/δ.
Remarkably the running time of their algorithm does not depend on the number m of
constraints. Their algorithm is based on a variant of the random edge pivoting rule. The
algorithm performs a random walk on the vertices of the polyhedron whose transition
probabilities are chosen such that it quickly attains a distribution close to its stationary
distribution.

STACS 2015

174 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

In the stationary distribution the random walk is likely at a vertex xc that optimizes an
objective function cTx with ‖c0 − c‖ < δ

2n . The δ-distance property guarantees that xc and
the optimal vertex x? with respect to the objective function c0

Tx lie on a common facet.
This facet is then identified and the algorithm is run again in one dimension lower. This
is repeated at most n times until all facets of the optimal vertex x? are identified. The
number of pivots to identify one facet of x? is proven to be O(n10/δ8). A single pivot can be
performed in polynomial time but determining the right transition probabilities is rather
sophisticated and requires to approximately integrate a certain function over a convex body.

Let us point out that the number of pivots of our algorithm depends on the number m of
constraints. However, Heller showed that for the important special case of totally unimodular
linear programs m = O(n2) [7]. Using this observation we also obtain a bound that depends
polynomially only on n for totally unimodular matrices.

Combinatorial linear programs

Éva Tardos has proved in 1986 that combinatorial linear programs can be solved in strongly
polynomial time [9]. Here combinatorial means that A is an integer matrix whose largest entry
is polynomially bounded in n. Her result implies in particular that totally unimodular linear
programs can be solved in strongly polynomial time, which is also implied by Theorem 3.
However, the proof and the techniques used to prove Theorem 3 are completely different
from those in [9].

1.2 Our Contribution
We replace the random walk in the algorithm of Eisenbrand and Vempala by the shadow
vertex algorithm. Given a vertex x0 of the polyhedron P we choose an objective function wTx

for which x0 is an optimal solution. As in [4] we choose w uniformly at random from the
cone determined by x0. Then we randomly perturb each coefficient in the given objective
function c0

Tx by a small amount. We denote by cTx the perturbed objective function. As
in [4] we prove that the projection of the polyhedron P onto the plane spanned by w and c
has O

(
mn2

δ2

)
edges in expectation. If the perturbation is so small that ‖c0 − c‖ < δ

2n , then
the shadow vertex algorithm yields with O

(
mn2

δ2

)
pivots a solution that has a common facet

with the optimal solution x?. We follow the same approach as Eisenbrand and Vempala and
identify the facets of x? one by one with at most n calls of the shadow vertex algorithm.

The analysis in [4] exploits that the two objective functions possess the same type of
randomness (both are chosen uniformly at random from some cones). This is not the case
anymore because every component of c is chosen independently uniformly at random from
some interval. This changes the analysis significantly and introduces technical difficulties
that we address in this article.

The problem when running the simplex method is that a feasible solution needs to be
given upfront. Usually, such a solution is determined in Phase 1 by solving a modified linear
program with a constraint matrix A′ for which a feasible solution is known and whose optimal
solution is feasible for the linear program one actually wants to solve. There are several
common constructions for this modified linear program, it is, however, not clear how the
parameter δ is affected by modifying the linear program. To solve this problem, Eisenbrand
and Vempala [6] have suggested a method for Phase 1 for which the modified constraint
matrix A′ satisfies the δ-distance property for the same δ as the matrix A. However, their
method is very different from usual textbook methods and needs to solve m different linear
programs to find an initial feasible solution for the given linear program. We show that also

T. Brunsch, A. Großwendt, and H. Röglin 175

one of the usual textbook methods can be applied. We argue that 1/δ increases by a factor
of at most

√
m and that ∆, the absolute value of any sub-determinant of A, does not change

at all in case one considers integer matrices. In this construction, the number of variables
increases from n to n+m.

1.3 Outline and Notation

In the following we assume that we are given a linear program max{c0
Tx |Ax ≤ b} with

vectors b ∈ Rm and c0 ∈ Rn and a matrix A = [a1, . . . , am]T ∈ Rm×n. Moreover, we assume
that ‖c0‖ = ‖ai‖ = 1 for all i ∈ [m], where [m] := {1, . . . ,m} and ‖ · ‖ denotes the Euclidean
norm. This entails no loss of generality since any linear program can be brought into this form
by scaling the objective function and the constraints appropriately. For a vector x ∈ Rn\{0n}
we denote by N (x) = 1

‖x‖ · x the normalization of vector x.
For a vertex v of the polyhedron P = {x ∈ Rn |Ax ≤ b} we call the set of row indices

Bv = {i ∈ {1, . . . ,m} | ai · v = bi} basis of v. Then the normal cone Cv of v is given by the
set

Cv =
{∑
i∈Bv

λiai |λi ≥ 0
}
.

We will describe our algorithm in Section 2.1 where we assume that the linear program
in non-degenerate, that A has full rank n, and that the polyhedron P is bounded. We have
already described in Section 3 of [4] that the linear program can be made non-degenerate by
slightly perturbing the vector b. This does not affect the parameter δ because δ depends
only on the matrix A. In Section 3 we analyze our algorithm and prove Theorem 2. In
the full version of this article [3] we discuss why we can assume that A has full rank and
why P is bounded. There are, of course, textbook methods to transform a linear program
into this form. However, we need to be careful that this transformation does not change δ.
Moreover in [3] we discuss how Phase 1 of the simplex method can be implemented and we
give an alternative definition of δ and discuss some properties of this parameter. Due to
space limitations most proofs are omitted. They can also be found in [3].

2 Algorithm

Given a linear program max{c0
Tx |Ax ≤ b} and a basic feasible solution x0, our algorithm

randomly perturbs each coefficient of the vector c0 by at most 1/φ for some parameter φ to be
determined later. Let us call the resulting vector c. The next step is then to use the shadow
vertex algorithm to compute a path from x0 to a vertex xc which maximizes the function
cTx for x ∈ P . For φ > 2n3/2

δ one can argue that the solution x has a facet in common with
the optimal solution x? of the given linear program with objective function c0

Tx. Then the
algorithm is run again on this facet one dimension lower until all facets that define x? are
identified.

Section 2.1 presents the shadow vertex algorithm, the main building block of our algorithm.
Details of the identification and reduction to an optimal facet are provided in the full version
of this paper. In Section 2.2 we discuss the running time of a single pivot step of the shadow
vertex algorithm.

STACS 2015

176 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

2.1 The Shadow Vertex Method
In this section we assume that we are given a linear program of the form max{c0

Tx |x ∈ P},
where P = {x ∈ Rn |Ax ≤ b} is a bounded polyhedron (i.e., a polytope), and a basic feasible
solution x0 ∈ P . We assume ‖c0‖ = ‖ai‖ = 1 for all rows ai of A. Furthermore, we assume
that the linear program is non-degenerate.

Due to the assumption ‖c0‖ = 1 it holds c0 ∈ [−1, 1]n. Our algorithm slightly perturbs
the given objective function c0

Tx at random. For each component (c0)i of c0 it chooses an
arbitrary interval Ii ⊆ [−1, 1] of length 1/φ with (c0)i ∈ Ii, where φ denotes a parameter
that will be given to the algorithm. Then a random vector c ∈ [−1, 1]n is drawn as follows:
Each component ci of c is chosen independently uniformly at random from the interval Ii.
We denote the resulting random vector by pert(c0, φ). Note that we can bound the norm of
the difference ‖c0 − c‖ between the vectors c0 and c from above by

√
n
φ .

The shadow vertex algorithm is given as Algorithm 1. It is assumed that φ is given to
the algorithm as a parameter. We will discuss later how we can run the algorithm without
knowing this parameter. Let us remark that the Steps 5 and 6 in Algorithm 1 are actually
not executed separately. Instead of computing the whole projection P ′ in advance, the edges
of P ′ are computed on the fly one after another.

Algorithm 1 Shadow Vertex Algorithm
1: Generate a random perturbation c = pert(c0, φ) of c0.
2: Determine n linearly independent rows ukT of A for which ukTx0 = bk.
3: Draw a vector λ ∈ (0, 1]n uniformly at random.
4: Set w = − [u1, . . . , un] · λ.
5: Use the function π : x 7→

(
cTx,wTx

)
to project P onto the Euclidean plane and obtain

the shadow vertex polygon P ′ = π(P).
6: Walk from π(x0) along the edges of P ′ in increasing direction of the first coordinate until

a rightmost vertex x̃c of P ′ is found.
7: Output the vertex xc of P that is projected onto x̃c.

Note that

‖w‖ ≤
n∑
k=1

λk · ‖uk‖ ≤
n∑
k=1

λk ≤ n,

where the second inequality follows because all rows of A are assumed to have norm 1.
The Shadow Vertex Algorithm yields a path from the vertex x0 to a vertex xc that

is optimal for the linear program max{cTx |x ∈ P} where P = {x ∈ Rn |Ax ≤ b}. The
following theorem (whose proof can be found in Section 3) bounds the expected length of
this path, i.e., the number of pivots.

I Theorem 4. For any φ ≥
√
n the expected number of edges on the path output by

Algorithm 1 is O
(
mn2

δ2 + m
√
nφ
δ

)
.

Since ‖c0 − c‖ ≤
√
n
φ choosing φ > 2n3/2

δ suffices to ensure ‖c0 − c‖ < δ
2n . This implies

(see [3]) that, for such a choice of φ, the vertex xc has a facet in common with the optimal
solution of the linear program max{c0

Tx |x ∈ P} and we can reduce the dimension of the
linear program as discussed in [3]. This step is repeated at most n times. It is important that
we can start each repetition with a known feasible solution because the transformation in [3]
maps the optimal solution of the linear program of repetition i onto a feasible solution with

T. Brunsch, A. Großwendt, and H. Röglin 177

which repetition i+1 can be initialized. Together with Theorem 4 this implies that an optimal
solution of the linear program can be found by performing in expectation O

(
mn3

δ2 + mn3/2φ
δ

)
pivots if a basic feasible solution x0 and the right choice of φ are given. We will refer to this
algorithm as repeated shadow vertex algorithm.

Since δ is not known to the algorithm, the right choice for φ cannot easily be computed.
Instead we will try values for φ until an optimal solution is found. For i ∈ N let φi = 2in3/2.
First we run the repeated shadow vertex algorithm with φ = φ0 and check whether the
returned solution is an optimal solution for the linear program max{c0

Tx |x ∈ P}. If this
is not the case, we run the repeated shadow vertex algorithm with φ = φ1, and so on. We
continue until an optimal solution is found. For φ = φi? with i? =

⌈
log2

(
1/δ
)⌉

+ 2 this is
the case because φi? > 2n3/2

δ .
Since φi? ≤ 8n3/2

δ , in accordance with Theorem 4, each of the at most i? = O(log(1/δ))
calls of the repeated shadow vertex algorithm uses in expectation

O

(
mn3

δ2 + mn3/2φi?

δ

)
= O

(
mn3

δ2

)
.

pivots. Together this proves the first part of Theorem 2. The second part follows from [3],
where it is proven that Phase 1 can be realized with increasing 1/δ by at most

√
m and

increasing the number of variables from n to n+m ≤ 2m. This implies that the expected
number of pivots of each call of the repeated shadow vertex algorithm in Phase 1 is O(m(n+
m)3√m2

/δ2) = O(m5/δ2). Since 1/δ can increase by a factor of
√
m, the argument above

yields that we need to run the repeated shadow vertex algorithm at most i? = O(log(
√
m/δ))

times in Phase 1 to find a basic feasible solution. By setting φi = 2i
√
m(n+m)3/2 instead

of φi = 2i(n+m)3/2 this number can be reduced to i? = O(log(1/δ)) again.
Theorem 3 follows from Theorem 2 using the following fact from [4]: Let A ∈ Zm×n be

an integer matrix and let A′ ∈ Rm×n be the matrix that arises from A by scaling each row
such that its norm equals 1. If ∆ denotes an upper bound for the absolute value of any
sub-determinant of A, then A′ satisfies the δ-distance property for δ = 1/(∆2n). Additionally
in [3] it is proven that Phase 1 can be realized without increasing ∆ but with increasing the
number of variables from n to n+m ≤ 2m. Substituting 1/δ = ∆2n in Theorem 2 almost
yields Theorem 3 except for a factor O(log(∆2n)) instead of O(log(∆ + 1)). This factor
results from the number i? of calls of the repeated shadow vertex algorithm. The desired
factor of O(log(∆ + 1)) can be achieved by setting φi = 2in5/2 if a basic feasible solution is
known and φi = 2i(n+m)5/2 in Phase 1.

2.2 Running Time of the Repeated Shadow Vertex Algorithm
So far we have only discussed the number of pivots. Let us now calculate the actual running
time of our algorithm. For an initial basic feasible solution x0 the repeated shadow vertex
algorithm repeats the following three steps until an optimal solution is found. Initially
let P ′ = P .

Step 1: Run the shadow vertex algorithm for the linear program max{cTx |x ∈ P ′}, where
c = pert(c0, φ). We will denote this linear program by LP ′.

Step 2: Let xc denote the returned vertex in Step 1, which is optimal for the objective
function cTx. Identify an element a′i of xc that is in common with the optimal basis.

Step 3: Calculate an orthogonal matrix Q ∈ Rn×n that rotates a′i into the first unit vector
e1 and set LP ′ to the projection of the current LP ′ onto the orthogonal complement.
Let P ′ denote the polyhedron of feasible solutions of LP ′.

STACS 2015

178 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

First note that the three steps are repeated at most n times during the algorithm. In
Step 1 the shadow vertex algorithm is run once. Step 1 to Step 4 of Algorithm 1 can be
performed in time O(m) as we assumed P to be non-degenerate (this implies P ′ to be
non-degenerate in each further step). Step 5 and Step 6 can be implemented with strongly
polynomial running time in a tableau form, described in [2]. The tableau can be set up
in time O((m − d)d3) = O(mn3) where d is the dimension of P ′. By Theorem 1 of [2] we
can identify for a vertex on a path the row which leaves the basis and the row which is
added to the basis in order to move to the next vertex in time O(m) using the tableau.
After that, the tableau has to be updated. This can be done in O((m − d)d) = O(mn)
steps. Using this and Theorem 4 we can compute the path from x0 to xc in expected time
O
(
mn3 + mn ·

(
mn2

δ2 + m
√
nφ
δ

))
= O

(
m2n3

δ2 + m2n3/2φ
δ

)
. Using that φ ≤ 8n3/2

δ , as discussed
above, yields a running time of O

(
m2n3

δ2

)
.

Once we have calculated the basis of xc we can easily compute the element ai that is also
an element of the optimal basis. Assume the rows a′1, . . . , a′n are the basis of xc. Eisenbrand
and Vempala discuss in [6] that we can solve the system of linear equations [a′1, . . . , a′n]µ = c

and choose the row for which the coefficient µi is maximal. Then a′i is part of the optimal
basis. As a consequence, Step 2 can be performed in time O(n3). Moreover solving a system
of linear equations is possible in strongly polynomial time using Gaussian elimination.

In Step 3, we compute an orthogonal matrix Q ∈ Rd×d such that e1Q = ai. Since Q
is orthogonal we obtain e1 = aiQ

T and thus, the first row of Q is given by ai. Hence,
it is sufficient to compute an orthonormal basis including ai. This is possible in strongly
polynomial time O(d3) = O(n3) using the Gram-Schmidt process.

Since all Steps are repeated in this order at most n times we obtain a running time
O(m

2n4

δ2) for the repeated shadow vertex algorithm.

I Theorem 5. The repeated shadow vertex algorithm has a running time of O(m
2n4

δ2).

The entries of both c and λ in Algorithm 1 are continuous random variables. In practice
it is, however, more realistic to assume that we can draw a finite number of random
bits. In the full version of this paper we show that our algorithm only needs to draw
poly(logm,n, log(1/δ)) random bits in order to obtain the expected running time stated in
Theorem 2 if δ (or a good lower bound for it) is known. However, if the parameter δ is not
known upfront and only discrete random variables with a finite precision can be drawn, we
have to modify the shadow vertex algorithm. This will give us an additional factor of O(n)
in the expected running time.

3 Analysis of the Shadow Vertex Algorithm

For given linear functions L1 : Rn → R and L2 : Rn → R we denote by π = πL1,L2 the
function π : Rn → R2, given by π(x) = (L1(x), L2(x)). Note that n-dimensional vectors
can be treated as linear functions. By P ′ = P ′L1,L2

we denote the projection π(P) of the
polytope P onto the Euclidean plane, and by R = RL1,L2 we denote the path from the
bottommost vertex of P ′ to the rightmost vertex of P ′ along the edges of the lower envelope
of P ′.

Our goal is to bound the expected number of edges of the path R = Rc,w, which is
random since c and w are random. Each edge of R corresponds to a slope in (0,∞). These
slopes are pairwise distinct with probability one (see Lemma 7). Hence, the number of edges
of R equals the number of distinct slopes of R.

T. Brunsch, A. Großwendt, and H. Röglin 179

π(x0)

P ′

pr

≤ t
≤ t

> t

> t

> t

p?

p̂

c

w

Figure 1 Slopes of the vertices of R.

I Definition 6. For a real ε > 0 let Fε denote the event that there are three pairwise distinct
vertices z1, z2, z3 of P such that z1 and z3 are neighbors of z2 and such that∣∣∣∣wT · (z2 − z1)

cT · (z2 − z1) −
wT · (z3 − z2)
cT · (z3 − z2)

∣∣∣∣ ≤ ε .
Note that if event Fε does not occur, then all slopes of R differ by more than ε. Particularly,

all slopes are pairwise distinct. First of all we show that event Fε is very unlikely to occur
if ε is chosen sufficiently small. The proof of the following lemma is almost identical to the
corresponding proof in [4] except that we need to adapt it to the different random model of c.

I Lemma 7. The probability of event Fε tends to 0 for ε→ 0.

Let p be a vertex of R, but not the bottommost vertex π(x0). We call the slope s of the
edge incident to p to the left of p the slope of p. As a convention, we set the slope of π(x0)
to 0 which is smaller than the slope of any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p? be the rightmost vertex of R whose slope is at most t,
and let p̂ be the right neighbor of p?, i.e., p̂ is the leftmost vertex of R whose slope exceeds t
(see Figure 1). Let x? and x̂ be the neighboring vertices of P with π(x?) = p? and π(x̂) = p̂.
Now let i = i(x?, x̂) ∈ [m] be the index for which aiTx? = bi and for which x̂ is the (unique)
neighbor x of x? for which aiTx < bi. This index is unique due to the non-degeneracy of the
polytope P . For an arbitrary real γ ≥ 0 we consider the vector w̃ := w − γ · ai.

I Lemma 8 (Lemma 9 of [4]). Let π̃ = πc,w̃ and let R̃ = Rc,w̃ be the path from π̃(x0) to the
rightmost vertex p̃r of the projection π̃(P) of polytope P . Furthermore, let p̃? be the rightmost
vertex of R̃ whose slope does not exceed t. Then p̃? = π̃(x?).

Let us reformulate the statement of Lemma 8 as follows: The vertex p̃? is defined for the
path R̃ of polygon π̃(R) with the same rules as used to define the vertex p? of the original
path R of polygon π(P). Even though R and R̃ can be very different in shape, both vertices,
p? and p̃?, correspond to the same solution x? in the polytope P , that is, p? = π(x?) and
p̃? = π̃(x?).

Lemma 8 holds for any vector w̃ on the ray ~r = {w − γ · ai | γ ≥ 0}. As ‖w‖ ≤ n (see
Section 2.1), we have w ∈ [−n, n]n. Hence, ray ~r intersects the boundary of [−n, n]n in a
unique point z. We choose w̃ = w̃(w, i) := z and obtain the following result.

STACS 2015

180 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

I Corollary 9. Let π̃ = πc,w̃(w,i) and let p̃? be the rightmost vertex of path R̃ = Rc,w̃(w,i)
whose slope does not exceed t. Then p̃? = π̃(x?).

Note that Corollary 9 only holds for the right choice of index i = i(x?, x̂). However, the
vector w̃(w, i) can be defined for any vector w ∈ [−n, n]n and any index i ∈ [m]. In the
remainder, index i is an arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real ε > 0 and
that depends on c and w.

I Definition 10. For an index i ∈ [m] and a real t ≥ 0 let p̃? be the rightmost vertex of
R̃ = Rc,w̃(w,i) whose slope does not exceed t and let y? be the corresponding vertex of P .
For a real ε > 0 we denote by Ei,t,ε the event that the conditions

ai
Ty? = bi and

wT(ŷ−y?)
cT(ŷ−y?) ∈ (t, t+ ε], where ŷ is the neighbor y of y? for which aiTy < bi,

are met. Note that the vertex ŷ always exists and that it is unique since the polytope P is
non-degenerate.

Let us remark that the vertices y? and ŷ, which depend on the index i, equal x? and x̂ if
we choose i = i(x?, x̂). For other choices of i, this is, in general, not the case.

Observe that all possible realizations of w from the line L := {w + x · ai |x ∈ R} are
mapped to the same vector w̃(w, i). Consequently, if c is fixed and if we only consider
realizations of λ for which w ∈ L, then vertex p̃? and, hence, vertex y? from Definition 10 are
already determined. However, since w is not completely specified, we have some randomness
left for event Ei,t,ε to occur. This allows us to bound the probability of event Ei,t,ε from
above (see proof of Lemma 12). The next lemma shows why this probability matters.

I Lemma 11 (Lemma 12 from [4]). For any t ≥ 0 and ε > 0 let At,ε denote the event that
the path R = Rc,w has a slope in (t, t+ ε]. Then, At,ε ⊆

⋃m
i=1 Ei,t,ε.

With Lemma 11 we can now bound the probability of event At,ε. The proof of the
next lemma is almost identical to the proof of Lemma 13 from [4]. The only differences to
Lemma 13 from [4] are that we can now use the stronger upper bound ‖c‖ ≤ 2 instead of
‖c‖ ≤ n and that we have more carefully analyzed the case of large t.

I Lemma 12. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event At,ε is

bounded by

Pr [At,ε] ≤
2mn2ε

max
{
n
2 , t
}
· δ2 ≤

4mnε
δ2 .

I Lemma 13. For any interval I let XI denote the number of slopes of R = Rc,w that lie in
the interval I. Then, for any φ ≥

√
n,

E
[
X(0,n]

]
≤ 4mn2

δ2

Proof. For a real ε > 0 let Fε denote the event from Definition 6. Recall that all slopes
of R differ by more than ε if Fε does not occur. For t ∈ R and ε > 0 let Zt,ε be the random
variable that indicates whether R has a slope in the interval (t, t+ ε] or not, i.e., Zt,ε = 1
if X(t,t+ε] > 0 and Zt,ε = 0 if X(t,t+ε] = 0.

Let k ≥ 1 be an arbitrary integer. We subdivide the interval (0, n] into k subintervals.
If none of them contains more than one slope then the number X(0,n] of slopes in the

T. Brunsch, A. Großwendt, and H. Röglin 181

interval (0, n] equals the number of subintervals for which the corresponding Z-variable
equals 1. Formally

X(0,n] ≤

{∑k−1
i=0 Zi·nk ,

n
k

if Fn
k
does not occur ,

mn otherwise .

This is true because
(
m
n−1
)
≤ mn is a worst-case bound on the number of edges of P and,

hence, of the number of slopes of R. Consequently,

E
[
X(0,n]

]
≤
k−1∑
i=0

E
[
Zi·nk ,

n
k

]
+ Pr

[
Fn

k

]
·mn =

k−1∑
i=0

Pr
[
Ai·nk ,

n
k

]
+ Pr

[
Fn

k

]
·mn

≤
k−1∑
i=0

2mn2 · nk
n
2 δ

2 + Pr
[
Fn

k

]
·mn = 4mn2

δ2 + Pr
[
Fn

k

]
·mn .

The second inequality stems from Lemma 12. Now the lemma follows because the bound on
E
[
X(0,n]

]
holds for any integer k ≥ 1 and since Pr [Fε]→ 0 for ε→ 0 in accordance with

Lemma 7. J

In [4] we only computed an upper bound for the expected value of X(0,1]. Then we argued
that the same upper bound also holds for the expected value of X(1,∞). In order to see this,
we simply exchanged the order of the objective functions in the projection π. Then any
edge with a slope of s > 1 becomes an edge with slope 1

s < 1. Hence the number of slopes
in [1,∞) equals the number of slopes in (0, 1] in the scenario in which the objective functions
are exchanged. Due to the symmetry in the choice of the objective functions in [4] the same
analysis as before applies also to that scenario.

We will now also exchange the order of the objective functions wTx and cTx in the
projection. Since these objective functions are not anymore generated by the same random
experiment, a simple argument as in [4] is not possible anymore. Instead we have to go
through the whole analysis again. We will use the superscript −1 to indicate that we are
referring to the scenario in which the order of the objective functions is exchanged. In
particular, we consider the events F−1

ε , A−1
t,ε , and E−1

i,t,ε that are defined analogously to
their counterparts without superscript except that the order of the objective functions is
exchanged. The proof of the following lemma is analogous to the proof of Lemma 7.

I Lemma 14. The probability of event F−1
ε tends to 0 for ε→ 0.

I Lemma 15. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event A−1

t,ε is
bounded by

Pr
[
A−1
t,ε

]
≤ 2mn3/2εφ

max
{

1, nt2
}
· δ
≤ 2mn3/2εφ

δ
.

I Lemma 16. For any interval I let X−1
I denote the number of slopes of Rw,c that lie in

the interval I. Then

E
[
X−1

(0,1/n]

]
≤ 2m

√
nφ

δ
.

Proof. As in the proof of Lemma 13 we define for t ∈ R and ε > 0 the random variable Z−1
t,ε

that indicates whether Rw,c has a slope in the interval (t, t+ ε] or not. For any integer k ≥ 1

STACS 2015

182 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

we obtain

E
[
X−1(

0, 1
n

]] ≤ k−1∑
i=0

E
[
Z−1
i· 1

kn ,
1

kn

]
+ Pr

[
F−1

1
kn

]
·mn

=
k−1∑
i=0

Pr
[
A−1
i· 1

kn ,
1

kn

]
+ Pr

[
F−1

1
kn

]
·mn

≤
k−1∑
i=0

2mn3/2φ

knδ
+ Pr

[
F−1

1
k2`√

n

]
·mn = 2m

√
nφ

δ
+ Pr

[
F−1

1
k2`√

n

]
·mn .

The second inequality stems from Lemma 15. Now the lemma follows because the bound
holds for any integer k ≥ 1 and Pr

[
F−1
ε

]
→ 0 for ε→ 0 in accordance with Lemma 14. J

The following corollary directly implies Theorem 4.

I Corollary 17. The expected number of slopes of R = Rc,w is

E
[
X(0,∞)

]
= 4mn2

δ2 + 2m
√
nφ

δ
.

Proof. We divide the interval (0,∞) into the subintervals (0, n] and (n,∞). Using Lemma 13,
Lemma 16, and linearity of expectation we obtain

E
[
X(0,∞)

]
= E

[
X(0,n]

]
+ E

[
X(n,∞)

]
= E

[
X(0,n]

]
+ E

[
X−1(

0, 1
n

]]
≤ 4mn2

δ2 + 2m
√
nφ

δ
.

In the second step we have exploited that by definition X(a,b) = X−1
(1/b,1/a) for any inter-

val (a, b). J

4 Conclusions

We have shown that the shadow vertex algorithm can be used to solve linear programs
possessing the δ-distance property in strongly polynomial time with respect to n, m, and 1/δ.
The bound we obtained in Theorem 2 depends quadratically on 1/δ. Roughly speaking, one
term 1/δ is due to the fact that the smaller δ the less random is the objective function wTx.
This term could in fact be replaced by 1/δ(B) where B is the matrix that contains only the
rows that are tight for x. The other term 1/δ is due to our application of the principle of
deferred decisions in the proof of Lemma 12. The smaller δ the less random is w(Z).

For packing linear programs, in which all coefficients of A and b are non-negative and
one has x ≥ 0 as additional constraint, it is, for example, clear that x = 0n is a basic feasible
solution. That is, one does not need to run Phase 1. Furthermore as in this solution without
loss of generality exactly the constraints x ≥ 0 are tight, δ(B) = 1 and one occurrence of 1/δ
in Theorem 2 can be removed.

Acknowledgments The authors would like to thank Friedrich Eisenbrand and Santosh
Vempala for providing detailed explanations of their paper and the anonymous reviewers for
valuable suggestions how to improve the presentation.

T. Brunsch, A. Großwendt, and H. Röglin 183

References
1 Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Martin

Niemeier. On sub-determinants and the diameter of polyhedra. In Proceedings of the
28th ACM Symposium on Computational Geometry (SoCG), pages 357–362, 2012.

2 Karl Heinz Borgwardt. A probabilistic analysis of the simplex method. Springer-Verlag New
York, Inc., New York, NY, USA, 1986.

3 Tobias Brunsch, Anna Großwendt, and Heiko Röglin. Solving totally unimodular LPs with
the shadow vertex algorithm. CoRR, abs/1412.5381, 2014.

4 Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the shadow vertex
algorithm. In Proceedings of the 40th International Colloquium on Automata, Languages
and Programming (ICALP), pages 279–290, 2013.

5 Martin E. Dyer and Alan M. Frieze. Random walks, totally unimodular matrices, and a
randomised dual simplex algorithm. Mathematical Programming, 64:1–16, 1994.

6 Friedrich Eisenbrand and Santosh Vempala. Geometric random edge. CoRR, abs/1404.1568,
2014.

7 I. Heller. On linear systems with integral valued solutions. Pacific Journal of Mathematics,
7(3):1351–1364, 1957.

8 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
2004.

9 Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Op-
erations Research, 34(2):250–256, 1986.

STACS 2015

Improved Local Search for Geometric Hitting Set∗

Norbert Bus1, Shashwat Garg2, Nabil H. Mustafa3, and
Saurabh Ray4

1 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge.
busn@esiee.fr

2 Indian Institute of Technology, Delhi.
garg.shashwat@gmail.com

3 Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, Equipe
A3SI, ESIEE Paris.
mustafan@esiee.fr

4 Computer Science Department, New York University, Abu Dhabi.
saurabh.ray@nyu.edu

Abstract
Over the past several decades there has been steady progress towards the goal of polynomial-time
approximation schemes (PTAS) for fundamental geometric combinatorial optimization problems.
A foremost example is the geometric hitting set problem: given a set P of points and a set D
of geometric objects, compute the minimum-sized subset of P that hits all objects in D. For
the case where D is a set of disks in the plane, a PTAS was finally achieved in 2010, with a
surprisingly simple algorithm based on local-search. Since then, local-search has turned out to
be a powerful algorithmic approach towards achieving good approximation ratios for geometric
problems (for geometric independent-set problem, for dominating sets, for the terrain guarding
problem and several others).

Unfortunately all these algorithms have the same limitation: local search is able to give
a PTAS, but with large running times. That leaves open the question of whether a better
understanding – both combinatorial and algorithmic – of local search and the problem can give
a better approximation ratio in a more reasonable time. In this paper, we investigate this
question for hitting sets for disks in the plane. We present tight approximation bounds for (3, 2)-
local search and give an (8 + ε)-approximation algorithm with expected running time Õ(n2.34);
the previous-best result achieving a similar approximation ratio gave a 10-approximation in
time O(n15) – that too just for unit disks. The techniques and ideas generalize to (4, 3) local
search. Furthermore, as mentioned earlier, local-search has been used for several other geometric
optimization problems; for all these problems our results show that (3, 2) local search gives an
8-approximation and no better1. Similarly (4, 3)-local search gives a 5-approximation for all these
problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases hitting sets, Delaunay triangulation, local search, disks, geometric al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.184

∗ The work of Nabil H. Mustafa in this paper has been partially supported by the grant ANR SAGA
(JCJC-14-CE25-0016-01).

1 This is assuming the use of the standard framework. Improvement of the approximation factor by using
additional properties specific to the problem may be possible.

© Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 184–196

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.184
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Bus, S. Garg, N.H. Mustafa, and S. Ray 185

1 Introduction

The minimum hitting set problem is one the most fundamental combinatorial optimization
problems: given a range space (P,D) consisting of a set P and a set D of subsets of P
called the ranges, the task is to compute the smallest subset S ⊆ P that has a non-empty
intersection with each of the ranges in D. If there are no restrictions on the set system
D, then it is known that it is NP-hard to approximate the minimum hitting set within a
logarithmic factor of the optimal [24]. A natural occurrence of the hitting set problem occurs
when the range space D is derived from geometry. Unfortunately, for most natural geometric
range spaces, computing the minimum-sized hitting set remains NP-hard. For example,
even the (relatively) simple case where D is a set of unit disks in the plane is strongly
NP-hard [18]. Therefore fast algorithms for computing provably good approximate hitting
sets for geometric range spaces have been intensively studied for the past three decades.
Since there is little hope of computing the minimum-sized hitting set for general geometric
problems in polynomial time, effort has turned to approximating the optimal solution.

In this paper we will consider a fundamental case for geometric hitting sets, where the
geometric objects are arbitrary radius disks in the plane (or halfspaces in R3). This has been
the subject of a long line of investigation, for more than two decades. The case when all the
disks have the same radius is easier, and has been studied in a series of works [9, 6, 10, 12, 13].
The problem becomes harder when the disk radii can be arbitrary. A first break-through
for this problem came in 1994, when Bronnimann and Goodrich [8] proved the following
interesting connection between the hitting-set problem, and ε-nets2: let (P,D) be a range-
space for which we want to compute a minimum hitting set. If one can compute an ε-net of
size c/ε for the ε-net problem for (P,D) in polynomial time, then one can compute a hitting
set of size at most c · opt for (P,D), where opt is the size of the optimal (smallest) hitting
set, in polynomial time. A shorter, simpler proof was given by Even et al. [15]. Recently,
Agarwal and Pan [5] presented an algorithm that can compute hitting-sets for disks from
ε-nets in time O(n log6 n).

Local search. There is a fundamental limitation of the above technique: it cannot give
better than constant-factor approximations. The reason is that the technique reduces the
problem of computing a minimum size hitting set to the problem of computing a minimum
sized ε-net. And it is known that for some constant c ≥ 2, there do not exist ε-nets of size
smaller than c/ε – even for halfspaces in 2D. This limitation was the main barrier towards
better quality algorithms until the usefulness of local search algorithms was introduced.

There has been recent progress in breaking or improving the constant-approximation
barriers for many geometric problems using very similar applications of local-search; e.g.,
independent set of non-piercing rectangles [4], independent set of pseudodisks [11], dominating
sets in disk intersection graphs [17], terrain guarding problem [19] and several other problems.
For the hitting set problem on (P,D), local-search works as follows: start with any hitting
set S ⊆ P , and repeatedly decrease the size of S, if possible, by replacing k points of S with
< k points of P \ S. Call such an algorithm a (k, k − 1)-local search algorithm. Mustafa and
Ray [22] showed that a (k, k − 1)-local search algorithm for the hitting set problem gives a
(1+c/

√
k)-approximation, for a fixed constant c, when the ranges are disks, or more generally,

pseudo-disks in R2. The running time of their algorithm to compute a (1 + ε)-approximation
is O(nO(1/ε2)).

2 Given (P,D), an ε-net is a subset S ⊆ P such that D ∩ S 6= ∅ for all D ∈ D with |D ∩ P | ≥ εn.

STACS 2015

186 Improved Local Search for Geometric Hitting Set

Table 1 Summary of previous work.

Congruent disks
Quality Time

Călinsecu et al. [9] 108 O(n2)
Ambhul et al. [6] 72 O(n2)
Carmi et al. [10] 38 O(n6)
Claude et al. [12] 22 O(n6)
Fraser et al. [13] 18 O(n2)
Acharyya et al. [1] (9 + ε) O(n3+12/ε)

Arbitrary disks
Quality Time

Bronniman et al. [8] O(1) O(n3)
Mustafa et al. [22] (1 + ε) nO(1/ε2)

Agarwal et al. [3] O(log n) Õ(n)
Agarwal et al. [5] O(1) Õ(n)
This paper 8 + ε Õ(n7/3)
This paper 5 + ε Õ(n3.75)

Our Contributions. Both these approaches have to be evaluated on the questions of com-
putational efficiency as well as approximation quality. In spite of all the progress, there
remains a large gap between quality and efficiency – mainly due to the ugly trade-offs
between running times and approximation factors; see Table 1 for the current state of
the art. The algorithm of Agarwal and Pan [5] that rounds via ε-nets gives an Õ(n)-time
algorithm, but the constant in the approximation depends on the constant in the size of
ε-nets, which is large. For disks in the plane, the current best size of ε-net is at least 40/ε [23],
yielding at best a 40-approximation algorithm. At the other end, the (k, k − 1)-local search
algorithm [22] can compute solutions arbitrarily close to the optimal, but it is extremely
inefficient, even for reasonable approximation factors. For example, it takes time O(n66)
to compute a 3-approximation [16]. Furthermore, note that any attempts at progress on
improving local search must take into account that the hitting set problem for even unit
disks is W [1]-hard [20]; so it is unlikely that algorithms exist that do not have a dependency
on 1/ε in the exponent.

Therefore in this paper we undertake a closer study of (k, k − 1)-local search for small
values of k. Table 1 states our contributions. As our first result, we determine the exact
limits of (3, 2)-local search:
I Theorem (Proof in Section 2). A (3, 2)-local search algorithm returns a 8-approximation to
the minimum hitting set. Furthermore, there exist a set P of points and a set D of disks
where (3, 2) local-search does not return hitting-sets of size less than 8 factor of the optimal
hitting set.

Remark: In fact this immediately implies improved bounds for many other local search
algorithms; e.g., it implies that the (3, 2)-local search gives 8-approximation to the independent
set of pseudodisks, dominating sets in disk intersection graphs, terrain guarding problem.
We leave the details of these further applications to the full paper.

A straightforward algorithm for (3, 2)-local search proceeds as follows: each (3, 2) im-
provement step tries all O(n5) 5-tuples, and for each checks if it is indeed an improvement in
time O(n). The total number of steps for the whole algorithm can be O(n), giving a O(n7)
naive running time. We show how to perform this search more efficiently:
I Theorem (Proof in Section 3). A (3, 2)-local search can be performed in expected time
O(n2.34).

In fact, these techniques can be generalized for larger values of k. For example, it can be
shown that (4, 3)-local search gives a 5-approximation in time Õ(n3.75). As the details are
similar, we leave the proof for the full version of the paper.

N. Bus, S. Garg, N.H. Mustafa, and S. Ray 187

2 Analysis of Quality for Local Search

Let R be a region in the plane. We say that a point p ∈ R2 hits R if p ∈ R, and that a set of
points X hits a set of regions R if each region in R is hit by some point in X. We denote
by H(P,R) the set system (P, {R ∩ P : R ∈ R}) induced by P and R. A hitting set for
H(P,R) is a subset of P which hits R. A hitting set of the smallest cardinality is called the
minimum hitting set and its size is denoted Opt(P,R) (or simply Opt when it is clear from
the context). From now onwards, P denotes a set of points and D denotes a set of (circular)
disks in the plane. Our goal is to compute a hitting set for H(P,D) of a small size efficiently.

The analysis of the approximation factor achieved by a (k, k − 1)-local search depends on
the following theorem on planar bipartite graphs.

I Theorem 1. [11, 22] Let G = (R,B,E) be a bipartite planar graph on red and blue vertex
sets R and B, such that for every subset B′ ⊆ B of size at most k, where k is a large enough
number, |NG(B′)| ≥ |B′|. Then, |B| ≤ (1 + c/

√
k) |R|, where c is a constant.

Here NG(B′) denotes the set of neighbors of the vertices in B′ in G. The proof of the above
theorem, which relies on planar graph separators, requires k to be quite large, thereby limiting
the practical utility of the above theorem. A priori, it is not clear whether the theorems
holds at all for small values of k. For instance, one can easily see that for k = 2 there is no
upper bound on |B|/|R| (e.g., consider complete bipartite graph where B is arbitrarily large
and |R| = 2). However, for k = 3, we show a small bound of 8 on |B|/|R|, and then prove
that it is, in fact, optimal.

I Theorem 2. Let G = (R,B,E) be a bipartite planar graph on red and blue vertex sets
R and B, such that for every subset B′ ⊆ B of size at most 3, |NG(B′)| ≥ |B′|. Then,
|B| ≤ 8 |R| and this bound is tight.

Proof. Let nb = |B| and nr = |R|. Our goal is to prove that nb ≤ 8nr. Note that no
vertex in B can have degree 0, otherwise the neighborhood of such a vertex is of size 0,
violating the conditions of the theorem. We make a new graph G′ by adding edges in G

to all vertices of B which have degree 1 in G. This can always be done while maintaining
the planarity and bipartiteness of the graph as any such vertex v must lie in a face which
has at least two vertices of R, at least one of which is not adjacent to v. Thus in G′ every
vertex in B has degree at least 2. Let nb2 be the number of vertices of B which have degree
2 and nb≥3 = nb − nb2 be the number of vertices of B which have degree at least 3 in G′.
Since G′ is planar and bipartite the number of edges in G′ ≤ 2(nb + nr). This implies that
2nb2 + 3nb≥3 ≤ 2nb + 2nr. Since nb = nb2 + nb≥3 , we obtain nb≥3 ≤ 2nr.

We now show that nb2 ≤ 6nr. To do that we construct a graph H with vertex set R as
follows: two vertices r1 ∈ R and r2 ∈ R are adjacent in H iff there is at least one vertex b ∈ B
of degree 2 which is adjacent to both r1 and r2 in G′. Note that H is planar since the edge
between r1 and r2 can be routed via one such b. Note that for the same pair {r1, r2} there
cannot be three vertices b1, b2, b3 ∈ B of degree 2 each that are adjacent to both r1 and r2
since in that case the neighborhood of the set {b1, b2, b3} is of size 2 violating the conditions of
the theorem. Therefore, each vertex b ∈ B of degree 2 corresponds to an edge in H and each
edge has at most two vertices in B that correspond to it. Since the number of edges in H is at
most 3|R| = 3nr, we conclude that nb2 ≤ 6nr. Thus nb = nb2 + nb≥3 ≤ 6nr + 2nr = 8nr. J

We now show that the bound given above is tight. However, that still leaves open the
possibility that, by exploiting other properties of disks, a (3, 2)-local search could give a

STACS 2015

188 Improved Local Search for Geometric Hitting Set

better approximation for the problem of computing minimum hitting sets for disks in the
plane. The following theorem rules this out.

I Theorem 3. For any δ > 0, there exists an integer n0 such that one can construct a set
D of disks in the plane, a set of points P , |P | ≥ n0, and a subset B ⊆ P s.t. i)B is a hitting
set for H(P,D), ii) |B| ≥ (8− δ)Opt and iii) there are no subsets X ⊆ B and Y ⊆ P \B,
|Y | < |X| ≤ 3, s.t. (B \X) ∪ Y is a hitting set for H(P,D).

Proof. We first construct a bipartite graph G = (R,B,E) that satisfies the conditions of
Theorem 2 and |B| ≥ (8− δ)|R|. Let L be the triangular lattice, and take a large equilateral
triangle ∆ aligned with the edges of L (so that L ∩∆ triangulates ∆) and containing many
faces of the lattice. Then replace each face of the lattice by the block of the type shown in
Figure 1(a). The corner vertices (unshaded) of the block map to the corner vertices of the
face, while the other vertices (shaded) in the block lie in the interior of the face. Let R be the
set of vertices of L lying in ∆ and let B be the set of vertices lying in the interior of the faces
in L ∩∆. The blocks together define a bipartite graph (see Figure 1(b) for a small example
with four blocks put together). Note that each face in L ∩∆ contains four points of B, and
if ∆ is large enough, the number of faces of L in ∆ is nearly twice the number of vertices of
L in ∆. The size of ∆ can be chosen, depending on δ, such that the number of faces of L is
at least (2− δ/4) times the number of vertices of L. Thus we get that |B| ≥ (8− δ)|R|. It
can be verified by inspection that there is no subset of B of size at most 3 with a smaller
neighborhood. This shows that the bound in Theorem 2 is tight within additive constants.

Now, we extend G to a triangulation by including the dotted edges in the blocks. Note
that there are some dotted edges going between blocks. We also put an additional vertex
in the outer face and connect it to all vertices in the outer face of G (i.e. we stellate the
outer face). The resulting graph, call it Ξ, is triangulated (i.e., each face is of size 3) and
furthermore it is 4-connected since, as can be verified by inspection, there is no separating
triangle (a non-facial cycle of length 3). By a theorem of Dillencourt and Smith (Theorem 3.5
in [14]), there exists an embedding of Ξ in the plane so that Ξ is the Delaunay triangulation of
its vertices. Abusing notation, we refer to the embedding as Ξ and we refer to the embedding
of a vertex v in Ξ as v.

Let R and B thus be the two sets of points. We set P = R ∪ B, and construct D by
taking for each edge e in G a disk that contains exactly the two end points of e among all
the vertices in Ξ. This is possible because Ξ is now a Delaunay triangulation of the points in
P . By construction, each disk in D contains exactly one point from each of the sets R and
B and thus both the sets are hitting sets for H(P,D). Since Opt is the size of the smallest
hitting set, Opt ≤ |R| and therefore |B| ≥ (8− δ)Opt. Consider a local improvement step
where we seek to decrease the size of the hitting set B by removing some subset X ⊆ B of
size at most 3 and adding a smaller set Y outside B (i.e., Y ⊆ R) so that (B \X) ∪ Y is a
hitting set for D. Let x be one of the points in X. Observe that then all neighbors of x in G
must be in Y since for each neighbor y of x, there is a disk in D which contains only the two
points x and y among all the points in R ∪ B. This means that |Y | ≥ |NG(X)|. Since for
any X of size at most 3, |NG(X)| ≥ |X|, we have that |Y | ≥ |X| implying that such a local
improvement is not possible. J

As mentioned before, a (4, 3)-local search gives a 5 approximation (proof in the full
version of the paper).

I Theorem 4. Let G = (R,B,E) be a bipartite planar graph on red and blue vertex sets
R and B, such that for every subset B′ ⊆ B of size at most 4, |NG(B′)| ≥ |B′|. Then,
|B| ≤ 5 |R|.

N. Bus, S. Garg, N.H. Mustafa, and S. Ray 189

(a) (b)

Figure 1 Unshaded vertices correspond to red and shaded to blue vertices. The dotted lines
show a triangulation. The edges of L are drawn in bold, while the dotted edges and the edges of
the lattice L are not part of the graph. We tile the triangles in (a) as shown in (b). The ratio of
shaded to unshaded vertices goes to 8 as size of the tiling is increased. Connecting the vertices at
the boundary of the tiling to a new vertex gives a 4-connected graph.

3 An Algorithm for (3, 2) Local Search

Our algorithm is based on local search. It starts with a hitting set and repeatedly tries to
make local improvements. Let S be a hitting set for H(P,D). Let X ⊆ S and Y ⊆ P . We
say that (X,Y) is a local improvement pair with respect to S and H(P,D) if |Y | < |X| and
(S \X) ∪ Y is a hitting set for H(P,D). Such a local improvement reduces the size of the
hitting set by |X| − |Y |. We will refer to this quantity as the profit of the local improvement
and the local improvement pair. We say that X ⊆ S is locally improvable with respect to S
and H(P,D) if there exists a Y ⊆ P such that (X,Y) is a local improvement pair. If (X,Y)
is a local improvement pair, we say that Y can locally replace X.

Let S be a hitting set for H(P,D). For any s ∈ S, we denote by D(s) the set of disks
in D that are hit by s but not by any other point in S. We will call the disks in D(s) the
personal disks of s. We will denote the region

⋂
D∈D(s) D by R(s) and call it the personal

region of s. The notations D(s) and R(s) are always with respect to a set system H(P,D)
and a hitting set S. These things that are not explicit in the notation will be clear from the
context. We also extend the same definitions for sets of points: for a set X ⊆ S, let D(X)
be the set of disks in D which contain only points of X. We call these the personal disks of
X. The personal region of X is R(X) =

⋂
D∈D(X) D. A set of regions R are pseudodisks if

they are simply connected and the boundaries of every pair of regions in R intersect at most
twice.

Preparing for the algorithm. We prove a few results useful for describing the algorithm.

I Lemma 5. Let S be a hitting set for H(P,D). If |S| > 8 ·Opt(P,D) + 3t, for some integer
t ≥ 0, then there exist t+ 1 disjoint subsets X0, . . . , Xt of S, each of which is of size 3 and
is locally improvable with respect to S in H(P,D).

Proof. The proof is by induction. The statement is true for t = 0: if there is no locally
improvable set X of size 3, then taking B = S and R = O, where O is the optimal hitting
set for H(P,D) and applying Theorem 2, we get that |S| ≤ 8Opt(P,D). Assume inductively
that the lemma is true for t− 1, and let the t disjoint sets of S be X0, · · · , Xt−1. It remains

STACS 2015

190 Improved Local Search for Geometric Hitting Set

to construct the set Xt. Let Z =
⋃t−1
i=0 Xi. Let P ′ = P \ Z, D′ = {D ∈ D : D ∩ Z = ∅} and

S′ = S \ Z. Clearly S′ is a hitting set for H(P ′,D′). Moreover,
I Claim 1. Opt(P ′,D′) ≤ Opt(P,D).

Proof. Take any hitting set A for H(P,D). Then any point a ∈ A that hits a disk in D′
must belong to P ′: otherwise a ∈ P \ P ′ = Z, and we had constructed D′ by removing all
the disks hit by Z from D. Therefore all the points in A hitting D′ belong to P ′, and form a
hitting set in P ′ for H(P ′,D′) of size at most |A|. J

Therefore, |S′| = |S| − 3t > 8 ·Opt(P,D) ≥ 8 ·Opt(P ′,D′), and any hitting set for H(P,D)
contains a hitting set for H(P ′,D′). Now, using the Theorem 2 for t = 0 on S′ and (P ′,D′),
the fact that |S′| > 8 · Opt(P ′,D′) implies that there is set Xt ⊆ S′ of size 3 and a set
Y ⊆ P ′ of size 2 such that (S′ \ Xt) ∪ Y is a hitting set for H(P ′,D′). This means that
(S′ \Xt) ∪ Y ∪ Z is a hitting set for H(P,D) since all disks in D \ D′ intersect Z. In other
words, (S \Xt) ∪ Y is a hitting set for H(P,D) since S′ ∪ Z = S and Xt ∩ Z = ∅. That is,
Xt is locally improvable with respect to S in H(P,D). Since Xt ⊆ S′ and S′ ∩ Z = ∅, Xt is
disjoint from the other Xi’s. J

The following key structural property is crucial (due to shortage of space, proof omitted):

I Lemma 6. Let S be a hitting set for H(P,D). Then the personal regions of the points in
S form a collection of pseudodisks.

I Lemma 7. Let S be a hitting set for H(P,D). Suppose that we are given two sets X ⊆ S
and Y ⊆ P such that |Y | = O(1), |X| > 4|Y | and for each x ∈ X, Y hits D(x), the personal
disks of x. Then there exists a set X ′ ⊆ X of size Ω(|X|) such that (X ′, Y) is a local
improvement pair with respect to S and H(P,D). Furthermore, given X and Y , X ′ can be
computed in time O(|X| log |X|).

Proof. Consider the Delaunay triangulation of the points in X, and let X ′ be an independent-
set in this Delaunay graph. First we show that (S \X ′) ∪ Y is a hitting set for H(P,D).
Consider a disk D that is not hit by S \ X ′. Since D is hit by S (S being a hitting set
for H(P,D)), D contains at least one point of X ′. If D contains exactly one point x′ ∈ X ′
then D is hit by Y since D ∈ D(x′) and Y hits D(x′). Otherwise, D contains at least two
points of X ′, in which case it must contain some point of x ∈ X \X ′ ⊆ S \X ′ since X ′ is an
independent set in the Delaunay triangulation of X (and by the fact that subgraph of the
Delaunay graph induced by the set of points of X inside any disk is connected).

The Delaunay triangulation can be constructed in O(|X| log |X|) time. If |X| ≤ 5|Y |, i.e.
|X| = O(1), we find an independent set of size at least d|X|/4e > |Y | in the Delaunay graph
in O(1) time by brute force; the existence of such an independent set follows from the 4-color
theorem on planar graphs. If |X| > 5|Y |, we compute a 5-coloring of the Delaunay graph in
O(|X|) time and take the largest color class as X ′. Thus |X ′| ≥ d|X|/5e > |Y |.

Therefore |X ′| > |Y |, and so (X ′, Y) is a local improvement pair. J

The next two lemmas show that one can efficiently preprocess disks to answer containment
queries in logarithmic time. Due to the shortage of space, the proofs are omitted.

I Lemma 8. Let D be a set of m disks in the plane having a common intersection region,
say R. Then the boundary of R is composed of O(m) circular arcs, and can be computed
in O(m logm) expected time. We can also construct, in O(m logm) time, a data structure
which, for any given query point q, answers whether q ∈ R in O(logm) time.

N. Bus, S. Garg, N.H. Mustafa, and S. Ray 191

I Lemma 9. Let P be a set of n points in the plane and let D be a set of pseudodisks, the
boundary of each being composed of circular arcs. For any constant C, we can compute,
for each p ∈ P that lies in at most C pseudodisks, the exact set of pseudodisks it hits in
O(n log m) time, where m is the total number of arcs in all the pseudodisks.

The Algorithm. We now describe our algorithm for computing a small hitting set for
H(P,D). We first compute a hitting set S of size O(Opt) [5]. We also assume that we know
the value of Opt = Opt(P,D) although it suffices to guess the value of Opt within a (1 + ε)
factor which can be done in O(1/ log (1 + ε)) guesses since we know Opt within a constant
factor. Throughout this section, we will use n as the total input size. We therefore upper
bound |P | and |D| by n.

Next, for a given ε > 0, we prune the input so that no point is contained in more than
∆ = n/(ε ·Opt) disks. This can be done by iterating over each point p ∈ P and computing
the number of disks D′ ⊆ D that contain p. If |D′| ≥ ∆, remove the disks in D′ from D and
add the point p to the set Q (which is initially empty). Note that as we go over the points
the set D changes but we do not change the value of ∆. Since each time we add a point to
Q, we remove at least ∆ disks from D, |Q| ≤ n/∆ = ε ·Opt. We can thus add the set Q to
our hitting set at the cost of an added ε in our approximation factor. This preprocessing
procedure takes O(n2) time (this will not be the bottleneck of our algorithm).

After preprocessing, we pass P and D to Algorithm 1 which we describe now. It requires
an initial hitting set S of size O(Opt) which we obtain from [5]. The goal of Algorithm 1 is to
compute a hitting set whose size is at most (8+ε) ·Opt. We compute a value t = |S|−8 ·Opt
which indicates how far we are from the solution we seek. As we will see, when t is large,
progress can be made quickly. However as we approach the quantity 8 · Opt, progress
becomes slower and slower. The algorithm uses only local improvements of the type (X,Y)
where |Y | ≤ 2. Throughout the algorithm we maintain for each D ∈ D, the number of points,
ND, it contains from S. Initially computing ND for each disk takes O(n2) time. After that
we need to update these quantities only when a local improvement (X,Y) happens. We
update ND as follows: ND = ND − |D ∩X|+ |D ∩ Y |. Since |Y | is always at most 2 in our
algorithm, naively this takes time O(n|X|) for updating all disks in D. Since such a local
improvement decreases the size of the hitting set S by |X| − 2 = Ω(|X|), the overhead for
maintaining ND is O(n) per improvement. Let LocallyImprove(X,Y) be the procedure
that updates S to (S \X) ∪ Y and updates ND for each disk as mentioned above.

In each iteration of the while loop in Algorithm 1, we first construct a range reporting
data structure [2] for the points in S so that given any disk D, we can find the set of points
in D∩S in time O(log n+ |D∩S|). We then use this data structure to compute the personal
disks of each s ∈ S as follows. Iterate over each disk D ∈ D and if ND = 1, use the reporting
data structure to find the single point s ∈ S that is contained by D. We then add D to
the (initially empty) list of personal disks of s. Since each query takes O(log n) time, the
total time taken to compute the personal disks is O(n log n). If we find some point s ∈ S for
which D(s) = ∅, we can just remove s from the current hitting set. In other words we do a
local improvement ({s}, ∅).

The algorithm iterates over the points of P in random order, considering the possibility
of replacing each point in a local-improvement step. Say the current point being considered
is p1; the goal is to find a point p2 so that {p1, p2} can replace a large set X ⊆ S, i.e., a
local improvement pair (X, {p1, p2}) of large profit. If we can find such a profitable local
improvement, we make the improvement, exit from the for loop, and continue with the
next iteration of the while loop. Otherwise, we continue with the next point in the random

STACS 2015

192 Improved Local Search for Geometric Hitting Set

Algorithm 1: Algorithm for (8 + ε)-approximation.
Data: A point set P , a set of disks D, a hitting set S of H(P,D) with

|S| = O(Opt(H(P,D))), the size of the optimal hitting set
Opt = Opt(H(P,D)), and a parameter ε > 0.

1 For each disk D ∈ D compute ND = |D ∩ S| // takes O(n2) time
2 while t = |S| − 8 ·Opt > ε ·Opt do
3 Construct a range reporting data structure for S for disk ranges
4 For each s ∈ S compute D(s) = {D ∈ S : D ∩ s = {s}}// use range reporting
5 if D(s) = ∅ for some s ∈ S then
6 LocallyImprove({s}, ∅) // s is dropped from the hitting set
7 continue // with the next iteration of the while loop on line 2.

8 π = A random permutation of the points in P
9 for i = 1 to |P | do

10 p1 = πi
11 for each s ∈ S do
12 Compute: D′(s) = {D ∈ D(s) : p1 /∈ D}, R′(s) =

⋂
D∈D′(s) D

// The above loop takes O(n log n) time
13 Let R′ = {R′(s) : s ∈ S} // R′ is a set of pseudodisks
14 M = {s ∈ S : R′(s) = ∅}
15 for each p ∈ P do
16 Compute α(p) s.t. 0.9 · depth(p,R′) ≤ α(p) ≤ depth(p,R′)

// depth(p,R’) denotes the number of regions in R′ containing
p

17 Let q = argmaxp∈P α(p)
18 Set β = max{

√
t, εt ·Opt/n}

19 if |M |/5 + α(q) ≥ iβ
Cn logn then

20 Compute S′(q) = {s ∈ S : q ∈ R′(s)} // Note that |S′(q)| = depth(q,R′)
21 if |S′(q) ∪M | ≥ 9 then
22 Compute an independent set X ⊆ S′(q) ∪M in the Delaunay

triangulation of S′(q) of size at least 3 and Ω(|S′(q) ∪M |)
// O(n log n) time

23 LocallyImprove(X, {p1, p2 = q})
24 break // exit for loop

25 else
26 For each p2 ∈ P , set S′(p2) = {s ∈ S : p2 ∈ R′(s)} // O(n log n) time

// Since |S′(q) ∪M | ≤ 8, |S′(p2) ∪M | ≤ b8/0.9c = 8 for all
p2 ∈ P

27 Enumerate all pairs (X, p2) where p2 ∈ P , X ⊆ S′(p2) ∪M and |X| ≤ 3
28 if for any (X, p2) enumerated, (X, {p1, p2}) is a local improvement pair

then
29 LocallyImprove(X, {p1, p2}))
30 break // exit for loop

N. Bus, S. Garg, N.H. Mustafa, and S. Ray 193

ordering. For any pair of points Y = {p, q} ⊆ P , denote by ρ(Y) the number of points
in S all of whose personal disks are hit by Y . For a point p ∈ P , we use ρ(p) to denote
maxq∈P\S ρ({p, q}). Call a point p ∈ P useful if there exists some q ∈ P so that for some
X ⊆ S, (X, {p, q}) is a local improvement pair.

Analysis of the Algorithm.

I Lemma 10. If p1 is useful, we can compute in O(n log2 n) time a local improvement of
profit Ω(ρ(p1)).

Proof. Let us start by considering how we could compute ρ(p1). In order to compute ρ(p1),
we need to find a point q so that the number of points s ∈ S whose personal disks are hit by
{p1, q} is maximized. To do this, we first compute for each s ∈ S, the set D′(s) of disks in
D(s) that are not hit by p1. For each s ∈ S, we then construct the region R′(s) by taking the
intersection of the disks in D′(s). Let R′ = {R′(s) : s ∈ S}. For some s ∈ S, D′(s) may be
empty and consequently some of the regions in R′ are empty. Let M = {s ∈ S : D′(s) = ∅}.
The personal disks of the points in M are hit by p1 alone. The regions in R′ define an
arrangement of pseudodisks (Lemma 6). In this arrangement we seek to find a point q ∈ P
of maximum depth. However, instead of finding a point with maximum depth, we find a
point whose depth is within a constant factor of the maximum. We construct, in O(n log n)
time, an approximate depth query data structure for the pseudodisks in R′ using Corollary
5.9 in [7] with a constant ε′ ≤ 0.1. Then for each point p ∈ P , compute a value α(p) s.t.
0.9 depth(p,R′) ≤ α(p) ≤ depth(p,R′) where depth(p,R′) denotes the depth of p in the
arrangement of regions in R′. This takes O(log2 n) time per point and so the overall time
taken is O(n log2 n). We then take the point p with the maximum α(p) as q. Observe that
|M | + α(q) = Θ(ρ(p1)). We first compute the set S′(q) = {s ∈ S : q ∈ R′(s)}. Note that
|S′(q)| = depth(q,R′) ≥ α(q). There are two cases to consider:

Case 1: |S′(q) ∪ M | > 8. In this case, we set p2 = q and let Y = {p1, p2}. Using
Lemma 7 (note here that |S′(q) ∪M | > |Y |), we can find a subset X ⊆ S′(q) ∪M so that
X = Ω(|S′(q) ∪M |) so that (X, {p1, p2}) is a local improvement pair. Note that |X| is
Ω(ρ(p1)). Thus in this case, we conclude that p1 is useful and indeed we have found a local
improvement that decreases the size of the current hitting set by Ω(ρ(p1)).

Case 2: |S′(q) ∪M | ≤ 8. In this case S′(p) ≤ b8/0.9c = 8 for all p ∈ P . This means that
ρ(p1) = O(1) and we just need to find one set X of size 3 and a point p2 so that (X, {p1, p2})
is a local improvement pair. Using Lemma 9, we compute the set S′(p) for all p ∈ P in
O(n log n) expected time. For each p2 ∈ P , we need to check if there is any subset X in
S′(p2)∪M of size 3 so that (X, {p1, p2}), is a local improvement pair. Since |S′(p2)∪M | ≤ 8,
there are at most

(8
3
)
subsets X ⊆ S′(p2)∪M for which we need to check if (X, {p1, p2}) is a

local improvement pair. Thus there are O(n) pairs of the form (X, {p1, p2}), where |X| = 3,
that we need to check. For a particular pair of this form, we basically need to verify that
all the disks in D whose intersection with S is a subset of X are hit by either p1 or p2. To
make things simpler, we first remove from D all the disks that are hit by p1 and obtain a set
D′ ⊆ D. Now, we need to verify for all disks in D whose intersection with X is a subset of
X that they are hit by p2. All the O(n) pairs can be checked in O(n log n) time as follows.

We construct a data structure that will help us do the checking for all the O(n) pairs
of the form (X, {p1, p2}). We have already constructed a range reporting data structure on
S for disk ranges. Additionally, use a dictionary data structure (based on balanced binary
trees) in which the keys are subsets of S of size at most 3 and the value corresponding to
a key U is a list of disks D ∈ D′ s.t. D ∩ S = U . We start with an empty dictionary. We

STACS 2015

194 Improved Local Search for Geometric Hitting Set

then go over each disk D ∈ D′ one by one and if ND ≤ 3, we use the range reporting data
structure to get U = D ∩ S in O(log n) time. We search the dictionary for U and if it is
found, we add D to its list. If no entry is found, we create an entry for U with a single
element d in its list. Note that since the number of (≤ 3)-sets that can be obtained from set
of n points by intersecting it with a set of disks is linear in the number of points [21], the
number of distinct keys in the dictionary is O(n). We go over each key U and construct the
region R′(U) by taking the intersection of all the disks in the list associated with U . Note
that R′(U) can be constructed in O(m logm) time where m is the size of the list associated
with U using Lemma 8. Since each disk is in the list of at most one U , the overall time is
O(n log n). In the same amount of time, for each key U , we set up a data structure that
allows us to check if a query point q is in R′(U) using Lemma 8. Now, to check if a pair
(X, {p1, p2}) is an improvement pair, we go over all subsets U ⊆ X and check if p2 ∈ R′(U).
The time spent for any pair is now O(log n). Therefore checking all the O(n) pairs takes
O(n log n) time.

If none of the checked pairs give local improvement, we conclude that p1 is not useful. J

Next we show how to find a profitable improvement. Let β = max{
√
t, εt ·Opt/n}.

I Lemma 11. There exists a k > 0 such that there are at least Ω(β/k) useful points p ∈ P
with ρ(p) ≥ k.

Proof. By Lemma 5, there exists Ω(t) local improvement pairs (X0, Y0), . . . where the Xi’s
are disjoint subsets of S but the Yi’s need not be disjoint. Each Xi is of size 3 and each Yi is
of size 2. For any pair of points Y = {p1, p2} ⊆ P , if (Xi, Y) is a local improvement pair
among the Ω(t) pairs, then we say that Xi is a triple assigned to the pair Y . Define the
weight of Y as the number of triples assigned to it and denote it by W (Y). The total weight
of all pairs is then Ω(t).

Call a pair Y to be of type i if 2i−1 ≤W (Y) < 2i, for i = 1, . . . , O(log t). IfW (Y) = 0 then
we say that Y is of type 0. Since the total weight of all pairs is Ω(t), there must be some j > 0
so that the total weight of the pairs of type j is Ω(t/2j). Let Q =

⋃
Y {Y | Y is of type j}.

There are two lower bounds on the size of Q. First, since the total weight of the pairs
of type j is Ω(t/2j), and each pair has weight less than 2j , the number of pairs is Ω(t/22j),
and hence |Q| = Ω(

√
t/2j). On the other hand, for any local improvement pair (Xi, Y)

where Y is of type j, take any point x ∈ Xi. Since D(x) is non-empty, any disk D ∈ D(x)
contains at least one point in Y . Therefore any such local improvement pair leads to an
incidence between a point in Q and a disk in D. Note that since the Xi’s are disjoint these
are distinct incidences. Thus there are Ω(t/2j) incidences. Since by assumption no point
in P , and therefore no point in Q, is in more than n/(ε · Opt) disks in D, we have that
|Q| = Ω(εt ·Opt/2jn).

Therefore, |Q| = Ω
(
max{εt ·Opt/2jn,

√
t/2j}

)
= Ω(β/2j). Observe that each p ∈ Q is

useful and ρ(p) ≥ 3 · 2j . The lemma is therefore true for k = 2j . J

Running time. Preprocessing takes O(n2) time but this is dominated by the running time
of Algorithm 1. Consider a single iteration of the while loop in Algorithm 1. If we find some
point s ∈ S for which D(s) = ∅, we drop s from the current hitting set. This way we have
improved the size of the hitting set at the cost of O(n log n) time. The total time spent on
such improvements is at most O(Opt n log n) = O(n2 log n).

Otherwise, call a single iteration of the while loop lucky if the following is true:

∃i such that the point πi is useful and
i

ρ(πi)
≤ Cn

β

for some constant C.

N. Bus, S. Garg, N.H. Mustafa, and S. Ray 195

I Claim 2. Probability that any iteration of the while loop is lucky is at least 1/2.

Proof. By Lemma 11, there exists a k such that there are Ω(β/k) useful points, say the
set U , with ρ(p) ≥ k. Consider the smallest index i s.t. πi ∈ U . The expected value of i is
O(nk/β). Therefore, with probability at least 1

2 , i ≤ Cnk/β for some large enough C. Then,

i

ρ(πi)
≤ Ckn/β

k
= Cn

β

J

I Claim 3. For a lucky iteration of the while loop, let λ be the reduction in size of the
current hitting set, and σ the time spent in this iteration. Then σ/λ ≤ Cn2 log2 n/β.

Proof. As we go over the points in random over, for the current point ν = πi, we estimate
ρ(ν) which allows us to check if i/ρ(ν) ≤ Cn/β. If so, assuming that the point ν is useful,
we decrease the size of the current hitting set by Ω(ρ(ν)). If i/ρ(ν) > Cn/β or we discover
that ν is not useful we move to the next point in the random order. However, since the
iteration of the while loop is lucky, we will find some point ν = πi which is useful and
for which i/ρ(ν) ≤ Cn/β. For this point ν, we find a local improvement involving ν of
value Ω(ρ(ν)) and the current iteration of the while loop ends. The total time spent in this
iteration is σ = O(i · n log2 n) since we have seen i points so far and for each point we spend
O(n log2 n) time. The reduction in the size of the current hitting set is λ = Ω(ρ(ν)). Thus
σ/λ ≤ i

ρ(ν) · n log2 n ≤ Cn2 log2 n/β. J

Since any iteration of the while loop is lucky with probability at least 0.5, we can assume
that all the iterations are lucky (running time affected by a factor of 2).
I Claim 4. The expected time taken to halve t is O(n7/3 log2 nε−1/3).

Proof. Claim 3 tells us that the amortized amount of time spent for the reducing the size
of the current hitting set by 1 is O(n2 log2 n/β). Since β is an increasing function of t, this
decreases with t. However, t does not change by more than a factor of 2 until it is halved. So,
the expected time for t to be halved is O(t/2 ·n2 log2 n/β). Now, t/β = min{

√
t, n/(ε ·Opt)}.

Since t = O(Opt), t/β = O(min{
√

Opt, n/(ε · Opt)} = O((n/ε)1/3). Thus the expected
time to halve t is O(n7/3 log2 nε−1/3). J

Since the initial value of t is O(Opt), there are O(log 1/ε) halving rounds until t ≤
ε ·Opt. Thus, the expected running time of the Algorithm 1 is O(n7/3 log2 n ε−1/3 log (1/ε)).
Finally, since we need to run Algorithm 1 for O(1/ log (1 + ε)) guesses for Opt, the overall
running time is O(n7/3 log2 n ε−1/3 log (1/ε)/ log (1 + ε)). For a fixed small value of ε, this is
O(n7/3 log2 n).

Acknowledgments. We thank the anonymous reviewers for the insightful feedback.

References
1 Rashmisnata Acharyya, Manjanna Basappa, and Gautam K. Das. Unit disk cover problem

in 2D. In Computational Science and Its Applications - ICCSA 2013 - 13th International
Conference, Ho Chi Minh City, Vietnam, June 24-27, 2013, Proceedings, Part II, pages
73–85, 2013.

2 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimen-
sions. In SODA, pages 180–186, 2009.

STACS 2015

196 Improved Local Search for Geometric Hitting Set

3 Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Near-linear approximation algorithms
for geometric hitting sets. Algorithmica, 63(1-2):1–25, 2012.

4 Pankaj K. Agarwal and Nabil H. Mustafa. Independent set of intersection graphs of convex
objects in 2D. Comput. Geom., 34(2):83–95, 2006.

5 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets
and set covers. In Symposium on Computational Geometry, page 271, 2014.

6 Christoph Ambühl, Thomas Erlebach, Matús Mihalák, and Marc Nunkesser. Constant-
factor approximation for minimum-weight (connected) dominating sets in unit disk graphs.
In APPROX-RANDOM, pages 3–14, 2006.

7 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SIAM J. Comput., 38(3):899–921, 2008.

8 H. Bronnimann and M. Goodrich. Almost optimal set covers in finite VC-dimension. Dis-
crete & Computational Geometry, 14(4):463–479, 1995.

9 Gruia Călinescu, Ion I. Mandoiu, Peng-Jun Wan, and Alexander Zelikovsky. Selecting
forwarding neighbors in wireless ad hoc networks. MONET, 9(2):101–111, 2004.

10 P. Carmi, M. Katz, and N. Lev-Tov. Covering points by unit disks of fixed location. In
ISAAC, pages 644–655, 2007.

11 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. In Symposium on Computational Geometry, pages 333–340,
2009.

12 Francisco Claude, Gautam K. Das, Reza Dorrigiv, Stephane Durocher, Robert Fraser, Ale-
jandro López-Ortiz, Bradford G. Nickerson, and Alejandro Salinger. An improved line-
separable algorithm for discrete unit disk cover. Discrete Math., Alg. and Appl., 2(1):77–88,
2010.

13 Gautam K. Das, Robert Fraser, Alejandro LÃ3pez-Ortiz, and Bradford G. Nickerson. On
the discrete unit disk cover problem. International Journal on Computational Geometry
and Applications, 22(5):407–419, 2012.

14 Michael B. Dillencourt andWarren D. Smith. Graph-theoretical conditions for inscribability
and delaunay realizability. Discrete Mathematics, 161(1–3):63–77, 1996.

15 G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small. Inf.
Process. Lett., 95:358–362, 2005.

16 Robert Fraser. Algorithms for Geometric Covering and Piercing Problems. PhD thesis,
University of Waterloo, 2012.

17 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier. In ESA, pages 243–254, 2010.

18 Dorit S. Hochbaum and Wolfgang Maass. Fast approximation algorithms for a nonconvex
covering problem. J. Algorithms, 8(3):305–323, 1987.

19 Erik Krohn, Matt Gibson, Gaurav Kanade, and Kasturi R. Varadarajan. Guarding terrains
via local search. JoCG, 5(1):168–178, 2014.

20 Dániel Marx. Parameterized complexity of independence and domination on geometric
graphs. In Parameterized and Exact Computation, Second International Workshop, IWPEC
2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, pages 154–165, 2006.

21 Jiri Matousek. Lectures in Discrete Geometry. Springer-Verlag, New York, NY, 2002.
22 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.

Discrete & Computational Geometry, 44(4):883–895, 2010.
23 Evangalia Pyrga and Saurabh Ray. New existence proofs for epsilon-nets. In Proceedings

of Symposium on Computational Geometry, pages 199–207, 2008.
24 Ran Raz and Muli Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In STOC, pages 475–484, 1997.

Arc Diagrams, Flip Distances, and Hamiltonian
Triangulations
Jean Cardinal∗1, Michael Hoffmann†2, Vincent Kusters†2,
Csaba D. Tóth3, and Manuel Wettstein‡2

1 Université libre de Bruxelles (ULB), Belgium
jcardin@ulb.ac.be

2 Department of Computer Science, ETH Zürich, Switzerland
{hoffmann,vincent.kusters,manuelwe}@inf.ethz.ch

3 California State University Northridge, Los Angeles, CA, USA
cdtoth@acm.org

Abstract
We show that every triangulation (maximal planar graph) on n ≥ 6 vertices can be flipped into
a Hamiltonian triangulation using a sequence of less than n/2 combinatorial edge flips. The
previously best upper bound uses 4-connectivity as a means to establish Hamiltonicity. But in
general about 3n/5 flips are necessary to reach a 4-connected triangulation. Our result improves
the upper bound on the diameter of the flip graph of combinatorial triangulations on n vertices
from 5.2n − 33.6 to 5n − 23. We also show that for every triangulation on n vertices there
is a simultaneous flip of less than 2n/3 edges to a 4-connected triangulation. The bound on
the number of edges is tight, up to an additive constant. As another application we show that
every planar graph on n vertices admits an arc diagram with less than n/2 biarcs, that is, after
subdividing less than n/2 (of potentially 3n− 6) edges the resulting graph admits a 2-page book
embedding.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph embeddings, edge flips, flip graph, separating triangles

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.197

1 Introduction

An arc diagram (Figure 1) is a drawing of a graph in which vertices are represented by points
on a horizontal line, called the spine, and edges are drawn either as one halfcircle (proper
arc) or as a sequence of halfcircles centered on the line (forming a smooth Jordan arc). In a
proper arc diagram all arcs are proper. Arc diagrams have been used and studied in many
contexts since their first appearance in the mid-sixties [3, 24]. They constitute a well-studied
geometric representation in graph drawing [14] that occurs, for instance, in the study of
crossing numbers [1, 6] and universal point sets for circular arc drawings [4].

Bernhart and Kainen [5] proved that a planar graph admits a plane (i.e., crossing-free)
proper arc diagram if and only if it can be augmented to a Hamiltonian planar graph by

∗ Partially supported by the ESF EUROCORES programme EuroGIGA, CRP ComPoSe.
† Partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and the Swiss

National Science Foundation, SNF Project 20GG21-134306.
‡ Partially supported by the ESF EUROCORES programme EuroGIGA, CRP ComPoSe and the Swiss

National Science Foundation, SNF Project 20GG21-134318/1.

© Jean Cardinal, Michael Hoffmann, Vincent Kusters,
Csaba D. Tóth, and Manuel Wettstein;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 197–210

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.197
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

198 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

(a) (b) (c)

Figure 1 A plane straight-line drawing (a), an arc diagram (b) and a proper arc-diagram (c) of
the same graph.

adding new edges. Such planar graphs are also called subhamiltonian, and they are NP-hard
to recognize [26]. A Hamiltonian cycle in the augmented graph directly yields a feasible order
for the vertices on the spine. Every planar graph can be subdivided into a subhamiltonian
graph with at most one subdivision vertex per edge [22]. Consequently, every planar graph
admits a plane biarc diagram in which each edge is either a proper arc or the union of two
halfcircles (a biarc); one above and one below the spine. Di Giacomo et al. [15] showed
that every planar graph even admits a monotone biarc diagram in which every biarc is
x-monotone—such an embedding is also called a 2-page topological book embedding. See [14]
for various other applications of subhamiltonian subdivisions of planar graphs.

Eppstein [13] said: “Arc diagrams (with one arc per edge) are very usable and practical
but can only handle a subset of planar graphs.” Using biarcs allows to represent all planar
graphs, but adds to the complexity of the drawing. Hence it is a natural question to ask:
How close can we get to a proper arc diagram, while still being able to represent all planar
graphs? A natural measure of complexity is the number of biarcs used.

Previous methods for subdividing an n-vertex planar graph into a subhamiltonian graph
use at most one subdivision per edge [14, 15, 19, 22], consequently the number of biarcs
in an arc diagram is bounded by the number of edges. Our main goal in this paper is to
tighten the upper and lower bound on the minimum number of biarcs in an arc diagram (or,
alternatively, the number of subdivision vertices in a subhamiltonian subdivision) of a planar
graph with n vertices. Minimizing the number of biarcs is clearly NP-hard, since the number
of biarcs is zero if and only if the graph is subhamiltonian.

Our results. We show that the number of biarcs can be bounded by n, even when they
are restricted to be monotone. Although previous methods can be shown to yield less than
the trivial 3n− 6 biarcs [19], or ensure monotonicity [15], we give the first proof that both
properties can be guaranteed simultaneously. The algorithm is similar to the canonical
ordering-based method of Di Giacomo et al. [15].

I Theorem 1. Every planar graph on n ≥ 4 vertices admits an arc diagram using at most
n− 4 biarcs, all of which are monotone.

For arbitrary (not necessarily monotone) biarcs we achieve better bounds. Our main
tool is relating subhamiltonian planar graphs to edge flips in triangulations. A flip in a
triangulation involves switching the diagonal of a quadrilateral made of two adjacent facial
triangles. We consider combinatorial flips, which can be regarded as an operation on an
abstract graph. The flip graph induced by flips on the set of all triangulations on n vertices,
and the corresponding flip distance between two triangulations, have been the topic of
extensive research [9, 11]. For instance, the flip diameter restricted to the interior of a convex
polygon is equivalent to rotation distance of binary trees [25, 23].

J. Cardinal, M. Hoffmann, V. Kusters, Cs. D. Tóth, and M. Wettstein 199

We prove that in every triangulation there exists a set of less than 2n/3 edges that can be
flipped simultaneously so that the resulting triangulation is 4-connected, and that this bound
is tight up to an additive constant (Section 4). Since by Tutte’s Theorem every 4-connected
planar graph is Hamiltonian, we can transform every planar graph into a subhamiltonian
graph by subdividing at most 2n/3 edges. The fact that a single simultaneous flip can make
a triangulation 4-connected has already been established by Bose et al. [8]. However, they
do not give any bound on the number of flipped edges.

I Theorem 2. Every maximal planar graph on n ≥ 6 vertices can be transformed into a
4-connected maximal planar graph using a simultaneous flip of at most b(2n− 7)/3c edges.

I Theorem 3. For every i ∈ N, there is a maximal planar graph Gi on ni = 3i + 4 vertices
such that no simultaneous flip of less than (2ni − 8)/3 = 2i edges results in a 4-connected
graph.

Finally, we prove an upper bound on the flip distance of a planar triangulation to Hamil-
tonicity, that is, on the worst-case number of successive flips required to reach a Hamiltonian
triangulation (Section 5). Given the hardness of determining whether a given planar graph is
Hamiltonian, we should not expect a nice characterization of (non-)Hamiltonicity. Hence, in
the context of planar graphs, 4-connectivity is often used as a substitute because by Tutte’s
Theorem it is a sufficient condition for Hamiltonicity. Bose et al. [10] gave a tight bound (up
to an additive constant) of 3n/5 flips to transform a given triangulation on n vertices into a
4-connected triangulation. We show that fewer flips are sufficient to guarantee Hamiltonicity.
Obviously, the target triangulation is not 4-connected in general, which means it possibly
contains separating triangles.

I Theorem 4. Every maximal planar graph on n ≥ 6 vertices can be transformed into a
Hamiltonian maximal planar graph using a sequence of at most b(n− 3)/2c edge flips.

In this case we do not have a matching lower bound. The best lower bound we know
can be obtained using Kleetopes [16]. These are convex polytopes that are generated from
another convex polytope by replacing every face by a small pyramid. In the language of
planar graphs, we start from a 3-connected planar graph and for every face add a new vertex
that is connected to all vertices on the boundary of the face. If the graph we start from
has enough faces, then the added vertices form a large independent set so that the resulting
graph is not Hamiltonian. Aichholzer et al. [2] describe such a construction explicitly in the
context of flipping a triangulation to a Hamiltonian triangulation, but state the asymptotics
only. A precise counting reveals the following figures.

I Theorem 5. For every i ∈ N, there is a maximal planar graph Gi on ni = 3i + 8 vertices
such that no sequence of less than (ni − 8)/3 = i edge flips produces a Hamiltonian graph
and no set of less than (ni − 8)/3 = i subdivision vertices produces a subhamiltonian graph.

Our proof for Theorem 4 is constructive, and each flip in the sequence involves an edge
of the initial graph G and is incident to a separating triangle of G. Some of these edges may
be incident to a common facial triangle, so they cannot always be flipped simultaneously.
However, we show that if we subdivide each of these edges (instead of successively flipping
them), we obtain a subhamiltonian graph. Combined with the characterization of Bernhart
and Kainen [5], this yields a new bound on the number of biarcs.

I Corollary 6. Every planar graph on n ≥ 6 vertices admits a biarc diagram with at most
b(n− 3)/2c biarcs.

STACS 2015

200 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

As another corollary of Theorem 4, we establish a new upper bound on the diameter of
the flip graph of all triangulations on n vertices, improving on the previous best bound of
5.2n−33.6 by Bose et al. [10]. Mori et al. [21] showed that any two Hamiltonian triangulations
on n vertices can be transformed into each other by at most max{4n− 20, 0} flips. Combined
with Theorem 4, this implies the following.

I Corollary 7. Every two triangulations on n ≥ 6 vertices can be transformed into each other
using at most 5n− 23 edge flips.

Due to space constraints, many proofs have to be omitted.

2 Notation

A drawing of a graph G in R2 maps the vertices into distinct points in the plane and maps
each edge to a Jordan arc between (the images of) the two vertices that is disjoint from (the
image of) any other vertices. To avoid notational clutter it is common to identify vertices
and edges with their geometric representation. A drawing is called plane (or an embedding)
if no two edges intersect except at a possible common endpoint. Only planar graphs admit
plane drawings, but not every drawing of a planar graph is plane. A maximal planar graph
on n vertices is is a planar graph with 3n− 6 edges. In this paper the term triangulation is
used as a synonym for maximal planar graph.1

In a plane drawing of a triangulation G, every face (including the outer face) is bounded by
three edges. Hence, every triangulation with n ≥ 4 vertices is 3-connected [12][Lemma 4.4.5].
Every 3-connected planar graph has a topologically unique plane drawing, apart from the
choice of the outer face. Specifically, the facial triangles are precisely the nonseparating
chordless cycles of G in every plane drawing [12][Proposition 4.2.7]. Consequently, G has a
well-defined dual graph G∗ (independent of the drawing): the vertices of G∗ correspond to
the faces of G, and two vertices of G∗ are adjacent if and only if the corresponding faces
share an edge. A triangle of G that is not facial is called a separating triangle and its removal
disconnects the graph.

A graph is Hamiltonian if it contains a cycle through all vertices. By a famous theorem
of Tutte, all 4-connected planar graphs are Hamiltonian. For triangulations, 4-connectivity
is equivalent to the absence of separating triangles. A vertex or an edge is incident to a
triangle T in a graph if it is a vertex or edge of T .

A triangulation G can be partitioned into a 4-block tree B. Each vertex of B is either a
maximal 4-connected component of G or a subgraph of G that is isomorphic to K4. Two
vertices of B are adjacent if they share a separating triangle of G. The 4-block tree is similar
to the standard block-tree for 2-connected components, but the generalization of the notion
“component” to higher connectivity is not straightforward in general. For a triangulation,
however, the 4-block tree is well-defined and can be computed in linear time and space [18].

Flips. Consider an edge ab of a triangulation G and let abc and adb denote the two incident
facial triangles. The flip of ab replaces the edge ab by the edge cd. If this operation produces
a triangulation (i.e., if the edge cd is not already present in G), we call ab flippable2.

1 In contrast, a maximal plane straight-line drawing may have fewer edges, depending on the number of
points on the convex hull.

2 We consider combinatorial flips, as opposed to geometric flips defined for straight-line plane drawings,
where an edge is flippable if and only if the quadrilateral formed by the two incident facial triangles is
convex.

J. Cardinal, M. Hoffmann, V. Kusters, Cs. D. Tóth, and M. Wettstein 201

A closely related concept is the simultaneous flip of a set F of flippable edges in a
triangulation G = (V, E), which is defined as follows. For e ∈ F denote by c(e) the edge
created by flipping e in G, and let C(F) =

⋃
e∈F c(e). Then the simultaneous flip of F in

G results in the graph G′ = (V, (E \ F) ∪ C(F)). Bose et al. [8] introduced this notion and
showed that the result of a simultaneous flip is a triangulation if every facial triangle of G is
incident to at most one edge from F and the edges c(e), for e ∈ F , are all distinct and not
present in E.

3 Biarc Diagrams

I Lemma 8. If a planar graph G has a simultaneous flip of k edges such that the resulting
graph is Hamiltonian, then G admits an arc diagram with at most k biarcs.

Proof. Let H be a Hamiltonian graph obtained from G by simultaneously flipping an edge
set E1 to E2 with |E1| = k. Without loss of generality, assume that E1 is a minimal set of
edges that must be flipped in order to obtain a Hamiltonian graph. Consequently, every
Hamiltonian cycle C in H passes through all k edges in E2. If we subdivide each edge in
E2, we obtain a Hamiltonian graph H ′. Now consider the graph G′ obtained from G by
subdividing each edge in E1, and identify the subdivision vertices of the corresponding edges
in G′ and H ′. Notice that the union of G′ and H ′ is a plane graph that contains H ′, hence
it is Hamiltonian. Consequently G′ is subhamiltonian. By the characterization of Bernhart
and Kainen [5], G admits an arc diagram with k biarcs, as claimed. J

In order to obtain a general statement about arc diagrams from Lemma 8, we need a
bound on the number of edges to simultaneously flip in a given graph in order to make
it Hamiltonian. Even the existence of such a simultaneous flip—regardless of the number
of edges involved—is not obvious to begin with. For instance, consider a vertex that has
linear degree in a triangulation T1 and constant degree in a triangulation T2. As a single
simultaneous flip can only change about half of the edges incident to a vertex, at least a
logarithmic number of simultaneous flips is required to transform T1 into T2 [8].

Bose et al. [8] showed that every triangulation on n ≥ 6 vertices can be transformed to a
4-connected (hence Hamiltonian) triangulation by a single simultaneous flip. However, no
bound is known on the number of flipped edges, which leaves us with the trivial bound of
(2n − 4)/2 = n − 2. Note that the resulting bound on the number of biarcs is similar to
the one from Theorem 1, but there we could guarantee that all biarcs are monotone. Using
Lemma 8 we do not have any control over the type of biarcs used.

The obvious open question is: Can we give a better bound on the number of edges needed
in a simultaneous flip to a Hamiltonian triangulation?

4 Simultaneous Flip Distance to 4-connectivity

In this section we determine the maximum number of edges needed to transform an n-vertex
triangulation into a Hamiltonian triangulation using a single simultaneous flip. Consider
a triangulation G = (V, E). As there is no 4-connected triangulation on fewer than six
vertices, suppose that G has at least six vertices. We would like to transform G into a
4-connected triangulation by simultaneously flipping a set F ⊂ E of edges such that all
separating triangles are destroyed and none created. We use the following criterion by Bose
et al. [8] to check whether a simultaneous flip produces a 4-connected triangulation.

STACS 2015

202 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

I Lemma 9 (Bose et al. [8]). Let F be a set of edges in a triangulation G such that no two
edges in F are incident to a common triangle, every edge in F is incident to a separating
triangle, and for every separating triangle T there is at least one edge in F that is incident
to T . Then F is simultaneously flippable in G and the resulting triangulation is 4-connected.

For a simultaneously flippable set F of edges no face of the triangulation is incident
to more than one edge. Recall that the edges of a triangulation G and its dual G∗ are in
one-to-one correspondence. Consequently, the dual edges of F form a matching in G∗. As all
faces of a triangulation are triangles, G∗ is cubic (3-regular). Moreover, every triangulation
on n ≥ 4 vertices is 3-connected and so its dual is 2-edge-connected (bridgeless). By a famous
theorem of Tait the following statement is equivalent to the Four-Color Theorem:

I Theorem 10 (Tait [7] Chapter 11). Every bridgeless cubic planar graph admits a partition
of the edge set into three perfect matchings.

In particular, this applies to the dual of a triangulation. Call a set F ⊆ E of edges of
a triangulation G = (V, E) a (perfect) dual matching if the corresponding set of edges in
the dual graph G∗ forms a (perfect) matching of G∗. While it is clear that a perfect dual
matching contains exactly one edge of each facial triangle, this is not obvious for separating
triangles. But it follows from a simple parity argument, as the following lemma shows.3

I Lemma 11. Every perfect dual matching of a triangulation G contains an edge of every
triangle of G.

The last missing bit to prove Theorem 2 is an upper bound on the number of edges in a
triangulation that can be incident to separating triangles.

I Lemma 12. At most 2n−7 edges of a maximal planar graph on n ≥ 4 vertices are incident
to separating triangles. This bound is the best possible.

I Theorem 2. Every maximal planar graph on n ≥ 6 vertices can be transformed into a
4-connected maximal planar graph using a simultaneous flip of at most b(2n− 7)/3c edges.

Proof. Consider a maximal planar graph G on n vertices. By Theorem 10 the 3n− 6 edges
of G can be partitioned into three perfect dual matchings M1, M2, and M3, of n− 2 edges
each. Let M ′

i , for i ∈ {1, 2, 3}, denote the dual matching that results from removing all edges
from Mi that are not incident to any separating triangle. By Lemma 12 at most 2n − 7
edges of G are incident to separating triangles. Therefore, one of M ′

1, M ′
2, and M ′

3 contains
at most b(2n− 7)/3c edges. By Lemma 9 these edges are simultaneously flippable and the
resulting graph is 4-connected. J

5 Flip Distance to Hamiltonicity

With regard to arc diagrams, there is actually no reason to insist that the triangulation be
4-connected. In order to apply Lemma 8 we only need the triangulation to be Hamiltonian.
Hence the obvious question: Can we always find a simultaneous flip of fewer than 2n/3
edges to obtain a Hamiltonian triangulation? In this section we go one step further and in
addition lift the restriction that the flip be simultaneous. Instead, an arbitrary sequence

3 Bose et al. [8] derive this property from the explicit Tait coloring. The statement here is slightly more
general because it holds for every perfect dual matching.

J. Cardinal, M. Hoffmann, V. Kusters, Cs. D. Tóth, and M. Wettstein 203

T

(a) before

v

(b) Step 1

v

(c) Step 2

Figure 2 Example of a dummy flip.

of edge flips is allowed. In this case tight bounds are known if the goal is to obtain a
4-connected triangulation. Bose at al. [10] showed that b(3n− 9)/5c flips are always sufficient
and sometimes (3n−10)/5 flips are necessary to transform a given triangulation on n vertices
into a 4-connected triangulation.

In general, a non-simultaneous flip sequence has no direct implication for arc diagrams.
But if only edges of the original triangulation are flipped, then we can subdivide those edges
rather than flipping them. In the resulting arc diagram only the subdivided edges may appear
as biarcs. But a bound on the flip distance to a Hamiltonian triangulation is of independent
interest. For instance, it is directly related to the current best upper bound on the diameter
of the flip graph of combinatorial triangulations [10, 20, 21]. The argument uses a single
so-called canonical triangulation and shows that every triangulation can be transformed
into this canonical triangulation in two steps: First at most b(3n− 9)/5c flips are needed to
obtain a 4-connected triangulation and then an additional at most 2n− 15 flips are needed
to transform any 4-connected triangulation into the canonical one. Combining two such flip
sequences yields an upper bound of 5.2n− 33.6 on the diameter of the flip graph [10]. The
bound of 2n− 15 flips for the second step is actually tight [20]. The corresponding bound for
a triangulation that is Hamiltonian (but not necessarily 4-connected) is slightly worse only:
It can be transformed into the canonical triangulation using at most 2n− 10 flips [21]. Hence
our focus is to improve the first step by showing that fewer flips are needed to guarantee a
Hamiltonian triangulation than a 4-connected one.

I Theorem 4. Every maximal planar graph on n ≥ 6 vertices can be transformed into a
Hamiltonian maximal planar graph using a sequence of at most b(n− 3)/2c edge flips.

Proof outline. The proof is constructive and consists of two steps. In a first step we apply
a sequence of elementary operations that transform a triangulation G into a 4-connected
triangulation G′. An elementary operation is either a usual edge flip or a dummy flip, where
a facial triangle T is subdivided into three triangles by inserting a new (dummy) vertex and
then all three edges of T are flipped. All this will be done in such a way that G′ becomes
4-connected and, therefore, contains a Hamiltonian cycle H ′. We then remove all dummy
vertices and construct a Hamiltonian cycle H ′′ resembling H ′ in the resulting triangulation
G′′. Finally, we argue that G′′ can be obtained from G with at most n/2 (usual) edge flips.
Specifically, we show that each dummy flip can be implemented using at most two edge flips.

Dummy flips. Given a triangulation G on n ≥ 4 vertices and a facial triangle T of G, a
dummy flip of T transforms G as follows (Figure 2): First, insert a new (dummy) vertex v

in the interior of face T and connect it to all three vertices of T . Note that T becomes a
separating triangle in the resulting graph. Second, flip all three edges of T in an arbitrary
order. Similarly to the usual flip operation, a dummy flip may create multiple edges. But we

STACS 2015

204 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

will use this operation in specific situations only—as specified in the lemma below—where
we can show that it produces a triangulation (that is, no multiple edges).

I Lemma 13. Let G be a maximal planar graph and let T be a facial triangle of G such that
every edge of T is incident to a separating triangle of G. Then the dummy flip operation of
T in G produces no double edges and no new separating triangles.

Step 1: 4-connectivity. Our main lemma to establish Theorem 4 is the following.

I Lemma 14. Every maximal planar graph on n ≥ 6 vertices can be transformed into a
4-connected maximal planar graph by a sequence of f flip and d dummy flip operations, for
some f, d ∈ N, such that f + 2d ≤ (n− 3)/2.

Recall that there are triangulations on n vertices that contain b(3n− 9)/5c pairwise edge-
disjoint separating triangles [10, 17]. In this case, we need to flip away at least one edge from
each separating triangle to reach 4-connectivity. Considering that a dummy flip operation
flips three edges, the parameters in Lemma 14 satisfy f + 3d ≥ b(3n− 9)/5c. The crucial
claim in Lemma 14 is that f + 2d ≤ (n − 3)/2 is possible, and later we will show how to
replace each dummy flip by two usual flips rather than three (Lemma 22).

The rest of this section is devoted to the proof of Lemma 14. We describe an algorithm
that, given a triangulation G on n ≥ 6 vertices, returns a sequence of f flip and d dummy flip
operations that produces a 4-connected graph. The bound 6f + 12d ≤ 3n− 9 is established
via the following charging scheme. Each edge of G, with the exception of the three edges of
the outer face, receives one unit of credit. Each edge flip costs six units and each dummy flip
costs fifteen units.

4-Block Decomposition. In our algorithm, we recursively process 4-connected subgraphs
using the 4-block tree B of G. By fixing an (arbitrary) plane embedding of G, we make B a
rooted tree such that the root is the 4-block that contains the boundary of the outer face of
G. Every separating triangle T of G corresponds to an edge between two 4-blocks, where the
parent lies in the exterior of T (plus T) and the child lies in the interior of T (plus T). For a
4-block Gi in B denote by Ti the outer face of Gi, and denote by ni the number of vertices
of Gi minus three (the vertices of Ti). An edge of Gi is called an interior edge if it is not
incident to the outer face Ti. For each 4-block Gi in B we maintain counters fi and di that
denote the number of flips and dummy flips, respectively, that were used within Gi during
the course of the algorithm. Initially fi = di = 0, for every vertex Gi of B.

The algorithm computes the sequence of flip and dummy flip operations incrementally,
and maintains a current triangulation produced by the operations. Both the graph G and
the 4-block decomposition B change dynamically: when we flip an edge e of some separating
triangle(s), all 4-blocks containing edge e merge into a single 4-block. At the end of the
algorithm, the tree B consists of a single 4-block that corresponds to the 4-connected graph
G′. In order to avoid notational clutter, we always denote the current 4-block tree by B.
As an invariant (detailed below) we maintain that at each node of B the number of interior
edges (ignoring dummy edges) balances the cost of operations that were spent in this 4-block.
As B evolves, so does the graph G(B) represented by B. This graph is the union of all nodes
(4-blocks) in B, where for any edge of B the vertices and edges of the common triangle in the
two endpoints (4-blocks) are identified.

Main loop. At every step, we take an arbitrary 4-block Gi on the penultimate level of B,
that is, Gi is not a leaf but all of its children are leaves. Let Ci denote the set of indices c

J. Cardinal, M. Hoffmann, V. Kusters, Cs. D. Tóth, and M. Wettstein 205

such that Gc is a child of Gi in B, and denote Ti = {Tc | c ∈ Ci}. The algorithm selects a
sequence of edges of Gi to be flipped (or dummy flipped) in order to merge Gi with Gc, for
all c ∈ Ci, into a new 4-block Gz. Denote the resulting 4-block tree by B′. If no edge of Ti is
flipped, then Gz is a leaf of B′. But if an edge of Ti is flipped, then Gz may be an interior
node of B′.

If an edge e of Ti is flipped and Gi is not the root of B, then more blocks may merge into
Gz: The edge e is definitely shared with the parent of Gi in B, but it may be shared with
further ancestors as well. In addition, the edge e may belong to (at most) one sibling Gs of
Gi and some descendants of Gs as well. We denote by J the set of all j such that Gj is a
leaf of B that is merged into Gz. Similarly, denote by Q the set of all q such that Gq is an
interior vertex of B that is merged into Gz, and denote by Q+ the set of indices q ∈ Q such
that fq + dq > 0. Note that neither J nor Q are empty, because Ci ⊆ J and i ∈ Q. However,
we may have Q+ = ∅.

Algorithmic preliminaries. In each iteration, we flip the edges of a dual matching of Gi (a
4-connector, defined below), but if Ti forms a checkerboard (defined below), we substitute
three of these flip operations by one dummy flip.

A 4-connector for Gi is a dual matching of Gi that contains precisely one edge from
every triangle in Ti. A 4-connector always exists because every perfect dual matching
(Theorem 10) is a 4-connector (Lemma 11). A minimum 4-connector is a 4-connector of
minimum cardinality. By Lemma 9 we can flip the edges of a 4-connector in an arbitrary
order, and the 4-blocks Gc, for all c ∈ Ci, will merge into Gi. We say that Ti is a checkerboard
if the triangles in Ti are pairwise edge-disjoint and every interior edge of Gi belongs to some
triangle in Ti. If Ti is a checkerboard, then we perform a dummy flip on a triangle F that is
selected according to the following lemma.

I Lemma 15. If Ti is a checkerboard, then Gi has a facial triangle F that is adjacent to
three triangles in Ti that are not all adjacent to Ti.

Algorithm 4Connect(G). Given a triangulation G, fix an arbitrary embedding of G. This
embedding defines a rooted 4-block tree B. While B is not a singleton, do: (1) Consider an
arbitrary vertex Gi at the penultimate level of B. (2) Find a minimum 4-connector M for
Gi that contains a maximum number of edges of Ti (that is, one, if possible). (3) If Ti is
not a checkerboard, then flip the edges of M in an arbitrary order. (4) Otherwise, let F

be an arbitrary facial triangle as in Lemma 15. First apply a dummy flip to F . For each
of the three triangles from Ti adjacent to F , remove the incident edge from M , and flip all
remaining edges of M in an arbitrary order. (5) Finally, update B and G(B).

Correctness of the Algorithm. We show that the above algorithm turns an input trian-
gulation G on n vertices into a 4-connected triangulation using a sequence of f flip and d

dummy flip operations, for some f, d ∈ N, such that f + 2d ≤ (n− 3)/2. By Lemmata 9, 13,
and 15, the operations described in the algorithm can be performed. In every step of the
algorithm at least two nodes of the 4-block tree are merged. Therefore, after a finite number
of steps we are left with a block tree that consists of a single 4-block G′.

I Observation 16. For each vertex v created by a dummy flip operation in algorithm
4Connect(G), subsequent operations do not modify the six facial triangles incident to v.

STACS 2015

206 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

Free edges. It remains to bound the number of flip and dummy flip operations performed
by the algorithm. An edge within some 4-block Gi of B is free if it is not incident to any
separating triangle of G(B). Free edges are a good measure of progress for our algorithm
because our final goal is to arrive at a state where all edges of G(B) are free.

Invariants. As an invariant we maintain that every vertex Gi of B satisfies the following
condition:

(F1) If Gi is the only vertex of B, then it has at least 6fi + 15di + 3 free edges.
(F2) If Gi is a leaf of B that is not the root of B, then Gi has at least 6fi + 15di + 3 free
interior edges.

(F3) If Gi is an interior vertex of B, then either fi = di = 0 or Gi has at least 6fi + 15di + 1
free interior edges.

Initially, (F2) holds for every leaf Gi of B because all of the interior 3(ni + 3)− 6− 3 = 3ni

edges are free, ni ≥ 1, and fi = di = 0. Trivially, (F3) holds for every interior vertex Gi of B
because fi = di = 0. Having a certain number of edges in a plane graph implies having a
certain number of vertices, as quantified by the following lemma.

Invariant maintenance. It remains to show that each step of the algorithm maintains
invariants (F1)–(F3). We start bounding the size of a minimum 4-connector M of Gi.

I Lemma 17. Let M be a minimum 4-connector for Gi that contains the maximum number
of edges of Ti.

(1) If s edges of Gi are each incident to two triangles from Ti, then |M | ≤ |Ci| − ds/3e.
(2) If the triangles in Ti are pairwise edge-disjoint and fi +di > 0, then |M | ≤ ni−2fi−5di.

In both cases, equality is possible only if M contains an edge of Ti.

Proof. (1) Partition the edge set of Gi into three dual matchings by Theorem 10. One of
them, say D, contains at least ds/3e of the s edges that are incident to two triangles from Ti.
If every triangle in Ti selects a unique incident edge from D, we obtain a 4-connector R ⊆ D

of size at most |Ci| − ds/3e. The minimality of M yields |M | ≤ |R|.
(2) By (F3), Gi has at least 6fi +15di +1 free interior edges. Therefore, at least one of the

three perfect dual matchings guaranteed by Theorem 10 contains at least d(6fi+15di+1)/3e =
2fi +5di +1 free interior edges. After removal of all those edges, the resulting dual matching R

is still a 4-connector. By the minimality of M we have |M | ≤ |R| ≤ (ni +1)−(2fi +5di +1) =
ni − 2fi − 5di.

If M contains no edge of Ti, consider again the 4-connector D from above. It is obtained
by removing free interior edges from a perfect dual matching of Gi. Hence D contains an
edge of Ti. But then by the choice of M we know that D is not a minimum 4-connector and
so we have |M | ≤ |C1| − ds/3e − 1 and |M | ≤ ni − 2fi − 5di − 1, respectively. J

I Lemma 18. Let M be a minimum 4-connector for Gi and suppose that Ti is not a
checkerboard. Then after flipping the edges in M , the resulting 4-block Gz contains at least
6fz + 15dz + 3ds/3e+ |Q+| free interior edges, where s denotes the number of edges of Gi

that are incident to two triangles from Ti.

I Lemma 19. Suppose that Gi together with all its children in B is merged into a leaf Gz

of B′ using f flips and d dummy flips. Then Gz contains at least 6(fz − fi − f) + 15(dz −
di − d) + 3ni + 3|Ci|+ 3|Q| − 3 free interior edges.

J. Cardinal, M. Hoffmann, V. Kusters, Cs. D. Tóth, and M. Wettstein 207

I Lemma 20. Suppose that fi = di = 0 and Gi along with all its children in B is merged
into an interior node Gz of B′ using f flips and d dummy flips. Then Gz contains at least
6(fz − f) + 15(dz − d) + 3ni + 3|Ci|+ 1 free interior edges.

I Lemma 21. Suppose that Ti is a checkerboard. Then Gz fulfills invariants (F1)–(F3).

Case analysis. We now use Lemmata 18–21 to show that every step of algorithm 4Connect
maintains (F1)–(F3). By Lemma 18 we may suppose in the following that the triangles in Ti

are pairwise edge-disjoint. Because if they are not, then the 4-block Gz obtained by flipping
the edges in M by Lemma 18 fulfills one of (F1), (F2), or (F3), depending on the status of
Gz in B′. If Ti is a checkerboard, then we are done by Lemma 21. Hence suppose that Ti is
not a checkerboard. Together with the fact that the triangles in Ti are pairwise edge-disjoint,
it follows that Gi has at least one free interior edge. As this edge appears in one of the three
perfect dual matchings of Theorem 10, we conclude that |M | ≤ ni. For the remainder of the
analysis we distinguish four cases.

Case 0: Gz is the only node of B′. Then by Lemma 18 there are at least 6fz + 15dz +
3ds/3e+ |Q+| ≥ 6fz +15dz free interior edges in Gz. Together with the three free non-interior
edges of Tz this proves (F1).

Case 1: Gz is an interior vertex of B′. If Q+ 6= ∅, then (F3) holds by Lemma 18. Hence
suppose that Q+ = ∅ and so in particular fi = di = 0. Using Lemma 20 with f = |M | and
d = 0 we obtain at least 6(fz−f)+15(dz−d)+3ni+3|Ci|+1 ≥ 6(fz−f)+15dz +3f +3f +1 =
6fz + 15dz + 1 free interior edges in Gz, which proves (F3).

Case 2: Gz is a leaf of B′ (but not the only node) and fi + di > 0. We distinguish two
subcases. If M contains no edge of Ti, then Lemma 17(2) yields f = |M | ≤ ni− 2fi− 5di− 1.
By Lemma 19, we find at least

6(fz − fi − f) + 15(dz − di) + 3ni + 3|Ci|+ 3|Q| − 3
≥ 6fz − 6fi − 3f − 3(ni − 2fi − 5di − 1) + 15(dz − di) + 3ni + 3f + 3|Q| − 3
= 6fz + 15dz + 3|Q|

free interior edges in Gz. Since i ∈ Q, we have |Q| ≥ 1 and (F2) follows.
Otherwise, M contains an edge of Ti. Then the parent Gp of Gi in B is merged into Gz.

Lemma 17(2) yields f = |M | ≤ ni − 2fi − 5di. By Lemma 19 we find at least

6(fz − fi − f) + 15(dz − di) + 3ni + 3|Ci|+ 3|Q| − 3
≥ 6fz − 6fi − 3f − 3(ni − 2fi − 5di) + 15(dz − di) + 3ni + 3f + 3|Q| − 3
= 6fz + 15dz + 3(|Q| − 1)

free interior edges in Gz. Since {i, p} ⊆ Q, we have |Q| ≥ 2 and (F2) follows.

Case 3: Gz is a leaf of B′ (but not the only node) and fi = di = 0. We distinguish two
subcases. If |M | ≤ ni − 1, then Lemma 19 guarantees 6fz − 3f − 3f + 15dz + 3ni + 3|Ci|+
3|Q| − 3 ≥ 6fz − 3(ni− 1)− 3f + 15dz + 3ni + 3f + 3|Q| − 3 = 6fz + 15dz + 3|Q| free interior
edges in Gz, which together with i ∈ Q proves (F2).

Otherwise, we have f = |M | = ni. We claim that M contains an edge of Ti (otherwise
Ti would be a checkerboard). Suppose that M does not contain any edge of Ti. Then no

STACS 2015

208 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

edge of Ti is incident to any triangle from Ti. (Otherwise, we could replace the edge in M

that is incident to such a triangle by the edge shared with Ti. As the triangles in Ti are
pairwise edge-disjoint, the replaced edge is incident to only one triangle from Ti. The result
is a 4-connector of the same size as M , but with an edge of Ti. This contradicts our choice
of M .) Therefore, all 3ni interior edges of Gi are incident to triangles in Ti, and so Ti is a
checkerboard. This proves our claim.

As M contains an edge of Ti, the parent Gp of Gi in B is merged into Gz as well. By
Lemma 19 we find at least 6(fz − ni) + 15dz + 3ni + 3ni + 3|Q| − 3 ≥ 6fz + 15dz + 3(|Q| − 1)
free interior edges in Gz, which together with {i, p} ⊆ Q proves (F2).

Summary. In all cases we have shown that the resulting 4-block tree B′ satisfies our invariant.
Thus the resulting 4-connected graph G′ has n + d vertices and at least 6f + 15d + 3 edges,
where f and d denote the number of flip and dummy flip operations, respectively, that
were executed during the algorithm. Being a maximal planar graph, G′ contains exactly
3(n + d)− 6 edges. Therefore, 6f + 15d + 3 ≤ 3(n + d)− 6 and so 2f + 4d ≤ n− 3, as required.
This completes the proof of Lemma 14.

Step 2: Eliminating dummy vertices. At this stage we have a 4-connected planar graph
G′. By Tutte’s Theorem such a graph is Hamiltonian, so consider some Hamiltonian cycle
H ′ of G′. It remains to argue how G′ and H ′ can be used to obtain a short sequence of edge
flips that transform the original graph G into a Hamiltonian graph G′′. The following lemma
in combination with Lemma 14 completes the proof for Theorem 4.

I Lemma 22. Suppose that G′ has been obtained from G using f flips and d dummy flips.
Then G can be transformed into a Hamiltonian maximal planar graph using at most f + 2d

edge flips.

Proof of Corollary 6. The following analogue of Lemma 22, combined with Lemma 14 and
the characterization of Bernhart and Kainen [5], proves Corollary 6.

I Lemma 23. Suppose that G′ has been obtained from G using f subdivisions and d dummy
flips. Then G can be subdivided into a subhamiltonian graph using at most f + 2d subdivision
vertices (at most one per edge).

Acknowledgements This work began at the 12th Gremo’s Workshop on Open Problems
(GWOP), June 30–July 4, 2014, in Val Sinestra (GR), Switzerland. We thank all participants
for the productive and positive atmosphere, and in particular Radoslav Fulek, Anna Gundert,
Malte Milatz, Bettina Speckmann, Sebastian Stich, and Tibor Szabó for inspiring discussions.

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and
Gelasio Salazar. Shellable drawings and the cylindrical crossing number of Kn. Discrete
Comput. Geom., 52(4):743–753, 2014.

2 Oswin Aichholzer, Clemens Huemer, and Hannes Krasser. Triangulations without pointed
spanning trees. Comput. Geom. Theory Appl., 40(1):79–83, 2008.

3 T. Alastair and J. Nicholson. Permutation procedure for minimising the number of crossings
in a network. Proc. IEE, 115(1):21–26, 1968.

J. Cardinal, M. Hoffmann, V. Kusters, Cs. D. Tóth, and M. Wettstein 209

4 Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard,
Tamara Mchedlidze, Monique Teillaud, and Alexander Wolff. Universal point sets for
drawing planar graphs with circular arcs. Journal of Graph Algorithms and Applications,
18(3):313–324, 2014.

5 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. J. Combin. Theory,
Ser. B 27:320–331, 1979.

6 J. Blažek and M. Koman. A minimal problem concerning complete plane graphs. In
M. Fiedler, editor, Theory of graphs and its applications, pages 113–117. Czech. Acad. of
Sci., 1964.

7 John Adrian Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate texts in
Mathematics. Springer, Berlin, 2008.

8 Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood. Simulta-
neous diagonal flips in plane triangulations. J. Graph Theory, 54(4):307–330, 2007.

9 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom. Theory Appl.,
42(1):60–80, 2009.

10 Prosenjit Bose, Dana Jansens, André van Renssen, Maria Saumell, and Sander Verdonschot.
Making triangulations 4-connected using flips. Comput. Geom. Theory Appl., 47(2):187–
197, 2014.

11 Prosenjit Bose and Sander Verdonschot. A history of flips in combinatorial triangulations.
In Computational Geometry—XIV Spanish Meeting on Computational Geometry, EGC
2011, volume 7579 of LNCS, pages 29–44. Springer, Berlin, 2012.

12 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, 4 edition, 2010.

13 David Eppstein. Universal point sets for planar graph drawings with circular arcs. Presen-
tation at the 25th Canadian Conference on Computational Geometry, Waterloo, Canada,
http://www.ics.uci.edu/~eppstein/pubs/AngEppFra-CCCG-13-slides.pdf, 2013.

14 Emilio Di Giacomo, Walter Didimo, and Giuseppe Liotta. Spine and radial drawings. In
Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, chapter 8, pages
247–284. CRC press, Boca Raton, FL, 2013.

15 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath. Curve-
constrained drawings of planar graphs. Comput. Geom. Theory Appl., 30(1):1–23, 2005.

16 Branko Grünbaum. Convex Polytopes, volume 221 of Graduate texts in Mathematics.
Springer, Berlin, 2003.

17 Jochen Harant, Mirko Horňák, and Zdislaw Skupień. Separating 3-cycles in plane triangu-
lations. Discrete Math., 239(1):127–136, 2001.

18 Goos Kant. A more compact visibility representation. Int. J. Comput. Geometry Appl.,
7(3):197–210, 1997.

19 Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends suffice
for planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002.

20 Hideo Komuro. The diagonal flips of triangulations on the sphere. Yokohama Math. J.,
44:115–122, 1997.

21 Ryuichi Mori, Atsuhiro Nakamoto, and Katsuhiro Ota. Diagonal flips in Hamiltonian
triangulations on the sphere. Graphs Combin., 19(3):413–418, 2003.

22 János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations.
Graphs Combin., 17:717–728, 2001.

23 Lionel Pournin. The diameter of associahedra. Adv. Math., 259:13–42, 2014.
24 Thomas L. Saaty. The minimum number of intersections in complete graphs. Proceedings

of the National Academy of Sciences of the United States of America, 52:688–690, 1964.
25 Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, triangu-

lations, and hyperbolic geometry. J. Amer. Math. Soc., 1:647–682, 1988.

STACS 2015

http://www.ics.uci.edu/~eppstein/pubs/AngEppFra-CCCG-13-slides.pdf

210 Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

26 Avi Wigderson. The complexity of the Hamiltonian circuit problem for maximal planar
graphs. Technical Report 298, Princeton University, 1982.

Tractable Probabilistic µ-Calculus That Expresses
Probabilistic Temporal Logics∗

Pablo Castro1,2, Cecilia Kilmurray1,2, and Nir Piterman3

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Río
Cuarto, Río Cuarto, Argentina
{ckilmurray,pcastro}@dc.exa.unrc.edu.ar

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
3 Department of Computer Science, University of Leicester, Leicester, UK

nir.piterman@leicester.ac.uk

Abstract
We revisit a recently introduced probabilistic µ-calculus and study an expressive fragment of
it. By using the probabilistic quantification as an atomic operation of the calculus we establish
a connection between the calculus and obligation games. The calculus we consider is strong
enough to encode well-known logics such as pctl and pctl∗. Its game semantics is very similar
to the game semantics of the classical µ-calculus (using parity obligation games instead of parity
games). This leads to an optimal complexity of NP∩co-NP for its finite model checking procedure.
Furthermore, we investigate a (relatively) well-behaved fragment of this calculus: an extension
of pctl with fixed points. An important feature of this extended version of pctl is that its
model checking is only exponential w.r.t. the alternation depth of fixed points, one of the main
characteristics of Kozen’s µ-calculus.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases µ-calculus, probabilistic logics, model checking, game semantics

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.211

1 Introduction

In recent years, probabilistic model checking has received an increasing attention in the area
of system verification; tools like PRISM [8] and LiQuor [4] enable the automatic verification
of quantitative properties of systems (and a lot more); these kinds of properties are essential
for the verification of network protocols, critical systems and randomized algorithms, to
name a few examples.

Some of the most prominent probabilistic temporal logics used for model checking are
pctl, the probabilistic counterpart of ctl, and pctl∗, the probabilistic counterpart of ctl∗.
In particular, pctl has a clear semantics, and its model checking procedure can be performed
in polynomial time. The definition of a probabilistic µ-calculus that provides a unifying
formalism for probabilistic temporal logics has been an active field of research in the area,
such a formalism could provide to probabilistic model checking the same benefits as those
given by Kozen’s µ-calculus to qualitative model checking. The µ-calculus [12] is a powerful
temporal logic that combines many useful features. It generalizes modal logic by adding
fixpoint operators, it has a compact, extremely powerful, and very pleasing mathematical

∗ This work was partially supported by FP7-PEOPLE-IRESES-2011 MEALS project and EPSRC
EP/L007177/1 project.

© Pablo Castro, Cecilia Kilmurray, and Nir Piterman;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 211–223

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.211
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

212 Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics

theory, its model checking problem is polynomial in the length of the formula and only
exponential in its alternation depth [7]. Most of the temporal logics used in computer
science can be encoded into fragments of it; and, in addition, it has strong connections to
two-player games and automata theory, which lead to optimal decision procedures for it.

Here, we revisit the probabilistic µ-calculus introduced by Mio and Simpson in [14,
15], however, we suggest to use probabilistic quantification as an atomic operation. The
resulting probabilistic µ-calculus (named µp-calculus) enjoys many of the qualities of the
discrete µ-calculus. We show that the logic is expressive enough to capture pctl and
pctl∗. We establish a tight connection between our logic and the recently introduced
obligation parity games [3]. In particular, we provide a game semantics for µp-calculus
using such games. When considering finite-state model checking, the games provide an
optimal decision procedure in NP ∩ co-NP (compared with 3EXPTIME for the logic of Mio
and Simpson); where optimality is w.r.t. model checking the discrete µ-calculus, which
has the same complexity. In contrast to the “normal” µ-calculus, we lose the connection
between the alternation depth of the formula and the complexity of model checking. We also
propose a well-behaved fragment of µp-calculus, this logic is mainly an extension of pctl
with fixpoints, we prove that the complexity of model checking for this fragment is only
exponential in the alternation depth of quantifiers; as mentioned above, this is an important
characteristic of standard µ-calculus.

The paper is organized as follows. In Section 2 we introduce the basic definitions needed
to tackle the rest of the paper. The probabilistic µ-calculus is introduced in Section 3 and
then its expressivity is investigated. We then present the game semantics in Section 4. In
Section 5 we show that a well-known “hard” problem in NP∩co-NP can be reduced to model
checking formulas of µp-calculus with only one fixpoint operator. A well-behaved fragment
of this logic is described in Section 6. Finally, we discuss related work and add final remarks.

2 Preliminaries

In this section we briefly introduce some basic concepts. We denote the set of real numbers
between 0 and 1 as [0, 1]. Given a set S we denote by ~0(S) the function ~0(S)(s) = 0 for
every s ∈ S and by ~1(S) the function ~1(S)(s) = 1 for every s ∈ S. When S is clear from
the context we write ~0 and ~1. Given a universe U and a subset S ⊆ U we write χ

S
for the

function χ
S
(s) = 1 if s ∈ S and χ

S
(s) = 0 for s /∈ S.

A Kripke structure over a set AP of atomic propositions is a tuple K = 〈S,R,L, s0〉,
where S is a (countable) set of locations, R ⊆ S×S is a relation such that for every s ∈ S we
have that R(s) is finite, L : AP → 2S is a labeling function and s0 ∈ S is an initial location.
A Markov chain over a set AP of atomic letters is a tuple M = 〈K,P 〉, where K is a Kripke
structure and P : R → (0, 1] is such that for every s ∈ S we have

∑
(s,s′)∈R P (s, s′) = 1.

Sometimes it will be convenient to consider P : S×S → [0, 1] by associating P (s, s′) = 0 for
every (s, s′) /∈ R. For a location s ∈ S we denote by Ms the Markov chain obtained from M

by setting s to the initial location. A path π = s0, s1, . . . is a finite or infinite sequence of
locations such that for every 0 ≤ i < n we have P (si, si+1) > 0. If π = s0, . . . , sn is finite,
we denote by measureM (π) =

∏n−1
i=0 P (si, si+1) the measure of (the set of infinite paths that

extend) π. Given a (Borel) set of paths Π starting from the same state s, we denote by
measureM (Π) the measure of Π. Note that every Markov chain can be interpreted as a
Kripke structure by looking on the embedded Kripke structure.

pctl formulas over a set AP are defined as state formulas (Φ) and path formulas (Ψ)

P. Castro, C. Kilmurray, and N. Piterman 213

as follows. Let J = {>,≥} × [0, 1] be the set of bounds.

Φ ::= pi | ¬pi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ) Ψ ::= ©Φ | ΦU Φ | ΦW Φ

Here W is the weak until (i.e., it allows the first operand to hold forever). As usual we
introduce the abbreviations F and G. State formulas are formulas. The semantics of pctl
associates with every formula a set of states. We denote by JϕKM the set of states of M
that satisfy ϕ. For every path formula ϕ and state s of M , measureM (s, ϕ) is the measure
of paths starting in s that satisfy ϕ. The semantics and intuitions of pctl formulas are as
usual, see [1].

We define µ-calculus over Kripke structures with the following syntax.

Φ ::= pi | ¬pi | Xi | ♦Φ | �Φ | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | µXi.Φ | νXi.Φ

Where pi ∈ AP , V = {X0, X1, . . . } is an enumerable set of variables, and Xi ∈ V . The
notions of open and closed formulas are as usual. The semantics of a µ-calculus formula
over a Kripke structure K = 〈S,R,L, s0〉 is given w.r.t. assignments to variables in V. An
assignment ρ : V → (S → {0, 1}) associates a function from the states to {0, 1} with every
variable in V. Given an assignment ρ we set ρ[f/X] to be the assignment that associates
the function f with X and ρ(Y) with every Y 6= X. We use the notation of a function
into {0, 1} instead of set notation to facilitate the discussion in the rest of the paper. The
semantics of a formula ϕ in structure K with respect to assignment ρ, denoted JϕKρK , is
defined as follows.

JpiK
ρ
K = χL(pi) J¬piKρK = 1− χL(pi)

JXKρK = ρ(X)
Jϕ1 ∨ ϕ2K

ρ
K = max(Jϕ1K

ρ
K , Jϕ2K

ρ
K) Jϕ1 ∧ ϕ2K

ρ
K = min(Jϕ1K

ρ
K , Jϕ2K

ρ
K)

J♦ϕKρK = λs.max(s,s′)∈RJϕKρK(s′) J�ϕKρK = λs.min(s,s′)∈RJϕKρK(s′)
JµX.ϕKρM = lfp(JϕKρ[f/X]

M) JνX.ϕKρM = gfp(JϕKρ[f/X]
M)

Note that the semantics of a formula where all variables are bound by fixpoint operators
is independent of the assignment ρ. The interested reader is referred to [16] for an in-depth
introduction to µ-calculus.

3 A Probabilistic µ-Calculus

In this section we present our version of probabilistic µ-calculus (denoted µp-calculus). Un-
like the “normal” µ-calculus, µp-calculus is two sorted. We distinguish between qualitative
formulas (that get values in {0, 1}) and quantitative formulas (that get values in [0, 1]).1
Although the logic is a subset of the probabilistic µ-calculus of Mio and Simpson [15] we
give a direct definition of its semantics without relying on their results.

Given an enumerable set of variables V = {X0, X1, . . . }, the syntax of the logic is given by
the following grammar, where Ψ are qualitative formulas, and Φ are quantitative formulas.

J ::= {>,≥} × [0, 1]
Ψ ::= pi | ¬pi | Ψ1 ∨Ψ2 | Ψ1 ∧Ψ2 | [Φ]J | νXi.Ψ | µXi.Ψ
Φ ::= Ψ | Xi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | ♦Φ | �Φ | ©Φ | νXi.Φ | µXi.Φ

(1)

1 This is not to be confused with qualitative pctl, where the bounds are restricted to ≥ 1 and > 0.

STACS 2015

214 Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics

We say that variable Xi is bound in σXi.ϕ(Xi) for σ ∈ {µ, ν}. A variable that is not
bound is free. A formula is a qualitative formula with no free variables. That is, at the top
level we consider only formulas that can be evaluated to {0, 1}. Note that we add to the
existential and universal next operators of µ-calculus the (probabilistic) next operator and
the probabilistic quantification operator.

The semantics of a formula ψ over a Markov chain M is defined with respect to an
interpretation ρ, which associates a function from states to real values in [0, 1] with each
variable appearing in ψ. Formally, for ρ : V → (S → [0, 1]) the semantics JψKρM : S → [0, 1]
is defined as follows:

JpiK
ρ
M = χ

L(pi) J¬piKρM = 1− χ
L(pi)

JXKρM = ρ(X)
Jϕ1 ∨ ϕ2K

ρ
M = max(Jϕ1K

ρ
M , Jϕ2K

ρ
M) Jϕ1 ∧ ϕ2K

ρ
M = min(Jϕ1K

ρ
M , Jϕ2K

ρ
M)

J©ϕKρM = λs.
∑
s′ P (s, s′)JϕKρM (s′) J[ϕ]JKρM = (JϕKρM (s)J ? 1 : 0)

J♦ϕKρM = λs.max(s,s′)∈RJϕKρM (s′) J�ϕKρM = λs.min(s,s′)∈RJϕKρM (s′)
JµX.ϕKρM = lfp(JϕKρ[f/X]

M) JνX.ϕKρM = gfp(JϕKρ[f/X]
M)

That is, the value of the probabilistic next is the average value over successors and the
probabilistic quantification compares the value with the given bound. Even though the
semantics is quite similar to the semantics of µ-calculus the former is restricted to functions
of the type f : S → {0, 1} and here the functions are f : S → [0, 1]. That is, functions
associate real values with states.

It is simple to see that all these transformers are monotonic. In particular, if ρ1 ≤ ρ2,
that is for every X ∈ V and every s ∈ S we have ρ1(X)(s) ≤ ρ2(X)(s), then JϕKρ1

M ≤ JϕKρ2
M .

For instance, consider a formula of the form [ϕ]J . We have to show that, if J[ϕ]JKρ1
M (s) = 1,

then J[ϕ]JKρ2
M = 1. However, if ρ1 ≤ ρ2 it follows that JϕKρ1

M ≤ JϕKρ2
M . So, if JϕKρ1

MJ , then
also JϕKρ2

MJ . It follows from the Knaster-Tarski theorem that fixed-points are well defined.
It is possible to show that our calculus is closed under negation. For this, we need to

consider the usual dualizations between the standard operators. In addition, the probab-
ilistic next is its own dual and the probabilistic quantification has to be replaced with the
dual probabilistic quantification. That is, [·]>1−p is the dual of [·]≥p and [·]≥1−p is the dual
of [·]>p. We now show that the definition of qualitative formulas is indeed justified.

I Lemma 1. For every qualitative formula ϕ we have JϕKρM ∈ {0, 1}.

Proof. We can show that the semantics of all operators in the qualitative fragment are
functions whose range is {0, 1}. This holds trivially for propositions. Given two functions
whose range is {0, 1} clearly, min and max return such functions as well.

For [ϕ]J this follows directly from the definition. J

3.1 Expressing the µ-Calculus
We show that µp-calculus is strong enough to express the µ-calculus over the embedded
Kripke structure without using the existential and universal next operators. We include this
construction mostly as justification for the hardness of model checking the µp-calculus over
finite-state Markov chains.

Given a µ-calculus formula ϕ, let p(ϕ) denote the formula obtained from ϕ by the fol-
lowing recursive transformation.

p(pi) = pi p(ψ1 ∨ ψ2) = p(ψ1) ∨ p(ψ2) p(♦ψ) = [©p(ψ)]>0
p(¬pi) = ¬pi p(ψ1 ∧ ψ2) = p(ψ1) ∧ p(ψ2) p(�ψ) = [©p(ψ)]≥1
p(X) = X p(µX.ψ) = µX.p(ψ) p(νX.ψ) = νX.p(ψ)

P. Castro, C. Kilmurray, and N. Piterman 215

That is, we replace the existential next operator by a probabilistic quantification of more
than 0, and the universal next operator by a probabilistic quantification of at least 1.

I Lemma 2. For every Markov chain M = 〈K,P 〉 we have Jp(ϕ)KρM = JϕKρK .

We notice that, in general, it is not clear how to express the universal and existential next
operators without including them explicitly. This is because the [·]J operator also resets the
value to 0 or 1. An additional comment regarding these operators is included in Section 5.
It follows that µp-calculus is strong enough to express all standard temporal logics such as
ctl, ltl, and ctl∗.

3.2 Expressing pctl
We show that µp-calculus can express pctl. Given a pctl formula ϕ, let t(ϕ) denote the
formula obtained from ϕ by the following recursive transformation.

t(pi) = pi t(ψ1 ∨ ψ2) = t(ψ1) ∨ t(ψ2) t(PJ(ψ)) = [t(ψ)]J
t(¬pi) = ¬pi t(ψ1 ∧ ψ2) = t(ψ2) ∧ t(ψ2) t(©ψ) = ©t(ψ)
t(ψ1 U ψ2) = µX . t(ψ2) ∨ (t(ψ1) ∧©X) t(ψ1W ψ2) = νX . t(ψ2) ∨ (t(ψ1) ∧©X)

That is, we use fixpoint operators to unwind until and weak until operators in the standard
way this is done with ctl and µ-calculus. We note that this construction is essentially
identical to the encoding of ctl in µ-calculus, which is used also in [15] (though the main
complexity in their construction is in expressing the probabilistic quantification, which is
part of the syntax in our setting). Due to its importance we include it in full here.

I Lemma 3. For every Markov chain M and pctl formula ϕ we have JϕKM = Jt(ϕ)KρM .

The conversion of pctl∗ to µp-calculus is also possible. As for pctl, it is essentially
identical to the translation of ctl∗ to µ-calculus, with the caveat that we have to replace
nondeterministic automata by deterministic automata. The usage of deterministic automata
is, similarly, required for the handling of ltl for probabilistic model checking [2]. We
note that this implies that pctl∗ is expressible (through the same construction with the
additional encoding of the probabilistic thresholds) also in the probabilistic µ-calculus of
Mio and Simpson.

4 Game Semantics

First, we describe the intuition behind the game semantics, and only then formally define
the games. Given a formula ϕ and a Markov chain M = 〈K,P 〉, where K = 〈S,R,L, sin〉,
we define a game whose configurations correspond to locations of M and subformulas of
ϕ. The semantics is defined in terms of a two-player stochastic obligation parity game [3].
Such games include configurations of players 0 and 1 as well as probabilistic configurations.
The winning condition is a combination of a parity condition and obligations (for how much
player 0 has to win) on some configurations. Player 0 is the verifier, who tries to prove
that the formula holds, and player 1 is the refuter, who tries to prove that the formula does
not hold. Each configuration has a valuation for each player. In general, the value of a
configuration, denoted by vali(s, ϕ) for i ∈ {0, 1}, is a value in [0, 1]; vali(s, ϕ) = 1 means
that player i wins (completely) from a configuration. For every qualitative (sub)formula the
value of (s, ϕ) is either 0 or 1. Intuitively, if val0(s, ϕ) = 1, then the formula is true in M .
For propositions, (s, p), player 0 wins when s ∈ L(p) and she loses otherwise (configurations

STACS 2015

216 Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics

with ¬p are dual). Configurations (s, ϕ1 ∨ ϕ2) are verifier configurations, and she chooses
a successor (s, ϕi). Configurations (s, ϕ1 ∧ ϕ2) are refuter configurations, and she selects a
successor (s, ϕi).

For a fixpoint σ ∈ {µ, ν}, from configuration (s, σX.ϕ) the game progresses to (s, ϕ);
while from configurations (s,X) the game progresses to (s, σX.ϕ) where σX.ϕ is the sub-
formula binding X. Interesting cases are the probabilistic operators: from configuration
(s, [ϕ]J) the game progresses with no choice to (s, ϕ). However, the former configurations
have the obligation J associated with them. That is, from these obligation states player 0
wins completely (value 1) if she wins with a value satisfying J from the successor configura-
tion. These three types of configurations (fixpoint related and probabilistic quantification)
are deterministic configurations. We associate them with the probabilistic player and assign
the probability 1 to the single successor. The next operators are treated as follows. A con-
figuration of the form (s,♦ϕ) is a verifier configuration from where she chooses a successor
s′ of s and moves to configuration (s′, ϕ). A configuration of the form (s,�ϕ) is a refuter
configuration from where she chooses a successor s′ of s and moves to configuration (s′, ϕ).
A configuration of the form (s,©ϕ) is a probabilistic configuration with successors (s′, ϕ)
for every successors s′ of s. Furthermore, the probability of ((s,©ϕ), (s′, ϕ)) is κ(s, s′). It
follows that the only (meaningful) probabilistic configurations are those corresponding to
the probabilistic next of the calculus. The parity condition in the game arises from the
alternation depth of formulas.

4.1 Parity Obligation Games
We give a short introduction to obligation parity games. The notion of winning (and value)
in an obligation game is quite involved and we refer the reader to [3] for an in-depth intro-
duction.

A parity obligation game is G = (V, (V0, V1, Vp), E, κ,G), where V is a set of config-
urations, V0, V1, and Vp form a partition of V to player 0, player 1, and stochastic con-
figurations, respectively, E ⊆ V × V is the set of edges, κ associates a probabilistic dis-
tribution with the edges leaving every configuration in Vp, i.e., for every v ∈ Vp we have
Σ(v,v′)∈Eκ(v, v′) = 1 and for every (v, v′) /∈ E we have κ(v, v′) = 0, and G = (c,O) is the
winning condition, where c : V → [0..m] is a parity priority function, with m as its index,
and O : V → {⊥} ∪ ({>,≥}× [0, 1]) is the obligation function. A configuration v such that
O(v) 6= ⊥ is called an obligation configuration.

I Theorem 4. [3] For every configuration v ∈ V there is a value vali(v) ∈ [0, 1] such that
val0(v) + val1(v) = 1. Furthermore, for every obligation configuration v we have vali(v) ∈
{0, 1}. For a configuration v of a finite parity obligation game, one can decide whether
vali(v) ≥ r in NP ∩ co-NP and vali(v) can be computed in exponential time.

4.2 Model Checking Game
We are now ready to formally define the model checking games. Let sub(ϕ) denote the
subformulas of ϕ according to the grammar in (1). We use the notion of alternation depth
as defined, e.g., in [7]. Roughly speaking, the alternation depth of a formula is a measure of
its complexity. Essentially, it is the largest number of µ and ν alternations that appear in
the formula. Furthermore, let d be ad(ϕ), with every subformula ϕ′ of ϕ we can associate
a color c(ϕ′) as follows. If ϕ′ = νX.ψ then c(ϕ′) = 2(d − ad(ϕ′)). If ϕ′ = µX.ψ then
c(ϕ′) = 2(d− ad(ϕ′)) + 1. For every other formula ϕ′ we set c(ϕ′) = 2d− 1. It follows that
c(ϕ′) is in the range [0..2d− 1].

P. Castro, C. Kilmurray, and N. Piterman 217

s0
p

s1
¬p

1
2

1
2

1

Figure 1
Markov chain M .

s0
νX.p ∧ [©X]≥0.5

s0
p ∧ [©X]≥0.5

s0
[©X]≥0.5

≥ 0.5

s0
©X

s0
X

s1
X

s0
p

s1
νX.p ∧ [©X]≥0.5

s1
p ∧ [©X]≥0.5

s1
[©X)]≥0.5

≥ 0.5

s1
©X

s1
X

s1
p

1
2

1
2

Figure 2 The game GM,ϕ.

I Definition 5. Consider a Markov chain M = 〈K,P 〉, where K = 〈S,R,L, sin〉 and a
formula ϕ. We define the game GM,ϕ = (V,E, (V0, V1, Vp), κ,G) as follows:

V = {(s, ψ) | s ∈ S ∧ ψ ∈ sub(ϕ)},
V0 = {(s, ψ1 ∨ ψ2), (s,♦ψ)}, V1 = {(s, ψ1 ∧ ψ2), (s,�ψ)}, and Vp = V \ (V0 ∪ V1),
E = {((s, p), (s, p)), ((s,¬p), (s,¬p)) | p is a proposition } ∪ {((s, [ψ]J), (s, ψ))}

∪ {((s, ψ1 ∨ ψ2), (s, ψi)) | i ∈ {1, 2}} ∪ {((s, ψ1 ∧ ψ2), (s, ψi)) | i ∈ {1, 2}}
∪ {((s,♦ψ), (s′, ψ)) | P (s, s′) > 0} ∪ {((s,�ψ), (s′, ψ)) | P (s, s′) > 0}
∪ {((s,©ψ), (s′, ψ)) | P (s, s′) > 0} ∪ {((s, σX.ψ), (s, ψ)) | σ ∈ {ν, µ}}
∪ {((s,X), (s, σX.ψ)) | σX.ψ is the subformula binding X and σ ∈ {µ, ν}}

κ((s,©ψ)(s′, ψ)) = P (s, s′), and κ((s, ψ)(s, ψ′)) = 1 for every other (s, ψ) ∈ Vp and
((s, ψ), (s, ψ′)) ∈ E.
G = (c,O), where O(s, [ψ]J) = J and O(s, ψ) = ⊥ for every other formula;

c(s, ψ) =

c(ψ) If ψ is not a proposition.
0 If (ψ = p and s ∈ L(p)) or (ψ = ¬p and s /∈ L(p))
1 If (ψ = p and s /∈ L(p)) or (ψ = ¬p and s ∈ L(p))

Let us present a simple example to obtain a first taste of µp-calculus and its game
semantics. Consider Markov chain M in Fig. 1 and the formula ϕ : νX.p ∧ [©X]≥0.5.
The alternation depth of ϕ is 1. It follows that c(s0, p) = 0, c(s1, p) = 1, and for every
other configuration c(v) = 0. The game obtained from ϕ and M is shown in Fig. 2. In
this graphic, we use circles to denote probabilistic configurations and diamonds to denote
player 1 configurations. Note that there are no player 0 configurations in this game. The only
configurations with obligations are (s0, [©X]≥0.5) and (s1, [©X]≥0.5). Let us calculate the
value of (s0, νX.p ∧ [©X]≥0.5), the unique successor of this configuration is a configuration
where the refuter plays. The configuration (s0, p) is colored 0 as p ∈ L(s0). Thus, the refuter
should avoid this sink state as it is winning for verifier and select the other successor. This
is a probabilistic configuration with obligation ≥ 1

2 . Then note that player 0 can ensure that
with probability at least 1

2 she either wins by reading (s0, p) or gets to the same obligation
configuration, with color 0 the minimal in the loop. Player 0 can repeat this pattern forever.
It follows that player 0 meets her obligation and that the value of (s0, [©X]≥0.5) is 1. We
conclude that val0(s0, νX.p ∧ [©X]≥0.5) = 1. Thus, the formula holds over this structure.
Intuitively, there is a location where p holds and for at least 1

2 of its successors the same
property holds again.

The following theorem shows that these games capture the semantics of µp-calculus.

I Theorem 6. For every Markov chain M , every location s, and every formula ϕ we have
JϕKρM (s) = val0(s, ϕ), where val0(s, ϕ) is the value of configuration (s, ϕ) in game GM,ϕ.

STACS 2015

218 Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics

I Corollary 7. Given a finite Markov chain M and a formula ϕ we can decide whether
JϕKρM = 1 in NP ∩ co-NP.

Proof. From Theorem 4 we can determine whether the value of configuration (s, ϕ) in GM,ϕ

is at least one in NP ∩ co-NP. The size of GM,ϕ is polynomial in the size of M and in the
size of ϕ. The result follows. J

We note that the game captures also the semantics of quantitative subformulas. It follows
that for a quantitative subformula ψ we can decide whether JψKρM (s) > p in NP ∩ co-NP
and compute it in exponential time.

5 Hardness of Model Checking

As we have shown in Section 3, there is a simple translation from the µ-calculus to our logic.
The exact complexity of model checking the µ-calculus is a long standing open problem. It
is well-known that its complexity lies in UP∩ co-UP [11] and is equivalent to the complexity
of solving parity games [7]. However, the complexity arises from the alternation of fixpoint
operators. Here, we show that in our logic already the fraction that uses only the least
fixpoint (and only one fixpoint) is as hard as some of the “hard” problems known to be in
NP ∩ co-NP but not known to be in P.

5.1 Two-player Stochastic Reachability Games
A two-player stochastic reachability game is G = (V, (V0, V1, Vp), E, κ, T), where V , V0,
V1, Vp, E, and κ are just like in parity obligation games and T ⊆ V is a set of target
configurations. A strategy for player 0 is σ : V0 → V such that for every v ∈ V0 we
have (v, σ(v)) ∈ E. A strategy for player 1 is defined similarly. We intentionally consider
only deterministic memoryless strategies2. Given strategies σ and π for players 0 and 1,
respectively, the Markov chain Gσ,π is the result of fixing the choices of the players according
to their strategies. For a configuration v /∈ T , let Πv = {v} · V ∗ · T · V ω be the set of paths
that start in v and visit T . Then, the value of a configuration v ∈ V \ T for player 0 is
val0(v) = supσ infπ measureGσ,π (Πv).

I Theorem 8. [6, 11, 17] For every configuration v ∈ V \ T deciding if val0(v) > p for
some p ∈ [0, 1] is in NP ∩ co-NP. The decision problem of whether a configuration in a
2-player parity/mean-payoff/discounted is winning for player 0 can be reduced to deciding
val0(v) > p.

5.2 Encoding Games as Model Checking
Consider a two-player stochastic reachability game G = (V, (V0, V1, Vp), E, κ, T), a config-
uration v ∈ V \ T and a value p ∈ [0, 1]. We show how to construct a Markov chain MG

and a formula ϕ
R
such that JϕRKρM

G
(s0) = 1 iff val0(v) > p, where s0 is the initial state of

MG. Let MG = 〈K,P 〉 be a Markov chain, where K = 〈V,E,L, v〉, and P (v, v′) is κ(v, v′) if
v ∈ Vp and P (v, v′) = 1

|E(v)| otherwise
3. The labeling L uses four propositions: p0, p1, and pp

2 It is well known that in two-player stochastic reachability games there are optimal deterministic
memoryless strategies for both players [6].

3 Or indeed, every distribution that associates non-zero probability with exactly the successors of v.

P. Castro, C. Kilmurray, and N. Piterman 219

marking configurations of player 0, player 1, and stochastic, and pg marking configurations
in T as the goal.

Let ψ
R

= pg ∨ ((pp →©X) ∧ (p0 → ♦X) ∧ (p1 → �X)). Then ϕ
R

= [µX.ψ
R

]>q.

I Lemma 9. JϕRKρM
G

(v) = 1 iff val0(v) > q.

I Corollary 10. Model checking alternation free µp-calculus formulas is as hard as solving
parity/mean-payoff/discounted games.

We note that this result relies on the usage of the existential and universal next operat-
ors. Indeed, the proof relies on our ability to “keep” the value of existential and universal
configurations in the original game in the formula. We do not know whether it is possible
to prove a similar result for a calculus without the existential and universal next operators.
We suspect that these next operators increase the expressive power of the logic. We also do
not know if by removing these two operators the “normal” complexity hierarchy of the µ-
calculus that relies on alternation depth is introduced. We note that parity obligation games
can clearly encode the reachability of stochastic games. Thus, showing that the µp-calculus
without existential and universal next operators enjoys the same hierarchy would require
other techniques for model checking this calculus. A hardness result that does not use the
existential and universal next operators is by encoding the µ-calculus in µp-calculus, as we
do in Subsection 3.1. This hardness result does rely on fixpoint alternation.

We note that a similar encoding can represent the value of an obligation game (with fi-
nitely many different obligation values) as the result of model checking a µp-calculus formula
over a Markov chain. As before, the structure of the game is encoded into the Markov chain.
The encoding is more involved as we have to include propositions that will identify the exact
obligations of configurations. Using these additional propositions the correct probabilistic
quantification can be included in the formula. The structure of the formula is very similar to
the classical encoding of the solution of parity games as µ-calculus model checking. That is,
a prefix with fixpoints binding the variables according to the parity condition followed by a
body that includes the association of configurations with player 0, player 1, or probabilistic
(as above) with the inclusion of probabilistic quantification as well. We leave further details
of this construction as future work.

6 µ-pctl

We now introduce a fragment of µp-calculus that is expressive enough for encoding pctl
and whose model checking is exponential only w.r.t. alternations of quantifiers. Thus,
for formulas with a bounded number of fixpoint alternations the model checking of this
fragment is polynomial. We believe that this logic may serve as a basis for defining other
useful extensions of pctl.

Let AP be a set {p0, p1, . . . } of atomic propositions and let V = {X0, X1, X2, . . . } be an
enumerable set of variables; the sets Φ and Ψ of location and path formulas, respectively,
are mutually recursively defined as follows:

J ::= {>,≥} × [0, 1]
Φ ::= pi | ¬pi | Xi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | [Ψ]J | νXi.Φ | µXi.Φ
Ψ ::= XΦ | ΦU Φ | ΦW Φ

We assume that in every formula there is no repetition of bound variables; it is straight-
forward to see that every formula can be rewritten to satisfy this requirement. In general,

STACS 2015

220 Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics

we are interested in formulas in which all variables are bound. The definition of alternation
depth is as before.

The semantics of this logic can be straightforwardly obtained from the semantics for
µp-calculus given in Section 3, taking into account the fixpoint semantics of path operators;
and similarly for its game semantics. That is, we replace Xψ by ©ψ, ψ1 U ψ2 by µX.ψ2 ∨
(ψ1 ∧©X), and ψ1W ψ2 by νX.ψ2 ∨ (ψ1 ∧©X).

Before presenting the model-checking algorithm we introduce some further notations.
We use a collection of (global) set variables Si ∈ 2S , where each variable Si represents
the valuation of a variable Xi appearing in the formula. Let c0, c1, . . . be a set of fresh
propositions, and we denote by M [ci ← Si] the structure over AP ∪ {c1, . . . , cn} obtained
from M by setting L(ci) = Si. For the formula ϕ, let ϕ[Xj ← cj] be the formula obtained
from ϕ, by replacing every reference to Xj by cj .

We are now ready to present the model-checking algorithm for µ-pctl. Our pro-
cedure, called eval, is presented as Algorithm 1. The procedure takes a Markov chain
M = 〈S,R,L, s0〉 and a µ-pctl formula ϕ and returns the set of states satisfying ϕ. We
assume that variables Si, where Xi is bound by a least fixpoint, are initialized to the empty
set; and variables Si, where Xi is bound by a greatest fixpoint, are initialized to the set of
all states S. This algorithm uses the well-known way of calculating fixed points by using the
Knaster-Tarski theorem and it assumes a polynomial model checking algorithm for pctl
(denoted evalPCTL).

The algorithm is similar to that proposed in [7] to model check standard µ-calculus, fixed
points are calculated in the standard way, new constants are used for reducing subformulas
to pctl formulas, and we only reset the values of variables when the nesting of two different
fixed points are found, otherwise previous calculation of fixed points are employed; to do
so, we use some auxiliary functions: Parent(ϕi) returns the fixpoint σXj surrounding ϕi
such that Xj appears free in that formula, and OpenSub(ϕi) returns the set subformulas
of ϕi that are bound by the same fixpoint operators and in which Xi is free. Notice that
formulas of the form [Ψ]J are handled by evalPCTL after replacing fixpoint variables by
propositions.

I Theorem 11. For a formula ϕ, s ∈ eval(M,ϕ) iff JϕKρM (s) = 1.

We note that this procedure is exponential only w.r.t. alternation depth. Thus, if the
alternation depth is fixed the procedure is polynomial.4

I Theorem 12. Procedure eval runs in time O((|M |k · |φ| 32)ad(φ)+1), where the constant k
depends on the model checker used for pctl formulas.

Furthermore, we prove that this fragment of µp-calculus is strictly more expressive than
pctl.

I Theorem 13. µ-pctl is strictly more expressive than pctl.

Proof. Consider the formula νY.p ∧ [XY]>0, one can see that it is equivalent to the ctl
formula EGp. Theorem 14.45 in [1] shows that there is no qualitative pctl formula that is

4 We also note that if a similar approach would be applied to finite obligation parity games the result
would be an exponential number of calls to an NP ∩ co-NP algorithm. Indeed, the search for the sets
of obligations that can be used to satisfy other obligations can follow the same search pattern by using
maximal and minimal fixpoints. However, checking that each obligation is met, which corresponds to
the pctl model checking in eval, would be a solution of a finite turn-based stochastic parity-reachability
game, which is in NP ∩ co-NP.

P. Castro, C. Kilmurray, and N. Piterman 221

Input: A Markov Chain M and a formula φ
Output: Set of states satisfying φ

1 switch the form of ϕ do
2 case φ is a pctl formula return evalPCTL(M ,φ) ;
3 case φ = pi return L(pi) ;
4 case φ = ci return Si ;
5 case φ = φ1 ∧ φ2 return eval(M ,φ1)∩eval(M ,φ2) ;
6 case φ = φ1 ∨ φ2 return eval(M ,φ1)∪eval(M ,φ2) ;
7 case φ = νXi.φ

′

8 if Parent(φ) = µXj then
9 forall the νXk ∈ OpenSub(φ) do Sk = S;

10 end
11 repeat
12 S′i = Si;
13 Si = eval(M [ci ← Si], φ′[Xi ← ci]);
14 until Si = S′i;
15 return Si;
16 end
17 case φ = µXi.φ

′

18 if Parent(φ) = νXj then
19 forall the µXk ∈ OpenSub(φ) do Sk = ∅;
20 end
21 repeat
22 S′i = Si;
23 Si = eval(M [ci ← Si], φ′[Xi ← ci]);
24 until Si = S′i;
25 return Si;
26 end
27 endsw

Algorithm 1: Recursive Procedure eval

equivalent to it. It is possible to extend their proof to cover also quantitative probabilistic
quantification of pctl. Thus, formula νY.p ∧ [XY]>0 cannot be expressed in pctl. J

To summarize, µ-pctl formulas with bounded alternation depth admit a polynomial
model-checking procedure, µ-pctl is more expressive than pctl. Finally, note that µ-pctl
may be particularly useful to capture properties about repeating patterns of executions with
measure 0. For instance, the formula νX.p ∧ [©X]≥0.5 allows one to separate the model of
Figure 1 from the model obtained from it by removing the loop in state s0. We leave as
further work a careful investigation of this logic.

7 Related Work

Several attempts have been made to extend the features of Kozen’s µ-calculus to the realm
of logics characterizing Markov chains. Huth and Kwiatkowska and, independently, McIver
and Morgan considered qualitative µ-calculi over Markov chains [9, 13]. Their definition
replaced union by maximum (max) and intersection by minimum (min) defining a basic
probabilistic calculus. The semantics of a formula was changed from a Boolean value of

STACS 2015

222 Tractable Probabilistic µ-Calculus That Expresses Probabilistic Temporal Logics

{0, 1} to a real value in [0, 1]. Their logic, however, does not capture popular probabilistic
temporal logics such as pctl [14]. In particular, these logics do not include the probabilistic
quantification central to the notion of pctl and also did not allow to capture a single prob-
abilistic quantification surrounding an ltl formula. Cleaveland et al. extend the calculus of
Huth and Kwiatkowska by adding probabilistic quantification and allowing a finite number
of nesting of probabilistic quantifications [5]. In particular, they do not allow interaction
between fixpoint operators and probabilistic quantification. This restriction makes reason-
ing about the logic simple by repeating a finite number of times the evaluation of the simpler
logic of Huth and Kwiatkowska. The resulting logic allows to express pctl (and pctl∗). At
the same time, it limits the expressive power of the logic: it cannot express the µ-calculus
over the embedded Kripke structure, or even the ctl formula EGp, which we saw can be
expressed in µ-pctl (and consequently in µp-calculus). Both types of µ-calculus are subsets
of µp-calculus.

Recently, Mio and Simpson [15] suggested an extended quantitative µ-calculus that in-
cludes various options for join and meet. They include the max and min suggested previ-
ously, but also include some standard operators in Łukasiewicz logics such as ⊕ and �, that
have similar pleasing mathematical properties and are generalizations of Boolean disjunction
and conjunction. In order to capture probabilistic quantification they also include explicit
multiplication by a rational constant. The resulting logic enjoys some of the mathematical
properties of the µ-calculus, allowing one to express pctl probabilistic quantification, for
instance. Using the operators ⊕ and � as atomic operators results in several shortcom-
ings. The best algorithms for model checking for this logic are either non-elementary or (by
reduction to first-order theory of the reals) triple exponential. Probabilistic quantification
is expressed as a combination of a fixpoint of one of the new operators along with multi-
plication by constants. Another advantage of our logic over that of Mio and Simpson is
that we can syntactically recognize formulas that are qualitative. Furthermore, not directly
relevant for the µ-calculus, the game semantics associated with it includes a construct called
“independent product” and it is not known whether games with this feature are determined
for general Borel winning conditions. We note that Mio and Simpson define their logic on
Markov decision processes (MDPs) and not over Markov chains. All the results we presen-
ted above generalize to MDPs. There are no additional technical difficulties in carrying the
proofs over. We have chosen to present our work on MDPs to simplify presentation and to
be consistent with the large body of work on model checking Markov chains and pctl that
we are familiar with.

8 Final Remarks

We have presented a probabilistic µ-calculus that uses probabilistic quantification as an
atomic operation. Our main goal is to provide a unifying formalism into which the probabil-
istic temporal logics used in model checking can be encoded. We have shown that pctl and
pctl∗ can be captured in this calculus, and we note that similar results can be obtained for
other probabilistic logics such as probabilistic linear temporal logic. We have proved some
interesting results for this logic; in particular, its model checking problem is in NP ∩ co-NP
and it admits a simple game semantics. Furthermore, we presented a simple fragment of this
logic which we believe may be important for expressing properties that are not expressible
in other probabilistic logics, in particular, those predicating about executions with measure
0, we leave as a further work a deeper investigation of this fragment.

The discrete µ-calculus is intrinsically linked to alternating parity tree automata. We

P. Castro, C. Kilmurray, and N. Piterman 223

believe that a similar connection exists between µp-calculus and p-automata [10]. We leave
the consideration of this connection as future work.

References
1 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
2 A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.

In 15th Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 1026 of Lecture Notes in Computer Science, pages 499–513. Springer, 1995.

3 K. Chatterjee and N. Piterman. Obligation blackwell games and p-automata. Technical
report, arXiv:1206.5174, 2012.

4 F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In QEST, pages 131–132. IEEE Computer Society, 2006.

5 R. Cleaveland, S. Purushothaman Iyer, and M. Narasimha. Probabilistic temporal logics
via the modal mu-calculus. Theor. Comput. Sci., 342(2-3):316–350, 2005.

6 A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
7 E.A. Emerson and C. Lei. Efficient model checking in fragments of the µ-calculus. In LICS.

IEEE Computer Society, 1986.
8 A. Hinton, M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: a tool for automatic

verification of probabilistic systems. In TACAS, volume 3920 of Lecture Notes in Computer
Science. Springer-Verlag, 2006.

9 M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In 12th IEEE
Symposium on Logic in Computer Science, pages 111–122. IEEE Computer Society, 1997.

10 M. Huth, N. Piterman, and D. Wagner. p-automata: New foundations for discrete-time
probabilistic verification. Performance Evaluation, 69(7–8):356–378, 2012.

11 M. Jurdzinski. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,
68(3):119–124, 1998.

12 D. Kozen. Results on the propositional µ-calculus. In Automata, Languages and Pro-
gramming, volume 140 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1982.

13 A. McIver and C. Morgan. Results on the quantitative µ-calculus qMµ. ACM Trans.
Comput. Log., 8(1), 2007.

14 M. Mio. Game Semantics for Probabilistic µ-Calculi. PhD thesis, University of Edinburgh,
2012.

15 M. Mio and A. Simpson. Łukasiewicz µ-calculus. In FICS, 2013.
16 K. Scheider. Verification of Reactive Systems: Formal Methods and Algorithms. Springer,

2004.
17 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.

Comput. Sci., 158(1&2):343–359, 1996.

STACS 2015

Tribes Is Hard in the Message Passing Model∗

Arkadev Chattopadhyay1 and Sagnik Mukhopadhyay2

1 Tata Institute of Fundamental Research, Mumbai
India
arkadev.c@tifr.res.in

2 Tata Institute of Fundamental Research, Mumbai
India
sagnik@tifr.res.in

Abstract
We consider the point-to-point message passing model of communication in which there are k
processors with individual private inputs, each n-bit long. Each processor is located at the node
of an underlying undirected graph and has access to private random coins. An edge of the graph
is a private channel of communication between its endpoints. The processors have to compute a
given function of all their inputs by communicating along these channels. While this model has
been widely used in distributed computing, strong lower bounds on the amount of communication
needed to compute simple functions have just begun to appear.

In this work, we prove a tight lower bound of Ω(kn) on the communication needed for com-
puting the Tribes function, when the underlying graph is a star of k + 1 nodes that has k leaves
with inputs and a center with no input. A lower bound on this topology easily implies compar-
able bounds for others. Our lower bounds are obtained by building upon the recent information
theoretic techniques of Braverman et al. ([4], FOCS’13) and combining it with the earlier work of
Jayram, Kumar and Sivakumar ([10], STOC’03). This approach yields information complexity
bounds that are of independent interest.

1998 ACM Subject Classification F.1.1 Models of computation, E.4.8 Coding and Information
theory, F.2.2. Analysis of algorithms and Problem Complexity

Keywords and phrases communication complexity, Tribes, information complexity, direct-sum

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.224

1 Introduction

The classical model of 2-party communication was introduced in the seminal work of Yao[18],
motivated by problems of distributed computing. This model has proved to be of fundamental
importance (see the book by Kushilevitz and Nisan [13]) and forms the core of the vibrant
subject of communication complexity. It is fair to say that the wide applicability of this
model to different areas of computer science cannot be over-emphasized.

However, a commonly encountered situation in distributed computing is one where
there are multiple processors, each holding a private input, that are connected by an
underlying communication graph. An edge of the graph corresponds to a private channel
of communication between the endpoints. There are k processors located on distinct nodes
of the graph that want to compute a function of their joint inputs. In such a networked
scenario, a very natural question is to understand how much total communication is needed

∗ A. Chattopadhyay is partially supported by a Ramanujan Fellowship of the DST and S. Mukhopadhyay
is supported by a TCS Fellowship.

© Arkadev Chattopadhyay and Sagnik Mukhopadhyay;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 224–237

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.224
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A.Chattopadhyay and S.Mukhopadhyay 225

to get the function computed. The classical 2-party model is just a special case where the
graph is an edge connecting two processors.

Among others, this model has also been called the Number-in-hand multiparty point-
to-point message passing model of communication. Apart from distributed computing, this
model is used in secure multiparty computation. The study of the communication cost in the
model was most likely introduced by Dolev and Feder [6] and further worked on by Duris
and Rolim [8]. These early works focused on deterministic communication. There has been
renewed interest in the model because it arguably better captures many of today’s networks
that is studied in various distributed models: models for map-reduce [11, 9], massively
parallel model for computing conjunctive queries [3, 12], distributed models of learning [1]
and in core distributed computing [7]. However, there were no known systematic techniques
of proving lower bounds on the cost of randomized communication protocols that exploited
the non-broadcast nature of the private channels of communication in the model. Recently,
there has been a flurry of work developing new techniques for proving lower bounds on
communication. Phillips, Verbin and Zhang [14] introduced the method of symmetrization
to prove strong bounds for a variety of functions. Their technique was further developed in
the works of Woodruff and Zhang [15, 16, 17].

All these works considered the co-ordinator model, a special case, that was introduced in
the early work of [6]. In the co-ordinator model, the underlying graph has the star topology
with k + 1 nodes. There are k leaves, each holding an n-bit input. Each of the k leaf-nodes
is connected to the center of the star. The node at the center has no input and is called
the co-ordinator. The following two simple observations about the model will be relevant
for this work: every function can be trivially computed using O(nk) bits of communication
by having each of the k players send their inputs to the co-ordinator who then outputs the
answer. It is also easily observed that the co-ordinator model can simulate a communication
protocol on an arbitrary topology having k nodes with at most a log k factor blow-up in the
total communication cost.

A key lesson learnt from our experience with the classical 2-party model is that an
excellent indicator of our understanding of a model is our ability to prove lower bounds
for the widely known Set-Disjointness problem in the model. Indeed, as surveyed in [5],
several new and fundamental lower bound techniques have emerged from efforts to prove
lower bounds for this function. Further, the lower bound for Set-Disjointness, is what
drives many of the applications of communication complexity to other domains. While
the symmetrization technique of Phillips et.al and its refinements by Woodruff and Zhang
proved several lower bounds, no strong lower bounds for Set-Disjointness were known until
recently in the k-processor co-ordinator model. In this setting, the relevant definition of
Set-Disjointness is the natural generalization of its 2-party definition: view the n-bit inputs
of the k processors as a k×n Boolean matrix where the ith row corresponds to the Processor
i’s input. The Set-Disjointness function outputs 1 iff there exists a column of this matrix
that has no zeroes.

In an important development, Braverman et al. [4] proved a tight Ω(kn) lower bound for
Set-Disjointness in the co-ordinator model. Their approach is to build up new information
complexity tools for this model that is a significant generalization of the 2-party technique of
Bar-Yossef et al. [2]. In this work, we further develop this information complexity method
for the co-ordinator model by considering another natural and important function, known as
Tribesm,`. In this function, the n-bit input to each processor is grouped into m blocks, each
of length `. Thus, the overall k × n input matrix splits up into m sub-matrices A1, . . . , Am,
each of dimension k × `. Tribes outputs 1 iff the Set-Disjointness function outputs 1 on each

STACS 2015

226 Tribes Is Hard in the Message Passing Model

sub-matrix Ai. This obviously imparts a direct-sum flavor to the problem of determining the
complexity of the Tribes function in the following sense: a naive protocol will solve Tribes by
simultaneously running an optimal protocol for Set-Disjointness on each of the m instances
A1, . . . , Am. Is this strategy optimal?

This question was answered in the affirmative for the 2-party model by Jayram, Kumar
and Sivakumar [10] when they proved an Ω(n) lower bound on the randomized communication
complexity of the Tribes function. Their work delicately extended the information theoretic
tools of Bar-Yossef et.al [2]. Interestingly, it also exhibited the power of the information
complexity approach. There was no other known technique to establish a tight lower bound
on the Tribes function1.

In this work, we show that the naive strategy for solving Tribes is optimal also in the
co-ordinator model:

I Theorem 1. In the k-processor co-ordinator model, every bounded error randomized
protocol solving the Tribesm,n function, has communication cost Ω

(
m`k

)
, for every k ≥ 2.

We prove this by extending and simplifying the information complexity approach of [4]
and the earlier work of [10]. It is worth noting that our bounds in Theorem 1 hold for all
values of k. In particular, this also yields a lower bound for Set-Disjointness for all values of
k. The earlier bound of Braverman et al. only worked if k = Ω(log n).

2 Overview & Comparison with Previous Work

We first provide a quick overview of our techniques and contributions. We follow this up
with a more detailed description, elaborating on the main steps of the argument.

Brief Summary: Recall that the Tribesm,n function can be written as an m-fold AND of
Disjn instances. One possible way to show that Tribesm,n is hard in message-passing model
is to show that any protocol evaluating Tribesm,n must evaluate all the the Disjn instances.
This suffices to argue that Tribesm,n is m times as hard as Disjn. By now it is well known that
information complexity provides a convenient framework to realize such direct sum arguments.
In order to do so, one needs to define a distribution on inputs that is entirely supported
on the ones of the m Set-Disjointness instances of Tribes. This was the general strategy
of Jayram et al. [10] in the 2-party context. However, the first problem one encounters is
to define an appropriate hard distribution and a right notion of information cost such that
Disjointness has high information cost of Ω(k`) under that distribution in the co-ordinator
model. This turns out to be a delicate and involved step. Various natural information costs do
not work as observed by Phillips et al. [14]. Here, we are helped by the work of Braverman et
al. [4]. They come up with an appropriate distribution τ and an information cost measure IC0.
However, we face some problems in using them. The first is that τ happens to be (almost)
entirely supported on the zeroes of Set-Disjointness. Taking ideas from [10], we modify τ to
get a distribution µ supported exclusively on the ones of Set-Disjointness. Roughly speaking,
to sample from µ, we first sample from τ and then pick a random column of the sampled
input and force it to all ones. Intuitively, the idea is that the all ones column is being well
hidden at a random spot. The intuition is, if τ was hard, µ should also remain hard. It turns

1 This is not surprising. Two other successful techniques, the discrepancy and the corruption method, both
yield lower bounds on the non-deterministic complexity. On the other hand, Tribes and its complement,
on n-bit inputs, both have only

√
n non-deterministic complexity.

A.Chattopadhyay and S.Mukhopadhyay 227

out that we prove the hardness of µ directly from scratch. To do so we appropriately modify
the information cost measure IC0 to IC so that it yields high information complexity under µ.
Here, we use an idea of [10].

However, proving that IC is high for protocols when inputs are sampled according to µ
raises new technical challenges. The first challenge is to prove a direct sum result on the
information complexity of protocols as measured by IC. We do not know how to do that.
Here we borrow ideas from [10] to introduce a new information measure, PIC(f) which is a
lower bound on IC(f) and will be explained in relevant section. We show that PIC

(
Disjn

)
is at least Ω(` · PIC

(
Disj2

)
). Implementing this step is a novelty of this work. The final

challenge is to prove that IC
(
Disj2

)
is Ω(k). We again do that by first simplifying some of

the lemmas of [4] and extending them using some ideas from the work of [10].

More Detailed Account: Among the many possible ways to define information cost of a
protocol, the definition we work with stems from the inherent structure of the communication
model. As evident from the previous discussion, in the model of communication we are
interested in, the co-ordinator can see the whole transcript of the protocol but cannot see
the inputs. On the other hand, the processors can only see a local view of the transcript -
the message that is passed to them and the message they send - along with their respective
inputs. From the point of view of the co-ordinator, who has no input, the information
revealed by the transcript about the input can be expressed by I[X : Π(X)]. This is small
for the protocol where the co-ordinator goes around probing each player on each coordinate
to see whether any player has 0 in it and gives up once she finds such a player.(We call it
Protocol A). It is not hard to see that the information cost can only be as high as O(n log k)
for protocol A. A relevant information cost measure from the point of view of processor i is
I[X−i : Πi(X) | Xi] which measures how much information processor i learns about other
inputs from the transcript. It turns out that this information cost is also very small for
the protocol where all the processors send their respective inputs to the co-ordinator (We
call this protocol as protocol B). Here I[X−i : Πi(X) | Xi] is 0 for all i. What is worth
noticing is that in both protocols, if we consider the sum of the two information costs, i.e.,
I[X : Π(X)] +

∑
i I[X−i : Πi(X) | Xi], it is Ω(nk) which is the kind of bound we are aiming

for.
This cost trade-off was first observed in [14] but they were unable to prove a lower bound

for Disjn in this model of communication. Braverman et al [4] solved this problem by coming
up with the following notion of information complexity. Let (X,M,Z) be distributed jointly
according to some distribution τ . The information cost of a protocol Π with respect to τ is
defined as, IC0

τ (Π) =
∑
i∈[k]

[
I
τ
[Xi : Πi(X) | M,Z] + I

τ
[M : Πi(X) | Xi,Z]

]
.

Conditioning on the auxiliary random variables M and Z serves the following purpose:
Even though the distribution τ is a non-product distribution, it can be thought of as a
convex combination of product distributions, one for each specific values of M and Z. It is
well-known by now that such convex combination facilitates proving direct-sum like result.

The desired properties of the distribution τ are as follows. First, the distribution should
have enough entropy to make it hard for the players to encode their inputs cheaply and
send it across to the co-ordinator. Such an encoding is attempted in protocol B. Second, the
distribution should be supported on inputs which have only a few 0’s in each column of Disjn.
This makes sure that the co-ordinator has to probe Ω(k) processors in each column before
he finds a 0 in that column. This attempt of probing was undertaken by the co-ordinator
in protocol A. The first property can be individually satisfied by setting each processor’s
input to be 0 or 1 with equal probability in each column. The second property can also be

STACS 2015

228 Tribes Is Hard in the Message Passing Model

individually satisfied by taking a random processor for each column and giving it a 0 and
giving 1 to rest of the processors as their inputs. Let Zj denote the processor whose bit was
fixed to 0 in column j. The hard distribution for Disjn is a convex combination of these two
distributions. The way it is done is by setting a Bernoulli random variable Mj for each of
the column j which acts as a switch, i.e., if Mj = 0 the input to the column j is sampled
from the first distribution, otherwise it is sampled from the second distribution. Mj takes
value 0 with probability 2/3. We define M = 〈M1, . . . ,M`〉 and Z = 〈Z1, . . . ,Z`〉.

At this point it is interesting to go back to the definition of IC0 and try to see the
implication of each term in the definition. For the coordinator,

∑
i Iτ[X

i : Πi(X) | M,Z]
represents the amount of information revealed about the inputs of the processors by the
transcript. For convenience, we can assume that M is with co-ordinator. We can do this
without loss of generality as the co-ordinator can sample O(log k) inputs from column j and
conclude the value of Mj from it, for any j. This amount of communication is okay for us as
we are trying to show a lower bound of Ω(nk). However note that we cannot assume that
the processors have the knowledge of M. Had that been the situation, the processors would
have employed protocol A or protocol B in column j depending on the value of the Mj . The
value of I[Xi : Πi(X) | M,Z], in this protocol, would have been small. So we need to make
sure that we charge the processors for their effort to know the value of M. This is taken
care by the second term in the definition of IC0 i.e., I

µ
[M : Πi(X) | Xi,Z]. Braverman et

al. [4] used this notion of information complexity to achieve the Ω(`k) lower bound for the
information cost of Disjn with respect to the hard distribution.

As mentioned before, we, however, need the hard distribution ζ for Tribesm,n to be entirely
supported on 1s of Disjn. But the distribution τ described above is supported on 0s of Disjn.
Here we borrow ideas from [10] and design a distribution µ by selecting a random column
for the Disjn instances and planting an all 1 input in it. We denote the random co-ordinate
by W. It is easy to verify that µ is a distribution supported in 1s of Disjn. We set the
hard distribution for Tribesm,n to be an m-fold product distribution ζ = µm denoted by the
random variables 〈X̄, M̄, Z̄,W̄〉. It is to be noted that a correct protocol should work well for
all inputs, not necessarily for the inputs coming from the distribution ζ. This property will
be crucially used in later part of the proof. The modification of the input distribution from
τ to µ and subsequently to ζ calls for changing the definition of the information complexity
to suit our purpose. We define information complexity as follows which we will use in this
paper.

I Definition 2. Let (X̄, M̄, Z̄,W̄) be distributed jointly according to ζ. The information
cost of a protocol Π with k processors in NIH point-to-point coordinator model with respect
to ζ is defined as,

ICζ(Π) =
∑
i∈[k]

[
I
ζ
[X̄i : Πi(X̄) | M̄, Z̄,W̄] + I

ζ
[M̄ : Πi(X̄) | X̄i, Z̄,W̄]

]
. (1)

For a function f : X → R, the information complexity of the function is defined as,
ICζ,δ(f) = infΠ ICµ(Π), where the infimum is taken over all δ-error protocol Π for f .

By doing this, we are able to bound the information complexity of Tribesm,n as m-times
that of Disjn. Although non-trivial, this step can be accomplished by exploiting the proof
techniques used in [4]. The next step is to bound the information complexity of Disjn, which
turns out to be difficult for two reasons. First, the distribution µ is no more a 0 distribution
for Disjn. We get around this by defining a new information complexity measure, - which

A.Chattopadhyay and S.Mukhopadhyay 229

we call as partial information complexity - to show that the partial information complexity
of Disjn on distribution µ is at least (` − 1)-times that of Disj2. This is one of the main
technical contributions of our paper. See Section 4.1 for details. The second hurdle we face
is bounding the information complexity of Disj2. Here we combine ideas from [10, 4] to
conclude that the partial information complexity of Disj2 is Ω(k). This is the second main
technical contribution of this paper, which is explained in Section 4.2. Finally we give a
simple argument in Section 5 to show that ICζ(Π) lower bounds the communication cost of
Π where Π is any correct protocol for Tribesm,n.

3 Preliminaries

Communication complexity. In this work, we are mainly interested in multiparty com-
munication number-in-hand model. In this model of computation, the input is distributed
between k players P1, · · · , Pk who jointly wish to compute a function f on the combined
input by communication with each other.

We work with randomized protocol where the players have access to private coins. (Though
it might seem like that the public coin protocol can yield better upper bound, it can be
noted that all the proofs can be modified to give the same result for public coin model.)
The standard notion of private coin randomized communication complexity is adopted here,
where we look at the worst-case communication of the protocol when the protocol is allowed
to make only δ error (bounded away from 1/2) on each input. Here the probability is taken
over the private coin tosses of the players. For more details, readers are referred to [13].

Information theory. We will quickly go through the information theoretic definitions and
facts we need. For a random variable X taking value in the sample space Ω according to the
distribution p()̇, the entropy of X, denoted as H(X), is defined as H(X) =

∑
x∈Ω Pr[X =

x] log 1
Pr[X=x] = Ex

[
log 1

p(x)

]
.

For two random variables X and Y , the conditional entropy of X given Y is defined as
H(X|Y) = Ex,y

[
log 1

p(x|y)

]
.

Informally, the entropy of a random variable measures the uncertainty associated with
it. Conditioning on another random variable, i.e., knowing the value that another random
variable takes can only decrease the uncertainty of the former one. This notion is captured in
the following fact that H(X|Y) ≤ H(X) where the equality is achieved when X is independent
of Y . Given two random variables X and Y with joint distribution p(x, y) we can talk about
how much information one random variable reveals about the other random variable. The
mutual information, as it is called, between X and Y is defined as I[X : Y] = H(X)−H(X|Y).

It is to be noted that the mutual information is a symmetric quantity, though it might
not be obvious from the definition itself. From the previous discussion, it is easy to see that
the mutual information is a non-negative quantity. As before, we can also define conditional
mutual information as I[X : Y |Z] = H(X|Z)−H(X|Y,Z).

The following chain rule of mutual information will be crucially used in our proof.

I[X1, . . . , Xn : Y] =
∑
i∈[n]

I[Xi : Y |Xi−1, . . . , X1]. (2)

It is to be noted that the chain rule of mutual information will also work when conditioned
on random variable Z.

STACS 2015

230 Tribes Is Hard in the Message Passing Model

I Remark. Consider a permutation σ : [n]→ [n]. The following observation will be useful in
our proof.

I[X1, . . . , Xn : Y] =
∑
i∈[n]

I[Xσ(i) : Y |Xσ(i−1), . . . , Xσ(1)]. (3)

We will use the following lemma regarding mutual information.

I Lemma 3. Consider random variables A,B,C and D. If A is independent of B given D

then,

I[A : B,C | D] = I[A : C | B,D], (4)

and

I[A : C | B,D] ≥ I[A : C | D]. (5)

4 Lower Bound for Tribesm,n in Message Passing Model

Here, in the first subsection, we will show two direct-sum results. In the first step we bound
the information complexity of Tribesm,n in terms of that of Disjn. It is to be noted that the
proof technique of [2] falls short of proving any lower bound on the information complexity
measure we have defined - mainly because of the fact the information complexity measure
consists of sum two different mutual information terms for each processor, and it is not
clear that one can come up with lower bounds for both the terms simultaneously. This
problem has already been attended to in [4] and the proof we present here resembles the
proof technique used by them. For completeness we include the proof in this paper. In the
second step, we will bound the information complexity of Disjn in terms of Disj2. This step
is more difficult and a straight-forward application of the direct-sum argument of [4] will not
work. First we use ideas from [10] to define partial information complexity measure which
is more convenient to work with. Then we come up with a novel direct-sum argument for
partial information complexity measure.

In Section 4.2, we show that the information complexity of Disj2 is Ω(k). We manage to
show this by combining ideas from [4, 10].

4.1 Direct Sum
In this section we prove that the information cost of computing Tribesm,n is m times the
information cost of computing Disjn. The proof is almost the same proof as in [4] where the
authors have used a direct sum theorem to show that the information cost of computing
Disjn is ` times the information cost of computing k-bit ANDk. Before going into details we
need the following definitions which we will borrow from [10].

Consider f : Dm → R can be written as f(X) = g(h(X1), . . . , h(Xm)) where X =
〈X1, . . . , Xm〉, Xi ∈ D and h : D → R. In other words, f is g-decomposable with primitive
h.

I Definition 4 (Collapsing distribution). We call X ∈ Dm be a collapsing input for f if for
any i ∈ [m] and y ∈ D, we have f(X(i, y)) = h(y). Any distribution ζ supported entirely on
collapsing inputs on f is called a collapsing distribution of f .

I Definition 5 (Projection). Given a distribution ν specified by random variable (D1, . . . , Dk)
and a subset S of [k], we call the projection of ν on (Di)i∈S , denoted as ν ↓(Di)i∈S , the
marginal distribution of (Di)i∈S induced by ν.

A.Chattopadhyay and S.Mukhopadhyay 231

The proof is by reduction: we will show that given a protocol Π for Tribesm,n and a
collapsing distribution µ = ζml , we can construct a protocol Π′ for Disjn such that it computes
Disjn with the same error probability as that of Π and the information complexity of Π is m
times that of Disjn.

I Theorem 6. Let µ = ζm` be a collapsing distribution for Tribesm,n partitioned by M,Z
and W as described before. Then

ICµ(Tribesm,n) ≥ m.ICζ`(Disjn). (6)

As mentioned before, the proof of Theorem 6 works out nicely by adapting the proof
techniques of [4] and is omitted in this version.

Now our goal is to connect the information cost of Disjn under ζ` to information cost of
ANDk. So a natural attempt is to prove a theorem like Theorem 6 for reduction from Disjn
to ANDk. Unfortunately this is not possible. Recall that Disjn(X) =

∨`
i=1
∧k
j=1X

j
i . Hence

for a collapsing distribution each of the ANDks should evaluate to 0, which is not the case
for the distribution ζ`.

Inspired by [10], we define the following measure of information cost, namely, partial
information cost. Let Π be a protocol for Disjn. The partial information cost of Π is defined
as,

PIC(Π) =
k∑
i=1

(
I
[
M−W : Πi(X) | Xi,Z,W

]
+ I
[
Xi
−W : Πi(X) | M,Z,W

])
. (7)

The random variable M−W denotes M with its W-th coordinate removed. Similarly, Xi
−W

denotes Xi with its W-th coordinate removed. The partial information complexity of Disjn
is the partial information cost of the best protocol computing Disjn. It is easy to see that the
partial information complexity of any function f lower bounds the information complexity of
f .

We prove the following theorem.

I Theorem 7. Let ζ` be the distribution over the inputs of Disjn partitioned by M,Z,W as
described before. Then

PICζ`(Disjn) ≥ (`− 1).PICζ2(Disj2). (8)

Here we will show the following reduction analogous to our previous reduction from
Tribesm,n to Disjn. Given a protocol Π′ for Disjn and distribution ζ` (as described in Section
2, we will come up with a protocol Π′′ for Disj2 such that the partial information cost of Π′′
w.r.t. ζ` is 1/(`− 1) times the partial information cost of Π′ w.r.t ζ2.

Let us describe the construction of the protocol Π′′. On an input u = 〈u1, u2〉 for Disj2,
the processors and the coordinator sample a k × ` random matrix X(u) in the following way.

1. The coordinator samples P and Q uniformly at random from [`] such that P < Q.
2. The coordinator samples Z−{P,Q} = (Zi)i∈[`]\P,Q, where each Zi ∈

R
[k], and sends it to

all the processors.
3. The coordinator samples a number R uniformly at random from {0, ..., `− 2} and then

samples a subset T ⊆ [`]\{P,Q} uniformly at random from all sets of size R that do not
contain P,Q. Then the coordinator samples Mt ∼ Bin(1/3) for all t ∈ T and sends them
to all the processors. The processors use their private randomness to sample Xt for each

STACS 2015

232 Tribes Is Hard in the Message Passing Model

column t in T in the following way: The input of the Zt-th processor is fixed to 0 in Xt

and the other processors get 1 if Mt = 1, otherwise, if Mt = 0, they get 0 or 1 uniformly
at random. We will call this input sampling procedure as IpSample.

4. For the rest of the columns, the coordinator samples the inputs according to IpSample
and sends the requisite inputs to the respective processors.

5. The processors form the input X ≡ X(u,P,Q) (i.e., XP = u1 and XQ = u2) and run
the protocol Π′ for Disjn with X as input.

I Observation 8. Consider the tuple (U,N,V,S) distributed according to ζ2. If U is given
as input to protocol Π′′, then (X,M,Z,W) is distributed according to ζ`, where W is the
unique all 1’s coordinate in X. Here W = P if V = 1 and W = Q if V = 2.

Next we prove the following lemma connecting the information cost of Π′ for Disjn and
that of Π′′ for Disj2. This lemma implies the Theorem 7.

I Lemma 9.

I
(U,N,V,S)∼ζ2

[Ui
−V,Π′′i(U) | N,V,S] ≤ 1

`− 1 I
(X,M,W,Z)∼ζ`

[Xi
−W,Π′i(X) | M,W,Z], (9)

and

I
(U,N,V,S)∼ζ2

[N−V,Π′′i(U) | Ui,V,S] ≤ 1
`− 1 I

(X,M,W,Z)∼ζ`
[M−W,Π′i(X) | Xi,W,Z]. (10)

Proof. We consider the LHS of Equation (10). The view of processor i of the transcript of
protocol Π′′, denoted as Π′′i(U), is given as follows.

Π′′i(U) = 〈P,Q,Z−P,Q,R,T,MT,Xi
T̄\{P,Q},Π

′(X(P,Q,U)))〉. (11)

So the LHS of Equation (10) can be written as

I
(U,N,V,S)∼ζ2

[N−V : Π′′i(U) | Ui,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : P,Q,Z−P,Q,T,MT,R,Xi
T̄\{P,Q},Π

′i(X(P,Q,U))|Ui,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X(P,Q,U))|P,Q,Z−P,Q,T,MT,R,Xi
T̄\{P,Q},U

i,V,S]

[Lemma 3 eqn. (4)]
= I

(U,N,V,S)∼ζ2
(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X) | P,Q,R,T,MT,Z,V,Xi
T̄]

[Combining (Ui,Xi
T̄\{P,Q} and (Z−P,Q,S)]

≤ I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X) | P,Q,R,T,MT,Z,V,Xi]

[Lemma 3 eqn. (5), Xi
S ind. of N−V]

[V takes value in 1 and 2 uniformly at random. Hence we can write it as follows.]

= 1
2 I

(X,M,Z)∼ζ`↓X,M,Z
[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

+ 1
2 I

(X,M,Z)∼ζ`↓X,M,Z
[MQ : Π′i(X) | P,Q,R,T,MT,Z,V = 1,Xi]. (12)

A.Chattopadhyay and S.Mukhopadhyay 233

Consider the first mutual information term.

I[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

= 2
`(`− 1)

∑
p<q

I[Mp : Π′i(X) | P = p,Q = q,R,T,MT,Z,V = 2,Xi]

= 2
`(`− 1)2

∑
p<q

`−2∑
r=0

∑
t:|t|=r

Pr[T = t]I[Mp : Π′i(X) | p, q, r, t,Mt,Z,V = 2,Xi]

= 2
`(`− 1)2

∑
p<q

`−2∑
r=0

∑
t:|t|=r

(`− r − 2)!r!
(`− 2)! I[Mp : Π′i(X) | p, q, r, t,Mt,Z,V = 2,Xi].

We can safely drop the conditioning P = p,R = r,T = t and V = 2 in the following way.
It is easy to see R = r,T = t is implied by Mt. Mp implies P = p. Moreover, given (p, q),
V = 2 is equivalent to W = p. So we can write,

I[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

= 2
(`− 1)!`(`− 1)

∑
q

∑
p:p<q

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mp : Π′i(X) | W = q,Mt,Z,Xi].

(13)

Similarly, the second mutual information term of Equation (12) term can be written in the
following way.

I[MQ : Π′i(X) | P,Q,R,T,MT,Z,V = 1,Xi]

= 2
(`− 1)!`(`− 1)

∑
q

∑
p:p<q

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mq : Π′i(X) | W = p,Mt,Z,Xi].

(14)

Combining Equation (12), (13), (14), we get,

I(U,N,V,S)∼ζ2 [N−V,Π′i(U) | Ui,V,S]

≤ 1
(`− 1)!`(`− 1)

∑
q′

∑
p′:p′ 6=q′

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mp′ : Π′i(X)|W = q′,Mt,Z,Xi]

The number of permutations of [`]\q where the r + 1th element is p′ and the first r elements
constitute the set t is (`− r − 2)!r!. Hence we can write the previous summation as follows,

= 1
(`− 1)!`(`− 1)

∑
q′

∑
σ∈S[`]\q′

∑
i∈[`]\q′

I[Mσ(i) : Π′i(X) | M{σ(1),...,σ(i−1)},Z,W = q′,Xi]

= 1
(`− 1)!`(`− 1)

∑
q′

∑
σ∈S[`]\q′

I[M−q′ : Π′i(X) | Z,W = q′,Xi]

[Using chain rule of information, Eq. (3)]

= 1
`− 1

∑
q′

1
`

I
(X,M,Z)∼ζ`↓X,M,Z

[M−q′ : Π′i(X) | Z,W = q′,Xi]

= 1
`− 1 I

(X,M,Z,W)∼ζ`
[M−W : Π′i(X) | Z,W,Xi]. (15)

Equation (9) can be proved in the similar way and therefore omitted. J

STACS 2015

234 Tribes Is Hard in the Message Passing Model

4.2 Lower Bounding Disj2
In this section we prove the following.

I Theorem 10. IC(Disj2) ≥ PIC(Disj2) ≥ Ω(1).

This, combined with Theorem 7 and Theorem 6 will imply a Ω(m`k) lower bound on the
switched information complexity of Tribesm,n which is the lower bound on Rδ(Tribesm,n) we
aimed for.

Notation. By ē we mean the all 1 vector of size k. By ēi,j , we mean the boolean vector of
size k where all entries are 1 except the entries in index i and j. Similarly, ēi is the boolean
vector where all entries are 1 except that of index i. Π[i, x,m, z; ēi] implies the transcript of
the protocol Π on the following Disj2 instance: the input of the first column comes from the
distribution specified by M = m, Z = z and Xi

1 = x and the input of the second column is
ēi. Abusing notation slightly, Πi[x,m, z; ēi] represents processor-i’s view of the transcript
Π[i, x,m, z; ēi].

Hellinger distance. For probability distributions P and Q supported on a sample space
Ω, the Hellinger distance between P and Q, denoted as h(P,Q), is defined as, h(P,Q) =
1√
2 ||
√
P −

√
Q||2 = 1 − F (P,Q), where F (P,Q) =

∑
ω∈Ω

√
P (ω)Q(ω) is also known as

Bhattacharya coefficient. Below we will state a fact (without proof) about Hellinger distance.

I Fact 11 ([2]). Let Π be a δ-error protocol for function f . For inputs x and y such that
f(x) 6= f(y), we have,

h(Π(x),Π(y)) ≥ 1− δ√
2
. (16)

The following lemmas are generalization of their two-party analogues.

I Lemma 12 (k-party cut-paste). For any randomized protocol Π computing f : Xk → {0, 1}
and for any x, y ∈ Xk and for some i and j,

h(Π(xixjx−i,j , yiyjy−i,j)) = h(Π(xiyjx−i,j , yixjy−i,j)). (17)

I Lemma 13 (Pythagorean). For any randomized protocol Π and for any input x, y ∈ Xk

and for some i and j,

2h2(Π(xixjx−i,j , yiyjy−i,j)) ≥ h2(Π(xixjx−i,j , xiyjy−i,j)) + h2(Π(yixjx−i,j , yiyjy−i,j)).
(18)

Following structural properties are generalizations of analogous properties shown in [4].
Simpler proofs will be included in full version.

I Lemma 14 (Diagonal). For i 6= j

h2(Πi[0, 0, j; ē],Πi[1, 1, z; ē]) ≥ 1
2h

2(Πi(ēi,j ; ē),Πi(ēj ; ē)). (19)

I Lemma 15 (Global-to-local). For i 6= j

h2(Π[i, 0, 0, z; ē],Π[i, 1, 0, z; ē]) = h(Πi[0, 0, z; ē],Πi[1, 0, z; ē]), (20)

and

h(Π(ēi,j ; ē),Π(ēi; ē) = h(Πi(ēi,j ; ē),Πi(ēi; ē)). (21)

A.Chattopadhyay and S.Mukhopadhyay 235

Now we are ready to prove the partial information cost of Disj2 is Ω(k). We consider
processor i and fix a value j 6= i.

I Claim 16 ([4]).

(1) I[M−W : Πi | Xi,Z = j,W = 2] ≥ 2
3h

2(Πi[1, 0, j; ē],Πi[1, 1, j; ē]), (22)

(2) I[Xi
−W : Πi | M,Z = j,W = 2] ≥ 2

3h
2(Πi[0, 0, j; ē],Πi[1, 0, j; ē]), (23)

(3) I[M−W : Πi | Xi,Z = j,W = 1] ≥ 2
3h

2(Πi[ē; 1, 0, j],Πi[ē; 1, 1, j]), (24)

(4) I[Xi
−W : Πi | M,Z = j,W = 1] ≥ 2

3h
2(Πi[ē; 0, 0, j],Πi[ē; 1, 0, j]). (25)

Using Cauchy-Schwarz and triangle inequality, we can write the following.∑
i

I[M−W : Πi | Xi,Z,W] + I[Xi
−W; Πi | M,Z,W]

≥ 1
3k
∑
i

∑
j:i6=j

[
h2(Πi[1, 1, j; ē],Πi[0, 0, j; ē]) + h2(Πi[ē; 1, 1, j],Πi[ē; 0, 0, j])

]
[Claim 16]

≥ 1
6k
∑
i

∑
j:i6=j

[
h2(Πi(ēi,j .ē),Πi(ēj .ē)) + h2(Πi(ēēi,j),Πi(ēēj)

]
. [Lemma 14]

≥ 1
6k
∑
i

∑
j:i6=j

[
h2(Π(ēi,j .ē),Π(ēj .ē)) + h2(Π(ēēi,j),Π(ēēj))

]
[Lemma 15]

≥ 1
24k

∑
i6=j

[
[h2(Π(ēi.ē),Π(ēj .ē))] + [h2(Π(ēēi),Π(ēēj))]

]
[Recounting & Tr. ineq.]

= 1
24k

∑
i6=j

[
[h2(Π(ē.ē),Π(ēi,j .ē))] + [h2(Π(ēē),Π(ēēi,j))]

]
[Lemma 12]

≥ 1
48k

∑
i6=j

[h2(Π(ē.ēi,j),Π(ēi,j .ē))] [Cauchy-Schwarz & triangle inequality]

≥ 1
96k

∑
i6=j

[
[h2(Π(ē.ēi,j),Π(ēj .ēi)) + h2(Π(ēi,j ē),Π(ēi.ēj))]

]
[Lemma 13]

= k − 1
384 (1− δ)2 = Ω(k). [Fact 11]

5 Putting Everything Together

In this section we show randomized communication complexity of any function f is lower
bounded by the information complexity of f .

I Theorem 17. For any distribution µ over the inputs,

Rε(Tribesm,n) = Ω(ICµ(Tribesm,n)). (26)

This follows from the fact that the expected length of any instantaneous q-ary code for a
random variable X is at least H(X)/ log q. We omit the proof for space constraint. Using
Theorem 6, 7, 10 and 17, it is not hard to see that Theorem 1 follows.

STACS 2015

236 Tribes Is Hard in the Message Passing Model

References
1 Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning,

communication complexity and privacy. In Shie Mannor, Nathan Srebro, and Robert C.
Williamson, editors, COLT 2012 - The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pages 26.1–26.22. JMLR.org, 2012.

2 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In 43rd Symposium on Founda-
tions of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada,
Proceedings, pages 209–218. IEEE Computer Society, 2002.

3 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013,
New York, NY, USA - June 22 - 27, 2013, pages 273–284. ACM, 2013.

4 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntan-
athan. A tight bound for set disjointness in the message-passing model. In FOCS, pages
668–677. IEEE Computer Society, 2013.

5 Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

6 Danny Dolev and Tomás Feder. Determinism vs. nondeterminism in multiparty commu-
nication complexity. SIAM J. Comput., 21(5):889–895, 1992.

7 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. The communication complexity of
distributed task allocation. In Darek Kowalski and Alessandro Panconesi, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Por-
tugal, July 16-18, 2012, pages 67–76. ACM, 2012.

8 Pavol Duris and José D. P. Rolim. Lower bounds on the multiparty communication com-
plexity. J. Comput. Syst. Sci., 56(1):90–95, 1998.

9 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and
Osamu Watanabe, editors, Algorithms and Computation - 22nd International Symposium,
ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings, volume 7074 of Lecture
Notes in Computer Science, pages 374–383. Springer, 2011.

10 T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information complexity.
In Lawrence L. Larmore and Michel X. Goemans, editors, STOC, pages 673–682. ACM,
2003.

11 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 938–948. SIAM, 2010.

12 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Maur-
izio Lenzerini and Thomas Schwentick, editors, Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June 12-16,
2011, Athens, Greece, pages 223–234. ACM, 2011.

13 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

14 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Yuval Rabani, editor, Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 486–501. SIAM, 2012.

15 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring.
In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on

A.Chattopadhyay and S.Mukhopadhyay 237

Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 941–960. ACM, 2012.

16 David P. Woodruff and Qin Zhang. When distributed computation is communication
expensive. In Yehuda Afek, editor, Distributed Computing - 27th International Symposium,
DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture
Notes in Computer Science, pages 16–30. Springer, 2013.

17 David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in
the message passing model. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 718–733. SIAM, 2014.

18 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213.
ACM, 1979.

STACS 2015

Network Design Problems with Bounded
Distances via Shallow-Light Steiner Trees
Markus Chimani1 and Joachim Spoerhase2

1 Theoretical Computer Science, Osnabrück University, Germany
markus.chimani@uni-osnabrueck.de

2 Institute of Computer Science, University of Würzburg, Germany
joachim.spoerhase@uni-wuerzburg.de

Abstract
In a directed graph G with non-correlated edge lengths and costs, the network design problem
with bounded distances asks for a cost-minimal spanning subgraph subject to a length bound for
all node pairs. We give a bi-criteria (2 + ε,O(n0.5+ε))-approximation for this problem. This
improves on the currently best known linear approximation bound, at the cost of violating the
distance bound by a factor of at most 2 + ε.

In the course of proving this result, the related problem of directed shallow-light Steiner trees
arises as a subproblem. In the context of directed graphs, approximations to this problem have
been elusive. We present the first non-trivial result by proposing a (1+ε,O(|R|ε))-approximation,
where R is the set of terminals.

Finally, we show how to apply our results to obtain an (α + ε,O(n0.5+ε))-approximation
for light-weight directed α-spanners. For this, no non-trivial approximation algorithm has been
known before. All running times depends on n and ε and are polynomial in n for any fixed ε > 0.

1998 ACM Subject Classification G.2.1 Combinatorial algorithms, G.2.2 Graph algorithms,
Network problems

Keywords and phrases network design, approximation algorithm, shallow-light spanning trees,
spanners

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.238

1 Introduction

We consider the following network design problem introduced by Dodis and Khanna [6]:

I Definition 1 (Directed Network Design with Bounded Distances). Given a directed graph
G = (V,E), an edge cost function c : E → N, an edge length function ` : E → N, and a length
bound L ∈ N. We ask for a spanning subgraph H of G of minimum cost (with respect to c)
such that for each node pair u, v the distance in H (with respect to `) is at most L.

Generally, for a given graph G = (V,E), we let n := |V | and m := |E|; ¯̀
H(u, v) denotes

the lengths of the shortest u-v path in H ⊆ G with respect to `. For uniform edge costs
and lengths, Dodis and Khanna [6] devise an O(log n logL)-approximation. For non-uniform
edge costs, they show Ω(2log1−ε n)-hardness of approximation, and propose an O(n logL)-
approximation under the restriction that the edge lengths are polynomially bounded. Up to
now, no improved algorithm is known.

In this paper (Section 2), we give an algorithm for this problem, without any of the above
restrictions and without ratio-dependency on L, achieving essentially a performance ratio
O(
√
n) while violating the distance bound L by a factor of at most 2 + ε.

© Markus Chimani and Joachim Spoerhase;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 238–248

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

markus.chimani@uni-osnabrueck.de
joachim.spoerhase@uni-wuerzburg.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.238
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Chimani and J. Spoerhase 239

I Theorem 2. There is a bi-criteria (2 + ε,O(n1/2+ε))-approximation for the above directed
network design problem with bounded distances.

As a starting point, our algorithm uses a two-stage approach originally proposed by
Feldman et al. [8] for directed Steiner forest, which has later been reused for directed spanners
[3, 5, 2]. We divide the considered node pairs into thin and thick pairs. We settle the former
by LP-rounding, as we have to cover certain cuts w.r.t. shortest paths. For the latter, we
sample nodes and construct short in- and out-trees for each of them. This latter part is a
main technical challenge: In contrast to the case of sparse spanners, we cannot simply use
shortest-path trees, as they could have arbitrarily high costs. To solve this issue, we turn our
attention to a second problem, which is also of independent interest:

I Definition 3 (Directed Shallow-Light Steiner Trees). Given a directed graph G = (V,E),
an edge cost function c : E → N, an edge length function ` : E → N, a distinguished root
node r ∈ V , and a set R ⊆ V of terminals with distance bounds d : R→ N. We ask for an
r-rooted subtree T of G of minimum cost (with respect to c) such that for any terminal
v ∈ R the distance ¯̀

T (r, v) in T (with respect to `) is at most d(v).

Kortsarz and Peleg [11] gave an O(|R|ε)-approximation for undirected graphs with uniform
edge lengths and uniform distance bounds. The directed problem with non-uniform edge
costs has formerly been considered in [12], where a bi-criteria (2, O(log n))-approximation for
directed shallow-light spanning trees (that is, R = V) was proposed. Unfortunately, the proof
has an error1, and there has not been any progress on the problem since. We propose the
first non-trivial result for the general directed problem (cf. Section 3). In fact, at the cost of
violating the length bounds by a factor of at most (1 + ε), we obtain the same approximation
ratio as [11], but for directed graphs and without the restrictions to uniform lengths and
costs:

I Theorem 4. There is a bi-criteria (1 + ε, |R|ε)-approximation for directed shallow-light
Steiner trees.

Finally (Section 4), we give a further application of our shallow-light Steiner tree result:

I Definition 5 (Light-Weight Directed α-Spanners). Given a directed graph G = (V,E), an
edge cost function c : E → N, an edge length function ` : E → N, and a stretch factor α ≥ 1.
We ask for a spanning subgraph H of G of minimum cost (with respect to c) such that for
each node pair u, v the distance ¯̀

H(u, v) in H (with respect to `) is at most α · ¯̀G(u, v), i.e.,
α times their distance in G.

As of now, this problem has only been successfully tackled for undirected graphs [13, 1]. Its
directed variant remained an interesting open problem [5]2. We give the first non-trivial
result:

I Theorem 6. There is a bi-criteria (α+ε,O(n1/2+ε))-approximation for light-weight directed
α-spanners.

1 Verified by personal communication with J. Naor.
2 As mentioned in the corresponding slides, available online.

STACS 2015

240 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

2 Network Design with Bounded Pairwise Distance

We build our solution network as the union of subgraphs. We say such a subgraph settles a
node pair (u, v), if it includes a path connecting u to v complying with the distance bound.
As sketched above, the overall scheme of our approximation algorithm is to classify node
pairs into two categories. Let (u, v) ∈ V × V be any node pair, and PLuv the set of all u-v
paths of length at most L. We denote with Vuv :=

⋃
P∈PL

uv
V (P) and Euv :=

⋃
P∈PL

uv
E(P)

the nodes and edges, respectively, contained in any such path. The node pair (u, v) is called
thin if |Vuv| ≤

√
n and thick otherwise. We settle node pairs based on this classification.

However, we will never explicitly compute any PLuv, Vuv, Euv nor any node-pair classifications.
They are only of interest for the approximation proof. We note that the concept of this
classification is lifted from Feldman et al. [8]. The handling of the thin pairs follows the idea
of anti-spanners by Berman et al. [2], as it can be made to work in our context, see below.
Successfully tackling the thick pairs, however, is a technical challenge and requires our result
on shallow-light trees (see Section 3). Let OPT denote the value of the optimum solution to
the full problem.

2.1 Thin Pairs

2.1.1 Path-based LP
We consider the following path-based LP relaxation of the problem, requiring an exponential
number of variables. Let PL :=

⋃
(u,v)∈V×V PLuv.

min
∑

e∈E
cexe, s.t.∑

P∈PL
u,v

fP ≥ 1 ∀(u, v) ∈ V × V∑
P∈PL

u,v,P3e
fP ≤ xe ∀e ∈ E, (u, v) ∈ V × V

xe ≥ 0, fP ≥ 0 ∀e ∈ E, ∀P ∈ PL

(1)

Its dual can be written as:

max
∑

(u,v)∈V×V
αuv, s.t.∑

e∈P
βeuv ≥ αuv ∀(u, v) ∈ V × V, P ∈ PLuv∑

(u,v)∈V×V

βeuv ≤ ce ∀e ∈ E

βeuv ≥ 0, αuv ≥ 0 ∀e ∈ E, (u, v) ∈ V × V

(2)

LP (1) has an exponential number of variables. Below, we argue that we can get a PTAS
for this LP by an approach analogous to the one proposed in [5]. Let ε > 0. We first consider
the dual LP (2). This LP has a polynomial number of variables but an exponential number
of constraints. We use the ellipsoid method to get an approximate solution to it. The
separation oracle works as follows. (We do not consider the constraints

∑
(u,v)∈V×V β

e
uv ≤ ce

since there are only polynomially many of these.) For each fixed (u, v) ∈ V × V , we consider
variables the βeuv as edge weights. Thus, determining whether a constraint is violated for
some P ∈ PLuv amounts to checking whether αuv is at most the weight of a lightest u–v path
(under weights βeuv) whose length (under edge lengths `) is bounded by L. Already this

M. Chimani and J. Spoerhase 241

necessary subproblem (length-bounded shortest path) is NP-hard. However, Hassin [9], later
sped up by Ergun et al. [7], describes an FPTAS. Assume we run the ellipsoid algorithm by
using this approximate separation oracle with error parameter ε. Then, we end up with an
optimum solution to the restricted dual LP, which has only constraints for paths P ∈ PL
that we included when running the ellipsoid algorithm. Since we used an FPTAS for the
separation oracle, the constraints that we did not include can be violated by a factor at most
1− ε. That is, we have

∑
e∈P β

e
uv ≥ (1− ε)αuv for all paths P ∈ PL that we did not include.

Hence, if we set α′uv = (1− ε)αuv we obtain a feasible solution to the original dual LP that
is (1 − ε)-approximate with respect to the optimum solution of the restricted dual. Now
suppose that we solve the restricted primal LP where we only include the (polynomially
many) variables that correspond to constraints of the restricted dual. Then the optimum
solution to this LP is at most 1/(1−ε) times larger than the optimum solution to the original
dual (and hence the original primal) since the restricted dual LP is the dual to the restricted
primal LP and since the original dual is (1− ε)-approximate to the restricted dual.

2.1.2 Randomized LP Rounding
We describe an algorithm that computes a subgraph H1 ⊆ G where the distance ¯̀

H1(u, v) is
at most L for every thin pair (u, v). The algorithm first solves the above LP within a ratio
of 1 + ε. Then each edge e is sampled with probability min(γ · xe, 1) where γ :=

√
n · log n.

The cost of H1 is O(γ(1 + ε)OPT). We have to show that this algorithm creates a feasible
solution with high probability.

I Definition 7. Let (u, v) be a thin pair, C ⊆ E a set of edges, and GC := (V,E \ C). We
say C is a u-v-stretching cut if ¯̀

GC′ (u, v) ≤ L for all C ′ ⊂ C but ¯̀
GC

(u, v) > L.

I Lemma 8. Let H = (V,E′) be a subgraph of G and (u, v) a thin pair. H settles (u, v) if
and only if each u-v-stretching cut contains at least one edge of E′.

Proof. If there is a u-v-stretching cut C that contains no edge of E′ then E′ ⊆ E \ C and
hence ¯̀

H(u, v) ≥ `GC
> L. Conversely, if H does not settle (u, v) then ¯̀

H(u, v) > L and
hence E \ E′ would contain a u-v-stretching cut C, which clearly has no edge of E′. J

I Lemma 9. For each thin pair (u, v) the number of u-v-stretching cuts is at most
√
n
√
n.

Proof. Consider some u-v-stretching cut C and let T be a shortest path tree in the graph
HC := (Vuv, Euv \C) rooted at u. Let ¯̀

T (w) denote the distance from u to w in T . If there is
no u-w path inHC then ¯̀

T (w) :=∞. We show that C = {wx ∈ Euv | ¯̀
T (w)+`(wx) < ¯̀

T (x)},
which implies that C is uniquely determined by T .

Consider an edge wx ∈ Euv such that ¯̀
T (w) + `(wx) < ¯̀

T (x). Then wx ∈ C because T
is a shortest path tree in HC .

Now, let wx ∈ C. Because C ′ := C \ {wx} is not a u-v stretching cut there is a u-v path
in HC′ := (Vuv, Euv \ C ′) of length at most L. This path must use the edge wx and has
length ¯̀

T (w) + `(wx) + ¯̀
HC

(x, v). Since HC has no u-v path of length at most L we can
conclude that ¯̀

HC
(u, x) + ¯̀

HC
(x, v) > L and therefore ¯̀

T (w) + `(wx) < ¯̀
HC

(u, x) = ¯̀
T (x).

Hence the u-v-stretching cut C is uniquely determined by the tree T . We now count the
number of rooted trees in HC . For every node in such an out-tree there are

√
n possibilities

to choose its parent node. Hence the total number of rooted trees and therefore the number
of u-v-stretching cuts can be upper bounded by

√
n
√
n. J

I Lemma 10. The above algorithm settles each thin pair with high probability.

STACS 2015

242 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

Proof. By Lemma 8, is suffices to show that for every thin pair (u, v) and every u-v stretching
cut C there is an edge from H1 in C with high probability.

For every such cut C the LP value
∑
e∈C xe must be at least 1. This holds because every

u-v path in PLu,v must contain at least one edge of C, since the total flow sent along these
paths is at least 1 and since

∑
e∈C xe is an upper bound on this total flow because of the

constraints
∑
P∈PL

u,v,P3e
fP ≤ xe in the LP. If γ · xe ≥ 1 for some e ∈ C then e ∈ E(H1).

Otherwise, the probability that none of the edges in C is sampled is at most∏
e∈C

(1− γxe) ≤
∏

e∈C
e−γxe = e

−
√
n·logn

∑
e∈C

xe ≤ n−
√
n .

By Lemma 9, the total number of stretching cuts is at most n2√n
√
n. Hence the

probability that at least one stretching cut contains no edge of H1 is at most
√
n
−Ω(
√
n). J

2.2 Thick Pairs and Overall Algorithm
We now describe an algorithm to settle all thick pairs. The algorithm samples a set of
δ = 3

√
n log n many nodes of G. For each node u in this set, the algorithm determines a

u-rooted shallow-light Steiner tree Tu by means of the algorithm described in Section 3 and
summarized in Theorem 4. As input for this algorithm we use the graph G, the edge costs
c and the edge lengths ` as in the instance of the network design problem; the root is the
node u and the set R of terminals are all V \ {u}; we use L as the distance bound for each
node. Similarly, the algorithm computes an in-tree rooted at u such that for each node the
distance to u is at most L. This can be accomplished by computing a shallow-light Steiner
tree T ′ in the graph G′ arising from G by reversing all edges and then reversing the edges of
T ′. The output H2 of the process is the union of all these spanning trees.

Our overall algorithm then returns H1 ∪H2, the union of the solution for the thin and
the thick pairs, respectively. We are now ready to prove the following theorem:

I Theorem 1 (Revisited). The above algorithm is a bi-criteria (2 + ε,O(n1/2+ε))-approxima-
tion algorithm for the directed network design problem with bounded distances (cf. Definition 1).
The running time depends on n and ε and is polynomial in n for any fixed ε > 0.

Proof. We first show that the algorithm outputs a feasible solution with high probability. In
the light of Lemma 10, it remains to show that all thick pairs are settled with high probability.
A thick pair (u, v) is settled if the above algorithm samples a node r from the set Vuv. In this
case, the inclusion of the r-rooted in-tree and the r-rooted out-tree guarantees the existence
of a u-v path of length at most 2(1 + ε)L: we travel from u to r and then from r to v. Since
for any thick pair its set Vuv contains at least

√
n many nodes, the probability that none of

the δ many sampled nodes are from Vuv can be bounded by(
1− 1√

n

)δ
≤ e−3 logn = 1

n3 .

Since there are at most n2 thick pairs the claim follows.
We now analyze the cost of the algorithm. The cost of the procedure for settling thin pairs

is γ(1 + ε)OPT since every edge is sampled with probability at most γ times higher than its
LP value. Now observe that every tree constructed in the procedure for thick pairs has cost at
most O(nε)OPT. This follows from the fact that the optimum solution to the network design
problem ensures the existence of a feasible solution to the problem of finding the rooted
subtrees, and that the algorithm from Section 3 is an O(nε)-approximation algorithm. Since
the number of such trees constructed by the algorithm is O(δ) the ratio of the algorithm is
bounded by O(δnε + γ) = O(n1/2+ε). J

M. Chimani and J. Spoerhase 243

3 Directed Shallow-Light Steiner Trees

Let T be a rooted out-tree, i.e., its edges are directed from the root towards the leaves. A
branch node is a node with out-degree larger than 1; as a special case, we always consider
the root node to be a branch node. We say T is an i-level tree if no path from the root to
any leaf contains more than i branch nodes.

Let T ⊆ G be any out-tree, subgraph of a complete digraph G, with an arbitrary number
of levels. Clearly, we can find a related out-tree with the same root and leaves requiring
at most i levels, for any given i. If the edges have metric weights, a very general result by
Helvig et al. [10] relates the weights of these two trees:

I Lemma 2 (Helvig et al. [10]). Let T be a rooted subtree of weight c(T) with k leaves in
a metrically-weighted complete digraph, and Ti the cheapest subtree with the same root and
leaves and at most i levels. We have c(Ti) ≤ 2i(k/2)1/ic(T).

A typical application of this lemma is the following: Assuming metric edge weights,
any digraph can be considered complete by adding artificial edges corresponding to paths
in G. Consider any optimization problem whose solution is a tree. We can establish an
approximation algorithm for it by first finding an approximation for the best p-level solution,
for some p. We can then apply the lemma to obtain an approximation ratio to the original
non-level-restricted problem. In our application, we have non-correlated edge costs and
lengths. However, in order to apply the lemma, it suffices to observe that if there is a node
pair (u,w) without any edge uw of length at most `(uv) + `(vw), for any node v, we could
(conceptually) insert an edge with this length and cost c(uv) + c(vw) representing this u-v-w
path. Observe that this would, in general, result in multiple edges connecting the same
node pair, with different length/cost combinations. We do not need to explicitly consider
these additional edges. In our algorithm, we will directly identify the corresponding paths
meeting at branch nodes. Furthermore, by adding edges of zero length and cost, we can in
the following always assume that there is an optimum solution where all terminals appear as
leaves.

3.1 Algorithm
As mentioned above, there is an FPTAS [9, 7] to solve the problem of finding the cheapest
(with respect to edge costs c) path from a node u to a node v of length at most D (with
respect to edge length `). We denote the result of this FPTAS by MinCostPath(u, v,D).

Our algorithm employs a recursive greedy strategy, which has been originally invented
by Zelikovsky [14]. It has later been applied by Kortsarz and Peleg [11] to undirected
Shallow-Light Steiner Trees. Specifically, they give an (2 + ε,O(|R|ε))-approximation for
undirected graphs with uniform edge lengths and uniform distance bounds. Charikar et al.
[4] reuse this strategy for directed Steiner trees (without distance bounds) and obtain an
O(|R|ε)-approximation algorithm, devising a particularly elegant analysis of recursive greedy.

Our algorithm uses five parameters, cf. Algorithm 1. The graph G, costs c, and lengths `
remain unchanged over all recursive calls to the procedure and are hence not explicitly
included in these parameters. The algorithm operates in levels given by parameter i ≤ n.
The higher the level, the better the approximation guarantee. Parameters r,R, and d denote
the root, the terminal set, and the vector of distance bounds, respectively. Parameter k ≤ |R|
specifies the minimum number of terminals out of R, the resulting tree has to span (while
meeting the distance bounds). Setting k = |R|, the algorithm outputs a feasible directed
shallow-light Steiner tree.

STACS 2015

244 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

Level i = 1 of the algorithm works as follows. For all terminals t ∈ R, the algorithm
computes an r-t path Pt by MinCostPath(r, t, d(t)). Clearly, Pt respects the length
bound d(t). The resulting tree consists of the union of the k cheapest (w.r.t. c) of these
paths.3

For i > 1 we employ a greedy strategy to obtain a feasible solution T . Let the relative cost
of a tree T ′ spanning k′ terminals be defined as %(T ′) := c(T ′)/k′. Starting with empty T ,
we iteratively compute a subtree Tbest of low relative cost %(Tbest), add it to T , remove the
newly spanned terminals from R, and adjust k accordingly.

In order to compute Tbest, the algorithm exhaustively tests all nodes v and all values
k′ ≤ k to compute a cheap tree T ′ rooted at v that spans at least k′ terminals. (Note, that
k is adjusted by the algorithm.) These trees T ′ are computed by applying the algorithm
recursively but for level i − 1. To obtain an r-rooted tree we connect r to v by a path P .
This requires to adjust the distance bounds accordingly in the above mentioned recursive
calls. An issue that arises here is that the necessary properties of path P are not clear a
priori. In general, we may not be able to use the shortest path (w.r.t. `) as this might be too
expensive (w.r.t. c) to give a low relative cost.

To this end, we consider every possible path length up to `(E), where the latter denotes
the total length of all edges. This becomes tractable when we allow for a relative error of
up to (1 + ε): we evaluate a geometrically increasing sequence of length bounds (1 + ε)j ,
for non-negative integrals j, and determine for each of these bounds the cheapest path Pj
respecting it.

3.2 Analysis
Let G := (G, c, `, r, R, d) be a directed shallow-light Steiner tree problem instance as defined
above. For the related problem of a k-terminal directed shallow light Steiner tree (k-DSLST)
we are given an instance (G, k), k ≤ |R|, and ask for the cheapest directed shallow light
Steiner tree subject to any k-element subset of R. We observe that k = |R| gives the original
problem. An f(k)-partial approximation for k-DSLST is a procedure that finds a tree T that
is rooted at r, contains 1 ≤ k′ ≤ k terminals of R, and has relative cost %(T) ≤ f(k) · c(T ∗)/k.
Here, c(T ∗) is the cost of an optimum solution to k-DSLST.

We will show later (cf. Lemma 4) that the core of our algorithm in fact constitutes such
a partial approximation. This allows us to adapt a lemma by Charikar et al. [4] to obtain
an approximation to the original problem, as summarized in the following lemma. While
their result is dealing with Steiner trees and does hence not consider length restrictions,
their proof is versatile enough to be carried out in an identical fashion for our following
situation: Let P(G, k) be a partial approximation routine. We construct an approximation
algorithm A(G, k) as follows: First, A(G, k) calls P(G, k) which yields a tree T ′ spanning
some terminals R′. If |R′| = k, we are done. Otherwise, A(G, k) returns the union of T ′
and the tree T ′′ resulting from A(G′′, k′′) where G′′ is the problem instance with reduced
terminal set R \R′ and k′′ := k − |R′|.

3 As a side note, observe that one may be tempted to assume that some of these paths may coincide
in the beginning, thus giving rise to a branch node where the paths start to differ. We would hence,
inadvertently, construct a tree with more than one level. We do not need to care about this issue:
Firstly, in our cost computation (of the upper bound) we assume the worst case, i.e., that such common
subpaths do not exist; if they would, the cost would only decrease, thus improving the approximative
solution. Secondly, we can always (implicitly) consider the metric closure of G (with multiedges for
different length-vs.-cost combinations); in this case we always find distinct paths.

M. Chimani and J. Spoerhase 245

Algorithm 1 Approximation of a directed shallow-light Steiner tree for (G, c, `, r, R, d)
1: procedure ShallowLight(i, r, R, d, k)
2: if no k terminals in R respect the distance bounds from r then
3: return ∅
4: if i = 1 then
5: for each terminal t ∈ R do
6: Pt ←MinCostPath(r, t, d(t))
7: let R′ be the set of k terminals with minimum c(Pt)
8: return

⋃
t∈R′ Pt

9: T ← ∅
10: while k > 0 do
11: Tbest ← ∅
12: for each v ∈ V and each k′, 1 ≤ k′ ≤ k do
13: for j = 0, . . . , dlog1+ε `(E)e do
14: Pj ←MinCostPath(r, v, (1 + ε)j)
15: d′(u)← d(u)− `(Pj)

1+ε for each u ∈ V
16: T ′ ←ShallowLight(i− 1, v, R, d′, k′)∪Pj
17: if %(Tbest) > %(T ′) then Tbest ← T ′

18: T ← T ∪ Tbest
19: k ← k − |R ∩ V (Tbest)|
20: R← R− V (Tbest)
21: return T

I Lemma 3 (Adaptation of Charikar et al. [4]). Given an f(k)-partial approximation P(G, k)
and an algorithm A(G, k) as described above. If f(x)/x is a decreasing function in x, then A
is a g(k)-approximation, with g(k) =

∫ k
0 (f(x)/x)dx.

In the light of P and A, the identification of Tbest in Algorithm 1 corresponds to P while
the outer while loop resembles A. It remains to show that our algorithm meets the criteria
of an f(k)-partial approximation with f(x)/x being a decreasing function. At its core, the
proof strategy is similar to Charikar et al., but we have to carefully consider our length
restrictions and violations within the recursion.

I Lemma 4. Consider ShallowLight(i, r, R, d, k) (Alg. 1), which iteratively computes T .
Let T̄ := Tbest be any tree incorporated in the current solution (line 18). It violates the length
bounds by a factor of at most (1 + ε). For i ≥ 2, T̄ ’s relative cost %(T̄) is at most (i − 1)
times the relative cost %∗ := %∗

R̄,k̄
of the optimum solution T ∗ := T ∗

R̄,k̄
to k̄-DSLST with i

levels, where R̄ and k̄ are the values for R and k currently used by the algorithm, respectively.

Proof. Observe that, for i > 1, T̄ consists of an r-v path P̄ and a tree (computed recursively)
with at most i− 1 levels rooted at v. We prove the lemma by induction on i.

First consider the length property of T̄ . For i = 1, it trivially holds by the direct application
of the FPTAS (line 6). For i ≥ 2, we can bound the length of P̄ by (1+ε)j < `(P̄) ≤ (1+ε)j+1.
By line 15, the permissible length for a connection from v to some node u in T̄ \ P̄ is
bounded by d′(u) ≤ d(u) − (1 + ε)j . By induction, we will violate this bound by a factor
of at most (1 + ε), i.e., the length of a connection between r and u in T̄ will be at most
(1 + ε)j+1 + (1 + ε)(d(u)− (1 + ε)j) = (1 + ε)d(u).

STACS 2015

246 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

Now, consider the cost property. It holds for i = 2. Assume i ≥ 3 and that the claim
holds for all level restrictions less than i. Let v denote a level-child of r with respect to T ∗,
i.e., all inner nodes of the path Pj,v between r and v in T ∗ are of degree 2. The subtree
Tv ⊂ T ∗ rooted at v has (at most) i − 1 levels. (By augmenting G with sufficient 0-cost
0-length edges, we can assume that T ∗v has precisely i− 1 levels.) Let cj,v and `v ≤ (1 + ε)j
denote the cost and length of Pj,v, respectively. Let Cv denote the cost of Tv and kv the
number of terminals in Tv. In the following, consider the node v∗, level-child of r in T ∗, with
minimal %v∗ := (cj,v∗ + Cv∗)/kv∗ < %∗.

At some point at level i, our algorithm will also consider node v∗ and number kv∗ . The
computed r-v∗ path may be up to (1 + ε)`v∗ ≤ (1 + ε)j+1 long. We investigate the behavior
of ShallowLight(i − 1, v∗, R, d′, kv∗). It returns an (i − 1)-level tree S that is, again,
iteratively constructed. Let S′ be the tree incorporated into S by the algorithm such that
the current S now contains at least kv∗/(i− 1) terminals for the first time. Let S0, S1 be the
solution trees before and after adding S′, respectively. Furthermore, let s0, s1 be the number
of R̄-nodes covered by S0, S1, respectively. Observe that s1 ≥ kv∗/(i− 1).

Consider the nodes not covered before S′: |Tv∗∩R̄| ≥ kv∗−s0 = kv∗−kv∗/(i−1) = i−2
i−1kv∗ .

Since we can cover all these nodes at cost at most Cv∗ , we have an upper bound of i−1
i−2Cv∗/kv∗

on the relative cost for the uncovered terminals. By our induction hypothesis, we know
that we will hence find a solution—violating the length restrictions by at most a factor of
(1 + ε)—with relative cost at most (i − 2) i−1

i−2Cv∗/kv∗ for S′. This upper bound naturally
holds for each subtree that is incorporated into S before S′. Consequently, the relative cost
of S1 is also at most (i− 1)Cv∗/kv∗ .

Observe that our algorithm will not only compute ShallowLight(i−1, v∗, R, d′, kv∗) but
also ShallowLight(i− 1, v∗, R, d′, s1). Observe the equally modified length restrictions d′.
In the latter case, the algorithm will stop after adding S′ to S, returning this S as its (i− 1)-
level solution tree of relative cost %(S) ≤ (i−2)Cv∗/kv∗ . On level i, this S will be joined with
the computed path P̄ of cost at most that of Pj,v∗ (with corresponding j) and violating the
length constraints by at most (1 + ε) as discussed above. Together, they form a tree T ′ with
%(T ′) = %(S) + cj,v∗/s1 ≤ (i− 2)Cv∗/kv∗ + cj,v∗/(kv∗/(i− 1)) ≤ (i− 1)(cj,v∗ + Cv∗)/kv∗ =
(i− 1)%v∗ = (i− 1)%∗. J

We are now able to prove the approximation result for directed shallow-light Steiner trees.

I Theorem 5 (Revisited). The above algorithm is a bi-criteria (1 + ε1, O(|R|ε2))-approxima-
tion for directed shallow-light Steiner trees: for arbitrary small ε1, ε2 > 0, it gives a solution at
most O(|R|ε2) times more expensive than the optimum, while violating the length constraints
by a factor of at most (1 + ε1). For fixed ε2, its runtime is polynomial in the input size
and ε1.

Proof. Lemma 4 shows that each chosen Tbest on level i has a relative cost of at most (i− 1)
the relative-cost-optimum i-level tree w.r.t. R̄, k̄. By Lemma 2, the latter approximates the
optimum tree without level restrictions. So, overall, each Tbest is a (i− 1)2i(k̄/2)1/i-partial
approximation for k-DSLST. By Lemma 3, this gives a g(k)-approximation for k-DSLST
with

g(k) =
∫ k

0

(
(i− 1)2i(x̄/2)1/i/x

)
dx = 2i2(i− 1)

21/i k1/i.

We hence have an O(|R|ε2)-approximation for directed shallow-light Steiner trees (=|R|-
DSLST)—w.r.t. violating the length bounds by at most a factor of (1 + ε1)—by choosing a
suitable i inversely correlated to ε2.

M. Chimani and J. Spoerhase 247

Consider the running time of our algorithm. MinCostPath is an FPTAS with running
time O(mn/ε1) [7]. Consider any call to ShallowLight w.r.t. some i, k. For i = 1, it
requires O(|R|nm/ε1) time. Otherwise, we may add O(k) different trees Tbest and the
block of lines 14–17 is repeated O(nk2 log `(E)) times. Overall, any run of the procedure
(disregarding recursive calls) requires O(n2mk2 log `(E)/ε1) time. For overall i levels, there are
O(ni−1k2i−2) recursive invocations, inducing an overall runtime of O(ni+1mk2i log `(E)/ε1).
Clearly, log `(E), the logarithm of the sum of all edge lengths, is polynomially bounded by
the input size, and, by choice of i above, i is directly correlated to (and only dependent on)
1/ε2. J

4 Conclusions: Light-Weight Directed Spanners

We conclude with sketching another application of our shallow-light Steiner tree result.
We obtain a bi-criteria approximation algorithm for light-weight directed α-spanners (cf.
Definition 5). To the best of our knowledge no non-trivial result is known for this problem.

We employ a two-stage approach similar to the one used for directed sparse spanners [5, 2]
and for our network design problem in Section 2. Thin and thick pairs are defined analogously
to Section 2. Thin pairs can be settled as in [2] as only the linearity of the objective function
is used there. For settling thick pairs, a set of Θ(

√
n log n) many nodes is sampled. In the

case of sparse spanners [2] it is sufficient to compute a shortest path in-tree and a shortest
path out-tree for each of these sampled nodes, and take the union of these trees. Since
each of these trees has at most n − 1 edges, which is clearly a lower bound on OPT, the
total cost for this stage is Õ(

√
n · OPT). It is shown that this procedure settles all thick

pairs with high probability. In the case of light-weight spanners we compute a directed
shallow-light spanning tree for each sampled node. More precisely, let u be the sampled node.
We compute a shallow-light spanning tree T rooted at u such that for each node v ∈ V its
distance ¯̀

T (u, v) is at most α · ¯̀G(u, v). Since the optimum solution to the spanner problem
ensures the existence of a feasible solution to this problem, we can compute such a tree of
cost at most O(nεOPT) using Theorem 4. Analogously, we can compute an in-tree with root
u and the respective distance bounds. The total cost of the union of all such spanning trees
is O(n1/2+εOPT).

Unfortunately, the resulting solution is not necessarily feasible since the stretch factor α
may be violated. We can still argue that the solution gives a bi-criteria approximation
with bounded stretch factor. To see this, consider a thick pair (u, v) and assume that we
sample a node z such that there is a u-v path visiting z of length at most α · ¯̀G(u, v). Hence
¯̀
G(u, z) + ¯̀

G(z, v) ≤ α¯̀
G(u, v). Using the paths provided by the shallow-light in-tree and

the shallow-light out-tree computed by our algorithm we can find a path of length at most
(α+ ε)α¯̀

G(u, z) + (α+ ε)α¯̀
G(z, v) ≤ (α+ ε)α¯̀

G(u, v) in our output graph. We have:

I Theorem 6 (Revisited). The above algorithm is a bi-criteria (α+ ε,O(n1/2+ε))-approxi-
mation for light-weight directed α-spanners. The running time depends on n and ε and is
polynomial in n for any fixed ε > 0.

References
1 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.
2 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and

Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner
forest. Inf. Comput., 222:93–107, 2013.

STACS 2015

248 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

3 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

4 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. J. Algorithms,
33(1):73–91, 1999. (preliminary version appeared at SODA’98).

5 Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC’11), pages
323–332, 2011.

6 Yevgeniy Dodis and Sanjeev Khanna. Designing networks with bounded pairwise distance.
In Proc. 21st Ann. ACM Symposium on Theory of Computing (STOC’99), pages 750–759,
1999.

7 Funda Ergun, Rakesh Sinha, and Lisa Zhang. An improved FPTAS for restricted shortest
path. Information Processing Letters, 83:287–291, 2002.

8 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for
directed steiner forest. J. Comput. Syst. Sci., 78(1):279–292, 2012.

9 Refael Hassin. Approximation schemes for the restricted shortest path problem. Mathem-
atics of Operations Research, 17(1):36–42, 1992.

10 C. S. Helvig, G. Robins, and A. Zelikovsky. An improved approximation scheme for the
group steiner problem. Networks, 37(1):8–20, 2001.

11 Guy Kortsarz and David Peleg. Approximating shallow-light trees. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pages 103–110,
1997.

12 Joseph Naor and Baruch Schieber. Improved approximations for shallow-light spanning
trees. In 38th Annual Symposium on Foundations of Computer Science (FOCS’97), pages
536–541, 1997.

13 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989.

14 A. Zelikovsky. A series of approximation algorithms for the acyclic directed steiner tree
problem. Algorithmica, 18:99–110, 1997.

Combinatorial Expressions and Lower Bounds
Thomas Colcombet and Amaldev Manuel

LIAFA, Université Paris-Diderot
{thomas.colcombet, amal}@liafa.univ-paris-diderot.fr

Abstract
A new paradigm, called combinatorial expressions, for computing functions expressing properties
over infinite domains is introduced. The main result is a generic technique, for showing indefin-
ability of certain functions by the expressions, which uses a result, namely Hales-Jewett theorem,
from Ramsey theory. An application of the technique for proving inexpressibility results for logics
on metafinite structures is given. Some extensions and normal forms are also presented.

1998 ACM Subject Classification F.1.1 Models of Computation, G.2.1 Combinatorics

Keywords and phrases expressions, lower bound, indefinability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.249

1 Introduction

In this paper, we study the computational power of parallel devices that have an unlimited
access to Boolean computations, as well as access to an infinite domain of ‘data’ (for instance
integers or positive integers in what follows) under the restriction of a limited ‘bandwidth’.
This limitation formally states that only a bounded number of data can be manipulated
simultaneously. This is in contrast to the operations over Boolean values that have unlimited
input size.

A typical model of this form consists of finite circuits–we call them combinatorial expres-
sions throughout the paper–, of bounded depth, in which gates are of two kinds: gates with
unbounded domain using arbitrary operations of fan-in at most two (for instance the binary
gcd, the binary sum, product, or even non-computable functions), and gates using inputs
ranging over a finite domain with unrestricted fan-in (for instance disjunctions, conjunctions
of unbounded fan-in, or majority gates).

We use these devices for studying problems that have sequences of data as input. Typical
such problems are:

does a sequence of positive integers (data) have a gcd of one?
does a sequence of integers sum to zero?
are all the integers in a sequence distinct?

The motivation of the authors in studying such devices arose from proofs of lower bounds
for logics over data-words. The essence of these lower bounds can be easily captured by
reduction to lower bounds over combinatorial expressions. Independently of this motivation,
we believe that the objects presented here deserve a study on their own. We chose to include
here a simpler application to indefinability results in metafinite model theory.

Contributions Our contributions concerning such models go in several directions.
We introduce the model of combinatorial expressions, show some normal forms for them.
We prove indefinability results for these expressions: Indefinability of functions (i.e., maps
from tuples of data to data) using the pigeonhole principle, and indefinability of problems

© Thomas Colcombet and Amaldev Manuel;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 249–261

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.249
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

250 Combinatorial Expressions and Lower Bounds

(i.e., maps of tuples of data to {0,1}) using reductions to problems of ‘window definability’
(see immediately below).
We introduce the questions of ‘window definability’. Window definable properties are
properties that can be described as Boolean combinations of properties over subsets of the
inputs (namely windows). Using combinatorial arguments from Ramsey theory, namely
Hales-Jewett theorem, we show that some problems are window indefinable.
We study the added expressive power when expressions are furthermore allowed to use
selection gates.
Finally, we apply these techniques for proving some indefinability results over metafinite
structures (these are finite structures, in which tuples can take values in some fixed
infinite domain).

Related works This work is of course is related to circuit complexity (see for instance
[6]), and more precisely to families of circuits of bounded depth, since the object we are
manipulating can be seen as circuits. However, the expressive power of the models that we
study is very different. Indeed, not only, our combinatorial expressions can deal with data
ranging over an infinite domain, but furthermore, even Boolean gates are not restricted to a
simple families like Boolean connectives.

It was brought to our attention that our lower bound result is related to a result of Pascal
Tesson stating that testing whether k subsets of [n] form a partition requires a non-constant
communication complexity in the k-party ‘input on the forehead” model [7, 8]. The two
results also make an analogous use of the Hales-Jewett theorem.

There are other families of machines that have been extended to infinite domains, this is in
particular the subject of study of algebraic complexity (in particular [1, 5], or [9] for circuits).
However, the principle of these branches of work is to see how allowing machines to have
primitive capabilities to perform computations in a (infinite) field changes their expressive
power. The fact that the infinite domain is equipped of an algebraic (field) structure, changes
radically the expressive power, and in particular relates this branch of research to the study
of polynomials.

Organisation of the paper In Section 2, we present combinatorial expressions and some
motivating examples, which is then followed by a normal form theorem for the expressions
and a simple indefinability result. Section 3 contains the main contribution of this paper,
namely the indefinability results using the Hales-Jewett theorem. In Section 4, an extended
class of expressions is presented and a normal form theorem is given for this class. Section
5 presents an application of the indefinability result to metafinite logics. In Section 6 we
discuss some interesting directions for future work and conclude.

Acknowledgments The Hales-Jewett theorem was brought to our attention by Srikanth
Srinivasan, and the link to multiparty communication complexity by Frederic Magniez.

2 Combinatorial expressions and normal form

The aim of this section is to introduce the objects of our study, namely combinatorial
expressions. As usual, Z (resp. N) is the set of (resp. non-negative) integers, and [n] denotes
the set {1, . . . , n}.

T. Colcombet and A. Manuel 251

2.1 Combinatorial expressions
Combinatorial expressions are built by composing partial maps over a data domain D which
is an infinite set. Typical instances of data domains are integers (Z), natural numbers (N),
words over a finite alphabet (A∗ where A is a finite alphabet) etc. A variable X has range
E ⊆ D, abbreviated as X : E, if the set of values over which it ranges is E. We assume
an infinite supply of variables for each range E. A map f : E1 × · · · × Ek → F , where
E1, . . . , Ek, F ⊆ D, has arity k, domain E1 × · · · × Ek and range F . The image of the map
f is the set of values in F that f maps to, i.e. the set {f(a1, . . . , ak) | a1 ∈ E1, . . . , ak ∈ Ek}.
The expressions are built using two specific classes of functions, namely:

binary functions — when k = 2, and,
finitary functions — when each of E1, . . . , Ek is finite.

A binary function has a bounded arity but may have an unbounded input domain, for
example the usual addition on naturals + : N × N → N is binary. On the other hand a
finitary function has a finite input domain, but no restriction on the arity. An example of a
finitary function is the Boolean conjunction over k inputs

∧
k : {0, 1}k → {0, 1}. Now we

formally define combinatorial expressions.

I Definition 1. Combinatorial expressions are defined inductively;
a variable X : E is a combinatorial expression with range E, and,
if f : E1 × · · · × Ek → F is a binary or finitary function, and t1, . . . , tk are combinatorial
expressions with ranges E1, . . . , Ek respectively, then f(t1, . . . , tk) is a combinatorial
expression with range F .

Let t be a combinatorial expression that contains (possibly vacuously) the variables X̄ =
X1 : E1, . . . , Xn : En. We indicate the variables of t by the notation t(X̄). For the valuation
ā = a1, . . . , an, ai ∈ Ei of the variables X̄, the value of the expression t, denoted as t(ā), is
defined in the obvious way; if t is a variable Xi then t(ā) = ai, and if t = f(t1, . . . , tk) then
t(ā) = f(t1(ā), . . . , tk(ā)). Assume F ⊆ N is the range of the expression t. Naturally t defines
a map t : ā→ t(ā) from the set E1 × · · · ×En to the set F . Like in the case of functions, the
image of the term t is the set of output values of t, i.e. the set {t(ā) | ā ∈ E1 × · · · × En}.
Given a map m : Dn → D we say the map is realised by an expression t if t defines the map
m.

Next we introduce the notion of depth of an expression. For a variable X the depth is 0.
For an expression f(t1, . . . , tk) the depth is 1 more than the maximum of depths of t1, . . . , tk.

I Definition 2 (Family of combinatorial expressions). Fix a sequence X1 : D, X2 : D, . . .
of variables. A family of combinatorial expressions is a sequence of expressions (tn)n∈N =
t1, t2, . . . where tn is an expression over the variables X1, . . . , Xn.

A family of combinatorial expressions defines a map (tn)n∈N : a1, . . . , an → tn(a1, . . . , an)
from D∗ (all finite sequences over D) to D. The family (tn)n∈N is of constant depth if there
is a k ∈ N such that each expression tn is of depth at most k.

Given a map m : D∗ → D, we say m is realisable (by a constant depth family) if there
is a family of combinatorial expressions (of constant depth) (tn)n∈N that defines m. A
particular case is when the range of the map m is restricted to a set of size two, without
loss of generality we assume it is {0, 1} ; in this case we say (tn)n∈N realises the property (or
problem) {a1, . . . , an : m(a1, . . . , an) = 1}.

I Example 3. Some examples of combinatorial expressions and families are given below.
We take the domain D to be the set of natural numbers N.

STACS 2015

252 Combinatorial Expressions and Lower Bounds

1. Fix a number k ∈ N. Letm : N∗ → {0, . . . , k} be the mapm : a1, . . . , an → (
∑

i ai) mod k.
The map m is realised by the family (fn(g(X1), . . . , g(Xn)))n∈N, where fn : {0, . . . , k}n →
{0, . . . , k} is the finitary function fn : a1, . . . , an → (

∑
i ai) mod k, and g : N→ {0, . . . k}

is the binary function (by abuse of notation) g : i→ i mod k. This family has depth 2.
2. Let P1 be the set of all finite sequences of non-zero naturals. This property is realised

by the family (
∧

n(zero(X1), . . . , zero(Xn)))n∈N, where zero : N → {0, 1} is the binary
function that maps precisely all the non-zero naturals to 1, and

∧
n is the finitary function

that defines the Boolean conjunction on n inputs. This family has depth 2.
3. Let P2 be the property {a1, . . . , an ∈ N∗ : ai 6= aj}. Let neq : N × N → {0, 1} be the

binary function that has value 1 precisely when the inputs differ. Then, the property P2
is realised by the family (of depth 2) (

∧
n·(n−1)/2(t12, . . . , t1n, t23 . . . , t2n, . . . , tn−1n))n∈N

where the expression tij = neq(Xi, Xj).
4. We claim that for any map m : N∗ → N there is a family (tn)n∈N of logarithmic depth (i.e.

the expression tn has depth at most log n) realising it. Let p1, p2, . . . be an enumeration
of the prime numbers. For each prime pi, let pi-exp : x→ px

i be the exponential function
with base pi. Define the binary function un : N→ N as

un(x) = m(a1, . . . , an) where ai is the exponent of pi in x

Finally let πn(X1, . . . , Xn) be the expression (of log n-depth) that computes the product
of the variables X1, . . . , Xn. Then, the family of expressions

(un(πn(p1-exp(X1), . . . , pn-exp(Xn)))n∈N

realises the map m.

Example 3.4 implies that the class of maps realised by families of expressions of logarithmic
depth is degenerate, i.e. every map is realisable. Hence for interesting results one has to
consider the class of families of sub-logarithmic depth. In the following we study the class of
families of expressions of constant depth and prove that it is non-degenerate, i.e. there are
maps and properties that are not realisable.

2.2 Normal form and definability
In the rest of the section we exhibit a normal form for the expressions. First we introduce
the important notion of semantic equivalence of expressions.

I Definition 4 (Equivalence of expressions). Two expressions t1(X̄) and t2(X̄) over the
variables X̄ = X1 : E1, . . . , Xn : En are equivalent if t1(ā) = t2(ā) for all ā = a1, . . . , an,
ai ∈ Ei.

We introduce some notation. For an expression t, we denote the range and image of t by
range(t) and image(t) respectively. Assume t̄ = t1, . . . , tn is a finite sequence of expressions.
We define len(t̄) = n and range(t̄) = range(t1)× · · · × range(tn). If s̄ = s1, . . . , sm and t̄ =
t1, . . . , tn are two sequences of expressions, then s̄, t̄ denotes the sequence s1, . . . , sm, t1, . . . , tn.
An expression t is a binary expression if it consists only of binary functions.

The normal form theorem is obtained by transforming the expressions and for that we
use the idea of pairing, i.e. encoding pairs of elements from D as an element in D. We use
the following fact from set theory.

I Fact 1 (See [4], Chapter 3). If A is an infinite set, there exists an injective map from
A×A to A.

T. Colcombet and A. Manuel 253

Fix an injective map π from D × D to D. For elements a1, a2 ∈ D we let 〈a1, a2〉 denote
the element π(a1, a2) ∈ D. Similarly for subsets E1, E2 ∈ D we let 〈E1, E2〉 denote the set
{〈a1, a2〉 | a1 ∈ E1, a2 ∈ E2}.

I Theorem 5 (Normal form). For every expression t(X̄) of depth ` ∈ N there exists an
equivalent expression of the form

b(r(X̄), f(s̄(X̄))) (1)

where b is a binary function, f is a finitary function, r(X̄) is a binary expression of depth at
most `, and s̄(X̄) is a sequence of binary expressions of depth at most `. Moreover, if the
image of t(X̄) is finite then there exists an equivalent expression of the form

f(s̄(X̄)) (2)

where f is a finitary function and s̄(X̄) is a sequence of binary expressions of depth at most
`.

The normal form theorem allows us to formulate arguments about the expressive power
of our model. We next give such an application.

I Proposition 1. Let m : D2k+1 → D be a map that satisfies the following property: (†) For
any index i ∈ [2k + 1] and any n ∈ N there exist values a1, . . . ai−1, ai+1, . . . , a2k+1 ∈ D such
that the set {m (a1, . . . , ai−1, b, ai+1, . . . , a2k+1) | b ∈ D} is of size at least n. Then the map
m is not realisable by an expression of depth at most k.

Proof. The proof is an application of the pigeonhole principle along with the normal form
theorem. Let m be a map that satisfies the Property (†).

Let X̄ = X1, . . . , X2k+1 be the input variables with range D. Assume there is an
expression t(X̄) of depth k realising the map m. Using the normal form theorem we obtain
an equivalent expression t′(X̄) of the form

b(r(X̄), f(s̄(X̄)))

where b is a binary, f is finitary, r(X̄) is a binary expression of depth at most k and s̄(X̄) is
a sequence of binary expressions of depth at most k. Let the image of the function f be of
size n. Since the binary expression r(X̄) has depth at most k, there is a variable Xi that is
not used by the expression r(X̄). Consider the following set of input tuples;

a1, . . . , ai−1, b1, ai+1, . . . a2k+1
a1, . . . , ai−1, b2, ai+1, . . . a2k+1
...

...
...

...
...

...
...

a1, . . . , ai−1, bm, ai+1, . . . a2k+1

where a1, . . . , ai−1, ai+1, . . . , a2k+1 ∈ D and b1, b2, · · · ∈ bm ∈ D, m > n are such that

|{m (a1, . . . , ai−1, bi, ai+1, . . . , a2k+1) | i ∈ [m]}| > n

and for each j 6= l it is the case that

m (a1, . . . , ai−1, bj , ai+1, . . . , a2k+1) 6= m (a1, . . . , ai−1, bl, ai+1, . . . , a2k+1) .

Existence of a1, . . . , ai−1, ai+1, . . . , a2k+1 ∈ D and b1, b2, . . . , bm ∈ D are guaranteed by the
Property (†). The tuples differ only on the input variable Xi. Hence on all these inputs the

STACS 2015

254 Combinatorial Expressions and Lower Bounds

binary expression r(X̄) has the same output. Moreover, since f has a finite image of size n
and the number of input tuples is more than n, by pigeonhole principle there exist two input
tuples on which f has the same output. Let them be

a1, . . . , ai−1, bj1 , ai+1, . . . a2k+1 ,

a1, . . . , ai−1, bj2 , ai+1, . . . a2k+1 .

It follows that on these two inputs the expressions r(X̄) and f(s̄(X̄)) have the same output
and hence the function b also has the same output. But clearly the map m differs on these
inputs which is a contradiction. Hence the claim is established. J

I Corollary 6. The following maps are not realised by expressions of depth at most k.
1. gcd : (N \ {0})2k+1 → N \ {0} defined as gcd : a1, a2, . . . , a2k+1 → gcd(a1, a2, . . . , a2k+1),
2. sum : Z2k+1 → Z defined as sum : a1, a2, . . . , a2k+1 → a1 + · · ·+ a2k+1.

Proof. By virtue of the previous proposition, it is enough to establish the Property (†) for
each of the maps m.
1. For each i ∈ 2k + 1 and n ∈ N, we define the following tuples ;

2n+1, . . . , 2n+1, 2, 2n+1, . . . , 2n+1

2n+1, . . . , 2n+1, 22, 2n+1, . . . , 2n+1

...
...

...
...

...
...

...
2n+1, . . . , 2n+1, 2n+1 2n+1, . . . , 2n+1

︸ ︷︷ ︸ ︸ ︷︷ ︸
i− 1 times 2k + 1− i times

It is straightforward to check that the image of the map gcd on these tuples is of size n+ 1.

2. As before, for each i ∈ 2k + 1 and n ∈ N, we define the following tuples ;

0, . . . , 0, 1, 0, . . . , 0
0, . . . , 0, 2, 0, . . . , 0
...

...
...

...
...

...
...

0, . . . , 0, n+ 1 0, . . . , 0︸ ︷︷ ︸ ︸ ︷︷ ︸
i− 1 times 2k + 1− i times

It is easily verified that the image of the map sum on these tuples is of size n+ 1. J

Before concluding this section let us note that the arguments we used in Proposition 1
does not work for proving indefinability of maps with a finite image, for instance the map
Pgcd=1 : (N \ {0})∗ → {0, 1} defined as Pgcd=1(a1, a2, . . . , am) = 1 iff gcd(a1, . . . , am) = 1.
In the next section we develop advanced techniques for handling such maps.

3 Window-definability and indefinability

In this section, we provide the necessary material for showing that some problems are
not expressible by combinatorial expressions of bounded depth. This is different from the
indefinability result that we have seen before, Proposition 1, which was dealing with the
indefinability of functions that have an infinite/unbounded image while the maps we consider

T. Colcombet and A. Manuel 255

in this section have an image of size 2. For this, we slightly depart from the above framework,
and introduce the notion of window-definability.

In the following we use the notation AB to denote the set of all vectors/sequences over A
indexed by the set B. Let us fix a finite set of variables, V = {X1, . . . , Xk} ranging over D.
A window (over V) is a subset of V . Given a valuation of the variables ā ∈ DV , its restriction
to a window W is denoted ā|W . Two valuations v, v′ are W -equivalent if v|W = v′|W , i.e.,
indistinguishable ‘through the window W ’. From now,W designates a fixed set of windows. A
problem P ⊆ Dk is W-definable if it can be described as a Boolean combination of languages
of the form

{ā ∈ DV | ā|W ∈ S} for some S ⊆ DW .

Such a Boolean combination is called a W-definition. In other words, the membership to P is
entirely determined given finitely many properties of the input ‘seen through the windows’. Of
course, if V ∈ W , then all problems are W-definable. We are interested in understanding the
notion of W-definability when this is not the case (i.e. V 6∈ W). The size of a W-definition
is the number of sets of the above form it uses. A problem is W, k-definable if there is a
W-definition for it of size at most k. Two problems P,R are W, k-separable if there is a
W, k-definable set D such that P ∩D = ∅ and R ⊆ D.

These notions are related to the above sections thanks to the following lemma:

I Lemma 7. The problems definable by combinatorial expressions of depth k are W-definable,
where W is the set of all windows of size at most 2k.

Proof. By the normal form theorem, any expression of depth k deciding a property (since it
has a finite image) is equivalent to an expression of the form f(s̄(X̄))) where f is a finitary
function, and s̄(X̄) is a sequence of binary expressions of depth at most k. First of all we
observe that we can assume that every binary expression in s̄(X̄) outputs a Boolean value,
in other words f computes a Boolean function. Notice that there is no loss of generality here
since any finitary function can be converted to a Boolean function by increasing the number
of inputs. Now the claim follows by observing that each binary expression si(X̄) in s̄(X̄)
corresponds to a set of the form {ā ∈ DV | ā|W ∈ S} where the window W is of size at most
2k (namely the valuables used by the expression si(X̄)). J

We shall now head toward indefinability results. For this, we use an exact characterization
of the definability for some special forms of problems: rectangle problems. In such problems,
data are column vectors. Hence, tuples of data as input can be seen as rectangles. We are
interested in relating the W-definability of the set of rectangles such that every line belongs
to some given set of valid rows L, to some simpler properties of L.

Belongs to PL,n,

Inputs are columns from D.

if all lines belong to L.

Formally, fix an alphabet A, and a line property L ⊆ AV . Then, given a positive integer n,
consider the domain Dn = An (understood as ‘columns’), and define the problem PL,n ⊆ DVn

STACS 2015

256 Combinatorial Expressions and Lower Bounds

consisting of these rectangles such that every line belongs to L:

PL,n = {ā ∈ DVn | πi(ā) ∈ L for all i ∈ [n]} ,
where πi(a1 . . . an) = ai is extended component-wise to tuples indexed by V.

Our Theorem 8, just below, relates the W-definability of these problems to the property of L
being W-closed, that we define now.

An element ā ∈ AV belongs to the W-closure of L ⊆ AV , denoted LW , if for all W ∈ W
there is some b̄ ∈ L such that ā and b̄ are W -equivalent. The set L is W-closed if it is equal
to its W-closure.

The interesting examples are more the negative ones: consider for instance A = {0, 1},
L ⊆ AV the set of tuples that contain at least one occurrence of 1, and W to be 2V \ V , then
L is not W-closed since ā = 0V does not belong to L, but for all windows W ∈ W we can
define b̄ to be 0 over W and 1 elsewhere. This b̄ is W -equivalent to ā, and since it contains
at least one occurrence of 1, it belongs to L.

I Theorem 8. For all L ⊆ AV ,
if L is W-closed then there is some k such that all PL,n has a W, k-definition for all
positive integers n, and
if L is not W-closed, then for all k, there exists n such that PL,n has no W, k-definition.

Proof of the first item. Assume that L is W-closed, this means that:

L = {ā ∈ AV | ā|W ∈ L|W for all W ∈ W} , where L|W = {ā|W | ā ∈ L} .

Consider now the set RL,n ⊆ (Dn)V that contains u ∈ (Dn)V if u|W ∈ (L|W)n for all W ∈ W .
By definition, RL,n is W, |W|-definable. Let us show that RL,n = PL,n.

Consider some ā ∈ (Dn)V . Then ā ∈ PL,n if and only if for all i ∈ [n] and all W ∈ W,
πi(a|W) ∈ L|W , if and only if for all W ∈ W and all i ∈ [n], πi(a|W) ∈ L|W , if and only if
ā ∈ RL,n. Hence PL,n = RL,n is W, |W|-definable. J

Before being able to prove the second item, we need to introduce the deep combinatorial
theorem of Hales-Jewett. In this theorem, a combinatorial line of Bn (for some finite set B
and some positive integer n) is a set of the form ` = {u[b] | b ∈ B} for some u ∈ (B∗x)+B∗,
where u[b] denotes u in which b has been substituted to all occurrences of x.

I Theorem 9 (Hales-Jewett [3]). Given some finite sets B and C, there is a positive integer n
such that for all maps χ from Bn to C there exists a χ−monochromatic combinatorial line `,
i.e., there is c ∈ C such that χ(v) = c for all v ∈ `.

We now use a this theorem for establishing the second item of Theorem 8. We establish in
fact the following stronger lemma.

I Lemma 10. If ā ∈ L
W \ L, then for all k, there exists n such that PL,n and the set

PL∪{ā},n \ PL,n cannot be W, k-separated.

Hence, one cannot separate ‘all lines are in L’ from ‘all lines are in L ∪ {ā} and there is
a line equal to ā’. It is easy to see that Lemma 10 implies the second item of Theorem 8.
Indeed, L being non W-closed means that there exists ā ∈ L

W \ L. Assuming for the
sake of contradiction that PL,n would be W, k-definable would thus imply that PL,n and
PL∪{ā},n \ PL,n would be W, k-separated by PL,n itself. A contradiction.

T. Colcombet and A. Manuel 257

Proof. Assume that PL,n and Qā,n = PL∪{ā},n \ PL,n are W, k-separable.
Our first step consists in showing that the language that separates PL,n from Qā,n can

be derived from a coloring function χ of the inputs to some set C (the size of which does
not depend on n). Let us assume that the W, k-separability is witnessed by a Boolean
combination of the sets Ri = {c̄ ∈ (Dn)V | c̄|Wi

∈ Si} for i ∈ [k] where Wi ∈ W and
Si ⊆ (Dn)W . Consider now the set C = [2][k] (note that it does not depend on n), and the
map χ from (Dn)V to C defined by

for all i ∈ [k] and c̄ ∈ (Dn)V , χ(c̄)i = δc̄|Wi
∈Si

=
{

1 if c̄|Wi ∈ Si ,

0 otherwise.

This map stores all the relevant information concerning the membership in each of the Ri’s.
The W, k-separability means that whenever c̄ ∈ PL,n and c̄′ ∈ Qā,n, χ(c̄) 6= χ(c̄′) (?).

We shall now lay ground for the use of Hales-Jewett. This theorem will be used on rows:
a rectangle of the problem will be seen as a sequence of rows, one on top of the previous one.
This is different from the input itself, since each variable accounts for one column. We will
allow to use these two points of view by implicitly identifying elements from (AV)n (sequence
of rows of length V) with elements from (An)V = (Dn)V (sequence of columns of depth n).
Under this identification, we can for instance write Ln = PL,n, since PL,n consists of these
inputs such that every line belongs to L.

We can now apply the Hales-Jewett theorem, using B = L and C as defined during
the first step, thus getting a number n. The first step provides us with a coloring χ from
Bn to C. Finally, the theorem of Hales-Jewett states the existence of a χ-monochromatic
combinatorial line ` = {u[b̄] | b̄ ∈ L} for u ∈ (L ∪ {x})n, of color c ∈ C.

The principle of the rest of the proof is shown is the following picture:

x

x

u All other lines in L. χ-monochromatic
when x ranges
over L.

belongs to PL,n

and

ā

ā

⇒

Also
accepted.

Let us prove that χ(u[ā]) = c (This is a contradiction to (?) since u[ā] ∈ Qb̄,n, thus
completing the proof).

For all i ∈ [k], we have:

χ(u[ā])i = δu[ā]|Wi
∈Si

(by definition of χ)

= δu[b̄]|Wi
∈Si

for some b̄ ∈ L (since ā ∈ LW)

= χ(u[b̄])i (by definition of χ)
= ci . (since u[b̄] ∈ ` hand hence is mapped to c by χ)

Hence χ(u[ā]) = c. J

We can now derive other indefinability results from Theorem 8.

I Lemma 11. Consider a set of windows W such that V 6∈ W.
For D being the positive integers, then the set Pgcd=1 of inputs of gcd one is not W-
definable.
For D being the integers, the set PΣ=0 of inputs of null sum is not W-definable.

STACS 2015

258 Combinatorial Expressions and Lower Bounds

Proof of first item. Let k be a positive integer. Let us show that Pgcd=1 is not W, k-
definable.

Let A = {0, 1} and L = AV \ {0}V . We have seen that this L was not W-closed.
Hence, according to Theorem 8, there is n such that the rectangle problem PL,n is not W, k-
definable. Let p1, . . . , pn be n distinct prime numbers. Define the map f from Dn = {0, 1}n

to positive integers by f(a1 . . . an) = pa1
1 pa2

2 · · · pan
n . Clearly, given an input tuple ā ∈ (Dn)V ,

gcdv∈V f(a(v)) is 1 if and only if for all prime numbers p = p1, . . . , pn, f(a(v)) is not divisible
by p for some v ∈ V , or equivalently, if all lines in ā (seen as a rectangle) contains a 0. Hence
PL,n = {ā | gcdv∈V f(a(v))}.

Thus, assume that Pgcd=1 would be W, k-definable, then the problem PL,n would also be
W, k-definable. This is a contradiction. J

Proof of second item. The approach is similar. Let us assume without loss of generality
that |V| ≥ 2. Let k be a positive integer. Let us show that PΣ=0 is not W, k-definable.

Let A = {0, 1,−1} and L be the tuples b̄ ∈ AV that sum to 0. This set is not W-closed.
Indeed, consider a tuple ā that consists only of 0’s but for one occurrence of 1. For all
windows W ∈ W , either the occurrence of 1 does not occur in W , and ā is W -equivalent to
the null tuple which belongs to L, or there is some occurrence of 0 that occurs outside W , and
by switching this 0 into a −1 yields once more a W -equivalent tuple in L. Hence, according
to Theorem 8, for n sufficiently large, PL,n is not W, k-definable.

Let us consider now some λ > |V|, and the map from Dn = An to integers defined
by f(a1 . . . an) =

∑
i∈[n] λ

iai. Thanks to the choice of a sufficiently large λ, for all inputs
ā ∈ (Dn)V ,

∑
v∈V f(a(v)) = 0 if and only if all rows in ā sum to 0, i.e., if and only if ā ∈ PL,n.

Thus, assume that PΣ=0 would be W, k-definable, then the problem PL,n would also be
W, k-definable. This is a contradiction. J

I Corollary 12. The problems of null sum and of gcd one over more that 2k inputs are not
recognizable by combinatorial expressions of depth at most k.

4 Selection functions

So far in our expressions we allowed only functions with bounded domain and unbounded
arity, or bounded arity and unbounded domain. It is natural to ask if the class of expressions
can be extended without being degenerate (i.e. not accepting all maps from D∗ to D). In
this section we present the class of selection functions that are similar to the multiplexer
gates in digital circuits. Intuitively a selection function takes m values a1, . . . , am ∈ D and a
number i in [m] as input and outputs the value ai, i.e. it selects the ith input. To keep the
discussion simple, let us assume that D contains the natural numbers N.

I Definition 13. Formally, a selection function selm of arity m ∈ N is a function of the form

selm :

 ∏
i∈[m]

Ei

× [m]→
⋃

i∈[m]

Ei

where each Ei ⊆ D such that selm(a1, . . . , am, j) = aj for a1 ∈ E1, . . . , am ∈ Em, j ∈ [m].

We define the extended class of combinatorial expressions inductively as follows: every
combinatorial expression belongs to the extended class. Further more, if selm :

(∏
i∈[m]Ei

)
×

[m]→
⋃

i∈[m]Ei is a selection function and t1, . . . , tm, t are expressions in the extended class

T. Colcombet and A. Manuel 259

with ranges E1, . . . , Em, [m] respectively then selm(t1, . . . , tm, t) is an expression with range⋃
i∈[m]Ei that belongs to the extended class of terms.
In the following we prove that the extended class of expressions have the same expressive

power. First we prove a normal form theorem for the extended class.

I Theorem 14 (Normal form theorem for extended class of expressions). For every expression
t(X̄) of depth ` ∈ N there exists an equivalent expression of the form

selm(r̄(X̄), f(s̄(X̄)))

where m ∈ N, r̄(X̄) is a sequence of binary expressions of depth at most `, f is a finitary
function, and s̄(X̄) is a sequence of binary expressions of depth at most `. Moreover if the
image of t(X̄) is finite then there exists an equivalent expression of the form

f(s̄(X̄))

where f is a finitary function and s̄ is a sequence of binary expressions of depth at most `.

An immediate consequence of the above result is that for defining functions from D∗ to D
with finite image, selection functions are useless. This situation is not different in general
also. From Example 4 it follows that,
I Remark. The function sel2k+1 : D2k+1 × [2k + 1] → D is definable by a combinatorial
expression (that does not use selection functions) of depth k + 1.

However selection functions add succinctness as the following propositions shows.

I Proposition 2. The function sel2k+1 : D2k+1 × [2k + 1] → D is not definable by a
combinatorial expression of depth k.

Proof. The proof is very close to the proof of Proposition 1. Assume there is a combinatorial
expression t(X1, . . . , X2k+1, y) that defines the function sel2k+1. By the normal form theorem
we transform t into an equivalent expression of the form

b(r(X1, . . . , X2k+1, y), f(s̄(X1, . . . , X2k+1, y)))

where b is binary, f is finitary, and r and s̄ are binary expressions of depth k. Since the
expression r has depth k, there is a variable Xi that is not present in r. Choose and element
a ∈ D and consider the inputs S = {(x1, . . . , x2k+1, i) ∈ D2k+2 | xi ∈ D, ∀j 6= i, xj = a}.
Choose inputs ū, v̄ ∈ S such that ū 6= v̄ and f(s̄(ū)) = f(s̄(v̄)). Such inputs ū and v̄ exist
by pigeonhole principle (since S is infinite while the image of f is finite). Observe that
b(r(ū), f(s̄(ū))) = b(r(v̄), f(s̄(v̄))) contradicting the fact that sel2k+1(ū) 6= sel2k+1(v̄). Hence
the claim is proved. J

5 Application in metafinite logics

In this section we describe an application of our indefinability results, namely to prove
inexpressibility results for logics on metafinite structures. Metafinite model theory was
initiated by Grädel and Gurevich [2] in order ‘to extend the approach and methods of finite
model theory beyond finite structures’. A metafinite structure M is a triple 〈A,B, ρ〉 where
A is a finite first order structure, B is a first order structure (typically infinite) and ρ is
a weight function from the domain of A to the domain B (the original definition allows a
finite number of weight functions of different arity). For an example consider the structure

STACS 2015

260 Combinatorial Expressions and Lower Bounds

M = 〈A,B, ρ〉 where A = ([n],≤) is a finite linear order, B = (N,+,×) is the natural
numbers with arithmetic, and ρ is a map from [n] to N. In short, M represents a sequence
of natural numbers. Such kind of weighted structures arise naturally in several areas of
computer science. An important such case concerns databases, where some data naturally
range over infinite/unbounded domains. When considering logics (for instance first order
logic) expressing properties over metafinite structures, quantifications are assumed to only
range over the finite structure A, but the formulas can access the structure B via the functions
ρ and the use of the relations in B. In [2] several theorems from finite model theory are
lifted to the case of metafinite models.

We now show that our indefinability results can be used to derive indefinability results in
this context. We consider structures of the following form; M = 〈A,B, ρ〉 where A = ([n],≤)
is a finite linear order, B is the natural numbers N with all possible relations and functions
of all arity (denoted as N∗), and ρ is a map from the positions in A to N . We consider the
monadic second order logic on these structures which has the following syntax and semantics:
we have first order variables x, y, . . . and set variables X,Y, . . . that range over positions and
sets of positions in the structure A respectively. When x is a variable then ρ(x) is a term
over the structure B, and if t1, . . . , tk are terms over the structure B and f is a function in
B of arity k then f(t1, . . . , tk) is a term over the structure B. If R is a relation of arity k
in B and t1, . . . , tk are terms over B, then R(t1, . . . , tk) is an atomic formula of the logic.
The only other atomic formulas are of the form x ≤ y. The rest of the formulas of the logic
are defined inductively: ϕ1 ∨ ϕ2, ¬ϕ1, ∃x. ϕ1, ∃X.ϕ1 are formulas when ϕ1, ϕ2 are formulas.
The semantics of terms and formulas are defined in the obvious way (see [2], Definition 3.1).

Using our inexpressibility result we prove the following theorem:

I Theorem 15. The set of all structures M = 〈([n],≤) ,N∗, ρ〉 that satisfy the property

gcd (ρ(1), . . . , ρ(n)) = 1 (3)

is not definable in monadic second order logic.

Before concluding, we note the following. The first remark is that by similar arguments
we can also prove indefinability of the property

∑
(ρ(1), . . . , ρ(n)) = 0 in monadic second

order logic. Secondly, since our construction of the expression depends only on the fact that
the quantification over the structure A is finite, the theorem also holds for any finite structure
A, i.e. any finite signature not necessarily the signature (≤), and any logical formalism where
the quantification over A is finite – in particular higher order logics.

6 Conclusion

In this work we introduced a formalism of expressions that take inputs from an infinite
domain. The expressions are shown to have equivalent expressions in a normal form which
allows to prove indefinability results using regularity lemmas from combinatorics. We point
out some interesting avenues for further exploration. Firstly in this paper we have placed no
restriction on the size of the circuits. But it seems that some of the results in Section 3 point
towards the possibility of finer indefinability results that take into account the size of the
expressions. Secondly we have defined our domain D to be infinite. It is also an interesting
to investigate expressive power of families of expressions when the data domain is unbounded
yet finite, and grows asymptotically with the input size.

T. Colcombet and A. Manuel 261

References
1 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Com-

putation. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.
2 Erich Grädel and Yuri Gurevich. Metafinite model theory. Information and Computation,

140(1):26 – 81, 1998.
3 R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. A Wiley-Interscience

publication. Wiley, 1990.
4 T. Jech. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer

Monographs in Mathematics. Springer, 2003.
5 Pascal Koiran. A weak version of the blum, shub, and smale model. Journal of Computer

and System Sciences, 54(1):177 – 189, 1997.
6 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser

Verlag, Basel, Switzerland, Switzerland, 1994.
7 Pascal Tesson. Computational Complexity Questions Related to Finite Monoids and Semig-

roups. PhD thesis, School of Computer Science, McGill University, Montreal, 2003.
8 Pascal Tesson. An application of the hales-jewett theorem to multiparty communication

complexity. Extract from the PhD Thesis, 2004.
9 L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM

Symposium on Theory of Computing, STOC ’79, pages 249–261, New York, NY, USA, 1979.
ACM.

STACS 2015

Construction of µ-Limit Sets of Two-dimensional
Cellular Automata

Martin Delacourt1 and Benjamin Hellouin de Menibus2

1 CMM, Universidad de Chile, Beauchef 851, Edificio Norte – Piso 7, Santiago,
CHILE

2 I2M, Aix-Marseille Université, CMI, 39 rue F. Joliot Curie, 13453 Marseille
Cedex 13, FRANCE

Abstract
We prove a characterisation of µ-limit sets of two-dimensional cellular automata, extending ex-
isting results in the one-dimensional case. This sets describe the typical asymptotic behaviour of
the cellular automaton, getting rid of exceptional cases, when starting from the uniform measure.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases cellular automata, dynamical systems, µ-limit sets, subshifts, measures

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.262

1 Introduction

Cellular automata are discrete dynamical systems defined by a local rule, introduced in the
40s by John von Neumann [12]. They model a large variety of discrete systems and are linked
with various areas of mathematics or computer science, in particular computation theory,
complex systems, ergodic theory and combinatorics.

One of the main catalysts of the study of cellular automata was their surprisingly complex
and organised behaviours, even when iterated on configurations with no particular structure
(e.g. chosen at random). To formalise these observations, many authors tried to describe
their asymptotic behaviour by considering the limit set, which is the set of configurations
that can be reached after arbitrarily many steps. These sets were shown to have potentially
high computational complexity [11, 1], and any nontrivial property on them is undecidable
[9]. Nevertheless, the problem of characterising which subshifts can be limit sets of CA
remains open.

In 2000, Kůrka and Maass argued that limit sets did not provide a good description of
empirical observations and introduced instead a measure-theoretical version [10]. The idea
of µ-limit sets is to choose the initial configuration at random, according to some probability
measure µ, and to consider all patterns whose probability to appear does not tend to 0. In
the one-dimensional case, similar results of high complexity and undecidability were found
[4, 3, 6, 2]. Another approach was developed in [5], considering the limit probability measure,
with similar results.

In this article, we consider the two-dimensional case and prove a characterisation of all
subshifts that can be µ-limit sets of CA for µ the uniform Bernoulli measure. The method is
constructive and inspired by the one-dimensional constructions in [2, 5].

© Martin Delacourt and Benjamin Hellouin de Menibus;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 262–274

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.262
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Delacourt and B. Hellouin de Menibus 263

2 Definitions

2.1 Cellular automata on two dimensions
I Definition 1 (Configurations, patterns, cylinders). Let A be a finite alphabet. We introduce
AZ2 the set of (two-dimensional) configurations. Denote A∗ the set of finite patterns,
that is, any element of AU for some U ⊂

finite
Z2 (denote U = supp(u) the support of the

pattern u). Such a pattern is said to be square or rectangular if its support is.
Given u ∈ A∗ and i, j ∈ Z2, define the cylinder [u]i,j = {x ∈ AZ2

x(i,j)+supp(u) = u}.

Endowed with the product topology, AZ2 is a compact and metrisable space. A distance
inducing this topology is:

∀x, y ∈ AZ2
, dC(x, y) = 2−∆(x,y) where ∆(x, y) = min{|i|+ |j| | i, j ∈ Z2, xi,j 6= yi,j}

The frequency of a pattern u ∈ A∗ in another pattern v ∈ A∗ is defined as:

Freq(u, v) =
#
{

(i, j) ∈ supp(v) : (i, j) + supp(u) ⊆ supp(v)
v(i,j)+supp(u) = u

}
{(i, j) ∈ supp(v) : (i, j) + supp(u) ⊆ supp(v)} , 0 if it is undefined.

I Definition 2 (Shift actions). Define the two shifts actions σ↑, σ→ : AZ2 → AZ2 by:

∀x ∈ AZ2
, i, j ∈ Z2, σ→(x)i,j = xi−1,j and σ↑(x)i,j = xi,j−1.

IDefinition 3 (Cellular automata). A (two-dimensional) cellular automaton is a continuous
action F : AZ2 → AZ2 that commutes with σ→ and σ↑. Equivalently, it can be defined by a
local rule F : AUF → A, where UF ⊂ Z2 is a finite neighbourhood, in the sense that

∀x ∈ AZ2
, i, j ∈ Z2, F (x)i,j = F ((x(i,j)+u)u∈UF

).

This equivalence is known as the Curtis-Hedlund-Lyndon theorem [7].

2.2 Probability measures
I Definition 4 (Probability measures on AZ2). Let B be the Borel sigma-algebra of AZ2 .
Denote by M(AZ2) the set of probability measures on AZ2 defined on the sigma-algebra
B. LetMσ(AZ2) be the σ↑, σ→-invariant probability measures on AZ2 , that is to say
the measures µ ∈ M(AZ2) such that µ(σ−1

↑ (B)) = µ(σ−1
→ (B)) = µ(B) for all B ∈ B. For

a continuous application F : AZ2 → AZ2 , denote Fµ the image of the measure µ by F :
Fµ(X) = µ(F−1(X)).

I Definition 5 (Bernoulli measure). The Bernoulli measure µλ ∈Mσ(AZ2) associated with
a vector λ = (λa) ∈ [0; 1]A such that

∑
a∈A λa = 1 is defined as:

∀u ∈ AU, µλ([u]) =
∏

(i,j)∈U

λui,j .

I Definition 6 (µ-limit set). Let F : AZ2 → AZ2 be a CA and µ an initial probability
measure. The µ-limit set of F Lµ(F) is defined by:

u ∈ Lµ(F)⇐⇒ F tµ([u]) 9
t→∞

0.

STACS 2015

264 Construction of µ-Limit Sets of Two-dimensional Cellular Automata

2.3 Compatibility
The standard Turing machine model has access to a one-dimensional working tape than can
be infinite on one or both sides. We consider in this paper that the machines have access
to a two-dimensional tape infinite in all directions, in order to simplify some constructions.
The only difference is that the computing head, when reading the current state and the
letter on the tape at its current location, has the ability to move in four different directions:
↑, ↓,→,←. This model remains exactly as powerful as a Turing machine.

I Definition 7 (Computable sequence of patterns). A sequence of patterns (un)n∈N ∈ (A∗)N
is computable if there exists a Turing machine that, given as input an integer n written in
binary, stops and outputs un.

In the previous definition, the Turing machine’s alphabet contains at least A and {0, 1}. We
can assume the input is written left to right on row 0 surrounded by a special blank state.

I Proposition 8. Let F : AZ2 → AZ2 be a CA and µ ∈Mσ(AZ2) be the uniform Bernoulli
measure. Then there is a computable sequence of square patterns (wi)i∈N such that

u ∈ Lµ(F)⇐⇒ Freq(u,wi) 9
i→∞

0.

The sequence is built using de Bruijn tori, a combinatorial object constructed explicitly in
[8]. Due to space constraints, the proof is in the appendix.

3 Main theorem

I Theorem 9. Let µ be the uniform Bernoulli measure over A and (wi)i∈N a computable
sequence of square patterns. Then there exists an alphabet B ⊇ A and a cellular automaton
F over B such that:

u ∈ Lµ(F)⇐⇒ Freq(u,wi) 9
i→∞

0.

This theorem along with Proposition 8 characterises all µ-limit sets when µ the uniform
Bernoulli measure. The proof of the theorem relies on an explicit construction; that is, we
prove the result effectively by describing the CA.

Similarly to what was done for one-dimensional CA in [2, 5], the idea is, starting from
some random configuration according to a measure µ, to build a partition of connected
subsets of the plane using auxiliary states. In each subset, independently, each wi is computed
successively and concatenated copies of it are written over all the subset. To ensure the
density of auxiliary states tends to 0, they merge progressively in a controlled manner,
offering more space for computation.

4 Construction

4.1 Overview
First, we present a sketch of the different steps of the construction corresponding to a
computable sequence of patterns (wi)i∈N. The alphabet B is the product of different layers,
each layer being used for a different auxiliary process, plus two special states (seed and heart).
The main layer is the writing layer whose alphabet is A; each other layer uses a different
alphabet containing a blank symbol # corresponding to the absence of information. Hence
we have A ⊂ B up to the bijection a↔ (a,#, . . . ,#).

M. Delacourt and B. Hellouin de Menibus 265

Colonising the space: Section 4.2.
Starting from a random configuration drawn according to µ, we first want to “clean”
the randomly generated content of the auxiliary layers. B contains a seed state * .
Each seed, at time 1, erases the contents of a small area around it and give birth to
membranes growing in every direction except when they meet other membranes. They
erase all information contained in the auxiliary layers and membranes faking life which
are recognised with the help of age counters.
Internal metabolism: partitioning the cleaned space. Section 4.3.1.
Each seed gives birth to a heart r that will be the core of a living organism. Every
organism owns an age counter making sure they are all synchronised. Regularly, the
organism around each living heart grows in each direction until it meets a fellow organism,
thus claiming its territory.
Internal metabolism: fighting for survival. Section 4.3.2.
Organisms need to become larger and larger through time, so we regularly remove some
of the hearts. When two hearts are too close, one of them is removed to ensure that the
distance between hearts is large and tends to infinity.
Internal metabolism: Computing and writing. Sections 4.3.4 and 4.3.5.
In each organism, when the territory is established, some word wn is computed and then
written all over the territory. Copies of wn thus cover the cleaned surface.

Throughout this article, t refers to the number of steps since time 0.

4.2 Colonisation of the space
4.2.1 Growing squares
There is a particular seed state * that is only present in the initial configuration. It is the
only relevant information in the initial configuration. Every occurrence of * triggers the
birth at time 1 and subsequent growth of a living square-shaped membrane (initially forming
a 5× 5 cells square).

If seeds are too close from each other and do not have enough space to form the initial
organism, the northernmost seed is destroyed (westernmost in case of a tie).

A layer of the alphabet, called cleaning layer is dedicated to the membrane growth
and cleaning process. The membrane spreads slowly to the outside, thanks to a respiration
process that "pushes" the membrane to the outside. A membrane is a boundary between its
inside and the outside, thus defining the direction in which it expands. To each point of the
membrane is associated a binary counter that keeps track of its age (see Figure 1).

I Definition 10 (Redundant binary basis). Let c = cn−1 . . . c0 ∈ {0, 1, 2}n be a counter. The
value of c is

∑n−1
i=0 ci2i (reverse order). Since 2 = 10, 2 can be seen as a 0 with a carry.

At each step, the counters are incremented by adding one to the least significant bit and the car-
ries are propagated along the counter, which can be done in a local manner (02→ 10, 12→ 20).

If the membrane has sides of length n, there are n such counters on each side with the
same value, with superpositions of two of them in the cells near the corner. As they grow,
they need more than one cell and form a band of growing width along the membrane as
shown in Figure 1. For a living membrane, the counters are created with value 0 at step
t = 1, ensuring their age is the current time minus 1. In the other cases, the membrane and
counters already existed at time t = 0 (with value at least 0), which means they appear older
than living membranes.

STACS 2015

266 Construction of µ-Limit Sets of Two-dimensional Cellular Automata

1202

1202

1202

1202

1202
1

2

0

2

1

2

0

2

1

2

0

2

1

2

0

2

1

2

0

2

1

2

0

2

Figure 1 Corner of a membrane extending to the north and the east.

This counter is used to control the speed of the membrane. The respiration consists in
taking a step forward (according to the direction of the membrane) each time the age of the
counter is the exact square of an integer. The successive squares are computed under the
counter, on the computation layer, using a space O(log t) if t is the age of the membrane.

We can define three kinds of membranes:
Living membranes which were created by a seed, and whose counters all have value t− 1;
Dead membranes which have some incoherence (not closed, different counter values, no

square computation...) and self-destruct when realising it;
Zombie membranes which are perfectly coherent despite not being created by a seed, and

whose counters all have the same value t′ > t− 1.

The content of any cell outside a membrane is deleted, except for the encounter of another
membrane. In this case the comparison process starts. The reason membranes spread slowly
is to limit the interferences between the growing and comparison processes.

4.2.2 Comparison
When two membranes meet, membranes fight for survival, which is only granted to the
youngest. Indeed, we saw that only living membranes can have age t−1, all other membranes’
counters having value greater than t. Comparing the age of both counters is achieved on a
dedicated comparison layer.

When membranes meet, two special states a are written on the comparison layer to trigger
the process on each side. Each of them progresses along its corresponding counter, copying
the value of the counter on the comparison layer. Incrementation and carry propagation
continue in the original counter. However, it is not necessary to increment and propagate
carries in the copied counter since both sides would increase by the same amount during the
comparison anyway. During the copy into the comparison layer, all carries are taken into
account and resolved, so that we have two pure binary counters at the end of the process.

Both copied counters progress towards the encounter point at speed 1 and a comparison
is performed bit-by-bit, starting from the least significant. When the last bits of the counters
arrive, we can decide which counter corresponds to the youngest membrane.

As shown in Figure 2, if at time t1 two membranes meet, comparison of the age of counters
takes place at each contact cell. Here the same process takes place at cells A, B, C and D.

M. Delacourt and B. Hellouin de Menibus 267

A B C Dm1(t1) m2(t1) A B C D

m2(t2)

m1(t2)

Figure 2 At time t1, the membranes m1 and m2 meet on cells A, B, C and D. The counters
are represented by grey areas. At t2, when the comparison is finished, one of the squares may have
grown (here m2).

I Proposition 11. During a comparison process, a living membrane may grow only once
(including the initial growth that triggered the comparison)

Proof. If the comparison process started at time t0, the counters of a living membrane have
length less than log(t0). The comparison process takes at most twice as many steps as the
length of the counter. The respiration process happens when t is a perfect square. Therefore
the time between two successive growths, at time t0 or later, is at least d

√
t0e steps. J

Let us consider the various possible results:
The membranes have the same age: they are both alive or both zombie. In any case, both

membranes turn into a single one as shown in Figure 3. Some & symbols are written at
the corners, so that, when both sides grow again, they remember they are part of the
same membrane.

A membrane is younger: the oldest one is zombie and can be safely destroyed. A death
signal A spread in both directions along the oldest membrane, erasing it. The surviving
membrane resumes its growth, with its age counters still accurate. The same happens if
a membrane grows twice, disrupting the comparison process.

Notice that only the membrane and not the "insides" of the zombie are cleaned since
it can contain other living membranes. None of the signals or processes described in the
following sections can enter or leave a membrane, or interact with it or counters, except if
explicitly mentioned.

For t ∈ N, denote

Pr(t) = {F t(c) | c ∈ BZ2
, ∃(i, j) ∈ Z2, d∞((i, j), (0, 0)) ≤ b

√
tc, cij = * }

the set of images of configurations containing a seed * at distance b
√
tc at most of (0, 0).

As µ is the uniform Bernoulli measure, the following lemma is clear:

I Lemma 12. F tµ(Pr(t)) = 1− (1− µ(*))(2
√
t+1)2

→t 1

This means that, with probability 1, for almost any configuration the central cell eventually
belongs to the insides of a living membrane.

STACS 2015

268 Construction of µ-Limit Sets of Two-dimensional Cellular Automata

&

&

s2

s1 α1

α1

α2

α2. . .

. . .

α1α1α1

α2α2α2

...
...

...

α1 α1 α1

α2 α2 α2

...
...

...α1

α1

α2

α2

. . .

. . .

Figure 3 At the end of the comparison, if membrane counters share a common value, the common
part of their boundaries is erased and & symbols mark the corners.

4.3 Working in the clean surface
We now consider only the protected area, which is the union of all insides of living membranes.
Thus every construction presented in this section remains inside this area and stops if it reaches
the membrane. They take place on four new layers: the age, partitioning, computing
and writing layers.

At some time tn = K2n, n ∈ N for some integer K that will be specified later, various
operations are performed simultaneously inside all membranes. First, a simulated Turing
machine computes wn. Then, repeated copies of wn are copied everywhere inside the
membrane. Meanwhile, the heart checks that it is not too close to a neighbour, and one of
them is deleted if it is the case.

These operations occurs between times tn and tn+1−1, which is called the nth generation.

4.3.1 Claiming its territory
At time 1, while creating a membrane, each seed * transforms itself into a heart r . Any
heart is the centre of an organism to which it provides life. At the same time, a binary
counter is given to each heart, thus giving it the knowledge of its age. This age is exactly
the same for any heart inside a living membrane. This counter is the only thing contained in
the age layer.

In the rest of this section, only the partitioning layer is concerned.
At time tn, every heart send signals at speed 1 in each direction until they meet a fellow

signal, in which case they disappear and the symbol # is written where they met. These
signals erase everything on the partitioning and computing layers but disappear if they reach
a membrane. In this case, # is written along the membrane. The territory of the heart
H ∈ Z2 is the largest set of 4-connected cells containing H that does not contain the symbol
. An organism is composed of a heart and its territory.

Simultaneously, at t = tn, signals leave H and draw the body of H: a square of size
2n+ 1 centred in H. The body is supposed to be entirely in the territory of H; if not, the
organism is in conflict with every other organism whose body intersects its own. At the end
of each generation, we make sure there does not remain any conflict by removing some of the
hearts.

Thus, the global dynamics partition the protected space by redefining territories during
each generation, then resolve conflicts: during the nth generation, the distance between two
surviving hearts is at least 2n− 1 (remember we use the distance d∞).

M. Delacourt and B. Hellouin de Menibus 269

4.3.2 Choosing its destiny
In this section, we describe conflicts. To get organisms larger and larger through time, we
want them to contain at least their entire body, whose size depends of the current generation.
We need as well to control the growth of the organisms, preventing them from being too large.
Indeed, we have to write the computed pattern all over the organism before the beginning of
the next generation. Thus, if at some step a chain of conflicts between organisms appears,
we do not want to erase all hearts simultaneously.

To avoid this, we add an algorithmic device and give to each heart some bit of information
with the constraint that these bits have to be mutually independent at any given time. Then,
for each conflict between two organisms, we choose the one to delete thanks to the sum of
their two random bits.

First, we use two versions of the state * in the initial configuration: * 0 and * 1. This bit
is transmitted to r which has two versions r 0 or r 1. In both cases, we keep the notations
* and r when the value of the bit does not matter. The bit is also known by the whole
boundary of the corresponding organism.

Second, note that, given some heart H living at generation n, the conflicting hearts are
at distance 2n − 1 or 2n or they would have conflicted before. Thus, they all belong to a
square of side 4n+ 1 centred in H. The distance between each other is also 2n− 1 or 2n,
hence there are at most 8 simultaneous conflicts, one at most in each eighth part of the plane
centred in H: NNE, ENE, ESE, SSE, SSW, WSW, WNW and NNW.

To ensure that the independence property remains true, a heart provides some fresh
information to its killer when it is deleted. Hence, we give 8 other binary bits to each seed,
and therefore to each heart. Each eighth part of the territory’s boundary carries one of these
reserve bits alongside with the main one.

During the nth generation, when two organisms O and O′ of hearts respectively r b at
(x, y) and r b′ at (x′, y′) meet, the sum β = b⊕ b′ is computed where the boundaries meet.
If β = 0 then the northernmost heart wins (westernmost in case of a tie) and the other way
around if β = 1. Then the boundary of the killed organism (say O′) transmits its reserve
bit br to the winner whose main bit becomes b ⊕ br. If some organism kills many others
simultaneously (at most 8), it sums all transmitted reserve bits to its own. The key point is
that all main bits are and remain independent. This is ensured since the reserve bits are not
used until they pass to the winner.

On the other hand, a death signal is sent to the heart of the loser, which dies at the
reception. This does not interrupt the processes of computation or copying that will be
described later, but the organism will never grow again and signals from other hearts will
erase it during the next generation.

I Definition 13. Define the radius r of an organism as the largest distance from a cell inside
its territory to its heart. The territory of the organism is hence bounded by 4r2.

I Lemma 14. There exists a constant K, such that pn →n 1, where pn is the probability
that at least one living heart remains in a square of radius Kn during the nth generation.

Proof. Denote qn, n ∈ N the probability for a cell to be a living heart during generation n.
For n = 0, q0 > 0 is a constant given by µ. Then, during each generation k ≤ n, a heart
survives with probability at least (1/2)8 (1/2 for each conflict). Hence qn ≥ q0 ∗ (1/2)8n.

Two different cells have each independently probability qn to be a heart as long as there is
no chain of conflicts between them. At generation n, they have been affected only by hearts
at distance

∑n
k=0 k ≤ n2 at most. So there are dn = b(2Kn + 1)/(2n2 + 1)c2 independent

cells in a square of radius Kn.

STACS 2015

270 Construction of µ-Limit Sets of Two-dimensional Cellular Automata

#

#

#

#

#

#

#

#

#

#

+

+

≥ n
B0

B1

B2

B3

B4

H0

H1

Figure 4 Two hearts H1 and H2 are conflicting. Cells A0 to A4 form the common boundary of
their territory. The red triangle is a set of cells inside the territory of H1.

Now we have 1− pn ≤ (1− qn)dn . This tends to 0 for K ≥ 17. J

This lemma means that we only need to consider organisms of radius less than Kn. The
other ones are sufficiently sparse.

I Definition 15. An organism is said to be healthy during the nth generation when its radius
is less than Kn (K being given in the previous lemma).

4.3.3 Shape of organisms
I Lemma 16. If a cell A is in the organism of heart H, then each cell B such that
d∞(B,H) ≤ d∞(A,H)− d∞(A,B) is in the same organism.

Proof. The triangle inequality gives the result automatically, for any other heart H ′:

d∞(B,H) ≤ d∞(A,H)− d∞(A,B) ≤ d∞(A,H ′)− d∞(A,B) ≤ d∞(B,H ′). J

I Lemma 17. F tnµ([#] ∩ Pr(tn)) = O(1/n)

Proof. Given n ∈ N, consider the set of cells containing state # at time tn+1 within the
protected area. It is possible to cut this set into horizontal, vertical or diagonal segments
such that each one of them is the common boundary of two specific hearts. When two hearts
claim their territory, they send signals in every direction at speed one. These signals may
eventually cross to give birth to the boundary. Except if they cross exactly in their corners
(four cells for each organism, which is negligible), the length of their common boundary is
at least 2. Consider one of these boundary segments containing cells {A0, A1, . . . Ak} and
denote H0 and H1 the associated hearts.

The proof is illustrated on Figure 4 in the case of a diagonal segment. Denote d the line
supporting the segment, as d∞(H0, H1) ≥ 2n, ∃j ∈ {0, 1} such that d∞(Hj , d) ≥ n. Denote
Oj the organism centred in Hj . Since A0, A1, . . . Ak are on the boundary of Oj , there exist
distinct points B0, B1, . . . , Bk−1 adjacent to A0, A1, . . . Ak and inside Oj .

I Claim 18. Every cell inside the triangle B0Bk−1Hj is inside Oj.

M. Delacourt and B. Hellouin de Menibus 271

Proof. For any such cell x, there exists l ∈ [0, k − 1] such that d∞(Hj , Bl) = d∞(Hj , x) +
d∞(x,Bl). Hence, using Lemma 16, x belongs to Oj . J

There are b(k − 1)(n− 1)/2c cells in the triangle B0Bk−1Hj , which means that for each
cell of the boundary segment, we produced O(n) cells inside an organism.

Any cell inside an organism can be attached this way to two segments at most (the border
of the triangle can be shared). Thus, for any cell containing # , there are at least Θ(n) cells
that do not contain # . Hence F tnµ([#] ∩ Pr(tn)) = O(1/n). J

4.3.4 Computing
In this section, we deal only with the computing layer. At time tn, n ∈ N, the same
computation starts around each heart. While signals leave the heart to determine the
boundaries of their territory, other signals draw the limits of a square of side

√
n whose

down-left corner is the heart. This is the space allowed for computation. The heart creates a
Turing machine head and the computation starts. It has to remain in this space and halt in
less than K2n.

Without loss of generality, we can choose a computable sequence of patterns (wi)i∈N
such that wn is the pattern computed during the nth generation. Indeed, we can transform
the original sequence by repeating each pattern until there is enough space and time to
compute the following one. Denote Un the support of wn and ln its size: Un = supp(wn) =
[0, ln]× [0, ln]. Considering the space allowed for computation, we have that ln ≤

√
n.

4.3.5 Copying
Finally, we consider the copying layer. After computing a pattern on the computing layer of
an organism, we write copies of it over the whole territory of this organism.

During the nth generation, the computation takes less than K2n steps, which leaves
K2n+2 −K2n steps before tn+1. We show that this is enough to write periodic copies of the
result all over the organism, as long as the organism is healthy.

Consider an organism of heart H = (xH , yH) during generation n. We first write 4 copies
of wn around H at (xH − ln, yH − ln) + Un, (xH − ln, yH) + Un, (xH , yH − ln) + Un and
H +Un. To copy a square, a machine copies all the states sequentially. First, the sides of the
squares are marked on the copying layer with a state G (this takes O(ln) steps using counters
initialised with value ln), then the machine needs 2ln steps to go to the copy emplacement,
make the copy and come back. There are ln2 cells to copy, so the whole process of copying a
square takes O(ln3) steps.

Starting with these 4 copies of wn, 4 different copying processes take place, each one in
its quarter of the plane: north-east, north-west, south-west and south-east. We only detail
the process in the north-east quarter.

The base square is copied along the vertical and horizontal axes until it reaches the limit
of the territory. Simultaneously, each of these copies replicates itself in diagonal towards the
north-east. This way, the whole territory is eventually covered with copies of the computed
pattern wn. The set of states G draw a grid of step ln. The copying process is actually a
wave starting at the heart of the organism and extending the area where the pattern wn is
written. See Figure 5.

I Lemma 19. For any healthy organism, copying takes less than O(nKn) time steps during
the nth generation.

STACS 2015

272 Construction of µ-Limit Sets of Two-dimensional Cellular Automata

r

wn

wn

wn

wn

wn

wn

wn

wn

wn

Figure 5 The square pattern is copied all over the whole territory both on axes and along
diagonals, starting from the heart.

Proof. Consider a healthy organism, as the radius is bounded by Kn and the grid step is ln,
there are sequences of at most Kn/ln square copies to do in each quarter. Each one of these
copies requires O(l3n) steps, hence the total copy time is O(nKn) (recall ln ≤

√
n). J

I Lemma 20. During the nth generation, any cell in a healthy organism that was not reached
by the copying process is at distance

√
n or less of the boundary of the territory.

Proof. Again, we prove it in the north-east quarter, the proof is symmetric in the other
cases. Take a cell A in the territory of a healthy organism and at distance more than ln of
the boundary of the territory. A is in a square S of the G grid (or would be by extending the
grid). Thanks to the hypothesis we know that S entirely belongs to the organism. The copy
process reached S, arriving from a square S′ at the south, east or south-east of S depending
of the position of S. Now, according to Lemma 16, S′ entirely belongs to the organism.

This way, we can go recursively all the way back to the heart, and the copy process is
necessarily successful at each step. J

5 Proof of the main theorem

We saw in previous sections that a configuration tends to contain only healthy organisms,
and that computing and copying can be both achieved in less than tn+1 − tn time steps in a
healthy organism. From this we now conclude.

Proof. Given a sequence (wn)n∈N, we build the cellular automaton F over the alphabet B
as described in the previous sections.

Suppose t = tn+1 − 1, n ∈ N. First, if s ∈ B rA, a cell can have state s if it is:
outside the protected area, use Lemma 12;
outside a healthy organism, use Lemma 14;
in the border of a healthy organism, use Lemma 17;
in the computation area of an organism, which are negligible since this area is a square
of side

√
n in territories that contain a square of side n;

M. Delacourt and B. Hellouin de Menibus 273

in the grid drawn in each territory (states G), negligible as well since the grid occupies
less than 4ln cells in each square of side ln.

Therefore Lµ(F) ⊆ A∗.
Now, we show that we only need to consider the squares of the grid entirely included in

a healthy organism. As we said before, it is enough to consider healthy organisms. Every
square that is only partially inside a healthy field is located into a band of width less than√
n adjacent to the boundary of the field, hence there are at most O(1/

√
n) such cells thanks

to Lemma 12. As we forced i ≤
√
n, we can effectively neglect those partial squares. In any

other square, thanks to Lemma 20, we know that the copy was achieved successfully.
For all these reasons, for a square pattern u, F tnµ([u]) ∼n→∞ Freq(u,wn).
Moreover, during the nth generation, while the copying process is engaged but not finished,

some part of the main layer contains copies of wn and the rest is still filled with copies of
wn−1. Hence, for some 0 ≤ α ≤ 1:

F tµ([u]) ∼n→∞
(
αF tnµ([u]) + (1− α)F tnµ([u])

)
.

J
Perspectives

As for the one-dimensional case, we have a characterisation of all subshifts that are µ-limit
sets of CA. Some corollaries can be derived from this result, but the main open problem is
to generalise it to larger classes of measures. In dimension 1, the difference is that there is
no need for a trick such as the one used in Section 4.3.2 to resolve conflicts while avoiding
erasing too many hearts. As this trick only works with the uniform Bernoulli measure,
hence, a better understanding of the dynamics of disappearance of the hearts should allow
to generalise the result.

References
1 Alexis Ballier, Pierre Guillon, and Jarkko Kari. Limit sets of stable and unstable cellular

automata. Fundam. Inf., 110(1-4):45–57, January 2011.
2 Laurent Boyer, Martin Delacourt, Victor Poupet, Mathieu Sablik, and Guillaume Theyssier.

µ-limit sets of cellular automata from a computational complexity perspective. CoRR,
abs/1309.6730, 2014.

3 Laurent Boyer, Martin Delacourt, and Mathieu Sablik. Construction of µ-limit sets. In
JAC, pages 76–87, 2010.

4 Laurent Boyer, Victor Poupet, and Guillaume Theyssier. On the complexity of limit sets
of cellular automata associated with probability measures. In MFCS, pages 190–201, 2006.

5 Benjamin Hellouin de Menibus and Mathieu Sablik. Characterisation of sets of limit meas-
ures after iteration of a cellular automaton on an initial measure. CoRR, abs/1301.1998,
2013.

6 Martin Delacourt. Rice’s theorem for -limit sets of cellular automata. In ICALP (2), pages
89–100, 2011.

7 Gustav A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system.
Mathematical Systems Theory, 3(4):320–375, 1969.

8 Glenn Hurlbert and Garth Isaak. On the de bruijn torus problem. Journal of Combinatorial
Theory, Series A, 64(1):50 – 62, 1993.

9 J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical Computer
Science, 127:229–254, 1994.

STACS 2015

274 Construction of µ-Limit Sets of Two-dimensional Cellular Automata

10 P. Kůrka and A. Maass. Limit Sets of Cellular Automata Associated to Probability Meas-
ures. Journal of Statistical Physics, 100(5-6):1031–1047, 2000.

11 Alejandro Maass. On the sofic limit sets of cellular automata. Ergodic Theory and Dynam-
ical Systems, 15:663–684, 7 1995.

12 John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign, IL, USA, 1966.

Derandomized Graph Product Results Using the
Low Degree Long Code
Irit Dinur∗1, Prahladh Harsha2, Srikanth Srinivasan3, and
Girish Varma†4

1 Weizmann Institute of Science, Israel.
irit.dinur@weizmann.ac.il

2 Tata Institute of Fundamental Research, India.
prahladh@tifr.res.in

3 Department of Mathematics, IIT Bombay, India.
srikanth@math.iitb.ac.in

4 Tata Institute of Fundamental Research, India.
girishrv@tifr.res.in

Abstract
In this paper, we address the question of whether the recent derandomization results obtained by
the use of the low-degree long code can be extended to other product settings. We consider two
settings: (1) the graph product results of Alon, Dinur, Friedgut and Sudakov [GAFA, 2004] and
(2) the “majority is stablest” type of result obtained by Dinur, Mossel and Regev [SICOMP, 2009]
and Dinur and Shinkar [In Proc. APPROX, 2010] while studying the hardness of approximate
graph coloring.

In our first result, we show that there exists a considerably smaller subgraph of K⊗R3 which
exhibits the following property (shown for K⊗R3 by Alon et al.): independent sets close in size to
the maximum independent set are well approximated by dictators.

The “majority is stablest” type of result of Dinur et al. and Dinur and Shinkar shows that
if there exist two sets of vertices A and B in K⊗R3 with very few edges with one endpoint in A
and another in B, then it must be the case that the two sets A and B share a single influential
coordinate. In our second result, we show that a similar “majority is stablest” statement holds
good for a considerably smaller subgraph of K⊗R3 . Furthermore using this result, we give a
more efficient reduction from Unique Games to the graph coloring problem, leading to improved
hardness of approximation results for coloring.

1998 ACM Subject Classification G.2.2 Graph Theory, F.1.3 Reducibility and completeness

Keywords and phrases graph product, derandomization, low degree long code, graph coloring

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.275

1 Introduction

The discovery of the low-degree long code (aka short code) by Barak et al. [2] has over the
last year led to several more efficient inapproximability reductions [2, 5, 9, 13, 15]. The
low-degree long code is a derandomization of the long code in the following sense. Given a
finite field F, the long code of a string x ∈ Fn is the evaluation of every F-valued function on

∗ Irit Dinur’s research is supported by ERC-Stg grant number 239985.
† Girish Varma’s research is supported by Google Ph.D. Fellowship in Algorithms. Part of the work was

done when the author was visiting the Weizmann Institute of Science, Israel.

© Irit Dinur, Prahladh Harsha, Srikanth Srinivasan, and Girish Varma;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 275–287

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.275
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

276 Derandomized Graph Product Results Using the Low Degree Long Code

Fn at the point x while the degree d long code of of x is the evaluation of every n-variate
polynomial of total degree at most d at the point x. The crucial observation of Barak et al. [2]
was that the optimal testing results for Reed-Muller codes [3, 10] proved that the low-degree
long code could be used as a surrogate for the long code in several inapproximability results.
In this paper, we ask if we can extend this application of low-degree long code to other
product settings. In particular, we prove the following two results. (1) We show that result
due to Alon et al. [1] on the size of maximum independent sets in product graphs can be
derandomized (Theorem 1.2). (2) We show that the “majority is stablest” type of result
obtained by Dinur et al. [7] and Dinur and Shinkar [8] can be derandomized (Theorem 1.4).

1.1 Derandomized graph products
As a first application, we consider the following graph product result due to Alon et al. [1].
Consider the undirected weighted graph K3 on the three vertices V = {0, 1, 2} and edges
weighted as follows: W (f, f ′) = 1/2 iff f ′ 6= f ∈ {0, 1, 2}. Let K⊗R3 be the graph with vertex
set V ⊗R and weights-matrix the R-wise tensor of the matrix W . Clearly, for any i ∈ [R] and
a ∈ {0, 1, 2}, the set Vi,a := {v ∈ V ⊗R : vi = a} is an independent set in K⊗R3 of fractional
size 1/3 since K3 does not have any self loops. We call such an independent set a dictator
for obvious reasons. Alon et al. [1] showed that these are the maximal independent sets in
K⊗R3 and in fact any independent set of size close to the maximum is close to a dictator.

I Theorem 1.1 ([1]). Let A be an independent set in K⊗R3 of size δ3R. Then,
1. δ ≤ 1/3.
2. δ = 1/3 iff A is a dictator.
3. If δ ≥ 1/3 − ε, then A is O(ε)-close to a dictator. That is, there is a dictator A′ such

that |A∆A′| = O(ε3R).

Note that the above graph has 3R vertices. Our first result (Theorem 1.2) shows that
there exists a considerably smaller subgraph G = (V, E) of K⊗R with only 3poly(logR) vertices
that has the same properties. In order to describe the subgraph, it will be convenient to
think of K3 as having vertex set F3 and

W (f, f ′) = Pr
p∈F3,a∈{1,2}

[f ′ = f + a(p2 + 1)].

Let Pr,d be the set of polynomials on r variables over F3 of total degree at most d and
individual degrees of the variables at most 2. Let r and d be two parameters and let R = 3r.
Note that V ⊗R can be identified with Pr,2r, since Pr,2r is the set of all functions from Fr3
to F3. The subgraph G = (V, E) is as follows : V := Pr,2d and the edges are given by the
weights-matrix defined below

W(f, f ′) = Pr
p∈Pr,d,a∈{1,2}

[f ′ = f + a(p2 + 1)].

Note that since Pr,2d is a subspace of dimension rO(d), the size of the vertex set is 3rO(d) ,
which is considerably smaller than 3R for constant d.

I Theorem 1.2. There is a constant d for which the following holds. If A is an independent
set of size δ|V| in G then
1. δ ≤ 1/3.
2. δ = 1/3 iff A is a dictator.
3. If δ ≥ 1/3− ε then A is O(ε)-close to a dictator.

I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 277

A crucial element in the proof of Theorem 1.1 is a hypercontractivity theorem for functions
which do not have any heavy Fourier coefficients. Theorem 1.2 is proved by observing that a
similar hypercontractivity theorem also holds good in the low-degree long code setting (see
Lemma 3.4).

1.2 Derandomized “majority is stablest” result
While studying the hardness of approximate graph coloring, Dinur, Mossel and Regev [7]
proved the following “majority is stablest” type of result: if there is a pair of subsets of
vertices in K⊗R3 of sufficiently large size such that the average weight of edges between
them is small, then their indicator functions must have a common influential coordinate.
Subsequently, Dinur and Shinkar [8] obtained the following quantitative improvement to the
above theorem.

I Theorem 1.3 ([8, Theorem 1.3]). For all µ > 0 there exists δ = µO(1) and k = O(log 1/µ)
such that the following holds: For any two functions A,B : {0, 1, 2}R → [0, 1] if

EA > µ, EB > µ, and E
f,f ′

A(f)B(f ′) ≤ δ1

where f is chosen randomly from V ⊗R and f ′ is chosen with probability W⊗R(f, f ′) then

∃x ∈ [R] such that Inf≤kx (A) ≥ δ and Inf≤kx (B) ≥ δ.

Our second result (Theorem 1.4) shows that the above theorem can be derandomized to
obtain a similar result for the subgraph G. For defining influence for real valued functions on
Pr,2d, we note that the characters of Pr,2d are restrictions of characters of FR3 ≡ Pr,2r. So the
definition of influence for functions on FR3 also extends naturally to functions on Pr,2d.

I Theorem 1.4. For all µ > 0 there exists δ = µO(1), k = O(log 1/µ), d = O(log 1/µ) such
that the following holds: For any two functions A,B : Pr,2d → [0, 1] if

EA > µ, EB > µ, and E
f,f ′

A(f)B(f ′) ≤ δ

where f is chosen randomly from Pr,2d, f ′ = f + a(p2 + 1), p are chosen randomly from Pr,d
and a ∈R {1, 2} then

∃x ∈ Fr3 such that Inf≤kx (A) ≥ δ and Inf≤kx (B) ≥ δ.

A similar derandomized “majority is stablest” result in the case of the noisy hypercube was
proved by Barak et al. [2, Theorem 5.6] and they used the Meka-Zuckerman pseudorandom
generators (PRGs) for polynomial threshold functions [14]. Kane and Meka [11] obtained a
quantitative improvement over this derandomization by constructing an improved PRG for
Lipschitz functions. Our setting is slightly more involved, (1) we have a two function version
(ie., A and B) and (2) the underlying graph in K3 and the corresponding noise operator
in the derandomized setting has not necessarily positive eigenvalues. Yet, we manage to
show that a derandomization still holds in this case too (using the Kane-Meka PRG). We
conjecture that our derandomization can be further improved to obtain d = O(log log 1/µ).

1 The hypothesis in the theorem statement of Dinur-Shinkar [8] requires Ef,f ′ A(f)B(f ′) = 0, however it
is easy to check that their theorem also holds good under the weaker hypothesis Ef,f ′ A(f)B(f ′) ≤ δ.

STACS 2015

278 Derandomized Graph Product Results Using the Low Degree Long Code

1.2.1 Application to graph coloring
Using a version of Theorem 1.3 for another base graph on 4 vertices, Dinur and Shinkar
proved a hardness result for graph coloring.

I Definition 1.5 (Label Cover). An instance G = (U, V,E, L,R, {πe}e∈E) of a Label Cover
consists of a bipartite graph (U, V,E) that is right regular along with a projection map
πe : R→ L for every edge e ∈ E. Label Cover is a constraint satisfaction problem where the
vertices in U are the variables taking values in L and vertices in V taking values in R. The
instance is a Unique Games instance if R = L and πe is a permutation for all e ∈ E. Given
a labeling ` : U ∪ V → L ∪R, an edge e = (u, v) is said to be satisfied if πe(`(v)) = `(u).

Dinur and Shinkar gave a reduction from an instance of Label Cover with n vertices,
2-to-1 constraints and label set of size R to a graph of size n4R. Perfectly satisfiable instances
were mapped to 4-colorable graphs. Instances for which any labeling can satisfy only an
s(n) fraction of edges where mapped to graphs which did not have any independent sets of
size poly(s(n)). Since the size of the graph produced by the reduction is exponential in R,
they needed to assume that R = O(log n), to get hardness results. We give a more efficient
reduction using Theorem 1.4 from Label Cover instances for which the projection constraints
have special form. Our reduction is simpler to describe for the case 3-colorable graphs and
starts with Unique Games instances. Hence for getting hardness result, we need to assume a
conjecture similar to the Unique Games Conjecture with specific parameters.

I Conjecture 1.1 ((c(n), s(n), r(n))-UG Conjecture). It is NP-Hard to distinguish between
unique games instances (U, V,E,R,Π) on n vertices and R = Fr(n)

3 from the following cases:
YES Case : There is a labeling and a set S ⊆ V of size (1− c(n))|V | such that all edges
between vertices in S are satisfied.
NO Case : For any labeling, at most s(n) fraction of edges are satisfied.

Khot and Regev [12] proved that the Unique Games Conjecture implies that for any
constants c, s ∈ (0, 1/2) there is a constant r such that (c, s, r)-UG Conjecture is true. We
also require that the constraints of the Unique Games instance are full rank linear maps.

I Definition 1.6 (Linear constraint). A constraint π : R → L is a linear constraint of iff
R = L = Fr3, and π is a linear map of rank r.

The theorem below is obtained by replacing the long code by the low degree long code
of degree d = O(log 1/µ) in the reduction of Dinur and Shinkar. For want of space, the
description of this reduction is deferred to the full version [6, Appendix A].

I Theorem 1.7. There is a reduction from (c, s, r)-Unique Games instances G with n vertices,
label set Fr3 and linear constraints to graphs G of size n3rO(log 1/µ) where µ = poly(s) such that

If G belongs to the YES case of (c, s, r)-UG Conjecture then there is a subgraph of G with
fractional size 1− c that is 3-colorable.
If G belongs to the NO case of (c, s, r)-UG Conjecture then G does not have any independent
sets of fractional size µ.

Due to the improved efficiency of the reduction, we are able to get hardness results
even if the label cover instances have super-polylogarithmic sized label sets of size at most

22O(√log logn) , while the reduction due to Dinur and Shinkar only works if the label set is of
size at most O(logc n) for some constant c. More precisely, suppose the UG conjecture were
true for soundness s(n) and alphabet size R = 3r that satisfy log3R = r = s(n)O(1). Then,

I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 279

the result of Dinur and Shinkar rules out polynomial time algorithms that find an independent
set of relative size 1/ poly(log logN). On the other hand, under the same assumption, our
reduction rules out polynomial time algorithms that find an independent set of relative size
1/2poly(log logN).

I Corollary 1.8. Let c, s, r be functions such that r(n) = poly(1/s(n)). Assuming (c, s, r)-UG
Conjecture on instances with linear constraints, given a graph on N vertices which has an
induced subgraph of relative size 1− c that is 3-colorable, no polynomial time algorithm can
find an independent set of fractional size 2− poly(log logN).

We remark that we can improve the conclusion if Theorem 1.4 can be proved even when
d = O(log log 1/µ).

2 Preliminaries

2.1 Low degree polynomials
We will be working over the field F3. Let Pr,d be the set of degree d polynomials on r variables
over F3, with individual variable degrees at most 2. Let Fr := Pr,2r. Note that Fr is the set
of all functions from Fr3 to F3. Fr is a F3-vector space of dimension 3r and Pr,d is a subspace
of dimension rO(d). The Hamming distance between f and g ∈ Fr, denoted by ∆(f, g), is the
number of inputs on which f and g differ. For S ⊆ Fr, define ∆(f, S) := ming∈S ∆(f, g). We
say that f is δ-far from S if ∆(f, S) ≥ δ and f is δ-close to S otherwise. Given f, g,∈ Fr, the
dot product between them is defined as 〈f, g〉 :=

∑
x∈Fr f(x)g(x). For a subspace S ⊆ Fr,

the dual subspace is defined as S⊥ := {g ∈ Fr : ∀f ∈ S, 〈g, f〉 = 0}. The following theorem
relating dual spaces is well known.

I Lemma 2.1. P⊥r,d = Pr,2r−d−1.

We need the following Schwartz-Zippel-like Lemma for degree d polynomials over F3.

I Lemma 2.2 (Schwartz-Zippel lemma [10, Lemma 3.2]). Let f ∈ F3[x1, · · · , xr] be a non-zero
polynomial of degree at most d with individual degrees at most 2. Then Pra∈Fr3 [f(a) 6= 0] ≥
3−d/2.

The following lemma is an easy consequence of Lemma 2.2.

I Lemma 2.3. If p is a uniformly random polynomial from Pr,d then as a string of length
3r over the alphabet F3, p is 3 lfloor(d+1)/2c-wise independent.

2.2 Fourier analysis of functions on subspace of low degree polynomials
I Definition 2.4 (Characters). A character of Pr,d is a function χ : Pr,d → C such that

χ(0) = 1 and ∀f, g ∈ Pr,d, χ(f + g) = χ(f)χ(g).

The following lemma lists the basic properties of characters.

I Lemma 2.5. Let {1, ω, ω2} be the cube roots of unity and for β ∈ Fr, f ∈ Pr,d, χβ(f) :=
ω〈β,f〉, where 〈β, f〉 :=

∑
x∈Fr3

β(x)f(x).
The characters of Pr,d are {χβ : β ∈ Fr}.
For β ∈ P⊥r,d, χβ is the constant 1 function.
For any β, β′ ∈ Fr, χβ = χ′β if and only if β − β′ ∈ P⊥r,d.

STACS 2015

280 Derandomized Graph Product Results Using the Low Degree Long Code

For any β, let |β| be the size of the set of inputs on which β is non-zero. For any distinct
β, β′ ∈ Fr with |β|, |β′| < 3b(d+1)/2c/2, χβ 6= χ′β since β + β′ /∈ P⊥r,d.
∀β, ∃β′ such that β− β′ ∈ P⊥r,d and |β′| = ∆(β,P⊥r,d) (i.e., the constant 0 function is (one
of) the closest function to β′ in P⊥r,d). We call such a β′ a minimum support function for
the coset β + P⊥r,d.
Characters forms an orthonormal basis for the vector space of functions from Pr,d to C,
under the inner product 〈A,B〉 := Ef∈Pr,d

[
A(f)B(f)

]
Any function A : Pr,d → C can be uniquely decomposed as

A(f) =
∑

β∈Λr,d

Â(β)χβ(f) where Â(β) := E
g∈Pr,d

[
A(g)χβ(g)

]
, (2.1)

and Λr,d is the set of minimum support functions, one for each of the cosets in Fr/P⊥r,d,
with ties broken arbitrarily.
Parseval’s identity: For any function A : Pr,d → C,∑

β∈Λr,d

|Â(β)|2 = E
f∈Pr,d

[|A(f)|2]. (2.2)

In particular, if A : Pr,d → {1, ω, ω2},∑
β∈Λr,d

|Â(β)|2 = 1. (2.3)

I Definition 2.6 (Influence). For a function A : Pr,d → C and a number k < 3b(d+1)/2c/2,
the degree k influence of a ∈ Fr3 is defined as

Inf≤ka (A) =
∑

β∈Λr,d:β(a) 6=0 and |β|≤k

|Â(β)|2.

I Definition 2.7 (Dictator). A function A : Pr,d → C is a dictator if there exists x ∈ Fr3 and
Â0, Â1, Â2 ∈ C such that A can be written as A = Â0 + Â1χex + Â2χ2ex where ex : Fr3 → F3
the indicator function for x.

The following lemma which follows from the results of Guruswami et al. [9], will be crucial
for our proofs.

I Lemma 2.8. If α : Fr3 → F3 such that ∆(α,P⊥r,2d) > 3d/2 then∣∣∣∣ E
p∈Pr,d

χα(p2)
∣∣∣∣ ≤ 3−Ω(3d/9).

Proof. By definition,
∣∣Ep∈Pr,d χα(p2)

∣∣ =
∣∣∣Ep∈Pr,d ω

〈α,p2〉
∣∣∣. If α : Fr3 → F3 is such that

∆(α,P⊥r,2d) > 3d/2 then for a random p ∈ Pr,d, 〈α, p2〉 is 3−Ω(3d/9)-close to the uniform
distribution on F3 according to [9, Lemma 3.1 and 3.4]. J

I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 281

3 Derandomized K⊗R
3

Alon et al. [1] proved Theorem 1.1 by using the following lemma.

I Lemma 3.1. There is constant K such that the following holds: If A : FR3 → {0, 1} satisfies∑
|α|>1

|Âα|2 ≤ ε and Â0 = δ

then there exists a dictator B : FR3 → {0, 1} such that

‖A−B‖2 ≤
Kε

δ − δ2 − ε
.

The above lemma was proved using the following hypercontractive inequality.

I Lemma 3.2. There is a constant C such that for any function A : FR3 → C with Âα = 0
when |α| > t,

‖A‖4 ≤ Ct‖A‖2.

Our proof of Theorem 1.2 will use a similar lemma for functions on the subspace Pr,2d.

I Lemma 3.3. There is a constant K such that the following holds: If A : Pr,2d → {0, 1}
satisfies ∑

|α|>1

|Âα|2 ≤ ε and Â0 = δ

then there exists a dictator B : Pr,2d → {0, 1} such that

‖A−B‖2 ≤
Kε

δ − δ2 − ε
.

The above lemma follows from hypercontractive inequalities over Pr,2d stated below, in
exactly the same way as Alon et al. proves Lemma 3.1 from Lemma 3.2.

I Lemma 3.4. There is a constant C such that for 4t ≤ 3d−1 and any function A : Pr,2d → C
with Âα = 0 when |α| > t,

‖A‖4 ≤ Ct‖A‖2.

Proof. Follows from Lemma 3.6 and Lemma 3.2. J

I Definition 3.5 (Lift). For a function B : Pr,2d → C with the Fourier decomposition
B =

∑
α∈Λr,d B̂αχα, the lift of B denoted by B′ is a function B′ : Fr → C with the Fourier

decomposition B′ =
∑
α∈Λr,d B̂αχα. In the decomposition of B′, χα’s are functions with

domain Fr.

I Lemma 3.6. If 2kt ≤ 3d−1 and B : Pr,2d → C be a function such that B̂α = 0 when |α| > t

then
‖B‖2k = ‖B′‖2k.

Proof. From the Lemma 2.2 and Lemma 2.1, we have that ∀α ∈ P⊥r,2d \ {0}, |α| > 3d−1. So
if ∃{αi, βi}i∈[k] with |αi|, |βi| ≤ t, then∑

i∈[k]

αi − βi ∈ P⊥r,2d ⇒
∑
i∈[k]

αi − βi = 0. (3.1)

STACS 2015

282 Derandomized Graph Product Results Using the Low Degree Long Code

This is because
∑
i∈[t] αi − βi has support size at most 2kt < 3d−1. We use this fact to prove

the theorem as follows:

‖B‖2k2k = E
f∈Pr,2d

|B(f)|2k = E
f∈Pr,2d

∏
i∈[k]

B(f)B(f)

=
∑

α1,β1,··· ,αk,βk∈Λn,2d

∏
i∈[k]

B̂αiB̂βi

 E
f∈Pr,2d

∏
i∈[k]

χαi(f)χβi(f) (from (2.1))

=
∑

α1,β1,··· ,αk,βk∈Λr,2d∑
i
αi−βi∈P⊥

r,2d

∏
i∈[k]

B̂αiB̂βi

=
∑

α1,β1,··· ,αk,βk∈Λr,2d∑
i
αi−βi=0

∏
i∈[k]

B̂αiB̂βi (from (3.1))

=
∑

α1,β1,··· ,αk,βk∈Λr,2d

∏
i∈[k]

B̂αiB̂βi

 E
f∈Fr

∏
i∈[k]

χαi(f)χβi(f)

= E
f∈Fr

∏
i∈[k]

B′(f)B′(f) = E
f∈Fr

|B′(f)|2k = ‖B′‖2k2k

J

3.1 Proof of Theorem 1.2
Proof of 1. For f ∈ V , consider the set {f, f + 1, f + 2} ⊆ V . These sets form a partition
of V and are triangles in the graph. Hence δ ≤ 1/3. J

Proof of 2. Let A : Pr,2d → {0, 1} be the indicator set of the independent set of size δ|V |.
By Parseval’s equation (2.2) and the fact that Â0 = δ, we have that∑

α∈Λr,2d\{0}

|Âα|2 = δ − δ2. (3.2)

Since A is an independent set,

E
p∈Pr,d,a∈F3,f∈Pr,2d

A(f)A(f + a(p2 + 1)) =
∑

α∈Λr,2d

|Âα|2 E
p∈Pr,d,a∈F3

χα(a(p2 + 1)) = 0.

Taking the real parts of the equation on both sides and rearranging, we get

∑
α∈Λr,2d\{0}

|Âα|2Re
(

E
p∈Pr,d

χα(p2 + 1)
)

= −δ2. (3.3)

Let T be a random variable such that Pr[T = α] = |Âα|2/(δ − δ2) and X be the random
variable X(T) = Re

(
Ep∈Pr,d,a∈F3 χα(a(p2 + 1))

)
. From (3.2) and (3.3), we have that

EX = −δ
1− δ .

Since p is a random degree d polynomial, it is 3d/2-wise independent from Lemma 2.3. So if

I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 283

|T | ≤ 3d/2 then∣∣∣∣Re
(

E
p∈Pr,d,a∈F3

χα(a(p2 + 1))
)∣∣∣∣

=

∣∣∣∣∣12Re
((

ω2 − 1
3

)|α|1 (ω − 1
3

)|α|2
+
(
ω − 1

3

)|α|1 (ω2 − 1
3

)|α|2)∣∣∣∣∣ ≤
(

1√
3

)|α|
where |α|a = {x ∈ Fr3 : α(x) = a}.

If |T | > 3d/2, we know from Lemma 2.8 that |X(T)| ≤ 3−Ω(3d/9).
Note that for T with |T | = 1, X(T) = −1/2. For T with |T | = 2, X(T) ≥ 0. For T with

|T | ≥ 3, X(T) ≥ −1
3
√

3 . So if EX = −1/2 then Pr[|T | = 1] = 1. So A is a Boolean valued
function with non zero Fourier coefficients of supports only 0 and 1. Using arguments similar
to Proof of [1, Lemma 2.3], it can be shown that there is an x ∈ Fr3 such that A(f) only
depends on f(x) .

J

Proof of 3. Suppose δ = 1/3−ε. First we show that most of Fourier weights are concentrated
in the first two levels

I Lemma 3.7. ∑
α∈Λr,2d:|α|>1

|Âα|2 ≤ 2ε

Proof. Consider the random variables X and T defined in the Proof of 2. Since δ = 1/3− ε
and since ε < 1/3, EX = −1/2 + ε. Let Y be the random variable X + 1/2. Note that
Y ≥ 0 and when Y > 0, Y ≥ 1/6. Therefore by Markov, Pr [Y > 0] ≤ 6ε and∑

α∈Λr,2d:|α|>1

|Âα|2 ≤ (δ − δ2) Pr [Y > 0] ≤ 2ε.

J

Then we use Lemma 3.3 to obtain the result.
J

4 Derandomized Majority is Stablest

In this section, we prove Theorem 1.4. The graphs described in Theorem 1.4 and Theorem 1.3
can be viewed as Cayley graphs on a suitable group. For the proof, we will need bounds on
the eigenvalues of these Cayley graphs. For a group G, RG denotes the vector space of real
valued functions on G.

I Definition 4.1 (Cayley Operator). For a group G with operation +, an operator M :
RG → RG is a Cayley operator if there is a distribution µ on G such that for any function
A : G→ R,

(MA)(f) = E
η∈µ

A(f + η).

It is easy to see that a character χ : G→ C is an eigenvector of M with eigenvalue Eη∈µ χ(η).

I Definition 4.2. We define the following Cayley operators:
1. For the group F3, let T : RF3 → RF3 be the Cayley operator corresponding to the

distribution µ that is uniform on F3 \ {0}. Let λ be the second largest eigenvalue in
absolute value of T .

STACS 2015

284 Derandomized Graph Product Results Using the Low Degree Long Code

2. For the group Fr, let Tr : RFr → RFr be the Cayley operator corresponding to the
distribution µr that is uniform on {f ∈ Fr : f−1(0) = ∅}. Let λr(α) be the eigenvalue of
Tr corresponding to the eigenvector χα, for α ∈ Fr.

3. For the group Pr,2d, let Tr,d : RPr,2d → RPr,2d be the Cayley operator corresponding
to the distribution µr,2d of choosing a uniformly random element in {p2 + 1,−p2 − 1}
where p ∈ Pr,2d is chosen uniformly at random. Let λr,d(α) be the eigenvalue of Tr,d
corresponding to χα, for α ∈ Fr.

4. For the group Pr,2d, let Sr,d : RPr,2d → RPr,2d be the Cayley operator corresponding to
the distribution of a ·

∏d
i=1(`i−1)(`i−2) where `1, · · · , `d are linearly independent degree

1 polynomials chosen uniformly at random and a is randomly chosen from F3. Let ρr,d(α)
be the eigenvalue of Sr,d corresponding to χα, for α ∈ Fr.

Now we will list some known bounds of the eigenvalues of the above operators. It is easy
to see that λ is a constant < 1. Since FR3 can be identified with Fr, T⊗R can be identified
with Tr. Hence we have the following lemma.

I Lemma 4.3.
|λr(α)| ≤ |λ||α|.

I Lemma 4.4. For α ∈ Λr,2d,

|λr,d(α)|
{

= |λr(α)| if |α| ≤ 3d/2

≤ 3−3C1d otherwise.
(4.1)

Proof. The first case follows from the fact that a random element η according to µr,2d (the
distribution that defines Tr,d) is 3d/2-wise independent (see Lemma 2.3) as a string of length
3r over alphabet F3. The latter case follows from Lemma 2.8. J

We will derive bounds on the eigenvalues of Sr,d using the results of Haramaty et al. [10].
Haramaty et al. analyses the following test for checking whether a polynomial is of degree
2r−2d−1: Choose a random affine subspace S of dimension r−d and check if the polynomial
is of degree 2r− 2d− 1 on S. Note that for any α ∈ Pr,2r−2d−1 and subspace S of dimension
r − d,

∑
x∈S α(x) = 0. Hence this test is equivalent to choosing `1, · · · `d ∈ Pr,1 that are

linearly independent and checking whether 〈α,
∏d
i=1(`i − 1)(`i − 2)〉 6= 0. Haramaty et al.

proved the following lemma.

I Lemma 4.5. There exists constants C1, C2 such that

Pr
`i

[
〈α,

d∏
i=1

(`i − 1)(`i − 2)〉 = 0
]
≤ max

{
1− C1∆(α,Pr,2r−2d−1)

3d , C2

}
where `1, · · · , `i ∈ Pr,1 are random linearly independent polynomials.

I Lemma 4.6. There exists constants C ′1, C ′2 such that, for α ∈ Λr,2d,

1− 2|α|
3d ≤ |ρr,d(α)| ≤ max

{
1− C ′1∆(α,Pr,2r−2d−1)

3d , C ′2

}
(4.2)

Proof. First we will prove the lower bound. By definition

ρr,d(α) = E
`i,a

ωa·
∑

x
α(x)

∏d

i=1
(`i(x)−1)(`i(x)−2).

I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 285

For any x in support of α, the probability that
∏d
i=1(`i(x)− 1)(`i(x)− 2) 6= 0 is 1/3d. Hence

by union bound,
∏d
i=1(`i(x)− 1)(`i(x)− 2) = 0 for every x in support of α with probability

1− |α|/3d and when this happens the expectation is 1. Also note that the quantity inside
the expectation has absolute value 1.

For proving the upper bound we will use Lemma 4.5. Let pacc be the probability mentioned
in Lemma 4.5. Then

ρr,d(α) = E
`i,a

ωa〈α,
∏d

i=1
(`i−1)(`i−2)〉 = pacc + 1− pacc

2 (ω + ω2) = 3
2pacc −

1
2 .

From the above equation and Lemma 4.5, the constants C ′1, C ′2 can be obtained. J

I Lemma 4.7. For A,B : Pr,2d → [0, 1], let A′ := Str,dA and similarly define B′. Then

|〈A, Tr,dB〉 − 〈A′, Tr,dB′〉| ≤ 2dt/3d

Proof.

|〈A, Tr,dB〉 − 〈A′, Tr,dB′〉| ≤ |〈A, Tr,dB〉 − 〈A, Tr,dB′〉|
+ |〈A, Tr,dB′〉 − 〈A′, Tr,dB′〉|
=
∣∣〈A− EA, Tr,d(1− Str,d)(B − EB)〉

∣∣
+
∣∣〈Tr,d(1− Str,d)(A− EA), B′ − EB′〉

∣∣
≤ ‖Tr,d(1− Str,d)(B − EB)‖+ ‖Tr,d(1− Str,d)(A− EA)‖
≤ 2td/3d

The last step follows from the fact that the operators Tr,d, (1− Str,d) have the same set
of eigenvectors and the largest eigenvalue in absolute value of Tr,d(1− Str,d) is 2td/3d from
Lemma 4.4 and Lemma 4.6. J

Theorem 1.4 will follow from the following lemma.

I Lemma 4.8. ∀ε > 0, ∃k = O(1/ε2), d = O(log(1/ε)) such that the following holds: if
A,B : Pr,2d → [0, 1] then ∃A,B : Fr → [0, 1] such that
1. |EA− EA| , |EB − EB| ≤ ε,
2. For all x ∈ Fr3, k′ ≤ k,

Inf≤k
′

x (A) ≤ Inf≤k
′

x (A) + ε

Inf≤k
′

x (B) ≤ Inf≤k
′

x (B) + ε

3. |〈A, Tr,dB〉 − 〈A, TrB〉| ≤ ε.

Proof of Theorem 1.4. We will show that if Theorem 1.4 is false then Theorem 1.3 is also
false. First using Lemma 4.8 with parameter ε = µO(1), we obtain functions A,B : Fr → [0, 1]
such that
1. EA,EB ≥ µ− ε ,
2. For all x ∈ Fr2, k′ ≤ k,

Inf≤k
′

x (A) ≤ δ + ε and Inf≤k
′

x (B) ≤ δ + ε

3. |〈A, TrB〉| ≤ |〈A, Tr,dB〉|+ ε.

Now applying Theorem 1.3 to the functions A,B, we obtain that |〈A, TrB〉| ≥ δ′, where
δ′ = µO(1). Hence |〈A, Tr,dB〉| ≥ δ′− ε, and we set the parameters δ = δ′− ε, d = O(log 1/µ)
and k = O(log 1/µ).

J

STACS 2015

286 Derandomized Graph Product Results Using the Low Degree Long Code

4.1 Proof of Lemma 4.8
For proving Lemma 4.8, crucially use the following lemma by Kane and Meka [11].

I Lemma 4.9. Let ξ : R → R+ be the function ξ(x) := (max{−x, x− 1, 0})2. For any
parameters k ∈ N and ε ∈ (0, 1), there is a d = O(log(k/ε)) such that the following holds: If
the polynomial P : Fr → R satisfies ‖P‖ ≤ 1 and P̂ (α) = 0 for α ∈ Λr,d such that |α| > k,
then ∣∣∣∣ E

f∈Fr
ξ(P (f))− E

f∈Pr,d
ξ(P (f))

∣∣∣∣ ≤ ε.
I Remark. For proving Lemma 4.9, a generalization of [11, Lemma 4.1] to polynomials of
the form P : {1, ω, ω2}R → R is required. However, we observe that the polynomials we
consider are real-valued P : Fr → R and hence satisfy P̂ (α) = P (−α).

Using this observation, the proof of [11, Lemma 4.1] generalizes to our setting (the
above property is preserved throughout the proof). The result of [11] also requires an
earlier result of Diakonikolas, Gopalana, Jaiswal, Servedio, and Viola [4] on fooling Linear
Threshold functions (LTFs) with sample spaces of bounded independence. This proof also
goes through for Thresholds of real-valued linear functions defined on variables that are
uniformly distributed in {1, ω, ω2}. 2

Proof of Lemma 4.8. Let t = 3d log(10/ε)
2k , and A1 = Str,dA,B1 = Str,dB. Then from

Lemma 4.7

|〈A, Tr,dB〉 − 〈A1, Tr,dB1〉| ≤ 2dt/3d (4.3)

and similarly for B1. Let k be a number < 3d/2 and A2 = Re(A≤k1). Using the fact that A1
is real valued,

‖A1 −A2‖ ≤ ‖A1 −A≤k1 ‖ ≤ (1− 2k/3d)t ≤ e−2tk/3d = ε/10 (4.4)

Let A3 : Fr → R be defined as A3 := Re((A≤k1)′) where (A≤k1)′ is the lift of A≤k1 . Since a
random degree d polynomial is 3d/2-wise independent,

〈A2, Tr,dB2〉 = 〈A3, TrB3〉 (4.5)

Note that A3 may not be a [0, 1]-valued function. But since A is [0, 1]-valued, so is A1.
Let ξ : R→ R+ be the function ξ(x) := (max{−x, x− 1, 0})2. Notice that Ef ξ ◦A(f) gives
the `22 distance of A from [0, 1]-valued functions. Using Lemma 4.9, for d = O(log(k/ε)),∣∣∣∣ E

f∈Pr,2d
ξ(A2(f))− E

f∈Fr
ξ(A3(f))

∣∣∣∣ ≤ ε/10 (4.6)

and similarly for B2. Hence there exists functions A,B : Fr → [0, 1] such that
1. |EA− EA| ≤ ||A′1 −A|| ≤ ε (similarly for B),
2. For all x ∈ Fr3, k′ ≤ k, Inf≤k

′

x (A) ≤ Inf≤k
′

x (A) + ε (similarly for B),
3. |〈A, Tr,dB〉 − 〈A, TrB〉| ≤ ε.

J

2 Such a function is the sign of a “linear polynomial” of the form
(∑R

i=1 αixi + αixi

)
− θ for θ ∈ R.

I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 287

References
1 Noga Alon, Irit Dinur, Ehud Friedgut, and Benny Sudakov. Graph products, fourier ana-

lysis and spectral techniques. Geometric and Functional Analysis GAFA, 14(5):913–940,
2004.

2 Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and
David Steurer. Making the long code shorter. In Proc. 53th IEEE Symp. on Foundations
of Comp. Science (FOCS), pages 370–379, 2012.

3 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of Reed-Muller codes. In Proc. 51st IEEE Symp. on Founda-
tions of Comp. Science (FOCS), pages 488–497, 2010.

4 Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele
Viola. Bounded independence fools halfspaces. SIAM J. Computing, 39(8):3441–3462, 2010.
(Prelimimary version in 50th FOCS, 2009).

5 Irit Dinur and Venkatesan Guruswami. PCPs via low-degree long code and hardness for
constrained hypergraph coloring. In Proc. 54th IEEE Symp. on Foundations of Comp.
Science (FOCS), pages 340–349, 2013.

6 Irit Dinur, Prahladh Harsha, Srikanth Srinivasan, and Girish Varma. Derandomized graph
product results using the low degree long code. arXiv:1411.3517, 2014.

7 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate
coloring. SIAM J. Computing, 39(3):843–873, 2009. (Preliminary version in 38th STOC,
2006).

8 Irit Dinur and Igor Shinkar. On the conditional hardness of coloring a 4-colorable graph
with super-constant number of colors. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen,
and José D. P. Rolim, editors, Proc. 13th International Workshop on Randomization and
Approximation Techniques in Computer Science (APPROX), volume 6302 of LNCS, pages
138–151. Springer, 2010.

9 Venkat Guruswami, Prahladh Harsha, Johan Håstad, Srikanth Srinivasan, and Girish
Varma. Super-polylogarithmic hypergraph coloring hardness via low-degree long codes.
In Proc. 46th ACM Symp. on Theory of Computing (STOC), pages 614–623, 2014.

10 Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multivariate poly-
nomials over small prime fields. SIAM J. Computing, 42(2):536–562, 2013. (Preliminary
version in 52nd FOCS, 2011).

11 Daniel M. Kane and Raghu Meka. A PRG for Lipschitz functions of polynomials with
applications to sparsest cut. In Proc. 45th ACM Symp. on Theory of Computing (STOC),
pages 1–10, 2013.

12 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
J. Computer and System Sciences, 74(3):335–349, 2008. (Preliminary version in 18th IEEE
Conference on Computational Complexity, 2003).

13 Subhash Khot and Rishi Saket. Hardness of coloring 2-colorable 12-uniform hypergraphs
with 2(logn)Ω(1) colors. In Proc. 55th IEEE Symp. on Foundations of Comp. Science (FOCS),
pages 206–215, 2014.

14 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM J. Computing, 42(3):1275–1301, 2013. (Preliminary Version in 42nd
STOC, 2010).

15 Girish Varma. A note on reducing uniformity in Khot-Saket hypergraph coloring hardness
reductions. arXiv:1408.0262, 2014.

STACS 2015

Space-efficient Basic Graph Algorithms
Amr Elmasry1, Torben Hagerup2, and Frank Kammer2

1 Department of Computer Engineering and Systems
Alexandria University, Alexandria 21544, Egypt
elmasry@mpi-inf.mpg.de

2 Institut für Informatik, Universität Augsburg
86135 Augsburg, Germany
{hagerup,kammer}@informatik.uni-augsburg.de

Abstract
We reconsider basic algorithmic graph problems in a setting where an n-vertex input graph
is read-only and the computation must take place in a working memory of O(n) bits or little
more than that. For computing connected components and performing breadth-first search, we
match the running times of standard algorithms that have no memory restrictions, for depth-first
search and related problems we come within a factor of Θ(log log n), and for computing minimum
spanning forests and single-source shortest-paths trees we come close for sparse input graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases graph algorithms, depth-first search, single-source shortest paths, register
input model

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.288

1 Introduction

Motivated on the one hand by the increased prevalence of huge data collections (“big data”),
and on the other hand by the emergence of small mobile devices and embedded systems that
cannot be equipped with very large memories, recent years have seen a surge of interest in
data structures and algorithms that treat memory space as a scarce resource.

The classical area of Turing machines that operate in logarithmic space is still very
active [17, 18, 21, 22]. Practical concerns, however, lead us to focus on algorithms that
run in near-linear time. Even for the fundamental s-t connectivity problem on directed
graphs, the most space-efficient algorithm, due to Barnes et al. [7], needs n/2O(

√
logn) bits

of memory when required to run in polynomial time. The bound is only slightly sublinear,
and a nearly matching lower bound is known for the so-called NNJAG model [20]. In
addition, Tompa [33] showed that certain natural algorithmic approaches to the problem
require superpolynomial time if the number of bits available is o(n). It therefore seems
reasonable to accord algorithms that operate on general n-vertex graphs approximately n
bits of working memory. In return, we would hope to match the time bounds of standard
graph algorithms or to come close. For this to be possible, it is necessary to replace the
Turing machine by a model closer to computing practice, and a number of such models have
been proposed. Common to all of them is that access to the input is restricted in some
way. In the multi-pass streaming model [27], the input can only be accessed in a purely
sequential fashion, and the main goal is to minimize the number of passes over the input.
Another model [9] allows the input items to be permuted but not destroyed, and in the

© Amr Elmasry, Torben Hagerup, and Frank Kammer;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 288–301

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Elmasry, T. Hagerup, and F. Kammer 289

restore model [13], the input may be temporarily modified during a computation, but must
be restored to its original state.

In this paper we employ the register input model of Frederickson [24]. It features a read-
only input memory and a write-only output medium. The computation proper takes place
in a working memory of limited size. When stating that a problem can be solved with a
certain number of bits, what we mean is that the working memory comprises that many bits.
The input and working memories are divided into words of w bits for a fixed parameter w,
arithmetic and logical operations on w-bit words take constant time, and random access
to the input and working memories is provided. In the context of inputs of n words, we
assume, as is common, that w = Θ(log n) and, in particular, that w is large enough to allow
all words in the input and working memories to be addressed.

A number of results are known for the register input model. For the fundamental problem
of sorting n items, Pagter and Rauhe [29] described a comparison-based algorithm that, for
every given s with log n ≤ s ≤ n/log n, runs in O(n2/s) time using O(s) bits, and a matching
lower bound of Ω(n2) for the time-space product was established by Beame [8] for the strong
branching-program model. Other researchers have considered selection [10, 12, 23, 24, 28, 31]
and various problems in computational geometry [2, 4, 5, 6, 11, 16]. With one exception,
discussed below, we are not aware of previous work that reduces the working space needed to
process n-vertex graphs below Θ(n log n) bits with only a modest penalty in the running time.

1.1 New Results
We describe a number of algorithms for the register input model, all of which input a
directed or undirected graph (plus, possibly, other items). When discussing graph algorithms
below, we always use n and m to denote the number of vertices and the number of edges,
respectively, in the input graph.

A focal point of our work is depth-first search (DFS) (Section 3) and its applications
(Section 4). We first show that a DFS can be carried out in O((n + m) log n) time with
(log23 + ε)n bits, for arbitrary fixed ε > 0. A very similar result was found independently
by Asano et al. [3]. They need cn bits, for an unspecified constant c > 2, or Θ(mn)
time, however. Relaxing the space bound to O(n) bits, we can perform the DFS in just
O((n+m) log log n) time. We also show how to achieve linear time with O(n log log n) bits
and how to interpolate between the two latter results with the same time-space product.
Our main technique can be viewed as employing an “approximate runtime stack”: With
just O(log log n) bits rather than Θ(log n) bits for each vertex on the stack, we store only
an approximation of its stack entry and only an approximation of its position on the stack
and show how to execute the DFS in the face of the resulting uncertainty.

Some applications of DFS process the output of a DFS in reverse order. This is rarely
highlighted, since reversing a sequence is implicit when the whole sequence fits in memory.
When this is not the case, however, the operation can become a bottleneck. While reversing
a sequence in general may be more expensive, we show how to run a DFS in reverse with only
a modest penalty of O(n log log n) additional bits. This allows us to compute topological
sortings and strongly connected components in linear time with O(n log log n) bits. Here
the main technique employed is to keep enough information about a DFS to restart it in
the middle and to use this repeatedly to reverse small pieces of its output, produced in
reverse order, one at a time. Although the connected components of an undirected graph
are usually computed by means of DFS, in Section 5 we observe that this bottleneck can be
avoided and show how to compute the connected components in O(n+m) time with O(n)
bits and how to carry out a breadth-first search within the same bounds.

STACS 2015

290 Space-efficient Basic Graph Algorithms

Section 6 describes space-efficient versions of the algorithms of Prim and Dijkstra for
computing a minimum spanning forest (MSF) and a single-source shortest-paths (SSSP)
tree, respectively. To describe the algorithms, we introduce the notion of a priority queue
with a deletion budget. A priority queue with a deletion budget uses less space than a
usual priority queue, but can be used only for a certain time before it must be refilled, i.e.,
initialized anew. We give two algorithms for the MSF problem. The first one runs with O(n)
bits in O(n+m log n) time. The second algorithm uses more space, namely O(n log(2+m/n))
bits, but matches the running time of O(m + n log n) of usual implementations of Prim’s
algorithm. Despite the pronounced similarities between Prim’s and Dijkstra’s algorithms,
the SSSP problem appears more difficult in a space-efficient setting because the vertices of
the SSSP tree cannot be output and forgotten as they are computed; rather, their distances
from the source are needed later in the computation. We cannot store the distances, and in
order to recompute them with any degree of efficiency, we must remember the SSSP tree,
which needs Θ(n log(2 + m/n)) bits. While this number of bits is O(n) for sparse graphs
with m = O(n), it degrades to Θ(n log n) for dense graphs with m = Θ(n2). Assume, by way
of example, that the input graph is sparse and that we want to use only O(n) bits. Then we
can recompute the distances from the SSSP tree in batches of size Θ(n/log n) in O(n) time.
Since we need to do this for Θ(log n) batches for each of Θ(log n) refillings of the priority
queue, the total time becomes O(m+n(log n)2). More generally, if O(n(log(2+m/n)+s(n)))
bits are available, we achieve a time bound of O(m+ n log n+ n((log n)/s(n))2).

2 Preliminaries

It is customary to distinguish between adjacency matrices and adjacency lists, but not to
specify the input format of a graph algorithm in any greater detail. This is because linear
time and a linear number of words of working memory are sufficient to convert between any
two reasonable adjacency-list representations—e.g., the edges may be reordered by means
of radix sorting. In our setting, where we want to get by with o(n log n) bits of working
memory, we have to be more specific about the input format.

Let G = (V,E) be an input graph with n vertices and m edges. As is common, we always
assume that V = {1, . . . , n} and that, given u ∈ V , we can access the set N(u) of neighbors
of u (if G is undirected) or of outneighbors of u (if G is directed). For some algorithms
it suffices to be able to iterate over N(u) in constant time per vertex, the archetypical
functionality provided by adjacency lists. For most of our algorithms, however, we need
random access to N(u). More precisely, given u and an integer k with 1 ≤ k ≤ |N(u)|, we
need constant-time access to the kth element of N(u). In such cases we will indicate that
the input graph must be represented via adjacency arrays.

Some algorithms have additional special requirements. When we state that an adjacency-
array representation of an undirected graph has cross pointers, what we mean is that, given
a vertex u and the position in N(u) of a neighbor v of u, in constant time we can find the
position of u in N(v). Our algorithm for computing the strongly connected components of a
directed graph assumes that, given a vertex u, we have access not only to its outneighbors,
but also to its inneighbors. We will formulate this by stating that the input graph must
be represented with in/out adjacency lists or arrays. Our algorithm for the single-source
shortest-paths problem uses in/out adjacency arrays, say, Nin(u) and Nout(u) for u ∈ V ,
and requires the arrays Nout(u), for u ∈ V , to be sorted consistently with a linear order
on V that is either the natural order 1, . . . , n or is specified in the input. We will say that
the input graph must be represented with sorted adjacency arrays. In addition, for each

A. Elmasry, T. Hagerup, and F. Kammer 291

(u, v) ∈ E, given u and the position of v in Nout(u), we must be able to find the position
of u in Nin(v) in constant time—again, we will say that the representation must have cross
pointers.

An inconspicuous but crucial role is played in most of our algorithms by a special case,
characterized in the following lemma, of a data structure developed in [26].

I Lemma 2.1. For every fixed n ∈ N = {1, 2, . . .}, there is a dictionary that can store a
subset A of {1, . . . , n}, each a ∈ A with a string ha of satellite data of O(log n) bits, in
O(n +

∑
a∈A |ha|) bits such that membership in A can be tested in constant time for each

element of {1, . . . , n}, ha can be inspected in constant time for each a ∈ A, elements with
their satellite data can be inserted in and deleted from A in constant amortized time, an
operation some_id that returns an (arbitrary) element of A is supported in constant time,
and an operation all_ids that returns all elements of A is supported in O(|A|+ 1) time.

We sometimes want to store for each vertex v in a graph with n vertices and m edges an
index into the adjacency array of v. Jensen’s inequality and Lemma 2.1 show that this can
be done with O(n log(2 +m/n)) bits.

3 Depth-First Search

A DFS of a directed graph G = (V,E) steps through the vertices of G and processes each in
turn if its processing has not already begun. The processing of a vertex u ∈ V consists in
stepping through its outgoing edges and, for each such edge (u, v), exploring (u, v) and, if the
processing of v has not already started, processing v recursively. Every vertex is processed
exactly once, and every edge is explored exactly once. When the processing of a vertex
u ∈ V starts, we say that u is discovered.

It is customary to use a stack to keep track of the vertices whose processing has begun,
but not yet ended, with vertices that were discovered more recently appearing closer to
the top of the stack. When a vertex is discovered, it is pushed on the stack, and when its
processing terminates, it is again at the top of the stack, from which it is popped. Following
Cormen et al. [14], we call a vertex white if it has not yet been discovered, gray if its
processing is underway, and black if its processing has ended.

Whenever an edge (u, v) is explored, u is at the top of the stack. If the exploration
of (u, v) causes v to be pushed on the stack above u, i.e., if v is white just prior to the
exploration of (u, v), v becomes gray at that point and will remain gray and immediately
above u on the stack until v is popped and turns black. Thus, whenever a vertex v appears
immediately above another vertex u on the stack, (u, v) is an edge of E and the first edge
out of u whose head is neither black nor stored below v on the stack.

As described so far, depth-first search does not do anything useful—it is just an “empty
control structure”. Applications of DFS therefore augment the basic scheme with additional
computational steps. Such steps can be executed, e.g., at the beginning and/or at the end
of each processing of a vertex and/or at the exploration of each edge. If they are phrased as
application-dependent user procedures preprocess, postprocess, preexplore and postexplore,
DFS can be expressed via the code fragment below, which denotes the outdegree of a vertex u
by deg(u) and its kth outneighbor by N(u)[k], for k = 1, . . . , deg(u).

DFS :
for u := 1 to n do color [u] := white;
for u := 1 to n do if color [u] = white then process(u);

STACS 2015

292 Space-efficient Basic Graph Algorithms

The procedure process is defined as follows:

process(u):
color [u] := gray;
preprocess(u);
k := 1;
while k ≤ deg(u) do
v := N(u)[k];
preexplore(u, v, color [v]);
if color [v] = white then process(v);
postexplore(u, v);
k := k + 1;

postprocess(u);
color [u] := black;

We view the problem to be solved as that of executing the correct sequence of calls of
preprocess, postprocess, preexplore and postexplore. Of course, we exclude the time and space
requirements of these procedures from our resource bounds, and we often ignore them in
what follows so as not to clutter the picture.

The execution of the procedure DFS uses Θ(n) bits of working memory for the array
color . However, the implicit run-time stack needed to keep track of partially executed calls
of process may require Θ(n log n) bits. As a first step towards more space-efficient solutions,
we eliminate the explicit recursion from the procedure process and reformulate it below to
manage its own run-time stack. The latter, denoted by S, stores not just vertices, but pairs
consisting of a vertex u and an integer that indicates the number of the next edge out of u
to be explored. Pushing a pair (u, k) on S is written S ⇐ (u, k), popping the top entry from
S and storing its components in u and k is written (u, k) ⇐ S, and S is tested for being
nonempty with S 6= ∅.

process(u):
S ⇐ (u, 1);
while S 6= ∅ do

(u, k)⇐ S;
color [u] := gray;
if k ≤ deg(u) then
S ⇐ (u, k + 1);
if color [N(u)[k]] = white then S ⇐ (N(u)[k], 1);

else color [u] := black;

Informally, the presence on S of an entry of the form (u, k) signals that at some point,
namely when (u, k) again becomes the top entry of S, the algorithm will proceed to either
process the kth edge out of u or discover that k > deg(u). In the first case, (u, k) is replaced
by (u, k+ 1) as the top entry on S. Although this is formulated above in terms of standard
stack operations as a pop followed by a conditional push, our discussion will instead pretend
that it happens as a test of the value of a field in the top entry on S followed by—depending
on the outcome—an increment of that value or a pop.

3.1 A Simple DFS Algorithm
An entry on S can be represented in Θ(log n) bits and, in general, needs that much space.
Since S may grow to contain as many as n entries, the algorithm stated above requires

A. Elmasry, T. Hagerup, and F. Kammer 293

Θ(n log n) bits of working space. The goal in this section is to reduce the space requirements
to little more than n bits while incurring only a logarithmic penalty in the time bound.
I Theorem 3.1. For every constant ε > 0, a DFS of a graph with n vertices and m edges
can be performed in O((n+m) log n) time with at most (log23 + ε)n bits.
Proof. Without loss of generality, assume below that n is larger than a certain constant.
Take λ = log23. Among other data structures detailed below, we need the array color of
n entries drawn from {white, gray, black}. It is well-known and easy to see that color can
be realized in at most (λ + ε/3)n bits so that individual entries can be tested and set in
constant time (assume without loss of generality that 3/ε is an integer that divides n and
store each group of 3/ε consecutive color values in dlog2(33/ε)e = d3λ/εe bits).

Compute q as a positive integer with q = Θ(n/log n), chosen so that 2q entries on S

take up at most (ε/3)n bits. At any given time, we partition the entries on S into O(log n)
segments as follows: The bottommost q entries form the first segment, the next q entries
form the second segment, and so on, with the last segment usually containing fewer than q
entries. Let us call the last (most recently pushed) entry within each segment its trailer.

We remember only a part S′ of the full stack S. S′ always consists of the one or two
last (most recent) segments of S and therefore, by the choice of q, requires no more than
(ε/3)n bits of storage. In addition, we store all trailers present on S on a separate stack T of
O((log n)2) bits. T and various simple variables together can be stored in fewer than (ε/3)n
bits, so the total space requirements are bounded by (λ+ ε)n bits.

The algorithm works with S′ exactly as the usual DFS algorithm works with S (of course,
additionally manipulating trailers as appropriate), except in the following two special events:
(1) When S′ already contains 2q entries and a new entry is to be pushed on S, first the older
of the two segments present on S′ is dropped to make room for a new segment. (2) When S′
loses its last entry due to a pop but S (and hence T) is not empty, the one or two topmost
segments of S are restored and placed on S′, after which the normal execution resumes.

The restoration of a segment is performed as follows: First all gray vertices are recolored
white. Then the DFS is restarted from the beginning, except that black vertices remain
black and that the process operates quietly, i.e., the user procedures preprocess, postprocess,
preexplore and postexplore are not executed. The restoration is continued until the top
entries on S′ and T coincide, at which point one (if there is only one) or two segments of S
will have been restored on S′.

To see that the restoration is correct, recall that if u and v are successive vertices on S,
(u, v) is the first edge out of u whose head is neither black nor stored on S below v. Thus all
vertices that are pushed on S′ during the restoration, except for the last trailer, will simply
skip over their first outgoing edges, those that point to gray or black vertices, and push the
first white vertex encountered—the correct next vertex on the stack—while coloring it gray.
In particular, no vertices are ever popped, so no restoration will be called for during the
restoration. The last trailer will skip over edges to gray or black vertices and reach the edge
that was the next edge to be explored in the original DFS, which is resumed at that precise
point.

To bound the number of restorations, consider the potential function Φ = max{q −
|S′|, 0}, where |S′| is the number of entries currently stored on S′. Φ = q initially and Φ ≥ 0
at all times, no push increases Φ, a pop increases Φ by at most 1, and a restoration decreases
Φ from q to 0. As each of the n vertices is popped only once, the number of restorations
is bounded by (q + n)/q = O(log n). It is obvious that a restoration can be executed in
O(n+m) time. The computation outside of restorations also runs in O(n+m) time, as it
is basically a standard DFS, so the total time comes to O((n+m) log n). J

STACS 2015

294 Space-efficient Basic Graph Algorithms

3.2 Depth-First Search in Linear Time
This section describes a DFS procedure that works in O(n+m) time and uses O(n log log n)
bits. Several notions carry over from the previous section: segments of q = Θ(n/log n)
entries on S, the stack S′ that contains only the last one or two segments on S, and the
restoration of the topmost segment of S when S′ becomes empty. There are two main new
ideas, explained in the following.

The first idea is to carry out a restoration not by restarting the DFS from scratch, but
by using the trailer of the segment just below the top segment of S as a starting point (if S
contains just one segment, restart the DFS from the beginning). Thus the goal is to restore
just the top segment without going through the process of reconstructing the segments below
it only to throw them away immediately after.

The idea expressed in the previous paragraph meets with a difficulty. Recall that in
the algorithm of Section 3.1, the restoration begins by recoloring all gray vertices white,
so that they are again eligible for being pushed on the stack. Such an operation would
be too expensive in the present context. Besides, what we need is something different: a
recoloring that is applied only to the vertices in the top segment of S, since only these
should be allowed to enter S′. We achieve a similar effect by numbering the segments
consecutively from bottom to top and introducing a table D with an entry for each vertex
in V . Whenever a vertex u ∈ V is pushed on S′, the number of the segment that it enters
is stored permanently in D[u]. Since all segment numbers are O(log n), D can be stored in
O(n log log n) bits. In addition, we temporarily switch the meaning of the colors white and
gray for the vertices in the top segment of S for the duration of the restoration.

The restoration process is modified as follows: At each exploration of an edge (u, v), v
is pushed on S′ exactly if D[v] indicates that v belongs to the top segment on S and v is
gray. If v is pushed, it is colored white to prevent it from being pushed again later in the
restoration. When the restoration is complete, the vertices in the restored top segment are
all white, and they are recolored gray (their “true” color) before the original DFS resumes.

The second new idea serves to speed up the search for the correct edge out of a vertex u
on the stack during a restoration. Ideally, we would like to know the integer k such that the
pair (u, k) is stored on S, but we do not have the space to remember this information for all
vertices. Define a vertex to be big if its degree exceeds m/q. For the at most q big vertices we
store the relevant pairs explicitly. More precisely, the part of S maintained on T is extended
to include not only the trailers, but also all pairs (u, k), where u is big. During a restoration,
the part of T above and including the topmost trailer is accessed from bottom to top, in
synchrony with the restoration, so that the need to search through the outgoing edges of big
vertices is eliminated—the correct value of k is found in constant time. For other vertices
we store a rough, O(log log n)-bit approximation of the relevant k. Compute l as a positive
integer with l = Θ(log n). For each pair (u, k) stored on S with deg(u) ≥ 1, we extend
the table entry D[u] to contain also the integer fu = b(k − 1)/guc, where gu = ddeg(u)/le.
Informally, fu indicates the number of groups of gu edges out of u that have been completely
explored. The restoration is changed to skip the processing of edges in such groups.

For all u ∈ V with deg(u) ≥ 1, fu ≤ (k − 1)/gu ≤ (k − 1)l/deg(u) ≤ deg(u)l/deg(u) =
O(log n), so O(n log log n) bits still suffice for the extended table D. During a restoration,
the search for the correct edge out of a vertex u that is not big can now be performed in
O(gu) = O(1 +m/(ql)) = O(1 +m/n) time. A single restoration carries out the search for
q vertices and therefore takes O((1 + m/n)q) = O((n+m)/log n) time. As in the proof of
Theorem 3.1 and for the same reasons, the number of restorations is O(log n) and the time
spent outside of restorations is O(n+m), so the total time for the DFS is O(n+m).

A. Elmasry, T. Hagerup, and F. Kammer 295

I Lemma 3.2. A DFS of a graph with n vertices and m edges, represented via adjacency
arrays, can be performed in O(n+m) time with O(n log log n) bits.

3.3 An Upper-Bound Time-Space Tradeoff for DFS
In this section we give a tradeoff between time and space for DFS. Except for the explicit
constant factor indicated in the space bound of Theorem 3.1, Theorem 3.3 subsumes Theo-
rem 3.1 and Lemma 3.2, but its proof draws heavily on arguments presented in their proofs.

I Theorem 3.3. For every function t : N → N such that t(n) can be computed within the
resource bounds of this theorem (e.g., in O(n) time using O(n) bits), a DFS of a graph with n
vertices and m edges, represented via adjacency arrays, can be performed in O((n+m)t(n))
time with O(n+ n(log log n)/t(n)) bits.

Proof. Begin by computing a positive integer r with r = Θ(1+ logn
t(n)). Divide S into segments

of q = Θ(n/log n) consecutive entries each, as usual, but additionally and in the same manner
divide S into big segments of qr consecutive entries each. Thus each big segment consists of
r consecutive usual segments.

We use an algorithm that is a combination of the two algorithms described in Sections
3.1 and 3.2. Its top-level structure is nearly identical to that of the algorithm of Theo-
rem 3.1, except that it employs big segments in place of usual segments. Thus information
is maintained about up to two big segments, and occasionally a big segment needs to be
restored, which is done in linear time by recoloring all gray vertices white and repeating the
computation quietly until the topmost trailer on T has been pushed on S′. The number of
such big restorations is O(n/(qr)) = O((log n)/(1 + logn

t(n))) = O(t(n)), so the time spent in
big restorations is O((n+m)t(n)).

Between big restorations, the algorithm proceeds almost exactly as that of Lemma 3.2.
The only differences are that the table D is implemented not as a simple array, but with the
dictionary of Lemma 2.1, and that the entry in D of a vertex u is deleted from D when u no
longer belongs to one of the two topmost big segments on S. Because of this, the number of
bits needed byD is O(n+qr log log n) = O(n+ n log logn

logn (1+ logn
t(n))) = O(n+n(log log n)/t(n)).

Of course, the restoration should classify a gray vertex without an entry in D as not belonging
to the segment under restoration, i.e., such a vertex should not be pushed on S′. The runtime
analysis of Section 3.2 carries over to the present context and shows the time spent outside
of big restorations to be O(n+m). J

4 Reverse DFS with Applications

I Lemma 4.1. If we can carry out a DFS S of a directed graph with n vertices and m edges in
time t(n,m) with s(n,m) bits, we can output the reverse of a sequence of symbolic represen-
tations of the user calls executed by S in O(t(n,m)) time with O(s(n,m) + n log log n) bits.

Proof. Assume without loss of generality that n ≤ s(n,m) ≤ n log n. For times t0 < · · · < tr
such that t0 and tr are the times of the beginning and the end of S, r = O(n(log n)/s(n,m)),
and the number of pushes and pops executed on the stack S of S during the time interval
Ij = (tj−1, tj) is O(s(n,m)/log n), for j = 1, . . . , r, use a simulation of an execution of S to
compute r, to label each vertex v with the pair (d[v], f [v]) ∈ {1, . . . , r}2 such that v becomes
gray during Id[v] and black during If [v], and to record, for j = 1, . . . , r, the top entries H
and H ′ of S at times tj−1 and tj , the value Ĥ at time tj−1 of the deepest stack entry that
changes during Ij , and the first and last user calls, if any, executed during Ij .

STACS 2015

296 Space-efficient Basic Graph Algorithms

For j = r, . . . , 1, we now simulate S during Ij , record a part of the sequence of (symbolic
representations of) user calls executed during Ij , and output the reverse of that sequence,
completed with its missing parts, while keeping track of the vertex colors during the corre-
sponding reverse DFS. The missing parts are those calls preexplore(u, v, color [v]) for which
color [v] 6= white and the calls postexplore(u, v) that immediately follow them. Without these
calls, the sequence of calls executed during Ij fits in O(s(n,m)) bits. On the other hand, it
is easy to reconstruct the calls missing between two successive recorded calls, essentially by
traversing corresponding pieces of adjacency lists or arrays, and to output them in reverse
order, O(n/log n) calls at a time; the details are left to the reader.

To simulate S from time tj−1 onwards, we need the coloring of each vertex v at time tj−1,
which can be deduced from (d[v], f [v]). We cannot construct the stack valid at time tj−1 in
its entirety, but since S is to be simulated only until tj , it suffices to construct the part of S
between Ĥ and H, inclusive. We do this by a stack restoration similarly as for DFS: Starting
from Ĥ, each vertex steps through its adjacency list or array, skipping over black and gray
outneighbors, until it encounters a first white outneighbor and pushes it on the stack. The
recorded stack entries allow us to know exactly when to stop the stack restoration and when
to stop the simulation pertaining to Ij . Apart from a constant-factor simulation overhead,
the only significant resources needed are O(s(n,m)) bits used for the restored stack and for
user calls, O(n log r) = O(n log log n) bits to store vertex labels and colors, and the time
consumed by the stack reconstructions. For j = r, . . . , 1, if the stack reconstruction prior
to the simulation for Ij pushes an entry other than Ĥ for a vertex v on S, we must have
f [v] = j, since otherwise Ĥ could not appear at the top of S during Ij . Except for at most
r vertices, every vertex is therefore pushed on S in at most one reconstruction, so the time
needed for all reconstructions is within a constant factor of the time consumed by S. J

In particular, we can output the vertices of a graph G in reverse postorder with respect
to a DFS forest of G. If G is directed and acyclic, this order is a topological sorting of G [32].

I Theorem 4.2. Within the time and space bounds of a DFS of G, up to a constant factor,
plus O(n log log n) bits, the vertices of a directed acyclic n-vertex graph G can be output in
the order of a topological sorting of G.

We define the SCC problem as follows: Given a directed n-vertex graph G = (V,E) with
c strongly connected components (SCCs), output a sequence (u1, k1), . . . , (un, kn), where
{u1, . . . , un} = V and k1, . . . , kn is a nondecreasing sequence of integers such that 1 ≤ ki ≤ c
for i = 1, . . . , n and ki = kj , for 1 ≤ i, j ≤ n, exactly if ui and uj belong to the same SCC
of G. Combining Lemma 4.1 with a DFS-based SCC algorithm whose main procedure steps
through the vertices in reverse postorder [1], one can easily show the theorem below.

I Theorem 4.3. If a DFS of a directed graph with n vertices and m edges, represented with
in/out adjacency lists or arrays, can be carried out in t(n,m) time with s(n,m) bits, then,
given a directed graph G with n vertices and m edges, represented in the same way, the SCC
problem can be solved for G in O(t(n,m)) time with O(s(n,m) + n log log n) bits.

5 Computing Connected Components and Breadth-First Search

We consider the following variants of the connected-components and breadth-first search
(BFS) problems: The input is an undirected graph G = (V,E) and, in the case of BFS, a
permutation (π(1), . . . , π(n)) of V . The output is a sequence (u1, k1), . . . , (un, kn), where
n = |V |, {u1, . . . , un} = V , and k1, . . . , kn is a nondecreasing sequence of integers with the

A. Elmasry, T. Hagerup, and F. Kammer 297

following property: For the connected-components problem, 1 ≤ ki ≤ c for i = 1, . . . , n,
where c is the number of connected components of G, and ki = kj , for 1 ≤ i, j ≤ n, exactly
if ui and uj belong to the same connected component of G. For BFS, ki is the distance
in G from ui to the first vertex in the sequence (π(1), . . . , π(n)) that belongs to the same
connected component as ui, for i = 1, . . . , n.

I Theorem 5.1. The connected-components and BFS problems for an undirected graph with
n vertices and m edges can be solved in O(n+m) time with O(n) bits.

Proof sketch. For the connected-components problem, we explore the graph using the same
(white→ gray→ black) coloring as in the case of DFS. Instead of exploring an edge incident
on the most recently discovered vertex, we pick an arbitrary gray vertex and explore all of
its incident edges. When we run out of gray vertices, we instead process a white vertex after
incrementing a components counter. If the set of gray vertices is stored in an instance of
the dictionary of Lemma 2.1 with its some_id operation, the process can easily be carried
out in linear time.

For the BFS problem, we refine the process by splitting the set of gray vertices in two,
the sets of inner-gray and of outer-gray vertices. As long as there are inner-gray vertices,
we process one of these, coloring its white neighbors outer-gray. When this is no longer the
case, we increment a distance counter and recolor the outer-gray vertices inner-gray. When
there are neither inner-gray nor outer-gray vertices, we set the distance counter to 0 and
continue the process at the first white vertex in the sequence (π(1), . . . , π(n)). J

6 Priority Queues with a Deletion Budget and Their Applications

For our purposes, a priority queue is a data structure that maintains an initially empty
collection of items, each with a unique identification, a key drawn from a totally ordered
set, and arbitrary satellite data, under the operations insert, extract_min and decrease_key.
The operation insert inserts a new item in the collection, extract_min returns an item whose
key is minimal after deleting it from the collection, and a call decrease_key(v, d, p) replaces
the current key dv of the item with identification v by d and its current satellite data by p,
provided that d < dv, and does nothing if d ≥ dv. Our priority queue is nonstandard in
two minor ways. First, satellite data are frequently not included in the specification of
priority queues. And second, a call decrease_key(v, d, p) is usually considered legal only if
d is smaller than the key of v before the call.

We will say that a priority queue has a deletion budget of b if it is guaranteed to work
correctly until the end of the bth call of extract_min (but possibly not after that). Thus
usual priority queues have infinite deletion budgets. The following general construction
derives from a priority queue Q a priority queue Qb with a smaller budget b: Initially, Qb
operates exactly as Q. Whenever the number of items stored in Qb reaches 2b, however, all
the items are extracted from Qb, their median is computed, b items with largest keys are
thrown away, and the other b items are reinserted in Qb. A call of decrease_key that refers
to an item that was thrown away reinserts the item with its new key. To see the correctness
of the construction, observe that if an item is thrown away and not later reinserted with a
smaller key, Q can avoid returning it in one of the b first calls of extract_min, whereas an
item whose key in Qb is incorrect and therefore too large (the item must have been thrown
away and later reinserted) is definitely not returned by Qb in any of these calls. The main
advantage of a priority queue with a small deletion budget is that it uses little space. By
applying the construction above to a Fibonacci heap [25], augmented with an instance of

STACS 2015

298 Space-efficient Basic Graph Algorithms

the dictionary of Lemma 2.1 that we use to map identifications of items to their positions
in the Fibonacci heap and their keys and satellite data, we obtain:

I Lemma 6.1. For every given n, b ∈ N, there is a priority queue with deletion budget b
for identifications drawn from {1, . . . , n} with O(log n)-bit keys and O(log n)-bit satellite
data that executes insert and decrease_key in constant amortized time and extract_min in
O(log n) amortized time and that uses O(n+ b log n) bits.

6.1 Computing Minimum Spanning Forests
I Theorem 6.2. Given an undirected graph G with n vertices, m edges and O(log n)-bit
edge weights, represented with adjacency arrays and cross pointers, the edges of a minimum
spanning forest of G can be output either in O(n + m log n) time with O(n) bits or in
O(m+ n log n) time with O(n log(2 +m/n)) bits.

Proof sketch. We give a proof only for the more interesting case m ≥ n/2. We run Prim’s
algorithm [30] with an instance Qb of the priority queue of Lemma 6.1 with deletion budget
Θ(n/log n). Prim’s algorithm grows a minimum spanning forest F one tree at a time,
repeatedly adding to F a vertex outside of F that is closest to F . For each vertex v outside
of F , Qb stores the item (v, dv, pv), where the key dv is the smallest weight of an edge {u, v}
for which u is in F , and pv, if dv <∞, is the position of u in the adjacency array N(v) of v.

Qb must be refilled O(log n) times. Between the refillings, the algorithm n times executes
an extract_min operation on Qb to obtain an item (v, dv, pv) and, if dv < ∞, outputs the
edge {u, v}, where u is the vertex in position pv in N(v). For each neighbor x of v outside
of F , it also executes the operation decrease_key(x, d, p), where d is the weight of the edge
{v, x} and p is the position of v in N(x)—which can be found by following a cross pointer.
Outside of refillings of Qb, the algorithm uses O(m+ n log n) time.

Processing every edge in G, we can refill Qb in O(m) time, which shows the first part of
the theorem. In order to be faster, we maintain for each vertex v outside of F the position
in its adjacency array of a closest neighbor of v in F , i.e., the last component of the triple
(v, dv, pv). This needs O(n log(2 +m/n)) bits and allows the refilling time to be lowered to
O(n), which shows the second part of the theorem. J

6.2 The Single-Source Shortest-Paths Problem
I Theorem 6.3. For every function s : N → N such that s(n) can be computed within the
resource bounds of this theorem (e.g., in O(n) time using O(n) bits), the following problem
can be solved in O(m + n log n + n((log n)/s(n))2) time with O(n(log(2 + m/n) + s(n)))
bits: Given a directed graph G = (V,E) with n vertices, m edges and nonnegative O(log n)-
bit edge weights, represented with sorted in/out adjacency arrays and cross pointers, and a
vertex s∗ ∈ V from which all vertices in G are reachable, compute a shortest-paths tree in
G rooted at s∗, i.e., a tree that is the union, over all v ∈ V , of a shortest path in G from s∗

to v.

Proof sketch. Assume without loss of generality that s(n) ≤ log n. We run Dijkstra’s
algorithm [15, 19, 34] with an instance Qb of the priority queue of Lemma 6.1 with deletion
budget Θ(ns(n)/log n). Dijkstra’s algorithm grows an SSSP tree T rooted at s∗ one vertex
at a time, repeatedly adding to T a vertex outside of T that is closest to s∗. For each vertex v
outside of T , Qb stores the item (v, dv, pv), where the key dv is the infimum of the lengths of
paths in G from s∗ to v whose only vertex outside of T is v, and pv, if dv <∞, is the position
in the in-adjacency array Nin(v) of v of the second-last vertex on a shortest such path.

A. Elmasry, T. Hagerup, and F. Kammer 299

Qb must be refilled O(log n/s(n)) times. Between the refillings, the algorithm n times
executes an extract_min operation on Qb to obtain an item (v, dv, pv). It adds v to T and,
if v 6= s∗, adds also the edge (u, v), where u is the vertex in position pv in Nin(v). The
edge (u, v) or the distance dv from s∗ to v may be output at this point; at any rate, the
algorithm remembers (u, v) by storing pv permanently with v. This allows v to find its
parent u in T in constant time—an operation that we call following a parent pointer—and,
over all vertices v, needs O(n log(2 +m/n)) bits. For each outneighbor x of v outside of T ,
the algorithm also executes the operation decrease_key(x, dv + c, p), where c is the weight
of the edge (v, x) and p is the position of v in Nin(x), an operation known as relaxing the
edge (v, x). Outside of refillings of Qb, the algorithm uses O(m+ n log n) time.

To ease refillings, the algorithm maintains the following additional information: First,
a list L of the vertices added to T since the previous refilling and their distances from s∗

(O(ns(n)) bits). Second, for each vertex v outside of T , the integer pv such that a triple of
the form (v, d, pv) was present in Qb at the end of the previous refilling (O(n log(2 +m/n))
bits). We call pv the old tentative parent pointer of v.

In each refilling, the vertices outside of T are processed in O(log n/s(n)) batches of O(r)
vertices each, where r = ns(n)/log n. The batches must be consistent with the ordering of
the adjacency arrays of G in the sense that if u and v are vertices such that v appears in
a batch after that of u, v may not precede u in any adjacency array. The purpose of the
processing of a batch is, for each vertex v in the batch, to insert the correct triple (v, dv, pv)
in Qb and to store pv as the new old tentative parent pointer of v. We will show that a
batch can be processed in O(n) time plus a quantity that sums to O(m + n log n) over all
refillings. Since there are O(log n/s(n)) refillings and O(log n/s(n)) batches to be processed
in each refilling, we arrive at the overall time bound of O(m+ n log n+ n((log n)/s(n))2).

For each batch, we first recompute the items stored in Qb for the vertices in the batch
at the end of the previous refilling of Qb. Since each vertex v in the batch already knows
its old tentative parent pointer pv, this amounts to computing the length of the path in T
from s∗ to the vertex u in position pv in Nin(v). This quantity could be found simply by
following parent pointers from u to s∗, summing edge weights along the way. In the interest
of efficiency, however, the vertices in the batch collaborate.

In a first phase, the vertices in the batch, one by one, emit a token that follows parent
pointers, summing edge weights as it goes along, but marks the vertices that it passes and
stops as soon as it reaches s∗ or a vertex marked earlier by another token, after marking that
vertex as a branching vertex. The total number of edges on the paths traversed by the tokens
is bounded by n− 1 (T has no more edges), and the number of branching vertices is O(r).

In a second phase, the vertices are processed in the same order as in the first phase, and
each sends a token twice along the same path as in the first phase. The path ends either
at s∗, at a distance of 0 from itself, or at a branching vertex which, at this point, will have
been marked with its distance from s∗. Adding that distance to the known length of the
path traversed, the vertex obtains its own distance from s∗. In the final traversal of the path
by its token, the vertex helps later vertices in the batch by marking all branching vertices
along the path with their distances from s∗. This is done by subtracting the edge weights
encountered along the path from a variable initialized with the total length of the path.

What remains for the batch at this point is to relax all edges from vertices stored in L to
vertices in the batch. Because the adjacency arrays are sorted consistently with the batches,
this can be done in O(m+n log n) time over all refillings, which establishes the running time
anticipated above. If the distances of branching vertices from s∗ are stored in an instance of
the dictionary of Lemma 2.1, the necessary additional space is O(n+r log n) = O(ns(n)). J

STACS 2015

300 Space-efficient Basic Graph Algorithms

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1983.
2 Tetsuo Asano, Kevin Buchin, Maike Buchin, Matias Korman, Wolfgang Mulzer, Günter

Rote, and André Schulz. Reprint of: Memory-constrained algorithms for simple polygons.
Comput. Geom. Theory Appl., 47(3, Part B):469–479, 2014.

3 Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota
Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using O(n)
bits. In Proc. 25th International Symposium on Algorithms and Computation (ISAAC
2014), volume 8889 of LNCS, pages 553–564. Springer, 2014.

4 Tetsuo Asano, Wolfgang Mulzer, Günter Rote, and Yajun Wang. Constant-work-space
algorithms for geometric problems. J. Comput. Geom., 2(1):46–68, 2011.

5 Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira. Computing a
visibility polygon using few variables. Comput. Geom. Theory Appl., 47(9):918–926, 2014.

6 Luis Barba, Matias Korman, Stefan Langerman, Rodrigo I. Silveira, and Kunihiko
Sadakane. Space-time trade-offs for stack-based algorithms. In Proc. 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of
LIPIcs, pages 281–292. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013.

7 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space,
polynomial time algorithm for directed s-t connectivity. SIAM J. Comput., 27(5):1273–
1282, 1998.

8 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
J. Comput., 20(2):270–277, 1991.

9 Hervé Brönnimann, John Iacono, Jyrki Katajainen, Pat Morin, Jason Morrison, and God-
fried Toussaint. Space-efficient planar convex hull algorithms. Theor. Comput. Sci.,
321(1):25–40, 2004.

10 Timothy M. Chan. Comparison-based time-space lower bounds for selection. ACM Trans.
Algorithms, 6(2):Article 26, 2010.

11 Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discrete Comput.
Geom., 37(1):79–102, 2007.

12 Timothy M. Chan, J. Ian Munro, and Venkatesh Raman. Faster, space-efficient selection
algorithms in read-only memory for integers. In Proc. 24th International Symposium on Al-
gorithms and Computation (ISAAC 2013), volume 8283 of LNCS, pages 405–412. Springer,
2013.

13 Timothy M. Chan, J. Ian Munro, and Venkatesh Raman. Selection and sorting in the
“restore” model. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2014), pages 995–1004. SIAM, 2014.

14 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

15 George B. Dantzig. On the shortest route through a network. Manag. Sci., 6(2):187–190,
1960.

16 Omar Darwish and Amr Elmasry. Optimal time-space tradeoff for the 2D convex-hull
problem. In Proc. 22nd Annual European Symposium on Algorithms (ESA 2014), volume
8737 of LNCS, pages 284–295. Springer, 2014.

17 Bireswar Das, Samir Datta, and Prajakta Nimbhorkar. Log-space algorithms for paths and
matchings in k-trees. Theory Comput. Syst., 53(4):669–689, 2013.

18 Bireswar Das, Jacobo Torán, and Fabian Wagner. Restricted space algorithms for isomor-
phism on bounded treewidth graphs. Inform. Comput., 217:71–83, 2012.

19 E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–
271, 1959.

A. Elmasry, T. Hagerup, and F. Kammer 301

20 Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for st-
connectivity on the NNJAG model. SIAM J. Comput., 28(6):2257–2284, 1999.

21 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of Bodlaender and Courcelle. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2010), pages 143–152. IEEE Computer Society, 2010.

22 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of
bounded genus in logspace. In Proc. 46th ACM Symposium on Theory of Computing
(STOC 2014), pages 383–392. ACM, 2014.

23 Amr Elmasry, Daniel Dahl Juhl, Jyrki Katajainen, and Srinivasa Rao Satti. Selection from
read-only memory with limited workspace. Theor. Comput. Sci., 554:64–73, 2014.

24 Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection. J.
Comput. Syst. Sci., 34(1):19–26, 1987.

25 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

26 Torben Hagerup and Frank Kammer. Dynamic data structures for the succinct RAM, 2015.
In preparation.

27 J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theor. Comput.
Sci., 12(3):315–323, 1980.

28 J. Ian Munro and Venkatesh Raman. Selection from read-only memory and sorting with
minimum data movement. Theor. Comput. Sci., 165(2):311–323, 1996.

29 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In Proc. 39th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pages 264–
268. IEEE Computer Society, 1998.

30 R. C. Prim. Shortest connection networks and some generalizations. Bell Syst. Tech. J.,
36(6):1389–1401, 1957.

31 Venkatesh Raman and Sarnath Ramnath. Improved upper bounds for time-space trade-offs
for selection. Nord. J. Comput., 6(2):162–180, 1999.

32 Robert Tarjan. Finding dominators in directed graphs. SIAM J. Comput., 3(1):62–89,
1974.

33 Martin Tompa. Two familiar transitive closure algorithms which admit no polynomial time,
sublinear space implementations. SIAM J. Comput., 11(1):130–137, 1982.

34 P. D. Whiting and J. A. Hillier. A method for finding the shortest route through a road
network. J. Oper. Res. Soc., 11(1/2):37–40, 1960.

STACS 2015

Pattern Matching with Variables: Fast Algorithms
and New Hardness Results
Henning Fernau1, Florin Manea2, Robert Mercaş2, and
Markus L. Schmid1

1 Fachbereich IV – Abteilung Informatikwissenschaften, Universität Trier,
D-54286 Trier, Germany, {Fernau, MSchmid}@uni-trier.de

2 Kiel University, Department of Computer Science,
D-24098 Kiel, Germany, {flm, rgm}@informatik.uni-kiel.de

Abstract
A pattern (i. e., a string of variables and terminals) maps to a word, if this is obtained by uniformly
replacing the variables by terminal words; deciding this is NP-complete. We present efficient
algorithms1 that solve this problem for restricted classes of patterns. Furthermore, we show that
it is NP-complete to decide, for a given number k and a word w, whether w can be factorised
into k distinct factors; this shows that the injective version (i. e., different variables are replaced
by different words) of the above matching problem is NP-complete even for very restricted cases.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.3 Formal
Languages

Keywords and phrases combinatorial pattern matching, combinatorics on words, patterns with
variables, NP-complete string problems

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.302

1 Introduction

In the context of this work, a pattern is a string that consists of terminal symbols (e. g.,
a, b, c) and variables (e. g., x1, x2, x3). The terminal symbols are treated as constants, while
the variables are to be uniformly replaced by strings over the set of terminals (i. e., different
occurrences of the same variable are replaced by the same string); thus, a pattern is mapped
to a terminal word. For example, x1abx1x2cx2x1 can be mapped to acabaccaaccaaac and
babbacab by the replacements (x1 → ac, x2 → caa) and (x1 → b, x2 → a), respectively.

Due to their simple definition, the concept of patterns (and how they map to words)
emerges in various areas of theoretical computer science, such as language theory (pattern
languages [2]), learning theory (inductive inference [2, 25, 27, 10], PAC-learning [20]), combi-
natorics on words (word equations [18, 24], unavoidable patterns [23]), pattern matching
(generalised function matching [1, 26]), database theory (extended conjunctive regular path
queries [4]), and we can also find them in practice in the form of extended regular expressions
with backreferences [5, 14], used in programming languages like Perl, Java, Python, etc.

In all these different applications, the main purpose of patterns is to express combinatorial
pattern matching questions. For instance, searching for a word w in a text t can be expressed
as testing whether the pattern xwy can be mapped to t; testing whether a word w contains

1 The computational model we use is the standard unit-cost RAM with logarithmic word size. Also, all
logarithms appearing in our time complexity evaluations are in base 2.

© Henning Fernau, Florin Manea, Robert Mercaş, and Markus L. Schmid;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 302–315

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.302
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 303

a k-repetition is equivalent to testing whether the pattern xykz can be mapped to w, etc.
Not only problems of testing whether a given word contains a regularity or a motif of a
certain form can be expressed by patterns, but also problems asking whether a word can
be factorised in a specifically restricted manner can be modelled in this way. For instance,
asking whether x2y3 can be mapped to w is equivalent to asking whether the word w can be
factorised in two equal factors followed by three equal factors.

Unfortunately, deciding whether a given pattern can be mapped to a given word, the
matching problem, isNP-complete [2], which naturally severely limits the practical application
of patterns. In fact, there are only few applications of patterns for which this problem does
not play a central role and some computational tasks on patterns that have no apparent
connection to the matching problem turn out to implicitly solve it anyway (e. g., this is the
case for the task of computing so-called descriptive patterns for finite sets of words [2, 11]).
A comprehensive multivariate analysis of the complexity of the matching problem [12, 13]
demonstrates that the NP-completeness also holds for strongly restricted variants of the
problem. On the other hand, some subclasses of patterns are known for which the matching
problem is in P (this is obviously the case if the number of different variables in the patterns
is bounded by a constant, but there are also more sophisticated structural parameters of
patterns that can be exploited in order to solve the matching problem efficiently [28, 29]).
Unfortunately, the existing polynomial time algorithms for these classes are fairly basic and
they serve the mere purpose of proving containment in P; thus, they cannot be considered
efficient in a practical sense. Therefore, we present here better algorithms for the known
polynomial variants of the matching problem. While we consider our algorithms to be
advanced and non-trivial, their running times have still an exponential dependency on certain
parameters of patterns and, therefore, are acceptable only for strongly restricted classes of
patterns. However, as can be concluded from the parameterised hardness results of [13], these
exponential dependencies seem necessary under common complexity theoretical assumptions.

In some applications of patterns it might be necessary to require the mapping of variables
to be injective (i. e., different variables are substituted by different objects), e. g., this is the
case in the detection of duplications in programme code (see [3]). From a more general point of
view, this injective version of the matching problem asks whether a word can be factorised in
a certain way, such that some specific factors are not allowed to coincide. The special version
of this problem where each two factors must be different has been investigated in [7] and is
motivated by the problem of self-assembly of short DNA fragments into larger sequences,
which is crucial for gene synthesis (see references in [7]). We show the NP-completeness of
the following natural combinatorial factorisation problem: given a number k and a word
w, can w be factorised into at least k distinct factors? Besides the general insight into the
hardness of computing a factorisation with distinct factors, this result also implies that even
for the trivial patterns x1x2 · · ·xk the matching problem becomes NP-complete if we require
injectivity; thus, in terms of complexity, a clear borderline between the injective and the
non-injective versions of the matching problem is established.

This paper is organised as follows. The next section contains basic definitions and then
we give an overview of all our results in Section 3. In Section 4, we develop our algorithms
for the matching problem and, in Section 5, we present the hardness result mentioned above.

2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [22]. We denote our
alphabet by Σ, the empty word by ε, and the length of a word w by |w|. For w ∈ Σ∗ and

STACS 2015

304 Pattern Matching with Variables: Fast Algorithms and Hardness Results

each 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j], where w[k] represents the letter on position
k, for 1 ≤ k ≤ |w|. The catenation of k words w1, . . . , wk is written Πi=1,kwi. If w = wi for
all 1 ≤ i ≤ k, this represents the kth power of w, denoted by wk; here, w is a root of wk. We
say that w is primitive if it cannot be expressed as a power ` > 1 of any root.

For any w ∈ Σ+, a factorisation of w is a tuple p = (u1, u2, . . . , uk) ∈ (Σ+)k, k ∈ N, with
w = u1u2 · · ·uk. Every word ui, 1 ≤ i ≤ k, is called a factor (of p) or simply p-factor.
Let p = (u1, u2, . . . , uk) be an arbitrary factorisation. We define its set of factors as
sf(p) = {u1, u2, . . . , uk} and its size as s(p) = k. A factorisation p is unique if every factor
is distinct, i. e., s(p) = | sf(p)|. For every 1 ≤ i ≤ s(p), p(i) = ui denotes the ith factor
of p. As an example, we consider the factorisation p = (a, ba, cba, a, ba, a) of the word
w = abacbaabaa. We note that sf(p) = {a, ba, cba} and s(p) = 6. For the sake of readability,
we sometimes represent a factorisation (a, ba, cba, a, ba, a) in the form a | ba | cba | a | ba | a.

Let X = {x1, x2, x3, . . .} and call every x ∈ X a variable. For a finite alphabet of
terminals Σ ∩X = ∅, we define PatΣ = (X ∪Σ)+ and Pat =

⋃
Σ PatΣ. Every α ∈ Pat is a

pattern and every w ∈ Σ∗ is a (terminal) word. Given a sequence v, word or pattern, for the
smallest sets B ⊆ Σ and Y ⊆ X with v ∈ (B ∪ Y)∗, we denote alph(v) = B and var(v) = Y .
For any x ∈ (var(α) ∪ alph(α)), |α|x denotes the number of occurrences of x in α.

A substitution (for α) is a mapping h : var(α)→ Σ+. For every x ∈ var(α), we say that x
is substituted by h(x) and h(α) denotes the word obtained by substituting every occurrence
of a variable x in α by h(x) and leaving the terminals unchanged. If, for all x, y ∈ var(α),
x 6= y implies h(x) 6= h(y), then h is injective. As an example, we consider the pattern
β = x1ax2bx2x1x2 and the words u = bacbabbbbacbb, v = abaabbababab. It can be verified
that h(β) = u, where h(x1) = bacb, h(x2) = b and g(β) = v, where g(x1) = g(x2) = ab.
Furthermore, h is injective, g is not and β cannot be mapped to v by an injective substitution.

The matching problem, denoted by Match, is to decide for a given pattern α and word w,
whether there exists a substitution h with h(α) = w. By inj-Match, we denote the variant
of the matching problem where the substitution needs to be injective.2 For any P ⊆ Pat,
the matching problem for P is the matching problem, where the input patterns are from P .

A pattern α is regular if, for every x ∈ var(α), |α|x = 1, and the class of regular patterns
is denoted by Patreg. For any k ∈ N, a k-variable pattern is a pattern α that satisfies
|var(α)| ≤ k and a pattern β with |{x ∈ var(β) | |β|x ≥ 2}| ≤ k is a k-repeated-variable
pattern. For every k ∈ N, Patvar≤k and Patr

var≤k denote the set of k-variable patterns and
k-repeated-variable patterns, respectively. Let α be a pattern. For every y ∈ var(α), the
scope of y in α is defined by scα(y) = {i, i + 1, . . . , j}, where i is the leftmost and j the
rightmost occurrence of y in α. The scopes of some variables y1, y2, . . . , yk ∈ var(α) coincide
in α if

⋂
1≤i≤k scα(yi) 6= ∅. By scd(α), we denote the scope coincidence degree (scd for short)

of α, which is the maximum number of variables in α such that their scopes coincide. For
example, the scopes of all variables coincide in α1 = x1x2x1x2x3x1x2x3, but the scopes of
x1 and x3 do not coincide in α2 = x1x2x1x2x3x2x3x3; thus, scd(α1) = 3 and scd(α2) = 2.
For every k ∈ N, let Patscd≤k denote the set of patterns α with scd(α) ≤ k. By definition,
Patscd≤1 coincides with the class of non-cross patterns (see [29]), which we denote by Patnc.

The one-variable blocks in a pattern are contiguous blocks of occurrences of the same vari-
able. For instance, the number of one-variable blocks in α = x1x2x2ax2x2x2x3ax3x2x2x3x3
is 7. A pattern α with m one-variable blocks can be written as α = w0Πi=1,m(zki

i wi) with
zi ∈ var(α) for i ∈ {1, . . . ,m} and zi 6= zi+1, whenever wi = ε for i ∈ {1, . . . ,m− 1}.

2 There exist variants of the matching problem where substitutions can also erase variables by mapping
them to ε. In this work, we are not concerned with this variant of the problem.

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 305

3 Summary of Our Results

The classical and parametrised complexity of the matching problem for patterns has been
recently investigated and is well understood (see [6, 12, 13, 26]). The most prominent
subclasses of patterns for which it can be solved in polynomial time are the classes of patterns
with a bounded number of (repeated) variables, of regular patterns, of non-cross patterns and
of patterns with a bounded scope coincidence degree (see [2, 29, 28]). However, as mentioned
in the introduction, the respective algorithms are rather poor considering their running times.
For example, for patterns with a bounded number k of variables, the matching problem can
be solved in O(nk−1m

(k−1)!), where m and n are the lengths of the pattern and the word (see [17]).
For patterns with a scd of at most k, an O(mn2(k+3)(k+ 2)2) time algorithm is given in [28],
where m and n are the lengths of the pattern and the word, respectively, and the proof
that the matching problem for non-cross patterns is in P (see [29]) leads to an O(n4)-time
algorithm. Hence, we consider the following problem worth investigating.

I Problem 1. Let K be a class of patterns for which the matching problem can be solved in
polynomial time. Find an efficient algorithm that solves the matching problem for K.

The main class of patters we consider is that of patterns with bounded scope coincidence
degree. Our first result in this setting concerns patterns where the scope coincidence degree
is bounded by 1, or, in other words, non-cross patterns. In that case we show that we can
decide whether a pattern α having m one-variable blocks matches a word w of length n

in O(nm log n) time; this is an important improvement over the previously available O(n4)
algorithm. Our algorithm is based on a general dynamic programming approach, and it
tries to find, for certain prefixes of the pattern, the prefixes of the word that match them.
While the general approach is rather simple, the details of the efficient implementation of this
approach require a detailed combinatorial analysis of the possible matches. For instance, as a
byproduct of our approach to the matching problem for Patnc, we obtain a stringology result
that extends in a non-trivial manner a major result from [8], showing how the primitively
rooted squares contained in a word of length n can be listed optimally in O(n log n). Our
result shows that given a word w of length n and a word v shorter than n, then w contains
O(n log n) factors of the form uvu with uv primitive, and all these factors can be found in
O(n log n) time. Again, this result is optimal, as it can be seen just by looking at the original
case of primitively rooted squares, or factors of the form uvu with uv primitive and v = ε.

When considering general patterns with bounded scope coincidence degree, we show,
using a similar dynamic programming approach, that the matching problem for Patscd≤k is
solvable in O

(
n2km

((k−1)!)2

)
time, where n is the length of the input word and m is, again, the

number of one-variable blocks occurring in the pattern. One should note that in this case we
were not able to use all the combinatorial insights shown for non-cross patterns (thus, the
log n factor is replaced by an n factor in the evaluation of the time complexity), but, still,
our algorithm is significantly faster than the previously known solution.

Another class of patterns we consider is Patr
var≤k of patterns with at most k repeated

variables. For the basic case k = 1 we obtain that the matching problem is solved in O(n2)
time. Our algorithm is based on a non-trivial processing of the suffix array of the input
word. Further, we use this result to show that the matching problem for the general class of
patterns Patr

var≤k is solvable in O
(

n2k

((k−1)!)2

)
time, where n is the length of the input word.

Note that our algorithm is better than the one that could have been obtained by using the
fact that patterns with at most k repeated variables have the scd bounded by k + 1, and
then direct applying our previous algorithm solving the matching problem for Patscd≤k+1.

STACS 2015

306 Pattern Matching with Variables: Fast Algorithms and Hardness Results

The classes of non-cross patterns and of patterns with a bounded scd or with a bounded
number of repeated variables are of special interest, since for them we can compute so-called
descriptive patterns (see [2, 29]) in polynomial time. A pattern α is descriptive (with respect
to, say, non-cross patterns) for a finite set S of words if it can generate all words in S

and there exists no other non-cross pattern that describes the elements of S in a better
way. Computing a descriptive pattern, which is NP-complete in general, means to infer a
pattern common to a finite set of words, with applications for inductive inference of pattern
languages (see [25]). For example, our algorithm for computing non-cross patterns can be
used in order to obtain an algorithm that computes a descriptive non-cross pattern in time
O
(∑

w∈S(m2|w| log |w|)
)
, where m is the length of a shortest word of S (see [11] for details).

Our algorithms, except the ones for the basic cases of non-cross patterns and patterns with
only one repeated variable, still have an exponential dependency on the number of repeated
variables or the scd. Therefore, only for very low constant bounds on these parameters can
these algorithms be considered efficient. Naturally, finding a polynomial time algorithm for
which the degree of the polynomial does not depend on the number of repeated variables
would be desirable. However, such an algorithm would also be a fixed parameter algorithm
for the matching problem parameterised by the number of repeated variables and in [13] it
has been shown that this parameterised problem is W [1]-hard. This means that the existence
of such an algorithm is very unlikely. Furthermore, since the number of repeated variables
gives also an upper bound for the scd, the mentioned W [1]-hardness result carries over to
the case where the scd is a parameter and therefore it is just as unlikely to find an algorithm
that is not exponential in the scd. This observation justifies the exponential dependency of
our algorithms on the number of repeated variables and the scd.

As mentioned in the introduction, in certain settings it makes sense to require the mapping
of variables to words to be injective. The current state of knowledge regarding the complexity
of the matching problem suggests that this difference has no substantial impact; although,
in [12] it is shown that Match is still NP-complete if the alphabet size and the length of the
words the variables are mapped to are bounded, whereas it is in P if we additionally require
injectivity. In contrast to this, we prove the following result, which gives strong evidence
that inj-Match is generally much harder than the non-injective version.

I Theorem 1. The following problem is NP-complete: given a word w and a number k, is
it possible to factorise w into at least k distinct factors?

Consequently, the injective matching problem is NP-complete even for the trivial patterns
x1x2 · · ·xk, which means that, under the assumption P 6= NP , for all the above mentioned
classes of patterns no polynomial time algorithms for the injective matching problem exist.
In addition to this negative result for the matching problem, we also gain an important
insight regarding the more general problem of factorising a string into distinct factors, which,
as mentioned in the introduction, is motivated by computational biology. In [7], it is shown
that it is NP-complete to factorise a string into distinct factors with a bound on the length
of the factors and, in this regard, our result shows that the NP-completeness is preserved if
the length bound is dropped and instead we have a lower bound on the number of factors.

4 Algorithmic Results

In this section we propose a series of algorithms for the matching problem for several classes of
patterns. We begin by looking at classes where the number of repeated variables is bounded:
we consider the basic classes where no variable or, more interestingly, only one variable is

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 307

repeated, and then investigate the class of patterns in which k ≥ 2 variables are repeated.
Then, we look at the more involved case of patterns with bounded scope coincidence degree.
The basic case is, in this setting, Patnc, where the scope coincidence degree is upper bounded
by 1; after presenting an algorithm solving the matching problem for nc-patterns, we analyse
the general case when the upper bound of the scope coincidence degree is k ≥ 2.

We assume for every input word w of length n that alph(w) ⊆ {1, . . . , n} (i.e., the symbols
are integers). This is a common assumption in algorithmics on words (see the discussion
in [19]). Clearly, our reasoning holds canonically for constant alphabets, as well.

For a length n word w we can build in O(n) time the suffix tree and suffix array structures,
as well as data structures allowing us to retrieve in O(1) time the length of the longest common
prefix of any suffixes w[i..n] and w[j..n] of w, denoted LCPw(i, j) (the subscript w is omitted
when there is no danger of confusion). These are LCP data structures (see, e.g., [19, 16]).
Symmetrically we can build structures allowing us to retrieve in O(1) time the length of the
longest common suffix of any two prefixes w[1..i] and w[1..j] of w, denoted LCS(i, j).

The first case we approach is that of regular patterns. It was already known from [29]
that the matching problem for such patterns can be solved in linear time, when the alphabet
of the input word w is constant. However, it is not hard to see that the same time bound can
be achieved in our setting (when the input words are over integer alphabets): the matching
problem for Patreg is solvable in O(|w|+ |α|) time, where w is the input word and α the
input pattern. More interesting is the case of patterns that contain one repeated variable.

I Lemma 2. The matching problem for Patr
var≤1 is solvable in O(|w|(|w|+ |α|)) time, where

w is the input word and α is the input pattern.

The main idea behind the algorithm used to obtain this result is to find an assignment
for the repeating variable from the input pattern α, say x, such that all constant factors are
well placed within the word, and then fill up (using a linear pattern matching algorithm to
correctly align the terminal factors of the pattern inside the word) the remaining spaces with
the help of the rest of the variables from the pattern, since they occur only once.

Finding the factors of the word which are images of the parts of the pattern that do not
contain the repeated variable can be done in a quadratic time preprocessing.

To find a suitable assignment for x we first choose the length of its image ` ≤ n and, in
linear time, partition the suffix array of the word in several clusters (i.e., blocks of consecutive
positions that are not extendable to the left or right) such that the suffixes contained in one
cluster share a common prefix of length `, that will correspond to the image of x. Note that
if there exists a mapping of the pattern to the word, with the image of x of length `, then
it maps all factors starting with x to prefixes of elements in the same cluster. Essentially,
to check if such a mapping exists we use a greedy processing of each cluster. Fixing the
cluster, we also fix the image of x, denoted wx in the following, and the suffixes in that
cluster provide all the occurrences of wx in w. Now, we can assume without loss of generality
that α starts and ends with variables different from x. If this would not be the case, we just
isolate the lengthwise maximal prefix αp and suffix αs of α that contain only occurrences of
x and terminals; the images of these two factors of α are now known, as we know the image
of x. So we check if the image of αp is a prefix and the image of αs is a suffix of w. If yes,
we just have to check whether the rest of the pattern (α without αp and αs) maps to the
rest of the word (w without the images of αp and αs); this puts us in the aforementioned
case. Further, we sort the elements in the cluster in the order of their occurrence in the word.
Then the ith occurrence of x in α is mapped to the leftmost occurrence of wx surrounded by
the same terminal words as the variable x in α, such that the factor of α occurring between
the ith and i − 1th occurrence of x matches the factor of w found between the respective

STACS 2015

308 Pattern Matching with Variables: Fast Algorithms and Hardness Results

images of these variables. As the variables x are considered from left to right and mapped,
respectively, to occurrences of wx that appear ordered in the cluster, we can implement the
above strategy in O(k) time, where k represents the size of the cluster; the test whether we
can correctly match the factors of α that do not contain x to factors of w is done using the
information gathered during the preprocessing. We process in this way all clusters having at
least as many elements as the number of repeated variables in the pattern. The total number
of elements in these clusters is at most n− ` so this procedure takes O(n) time.

The time spent for each possible value for ` is O(n). Hence, in total our algorithm needs
O(n2) time to decide whether there exists an assignment that maps the pattern to the word.

To solve the matching problem for patterns with at most k repeated variables, we choose
the images (starting and ending positions in w) of k− 1 of the k repeated variables, and then
get a pattern with only one repeated variable. Further, we apply Lemma 2 on this pattern.

I Theorem 3. The matching problem for Patr
var≤k is solvable in O

(
|w|2k

((k−1)!)2

)
time, where

w is the input word.

We now consider the more involved case of patterns with a bounded scope coincidence
degree. The following combinatorial results are well known (see, e. g., [8]).

I Lemma 4 ([8]). Let u1, u2, and u3 be primitive words, such that |u1| < |u2| < |u3| and u2
i

are prefixes (suffixes) of a word w, for all 1 ≤ i ≤ 3. Then 2|u1| < |u3|. As a consequence,
we have |{u|u primitive, u2 prefix (respectively, suffix) of w}| ≤ 2 log |w|.

Assume that w ∈ Σ∗ is of length n. For each i ≤ n we define the set
Pi = {u | u is a primitive word such that u2 is a suffix of w[1..i]}.

Lemma 4 shows that |Pi| ≤ 2 log n for all 1 ≤ i ≤ n. Generally, we can represent the elements
of Pi in various efficient manners (e. g., for each u ∈ Pi it is enough to store its length).

I Lemma 5 ([8]). Let w ∈ Σ∗ be a word of length n. We can compute in O(n log n) time all
the sets Pi associated to w, with i ∈ {1, 2, . . . , n}.

Note that in [8] there are examples of words of length n for which
∑
i≤n |Pi| ∈ Θ(n log n).

Next, we extend the results of Lemmas 4 and 5. Instead of primitively rooted squares,
we consider words of the form uvu for some fixed word v, with uv primitive (or, equivalently,
with vu primitive). It is not hard to show the following lemma.

I Lemma 6. For a fixed v, let u1vu1, u2vu2, u3vu3 be prefixes (suffixes) of a word w such that
|u1| < |u2| < |u3| and uiv are primitive for all 1 ≤ i ≤ 3. Then 3|u1|

2 < |u3|. As a consequence,
we have |{uvu|uv primitive, uvu prefix (respectively, suffix) of w}| ∈ O(log |w|).

Consider two words w, v ∈ Σ∗, with |w| = n. Following the case of the primitively rooted
squares, for each i ≤ n we define the set

Rvi = {u | uvu is a suffix of w[1..i] with uv primitive}.
Again, Rvi can be stored efficiently by the lengths of the words it contains. Clearly,∑

i≤n |Rvi | ∈ O(n log n). Moreover, as uvu with uv primitive is just a primitively rooted
square when v = ε, it follows that for certain values of v, we have that

∑
i≤n |Rvi | ∈ Θ(n log n).

The following result extends in a non-trivial manner the result of Lemma 5.

I Lemma 7. Given two words w, v ∈ Σ∗, with |w| = n, we can compute in O(n log n) time
all the sets Rvi associated to w, for i ∈ {1, 2, . . . , n}.

We begin the high level description of the proof of this lemma with several preliminary
facts. Given the word w, its dictionary of basic factors [9] is a data structure that associates

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 309

w[i..j] = v

←−−−−−−−−− 2k+1 −−−−−−−−−→ ←−−−−−−−−− 2k+1 −−−−−−−−−→

x
x

x

w[j + 1..j + 2k] = x
. . .

Figure 1 Occurrences of x in w[i− 2k+1..i− 1]: positions where u may start (Lemma 7).

labels to the factors of the form w[i..i + 2k − 1] (called basic factors), for k ≥ 0 and
1 ≤ i ≤ n− 2k + 1, such that every two identical factors of the whole word get the same label
and we can retrieve the label of such a factor in O(1) time. The dictionary of basic factors of
a word of length n is constructed in O(n log n) time. Looking deeper into the combinatorial
structure of w we note that a basic factor w[i..i+ 2k − 1] occurs either at most twice in a
factor w[j..j + 2k+1 − 1] or the positions where w[i..i+ 2k − 1] occurs in w[j..j + 2k+1 − 1]
form an arithmetic progression of ratio per(w[i..i+ 2k− 1]) (see [21]). Hence, the occurrences
of w[i..i + 2k − 1] in w[j..j + 2k+1 − 1] can be presented in a compact manner: either at
most two positions, or the starting position of the progression and its ratio. Using this
property and the dictionary of basic factors one can produce in O(n log n) a data structure
that allows us to test the primitivity of each factor of w in O(1) time. Moreover, for a certain
v, we can also produce in O(n log n) time a data structure answering the following type of
queries in O(1) time: “Given i and k return the compact representation of the occurrences
of w[i..i+ 2k − 1] in w[i− |v| − 2k+1.. i− |v| − 1]”.

Returning to the proof of the lemma, after the above preprocessing we find all the
occurrences of v in w. Consider now one of these occurrences w[i..j] = v. We are searching
all the prefixes u of w[j+1..n] that are also suffixes of w[1..i−1] with uv primitive. Checking
naively each prefix of w[j + 1..n] for these properties takes too long. Thus, we analyse
simultaneously all the prefixes of w[j + 1..n] that have the length between 2k and 2k+1, for
0 ≤ k ≤ log n. All these factors share as common prefix the basic factors x = w[j + 1..j + 2k].
Using the data structures we constructed, we retrieve in O(1) time a compact representation
of the occurrences of x in w[i − 2k+1..i − 1]. We know that every possible candidate for
the factor u we search for starts with one of these occurrences. Using a series of involved
combinatorics on words insights, one can identify all the possible factors u that start on such
a position and fulfil also the requirement that vu is primitive, in time proportional to their
number. As in w there are at most O(n log n) factors uvu fulfilling our requirements with
each uniquely identified by the corresponding occurrence of v, and, moreover, the time we
spend in analysing each occurrence of v is proportional to log n plus the number of valid
factors uvu centred around that occurrence of v, the result of Lemma 7 follows.

We are now ready to solve the matching problem for non-cross patterns.

I Theorem 8. The matching problem for Patnc is solvable in O(|w|m log |w|) time, where
w is the input word and m is the number of one-variable blocks occurring in the pattern.

Let α ∈ Patnc be our pattern and n = |w|. If var(α) = {x1, x2, . . . , x`}, it is immediate that
α = w0Πk=1,`(αkwk), where for all k ≤ ` we have var(αk) = {xk}, αk starts and ends with
xk, and wk is a factor containing only terminals. We use a dynamic programming approach
to test whether α matches w. More precisely, for each i ≤ ` we identify all the prefixes w[1..j]
of w such that w0Πk=1,i−1(αkwk)αi matches w[1..j]. We briefly describe this approach.

First, assume that we know already all the positions j such that w0Πk=1,i−2(αkwk)αi−1
matches w[1..j]. Clearly, in O(n) time we can find all the positions j where w0Πk=1,i−1(αkwk)
matches w[1..j]: we just check whether w[1..j] ends with wi−1 and, if so, whether the
factor w0Πk=1,i−2(αkwk)αi−1 matches w[1..j − |wi−1|]. Then, we show how we can find in

STACS 2015

310 Pattern Matching with Variables: Fast Algorithms and Hardness Results

O(npi log n) time the positions j such that w0Πk=1,i−1(αkwk)αi matches w[1..j], where pi is
the number of one-variable blocks of αi. To do this, we have to analyse the structure of αi.

The simplest case is when αi = xi. Then, w0Πk=1,i−1(αkwk)αi matches w[1..j] if and
only if there exists j′ < j such that w0Πk=1,i−1(αkwk) matches w[1..j′]; finding all such
positions j takes O(n) time, so our claim holds in this case.

Consider next the case when αi = xki with k ≥ 2. In a first phase, for each position j and
each primitively rooted square suffix t2 of w[1..j] we check whether tk is a suffix of w[1..j] and
if w0Πk=1,i−1(αkwk) matches w[1..j − k|t|]; if both these checks are true, we conclude that
w0Πk=1,i−1(αkwk)αi matches w[1..j] when xi is mapped to t, and we store this information.
In this way, we found all the positions j such that w0Πk=1,i−1(αkwk)αi matches w[1..j] when
xi is mapped to a primitive word; we just have to analyse the case when xi is mapped to
a non-primitive word. Now, for each position j (considered in increasing order) and each
primitively rooted square suffix t2 of w[1..j], we check whether tk is a suffix of w[1..j] and,
differently from the previous case, if w0Πk=1,i−1(αkwk)αi matches w[1..j − k|t|] such that xi
is mapped to a power of t; the dynamic programming approach ensures us that when j is
considered we know whether w0Πk=1,i−1(αkwk)αi matches w[1..j′] such that xi is mapped
to a power of t′ for all j′ < j and every t′2 primitively rooted square suffix of w[1..j′]. If both
checks above return true, then we conclude that w0Πk=1,i−1(αkwk)αi matches w[1..j] and
xi is mapped to a power of t; if w0Πk=1,i−1(αkwk)αi matches w[1..j − k|t|] with the image
xi being th, now we conclude that w0Πk=1,i−1(αkwk)αi matches w[1..j] with xi mapped to
th+1. Clearly, this two-steps procedure returns all j’s such that w0Πk=1,i−1(αkwk)αi matches
w[1..j]. The total time needed is O(n log n), so our claim holds in this case, as well.

Finally, we consider the more complicated case of αi containing at least one terminal.
We let αi = x`0

i Πk=1,pi(wk,ix
`k,i

i) be the decomposition of αi in one-variable blocks. First,
we assume that `pi,i = 1, so αi ends with xiwpi,ixi; it may be the case that xi is mapped to
a word u such that wpi,iu is primitive. Then, for each position j, we consider all the suffixes
uwpi,iu of w[1..j] such that wpi,iu is primitive (these factors are in Rwpi,i

j and all of them can
be identified in O(n log n) according to Lemma 7). For each such suffix, we determine the
factor u, the image of xi. Next, in O(pi) time we check whether the image γi of αi under the
substitution of xi with u is a suffix of w[1..j]. If so, we then check whether w0Πk=1,i−1(αkwk)
matches w[1..j − |γi|], and, if our check is again true, conclude that w0Πk=1,i−1(αkwk)αi
matches w[1..j] when xi is mapped to the u determined above. Further, we look at the case
when xi is mapped to a word u such that wpi,iu is a repetition. For a position j, we consider
each primitively rooted square suffix t2 of w[1..j]. We can determine in constant time the
exponent r0 and the prefix t0 of t such that wpi,i = tr0t0; this means that u = t1t

r1 , where
t0t1 = t but r1 is not known. Just like before, we can check easily the cases when r1 ∈ {0, 1}
(so, the value u to which xi is mapped becomes fixed) in time O(pi). In the following, let us
assume that r1 ≥ 2 and, for simplicity, take t0 6= ε; thus, t1 6= t and, as t0 is known, so is t1.
If `pi−1,i ≥ 2, then the image u of xi is uniquely determined: we just note that the word
uwpi,iu is |t|-periodic, and cannot be extended with |t| letters to the left without breaking the
period, so we uniquely determine u by identifying the longest |t|-periodic suffix w′ of w[1..j]
and noting that uwpi,iu is its longer suffix of the form t1{t}∗. Then, we can check again in
O(pi) whether αi matches the suffix of w[1..j] and continue just as we did before. Therefore,
let us assume `pi−1,i = 1; if wpi−1,i /∈ {t}∗t0, then again we can determine the image of xi by
the same reasons, and we can continue similarly. This process continues in this manner, and
we either get that the image of xi is uniquely determined, or that αi = xiΠk=1,pi

(tskt0xi),
so the image of αi is |t|-periodic. Fortunately, the latter case can be solved in the same
manner as the case when α was just a repetition: we already know the positions j such

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 311

that w0Πk=1,i−1(αkwk)αi matches w[1..j] when wpi,ixi is mapped to a power of t with lower
exponent, so we just have to extend with powers of t of exponent equal to the number of
occurrences of xi in αi, as we did before. The case when t0 = ε is treated similarly: either
the image of xi can be uniquely determined, or the image of both xi and all the factors wk,i
are powers of t and we can apply our previous dynamic programming approach. In the same
manner, our last case, when `pi,i ≥ 2 implies that either xi is mapped to a primitive word
t such that t2 is a suffix of w[1..j], or it is mapped to a power of such a word t. In both
cases, an analysis similar to the above leads to the correct computation of all the positions j
such that w0Πk=1,i−1(αkwk)αi matches w[1..j]. The total time needed for such an analysis
is O(npi log n), as for each position j and each t ∈ Pj we need to do O(pi) steps, checking
for each possible image of xi that αi is mapped correctly to a suffix w[j′ + 1..j] of w[1..j],
where w0Πk=1,i−1(αkwk) matched w[1..j′]. Again, our claim holds.

It only remains to see that α matches to w if there exists a position j such that
w0Πk=1,`−1(αkwk)α` matches w[1..j] and w[j + 1..n] = w`. The total time is, clearly,
O
(
n log n(

∑
i=1,` pi)

)
; summing up, the time complexity of our algorithm is O(nm log n).

We now move on to the general case of patterns with bounded scope coincidence degree.
The matching problem for Patscd≤k can be still solved by a dynamic programming approach.

I Theorem 9. The matching problem for Patscd≤k is solvable in O
(
|w|2km

((k−1)!)2

)
time, where

w is the input word and m is the number of one-variable blocks occurring in the pattern.

5 The Hardness of Factorising a Word into Distinct Factors

So far, we presented a series of upper bounds for the time needed to solve various matching
problems. In this section, we prove the NP-completeness of the following problem.
UnFact
Instance: A word w and an integer k ≥ 1.
Question: Does there exist a unique factorisation of w with size at least k?

As shall be explained later on, this has implications on the injective version of the
matching problem, which can be solved in O(nk−1m

(k−1)!) (k and m are the numbers of variables
and one-variable blocks, respectively), just as the general matching problem.

For the completeness result, we use the following as the base problem for our reduction.
3D-Match
Instance: An integer ` ∈ N and a set S ⊆ {(p, q, r) | 1 ≤ p < `+ 1 ≤ q < 2`+ 1 ≤ r ≤ 3`}.
Question: Does there exist a subset S′ of S with cardinality ` such that, for each two elements
(p, q, r), (p′, q′, r′) ∈ S′, p 6= p′, q 6= q′ and r 6= r′?

An instance of 3D-Match is a set S of triples, the 3 components of which carry values
from {1, 2, . . . , `}, {`+ 1, `+ 2, . . . , 2`} and {2`+ 1, 2`+ 2, . . . , 3`}, respectively. A solution
for (S, `) is a selection of ` triples such that no two of them coincide in any component.
Hence, for every i ∈ {1, 2, 3}, if we collect all the ith components of the ` triples of a solution,
then we get exactly the set {(i− 1)`+ 1, (i− 1)`+ 2, . . . , i`}. For the NP-completeness of
3D-Match see [15].

We define a mapping g from 3D-Match to UnFact. Let (S, `) be an instance of
3D-Match, where ` ∈ N, S = {s1, s2, . . . , sk} with si = (pi, qi, ri), 1 ≤ i ≤ k. Next, we con-
struct a word w over the alphabet Σ = {a, ¢i, $i, bi,j ,%i,j , l,#l,#0 | 1 ≤ i ≤ k, 1 ≤ j ≤ 4, 1 ≤
l ≤ 3`}. Let v = v1v2 · · · vk, where, for every 1 ≤ i ≤ k, vi = ¢i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a $i.
Furthermore, we define û = 1 #1 · · ·#3`−2 (3`−1) #3`−1 (3`) #3` and u = u1u2 · · ·uk, where,

STACS 2015

312 Pattern Matching with Variables: Fast Algorithms and Hardness Results

for every 1 ≤ i ≤ k, ui = bi,1 %i,1 bi,2 %i,2 bi,3 %i,3 bi,4 %i,4. Finally, u = a #0 û u, w = uv,̂̀= 7`+ 6(k − `) + |u| and g(S, `) = (w, ̂̀). This concludes the definition of the mapping g.
In the following, let (S, `) be a fixed instance of 3D-Match and (w, ̂̀) = g(S, `).

We now explain the mapping g in an intuitive way. Every triple si = (pi, qi, ri) of S
is represented by vi = ¢i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a $i, where the factors pia, qia and ria
represent the single components. Each of the remaining symbols ¢i, $i, bi,j , 1 ≤ j ≤ 4, has
exactly one occurrence in w; thus, every factor that contains one of these will necessarily be
distinct. Hence, the factors pia, qia and ria are the only ones that may coincide in vi and
some vj , i 6= j, and this is only the case if the triples si and sj contain common elements.

We now define two special factorisations of the factors vi, 1 ≤ i ≤ k. The factorisation
¢ipi | abi,1 | bi,2qi | abi,3 | bi,4ri | a$i is called safe and the factorisation ¢i | pia | bi,1bi,2 |
qia | bi,3bi,4 | ria | $i is called unsafe. The safe factorisation contains only distinct factors,
whereas the factors pia, qia and ria of the unsafe factorisation may also occur in the unsafe
factorisation of some vj ; thus, the situation that si and sj have common elements translates
into the situation that the unsafe factorisations of vi and vj have common factors.

If {st1 , st2 , . . . , st`} is a solution of (S, `), then we can factorise all vti , 1 ≤ i ≤ `, into the
unsafe factorisation, all other vj , j /∈ {t1, t2, . . . , t`}, into the safe factorisation and the prefix
u into |u| individual factors. This yields a factorisation of w with |u| + 7` + 6(k − `) = ̂̀
factors and its uniqueness follows from the fact that {st1 , st2 , . . . , st`} is a solution of (S, `)
and that the symbols from u do not occur as single factors in v.

I Lemma 10. If (S, `) has a solution, then there is a unique factorisation of w with size ̂̀.
Proving the converse of Lemma 10 is more difficult. The idea is to first show that if there

exists a unique factorisation of w of size ̂̀, then there also exists one with at least the same
size and the following properties: (1) no factor overlaps the boundaries between u and v or
between some vi and vi+1, 1 ≤ i ≤ k − 1, (2) u is split into |u| factors. Property (1) is easily
achieved by simply splitting the factors that may overlap the critical positions; this does
only increase the number of factors and the uniqueness of the factorisations is guaranteed by
the fact that the new factors must contain symbols with only one occurrence in w.

I Lemma 11. If w has a unique factorisation f with size ̂̀, then, for some ̂̀′ ≥ ̂̀, there
exists a unique factorisation f ′ of w of size ̂̀′, such that no f ′-factor overlaps positions |u|
and |u|+ 1 or positions |uv1v2 · · · vi| and |uv1v2 · · · vi|+ 1, for some i, 1 ≤ i ≤ k − 1.

Property (2) requires a more careful argument. If u is not split into |u| factors, then in u
there exists a factor xπ, where x is a single symbol and π is some non-empty factor, and xπ
is also a factor of the factorisation (with Lemma 11 we can assume that xπ lies inside of u).
If |π| ≥ 2, then we cut off x, which results in two factors x and π. Since |π| ≥ 2, the factor π
must contain a symbol with only one occurrence in w, which means that it is not repeated.
If x is repeated, then this can only happen in some vi and we can now show that the factor
x must have a neighbour in vi that starts with a symbol y ∈ {bi,1, bi,2, bi,3, bi,4, ¢i, $i}. We
now simply append x to this neighbour. If y ∈ {¢i, $i}, then the factor is distinct since ¢i and
$i have only one occurrence in w. If, on the other hand, y ∈ {bi,1, bi,2, bi,3, bi,4}, then this
new factor can only be repeated in u; but all factors in u of size at least 2 contain a symbol
that does not occur in v, thus, the newly constructed factor is distinct. If |π| = 1, then the
situation is easier, since we can simply cut xπ into x and π and if one of these new factors is
repeated, then we can append it to its other neighbour without producing a repeated factor.

I Lemma 12. If w has a unique factorisation f of size ̂̀, then, for some ̂̀′ ≥ ̂̀, w has a
unique factorisation f ′ of size ̂̀′, such that every single symbol of u is an f ′-factor.

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 313

Finally, we show the converse of Lemma 10. If there is a unique factorisation f of w of sizề, then we can assume that it is of the form ensured by Lemmas 11 and 12. We can further
conclude that if a single symbol of some vi is a factor of f , then it is ¢i or $i, since otherwise
it would be repeated in u. In particular, this means that no vi can be split into more than 7
factors and if a vi is split in exactly 7 factors, then this must be the safe factorisation defined
above. Now if f splits T of the vi, 1 ≤ i ≤ k, into 7 factors and the remaining k − T of the
vi, 1 ≤ i ≤ k, into 6 or less factors, then f ′ splits w into at most |u|+ 7T + 6(k − T) factors.
Since ̂̀= 7`+ 6(k − `) + |u| ≤ |u|+ 7T + 6(k − T) must be satisfied, we can conclude ` ≤ T ,
which means that at least ` factors vi are factorised into the safe factorisation. This directly
implies that the corresponding ` triples from S constitute a solution for (S, `).

Since the reduction is clearly polynomial, the main result, i. e., Theorem 14, follows.
I Lemma 13. If there exists a unique factorisation of w of size ̂̀, then (S, `) has a solution.

I Theorem 14. UnFact is NP-complete.

We note that if a word has a unique factorisation of size k, then it also has a unique
factorisation of size k′ for all 1 ≤ k′ ≤ k. This is due to the fact that the uniqueness of a
factorisation is preserved if we join a longest factor with one of its neighbours. In particular,
this means that (w, k) is a positive UnFact instance if and only if x1x2 · · ·xk matches w in
an injective way; thus, we can conclude that inj-Match is NP-complete for many classes of
patterns for which its non-injective version can be easily solved in polynomial time.
I Corollary 15. inj-Match is NP-complete for Patreg, Patnc, Patr

var≤k, Patscd≤k, k ≥ 1.
We wish to point out that our proof of Theorem 14 requires an unbounded alphabet

and it is open whether UnFact is NP-complete for fixed alphabets.3 Consequently, it
does not imply that the injective matching problem for the classes of patterns mentioned in
Corollary 15 is still NP-complete if the alphabet is fixed. However, for the injective matching
problem with a fixed alphabet, we can show a similar, but slightly weaker, result:
I Theorem 16. inj-Match is NP-complete for Patnc and Patscd≤k, k ≥ 1, if the alphabet
is constant.

Theorem 16 can also be proved by a reduction from 3D-Match. We shall give a definition
of this reduction, but omit the proof of its correctness, and leave it to the reader.

Let (S, `) be an instance of 3D-Match, where ` ∈ N, S = {s1, s2, . . . , sk} with
si = (pi, qi, ri), 1 ≤ i ≤ k. We define a word w over the alphabet Σ = {a, b, $, ¢,#}
and a pattern α which uses the variables xi,j , 1 ≤ i ≤ `, 1 ≤ j ≤ 3, and yi, zj , 1 ≤
i ≤ ` + 1, 1 ≤ j ≤ 2` + 2. We first define the factors βi = x2

i,1x
2
i,2x

2
i,3, 1 ≤ i ≤ `,

ui = (apib)2(aqib)2(arib)2, 1 ≤ i ≤ k, and #i = (#¢1#¢2# · · ·#¢i#)m, 1 ≤ i ≤ 2k + 2,
where m = max{2k + 2, 3`} + 1. Then, in order to form α and w, these factors are
combined as follows: α = zm1 y1 z

m
2 β1 z

m
3 y2 z

m
4 β2 z

m
5 y3 z

m
6 β3 · · ·β` zm2`+1 y`+1 z

m
2`+2 and

w = #1 $1 #2 u1 #3 $3 #4 u2 #5 $5 #6 u3 · · ·uk #2k+1 $2k+1 #2k+2.
A collection {st1 , st2 , . . . , st`} of ` elements from S translates into a substitution h with

h(α) = w as follows. For every 1 ≤ i ≤ `, the factor zm2iβizm2i+1 is mapped to #2tiuti#2ti+1
and the variables yl, 1 ≤ l ≤ `+ 1, with only one occurrence, are mapped to the remaining
factors in between. Furthermore, it can be shown that if {st1 , st2 , . . . , st`} is a solution for
(S, `), then h is injective. Proving the other direction is more difficult and requires a lemma
which states that any substitution h with h(α) = w necessarily maps every βi to some uj .

3 As shown in [7], the variant where we require the factorisation to have short factors instead of a large
size is NP-complete also for fixed alphabets.

STACS 2015

314 Pattern Matching with Variables: Fast Algorithms and Hardness Results

References
1 Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Al-

gorithms, 5:514–523, 2007.
2 Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and

System Sciences, 21:46–62, 1980.
3 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal

of Computer and System Sciences, 52:28–42, 1996.
4 Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages

for path queries over graph-structured data. ACM Transactions on Database Systems, 37,
2012.

5 Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007–1018, 2003.

6 Raphaël Clifford, Aram W. Harrow, Alexandru Popa, and Benjamin Sach. Generalised
matching. In Proceedings of the 16th International Symposium on String Processing and
Information Retrieval, SPIRE, volume 5721 of Lecture Notes in Computer Science, pages
295–301, 2009.

7 Anne Condon, Ján Maňuch, and Chris Thachuk. The complexity of string partitioning. In
Proceedings of 23th Annual Symposium on Combinatorial Pattern Matching, CPM, volume
7354 of Lecture Notes in Computer Science, pages 159–172, 2012.

8 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. In-
formation Processing Letters, 12(5):244–250, 1981.

9 Maxime Crochemore and Wojciech Rytter. Usefulness of the Karp-Miller-Rosenberg al-
gorithm in parallel computations on strings and arrays. Theoretical Computer Science,
88(1):59–82, 1991.

10 Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and Thomas Zeug-
mann. Learning one-variable pattern languages very efficiently on average, in parallel, and
by asking queries. Theoretical Computer Science, 261:119–156, 2001.

11 Henning Fernau, Florin Manea, Robert Mercaş, and Markus L. Schmid. Revisiting
Shinohara’s algorithm for computing descriptive patterns. Technical Report 14-3, Trier
University, September 2014. https://www.uni-trier.de/fileadmin/fb4/INF/TechReports/
descriptive_patterns_tech_report_Schmid.pdf.

12 Henning Fernau and Markus. L. Schmid. Pattern matching with variables: A multivari-
ate complexity analysis. In Proceedings of the 24th Annual Symposium on Combinatorial
Pattern Matching, CPM, volume 7922 of LNCS, pages 83–94, 2013.

13 Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised com-
plexity of string morphism problems. In Proceedings of the 33rd IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science, FSTTCS,
volume 24 of Leibniz International Proceedings in Informatics (LIPIcs), pages 55–66, 2013.

14 Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third edition,
2006.

15 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

16 Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and computa-
tional biology. Cambridge University Press, New York, NY, USA, 1997.

17 Oscar H. Ibarra, Ting-Chuen Pong, and Stephen M. Sohn. A note on parsing pattern
languages. Pattern Recognition Letters, 16:179–182, 1995.

18 Juhani Karhumäki, Wojciech Plandowski, and Filippo Mignosi. The expressibility of lan-
guages and relations by word equations. Journal of the ACM, 47:483–505, 2000.

19 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of the ACM, 53:918–936, 2006.

H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid 315

20 Michael Kearns and Leonard Pitt. A polynomial-time algorithm for learning k-variable
pattern languages from examples. In Proceedings of the 2nd Annual Conference on Learning
Theory, COLT, pages 57–71, 1989.

21 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Efficient
data structures for the factor periodicity problem. In Proceedings of the 19th International
Symposium on String Processing and Information Retrieval, SPIRE, volume 7608 of Lecture
Notes in Computer Science, pages 284–294, 2012.

22 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
23 M. Lothaire. Algebraic Combinatorics on Words, chapter 3. Cambridge University Press,

Cambridge, New York, 2002.
24 Alexandru Mateescu and Arto Salomaa. Finite degrees of ambiguity in pattern languages.

RAIRO Informatique Théoretique et Applications, 28:233–253, 1994.
25 Yen K. Ng and Takeshi Shinohara. Developments from enquiries into the learnability of the

pattern languages from positive data. Theoretical Computer Science, 397:150–165, 2008.
26 Sebastian Ordyniak and Alexandru Popa. A parameterized study of maximum general-

ized pattern matching problems. In Proceedings of the 9th International Symposium on
Parameterized and Exact Computation, IPEC, 2014.

27 Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397:166–193, 2008.

28 Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Information
and Computation, 239:87–99, 2014.

29 Takeshi Shinohara. Polynomial time inference of pattern languages and its application. In
Proceedings of the 7th IBM Symposium on Mathematical Foundations of Computer Science,
pages 191–209, 1982.

STACS 2015

Approximating the Generalized Terminal Backup
Problem via Half-integral Multiflow Relaxation
Takuro Fukunaga

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
JST, ERATO, Kawarabayashi Large Graph Project, Japan.
takuro@nii.ac.jp

Abstract
We consider a network design problem called the generalized terminal backup problem. Whereas
earlier work investigated the edge-connectivity constraints only, we consider both edge- and node-
connectivity constraints for this problem. A major contribution of this paper is the development
of a strongly polynomial-time 4/3-approximation algorithm for the problem. Specifically, we show
that a linear programming relaxation of the problem is half-integral, and that the half-integral
optimal solution can be rounded to a 4/3-approximate solution. We also prove that the linear
programming relaxation of the problem with the edge-connectivity constraints is equivalent to
minimizing the cost of half-integral multiflows that satisfy flow demands given from terminals.
This observation implies a strongly polynomial-time algorithm for computing a minimum cost
half-integral multiflow under flow demand constraints.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory

Keywords and phrases survivable network design, multiflow, LP rounding

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.316

1 Introduction

1.1 Generalized Terminal Backup Problem

The network design problem is the problem of constructing a low cost network that satisfies
given constraints. It includes many fundamental optimization problems, and has been
extensively studied. In this paper, we consider a network design problem called the generalized
terminal backup problem, recently introduced by Bernáth and Kobayashi [3].

The generalized terminal backup problem is defined as follows. Let Q+ and Z+ denote the
sets of non-negative rational numbers and non-negative integers, respectively. Let G = (V,E)
be an undirected graph with node set V and edge set E, c : E → Q+ be an edge cost
function, and let u : E → Z+ be an edge capacity function. A subset T of V denotes the
terminal node set in which each terminal t is associated with a connectivity requirement
r(t) ∈ Z+. A solution is a multiple edge set on V containing at most u(e) edges parallel
to e ∈ E. The objective is to find a solution F that minimizes

∑
e∈F c(e) under certain

constraints. In Bernáth and Kobayashi [3], the subgraph (V, F) was required to contain r(t)
edge-disjoint paths that connect each t ∈ T to other terminals. In addition to these edge-
connectivity constraints, we consider node-connectivity constraints, under which the paths
must be inner disjoint (i.e., disjoint in edges and nodes in V \ T) rather than edge-disjoint.
To avoid confusion, we refer to the problem as edge-connectivity terminal backup when the
edge-connectivity constraints are required, and as node-connectivity terminal backup when
the node-connectivity constraints are imposed (removing “general” from the problem names

© Takuro Fukunaga;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 316–328

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.316
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Fukunaga 317

makes no confusion because distinguishing edge-connectivity and node-connectivity implies
that the connectivity requirement of a terminal is larger than one).

The generalized terminal backup problem models a natural data management situation.
Suppose that each terminal represents a data storage server in a network, and r(t) is the
amount of data stored in the server at a terminal t. Backup data must be stored in servers
different from that storing the original data. To this end, a sub-network that transfers data
stored at one terminal to other terminals is required. We assume that edges can transfer a
single unit of data per time unit. Hence, transferring data from terminal t to other terminals
within one time unit requires r(t) edge-disjoint paths from t to T \ {t}, which is represented
by the edge-connectivity constraints. When nodes are also capacitated, r(t) inner-disjoint
paths are required; these requirements are met by the node-connectivity constraints.

The generalized terminal backup problem is interesting also from theoretical point of
view. When r ≡ 1, the problem is called the terminal backup problem. Note that there is no
difference between the edge- and the node-connectivity constraints when r ≡ 1. Anshelevich
and Karagiozova [1] demonstrated that the terminal backup problem is reducible to the
simplex matching problem, which is solvable in polynomial time. On the other hand, when
T = V , the generalized terminal backup problem is equivalent to the capacitated b-edge
cover problem with degree lower bound b(v) = r(v) for v ∈ V . Since the capacitated
b-edge cover problem admits a polynomial-time algorithm, the generalized terminal backup
problem is solvable in polynomial time also when T = V . Therefore, we may naturally ask
whether the generalized terminal backup problem is solvable in polynomial time. Bernáth and
Kobayashi [3] proposed a polynomial-time algorithm for the uncapacitated case (i.e., u(e) =
+∞ for each e ∈ E) in the edge-connectivity terminal backup. Their result partially answers
the above question, but their assumptions may be overly stringent in some situations; that
is, their algorithm admits unfavorable solutions that select too many copies of a cheap edge.
Moreover, their algorithm cannot deal with the node-connectivity constraints. Unfortunately,
when the edge-capacities are bounded or node-connectivity constraints imposed, we do not
know whether the generalized terminal backup problem is NP-hard or admits a polynomial-
time algorithm. Instead, we propose approximation algorithms.

I Theorem 1. There exist a strongly polynomial-time 4/3-approximation algorithm for the
generalized terminal backup problem.

The present study contributes two major advances to the generalized terminal backup
problem.

Bernáth and Kobayashi [3] discussed the generalized terminal backup problem in the
uncapacitated setting with edge-connectivity constraints, noting that the problem in the
capacitated setting is open. Here, we discuss the capacitated setting, and introduce the
node-connectivity constraints.
The generalized terminal backup problem can be formulated as the problem of covering
skew supermodular biset functions, which is known to admit a 2-approximation algorithm.
On the other hand, as stated in Theorem 1, we develop 4/3-approximation algorithms,
that outperform this 2-approximation algorithm.

Let us explain the second advance more specifically. Given an edge set F and a nonempty
subset X of V , let δF (X) denote the set of edges in F with one end node in X and the
other in V \ X. Let f : 2V → Z+ be a function such that f(X) = r(t) if X ∩ T = {t},
and f(X) = 0 otherwise. By the edge-connectivity version of Menger’s theorem, F satisfies
the edge-connectivity constraints if and only if |δF (X)| ≥ f(X) for each X ∈ 2V . Bernáth
and Kobayashi [3] showed that the function f is skew supermodular (skew supermodularity

STACS 2015

318 Approximating the generalized terminal backup problem

is defined in Section 2). For any skew supermodular set function h, Jain [9] proposed a
seminal 2-approximation algorithm for computing a minimum-cost edge set F satisfying
|δF (X)| ≥ h(X), X ∈ 2V . Although the node-connectivity constraints cannot be captured
by set functions as the edge-connectivity constraints, they can be regarded as a request for
covering a skew supermodular biset function, to which the 2-approximation algorithm is
extended [6]. Therefore, the generalized terminal backup problem admits 2-approximation
algorithms, regardless of the imposed connectivity constraints. One of our contributions is
to improve these 2-approximations to 4/3-approximations.

Both of the above 2-approximation algorithms involve iterative rounding of the linear
programming (LP) relaxations. Primarily, their performance analyses prove that the value
of a variable in each extreme point solution of the LP relaxations is at least 1/2. Once this
property of extreme point solutions is proven, the variables can be repeatedly rounded until
a 2-approximate solution is obtained. Our 4/3-approximation algorithms are based on the
same LP relaxations as the iterative rounding algorithms. We show that, in the generalized
terminal backup problem, all variables in extreme point solutions of the relaxation take
half-integral values. We also prove that the half-integral solution can be rounded into an
integer solution with loss of factor at most 4/3.

It may be helpful for understanding our result to see the well-studied special case of
T = V and u(e) = 1 for each e ∈ E (i.e., feasible solutions are simple r-edge covers). In this
case, our LP relaxation minimizes

∑
e∈E c(e)x(e) subject to

∑
e∈δ(v) x(e) ≥ r(v) for each

v ∈ V and 0 ≤ x(e) ≤ 1 for each e ∈ E, where δ(v) is the set of edges incident to the node v.
It has been already known that an extreme point solution of this LP is half-integral, and
the edges in {e ∈ E : x(e) = 1/2} form odd cycles. The half-integral variables of the edges
on an odd cycle can be rounded as follows. Suppose that edges e1, . . . , ek appears in the
cycle in this order, where k is the cycle length (i.e., odd integer larger than one). For each
i, j ∈ {1, . . . , k}, we define x′i(ej) = 1 if j ≥ i and j ≡ i mod 2, or if j < i and j ≡ i+1 mod 2,
and x′i(ej) = 0 otherwise. Note that exactly (k + 1)/2 variables in x′1(ej), . . . , x′k(ej) are
equal to one, and the other (k − 1)/2 variables are equal to zero for each j. This means that

k∑
i=1

k∑
j=1

c(ej)x′i(ej) =
k∑
j=1

c(ej) ·
k + 1

2 = (k + 1)
k∑
j=1

c(ej)x(ej).

Let i∗ minimize
∑k
j=1 c(ej)x′i∗(ej) in i∗ ∈ {1, . . . , k}. Then, since

∑k
j=1 c(ej)x′i∗(ej) ≤∑k

i=1
∑k
j=1 c(ej)x′i(ej)/k, replacing x(e1), . . . , x(ek) by x′i∗(e1), . . . , x′i∗(ek) increases their

costs by a factor at most (k+ 1)/k ≤ 4/3. We also observe that the feasibility of the solution
is preserved even after the replacement. By applying this rounding for each odd cycle, the
half-integral solution can be transformed into a 4/3-approximate integer solution.

Our result is obtained by extending the characterization of the edge structure whose
corresponding variables are not integers, but the extension is not immediate. As in the
above special case, those edges form cycles in the generalized terminal backup problem if the
solution is a minimal feasible solution for the LP relaxation. However, the length of a cycle
is not necessarily odd, and it is not clear how the half-integral solution should be rounded; In
the above special case, we round up and down variables of edges on a cycle alternatively, but
this obviously does not preserve the feasibility in the generalized terminal backup problem.
The key ingredient in our result is to characterize the relationship between the cycles and
the node sets or bisets corresponding to linearly independent tight constraints in the LP
relaxation. We show that a cycle crosses maximal tight node set or bisets an odd number of
times, which extends the property that the length of each cycle is odd in the special case.

T. Fukunaga 319

Our rounding algorithm decides how to round a non-integer variable from the direction of
the crossing between the corresponding edge and a tight node set or biset.

1.2 Minimum Cost Multiflow Problem
Multiflows are closely related to the generalized terminal backup problem. Among the many
multiflow variants, we focus on the type sometimes called free multiflows. For t, t′ ∈ T , At,t′
denotes the set of paths that terminate at t and t′. Let At denote

⋃
t′∈T\{t}At,t′ , and A

denote
⋃
t∈T At. E(A) and V (A) denote the sets of edges and nodes in A ∈ A, respectively.

We define a multiflow as a function ψ : A → Q+. In the edge-capacitated setting, an edge
capacity u(e) ∈ Z+ is given, and we must satisfy

∑
{ψ(A) : A ∈ A, e ∈ E(A)} ≤ u(e) for

each e ∈ E. In the node-capacitated setting, a node capacity u(v) ∈ Z+ is given and∑
{ψ(A) : A ∈ A, v ∈ V (A)} ≤ u(v) is required for each v ∈ V . The multiflow ψ is called

an integral multiflow if ψ(A) ∈ Z+ for each A ∈ A, and is called a half-integral multiflow
if 2ψ(A) ∈ Z+ for each A ∈ A. Let c(A) denote

∑
e∈E(A) c(e) for A ∈ A. The cost of ψ is

given by
∑
A∈A ψ(A)c(A).

In the edge-connectivity terminal backup, the connectivity requirement from a terminal t
equates to requiring that a flow of amount r(t) can be delivered from t to T \{t} in the graph
(V, F) with unit edge-capacities if F is a feasible solution. This condition appears similar
to the constraint that the graph (V, F) with unit edge-capacities admits a multiflow ψ such
that

∑
A∈At

ψ(A) ≥ r(t). We note that (V, F) with unit edge-capacities admits a multiflow
ψ if and only if the number of copies of e ∈ E in F is at least

∑
A∈A : e∈E(A) ψ(A). These

observations suggest a correspondence between the edge-connectivity terminal backup and the
problem of finding a minimum cost multiflow ψ under the constraint that

∑
A∈At

ψ(A) ≥ r(t)
for t ∈ T in the edge-capacitated setting. We refer to such a multiflow computation as the
minimum cost multiflow problem (in the edge-capacitated setting). The same correspondence
exists between the node-connectivity terminal backup and the node-capacitated setting in
the minimum cost multiflow problem.

However, the generalized terminal backup and the minimum cost multiflow problems are
not equivalent. Especially, the minimum cost multiflow problem can be formulated in LP,
whereas the generalized terminal backup problem is an integer programming problem. Even
if multiflows are restricted to integral multiflows, the two problems are not equivalent. To
observe this, let G = (V,E) be a star with an odd number of leaves. We assume that T is
the set of leaves, and each edge incurs one unit of cost. This star is a feasible solution to
the terminal backup problem (i.e., r(t) = 1 for t ∈ T). In contrast, setting r ≡ 1 and u ≡ 1
admits no integral multiflow in the edge-capacitated setting, and no feasible (fractional)
multiflows in the node-capacitated setting.

Nevertheless, similarities exist between terminal backups and multiflows. As mentioned
above, we will show that an LP relaxation of the generalized terminal backup problem always
admits a half-integral optimal solution. Similarly, half-integrality results are frequently
reported for multiflows. Lovász [12] and Cherkassky [5] investigated r ≡ 0 in the edge-
capacitated setting, and showed that a half-integral multiflow maximizes

∑
A∈A ψ(A) over

all multiflows ψ. Using an identical objective function to ours, Karzanov [11, 10] sought
to minimize the cost of multiflows. His feasible multiflow solutions are those attaining
max

∑
A∈A ψ(A) in the edge-capacitated setting with r ≡ 0, and he showed that the

minimum cost is achieved by a half-integral multiflow. Babenko and Karzanov [2] and
Hirai [7] extended Karzanov’s result to node-cost minimization in the node-capacitated
setting. In this scenario also, the optimal multiflow is half-integral.

In the present paper, we present a useful relationship between the generalized terminal

STACS 2015

320 Approximating the generalized terminal backup problem

backup problem and the minimum cost multiflow problem in the edge-capacitated setting.
We prove that the optimal solution of the LP used to approximate the edge-connectivity
terminal backup is a half-integral multiflow, which also optimizes the minimum cost multiflow
problem. Thereby, we can compute the minimum cost half-integral multiflow by solving the
LP relaxation. This result is summarized in the following theorem.

I Theorem 2. The minimum cost multiflow problem admits a half-integral optimal solution
in the edge-capacitated setting, which can be computed in strongly polynomial time.

In contrast, we find no useful relationship between the node-connectivity terminal backup
and the node-capacitated setting of the minimum cost multiflow problem. We can only show
that the LP relaxation of the node-connectivity terminal backup also has an optimal solution
which is a half-integral multiflow in the edge-capacitated setting.

Despite its natural formulation, the minimum cost multiflow problem has not been
previously investigated to our knowledge. We emphasize that Theorem 2 cannot be derived
from previously known results on multiflows. The minimum cost multiflow problem may be
solvable by reducing it to minimum cost maximum multiflow problems that (as mentioned
above) admit polynomial-time algorithms. A naive reduction can be implemented as follows.
Let ψ∗ be a minimum cost multiflow that satisfies the flow demands from terminals, and
let ν(t) =

∑
A∈At

ψ∗(A) for each t ∈ T . For each t ∈ T , we add a new node t′ and connect
t and t′ by a new edge of capacity ν(t). The new terminal set T ′ is defined as {t′ : t ∈ T}.
Now the multiflow ψ∗ can be extended to the multiflow of maximum flow value for the
terminal set T ′. Applying the algorithm in [11] to this new instance, we can solve the original
problem. Moreover, if ν(t) is an integer for each t ∈ T , this reduction together with the
half-integrality result in [10, 11] implies that an optimal multiflow in the minimum cost
multiflow problem is half-integral. However, this naive reduction has two limitations. First,
ν(t) is indeterminable without computing ψ∗. We only know that ν(t) cannot be smaller than
r(t). Second, we cannot ascertain that ν(t) is always an integer for each t ∈ T . Hence, this
naive reduction seems to yield neither a polynomial-time algorithm nor the half-integrality
of optimal multiflows claimed in Theorem 2.

Applying a structural result in [3] on the generalized terminal backup problem, it is
easily shown that any integral solution to the edge-connectivity terminal backup provides a
half-integral multiflow at the same cost. However, since the way to find an optimal solution
for the edge-connectivity terminal backup is unknown, Theorem 2 is not derivable from this
relationship. In proving the half-integrality of the LP relaxation required for Theorem 1, we
immediately imply the quarter-integrality of a minimum cost multiflow (i.e., 4ψ(A) ∈ Z+
for each A ∈ A). The proof of Theorem 2 requires deeper investigation into the structure of
half-integral LP solutions.

1.3 Structure of This Paper

In this article, due to the space limitation, we only sketch how our 4/3-approximation
algorithm works in the case of r ≡ 1. We also omit proofs of several lemmas. We recommend
referring to the full version of the present paper for the full description of our results.
Section 2 introduces notations and essential preliminary facts. Section 3 presents required
properties of extreme point solutions of an LP relaxation to the edge-connectivity terminal
backup. Section 4 introduces our 4/3-approximation algorithm, restricted to the case of
r ≡ 1. Section 5 concludes the paper.

T. Fukunaga 321

2 Preliminaries

For an edge set F and a node set X ∈ 2V , let δF (X) denote the set of edges in F with one
end node in X and the other in V \X. We identify a node v ∈ V with the node set {v}.
Thereby δF (v) denotes the set of edges incident to v in F . For simplicity, we write δE(X)
as δ(X) when the edge set is unambiguously E. If an edge e is in δ(X), we say that e is
incident to X.

We say that X ∈ 2V and Y ∈ 2V are noncrossing when X ∩ Y = ∅, X ⊆ Y , or when
Y ⊆ X. Otherwise, X and Y are called crossing. A family of node sets is called laminar
if each pair of node sets in the family is noncrossing. The laminarity naturally defines a
child-parent relationship among those in the family; If X,Y ∈ L, and if Y ∈ L is the minimal
node set such that X ⊆ Y in L, then Y is defined as the parent of X, and X is a child of
Y . This child-parent relationship naturally leads to terminologies such as “ancestor” and
“descendant.” For a node set Y in a laminar family L and an edge set F , we let F+

L (Y) and
F−L (Y) respectively denote δF (Y) \ (

⋃
X∈X δF (X)) and (

⋃
X∈X δF (X)) \ δF (Y), where X

denotes the set of children of Y in L. If Y has no child, F+
L (Y) = δF (Y) and F−L (Y) = ∅.

For t ∈ T , let C(t) = {X ∈ 2V : X ∩ T = {t}}. We denote
⋃
t∈T C(t) by C. For a vector

x ∈ QE+ and E′ ⊆ E, let x(E′) represent
∑
e∈E′ x(e). Recall that in Section 1, we defined

the set function f representing the edge-connectivity constraints by

f(X) =
{
r(t), if t ∈ T,X ∈ C(t),
0, otherwise

for each X ∈ 2V .
Given a function h : 2V → Q+ and an edge-capacity function u : E → Z+, we define

P (h, u) as the set of x ∈ QE+ such that

x(δ(X)) ≥ h(X) for X ∈ 2V (1)

and x(e) ≤ u(e) for e ∈ E.
Let F be a multiset of edges in E, and χF denote the characteristic vector of F (i.e., χF ∈

ZE+ and F contains χF (e) copies of e for each e ∈ E). Note that |δF (X)| = χF (δ(X)) for X ∈
2V . Hence, χF ∈ P (f, u) if and only if F is a feasible solution to the edge-connectivity terminal
backup. These statements imply that the LP LP(h, u) = min

{∑
e∈E c(e)x(e) : x ∈ P (h, u)

}
relaxes the edge-connectivity terminal backups when h = f .

A biset function h is called (positively) skew supermodular when, for any X ∈ 2V with
h(X) > 0 and Y ∈ 2V with h(Y) > 0, h satisfies

h(X) + h(Y) ≤ h(X ∩ Y) + h(X ∪ Y) (2)

or

h(X) + h(Y) ≤ h(X \ Y) + h(Y \X). (3)

For any function h : 2V → Q+ and a vector x : E → Q+, we let hx denote the function such
that hx(X) = h(X)− x(δ(X)) for each X ∈ 2V . Bernáth and Kobayashi [3] reported that
fx is skew supermodular for any x : E → Q+.

3 Structure of Extreme Point Solutions

In this section, we present the properties of the extreme points of P (f, u). More precisely,
we prove that each extreme point of P (f, u) is half-integral, and that the edges whose

STACS 2015

322 Approximating the generalized terminal backup problem

corresponding variables are half-integral are characteristically structured. Note that f is an
integer-valued skew supermodular function, and f(X) = 0 for any X 6∈ C.

3.1 Half-Integrality
In the following, we denote an integer-valued skew supermodular function by h, and an
extreme point of P (h, u) by x. Given an edge set F on V and a node set X ∈ 2V , let ηF,X
denote the characteristic vector of δF (X), i.e., an |F |-dimensional vector whose components
are set to 1 if indexed by an edge in δF (X), and 0 otherwise. The following lemma has been
previously proposed [9].

I Lemma 3. Let h : 2V → Q+ be a skew supermodular function, and x be an extreme point
of P (h, u). Let E0 = {e ∈ E : x(e) = 0}, E1 = {e ∈ E : x(e) = u(e)}, and F = E \ (E0 ∪E1).
Let L be an inclusion-wise maximal laminar subfamily of {X ∈ 2V : x(δF (X)) = h(X) −
u(δE1(X)) > 0} such that the vectors in {ηF,X : X ∈ L} are linearly independent. Then
|F | = |L|, and x is a unique vector that satisfies x(δF (X)) = h(X)− u(δE1(X)) > 0 for each
X ∈ L, x(e) = 0 for each e ∈ E0, and x(e) = u(e) for each e ∈ E1.

We note that L in Lemma 3 can be constructed in a greedy way; initialize L to an empty
set, and repeatedly add a biset X such that x(δF (X)) = h(X)− u(δE1(X)) > 0 and ηF,X
is linearly independent of the characteristic vectors in the current L. Hereafter, we assume
that L is constructed as claimed in Lemma 3. Similarly, E0, E1, and F are defined from x

as in Lemma 3.
Let x̄ : E → Z+, and define a function hx̄(X) as h(X)− x̄(δ(X)) for X ∈ 2V . Let 1 denote

the |E|-dimensional all-one vector. The following lemma relates only to the extreme points
of P (hx̄,1). In Corollary 5, we will show that this is sufficient for proving the half-integrality
of P (h, u). If h(X) > 0 holds only for X ∈ C, we have L ⊆ C. In this case, no node set in L
has more than one child, and x is characterized as follows.

I Lemma 4. Suppose that h : 2V → Z+ is an integer-valued skew supermodular function
such that h(X) > 0 only for X ∈ C. Let x̄ : E → Z+, and let x be an extreme point of
P (hx̄,1). Let F denote {e ∈ E : 0 < x(e) < 1}. Then the following conditions hold :
(i) |F+

L (X)|+ |F−L (X)| = 2 for each X ∈ L;
(ii) If e ∈ F is incident to a maximal node set in L, then it is incident to exactly two

maximal node sets in L;
(iii) x(e) = 1/2 for each e ∈ F .

I Corollary 5. Suppose that h : 2V → Q+ is a skew supermodular function such that h(X) > 0
only if X ∈ C. Let u : E → Z+. Given x ∈ P (h, u), we define x̄ : E → Z+ and x′ : E → Q+
by x̄(e) = bx(e)c and x′(e) = x(e) − x̄(e), respectively for each e ∈ E. If x is an extreme
point of P (h, u), then x′ is an extreme point of P (hx̄,1). Moreover, P (h, u) is half-integral
if h is integer-valued.

3.2 Path decompositions of extreme point solutions
In this section, we consider x ∈ P (f, u). We denote {X ∈ L : t ∈ X} by L(t) for each t ∈ T .
Let t ∈ T with L(t) 6= ∅, and let X be the maximal node set in L(t). We obtain a graph
Gs[X] from G by shrinking all the nodes in V \X into a single node s. Removing s from
Gs[X], we obtain another graph G[X] (i.e., G[X] is the subgraph of G induced by X). We
suppose that each edge e in Gs[X] or in G[X] is capacitated by x(e). Since all capacities are

T. Fukunaga 323

half-integral, the maximum flow between s and t in Gs[X] can be decomposed into a set of
paths Rt1, . . . , Rt2r(t) each of which accommodates a half unit of flow.

Let X ′ ∈ L(t). Each path between s and t passes through an edge in δ(X ′). Since
x(δ(X ′)) = r(t), the edges in δ(X ′) are used to full capacity by the maximum flow, and each
path Rti includes exactly one edge in δ(X ′).

Suppose that both Rti and Rtj include a node v 6∈ {s, t}. Let ei and e′i be the edges
incident to v on Rti, where ei is near to s than e′i. We define the edges ej and e′j incident to
v on Rtj , similarly. We assume that the following fact holds for any such paths Rti and Rtj .

I Assumption 1. If x(ei) is half-integral and x(ej) is an integer, and if exactly one of x(e′i)
and x(e′j) is half-integral, then x(e′i) is half-integral.

Indeed, if Assumption 1 does not hold, then exchanging the subpaths between v and t
makes them satisfy it.

In the following discussion, we consider a maximum flow between a terminal t′ and
T \ {t′} in G, where t′ may equal t. In such a flow, each edge e is capacitated by x(e). The
flow quantity is at least r(t′) if and only if x satisfies (1) with h = f . Let S be a path
decomposition of the flow, in which each path in S accommodates a half unit of flow. Let St
be the set of paths in S that contain nodes in X (recall that X is the maximal node set in
L(t)). Without loss of generality, we can state the following fact.

I Assumption 2. Each path in St ends at t. Moreover, {S′ : S ∈ St} ⊆ {Rt1, . . . , Rt2r(t)},
where S′ is the subpath of S between t and the nearest node in V \X.

If Assumption 2 is not satisfied by S, we can modify the flow between t′ and T \ {t′}
by replacing the subpaths of those in St by appropriate paths in Rt1, . . . , R

t
2r(t), without

decreasing the amount of flow.
We say that x is minimal in P (f, u) if x ∈ P (f, u) and no y ∈ P (f, u) exists such that

x 6= y and x(e) ≥ y(e) for any e ∈ E. Let edge e′ be incident to a node in X. If x is minimal
in P (f, u), then x(e′) = |{i = 1, . . . , 2r(t) : e′ ∈ E(Rti)}|/2; Otherwise, as x(e) is decreased,
it would remain in P (f, u).

I Lemma 6. Let x be an extreme minimal point in P (f, u). Then x(δ(v)) is an integer for
each v ∈ V .

4 LP-rounding 4/3-Approximation Algorithm for Terminal Backup
Problem

Our algorithm rounds a half-integral optimal solution to the LP relaxations into an integer
solution. Let us assume that a minimal half-integral optimal solution x and a laminar family
L in Lemma 3 are given. In what follows, we explain how to round x.

Let F denote {e ∈ E : x(e) = 1/2}. We call the edges in F half-integral edges. |δF (v)| is
even for each v ∈ V because x(δ(v)) is an integer by Lemma 6. Hence F can be decomposed
into an edge-disjoint set of cycles. Let H be a cycle in the decomposition.

For each e ∈ F , L contains a node set to which e is incident. Let L′ be the subfamily of
L that consists of the node sets to which edges in H are incident. Since r ≡ 1, exactly two
edges in H are incident to each node set in L′.

Let t1, . . . , tk be the terminals such that L(ti) ∩ L′ 6= ∅ for each i ∈ {1, . . . , k}. We can
prove the following lemma.

I Lemma 7. k is an odd integer larger than one.

STACS 2015

324 Approximating the generalized terminal backup problem

L(t1) L(t2)

L(t3)

e1

Figure 1 An example of a cycle of half-integral edges and the first assignment of lables to the
edges. Edges drawn by solid and dashed lines are assigned “+” and “−,” respectively. The edges are
oriented in the direction of traverse. The areas surrounded by thin solid lines represent the node
sets in L.

For each i ∈ {1, . . . , k}, let Xi denote the maximal node set in L(ti) ∩ L′, and let Hi be
the subpath of H comprising of edges incident to node sets in L(ti) ∩ L′. Hence, if an edge
are incident to both Xi and Xj , the edge is shared by Hi and Hj .

Let e1 = uv be an edge incident to X1, where we assume without loss of generality that
u ∈ X1 and v 6∈ X1. Consider traversing E(H), starting from e1 in the direction from v to u.
We say that ti appears when we traverse an edge incident to two node sets Xi ∈ L(ti) and
Xj ∈ L(tj) with i 6= j in the direction from the end node in Xj to the one in Xi. Without
loss of generality, we assume that the terminals appear in the increasing order of subscripts.
Therefore, during the traverse of H, we first visit edges in H1, then those in H2, and so on.
Suppose that X ∈ L(ti) and e ∈ δH(X). We say that e is outward with respect to ti if e is
traversed from the end node in X to the other. Otherwise, e is called inward. This implies
that, during the traverse of Hi, we first traverse edges inward with respect to ti, and then
those outward with respect to ti.

We define k assignments of labels to the edges in H, where each edge is labeled by either
“+” or “−.” Let us define the i-th assignment. If e ∈ E(Hi), then e is labeled by “+.” If
e ∈ E(Hj) for some j 6= i, then its label is decided by the following rules.

If j − i is odd and e is outward with respect to tj , e is labeled by “+.”
If j − i is odd and e is inward with respect to tj , e is labeled by“−.”
If j − i is even and e is outward with respect to tj , e is labeled by “−.”
If j − i is even and e is inward with respect to tj , e is labeled by“+.”

Note that this assignment is consistent; if e is included in both Hj and Hj+1, then e is
outward with respect to tj and inward with respect to tj+1, and hence e is assigned the same
label from j and j + 1; e1 is shared by H1 and Hk, and similarly it is assigned the same label
because k is odd. Figure 1 shows an example of the cycle H, and the first assignment of
labels to the edges on H.

Our algorithm rounds x(e) into 1 if e is labeled by “+,” and into 0 otherwise. Since we
have k assignments of labels, we have k ways of rounding of edges in H. Our algorithm
chooses the most cost-effective one among them.

Let us observe that this algorithm achieves 4/3-approximation. First, we prove that the
above rounding increases the cost by a factor of at most 4/3. Let x′ be the vector obtained
from x by the rounding.

T. Fukunaga 325

I Lemma 8.∑
e∈E

c(e)x′(e) ≤ 4
3
∑
e∈E

c(e)x(e).

Proof. Let H be a cycle of half-integral edges. We show that∑
e∈H

c(e)x′(e) ≤ 4
3
∑
e∈H

c(e)x(e) .

Applying this claim to all cycles in the decomposition of F , we can prove the lemma. We
use the notations used in the definition of the rounding.

Let xi denote the vector obtained by rounding x(e), e ∈ E(H) according to the i-th
assignment of labels. We note that

∑
e∈H

c(e)x′(e) = min
1≤i≤k

∑
e∈H

c(e)xi(e) ≤
1
k

k∑
i=1

∑
e∈H

c(e)xi(e).

Recall that k is an odd number larger than one. In the k assignments, e ∈ H is labeled
“+” by the (k + 1)/2 assignments. Thus,

k∑
i=1

∑
e∈H

c(e)xi(e) = k + 1
2

∑
e∈H

c(e).

Note that
∑
e∈H c(e)x(e) =

∑
e∈H c(e)/2. Therefore,∑

e∈H c(e)x′(e)∑
e∈H c(e)x(e) ≤

k + 1
k
≤ 4

3 ,

where the last inequality follows from k ≥ 3. J

Next, let us prove the feasibility of x′. For a path P and nodes u, v on P , we denote the
subpath of P between u and v by P [u, v].

I Lemma 9. x′ is a feasible solution to the terminal backup problem.

Proof. Obviously x′ is an integer vector. Hence, to prove the feasibility of x′, the graph with
edge-capacites x′ admits a unit of flow from each terminal t to the other terminals. Since
x(δ(X)) ≥ 1 for each X ∈ C(t), the graph capacitated by x admits such a flow. Hence we
show that a flow for x′ can be obtained by modifying the flow for x. In the following, we
assume that x′ is obtained by rounding variables corresponding to the half-integral edges in
a cycle H. If required, the modification is repeated for each cycle of half-integral edges.

Recall the definitions of Rt1, . . . , Rt2r(t) in Section 3.2. Since we are considering r ≡ 1, we
have two paths Rt1 and Rt2 for each terminal t with L(t) 6= ∅. We assume these paths satisfy
Assumption 1. Fix a terminal t, and suppose that the flow from t to the other terminals with
edge-capacities x delivers a half unit of flow along a path P , and another half unit along a
path Q. We assume that S = {P,Q} satisfies Assumption 2.

If both P and Q contains no half-integral edge (with respect to x) labeled by “−,” the
flow satisfies the capacity constraints defined from x′. Thus, let us consider the case where
P includes a half-integral edge labeled by “−.” Let e be the one nearest to t among such
edges, and let v be the end node of e near to t.

We first show that there exists X∗ ∈ L(t) such that e ∈ δ(X∗) and v ∈ X∗. For arriving
at a contradiction, suppose that such X∗ does not exist. e is incident to at least one node

STACS 2015

326 Approximating the generalized terminal backup problem

t

v

e′

g

u

t′

P

X∗

Y

Figure 2 The definitions in the proof of Lemma 9.

set in L. In particular, Lemma 4(ii) implies that there exists a terminal t′ ∈ T and node
set X ′ ∈ L(t′) such that e ∈ δ(X ′) and v ∈ X ′. However, this means that t′ 6= t and P [t, v]
enters X ′ when traversed from t to v. Assumption 2 indicates that the subpath of P between
v and the end opposite to t is included by Rt′1 or Rt′2 . Hence, the end of P opposite to t is t′,
and P does not include e, which is a contradiction. Therefore, there exists X ∈ L(t) such
that e ∈ δ(X) and v ∈ X.

This fact indicates that Q contains no “−”-labeled half-integral edge because of the
following reason. Let P ′ be the maximal subpath of P that consists of edges incident to
node sets in L(t). Since L(t) 6= ∅, there exists Rt1 and Rt2. By Assumption 2, P ′ is equal to
Rt1 or Rt2. Without loss of generality, let P ′ be equal to Rt1. Then, Assumption 1 indicates
that all “−”-labeled half-integral edges incident to node sets in L(t) is included in Rt1. Since
P and Q share no half-integral edges, Q does not included these edges in Rt1. Hence, if Q
contains a “−”-labeled half-integral edge, its both end node is included by some node sets in
L \ L(t). However, we can derive a contradiction similarly for the above claim with P .

Since x(δ(X∗)) = 1, the other edge e′ incident to v on H is also incident to X∗. By the
label-assignment rules, e′ is labeled by “+.” Let H ′ denote the subpath of H consisting of
“+”-labeled edges and terminating at v. Let u be the other end node of H ′, and let g be
the edge incident to u on H ′. By Lemma 4, there exists Y ∈ L with g ∈ δ(Y) and u ∈ Y .
Y belongs to L(t′) for some t′ 6= t. g is included in a path Rt

′

1 or Rt′2 . Without loss of
generality, we suppose that Rt′1 includes g′. We replace P by the concatenate of P [t, v], H ′,
and Rt′1 [u, t′]. See Figure 2 for illustration of this modification.

Let us observe that this modification preserves the capacity constraints. P [t, v] was a
part of P before the modification. The capacity of each edge on H ′ is increased by 1/2 when
x′ replaces x. The capacity of each edge in Rt′1 [u, t′] is integer. Hence no capacity constraint
is violated. J

5 Conclusion

We have presented 4/3-approximation algorithms for the generalized terminal backup problem.
Our result also implies that the integrality gaps of the LP relaxations are at most 4/3. These
gaps are tight even in the edge cover problem (i.e., T = V and r ≡ 1): Consider an instance
in which G is a triangle with unit edge costs; The half-integral solution x with x(e) = 1/2 for
all e ∈ E is feasible to the LPs, and its cost is 3/2; On the other hand, any integer solution

T. Fukunaga 327

chooses at least two edges from the triangle; Since the costs of these integer solutions are at
least 2, the integrality gap is not smaller than 4/3 in this instance.

An obvious open problem is whether the generalized terminal backup problem admits
polynomial-time exact algorithms or not. It seems hard to obtain such an algorithm by
rounding solutions of the LP relaxations because of their integrality gaps. For the capacitated
b-edge cover problem, an LP relaxation of integrality gap one is known [13]. For obtaining
an LP-based polynomial-time algorithm for the generalized terminal backup problem, we
have to extend this LP relaxation for the capacitated b-edge cover problem.

Another interesting approach is offered by combinatorial approximation algorithms
because it is currently a major open problem to find a combinatorial constant-factor approx-
imation algorithm for the survivable network design problem, for which the Jain’s iterative
rounding algorithm [9] achieves 2-approximation. The survivable network design problem
involves more complicated connectivity constraints than the generalized terminal backup
problem. Hence, study on combinatorial algorithms for the latter problem may give useful
insights for the former problem. Recently, Hirai [8] showed that LP(f, u) can be solved by a
combinatorial algorithm. Indeed, he also showed that his algorithm can be used to implement
our 4/3-approximation algorithm for the edge-connectivity terminal backup without generic
LP solvers.

Many problems related to multiflows also remain open. We have shown that an LP
solution provides a minimum cost half-integral multiflow that satisfies the flow demand
from each terminal in the edge-capacitated setting. However, how the computation should
proceed in the node-capacitated setting remains elusive. Computing a minimum cost integral
multiflow under the same constraints is yet another problem worth investigating. We note
that Burlet and Karzanov [4] solved a similar problem related to integral multiflows in the
edge-capacitated setting. Their problem differs from ours in the fact that

∑
A∈At

ψ(A) is
required to match the specified value for each terminal t.

Acknowledgements This work was partially supported by JSPS KAKENHI Grant Number
25730008. The author thanks Hiroshi Hirai for sharing information on multiflows and his
results in [8].

References

1 Elliot Anshelevich and Adriana Karagiozova. Terminal backup, 3D matching, and covering
cubic graphs. SIAM Journal on Computing, 40(3):678–708, 2011.

2 Maxim A. Babenko and Alexander V. Karzanov. Min-cost multiflows in node-capacitated
undirected networks. Journal of Combinatorial Optimization, 24(3):202–228, 2012.

3 Attila Bernáth and Yusuke Kobayashi. The generalized terminal backup problem. In SODA,
pages 1678–1686, 2014.

4 Michel Burlet and Alexander V. Karzanov. Minimum weight (T, d)-joins and multi-joins.
Discrete Mathematics, 181(1-3):65–76, 1998.

5 Boris V. Cherkassky. A solution of a problem on multicommodity flows in a network.
Ekonomika i Matematicheskie Metody, 13(1):143–151, 1977.

6 Lisa Fleischer, Kamal Jain, and David P. Williamson. Iterative rounding 2-approximation
algorithms for minimum-cost vertex connectivity problems. Journal of Computer and Sys-
tem Sciences, 72(5):838–867, 2006.

7 Hiroshi Hirai. Half-integrality of node-capacitated multiflows and tree-shaped facility loc-
ations on trees. Mathematical Programming, 137(1-2):503–530, 2013.

STACS 2015

328 Approximating the generalized terminal backup problem

8 Hiroshi Hirai. L-extendable functions and a proximity scaling algorithm for minimum cost
multiflow problem. ArXiv e-prints, November 2014.

9 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network prob-
lem. Combinatorica, 21(1):39–60, 2001.

10 Alexander V. Karzanov. A problem on maximum multifow of minimum cost. Combinatorial
Methods for Flow Problems, pages 138–156, 1979. in Russian.

11 Alexander V. Karzanov. Minimum cost multifows in undirected networks. Mathematical
Programming, 66(3):313–325, 1994.

12 László Lovász. On some connectivity properties of Eulerian graphs. Acta Mathematica
Hungarica, 28(1):129–138, 1976.

13 Alexander Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer,
2003.

On Matrix Powering in Low Dimensions
Esther Galby1, Joël Ouaknine2, and James Worrell2

1 École Normale Supérieure de Rennes, France
2 Departement of Computer Science, Oxford University, UK

Abstract
We investigate theMatrix Powering Positivity Problem, PosMatPow: given anm×m square
integer matrixM , a linear function f : Zm×m → Z with integer coefficients, and a positive integer
n (encoded in binary), determine whether f(Mn) ≥ 0. We show that for fixed dimensions m of
2 and 3, this problem is decidable in polynomial time.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases matrix powering, complexity, Baker’s theorem

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.329

1 Introduction

An important theme in theoretical computer science is the complexity of performing calcu-
lations on large (often exponential) but succinctly presented structures. Notable examples
include the analysis of various problems on succinctly represented graphs [10, 20], as well as
the study of PosSLP [2], the problem of determining whether an arithmetic circuit, with ad-
dition, multiplication, and subtraction gates, evaluates to a positive integer. Allender et al.
show that a substantial fragment of modern numerical analysis reduces in polynomial time
to PosSLP, as do several other well-known questions such as the Sum-of-Square-Roots Prob-
lem, which itself is instrumental, among others, in solving the Euclidean Travelling Salesman
Problem. Very recently, an interesting ‘challenge’ (spiritually attributed to Dyson) was pro-
posed by Lipton: find an efficient algorithm that, given an integer n, determines whether
the reversal of 2n as a decimal number is a power of 5 [13].1

In all the above examples, the central issue is that the objects in question, while succinctly
presented, are fundamentally of exponential size. In the case of PosSLP, for instance, it is
trivial to construct an arithmetic circuit whose integer output is doubly exponential in the
size of the circuit, i.e., requiring an exponential number of bits. In light of this observation,
one might conjecture that the existence of polynomial-time algorithms for performing non-
trivial calculations on such entities is generally doomed.

Perhaps surprisingly, polynomial-time algorithms can occasionally be found. For ex-
ample, by exploiting deep results in analytic number theory, Hirvensalo et al. showed in [12]
that the most significant digit in base 3 of expressions such as 2n and the nth Fibonacci
number could be computed in time polynomial in the size of n, something which at first
sight is far from obvious.

In this paper, we are concerned with the Matrix Powering Positivity Problem,
PosMatPow: given an m × m square integer matrix M , a linear function f : Zm×m → Z
with integer coefficients, and a positive integer n, determine whether f(Mn) ≥ 0. Note that

1 Here by “efficient” one requires a running time polynomial in the size, or bit length, of the representation
of n.

© Esther Galby, Joël Ouaknine, and James Worrell;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 329–340

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

330 On Matrix Powering in Low Dimensions

in general, the entries of Mn have exponentially many bits (in the size of n), even if M
is encoded in unary, so a naive calculation based (for example) on iterated squaring would
necessarily require exponential time.2

Problems involving powers of matrices appear in a wide range of contexts. For ‘small’
(i.e., unary-encoded) powers, the complexity of powering has been thoroughly investigated
in [15], and shown to lie in TC0 for any fixed dimension. The complexity of PosMatPow (for
‘large’—i.e., binary-encoded—powers) is instrumental in determining the overall complexity
of the main algorithms presented in [18, 17] to decide positivity of linear recurrence sequences
of low order. Allender et al. study the closely related problem of BitMatPow in [1] in which
one seeks to determine the value of a specified bit in a large power of a given matrix. Already
in dimension 2—and thus a fortiori in higher dimensions as well—Allender et al. provide
some evidence that BitMatPow cannot be solved in polynomial time, although it is known
to lie in the Counting Hierarchy CH.

Since the publication of Allender et al.’s seminal work [2], determining the complexity of
PosSLP has become a problem a major importance; Etessami and Yannakakis, for example,
show in [8] that the fundamental problem of finding mixed strategy profiles close to exact
Nash equilibria in three-person games is PosSLP-hard. PosSLP lies in CH [2] but is not
believed to belong to NP and much less to P. Unfortunately, no non-trivial lower bounds
for it are known at present.

PosMatPow can be shown to reduce in polynomial time to both PosSLP and BitMatPow
(increasing for the latter the dimension by 3). Thus in addition to upper complexity bounds,
lower bounds for PosMatPow would be of significant interest.

The main result of this paper is that in dimensions 2 and 3, PosMatPow can be solved
in polynomial time.3 This upper bound is achieved by attacking the problem via spectral
techniques, and making use of sophisticated tools from algebraic number theory, transcend-
ence theory, and numerical analysis. We leave as a challenging open problem the complexity
of PosMatPow in higher dimensions.

2 Preliminaries

We review some of the mathematical apparatus used throughout this paper. Since our ap-
proach is predicated on spectral techniques, the efficient manipulation of algebraic numbers
is of central importance. The reader may however wish to skip this section on a first reading
and proceed directly to Sections 3 and 4 in which the main algorithms are presented.

2.1 Algebraic Numbers and Baker’s Theorem
For p ∈ Z[x] a univariate polynomial with integer coefficients, let us denote by ||p|| the bit
length of its representation as a list of coefficients encoded in binary. Note that the degree
of p is at most ||p||, and the height of p—i.e., the maximum magnitude of its coefficients—is
at most 2||p||.

A complex number α is algebraic if it is the root of a univariate polynomial with integer
coefficients. The defining polynomial of α, denoted pα, is the unique polynomial of least

2 Note that we are working in the standard bit-model of complexity theory, rather than the unit-cost
arithmetic model in which PosMatPow (and PosSLP) would trivially be in polynomial time.

3 In dimension 3, this result requires that the base matrix M be encoded in unary. The exponent n and
linear function f are, however, always encoded in binary.

E. Galby, J. Ouaknine, and J. Worrell 331

degree, and whose coefficients do not have common factors, which vanishes at α. The degree
and height of α are respectively those of pα.

A standard representation4 for algebraic numbers is to encode α as a tuple comprising its
defining polynomial together with rational approximations of its real and imaginary parts
of sufficient precision to distinguish α from the other roots of pα. More precisely, α can be
represented by (pα, a, b, r) ∈ Z[x] × Q3 provided that α is the unique root of pα inside the
circle in C of radius r centred at a + bi. A separation bound due to Mignotte [16] asserts
that for roots α 6= β of a polynomial p ∈ Z[x], we have

|α− β| >
√

6
d(d+1)/2Hd−1 , (1)

where d and H are respectively the degree and height of p. Thus if r is required to be
less than a quarter of the root-separation bound, the representation is well-defined and al-
lows for equality checking. Given a polynomial p ∈ Z[x], it is well-known how to compute
standard representations of each of its roots in time polynomial in ||p|| [19, 7, 4]. Thus
given α an algebraic number for which we have (or wish to compute) a standard represent-
ation, we write ||α|| to denote the bit length of this representation. From now on, when
referring to computations on algebraic numbers, we always implicitly refer to their standard
representations.

Given algebraic numbers α and β, one can test whether α = β as well as membership in
R in polynomial time. One can also compute α+β, αβ, 1/α (for non-zero α), α, |α|, Re(α),
and Im(α), all of which are algebraic, in polynomial time. Moreover, if α ∈ R, deciding
whether α > 0 can also be done in polynomial time. Efficient algorithms for all these tasks
can be found in [7, 4].

We will also need the following result.

I Proposition 1. Given algebraic numbers α and β, together with an integer n ≥ 0, one
can decide whether αn = β in time polynomial in both ||α||+ ||β|| and ||n|| = dlog2 ne.

Proposition 1 can be proved directly using elementary algebraic number theory. Altern-
atively, it is an immediate consequence of the following lemma:

I Lemma 1. Let α and β be non-zero complex algebraic numbers, and consider the free
abelian group L under addition given by L = {(u, v) ∈ Z2 : αuβv = 1}. L has a basis whose
vectors are polynomially bounded in ||α||+ ||β||. Moreover, such a basis can be computed in
time polynomial in ||α||+ ||β||.

Note in the above that the bound is on the magnitude of the vectors in the basis (rather
than the bit length of their representation), which follows from a deep result of Masser [14].
For a proof of Lem. 1, see also [11, 6].

Proposition 1 now easily follows: given α and β, compute a basis B for the corresponding
free abelian group L, and decide whether (n,−1) ∈ L = span(B), which can be done
in polynomial time. For example, if L has rank 2, i.e., B = {(u1, v1), (u2, v2)} for some
integers u1, v1, u2, and v2, the problem is equivalent to determining whether there exist
integers x and y such that x(u1, v1) + y(u2, v2) = (n,−1). Since the ui’s and vi’s have
magnitude polynomial in ||α||+ ||β||, the size of this problem instance is logarithmic (hence
a fortiori polynomial) in ||α||+ ||β|| and polynomial in ||n||. Since solving linear equations
over the integers can be carried out in polynomial time, the desired result follows.

4 Note that this representation is not unique.

STACS 2015

332 On Matrix Powering in Low Dimensions

We also record the following bounds, which are immediately derived from classical ana-
lytic results on polynomials (see, e.g., [21]). For α a non-zero algebraic number of height H,
we have

1
H + 1 < α < H + 1 . (2)

If E and F are two fields such that F ⊆ E, we say that E is an extension of F and the
degree of E over F , denoted [E : F], is defined to be the dimension of E considered as a
vector space over F . The degree is multiplicative: if E is an extension of F and F is itself
an extension of L, then E is an extension of L of degree [E : L] = [E : F][F : L].

A number field is an extension of Q of finite degree. In particular, given any algebraic
numbers α1, . . . , αk, Q(α1, . . . , αk) is the number field comprising all complex numbers that
are equal to some polynomial in α1, . . . , αk with rational coefficients.

Let p ∈ Z[x] be a quadratic polynomial with roots α and β. Then [Q(α) : Q] ≤ 2
and β ∈ Q(α). On the other hand, if p is a cubic polynomial with roots α, β, and γ,
then [Q(α, β) : Q] ≤ 6 and γ ∈ Q(α, β). For K a number field with λ, λ ∈ K, we have
[K(|λ|) : K] ≤ 2 since |λ|2 = λλ. And also [K(ν) : Q] ≤ [K : Q][Q(ν) : Q] for any number
field K and algebraic number ν.

Finally, we give a version of Baker’s deep theorem on linear forms in logarithms. The
particular statement we have chosen is a sharp formulation due to Baker and Wüstholz [3].
In what follows, log refers to the principal value of the complex logarithm function given by
log z = log |z|+ i arg z, where −π < arg z ≤ π.

I Theorem 2 (Baker and Wüstholz). Let α1, . . . , αm ∈ C be algebraic numbers different from
0 or 1, and let b1, . . . , bm ∈ Z be integers. Write

Λ = b1 logα1 + . . .+ bm logαm .

Let A1, . . . , Am, B ≥ e be real numbers such that, for each j ∈ {1, . . . ,m}, Aj is an upper
bound for the height of αj, and B is an upper bound for |bj |. Let d be the degree of the
number field Q(α1, . . . , αm) over Q. Then if Λ 6= 0,

log |Λ| > −(16md)2(m+2) logA1 . . . logAm logB .

2.2 Matrix Powers and Linear Recurrence Sequences
We recall some basic facts about linear algebra and linear recurrence sequences. An excellent
reference on the latter is [9].

Let M ∈ Zm×m be a square integer matrix of dimension m. In this paper, we work
with a binary encoding of M in two dimensions, and with a unary encoding of M in three
dimensions. Both encodings are denoted ||M ||, relying on context for disambiguation.

In two dimensions (with binary encoding), we note that eigenvalues of M have degree at
most 2 and height at most 22||M ||.

In three dimensions (with unary encoding), eigenvalues of M have degree at most 3 and
height at most ||M ||3.

Let f : Zm×m → Z be a linear function with integer coefficients: f(x1, . . . , xm2) =
b1x1 + . . . + bm2xm2 for integers b1, . . . , bm2 . Since m-dimensional square integer matrices
can be viewed as m2-tuples of integers, we shall assume a fixed order for entries and freely
apply such functions to square matrices. We always encode f as a list of its coefficients in
binary, and denote the size of this encoding by ||f ||.

E. Galby, J. Ouaknine, and J. Worrell 333

Let p(x) = xm − a1x
m−1 − . . . − am be the characteristic polynomial of M . For any

k ≥ 0, let uk = f(Mk). Then the sequence 〈uk〉∞k=0 is an integer linear recurrence sequence
(LRS) obeying the recurrence

uk+m = a1uk+m−1 + . . .+ amuk . (3)

Indeed, since Mm−a1M
m−1− . . .−amI = 0 by the Cayley-Hamilton theorem, multiplying

this equation by Mk, applying f on both sides and invoking linearity yields Eq. (3).
The characteristic polynomial of this LRS is p, hence the characteristic roots are the

eigenvalues of M . Let us write

spec(M) = {ρ1, . . . , ρ`, λ1, λ1, . . . , λp, λp} ,

where each ρi ∈ R and each λj ∈ C \ R. There are now univariate polynomials A1, . . . , A`
and C1, . . . , Cp such that, for all n ≥ 0,

uk =
∑̀
i=1

Ai(k)ρki +
p∑
j=1

(
Cj(k)λkj + Cj(k)λj

k
)
. (4)

This expression is referred to as the exponential polynomial solution of 〈uk〉∞k=0. The poly-
nomials Ai have real algebraic coefficients and the polynomials Cj have complex algebraic
coefficients. The degree of each of these polynomials is at most one less than the multiplicity
of the corresponding eigenvalue; thus in particular, these polynomials are identically con-
stant when M has no repeated eigenvalue. For fixed m, all coefficients appearing in these
polynomials can be computed in time polynomial in ||〈f,M〉|| (whetherM is encoded in bin-
ary or unary),5 since they can be obtained by solving a system of linear equations involving
the m constants u0, . . . , um−1. As a result, these coefficients all belong to Q(spec(M)), and
their height (qua algebraic numbers) is bounded above by 2O(||〈f,M〉||) (again regardless of
whether M is encoded in binary or unary).

2.3 Approximation Algorithms for Transcendental Functions
Finally, we recall some classical numerical algorithms which are later invoked to efficiently
compute approximations of transcendental functions applied to algebraic numbers.

Given a real number t and a positive integer m, we say that q ∈ Q is an m-bit approx-
imation of t if |t − q| < 2−m. We also sometimes refer to the calculation of such a q as
“computing m bits of t”, even though strictly speaking this form of words is not perfectly
accurate.

I Proposition 2.
1. There exists an algorithm which takes as input a real algebraic number ρ > 0, together

with a positive integerm, and returns anm-bit approximation of log ρ in time polynomial
in both ||ρ|| and m.

2. There exists an algorithm which takes as input two non-zero real algebraic numbers a and
b, together with a positive integer m, and returns an m-bit approximation of arctan b/a
in time polynomial in both ||a||+ ||b|| and m.

3. There exists an algorithm which takes as input a positive integer m and returns an m-bit
approximation of π in time polynomial in m.

5 We write ||〈f, M〉|| to denote the size of the joint encoding of f and M .

STACS 2015

334 On Matrix Powering in Low Dimensions

Proposition 2 follows from classical approximation results for transcendental functions
due to Brent [5], together with the fact that we can compute approximations of algebraic
numbers with polynomially many bits in polynomial time (see, e.g., [19]). Below we sketch
the process for (1) of Prop. 2, relying on the following result.

I Theorem 3 (Brent). For any fixed real numbers 0 < a < b, there exists an algorithm
which, given an integer p ≥ 0, evaluates log x in time O(p log2 p log log p), with relative
error at most O(2−p), uniformly for all x ∈ [a, b].

Let ρ and m be as in Prop. 2 (1), and denote the height of ρ by H, recalling that
H ≤ 2||ρ||. By Eq. (2), we have ρ > 1/(H + 1), and for simplicity assume that ρ < 1; the
alternative can be handled in a similar manner as what follows. We now aim to select a
positive integer k with certain properties, to be listed in the remainder of this proof; we will
then choose a specific value for k later on in such a way as to discharge all our assumptions.

The first requirement is that k be at most polynomial in ||ρ|| and m. Next, compute
r ∈ Q with 1/(2H) < r ≤ ρ such that ρ− r < 2−k; this can be achieved in time polynomial
in k by computing polynomially many bits of ρ. Fix the interval [a, b] = [2, 4] in Thm. 3
and find j ∈ N such that 2jr ∈ [2, 4]. Thanks to our lower bound on r such j is at most
polynomial in ||ρ|| and can be obtained in polynomial time.

We now invoke Thm. 3 to compute u ∈ Q such that |u− log 2jr|
log 2jr <

1
2m+3 in time

polynomial inm. Since log 2jr ≤ log 4 < 2, we have |v−log r| < 2−m−2, where v = u−j log 2.
By invoking Thm. 3 once more, we can compute v′ ∈ Q in time polynomial in m such that
|v′ − v| < 2−m−2, whence |v′ − log r| < 2−m−1.

Since the derivative of log x at point r is r−1, we conclude that | log ρ− log r| < r−12−k.
If we make the additional requirement on k that r−12−k < 2−m−1, we can combine with our
previous inequality to obtain |v′− log ρ| < 2−m, yielding an m-bit approximation of log ρ as
required.

Finally, it remains to show that k ∈ N can be chosen so as to meet our various assump-
tions, a straightforward task which we leave to the reader.

3 The Two-Dimensional Matrix Powering Positivity Problem

The main result of this section is the following:

I Theorem 4. In two dimensions, PosMatPow (with full binary encoding) is decidable in
polynomial time.

Proof. Consider an instance of the two-dimensional Matrix Powering Positivity Problem,
comprising a linear function f : Z4 → Z, a 2 × 2 integer matrix M , and an integer n ≥ 0.
Assume that all this data is encoded in binary and denote by ||〈f,M, n〉|| the size of the
instance. We wish to decide in polynomial time whether f(Mn) ≥ 0. To this end, we
consider the sequence uk = f(Mk) and study the exponential polynomial solution (Eq. 4)
in which two cases arise: either (i) both eigenvalues of M are real (including the possibility
of a single repeated real eigenvalue), or (ii) both eigenvalues are complex conjugates. In the
latter, it is worth pointing out that the sign of the sequence will forever fluctuate.

In Case (i), let ρ1, ρ2 ∈ R be the eigenvalues of M . We distinguish two subcases depend-
ing on the multiplicity of ρ1. If ρ1 is repeated (i.e., ρ1 = ρ2), then for all k ≥ 0,

uk = (ak + b)ρk1

E. Galby, J. Ouaknine, and J. Worrell 335

where a and b are two real algebraic constants; recall moreover from Sec. 2.2 that ρ1, a,
and b can all be computed in polynomial time, and have representations of size linear in
||〈f,M〉||.

Assuming that a 6= 0 (the treatment being straightforward otherwise), it is easy to see
that uk has the same sign as

bρk1 , when k < −b/a
aρk1 , when k > −b/a .

Note that for −b/a ∈ N, u−b/a = 0. It therefore remains to compare n to −b/a. Since
arithmetic and inequality testing on algebraic numbers can be performed in polynomial
time, the desired result follows.

Now assume that ρ1 6= ρ2. Then we can compute two real algebraic constants a and b
such that for all k ≥ 0,

uk = aρk1 + bρk2 .

If any of ρ1, ρ2, a, or b is zero, the solution is immediate. Thus assume otherwise and
consider the sequence

uk
ρk1

= a+ b

(
ρ2

ρ1

)k
.

We check whether un is zero for our given exponent n, or equivalently whether (ρ2/ρ1)n =
−a/b; by Prop. 1, this can be done in polynomial time. Otherwise, we have un/ρn1 > 0 iff

b

(
ρ2

ρ1

)n
> −a . (5)

Assume without loss of generality that the expressions on both sides of the inequality are
positive (something which is readily checked). Then Eq. (5) holds iff

log |b|+ n log |ρ2| − n log |ρ1| > log |a| .

In other words, the sign of the expression

Λ = log |b|+ n log |ρ2| − n log |ρ1| − log |a|

determines that of un (modulo the sign of ρn1). Note that ρ1, ρ2, a, b ∈ Q(ρ1), so that the
number field Q(|b|, |ρ1|, |ρ2|, |a|) has degree 2 over Q. Moreover, we can easily compute an
upper bound H on the heights of ρ1, ρ2, a, and b, such that log(H) = O(||〈f,M〉||). By
Baker’s theorem (Thm. 2), we then have

|Λ| > exp
(
−(16 · 4 · 2)2(4+2)(logH)4 log n

)
= 1
n12812(logH)4 = 1

n||〈f,M〉||O(1) .

Thus in order to determine the sign of Λ, it suffices to compute ||〈f,M〉||O(1) log2 n =
||〈f,M, n〉||O(1) bits of Λ, i.e., a polynomial number of bits in the size of our problem instance
〈f,M, n〉. By Prop. 2, ||〈f,M, n〉||O(1)-bit approximations of log |b|, log |ρ2|, log |ρ1|, and
log |a| can be obtained in polynomial time, whence the desired result follows.

We now turn to Case (ii), in which M has two complex eigenvalues λ and λ. We have,
for all k ≥ 0, uk = cλk + cλ

k, where c is a complex algebraic constant. Equivalently, letting
θ = arg λ and ϕ = arg c, we can write

uk = |c||λ|k cos(kθ + ϕ) . (6)

STACS 2015

336 On Matrix Powering in Low Dimensions

Note that cos(nθ + ϕ) = 0 iff (eiθ)n = ei(−ϕ±π/2). Since eiθ and eiϕ are algebraic numbers
with size linear in ||〈f,M〉||, by Prop. 1 the latter can be checked in time polynomial in
||〈f,M, n〉||.

Let us therefore assume that un 6= 0 for our given exponent n. We aim to bound (in
absolute value) the expression nθ + ϕ away from ±π/2 (modulo 2π). To this end, write

Γ = arg ei(nθ+ϕ) = nθ + ϕ− 2mπ ,

where m is the unique integer such that −π < Γ ≤ π. The delicate situation is now if Γ is
‘close’ to ±π/2. If that is not the case (for instance, if ||Γ| − π/2| > 0.1, say), then one can
readily compute the sign of cos(nθ + ϕ), and therefore that of un, in polynomial time. On
the other hand, if Γ is close to ±π/2 (for instance, if ||Γ| − π/2| < 0.5, say), then one can
readily determine the sign of Γ. Assume that we are in the latter situation, and without
loss of generality suppose that Γ > 0. Write

Λ = π

2 − Γ = 1
i

(
n log λ

|λ|
+ log c

|c|
+ (1− 4m) log i

)
,

and let H be an upper bound for the heights of λ/|λ| and c/|c|. Note that the degree of
Q(λ, |λ|, c, |c|, i) over Q is at most 16. Since |1 − 4m| ≤ 2n + 1, if follows from Baker’s
theorem that

|Λ| > exp
(
−76810(logH)2 log(2n+ 1)

)
= 1

(2n+ 1)76810(logH)2 = 1
n||〈f,M〉||O(1) , (7)

since log(H) = O(||〈f,M〉||).
Thanks to Eq. (6) and the definition of Γ, the quantities un, cos(nθ+ϕ), and cos(Γ) have

the same sign. Since we are assuming that 0 < Γ ≤ π, it follows that cos(Γ) and Λ have the
same sign as well. By Eq. (7), the sign of Λ (and therefore that of un) can be determined by
computing ||〈f,M〉||O(1) log2 n = ||〈f,M, n〉||O(1) bits of Λ, which can be done in polynomial
time thanks to Prop. 2, by noting that for any algebraic α ∈ C \ {i,−i} of modulus 1, logα
can be obtained by computing arctan(Im(α)/Re(α)).

This concludes the proof of Thm. 4. J

4 The Three-Dimensional Matrix Powering Positivity Problem

We now move to three dimensions. We are given a linear function f : Z9 → Z, a 3×3 integer
matrix M , and an integer n ≥ 0. We assume that the base matrix M is encoded in unary,
whereas the function f and exponent n are encoded in binary. Note in particular that this
includes the important special case in which the base data 〈f,M〉 is fixed.

Our main result is as follows:

I Theorem 5. In three dimensions, PosMatPow (with unary encoding of the base matrix
and binary encoding of the linear function and of the exponent) is decidable in polynomial
time.

Proof. Let 〈f,M, n〉 be as above. We seek to determine whether f(Mn) ≥ 0.
As before, write uk = f(Mk). Our strategy is to exhibit a bound N , of magnitude

polynomial in ||〈f,M〉||, such that the sign of uk is easily determined for k ≥ N . Note on
the other hand that, if n < N , then one can simply compute un outright in polynomial time.

We split our analysis into two main cases: (i) either M only has real eigenvalues, or
(ii) two of M ’s eigenvalues are complex conjugates.

E. Galby, J. Ouaknine, and J. Worrell 337

In Case (i), let ρ1 be a real dominant eigenvalue of M . We focus on the hardest instance,
in which ρ1 has multiplicity 1; the other two alternatives are considerably simpler and can
be handled similarly.

Let ρ2 be a second real eigenvalue of M . Here, the critical case is when ρ2 is repeated;
the (easier) alternative can again be handled in similar fashion, and is therefore omitted.

We can thus write

uk = aρk1 + (bk + c)ρk2 , (8)

where we assume that a 6= 0. Observe that since M is encoded in unary, one has an ||M ||3
upper bound for the maximum height H of the eigenvalues ρ1 and ρ2. Likewise, the real
algebraic numbers 1/a, b, and c all have representations of size linear in ||〈f,M〉||, and
therefore have magnitude at most 2O(||〈f,M〉||).

Note that if ρ2 and ρ1 have the same modulus, then ρ2 = −ρ1 and the treatment is
straightforward; we therefore assume that |ρ2| < |ρ1|. Since both ρ1 and ρ2 have degree
at most 3, Mignotte’s root-separation bound (Eq. 1) entails that |ρ2| = |ρ1| − δ, where
δ = Ω(H−2).

Let γ = ρ2/ρ1. Equation (8) can be rewritten as
uk
ρk1

= a+ (bk + c)γk . (9)

We also have

|γ| = |ρ2|
|ρ1|

= |ρ1| − δ
|ρ1|

= 1− δ

|ρ1|
.

By Eq. (2), |ρ1| ≤ H + 1, from which we immediately conclude that |γ| = 1 − ε, where
1/ε = O(H3) = O(||M ||9). We now aim to establish a bound N of magnitude polynomial
in ||〈f,M〉|| such that, for k ≥ N ,

|a| >
∣∣(bk + c)γk

∣∣ . (10)

By Eq. (9), the sign of uk is then automatically obtained for any k beyond N .
From the inequality log(1 − ε) < −ε, we have |γ| = 1 − ε < e−ε. In order for Eq. (10)

to hold, it therefore suffices to have |a| > |bk + c|e−kε. Letting x = kε, this translates
to ex > |(bx/ε + c)/a|. Thanks to our bounds on |1/a|, |b|, |c|, and 1/ε, we can find
B = 2O(||〈f,M〉||) such that |(bx/ε + c)/a| ≤ Bx for all x ≥ 1. Now clearly the inequality
ex > Bx holds provided that x ≥ 2 logB, or equivalently that k ≥ (2 logB)/ε. Letting
N = d(2 logB)/εe = ||〈f,M〉||O(1) and putting everything together, we see that Eq. (10)
holds for k ≥ N , as required.

We now turn to Case (ii), in which M has two complex conjugate eigenvalues λ and λ,
and one real eigenvalue ρ. For all k ≥ 0, we have

uk = aρk + cλk + cλ
k
, (11)

for some algebraic constants a ∈ R and c ∈ C. As before, ρ and λ have height bounded
by ||M ||3, whereas a and c have height bounded by 2O(||〈f,M〉||). Moreover λ has degree at
most 3 and ρ, a, c ∈ Q(λ, λ).

If |ρ| > |λ|, we can proceed straightforwardly through a growth argument akin to that
invoked in Case (i) above, whereas if |ρ| = |λ|, the situation is very similar to Case (ii) of
the two-dimensional instance of the problem, handled in the previous section, and can be
dealt with in like fashion. We therefore focus on the situation in which |ρ| < |λ|.

STACS 2015

338 On Matrix Powering in Low Dimensions

Let θ = arg λ and ϕ = arg c. Equation (11) then becomes

uk = aρk + |c||λ|k cos(kθ + ϕ) .

Writing γ = ρ/|λ|, we have

uk
|c||λ|k

= a

|c|
γk + cos(kθ + ϕ) , (12)

and as before, |γ| = 1− ε, where 1/ε = O(||M ||9).
As in the two-dimensional case, we can check in polynomial time whether cos(nθ+ϕ) = 0,

in which case the sign of un is readily determined. Otherwise, write Γ = nθ + ϕ − 2mπ,
with m ∈ Z such that −π < Γ ≤ π, and as before, without loss of generality, assume that
Γ is ‘close’ to π/2, the other cases being either straightforward or handled similarly. Write
Λ = π/2− Γ, and note that

cos(nθ + ϕ) = cos Γ = sin Λ and | sin Λ| > |Λ|2 . (13)

We have

Λ = 1
i

(
n log λ

|λ|
+ log c

|c|
+ (1− 4m) log i

)
.

Since λ has degree at most 3, the degree of Q(λ, λ, |λ|, c, |c|, i) over Q is at most 48. Moreover,
we can bound the height of λ/|λ| and c/|c| by some H with logH = O(||〈f,M〉||). Finally,
we note that |1− 4m| ≤ 2n+ 1. Applying Baker’s theorem, we get

|Λ| > exp
(
−230410(logH)2 log(2n+ 1)

)
= 1

(2n+ 1)230410(logH)2 = 1
n||〈f,M〉||O(1) . (14)

It follows from Eqs. (13) and (14) that there is an absolute constant T ∈ N such that

| cos(nθ + ϕ)| > 1
n||〈f,M〉||

T . (15)

We now aim to establish a bound N of magnitude polynomial in ||〈f,M〉|| such that, if
n ≥ N , then∣∣∣∣ a|c|γn

∣∣∣∣ < | cos(nθ + ϕ)| . (16)

Thanks to Eq. (12), in that case the sign of un is the same as that of cos(nθ + ϕ), and in
turn the latter can be determined in polynomial time following the procedure outlined in
Case (ii) of the two-dimensional instance of the problem, thanks to Eq. (14). On the other
hand, if n < N , we simply note that un can then be computed outright in polynomial time.

By Eq. (15), and recalling that |γ| = 1− ε, it is sufficient for Eq. (16) to hold to have

|a|
|c|

(1− ε)n < 1
n||〈f,M〉||T

,

or equivalently (noting that log(1− ε) < 0),

n > −||〈f,M〉||
T

log(1− ε) log n− log(|a|/|c|)
log(1− ε) .

E. Galby, J. Ouaknine, and J. Worrell 339

Multiplying the above equation by 2 and writing 2n = n+ n, it is then sufficient for both

n > −2 ||〈f,M〉||
T

log(1− ε) log n and (17)

n > −2 log(|a|/|c|)
log(1− ε) (18)

to hold.
For any Q ≥ 1, one has Q > 2 logQ, thus Q2 > Q log(Q2). In other words, x > Q log x

for x = Q2. But by comparing derivatives at the point x = Q2, we see that the inequality
x > Q log x holds for all x ≥ Q2. Writing

Q = −2 ||〈f,M〉||
T

log(1− ε) ,

we see that Eq. (17) holds provided n ≥ Q2. Since 1/ε = O(||M ||9) and | log(1− ε)| > ε, we
immediately have Q2 = ||〈f,M〉||O(1).

Next, let H be the maximum of the heights of a and c, noting that logH = O(||〈f,M〉||).
By Eq. (2), |a| < H + 1 and |c| > 1/(H + 1), whence

Q′ =
∣∣∣∣−2 log(|a|/|c|)

log(1− ε)

∣∣∣∣ = ||〈f,M〉||O(1) .

It follows that by letting N = max{dQ2e, dQ′e}, both Eqs. (17) and (18) hold provided
that n ≥ N , as required.

This concludes the proof of Thm. 5. J

5 Concluding Remarks

It is worth noting that our results can be extended in a fairly minor way, by considering
matricesM and linear functions f with rational entries and coefficients: indeed, the rational
formulation of PosMatPow reduces straightforwardly to its integer counterpart at the cost
of a polynomial blowup in size.

Further extensions however appear elusive under the present framework. In the three-
dimensional case, for instance, encoding the base matrix in binary would not yield a suffi-
ciently large spectral gap (difference in magnitude between the largest and second-largest
eigenvalues) for our present approach to go through; more specifically, the value of N re-
quired so that Eq. (10) hold would then potentially be exponential, thereby not leading to
a polynomial-time algorithm. In four dimensions or higher, the situation worsens: we do
not know how to produce a polynomial-time algorithm even for fixed base data M and f .
A critical case is encountered when there are four or more dominant complex eigenvalues,
ostensibly precluding the use of Baker’s theorem.

The reader will have noticed the presence of various ‘galactic’ constants appearing in the
analysis of our algorithms, and perhaps conclude that the approach we have laid out is un-
likely to be feasible in practice. It is worth noting, however, that our analysis merely serves to
establish (large) polynomial-time upper bounds, without any expectation that such bounds
need be tight. On the contrary, we conjecture that the proposed approach, under careful
implementation and engineering, would prove quite efficient in practice. Substantiating this
empirically might however be expected to require non-trivial efforts.

STACS 2015

340 On Matrix Powering in Low Dimensions

References
1 E. Allender, N. Balaji, and S. Datta. Low-depth uniform threshold circuits and the bit-

complexity of straight-line programs. Elec. Coll. on Comput. Complex., 177(1), 2013.
2 E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity

of numerical analysis. SIAM J. Comput., 38(5), 2009.
3 A. Baker and G. Wüstholz. Logarithmic forms and group varieties. Jour. Reine Angew.

Math., 442, 1993.
4 S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, 2nd

edition, 2006.
5 R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. ACM, 23(2),

1976.
6 J.-Y. Cai, R. J. Lipton, and Y. Zalcstein. The complexity of the A B C problem. SIAM J.

Comput., 29(6), 2000.
7 H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993.
8 K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed

points (extended abstract). In Proceedings of FOCS. IEEE Computer Society, 2007.
9 G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence Sequences. Amer-

ican Mathematical Society, 2003.
10 H. Galperin and A. Wigderson. Succinct representations of graphs. Inf. Control, 56(3),

1983.
11 G. Ge. Algorithms Related to Multiplicative Representations of Algebraic Numbers. PhD

thesis, U.C. Berkeley, 1993.
12 M. Hirvensalo, J. Karhumäki, and A. Rabinovich. Computing partial information out of

intractable: Powers of algebraic numbers as an example. Jour. Number Theory, 130, 2010.
13 R. J. Lipton. A challenge from Dyson. Blog entry, September 2014.

http://rjlipton.wordpress.com/2014/09/09/a-challenge-from-dyson/.
14 D. W. Masser. Linear relations on algebraic groups. In New Advances in Transcendence

Theory. Cambridge University Press, 1988.
15 C. Mereghetti and B. Palano. Threshold circuits for iterated matrix product and powering.

Theoret. Informatics Appl., 34(1), 2000.
16 M. Mignotte. Some useful bounds. In Computer Algebra, 1982.
17 J. Ouaknine and J. Worrell. On the positivity problem for simple linear recurrence se-

quences. In Proceedings of ICALP, number 8573 in Springer LNCS, 2014.
18 J. Ouaknine and J. Worrell. Positivity problems for low-order linear recurrence sequences.

In Proceedings of SODA. SIAM, 2014.
19 V. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Com-

puters & Mathematics with Applications, 31(12), 1996.
20 C. H. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs.

Inf. Control, 71(3), 1986.
21 Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. London Mathematical

Society monographs. Oxford University Press, 2002.

The Complexity of Recognizing Unique Sink
Orientations
Bernd Gärtner and Antonis Thomas

Department of Computer Science,
Institute of Theoretical Computer Science, ETH Zürich
8092 Zürich, Switzerland
{gaertner,athomas}@inf.ethz.ch

Abstract
Given a Boolean Circuit with n inputs and n outputs, we want to decide if it represents a Unique
Sink Orientation (USO). USOs are useful combinatorial objects that serve as abstraction of many
relevant optimization problems. We prove that recognizing a USO is coNP-complete. However,
the situation appears to be more complicated for recognizing acyclic USOs. Firstly, we give a
construction to prove that there exist cyclic USOs where the smallest cycle is of superpolynomial
size. This implies that the straightforward representation of a cycle (i.e. by a list of vertices)
does not make up for a coNP certificate. Inspired by this fact, we investigate the connection of
recognizing an acyclic USO to PSPACE and we prove that the problem is PSPACE-complete.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases complexity, recognizing, unique sink orientations, coNP, PSPACE

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.341

1 Introduction

Over the past 15 years, unique sink orientations (USO) have intensively been studied as
simple and appealing combinatorial models for many concrete optimization problems. After
their introduction by Stickney and Watson in the context of mathematical programming [16],
USOs had been forgotten for more than 20 years, before Szabó and Welzl rediscovered them
from a computational geometry angle [17]. Subsequently, the structural, algorithmic, and
combinatorial aspects of USOs were investigated; new applications were found, in particular
in the area of mathematical programming where the concept originally comes from. We refer
the interested reader to Foniok at al. [4] and the references therein.

A USO is an orientation of the n-dimensional hypercube graph, with the property that
every face of dimension d ∈ {0, 1, . . . , n} induces a subgraph with a unique sink. In particular,
there is a unique global sink, and the algorithmic problem is to find it.

In all known applications, the USO is given in succinct representation, i.e. there is an
oracle that returns for a given vertex the orientations of the incident edges, and the question
is how many oracle calls are necessary in order to find the global sink. The oracle itself can
typically be implemented by a polynomial-time algorithm.

For a concrete such application, consider the problem of finding the smallest enclosing
ball B(P) of a set P of n affinely independent points in Rn−1. Every subset Q ⊆ P

naturally corresponds to a vertex of the hypercube, and we have a directed edge from Q to
Q ∪ {p}, p /∈ Q, if and only if p is outside of b(Q), the smallest ball that has all points of Q
on its boundary. This ball b(Q) is easy to compute by solving a system of linear equations,
so we have a polynomial-time oracle at our disposal. Moreover, the global sink S has the

© Bernd Gärtner and Antonis Thomas;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 341–353

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.341
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

342 The Complexity of Recognizing Unique Sink Orientations

property that b(S) = B(P), hence finding the global sink solves our geometric problem. The
USO approach also works for the more general problem of finding the smallest enclosing ball
of a set of balls [3], for general linear programs (LP) [8], and—this is the original application
by Stickney and Watson— for P-matrix linear complementarity problems (PLCP) [16].

None of these problems have known strongly polynomial-time algorithms (i.e. polynomial
in the real RAM model of computation); for PLCP, even weakly polynomial-time algorithms
are not known. This would change if we could find the sink of an n-dimensional USO with a
number of oracle calls that is polynomial in n.

Currently, we cannot, and it even seems somewhat stupid to further generalize problems
that are already difficult. On the other hand, for some of the above concrete problems,
the USO approach does yield the currently best known algorithms. Most notably, this is
the case for a relevant class of LP in the RAM model [8], and for PLCP in general [17].
This clearly shows the usefulness of the USO abstraction, and the elegant combinatorial
algorithms obtained in this abstraction [17].

Our contribution

In this paper, we study USO from a novel angle. While previous research mostly addresses the
algorithmic problem of finding the global sink in a USO, we deal with the more fundamental
problem of recognizing a USO, given in succinct representation. Concretely, we are interested
in the computational complexity of deciding whether a succinct oracle indeed specifies a
USO. In order to fit this problem into standard complexity theory, we assume that the oracle
is implemented by a succinct Boolean circuit that in turn forms the input for the decision
problem. Such a circuit has n input and n outputs, where n is the dimension of the USO; it
is customary to use Boolean circuits in describing graphs succinctly (cf. [5]). By succinct, we
mean that the size of the circuit is polynomial in n. We prove the following two main results.

1. It is coNP-complete to recognize USO, given in succinct Boolean circuit representation.
2. It is PSPACE-complete to recognize acyclic USO (AUSO), given in succinct Boolean

circuit representation.

Here, an AUSO is a USO without any directed cycles. These results may come as a surprise,
given that the algorithmic problem seems to be easier in the acyclic case: the best known
(randomized) algorithm for finding the sink in an AUSO requires only a subexponential number
of exp(2

√
n) oracle calls [6]. For general USO, the best randomized bound is O(1.438n) [18].

Our results in particular show that there are simple certificates for non-USOs, but
probably not for non-AUSOs. We explicitly show with a family of examples that the list of
vertices on a directed cycle is not an efficient certificate for a non-AUSO, because such a
list may have to be superpolynomially long. The construction works over an interesting and
easy-to-analyze subclass of USOs (flip matching orientations) and is of independent interest.

The applications we advertise above reduce to digraphs that are guaranteed to be (A)USOs.
Still, the complexity of recognizing an (A)USO from a succinct description is interesting
from a theoretical viewpoint. In fact, similar theoretical results from the past include the
recognizability of a P-Matrix, which is proved coNP-complete in [2]. Even though from
applications (e.g. solving simple stochastic games [7]) we do get P-Matrices, the question of
recognizability is still relevant.

The study of computational problems on graphs that are represented in an exponentially
succinct way, through Boolean circuits, has been initiated by Galperin and Wigderson [5].
They proved that a number of trivial graph properties become NP-hard when the input
of the graph is given in such a succinct way. Subsequently, Papadimitriou and Yannakakis

B. Gärtner and A. Thomas 343

[13] proved that, under the same representation, problems that are NP-complete when the
graph is given explicitly become NEXP-hard. Finally, in [1], Balcázar et al. prove that it
is PSPACE-hard to decide several fundamental properties in succinct graphs, such as the
existence of an Eulerian circuit and of a path connecting two given nodes.

The paper is organized as follows. Firstly, we introduce the concepts and the notation
we use, in Section 2, together with three lemmas, from the work of Schurr and Szabó [15],
that we use in our constructions. In Section 3 we prove coNP-completeness of the USO
recognition problem. The coNP membership is implicit already in the work of Szabó and
Welzl [17], and hardness will follow by a simple reduction from SAT. Section 4 shows that the
canonical NO-certificate for the AUSO recognition problem—an explicit list of vertices on a
directed cycle—cannot be used to establish coNP membership. To this end, we explicitly
construct an n-dimensional USO with a unique directed cycle of length Ω(2n/3). Section 5
reveals the deeper reason for the failure of the cycle certificate, namely that the AUSO
recognition problem is PSPACE-complete. For PSPACE membership, we use standard
results from complexity theory and the theory of succinct graphs; our main contribution is
PSPACE hardness, proved via a reduction from satisfiability of quantified Boolean formulas.

2 Preliminaries

We use the notation [n] = {1, . . . n}, and [i : j], i < j, for [i : j] = {i, . . . , j}. Let
Qn = {0, 1}n, which we also interpret as the set of vertices of the n-dimensional hypercube.
Let ψ : Qn → Qn be a Boolean function. Moreover, let Cψ be a Boolean circuit with n

inputs and n outputs that represents ψ. There is an explicit ordering on the coordinates and
with xi and ψ(x)i we denote the ith coordinate of the corresponding bitstring, where the first
one is the rightmost. Here we use the term bitstring to refer to a ordered string of binary
bits. When the subscript is a set, e.g. x[k] or ψ(x){2,3}, we mean the bitstring resulting from
taking only the coordinates that appear in the subscript. Moreover, we use superscripts
to differentiate different functions or different bitstrings, e.g. x1, x2 represent two different
bitstrings and ψ1, ψ2 two different Boolean functions. With the notation xi we mean 1− xi.
Given two bitstrings x, y, with x · y we denote their concatenation. Given x ∈ Qn we define
the neighborhood of x as N (x) = {y ∈ Qn|x and y are at Hamming distance 1}.

Let I ∈ 2[n] and v ∈ Qn. A face of the hypercube, FI,v, is defined as the set of
vertices that are reached from v by flipping the coordinates defined by any subset of I, i.e.
FI,v = {u ∈ Qn|ui = vi, ∀i /∈ I}. The dimension of the face is |I|. We call edges the faces of
dimension 1, e.g. F{i},x, and vertices the faces of dimension 0.

We say that ψ : Qn → Qn represents an orientation when ∀i ∈ [n] and ∀x ∈ Qn we have
that ψ(x)i 6= ψ(x′)i, where F{i},x = {x, x′}, i.e. the orientation of every edge is consistent
from both sides. Given an orientation ψ and a vertex x ∈ Qn, we call ψ(x) the outmap of
x and we call ψ, simply, the outmap. With Gψ = (Qn, En) we mean the digraph of the
hypercube where the edges are oriented according to the outmap. That means that the
edge on coordinate i is outgoing for vertex x if and only if ψ(x)i = 1 (cf. Figure 1). Given
an orientation ψ of Qn, a vertex x ∈ Qn and an incident edge F{i},x we say that the edge
is oriented backwards if ψ(x)i = xi and is oriented forwards if ψ(x)i = xi. For example,
consider vertex 001 in Figure 1: the incident edges on coordinates 1 and 3 are forwards
while the one on coordinate 2 is backwards. With ψUF we denote the orientation such that
ψUF(x) = x, for all x ∈ Qn. This is orientation is called uniform forwards (all edges are
forwards); similarly, the orientation defined by ψUB(x) = x, for all x ∈ Qn, is called uniform
backwards.

I Definition 1. A unique sink orientation (USO) is an orientation of the hypercube where

STACS 2015

344 The Complexity of Recognizing Unique Sink Orientations

1

2
3

vertex outmap
000

010
011

001
100

110
111

101

vertex outmap
111
100
001
110

010
011
101
000000 001

Figure 1 An example of a cyclic USO (the vertices participating in the cycle are highlighted
as discs). In the left part we give an illustration of the USO graph Gψ (we explicitly indicate the
vertices 000 and 001) and in the right part we give explicitly the Boolean function ψ : Q3 → Q3.
In this paper we draw USOs by depicting a number of faces (in this case the 2-dimensional faces)
and show the orientation of the edges that connect those. The numbers show the ordering of the
coordinates. An arc like the one with label 3 means that all edges on the 3rd coordinate are directed
likewise. The dashed arc (also on coordinate 3) means that the specific edge (in this case F{3},010)
is reversed w.r.t. to the the orientation suggested by the (non-dashed) arc labeled 3.

the subgraph induced by every non-empty face has a unique sink.

The existence of a unique sink implies the analogous unique source [17]. As the whole
hypercube is a face of itself that means that there is a unique sink (and source) for the
whole hypercube, which we call global. We say that ψ or Cψ represents a USO if the output
corresponds to the outmap of a USO and thus Gψ is a USO. The outmap of a USO is a
bijection [17]. If, in addition Gψ is acyclic, then we call it an acyclic USO (AUSO).

Finally, we give three lemmas from the work of Schurr and Szabó [15] that we use for our
constructions. We rephrase the lemmas to use the notation used in the current paper. The
first gives us tools to expand a USO to one with more coordinates. The interpretation we
use in this paper is that we can take a k1-dimensional USO and embed in every vertex an
k2-dimensional USO; the end-product is a (k1 + k2)-dimensional USO, which is acyclic if all
involved USOs are acyclic. Note that Lemma 2, as presented in [15], is slightly more general
than here; we direct the reader to [15] for full generality.

I Lemma 2 ([15], Lemma 3). Let k1, k2 ∈ N and let ψ : Qk1 → Qk1 represent a USO. Let
the Boolean functions ψu : Qk2 → Qk2 , for each u ∈ Qk1 , also represent USOs. Consider the
Boolean function ψ′ : Qn → Qn, where n = k1 + k2. Let x ∈ Qn; we define ψ′ by

ψ′(x) = ψ(x[k2+1:n]) · ψx[k2+1:n](x[k2]).

ψ′ represents a USO. Furthermore, if ψ and all ψu are acyclic, then so is ψ′.

The second lemma says that we are allowed to orient the edge that connects two neighboring
vertices x1, x2 any way we like and still have a USO, as long as the outmaps of the two
vertices are exactly the same in every coordinate that is not the one of the incident edge.

I Lemma 3 ([15], Corollary 6). Let ψ : Qn → Qn represent a USO. Let x1, x2 ∈ F{i},x1 ⊆ Qn,
such that ψ(x1)[1:n]\{i} = ψ(x2)[1:n]\{i}. Then, ψ′ : Qn → Qn with ψ′(x) = ψ(x), for all
x ∈ Qn except ψ′(x1)i = ψ(x1)i and ψ′(x2)i = ψ(x2)i also represents a USO.

The third gives lemma describe a constructive process to get an acyclic USO where we can
choose which vertex is the global sink and which vertex is the global source.

I Lemma 4 ([15], Corollary 4). For any two distinct x, y ∈ Qn, there exists a ψ : Qn → Qn,
with ψ(x) = 0n and ψ(y) = 1n, such that ψ represents an acyclic USO.

B. Gärtner and A. Thomas 345

3 Recognizing USOs

In this section we prove that recognizing a USO is coNP-complete. The computational
problem is USO-recognizability: We are given a Boolean circuit Cψ such that ψ : Qn → Qn
and the question is if ψ represents a USO. Note that a coNP upper bound for this problem
is already known by [17]: A pair of vertices x, y ∈ Qn such that ψi(x) = ψi(y), ∀i ∈ I, where
I = {i ∈ [n]|xi 6= yi}, constitutes a short NO certificate.

I Theorem 5. USO-recognizability is coNP-complete.

Proof. We describe a reduction from SAT to the complement of our problem. Let φ denote
a SAT formula with n variables. By φ(x) we mean the evaluation of φ on x ∈ {0, 1}n, which
returns 0 for false and 1 for true. Based on φ we construct the Boolean circuit Cψ, with
ψ : Qn+1 → Qn+1. The function is such that on input x ∈ Qn we have ψ(x · 0) = x · 0 and
ψ(x · 1) = x · φ(x). It is easy to see that x ∈ Qn is satisfying for φ if and only if the pair
x · 0, x · 1 violates the USO property. J

Note that the proof above really is about whether ψ represents a valid orientation. Fur-
thermore, we observe that the hardness proof above also works for completely unimodal
numberings (CUN). We define these, in the spirit of [19], as bijective functions of the form
χ : Qn → [0 : 2n − 1], such that every face F of the hypercube has a unique local minimum
vertex xF ∈ F (which means that xF attains the minimum value of χ over N (xF)∩F). The
search problem with CUNs is to find the vertex that attains the value 0. These numberings
have been extensively studied, see e.g. [9, 19]. Of course, we can represent χ by a succinct
Boolean circuit Cχ with n input and n output bits, such that the output is the binary
representation of an integer number. Then, the computational problem of deciding if a given
circuit represents a CUN can be proved coNP-hard by slightly modifying the reduction above.
Moreover, CUNs have short NO certificates (i.e. two vertices that are both local minima of
the same face) and thus recognizing if a given circuit represents a CUN is coNP-complete.
Note that CUNs induce AUSOs by directing every edge from the larger to smaller values
[19]. However, as we will see in Section 5, recognizing AUSOs is PSPACE-complete.

4 Long Cycles in USO

In this section, we present the construction of a cyclic USO that has a unique cycle of
superpolynomial size (number of involved vertices). This demonstrates that we cannot expect
a coNP upper bound for cyclicity in USOs by listing the set of vertices that participate in a
cycle. This intuition is verified in the next section with Theorem 12, where we prove that it
is actually PSPACE-hard to decide the cyclicity of a USO. At first, we introduce a special
class of USOs.

I Definition 6. Consider the family of orientations that arises when we start with GψUF ,
choose a matching, and reverse the orientation of the edges of the matching. Call this
flip-matching orientations (FMO).

Note that when we talk about FMOs in the construction below we mean the graph of the
hypercube with the edges directed according to an FMO. Such orientations can be seen to
be USOs, as a corollary of Lemma 3 [15]. This fact has also been shown by Matoušek, in
[12], who used FMOs to provide

(
n
e

)2n−1 as a lower bound on the number of distinct USOs.
In the following, we explain some notation regarding cycles in orientations of the hypercube.

Let x ∈ Qn. With |x| we denote the Hamming weight of x, i.e. the number of ones in the

STACS 2015

346 The Complexity of Recognizing Unique Sink Orientations

bitstring x. Note that a forward (backward) edge increases (decreases) Hamming weight by 1.
Let ψ : Qn → Qn be an orientation and consider Gψ = (Qn, En). Let c = {v1, . . . , vk} ⊆ Qn
be a k-cycle in Gψ, that is a cycle over k vertices. Cycles are represented by the set of
participating vertices, which we present in order of appearance; the last vertex in the sequence
c has an outgoing edge to the first one.

Next, we observe that in an FMO every vertex that participates in a cycle must have an
incident backward edge. Let c ⊆ Qn be a cycle in an FMO and let v ∈ c be a vertex on the
cycle. Assume that v has no backward edge attached. Let v′ be the next vertex on c; we
have that |v′| = |v|+ 1 because the edge v → v′ is forwards. The vertices that follow v′ on
the cycle have Hamming weight at least |v|, because a lower Hamming weight would imply
that there are two consecutive backward edges, which is not allowed by our graph being an
FMO. Then we conclude that v is reached with a forward edge from a vertex of Hamming
weight at least |v|, which is of course not possible. We have proved the following.

I Lemma 7. Let G = (Qn, En) be an FMO. Let c ⊆ Qn be a cycle in G. Then, every vertex
in c has an incident backward edge. It follows that edges on c alternate between forwards and
backwards and that reversing a backward edge cannot create any new cycles.

Following, we describe our lower bound construction. It is an inductive construction that
builds an FMO of dimension n from an FMO of dimension n− 3. Note that in the resulting
FMO we want exactly one cycle. For this we use Lemma 7 on the FMOs of dimension n− 3,
in order to turn their unique cycles into paths and construct an FMO of dimension n that
contains a unique cycle. The base cases are FMOs that contain a unique cycle of size 2n for
n = 3, 4, 5; those are easy to construct, as an example see the 3-dimensional cyclic FMO in
Figure 1 (at least 3 dimensions are needed for a USO to be cyclic and 6 is the smallest size
for a cycle in a USO).

Let Gn−3 = (Qn−3, En−3) be the resulting graph after the lth induction step. Let
c = {v1, v2, . . . , vk} be the unique cycle, of size 6 ≤ |c| = k, that is contained in Gn−3. We
name the vertices v1, . . . , vk in order of appearance on the cycle. We assume that the first
edge of the cycle (v1, v2) ∈ En−3 is forwards. In our construction we will use three variants
of Gn−3 w.r.t. Lemma 7 (thus turning the cycle into a path):

1. Gn−3
1 is derived from Gn−3 by reversing the backward edge (vk, v1) ∈ En−3;

2. Gn−3
2 is derived from Gn−3 by reversing the backward edge (vk−2, vk−1) ∈ En−3;

3. Gn−3
3 is derived from Gn−3 by reversing all the backward edges

except (vk−2, vk−1), (vk, v1) ∈ En−3.

Note that the three graphs above are all FMOs. We obtain each of these graphs by reversing
edges that were backwards in Gn−3 to forwards. The fact that the edges described in the
first two items are backwards can be seen by Lemma 7.

Now we describe how to proceed with the induction at the l + 1th step and eventually
construct Gn. Consider the set of faces F = {F[n−3],x·0n−3 |x ∈ Q3}. These are the faces that
appear as ellipsoids in Figure 2. We embed the orientation Gn−3

ψUF
in all the faces of F , with

three exceptions: In face F[n−3],110·0n−3 we embed Gn−3
1 , in face F[n−3],101·0n−3 we embed

Gn−3
2 and in face F[n−3],011·0n−3 we embed Gn−3

3 . The edges at the extra 3 coordinates follow
the forward uniform orientation, except the following three edges that we orient backwards:
F{n−2},010·v2 , F{n−1},100·vk

, F{n},001·vk−2 . See Figure 2 for an illustration of the cycle in Gn.

I Theorem 8. There exist cyclic n-dimensional FMOs that contain a unique cycle of size
Ω(2 n

3).

B. Gärtner and A. Thomas 347

1

2

3k-1

k

k-1
k

1k-3

k-2

1

k

k-1

k-2

k-3 k-1

2

1 3

k-3

k-2
k-12

3

1

n− 1

n− 2

n
Gn−3

3 Gn−3
1

Gn−3
2

III III

IV VVI

Figure 2 The ellipsoids represent the (n− 3)-dimensional faces in F . The black edges (with filled
arrows) are forwards and the red edges (with non-filled arrows) are backwards. The dotted arcs
represent a sequence of edges that starts with a forward one and ends with a backward one. Finally,
we show only some of the vertices to illustrate the construction. A vertex with label i denotes vi,
the ith vertex on the cycle. The faces that contain the graphs Gn−3

1 , Gn−3
2 , Gn−3

3 are labeled. To
see the cycle one can follow the Latin numbers I,. . . ,VI.

Proof. Our construction, as we presented it above, satisfies the claimed theorem. Consider
Gn = (Qn, En) and c ⊆ Qn the cycle in Gn. By induction, the faces where we embed the
variants of Gn−3 are FMOs. The other (n− 3)-dimensional faces in F contain the uniform
orientation. The three new coordinates also obey the uniform orientation except the three
edges that we reversed. All of the reversed edges are incident to vertices that do not have
other backward edges incident. Thus, Gn is an FMO.

The existence of cycle c in Gn can be witnessed in Figure 2. Furthermore, there are
no backward edges other than the ones that are incident to c. Thus, by Lemma 7, there
is no other cycle and c is the unique cycle in Gn. Finally, let C(n) denote the size of the
cycle in our construction at dimension n. Then, we have the following recursive formula:
C(n) = 2C(n− 3) + 6 = Ω(2 n

3) J

5 Recognizing Acyclic USOs

We start the section with the formal definitions of the two computational problems of interest:

AUSO-Accessibility: The input is a Boolean circuit Cψ, such that ψ : Qm → Qm, and
two vertices s, t ∈ Qm. The answer to an instance is YES if and only if ψ represents an
acyclic USO such that there is a directed path from s to t in Gψ.
USO-Cyclicity: The input is a Boolean circuit Cψ, such that ψ : Qm → Qm. The answer
to an instance is YES if and only if ψ represents a USO such that there is a directed
cycle in Gψ.

Both these problems can be seen to be in PSPACE. Firstly, as we argued in Section 3, we
can check if ψ represents a USO in coNP(the relationship coNP⊆ PSPACE is well-known).
Then, the standard argument, that has been used to show that accessibility and cyclicity in
directed graphs given by succinct representations, are in PSPACE (see e.g. [1, 13]) suffices
in our case too. By this argument, we decide the existence of a cycle in the following way:
we fix a vertex (non-deterministically) and pick the next vertex from the set of neighbors
that can be accessed by an outgoing edge (also non-deterministically). If we reach the same
vertex then we conclude that there is a directed cycle (formally here what we need to decide
is the non-existence of a cycle; we are using the fact that all deterministic classes are closed

STACS 2015

348 The Complexity of Recognizing Unique Sink Orientations

1

2
3

(a) Base case for q1 is ∃.

1

2
3

(b) Base case for q1 is ∀.

Figure 3 An illustration of the two base cases of the inductive construction.

under complement). Similarly, to decide the existence of an s− t path, we fix vertex s and
perform the same process; if we reach t then we conclude that there is an s− t path. These
processes use only polynomial space (actually linear, only one vertex needs to be stored in
memory) and they give non-deterministic PSPACE upper bounds, which is the same as
deterministic PSPACE by Savitch’s Theorem [14].

We are ready to present our first theorem which shows that it is PSPACE-hard, and
thus by the above argument PSPACE-complete, to decide the problem AUSO-Accessibility.

I Theorem 9. AUSO-Accessibility is PSPACE-complete.

The proof is by reduction from the problem of deciding the satisfiability of a Quantified
Boolean Formula (QBF) which is the standard PSPACE-complete problem. The input to
the latter is a CNF formula Φ with n variables v1, . . . , vn and a set of n quantifiers q1, . . . , qn
that can be either ∃ or ∀. The construction is presented in an inductive fashion, where the
induction is on the number of variables of the QBF formula. The base case is a 3-dimensional
acyclic USO and then for each variable we add 3 coordinates when the next quantifier is
existential and 4 coordinates when it is universal. All in all, the result of the construction is
ψ : Qm → Qm which represents an acyclic USO and such that m ≤ 4(n− 1) + 3 = 4n− 1.
For this purpose, we describe the construction of Gψ; then, the question to be decided is if
there exists a directed path from 0m to 1m.

We have a set of vertices, called active and denoted with AV ⊂ Qm. We call an edge F{i},x
active when F{i},x ⊂ AV. We denote with gray color the active edges in the illustrations
for the base case (cf. Figure 3) and the faces that contain active edges in the illustrations
for the inductive steps (cf. Figure 4). With AV l we denote the set of active vertices after
the lth inductive step. The size of AV is 4 for the base case and it triples at each induction
step (|AV l| = 3|AV l−1|). The orientations of the active edges depend on an evaluation of Φ
for a given assignment that can be obtained by the coordinates of the active vertices. This
process will be explained at a later step. We are ready now to describe our construction.
The 3-dimensional base cases are presented in Figure 3.

Let Gl = (Qk, Ek), with k < 4l, be the graph after the lth induction step and let ql+1 be ∃.
We introduce three extra coordinates. At coordinate (k+1) and (k+2) all edges are forwards.
At coordinate (k+3) all edges are backwards except the edges F{k+3},000·1k and F{k+3},010·0k

which are reversed. Then, we embed Gl in the faces F0 = F[k],0k+3 , F ′0 = F[k],1·0k+2 and
F1 = F[k],111·0k . The rest of the faces in F∃ = {F[k−3],y·0k−3 |y ∈ Q3} are all oriented
according to ψUB (backwards uniform) in the first k coordinates (cf. Figure 4a).

For the other case, let ql+1 be ∀. Introduce four extra coordinates. At coordinate (k + 1)
we have that the edges in face F[k+2],0k+4 are backwards and every other edge is forwards. At
coordinate (k + 2) all edges are backwards except edge F{k+2},0000·1k which is reversed. At
coordinate (k+3) all edges are forwards. At coordinate (k+4) all edges are backwards except

B. Gärtner and A. Thomas 349

the edge F{k+4},0110·0k which is reversed. Then, we embed Gl in the faces F0 = F[k],0k+4 ,
F ′0 = F[k],0010·0k and F1 = F[k],1111·0k . The rest of the faces in F∀ = {F[k−4],y·0k−4 |y ∈ Q4}
are all oriented according to ψUB in the first k coordinates (cf. Figure 4b).

The graph Gn = (Qm, Em) is the end product of our reduction (after the nth induction
step). Note that Gn is not an FMO and neither will be the graph we construct in the proof
of the next theorem. We still have to describe the orientation of the active edges in Gn. Let
v ∈ AV. The orientation of the active edge adjacent to v, say e ∈ Em, is decided by the
following simple algorithm:

Let x ∈ Qn be the assignment for the variables of the input QBF which we build based
on the coordinates of v. Initialize j = 3 and x1 = vj .
For i = 2 to n repeat:

If qi is ∃ then set j ← j + 3 and xi ← vj−1.
If qi is ∀ then set j ← j + 4 and xi ← vj .

If Φ(x) = 1 then e is forwards, otherwise it is backwards.

For example, consider the following simple QBF: Φ = (v1 ∨ v2 ∨ v3), q1 = q3 = ∃ and
q2 = ∀. This gives rise to a USO over Q10. We give the vertex v = 1001111000 as input to
the algorithm above (the bold bits are the ones that the algorithm will extract). This is
translated to the 3-length bitstring x = 010 which means that variable v2 is set to true and
the other two to false and thus Φ(x) = 1 and the corresponding active edge is forwards.
I Claim 10. Gn is an acyclic USO.

Proof. It can be seen by Lemma 3 that both base cases of the construction are 3-dimensional
USOs, regardless of the orientation of the active edges. In addition, they are acyclic because
at coordinate 3 every edge is forwards. Then, we argue that for every step of the induction
the graph remains an acyclic USO. Consider the l + 1th step of the induction and let ql+1
be ∃. Moreover, let Gl+1 = (Qk+3, Ek+3) and consider F∃. It holds that every face in F∃
is an acyclic USO: for F0,F ′0,F1 it holds by induction and in every other face we have the
backwards uniform orientation.

We interpret the construction in two steps: First, the faces in F ∃ are put on a 3-
dimensional acyclic USO whose orientation is defined above by the orientation of the extra
coordinates (k + 1, k + 2, k + 3), before reversing the edges F{k+3},000·1k and F{k+3},010·0k .
The result is an acyclic USO by Lemma 2. In the next step we reverse the aforementioned
edges. The result is a USO by Lemma 3. Moreover, reversing these edges does not create any
cycles. The orientation in the face F[k]∪{k+3},0k+3 remains acyclic after reversing F{k+3},000·1k

because the orientations in faces F0 and F ′0 are identical (and a cycle in the former face
would imply that the latter faces are cyclic; this is the reason we orient F ′0 this way). A
similar argument applies to reversing the edge F{k+3},010·0k within the face F[k]∪{k+3},010·0k .
All the edges at coordinates k + 1 and k + 2 are forwards and thus a cycle can only involve
the k + 3th coordinate, which is not possible by the arguments above.

The situation is symmetrical when ql+1 is ∀ and Gl+1 = (Qk+4, Ek+4). First, we argue
about the set of faces F∀. Then, why reversing the edge F{k+2},0000·1k does not create any
cycles within the face F[k]∪{k+2},0k+4 and reversing the edge F{k+4},0110·0k does not create
any cycles within the face F[k]∪{k+4},0110·0k . The argument is exactly the same as above.
Remember that at the k + 2th coordinate all edges are backwards and at the k + 3th all
edges are forwards. Then, we conclude that reversing the edge F{k+2},0000·1k does not create
any cycle in Gl+1, since all the edges at the k + 1th and the k + 4th coordinate that are
incident to the face F[k],0k+4 are backwards. Furthermore, we conclude that reversing the

STACS 2015

350 The Complexity of Recognizing Unique Sink Orientations

k + 1

k + 2
k + 3

F0 F ′
0

F1

(a) Gl+1 with ql+1 is ∃. The k-dimensional faces in F∃ appear as 2-faces here.

k + 1

k + 2
k + 3

k + 4

F0

F ′
0

F1

(b) Gl+1 with ql+1 is ∀. The k-dimensional faces in F∀ appear as 2-faces here.

Figure 4 An illustration of the steps of the inductive construction. The active faces (faces that
contain active edges) are filled with gray color. The reversed edges are depicted as dashed.

B. Gärtner and A. Thomas 351

edge F{k+4},0110·0k does not create any cycle in Gl+1, since in the face F[k+4]\{k+3},0100·0k

all edges at the k + 1th coordinate are forwards and at the k + 2th are backwards. J

I Claim 11. 0m is connected to 1m in Gn if and only if the input QBF is satisfiable.

Proof. First, note that at the base case 03 is connected to 13 if and only if there is at least
one forward active edge in the case q1 is ∃ and if and only if both active edges are forwards
in the case q1 is ∀.

Then, consider the l + 1th step of the induction and let the quantifier ql+1 be ∃ and
Gl = (Qk+3, Ek+3). There is a directed path from 0k+3 to 1k+3 if and only if at least one
of the following is true: Either there is a directed path from 0k+3 to 000 · 1k or there is
a directed path from 111 · 0k to 1k+3. This is because the k + 3th coordinate is directed
backwards for all edges except the two we reversed during the construction (F{k+3},000·1k

and F{k+3},010·0k). If there is a directed path from 0k+3 to 000 · 1k, then there is one from
0k+3 to 1k+3 through the edge F{k+3},000·1k . Otherwise, there is an edge from any vertex
x1 ∈ F0 to a vertex x2 ∈ F[k],010·0k ∩N (x1), from there to the vertex 010 · 0k and finally to
111 · 0k through edge F{k+3},010·0k . Thus, if there is a path from 111 · 0k to 1k+3 then there
is a path from 0k+3 to 1k+3.

Following, we consider the case that ql+1 is ∀ and Gl = (Qk+4, Ek+4). Then, there is a
directed path from 0k+4 to 1k+4 if and only if there is a directed path from 0k+4 to 0000 · 1k
and one from 1111 · 0k to 1k+4. Note at the k + 4th coordinate all edges are backwards,
except F{k+4},0110·0k and thus a path from 0k+4 to 1k+4 has to go through vertex 0110 · 0k.
The only way this is possible is if there is a path from 0k+4 to 0000 · 1k and from there
through the edge F{k+2},0000·1k to face F ′0 and, finally, from there a path to face F[k],0110·0k .
From the latter the vertex 1110 · 0k is accessible and finally the vertex 1111 · 0k. A directed
path from 1111 · 0k to 1k+4 completes the path from 0k+4 to 1k+4.

Thus, we have shown the existence of which paths is mandatory, for the existence of a
directed path from the all-zero to the all-one vertex in both cases. It remains to explain that
these paths exist if and only if the input QBF is satisfiable.

For the forward case of the claim assume that the input QBF is satisfiable. Then, there
exists an assignment of the variables of Φ whose quantifier is existential such that, for any
assignment of the rest of the variables, Φ is satisfiable. This means that for every step of the
induction that corresponds to an existential quantifier there exists a directed path either
from 0k+3 to 000 · 1k in F0 or from 111 · 0k to 1k+3 in F1 (since the corresponding active
edges are forwards). For an inductive step that corresponds to a universal quantifier we have
that there are directed paths both from 0k+4 to 0000 · 1k in F0 and from 1111 · 0k to 1k+4 in
F1. By the inductive construction this means there is a directed path in Gn from 0m to 1m.

Reversely, assume that there is a directed path from the vertex 0m to the vertex 1m in
Gn. Again, by inductive reasoning. If ql+1 is ∃ then there is a path in at least one of F0 and
F1; this means that Φ is satisfiable for at least one of the two possible assignments. If ql+1
is ∀ then there are both the paths in F0 and F1; this means that Φ is satisfiable for both
possible assignments. J

In the next step we prove that USO-Cyclicity is PSPACE-hard based on the PSPACE-
hardness of AUSO-Accessibility. This implies PSPACE-completeness by the arguments we
gave in the beginning of this section.

I Theorem 12. USO-Cyclicity is PSPACE-complete.

Proof. The reduction is from QBF. In a first step, we reduce to an instance of AUSO-
Accessibility as in the proof of Theorem 9. Then we have Gψ which is an AUSO (we use this

STACS 2015

352 The Complexity of Recognizing Unique Sink Orientations

s

t
t

tss

n+ 2

n+ 1

s

t

Figure 5 An illustration of the construction. The ellipsoids represent n-dimensional USOs. The
face F[n],10·0n contains the orientation of the AUSO-Accessibility instance.

trick since the formal definition of AUSO-Accessibility does not guarantee that the input to
the problem represents an AUSO). Based on Gψ we define Gψ′ , where ψ′ : Qn+2 → Qn+2.
All the edges at coordinates n+ 1 and n+ 2 are forwards except F{n+1},00·s and F{n+2},01·t
which are reversed. We have now defined the orientation of the edges at the two extra
coordinates and we turn our attention to the first n ones. In face F[n],10·0n we embed Gψ
which is an AUSO. Let Gψ′′ be the AUSO graph that results by applying Lemma 4 with
ψ′′(s) = 0n and ψ′′(t) = 1n. We embed Gψ′′ in faces F[n],00·0n , F[n],01·0n and F[n],11·0n . It
follows that Gψ′ is a USO from the above argument and the fact that reversing the edges is
safe by Lemma 3. An illustration of the construction can be found in Figure 5.
I Claim 13. There is a cycle in Gψ′ if and only if there is a directed path from s to t in Gψ.
By construction, there is a path from vertex 10 · t to 01 · t through 11 · t. Note that since
11 · t is the source of the face F[n],11·0n a path from any vertex of the face F[n],10·0n to 11 · t
has to go through vertex 10 · t. In F[n],01·0n there is path from 01 · t (which is the source of
the face) to 01 · s (which is the sink of the face). From the latter there is a path to vertex
00 · s (which is the sink of the face F[n],00·0n and thus no other vertex of the same face is
accessible from it) and finally to 10 · s. In addition, note that the desired cycle is the only
one that will use both coordinates n+ 1 and n+ 2 (if it exists). There is no other cycle that
involves only one of the two extra coordinates. This is because the existence of such a cycle
would imply that the orientations embedded in F[n],00·0n , F[n],01·0n and F[n],11·0n are cyclic
(we have also seen this argument in the proof of Claim 10). The claim follows. J

The reductions described in this section give as a result a directed graph. However, the
graph of the hypercube is obviously of exponential size and we are interested in a Boolean
circuit that succinctly describes it. As we have already argued, this is done by actually
describing the outmap of the USO. The size of such a circuit depends only on n, the number
of variables of the QBF. It is discussed in [1] that the techniques used by Ladner in [10] can
be used to construct such a circuit in polynomial time. Nonetheless, in our case, and because
the graph is very structured, it is not too hard to explicitly describe the construction of the
actual circuits for Theorems 9 and 12. The description is a bit tedious and, due to the lack
of space, we postpone it to the full version of the current paper. We remark that for the
proof of Theorem 9 the circuit contains internally another circuit that, given an assignment
x of the n variables of Φ, returns the evaluation Φ(x). The latter is used in the algorithm
described in the proof of Theorem 9 to decide the orientation of the active edges. It is known
that such evaluations can be performed in polynomial time (see e.g. [11]) and thus such a
circuit is easy to obtain.

B. Gärtner and A. Thomas 353

References
1 José L. Balcázar, Antoni Lozano, and Jacobo Torán. The complexity of algorithmic prob-

lems on succinct instances. In Ricardo Baeza-Yates and Udi Manber, editors, Computer
Science, pages 351–377. Springer US, 1992.

2 Gregory E. Coxson. The P-matrix problem is co-NP-complete. Mathematical Programming,
64(1-3):173–178, 1994.

3 Kaspar Fischer and Bernd Gärtner. The smallest enclosing ball of balls: combinatorial
structure and algorithms. Internat. J. Comput. Geom. Appl., 14(4-5):341–378, 2004.

4 Jan Foniok, Bernd Gärtner, Lorenz Klaus, and Markus Sprecher. Counting Unique-Sink
Orientations. Discrete Applied Mathematics, 163, Part 2:155–164, 2014.

5 Hana Galperin and Avi Wigderson. Succinct representations of graphs. Information and
Control, 56(3):183–198, 1983.

6 Bernd Gärtner. The Random-Facet simplex algorithm on combinatorial cubes. Random
Structures & Algorithms, 20(3):353–381, 2002.

7 Bernd Gärtner and Leo Rüst. Simple stochastic games and P-matrix generalized linear
complementarity problems. In Maciej Liskiewicz and Rüdiger Reischuk, editors, Proceedings
of the 15th International Symposium on Fundamentals of Computation Theory (FCT’05),
volume 3623 of Lecture Notes in Computer Science, pages 209–220. Springer, 2005.

8 Bernd Gärtner and Ingo Schurr. Linear Programming and Unique Sink Orientations. In
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 749–757,
2006.

9 Peter L. Hammer, Bruno Simeone, Thomas M. Liebling, and Dominique de Werra. From
linear separability to unimodality: A hierarchy of pseudo-Boolean functions. SIAM J.
Discrete Math., 1(2):174–184, 1988.

10 Richard E. Ladner. The circuit value problem is log space complete for P. SIGACT News,
7(1):18–20, 1975.

11 Nancy Lynch. Log space recognition and translation of parenthesis languages. J. ACM,
24(4):583–590, 1977.

12 Jiří Matoušek. The number of Unique-Sink Orientations of the hypercube*. Combinatorica,
26(1):91–99, 2006.

13 Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations of
graphs. Information and Control, 71(3):181–185, 1986.

14 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

15 Ingo Schurr and Tibor Szabó. Finding the sink takes some time: An almost quadratic
lower bound for finding the sink of unique sink oriented cubes. Discrete & Computational
Geometry, 31(4):627–642, 2004.

16 Alan Stickney and Layne Watson. Digraph models of Bard-type algorithms for the linear
complementarity problem. Math. Oper. Res., 3(4):322–333, 1978.

17 Tibor Szabó and Emo Welzl. Unique Sink Orientations of cubes. In Proceedings of the
42nd IEEE Symposium on Foundations of Computer Science (FOCS’01), pages 547–555,
2001.

18 Stefano Tessaro. Randomized algorithms to locate the sink in low dimensional Unique Sink
Orientations of cubes. Semester thesis, Computer Science Department, ETH Zürich, 2004.

19 Kathy Williamson-Hoke. Completely unimodal numberings of a simple polytope. Discrete
Applied Mathematics, 20(1):69–81, 1988.

STACS 2015

New Geometric Representations and Domination
Problems on Tolerance and Multitolerance
Graphs∗

Archontia C. Giannopoulou and George B. Mertzios

School of Engineering and Computing Sciences, Durham University, UK
archontia.giannopoulou@gmail.com, george.mertzios@durham.ac.uk

Abstract
Tolerance graphs model interval relations in such a way that intervals can tolerate a certain
amount of overlap without being in conflict. In one of the most natural generalizations of tolerance
graphs with direct applications in the comparison of DNA sequences from different organisms,
namely multitolerance graphs, two tolerances are allowed for each interval – one from the left
and one from the right side. Several efficient algorithms for optimization problems that are NP-
hard in general graphs have been designed for tolerance and multitolerance graphs. In spite of
this progress, the complexity status of some fundamental algorithmic problems on tolerance and
multitolerance graphs, such as the dominating set problem, remained unresolved until now, three
decades after the introduction of tolerance graphs. In this article we introduce two new geometric
representations for tolerance and multitolerance graphs, given by points and line segments in
the plane. Apart from being important on their own, these new representations prove to be a
powerful tool for deriving both hardness results and polynomial time algorithms. Using them, we
surprisingly prove that the dominating set problem can be solved in polynomial time on tolerance
graphs and that it is APX-hard on multitolerance graphs, solving thus a longstanding open
problem. This problem is the first one that has been discovered with a different complexity status
in these two graph classes. Furthermore we present an algorithm that solves the independent
dominating set problem on multitolerance graphs in polynomial time, thus demonstrating the
potential of this new representation for further exploitation via sweep line algorithms.

1998 ACM Subject Classification G.2.2 Graph algorithms, F.2.2 Geometrical problems and
computations: Computations on discrete structures

Keywords and phrases tolerance graphs, multitolerance graphs, geometric representation, dom-
inating set problem, polynomial time algorithm, APX-hard

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.354

1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there exists a collection
I = {Iv | v ∈ V } of intervals on the real line and a set t = {tv | v ∈ V } of positive num-
bers (the tolerances), such that for any two vertices u, v ∈ V , uv ∈ E if and only if
|Iu ∩ Iv| ≥ min{tu, tv}, where |I| denotes the length of the interval I. The pair 〈I, t〉 is
called a tolerance representation of G. If G has a tolerance representation 〈I, t〉, such that
tv ≤ |Iv| for every v ∈ V , then G is called a bounded tolerance graph.

If we replace in the above definition “min” by “max”, we obtain the class of max-
tolerance graphs. Both tolerance and max-tolerance graphs have attracted many research

∗ Partially supported by the EPSRC Grant EP/K022660/1.

© Archontia C. Giannopoulou and George B. Mertzios;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 354–366

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.354
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A.C. Giannopoulou and G. B. Mertzios 355

efforts [2,4,7,9,10,12,14–17] as they find numerous applications, especially in bioinformatics,
among others [10,12, 14]; for a more detailed account see the book on tolerance graphs [11].
One of their major applications is in the comparison of DNA sequences from different
organisms or individuals by making use of a software tool like BLAST [1]. However, at
some parts of the above genomic sequences in BLAST, we may want to be more tolerant
than at other parts, since for example some of them may be biologically less significant or
we have less confidence in the exact sequence due to sequencing errors in more error prone
genomic regions. This concept leads naturally to the notion of multitolerance graphs which
generalize tolerance graphs [11, 15, 19]. The main idea is to allow two different tolerances for
each interval, one to each of its sides. Then, every interval tolerates in its interior part the
intersection with other intervals by an amount that is a convex combination of these two
border-tolerances.

Formally, let I = [l, r] be an interval on the real line and lt, rt ∈ I be two numbers
between l and r, called tolerant points. For every λ ∈ [0, 1], we define the interval Ilt,rt

(λ) =
[l + (rt − l)λ, lt+(r− lt)λ], which is the convex combination of [l, lt] and [rt, r]. Furthermore,
we define the set I(I, lt, rt) = {Ilt,rt(λ) | λ ∈ [0, 1]} of intervals. That is, I(I, lt, rt) is the set
of all intervals that we obtain when we linearly transform [l, lt] into [rt, r]. For an interval I,
the set of tolerance-intervals τ of I is defined either as τ = I(I, lt, rt) for some values
lt, rt ∈ I (the case of a bounded vertex), or as τ = {R} (the case of an unbounded vertex).
A graph G = (V,E) is a multitolerance graph if there exists a collection I = {Iv | v ∈ V }
of intervals and a family t = {τv | v ∈ V } of sets of tolerance-intervals, such that: for any
two vertices u, v ∈ V , uv ∈ E if and only if Qu ⊆ Iv for some Qu ∈ τu, or Qv ⊆ Iu for some
Qv ∈ τv. Then, the pair 〈I, t〉 is called a multitolerance representation of G. If G has a
multitolerance representation with only bounded vertices, i.e., with τv 6= {R} for every vertex
v, then G is called a bounded multitolerance graph.

For several optimization problems that are NP-hard in general graphs, such as the coloring,
clique, and independent set problems, efficient algorithms are known for tolerance and
multitolerance graphs. However, only few of them have been derived using the (multi)tolerance
representation (e.g. [10,19]), while most of these algorithms appeared as a consequence of
the containment of tolerance and multitolerance graphs to weakly chordal (and thus also
to perfect) graphs [20]. To design efficient algorithms for (multi)tolerance graphs, it seems
to be essential to assume that a suitable representation of the graph is given along with
the input, as it has been recently proved that the recognition of tolerance graphs is NP-
complete [17]. Recently two new geometric intersection models in the 3-dimensional space
have been introduced for both tolerance graphs (the parallelepiped representation [16]) and
multitolerance graphs (the trapezoepiped representation [15]), which enabled the design of
very efficient algorithms for such problems, in most cases with (optimal) O(n log n) running
time [15,16]. In spite of this, the complexity status of some algorithmic problems on tolerance
and multitolerance graphs still remains open, three decades after the introduction of tolerance
graphs in [8]. Arguably the two most famous and intriguing examples of such problems are the
minimum dominating set problem and the Hamilton cycle problem (see e.g. [20, page 314]).
Both these problems are known to be NP-complete on the greater class of weakly chordal
graphs [3, 18] but solvable in polynomial time in the smaller classes of bounded tolerance
and bounded multitolerance (i.e., trapezoid) graphs [6, 13]. The reason that these problems
resisted solution attempts over the years seems to be that the existing representations for
(multi)tolerance graphs do not provide enough insight to deal with these problems.

In this article we introduce a new geometric representation for multitolerance graphs,
which we call the shadow representation, given by a set of line segments and points in the

STACS 2015

356 Domination Problems on Tolerance and Multitolerance Graphs

plane. In the case of tolerance graphs, this representation takes a very special form, in which
all line segments are horizontal, and therefore we call it the horizontal shadow representation.
Note that both the shadow and the horizontal shadow representations are not intersection
models for multitolerance graphs and for tolerance graphs, respectively, in the sense that two
line segments may not intersect in the representation although the corresponding vertices are
adjacent. However, the main advantage of these two new representations is that they provide
substantially new insight for tolerance and multitolerance graphs and they can be used to
interpret optimization problems (such as the dominating set problem and its variants) using
computational geometry terms.

Apart from being important on their own, these new representations enable us to establish
the complexity of the minimum dominating set problem on both tolerance and multitolerance
graphs, thus solving a longstanding open problem. Given a horizontal shadow representation
of a tolerance graph G, we present an algorithm that computes a minimum dominating set
in polynomial time. On the other hand, using the shadow representation, we prove that
the minimum dominating set problem is APX-hard on multitolerance graphs by providing a
reduction from a special case of the set cover problem. That is, there exists no Polynomial
Time Approximation Scheme (PTAS) for this problem unless P=NP. This is the first problem
that has been discovered with a different complexity status in these two graph classes.
Therefore, given the (seemingly) small difference between the definition of tolerance and
multitolerance graphs, this dichotomy result appears to be surprising. Furthermore we present
an easy algorithm that solves (using the shadow representation) the independent dominating
set problem on multitolerance graphs in polynomial time. This algorithm demonstrates the
potential of this new representation for further exploitation via sweep line algorithms. Due
to lack of space, full proofs are given in a clearly marked appendix.

Throughout the article we consider simple undirected graphs with no loops or multiple
edges. In an undirected graph G the edge between two vertices u and v is denoted by uv, and
in this case u and v are said to be adjacent in G. We denote by N(u) = {v ∈ V : uv ∈ E}
the set of neighbors of a vertex u in G, and N [u] = N(u) ∪ {u}. Given a graph G = (V,E)
and a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S. A subset
S ⊆ V is a dominating set of G if every vertex v ∈ V \ S has at least one neighbor in S. A
subset S ⊆ V is an independent set of G if G[S] has no edges. Furthermore S ⊆ V is an
independent dominating set of G if S is both an independent set and a dominating set of
G. Note that any inclusion maximal independent set is also an independent dominating set.
The (independent) dominating set problem is the problem of computing an (independent)
dominating set of minimum size in a given graph G. Finally, given a set X ⊆ R2 of points
in the plane, we denote by Hconvex(X) the convex hull defined by the points of X, and by
X = R2 \X the complement of X in R2. For simplicity of the presentation we make the
following notational convention throughout the paper: whenever we need to compute a set S
with the smallest cardinality among a family S of sets, we write S = min{S}.

2 Tolerance and Multitolerance Graphs

In this section we briefly revise the 3-dimensional intersection models for tolerance graphs [16]
and multitolerance graphs [15] and some useful properties of these models that are needed
for the remainder of the paper. Consider a multitolerance graph G = (V,E) that is given
along with a multitolerance representation R. Let VB and VU denote the set of bounded
and unbounded vertices of G in this representation, respectively. Consider now two parallel
lines L1 and L2 in the plane. For every vertex v ∈ V = VB ∪VU , we appropriately construct a

A.C. Giannopoulou and G. B. Mertzios 357

L1

L2

1

av = dvdu

cu bu

au
φu,1 φu,2

x

y

φu(x)

Tu

cotφu,1 cotφu,2 cotφv

φv = φv,1 = φv,2

cv = bv

T v

Figure 1 The trapezoid Tu corresponds to the bounded vertex u ∈ VB , while the line segment
T v corresponds to the unbounded vertex v ∈ VU .

trapezoid T v with its parallel lines on L1 and L2, respectively (for details of this construction
of the trapezoids we refer to [15]). According to this construction, for every unbounded
vertex v ∈ VU the trapezoid T v is trivial, i.e., a line [15]. For every vertex v ∈ V = VB ∪ VU
we denote by av, bv, cv, dv the lower left, upper right, upper left, and lower right endpoints
of the trapezoid T v, respectively. Note that for every unbounded vertex v ∈ VU we have
av = dv and cv = bv, since T v is just a line segment. An example is depicted in Figure 1,
where Tu corresponds to a bounded vertex u and T v corresponds to an unbounded vertex v.

We now define the left and right angles of these trapezoids. For every angle φ, the values
tanφ and cotφ = 1

tanφ denote the tangent and the cotangent of φ, respectively. Furthermore,
φ = arc cotx is the angle φ, for which cotφ = x.

I Definition 1 ([15]). For every vertex v ∈ V = VB ∪ VU , the values φv,1 = arc cot (cv − av)
and φv,2 = arc cot (bv − dv) are the left angle and the right angle of T v, respectively. Moreover,
for every unbounded vertex v ∈ VU , φv = φv,1 = φv,2 is the angle of T v.

Note that without loss of generality we can assume that all endpoints and angles of
the trapezoids are distinct, i.e., {au, bu, cu, du} ∩ {av, bv, cv, dv} = ∅ and {φu,1, φu,2} ∩
{φv,1, φv,2} = ∅ for every u, v ∈ V with u 6= v, as well as that 0 < φv,1, φv,2 <

π
2 for all angles

φv,1, φv,2 [15]. It is important to note here that this set of trapezoids {T v : v ∈ V = VB ∪VU}
is not an intersection model for the graph G, as two trapezoids T v, Tw may have a non-
empty intersection although vw /∈ E. However the subset of trapezoids {T v : v ∈ VB} that
corresponds to the bounded vertices is an intersection model of the induced subgraph G[VB],
i.e., uv ∈ E if and only if Tu ∩ T v 6= ∅ where u, v ∈ VB .

In order to construct an intersection model for the whole graph G (i.e., including also the
set VU of the unbounded vertices), we exploit the third dimension as follows. Let ∆ = max{bv :
v ∈ V } −min{au : u ∈ V } (where we consider the endpoints bv and au as real numbers on
the lines L1 and L2, respectively). First, for every unbounded vertex v ∈ VU we construct the
line segment Tv = {(x, y, z) : (x, y) ∈ T v, z = ∆− cotφv}. For every bounded vertex v ∈ VB ,
denote by T v,1 and T v,2 the left and the right line segment of the trapezoid T v, respect-
ively. We construct two line segments Tv,1 = {(x, y, z) : (x, y) ∈ T v,1, z = ∆− cotφv,1} and
Tv,2 = {(x, y, z) : (x, y) ∈ T v,2, z = ∆− cotφv,2}. Then, for every v ∈ VB , we construct the
3-dimensional object Tv as the convex hull Hconvex(T v, Tv,1, Tv,2); this 3-dimensional object
Tv is called the trapezoepiped of vertex v ∈ VB . The resulting set {Tv : v ∈ V = VB ∪ VU} of
objects in the 3-dimensional space is called the trapezoepiped representation of the multitoler-
ance graph G [15]. This is an intersection model of G, i.e., two vertices v, w are adjacent if
and only if Tv ∩Tw 6= ∅. For a proof of this fact and for more details about the trapezoepiped
representation of multitolerance graphs we refer to [15].

An example of this construction is given in Figure 2. A multitolerance graph G with six
vertices {v1, v2, . . . , v6} is depicted in Figure 2a, while the trapezoepiped representation of G
is illustrated in Figure 2b. The set of bounded and unbounded vertices in this representation
are VB = {v3, v4, v6} and VU = {v1, v2, v5}, respectively.

STACS 2015

358 Domination Problems on Tolerance and Multitolerance Graphs

v1 v2

v3

v4

v6

v5

G :

(a)

L1

L2

1

Tv1

Tv2

Tv3 Tv4

Tv5
Tv6

hv1

hv2

hv3,1

hv3,2

hv4,1
hv5

hv6,1

hv6,2

hv4,2

av6 dv6

cv6
bv6

av1

cv1

∆
x

y
zav2

av3 dv3 av4 av5dv4

(b)

Figure 2 (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here,
hvi,j = ∆− cotφvi,j for every bounded vertex vi ∈ VB and j ∈ {1, 2}, while hvi = ∆− cotφvi for
every unbounded vertex vi ∈ VU .

I Definition 2 ([15]). An unbounded vertex v ∈ VU is inevitable if replacing Tv by
Hconvex(Tv, T v) creates a new edge uv in G; then u is a hovering vertex of v and the
set H(v) of all hovering vertices of v is the hovering set of v. A trapezoepiped representation
of a multitolerance graph G is called canonical if every unbounded vertex is inevitable.

In the example of Figure 2, v2 and v5 are inevitable unbounded vertices, v1 and v4 are
hovering vertices of v2 and v5, respectively, while v1 is not an inevitable unbounded vertex.
Therefore, this representation is not canonical for the graph G. However, if we replace Tv1 by
Hconvex(Tv1 , av1 , cv1), we get a canonical representation for G in which vertex v1 is bounded.

Let G be a multitolerance graph and R be a trapezoepiped representation of G, where
φu,1 = φu,2 for every bounded vertex u ∈ VB . Then, for every u ∈ VB , Tu becomes a paral-
lelepiped and it can be proved that G is a tolerance graph [15]. This particular 3-dimensional
intersection model for tolerance graphs is known as a parallelepiped representation [16].

3 The New Geometric Representations

In this section we introduce the shadow representation of multitolerance graphs, which is
given by a set of line segments and points in the plane. Given a trapezoepiped representation
of a multitolerance graph G with n vertices, we can compute a shadow representation of
G in O(n) time. Whenever G admits a parallelepiped representation (i.e., G is a tolerance
graph) all line segments in the shadow representation of G become horizontal, and in this
case we call it a horizontal shadow representation.

I Definition 3 (shadow representation). Let G = (V,E) be a multitolerance graph, R be
a trapezoepiped representation of G, and VB , VU be the sets of bounded and unbounded
vertices of G in R, respectively. We associate the vertices of G with the following points and
line segments in the plane:

for every v ∈ VB, the points pv,1 = (av,∆ − cotφv,1) and pv,2 = (dv,∆ − cotφv,2) and
the line segment Lv = (pv,1, pv,2),
for every v ∈ VU , the point pv = (av,∆− cotφv).

A.C. Giannopoulou and G. B. Mertzios 359

hv1

hv2

hv3,1

hv3,2

hv4,1
hv5

hv6,1

hv6,2

hv4,2

av6 dv6
av1

av2
av3 dv3 av4 av5dv4

pv6,2

x

y

Lv3 Lv4

Lv6

pv1

pv2
pv5

pv3,1

pv3,2

pv4,1

pv4,2

pv6,1

Figure 3 The shadow representation (P,L) of the multitolerance graph G of Figure 2. The
unbounded vertices VU = {v1, v2, v5} are associated with the points P = {pv1 , pv2 , pv5}, while
the bounded vertices VB = {v3, v4, v6} are associated with the line segments L = {Lv1 , Lv2 , Lv5},
respectively.

The tuple (P,L), where L = {Lv : v ∈ VB} and P = {pv : v ∈ VU}, is the shadow
representation of G. If φv,1 = φv,2 for every v ∈ VB, then (P,L) is the horizontal shadow
representation of the tolerance graph G. Furthermore, the representation (P,L) is canonical
if the initial trapezoepiped representation R is also canonical.

As an example we illustrate in Figure 3 the shadow representation (P,L) of the multitol-
erance graph G of Figure 2.

I Definition 4 (shadow). For an arbitrary point t = (tx, ty) ∈ R2 the shadow of t is the
region St = {(x, y) ∈ R2 : x ≤ tx, y − x ≤ ty − tx}. Furthermore, for every line segment Lu,
where u ∈ VB , the shadow of Lu is the region Su =

⋃
t∈Lu

St.

I Definition 5 (reverse shadow). For an arbitrary point t = (tx, ty) ∈ R2 the reverse shadow
of t is the region Ft = {(x, y) ∈ R2 : x ≥ tx, y − x ≥ ty − tx}. Furthermore, for every line
segment Li, where u ∈ VB , the reverse shadow of Li is the region Fi =

⋃
t∈Li

Ft.

I Lemma 6. Let G be a multitolerance graph and (P,L) be a shadow representation of G.
Let u ∈ VB be a bounded vertex of G such that the corresponding line segment Lu is not
trivial, i.e., Lu is not a single point. Then the angle of the line segment Lu with a horizontal
line (i.e., parallel to the x-axis) is at most π

4 and at least −π2 .

Recall now that two unbounded vertices u, v ∈ VU are never adjacent. The connection
between a multitolerance graph G and a shadow representation of it is given in Lemmas 7
and 8. Furthermore Lemma 9 describes how the hovering vertices of an unbounded vertex
v ∈ VU (cf. Definition 2) can be seen in a shadow representation (P,L).

I Lemma 7. Let (P,L) be a shadow representation of a multitolerance graph G. Let u, v ∈ VB
be two bounded vertices of G. Then uv ∈ E if and only if Lv ∩ Su 6= ∅ or Lu ∩ Sv 6= ∅.

I Lemma 8. Let (P,L) be a shadow representation of a multitolerance graph G. Let v ∈ VU
and u ∈ VB be two vertices of G. Then uv ∈ E if and only if pv ∈ Su.

I Lemma 9. Let (P,L) be a shadow representation of a multitolerance graph G. Let v ∈ VU
be an unbounded vertex of G and u ∈ V \ {v} be another arbitrary vertex. If u ∈ VB
(resp. u ∈ VU), then u is a hovering vertex of v if and only if Lu ∩ Sv 6= ∅ (resp. pu ∈ Sv).

In the example of Figure 3 the shadows of the points in P and of the line segments in L
are shown with dotted lines. For instance, pv2 ∈ Sv3 and pv2 /∈ Sv4 , and thus the unbounded

STACS 2015

360 Domination Problems on Tolerance and Multitolerance Graphs

vertex v2 is adjacent to the bounded vertex v3 but not to the bounded vertex v4. Furthermore
Lv3 ∩Sv4 6= ∅, and thus v3 and v4 are adjacent. On the other hand, Lv3 ∩Sv6 = Lv6 ∩Sv3 = ∅,
and thus v3 and v4 are not adjacent. Finally pv1 ∈ Sv2 and Lv4 ∩ Sv5 6= ∅, and thus v1 is a
hovering vertex of v2 and v4 is a hovering vertex of v5. These facts can be also checked in
the trapezoepiped representation of the same multitolerance graph G in Figure 2b.

4 Dominating Set is APX-hard on Multitolerance Graphs

In this section we prove that the dominating set problem on multitolerance graphs is APX-
hard via an approximation-preserving reduction [21] from a special case of the set cover
problem, namely Special 3-Set Cover [5].

I Theorem 10. Dominating Set is APX-hard on multitolerance graphs.

5 Bounded Dominating Set on Tolerance Graphs

In this section we use the horizontal shadow representation of tolerance graphs (cf. Section 3)
to provide a polynomial time algorithm for a variation of the minimum dominating set
problem on tolerance graphs, namely Bounded Dominating Set, formally defined below.
This problem variation may be interesting on its own, but we use our algorithm for Bounded
Dominating Set as a subroutine in our algorithm for the minimum dominating set problem
on tolerance graphs, cf. Sections 6 and 7. Note that, given a horizontal shadow representation
(P,L) of a tolerance graph G = (V,E), the representation (P,L) defines a partition of the
vertex set V into the set VB of bounded vertices and the set VU of unbounded vertices. We
denote P = {p1, p2, . . . , p|P|} and L ={L1, L2, . . . , L|L|}, where |P|+ |L| = |VU |+ |VB | = |V |.

With a slight abuse of notation, for any two elements x1, x2 ∈ P ∪ L, we may say in
the following that x1 is adjacent with x2 (or x1 is a neighbor of x2) if the vertices that
correspond to x1 and x2 are adjacent in the graph G. Moreover, whenever P1 ⊆ P2 ⊆ P and
L1 ⊆ L2 ⊆ L, we may say that the set P1∪L1 dominates P2∪L2 if the vertices corresponding
to P1 ∪ L1 dominate the subgraph of G induced by the vertices corresponding to P2 ∪ L2.

Bounded Dominating Set on Tolerance Graphs

Input: A horizontal shadow representation (P,L) of a tolerance graph G.
Output: A set Z ⊆ L of minimum size that dominates (P,L), or the announcement
that L does not dominate (P,L).

5.1 Notation and Terminology
For an arbitrary point t = (tx, ty) ∈ R2 we define two (infinite) lines passing through t:

the vertical line Γvert
t = {(tx, s) ∈ R2 : s ∈ R}, i.e., the line that is parallel to the y-axis,

the diagonal line Γdiag
t = {(s, s+ (ty − tx)) ∈ R2 : s ∈ R}, i.e., the line that is parallel to

the main diagonal {(s, s) ∈ R2 : s ∈ R}.

For every point t = (tx, ty) ∈ R2, each of the lines Γvert
t ,Γdiag

t separates R2 into two regions.
With respect to the line Γvert

t we define the regions R2
left(Γvert

t) = {(x, y) ∈ R2 : x ≤ tx}
and R2

right(Γvert
t) = {(x, y) ∈ R2 : x ≥ tx} of the points to the left and to the right of Γvert

t ,
respectively. With respect to the line Γdiag

t , we define the regions R2
left(Γ

diag
t) = {(x, y) ∈ R2 :

y − x ≥ ty − tx} and R2
right(Γ

diag
t) = {(x, y) ∈ R2 : y − x ≤ ty − tx} of the points to the left

and to the right of Γdiag
t , respectively.

A.C. Giannopoulou and G. B. Mertzios 361

Furthermore, for an arbitrary point t = (tx, ty) ∈ R2 we define the region At (resp. Bt) that
contains all points that are both to the right (resp. to the left) of Γvert

t and to the right (resp. to
the left) of Γdiag

t . That is, At = R2
right(Γvert

t)∩R2
right(Γ

diag
t) and Bt = R2

left(Γvert
t)∩R2

left(Γ
diag
t).

Consider an arbitrary horizontal line segment Li ∈ L. We denote by li and ri its left
and its right endpoint, respectively; note that possibly li = ri. Denote by A = {li, ri :
1 ≤ i ≤ |L|} the set of all endpoints of all line segments of L. Furthermore denote by
B = {Γdiag

t ∩Γvert
t′ : t, t′ ∈ A} the set of all intersection points of the vertical and the diagonal

lines that pass from points of A. Note that A ⊆ B.
Given a horizontal shadow representation (P,L) we always assume that the points

p1, p2, . . . , p|P| are ordered increasingly with respect to their x-coordinates. Similarly we
assume that the horizontal line segments L1, L2, . . . , L|L| are ordered increasingly with respect
to the x-coordinates of their endpoint ri.

I Definition 11. Let 1 ≤ i, i′ ≤ |L|. The pair (i, i′) is a right-crossing pair if ri′ ∈ Sri
.

Furthermore the pair (i, i′) is a left-crossing pair if li ∈ Sli′ . For every right-crossing
pair (i, i′), we define Llefti,i′ = {x ∈ P ∪ L : x ⊆ Bt, where t = Γvert

ri
∩ Γdiag

ri′ } and for every
left-crossing pair (i, i′) we define Lrighti,i′ = {x ∈ P ∪ L : x ⊆ At, where t = Γvert

li
∩ Γdiag

li′ }

I Definition 12. Let S ⊆ P ∪ L be an arbitrary set. Let (i, i′) be a right-crossing pair and
(j, j′) be a left-crossing pair. If Li, Li′ ∈ S and S ⊆ Llefti,i′ , then (i, i′) is the end-pair of the
set S. If Lj , Lj′ ∈ S and S ⊆ Lrightj,j′ , then (j, j′) is the start-pair of the set S.

5.2 The Algorithm
In this section we present our algorithm for Bounded Dominating Set on tolerance
graphs, cf. Algorithm 1. Given a horizontal shadow representation (P,L) of a tolerance
graph G, we first add two dummy line segments L0 and L|L|+1 (with endpoints l0, r0 and
l|L|+1, r|L|+1, respectively) such that all elements of P ∪ L are contained in Ar0 and in Bl|L|+1 .
Let L′ = L ∪ {L0, L|L|+1}. Note that (P,L′) is a horizontal shadow representation of some
tolerance graph G′, where the bounded vertices V ′B of G′ correspond to the line segments of
L′ and the unbounded vertices V ′U of G′ correspond to the points of P. Furthermore note
that V ′B = VB ∪ {v0, v|L|+1} and V ′U = VU , where v0 and v|L|+1 are the (isolated) bounded
vertices of G′ that correspond to the line segments L0 and L|L|+1, respectively.

For simplicity of the presentation, we refer in the following to the augmented set L′
of horizontal line segments by L. In the remainder of this section we will write L =
{L1, L2, . . . , L|L|} with the understanding that the first and the last line segments L1 and
L|L| of L are dummy. Furthermore, we will refer to the augmented tolerance graph G′ by G.

For every pair of points (a, b) ∈ A×B such that b ∈ R2
right(Γdiag

a), define X(a, b) to be the
set of all points of P and all line segments of L that are contained in the region Bb \Γvert

b and
to the right of the line Γdiag

a , i.e., X(a, b) = {x ∈ P ∪ L : x ⊆ (Bb \ Γvert
b) ∩ R2

right(Γdiag
a)}.

I Definition 13. Let (a, b) ∈ A× B be a pair of points such that b ∈ R2
right(Γdiag

a). Further-
more let (i, i′) be a right-crossing pair such that b ∈ R2

left(Γvert
ri

). Then BD(P,L)(a, b, i, i′) is
a dominating set Z ⊆ L of X(a, b) with the smallest size, in which (i, i′) is its end-pair. If
such a dominating set Z ⊆ L of X(a, b) does not exist, we define BD(P,L)(a, b, i, i′) = ⊥.

Note that always Li ∈ BD(P,L)(a, b, i, i′). However, since b ∈ R2
left(Γvert

ri
) in Definition 13,

it follows that Li * Bb \ Γvert
b , and thus Li /∈ X(a, b). For simplicity of the presentation

we may refer to the set BD(P,L)(a, b, i, i′) as BDG(a, b, i, i′), where (P,L) is the horizontal
shadow representation of the tolerance graph G, or just as BD(a, b, i, i′) whenever the
horizontal shadow representation (P,L) is clear from the context.

STACS 2015

362 Domination Problems on Tolerance and Multitolerance Graphs

Algorithm 1 Bounded Dominating Set on Tolerance Graphs
Input: A horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|} and
L = {L1, L2, . . . , L|L|}

Output: A set Z ⊆ L of minimum size that dominates (P,L), or the announcement that L
does not dominate (P,L)

1: Add two dummy line segments L0 and L|L|+1 completely to the left and to the right of
P ∪ L, respectively

2: L ← L ∪ {L0, L|L|+1}; denote L = {L1, L2, . . . , L|L|}, where now L1, L|L| are dummy
3: A ← {li, ri : 1 ≤ i ≤ |L|}; B ← {Γdiag

t ∩ Γvert
t′ : t, t′ ∈ A}

4: for every pair of points (a, b) ∈ A× B such that b ∈ R2
right(Γdiag

a) do
5: X(a, b)← {x ∈ P ∪ L : x ⊆ (Bb \ Γvert

b) ∩ R2
right(Γdiag

a)}
6: for every i, i′ ∈ {1, 2, . . . , |L|} do
7: if ri′ ∈ Sri then {(i, i′) is a right-crossing pair}
8: if {Li} ∪ {Li′} dominates all elements of X(a, b) then BD(P,L)(a, b, i, i′) ←

{Li} ∪ {Li′} {initialization}
9: Llefti,i′ ← {Lk ⊆ Bt : t = Γvert

ri
∩ Γdiag

ri′ }
10: if L∩Llefti,i′ does not dominate all elements of X(a, b) then BD(P,L)(a, b, i, i′)← ⊥

{initialization}
11: else BD(P,L)(a, b, i, i′)← L∩ Llefti,i′ {initialization}

12: for every pair of points (a, b) ∈ A× B such that b ∈ R2
right(Γdiag

a) do
13: for every i, i′ ∈ {1, 2, . . . , |L|} do
14: if ri′ ∈ Sri

then {(i, i′) is a right-crossing pair}
15: Compute Z1 = {Li} ∪minc,j,j′{BD(P,L)(a, c, j, j′)} by Lemma 14
16: if |Z1| < |BD(P,L)(a, b, i, i′)| then BD(P,L)(a, b, i, i′)← Z1

17: Compute Z2 = minc{BD(P,L)(a, c, i, i′) ∪BD(P,L)(c, b, i, i′)} by Lemma 15
18: if |Z2| < |BD(P,L)(a, b, i, i′)| then BD(P,L)(a, b, i, i′)← Z2

19: if BD(P,L)(l1, rL, |L|, |L|) = ⊥ then return L does not dominate (P,L)
20: else return BD(P,L)(l1, rL, |L|, |L|) \ {L1, L|L|}

I Lemma 14. Let (a, b) ∈ A × B and let (i, i′) be a right-crossing pair such that
BD(a, b, i, i′) 6= ⊥. If BD(a, b, i, i′)\Li dominates all elements of {x ∈ X(a, b) : x∩(Si∪Fi) 6=
∅} then BD(a, b, i, i′) = {Li} ∪minc,j,j′{BD(a, c, j, j′)}, where the minimum is taken over
all c, j, j′ such that:

c = Γvert
rj
∩ Γdiag

b if rj ∈ R2
left(Γvert

b), and c = b otherwise,
(j, j′) is a right-crossing pair of Lleft

i,i′ \ {Li}, where j′ = i′ whenever i 6= i′, and
{Lj} ∪ {Lj′} dominates all elements of the set X(a, b) \X(a, c).

I Lemma 15. Let (a, b) ∈ A × B and let (i, i′) be a right-crossing pair such that
BD(a, b, i, i′) 6= ⊥. If BD(a, b, i, i′) \ Li does not dominate all elements of {x ∈ X(a, b) :
x ∩ (Si ∪ Fi) 6= ∅} then BD(a, b, i, i′) = minc{BD(a, c, i, i′) ∪ BD(c, b, i, i′)} where the
minimum is taken over all c such that:

c ∈ B ∩ R2
right(Γvert

li
) ∩ R2

right(Γdiag
a) ∩ (Bb \ Γvert

b) and
P ∩X(a, b) ∩ Fc ∩ Fi = ∅.

I Theorem 16. Given a horizontal shadow representation (P,L) of a tolerance graph G,
Algorithm 1 computes Bounded Dominating Set in polynomial time.

A.C. Giannopoulou and G. B. Mertzios 363

Algorithm 2 Restricted Bounded Dominating Set on Tolerance Graphs
Input: A 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representation of

a tolerance graph G, (j, j′) is a left-crossing pair of (P,L), and (i, i′) is a right-crossing
pair of (P,L).

Output: A set Z ⊆ L of minimum size that dominates (P,L), where (j, j′) is the start-
pair and (i, i′) is the end-pair of Z, or the announcement that L ∩ Lrightj,j′ ∩ Llefti,i′ does not
dominate (P,L).

1: if (P,L) contains a bad point p ∈ P or a bad line segment Lk ∈ L (cf. Definition 17)
then

2: return L ∩ Lrightj,j′ ∩ Llefti,i′ does not dominate (P,L)
3: Compute the set Z1 ⊆ L of all irrelevant line segments (cf. Definition 17)
4: L ← L \ Z1; r ← Γvert

ri
∩ Γdiag

ri′

5: Compute the representation (P̂, L̂) by adding the elements {xk,1, xk,2 : k ∈ {j, j′}} to
(P,L) (cf. Lemma 18)

6: return BD(P̂,L̂)(lxj,1 , r, i, i
′) {by calling Algorithm 1}

6 Restricted Bounded Dominating Set on Tolerance Graphs

In this section we use Algorithm 1 of Section 5 to provide a polynomial time algorithm
(cf. Algorithm 2) for a slightly modified version of Bounded Dominating Set on tolerance
graphs, which we call Restricted Bounded Dominating Set, formally defined below.

Restricted Bounded Dominating Set on Tolerance Graphs

Input: A 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representation
of a tolerance graph G, (j, j′) is a left-crossing pair of G, and (i, i′) is a right-crossing
pair of G.
Output: A set Z ⊆ L of minimum size that dominates (P,L), where (j, j′) is the
start-pair and (i, i′) is the end-pair of Z, or the announcement that L∩Lrightj,j′ ∩Llefti,i′ does
not dominate (P,L).

I Definition 17. Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dom-
inating Set on tolerance graphs. Let l = Γvert

lj
∩ Γdiag

lj′ and r = Γvert
ri
∩ Γdiag

ri′ . A point p ∈ P
is a bad point if p ∈ Bl or p ∈ R2

right(Γvert
r). A line segment Lt ∈ L is a bad line segment

if Lt ⊆ Bl or Lt ⊆ Ar. Furthermore a line segment Lt ∈ L is an irrelevant line segment if
either Lt ⊆ Bl ∩ Ar and Lt /∈ Lrightj,j′ ∩ Llefti,i′ , or Lt has an endpoint in Bl ∪ Ar and another
point in Bl ∩Ar.

The next lemma will enable us to reduce Restricted Bounded Dominating Set to
Bounded Dominating Set on tolerance graphs.

I Lemma 18. Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Domin-
ating Set on tolerance graphs, which has no bad points p ∈ P and no bad or irrelevant line
segments L ∈ L. Then for every k ∈ {j, j′} we can add two new elements xk,1, xk,2 to the
set P ∪ L such that Lk is the only neighbor of xk,1 and xk,2, k ∈ {j, j′}.

I Definition 19. Let (j, j′) be a left-crossing pair and (i, i′) be a right-crossing pair in
the horizontal shadow representation (P,L). Then RD(P,L)(j, j′, i, i′) is a dominating set

STACS 2015

364 Domination Problems on Tolerance and Multitolerance Graphs

Z ⊆ L ∩ Lrightj,j′ ∩ Llefti,i′ of (P,L) with the smallest size, in which (j, j′) and (i, i′) are the
start-pair and the end-pair, respectively. If such a dominating set Z does not exist, we define
RD(P,L)(j, j′, i, i′) = ⊥.

For simplicity of the presentation we may refer to the set RD(P,L)(j, j′, i, i′) as
RDG(j, j′, i, i′), where (P,L) is the horizontal shadow representation of the tolerance graph G.

I Theorem 20. Given a 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow
representation of a tolerance graph G, (j, j′) is a left-crossing pair and (i, i′) is a right-
crossing pair of (P,L), Algorithm 2 computes Restricted Bounded Dominating Set in
polynomial time.

7 Dominating Set on Tolerance Graphs

In this section we present our main algorithm of the paper (cf. Algorithm 3) which com-
putes in polynomial time a minimum dominating set of a tolerance graph G, given by a
horizontal shadow representation (P,L). Algorithm 3 uses Algorithms 1 and 2 as subroutines
(cf. Sections 5 and 6). Throughout this section we assume without loss of generality that the
given tolerance graph G is connected and that G is given with a canonical horizontal shadow
representation (P,L).

For every p ∈ P we denote by N(p) = {Lk ∈ L : p ∈ Sk} and H(p) = {x ∈ P ∪ L :
x ∩ Sp 6= ∅}. Note that, due to Lemmas 8 and 9, N(p) is the set of neighbors of p and
H(p) is the set of hovering vertices of p. Furthermore, for every Lk ∈ L we denote by
N(Lk) = {p ∈ P : p ∈ Sk} ∪ {Lt ∈ L : Lt ∩ Sk 6= ∅ or Lk ∩ St 6= ∅}. Note that, due to
Lemmas 7 and 8, N(Lk) is the set of neighbors of Lk.

Define now the subset P∗ = {p ∈ P : there exists no point p′ ∈ P such that p ∈ H(p′)}.
Note by the definition of the set P∗ that for every p1, p2 ∈ P∗ we have p1 /∈ Sp2 ∪ Fp2 .

Given a canonical horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|}
and L = {L1, L2, . . . , L|L|}, we add two dummy line segments L0 and L|L|+1 (with endpoints
l0, r0 and l|L|+1, r|L|+1, respectively) such that all elements of P ∪ L are contained in Ar0

and in Bl|L|+1 . Denote L′ = L ∪ {L0, L|L|+1}. Furthermore we add one dummy point p|P|+1
such that all elements of P ∪ L′ are contained in Bp|P|+1 . Denote P ′ = P ∪ {p|P|+1}. For
simplicity of the presentation, we refer in the following to the augmented sets P ′ and L′ of
points and horizontal line segments by P and L, respectively. In the remainder of this section
we will write P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|} with the understanding that
the last point p|P| of P , as well as the first and the last line segments L1 and L|L| of L, are
dummy. Note that the last point p|P| (i.e., the new dummy point) belongs to the set P∗.

For every pi, pj ∈ P∗ with i < j, we define Gj = {x ∈ P ∪ L : x ⊆ Bpj \ Γvert
pj
} and

G(i, j) = {x ∈ Gj : x ⊆ Api
}. Note that pj /∈ Gj and pj /∈ G(i, j).

I Definition 21. Let pj ∈ P∗ and (i, i′) be a right-crossing pair in Gj . Then D(j, i, i′) is a
minimum dominating set of Gj whose end-pair is (i, i′). If there exists no dominating set Z
of Gj whose end-pair is (i, i′), we define D(j, i, i′) = ⊥.

I Lemma 22. Let G be a tolerance graph, (P,L) be a canonical representation of G, pj ∈ P∗,
and a right-crossing pair (i, i′) of Gj such that D(j, i, i′) 6= ⊥. Then

D(j, i, i′) = min
q′,z,z′,w,w′

{
D(q, z, z′) ∪ {pk ∈ P∗ : q ≤ k ≤ q′} ∪RDG(q′,j)(w,w′, i, i′)
BDGj

(l1, b, i, i′), where b = Γvert
ri
∩ Γdiag

ri′

where the minimum is taken over all q′, z, z′, w, w′ such that:

A.C. Giannopoulou and G. B. Mertzios 365

Algorithm 3 Dominating Set on Tolerance Graphs
Input: A canonical horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|}

and L = {L1, L2, . . . , L|L|}.
Output: A set D ⊆ L ∪ P of minimum size that dominates (P,L).

1: Add two dummy line segments L0 and L|L|+1 completely to the left and to the right of
P ∪ L, respectively

2: Add a dummy point p|P|+1 completely to the right of L|L|+1
3: P ← P ∪ {p|P|+1}; L ← L ∪ {L0, L|L|+1}
4: Denote P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|}, where now p|P|, L1, and L|L|

are dummy
5: P∗ ← {p ∈ P : there exists no point p′ ∈ P such that p ∈ H(p′)}
6: for every pair of points (a, b) ∈ A× B such that b ∈ R2

right(Γdiag
a) do

7: X(a, b)← {x ∈ P ∪ L : x ⊆ (Bb \ Γvert
b) ∩ R2

right(Γdiag
a)}

8: for every pj ∈ P∗ do
9: Gj ← {x ∈ P ∪ L : x ⊆ Bpj \ Γvert

pj
}

10: for every i, i′ ∈ {1, 2, . . . , |L|} do
11: if Li, Li′ ∈ Gj and ri′ ∈ Sri then {(i, i′) is a right-crossing pair of Gj}
12: if X(ri′ , pj) is not dominated by Li and Li′ then D(j, i, i′)← ⊥
13: if there exists a point p ∈ P ∩Gj such that p ∈ R2

right(Γvert
ri

) then D(j, i, i′)← ⊥
14: if D(j, i, i′) 6= ⊥ then
15: Compute D(j, i, i′) by Lemma 22 {by calling Algorithms 1 and 2}

16: return D(|P|, |L|, |L|) \ {L1, LL}

1 ≤ q′ < j,
i, i′ /∈ N(pq′) ∪H(pq′),
(w,w′) is a left-crossing pair of G(q′, j) such that RDG(q′,j)(w,w′, i, i′) 6= ⊥,
(z, z′) is a right-crossing pair of Gq′ ,
q = min{1 ≤ k ≤ q′ : pk ∈ P∗, pk ∈ Aω, where ω = Γvert

rz
∩ Γdiag

rz′ ,
D(q, z, z′) 6= ⊥,
(H(pq) ∪H(pq′)) \

(⋃
q≤k≤q′ N(pk)

)
are dominated by the line segments Lz, Lz′ , Lw, Lw′ ,

G(q, q′) is dominated by {pk ∈ P∗ : q ≤ k ≤ q′}.

I Theorem 23. Given a canonical horizontal shadow representation (P,L) of a connected
tolerance graph G, Algorithm 3 computes in polynomial time a minimum dominating set of G.

8 Independent Dominating Set on Multitolerance Graphs

In this section we provide a polynomial time sweep-line algorithm which, given a shadow
representation (P,L) of a multitolerance graph G, computes in polynomial time a minimum
independent dominating set of G.

I Theorem 24. Given a shadow representation (P,L) of a multitolerance graph G, we can
compute a minimum independent dominating set in polynomial time.

Acknowledgements The second author wishes to thank Steven Chaplick for insightful
initial discussions and for suggesting the paper [5].

STACS 2015

366 Domination Problems on Tolerance and Multitolerance Graphs

References
1 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local Alignment

Search Tool. Journal of Molecular Biology, 215(3):403–410, 1990.
2 Kenneth P. Bogart, Peter C. Fishburn, Garth Isaak, and Larry Langley. Proper and unit

tolerance graphs. Discrete Applied Mathematics, 60(1-3):99–117, 1995.
3 Kellogg S. Booth and J. Howard Johnson. Dominating sets in chordal graphs. SIAM

Journal on Computing, 11(1):191–199, 1982.
4 Arthur H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied

Mathematics, 154(3):471–477, 2006.
5 Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results for geo-

metric packing and covering problems. Computational Geometry, 47(2):112–124, 2014.
6 Jitender S. Deogun and George Steiner. Polynomial algorithms for hamiltonian cycle in

cocomparability graphs. SIAM Journal on Computing, 23(3):520–552, 1994.
7 Stefan Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28(3):129–140,

1998.
8 M. C. Golumbic and C. L. Monma. A generalization of interval graphs with tolerances.

In Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and
Computing, Congressus Numerantium 35, pages 321–331, 1982.

9 M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs. Discrete Applied
Mathematics, 9(2):157–170, 1984.

10 M. C. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: reasoning and
scheduling with interval constraints. In Proceedings of the Joint International Conferences
on Artificial Intelligence, Automated Reasoning, and Symbolic Computation (AISC/Cal-
culemus), pages 196–207, 2002.

11 M. C. Golumbic and A. N. Trenk. Tolerance Graphs. Cambridge studies in advanced
mathematics, 2004.

12 Michael Kaufmann, Jan Kratochvil, Katharina A. Lehmann, and Amarendran R. Sub-
ramanian. Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition.
In Proceedings of the 17th annual ACM-SIAM symposium on Discrete Algorithms (SODA),
pages 832–841, 2006.

13 Dieter Kratsch and Lorna Stewart. Domination on cocomparability graphs. SIAM Journal
on Discrete Mathematics, 6(3):400–417, 1993.

14 Katharina Anna Lehmann, Michael Kaufmann, Stephan Steigele, and Kay Nieselt. On the
maximal cliques in c-max-tolerance graphs and their application in clustering molecular
sequences. Algorithms for Molecular Biology, 1, 2006.

15 George B. Mertzios. An intersection model for multitolerance graphs: Efficient algorithms
and hierarchy. Algorithmica, 69(3):540–581, 2014.

16 George B. Mertzios, Ignasi Sau, and Shmuel Zaks. A new intersection model and improved
algorithms for tolerance graphs. SIAM Journal on Discrete Mathematics, 23(4):1800–1813,
2009.

17 George B. Mertzios, Ignasi Sau, and Shmuel Zaks. The recognition of tolerance and bounded
tolerance graphs. SIAM Journal on Computing, 40(5):1234–1257, 2011.

18 Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics,
156(1-3):291–298, 1996.

19 Andreas Parra. Triangulating multitolerance graphs. Discrete Applied Mathematics, 84(1-
3):183–197, 1998.

20 Jeremy P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Mono-
graphs. American Mathematical Society, 2003.

21 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 2011.

Comparing 1D and 2D Real Time on Cellular
Automata
Anaël Grandjean and Victor Poupet

LIRMM, Université Montpellier 2
161 rue Ada, 34392 Montpellier, France

Abstract
We study the influence of the dimension of cellular automata (CA) for real time language recog-
nition of one-dimensional languages with parallel input. Specifically, we focus on the question of
determining whether every language that can be recognized in real time on a 2-dimensional CA
working on the Moore neighborhood can also be recognized in real time by a 1-dimensional CA
working on the standard two-way neighborhood. We show that 2-dimensional CA in real time
can perform a linear number of simulations of a 1-dimensional real time CA. If the two classes
are equal then the number of simulated instances can be polynomial.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Cellular automata, real time, language recognition

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.367

1 Introduction

Cellular automata (CA) were first introduced in the 1940s (published posthumously in 1966)
by J. von Neumann and S. Ulam as a mathematical model to study self-replication [7].
Although initially studied as a a dynamical system, A.R. Smith III proved that it was
possible to embed Turing machines in their behavior [5] and were as such a convenient
model for massively parallel computation.

Cellular automata are also well suited to work on various dimensions. The original CA
by von Neumann is 2-dimensional, but the natural simulation of Turing machines is on one
dimension. CA represent therefore a natural way to study how the dimension of the space
affects the computing power of the machines [1, 6].

This article presents some results comparing the computational power of 1-dimensional
and 2-dimensional CA on parallel input. The main open question in that respect is to
determine whether or not all languages that can be recognized in real time on 2-dimensional
CA can also be recognized in real time in 1 dimension [2].

The organization of the article is as follows. Section 2 recalls the basic definitions and
concepts about cellular automata that are used throughout the article. Section 3 presents
a construction on 1-dimensional CA that shows how it is possible to consider that a real
time CA knows approximately where the middle (or any other fixed rational proportion) of
the input word is from the start. This construction is used to prove the main theorem of
Section 5. In Section 4 we present a classic technique on cellular automata that compresses
the space-time diagram of a 1-dimensional CA. The main novelty here is that we perform
the compression not on the middle of the input word but on an approximate position “near
the center”. Section 5 presents and proves the main result of the article, which states in
essence that 2-dimensional CA can simulate in real time a linear number of simulations of
a 1-dimensional real time CA. Finally Section 6 discusses some consequences of the main
theorems.

© Anaël Grandjean and Victor Poupet;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 367–378

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.367
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

368 Comparing 1D and 2D Real Time on Cellular Automata

Figure 1 The standard 1-dimensional neighborhood (left) and the Moore 2-dimensional neigh-
borhood (right).

2 Definitions

2.1 Cellular Automata
I Definition 1 (Cellular Automaton). A cellular automaton (CA) is a quadruple A =
(d,Q,N , δ) where:

d ∈ N is the dimension of A;
Q is a finite set whose elements are called states;
N ⊂ Zd is a finite set called neighborhood of A such that 0 ∈ N ;
δ : QN → Q is the local transition function of A.

A configuration of the automaton is a mapping C : Zd → Q. The elements of Zd are
called cells and for a given cell c ∈ Zd, we say that C(c) is the state of c in the configuration
C. The set of all configurations over Q is denoted Conf(Q). For a given configuration
C ∈ Conf(Q) and a cell c ∈ Zd, define the neighborhood of c in C

NC(c) =
{
N → Q

n 7→ C(c+ n)

From the local transition function δ, we define the global transition function ∆A of the
automaton. The image of a configuration C by ∆A is obtained by replacing the state of each
cell c by the image by δ of the neighborhood of c in C :

∆A :

Conf(Q) → Conf(Q)

C 7→
{

Zd → Q

c 7→ δ(NC(c))

In this article, we will only consider 1-dimensional CA working on the standard neighbor-
hood Nstd = {−1, 0, 1} and 2-dimensional cellular automata working on the Moore neigh-
borhood NM = {(x, y) | − 1 ≤ x, y ≤ 1} (see Figure 1).

2.2 Language Recognition
I Definition 2 (Language Recognizer). Given a finite alphabet Σ and a language L ⊆ Σ∗, a
d-dimensional CA A with states Q is said to recognize L in time f : N→ N with accepting
states Qa ⊆ Q and quiescent state q0 ∈ Q if, Σ ⊆ Q and for any word w = u0u1 . . . un−1 ∈
Σ∗, starting from the configuration

Zd → Q

(x, y1, y2, . . . , yd−1) 7→
{
ux if x ∈ J0, n− 1K and ∀i, yi = 0
q0 otherwise

the state of the origin at time f(n) is in Qa if and only if w ∈ L.

A. Grandjean and V. Poupet 369

I Definition 3 (Real and Linear Time). The real time function is the function n 7→ n − 1.
This time function corresponds to the minimal time necessary for information held on the
last letter of the input word to reach the origin and hence affect the recognition of the word.
The class of languages recognized in real time on 1 dimensional (resp. 2-dimensional) CA
will be denoted CA(n) (resp. CA2(n)).

We will say that a language is recognized in linear time if it can be recognized in time n 7→
2n. The class of languages recognized in linear time on 1-dimensional (resp. 2 dimensional)
CA will be denoted CA(2n) (resp. CA2(2n)).

Because there are linear acceleration theorems on 1-dimensional and 2-dimensional CA
[4] (on the simple neighborhoods that we consider), any language recognized in time n 7→ kn

for k > 0 is also recognized in time n 7→ 2n, which explains the denomination of linear time.
As for real time, it is a long open question to determine whether CA(n) = CA(2n).

In this article, we investigate whether adding a dimension to the automaton increases
linear and real time recognition power, namely if CA(n) = CA2(n) and CA(2n) = CA2(2n).
These questions are long open problems (see problem 26 in [2]).

2.3 Tools

2.3.1 Space-Time Diagram

A space-time diagram is a 2-dimensional representation of the evolution of a 1-dimensional
CA from a specific configuration. Each configuration in the evolution is represented by a line
of the diagram, with time going from bottom to top. We do not usually consider space-time
diagrams of 2-dimensional CA as these would be in 3 dimensions.

A specific point in space and time will be referred to as a site of the space-time diagram.

2.3.2 Layers

Given a CA A = (d,Q,N , δ), adding a layer to A that performs a certain task consists in
designing a specific CA working on a set of states Q′ that performs the task and extending
the set of states of A to the product Q×Q′. In doing so, the new product automaton can
mimic the behavior of A on its first coordinate and perform the new task on the second
coordinate. From there, it is possible to modify the behavior of the automaton by having
the two layers interact with each other.

As long as each layer requires only a finite number of states and there are only a finite
number of layers, the total number of states of the resulting automaton remains finite.

3 Markers

In this section we investigate whether “marking” specific positions on the input word can
help real time recognition of a language. The results in this section are a generalization of
a technique used by O. Ibarra and T. Jiang in their proof that if CA(n) is closed under
reversal then CA(n) = CA(2n) [3].

Given a finite alphabet Σ, we mark some letters of words of Σ∗ by considering the ex-
tended alphabet Σ×{0, 1}. We say that the word (ui, δi)i∈J0,n−1K ∈ (Σ×{0, 1})∗ corresponds
to the word (ui)i∈J0,n−1K where all the positions i such that δi = 1 have been marked (δi = 0
means that the letter has not been marked).

STACS 2015

370 Comparing 1D and 2D Real Time on Cellular Automata

3.1 Exact and Fuzzy Marking
I Definition 4 (Proportional Marking). Given α ∈ [0, 1[and a language L over an alphabet
Σ, we define L[α] ∈ (Σ× {0, 1})∗ as the language of words of L for which only the letter at
position bαnc has been marked (n is the length of the word).

Formally, the word (ui, δi)i∈J0,n−1K ∈ (Σ×{0, 1})∗ is in L[α] if and only if u0u1 . . . un−1 ∈
L, δbαnc = 1 and for all other i, δi = 0.

When working on real time CA algorithms it would sometimes be convenient to know
where the middle of the word is, or some other specific ratio. Whether marking the letter
of the input word corresponding to a fixed proportion of the word length can help recognize
in real time languages that were not in CA(n) is still an open question to our knowledge1.
Although an answer to this question would be very interesting, we can actually make many
constructions with a weaker version that we can prove : instead of requiring a mark on the
exact cell at position bαnc, it is enough to have a mark on one of the cells between positions
bαnc and bβnc for α < β.

I Definition 5 (Fuzzy Marking). Given α, β ∈ [0, 1[with α ≤ β and a language L over an
alphabet Σ, we define L[α,β] ∈ (Σ×{0, 1})∗ as the language of words of L for which exactly
one letter between position bαnc and bβnc has been marked (n is the length of the word).

Formally, the word (ui, δi)i∈J0,n−1K ∈ (Σ×{0, 1})∗ is in L[α,β] if and only if u0u1 . . . un−1 ∈
L, there is exactly one i0 such that δi0 = 1 and i0 ∈ Jbαnc, bβncK.

The rest of this section will be devoted to the proof of the following theorem:

I Theorem 6. For any language L and any α, β ∈ [0, 1] with α < β,

L[α,β] ∈ CA(n)⇒ L ∈ CA(n)

First, notice that it is sufficient to prove the theorem for α and β rationals with 0 <

α < β < 1. Indeed, for any α, β ∈ [0, 1] and α′, β′ ∈ Q such that α ≤ α′ < β′ ≤ β if
L[α,β] ∈ CA(n) then we can recognize L[α′,β′] in real time by simulating the automaton A
that recognizes L[α,β] in real time while simultaneously verifying that the marker is placed
between bα′nc and bβ′nc, which can be done in real time because α′ and β′ are both rationals.
If the marker is in the right range then the input word is in L[α′,β′] if and only if A accepts
it. If the marker is not in the right range, then the word is not accepted. From now on, we
can therefore assume that α, β ∈ Q and 0 < α < β < 1.

To prove the theorem, we assume that we have a CA A that recognizes the language
L[α,β] in real time, for some α, β ∈ [0, 1], with α < β. We will show how to make a CA A′
that recognizes L in real time.

The construction will be done in two steps. First we describe a CA that starts with a
fixed set of positions marked (independently of the input length) and we show that with
these markers we can recognize L in real time. Then we transform this CA into one that
does not need the positions to be marked ahead of time.

3.2 Universal Markers
Let n0 be the smallest integer such that 1 + 1

2n0 < β
α and consider the set M of integers

whose binary representation is such that all the digits 1 are on the (n0 + 1) most significant

1 Note that if CA(n) = CA(2n) then proportional marking with a rational ratio does not help real time
recognition since the cell at position bαnc can be marked in n time steps for any rational α.

A. Grandjean and V. Poupet 371

1 4 8 16 245 6 7 10 12 14 20 28 32 40 482 30

1
1
0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

1
0
0
0

1
0
1
0

1
1
0
0

1
1
1
0

1
0
0
0
0

1
0
1
0
0

1
1
0
0
0

1
1
1
0
0

1
0
0
0
0
0

1
0
1
0
0
0

1
1
0
0
0
0

×23×22×21×20

Figure 2 The set M for n0 = 2.

bits (see Figure 2):

M = {x×2k | x ∈ K0, 2n0+1−1K, k ∈ N} = J0, 2n0−1K∪{x×2k | x ∈ J2n0 , 2n0+1−1K, k ∈ N}

The set M contains an initial segment J0, 2n0J and copies of J2n0 , 2n0+1J multiplied by
the powers of 2 (indicated as bracketed “blocks” in Figure 2).

Let us now consider the ratio between consecutive elements of M . Denote by (mi)i∈N
the elements of M in increasing order. For all mi ≥ 2n0 , we have

1 + 1
2n0+1 − 1 ≤

mi+1

mi
≤ 1 + 1

2n0
(1)

The lower bound corresponds to the ratio between the last element of a block and the
first of the next block (in the example with n0 = 2, this ratio is 8

7) and the upper bound
corresponds to the ratio between the two first elements of a block (in the example it is 5

4).
From the definition of n0, we have ∀mi ≥ 2n0 , mi+1

mi
< β

α and mi+1
β < mi

α so intervals

[mi

β ,
mi

α] and [mi+1
β , mi+1

α] overlap, and hence [2n0 ,+∞[⊆
⋃
m∈M

[
m
β ,

m
α

]
.

From this, we get ∀x ≥ 2n0 , ∃m ∈M, bαxc ≤ m ≤ bβxc.
Since M contains all the elements in the the missing initial segment J0, 2n0K, we have

proved the following lemma:

I Lemma 7. ∀n ∈ N, ∃m ∈M, bαnc ≤ m ≤ bβnc

We now know that for any input word w of length n, at least one of the elements of M
lies between bαnc and bβnc and can therefore be used by A as a marker to know whether
w is in L.

Moreover, from Equation (1), we have ∀i, k ∈ N,

mi

(
1 + 1

2n0+1 − 1

)k
≤ mi+k (2)

Define k0 as the smallest integer such that

1
α
≤
(

1 + 1
2n0+1 − 1

)k0

(3)

Equations (2) and (3) state that for any i, if mi+k0+1 ≤ n then mi+1 ≤ bαnc and thus
mi < bαnc, which means that if a word is long enough to have a letter on mi+k0+1, then
mi is out of the range of valid markers. As a consequence, it is never necessary to consider
more than (k0 + 1) elements of M at any given time.

We can now describe the first part of the construction. We assume that the automaton is
given as input a word w of Σ∗ on which all letters at indexes in M are marked. On such an

STACS 2015

372 Comparing 1D and 2D Real Time on Cellular Automata

!

!

m1 m2 m3 m4 m5 m6 m7

Figure 3 Space-time diagram of the simulation. Each cone represents the area on which a
simulation corresponding to an element of M is done. The cones extend to the left until the origin,
but are interrupted to the right when there are too many simulations running at once.

input the automaton simulates the behavior of A on w (as if no letter was marked), but each
marked cell also starts a separate simulation of A that considers that the letter is the only
marked letter of the input. However, as previously observed, only the (k0 + 1) simulations
corresponding to the largest elements of M are significant, all others correspond to markers
at positions before the required range. This means that each cell only needs to simulate at
most (k0 + 1) computations of A and whenever a new computation should be taken into
account, the one corresponding to the lowest element of m is discarded.

This behavior is illustrated by Figure 3. This figure represents a space-time diagram
of the automaton. Each cone corresponds to a simulation of A for which the marked cell
is the origin of the cone. The figure corresponds to a case where k0 = 2, meaning that at
most 3 simulations are performed in parallel by each cell. The thick dashed line illustrates
the area of the space-time diagram on which the simulation corresponding to the marker
on m4 is performed. Since this specific simulation starts on the cell m4, all space-time
sites outside of the cone starting from that cell are not performing this specific simulation
(they are however simulating the behavior of A without any marker, wich coincides with the
behavior with a marker on m4 on said sites out of the cone). As time passes, more and more
cells are included in this cone and start performing this specific simulation. The two sites
indicated by ! correspond to events where a cell enters a fourth cone. Instead of starting a
fourth simulation, it discards the simulation corresponding to the lowest mi: on the left, the
simulation for a marker at m1 is discarded, on the right it’s the simulation corresponding to
the marker at m4 that is discontinued.

In each simulation of A, the automaton checks that the marker is located between bαnc
and bβnc by sending two signals from the marker towards the origin, one at speed α and
the other at speed β (it is possible if α and β are rationals). If the marker is in the correct
range, the signal moving at speed β will arrive before real time while the one moving at
speed α will arrive after real time.

From Lemma 7, we know that there is a marker m in the correct range and since A
properly recognizes L[α,β], the simulation of A for the marker m will let the automaton
know whether w is in L or not.

3.3 Construction of M

We now have to remove the requirement that the elements of M be marked on the input.
To do this, we use a space-time compression technique: instead of starting the computation

A. Grandjean and V. Poupet 373

countercomputation

Figure 4 The diagonal counter is added on
the compressed space-time diagram. Because
the diagonal indexes are of logarithmic length,
the counter and the main computation overlap
only on a finite number of cells. Diagonals of
indexes inM (here with n0 = 2) are represented
with a darker square.

*

*

*
*

*

*

*

*

*

1

1

0

0

0

1

1

0

0

1
0

1

1
1

1
0

0
0

1
1

1

1
1

0
0

1

1

1
0

0

1

0

1
0

1

1

1

1
0

1

1

0

0
1

0

1

1

0
1

0

1

0

0
1

1

1

0

0
1

1

1

0
1

1

0
1

1

1
0

0
0

1

1

0
0
0

1

1

0
0

0

1
0
0
0
0

1
0

1
1 1

0

1
1 1

1

1
1

1

1

0

0

0

1

1

0

0

1
0

1

1
1

1
0

0
0

1
1

1

1
1

0
0

1

1

1
0

0

1

0

1
0

1

1

1

1
0

1

1

0

0
1

0

1

1

0
1

0

1

0

0
1

1

1

0

0
1

1

1

0

0
1

1

0
1

1

0

1

1
0

0
0

1

1

0
0
0

1

1

0
0

0

1
0
0
0
0

1
0

1
1 1

0

1
1 1

1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 5 Detailed behavior of the diago-
nal counter. Least significant bits are on the
bottom right. For better readability the digits
of indexes on odd diagonals are represented in
light grey. Indexes in M are marked with a (*)
(here M is defined with n0 = 2) and the sig-
nal sent towards the main computation is rep-
resented by an arrow.

immediately, the automaton moves the states from the input word towards the orgin to group
them three by three, and only then simulates the behavior of the original (uncompressed)
CA. By performing such a compression, the initial configuration is mapped to the space-time
line of slope 2, and the computation takes place in the cone between this line and the vertical
axis (as illustrated by the green cone in Figure 4 in which each dark green cell on the right
border holds 3 states from the initial configuration). Although the space-time diagram is
strongly modified by the compression, the computation of the states on the origin cell does
not suffer any slow down.

To mark the elements of M for the compressed computation, the CA builds a binary
counter on the main diagonal of the space-time diagram to obtain the index of each transverse
diagonal (see Figures 4 and 5).

Since it is easy to recognize binary representations of elements in M (all bits but the
(n0 + 1) most significant must be 0), a signal can be sent along the diagonals whose index
is in M so that the letters of the input word at positions in M can be marked before the
compressed computation effectively starts.

From an input word w in Σ∗, the automaton can therefore simulate the previously
described automaton as if the positions in M were marked from the start, and determine in
real time whether w is in L. This concludes the proof of Theorem 6.

4 Central Compression

In this section we describe a way to simulate the behavior of a 1-dimensional CA A on an
input w ∈ Σ∗ working in real time with another 1-dimensional CA A′ on input w with a
marked position, by compressing the space-time diagram of A.

STACS 2015

374 Comparing 1D and 2D Real Time on Cellular Automata

0

0

0

0

0

0

3

3 3

6

9

12

15

18

18

18

21

18

15

15

15

15

15

15

12

12

12

12

12

12

12

9 9

9

9

9

9

9

9

6

6

6

6

6

66

6

6

3 3

33

3

3

3

3

3

3

3

3

0

0

00

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

Figure 6 Simulation of a CA by compressing
its space-time diagram by a factor 3 around a
given mark (indicated by a thick dashed line).
Each cell in the simulating area holds 3 states
that correspond to states in the original space-
time diagram. Numbers on the cells indicate
which time step of the original automaton they
are currently simulating.

!

Figure 7 Diagram of the compression
around a mark (thick dashed line) at position
bαnc. The thick arrows illustrate the sites
where the letter of the input words are first
taken into account. The site where the result
of the simulated automaton is computed is in-
dicated by the exclamation mark.

4.1 General Description

Assume that a special position has been marked on the input word of A′. We want to
group the states of the original simulated CA by groups of 3 around the mark as illustrated
by Figure 6. To do so, the letters of the input word (represented as large circles in the
figure) are shifted towards the marked position (indicated by a thick dashed line). Because
the letters do not know in advance whether the mark is to their right or to their left, the
AC uses two separate layers, one that shifts the letters to the right and the other to the
left. Letters that move away from the mark will never be grouped and will not affect the
simulation.

When letters reach the marked position, they stack on the corresponding cell. When a
cell has 3 letters, it is considered full and its neighbors start gathering letters in turn. In
Figure 6, grouped states are represented by small circles.

Once a cell is fully grouped, it watches its neighbors until it has enough information to
simulate 3 steps of the original automaton at once on all its grouped states. This happens
when its neighbors are fully grouped and their simulated time is at least equal to its own.
During the compressed simulation, the difference between the simulated times of a cell and
its neighbor is at most 3 (it can be -3, 0 or 3 since the simulation advances by 3 steps at a
time). If a cell advances faster than its neighbor it has to memorize its previous state so that
the neighbor can use it when doing its own transition. In Figure 6, the number in each cell
represents the simulated time step: a cell numbered 3 for instance has to wait until both its

A. Grandjean and V. Poupet 375

neighbors are labelled 3 or more before it can compute step 6 for all 3 of its grouped states.
Cells represented with a grey square are cells that don’t contain any significant information
(they correspond to sites that are outside of the real time cone in the original space-time
diagram) so their neighbors do not need to wait for their information.

If the mark around which the cells are grouped is in the first half of the input word (which
is the case in Figure 6 as there are 9 letters left of the mark and 15 right) the simulation can
take place properly as the left part can compute its states faster and have the information
ready for the right part. The key point is that from the time when the rightmost cell is
fully grouped (this time is indicated by a thick horizontal line in Figure 6) all the sites on
the diagonal must be able to advance their computation by 3 steps. This guarantees that
the leftmost cell has eventually computed as many steps of the original diagram as if it had
started at the indicated time and advanced by 3 steps each time, which corresponds to the
whole computation of the original diagram.

In Figure 6, the leftmost cell of the compressed area seems to be 2 steps behind real time
at the end of the simulation (the initial configuration has 24 letters so the real time is 23).
However, because the cell holds the states of the 3 leftmost cells of the original configuration
at time 21, it has all the relevant information to determine the state of the origin at time
23.

There are of course many rounding problems when the number of letters left or right or
the mark is not a multiple of 3. However these roundings cause at most a constant delay,
which can be corrected by using a constant speed-up theorem [4].

4.2 Properties
By compressing the space-time diagram of the automaton around the marked position, we
are able to perform the same computation with some significant differences.

First, the letters of the input word are not taken into account from the start of the
computation, but rather in a sequential order. The time at which a given letter of the input
word is effectively considered to determine the result of a transition in the simulation is
proportional to its distance to the initial mark (see Figure 7 in which the sites where the
letters of the input word are first taken into account are along the thick arrows).

Second, the result of the computation is obtained significantly before real time, on a cell
that it not the origin. The site where the result is obtained is represented by ! in Figure 7.

Let us denote by α the proportion of the word at which the mark is set. When using
the compression in a later section, we will need the free space left of the compressed area
(which is of width 2α

3) to be larger than each of the sides of the compressed area. As said
before, we need α ≤ 1

2 for the simulation to work without delay, which means that the left
side of the compressed area is smaller than the right side. Since the right side is of width
1−α

3 , this means that we want 1−α
3 ≤ 2α

3 , which amounts to 1
3 ≤ α ≤

1
2 .

5 The Power of Space

In this section we compare the computational power of 2-dimensional CA working on the
Moore neighborhood to that of 1-dimensional CA working on the standard neighborhood.

I Definition 8. Given a marked language L ⊆ (Σ × {0, 1})∗, we define L̃ ⊆ Σ∗ as the
language obtained by removing the marks of words in L (L̃ can be seen as the result of the
first projection map on L).

STACS 2015

376 Comparing 1D and 2D Real Time on Cellular Automata

0
t=0 t=1 t=8

1
0

8
7
6
5
4
3
2
1
0

Figure 8 Running n simulations of a 1-
dimensional CA with a 2-dimensional CA.

0
t=0 t=1 t=5

1 5
5
5
5
5
5

1

Figure 9 Real time parallel simulations of
a 1DCA. At each time, a new line copies the
current unmarked simulation of A and contin-
ues from the same point (no delay). Each line
has up to two special positions that are marked
when the line starts simulating A.

I Theorem 9. For any language L ⊆ (Σ × {0, 1})∗ of words having at most one marked
position, L ∈ CA(2n)⇒ L̃ ∈ CA2(2n).

Proof. Let L ⊆ (Σ×{0, 1})∗ be a language in CA(2n) of words having at most one marked
position and A be a 1-dimensional CA that recognizes L in time n 7→ 2n. Let us describe a
2-dimensional CA A′ that recognizes L̃ in linear time.

The input of A′ is an unmarked word w ∈ Σ∗ of length n. The idea is to use the second
dimension of A′ to run n simulations of A, one for each possible position of the mark as
shown on Figure 8.

At time t = 0, the input is on the first line and a simulation of A starts on that line
with a mark on the leftmost cell of the word. At each subsequent time, the original input is
copied on the next line (moving up), and a new simulation of A is started on that line with
the mark on the next position (moving right). At time t = n, the first line has simulated n
steps of A with a mark on the first cell, while the n-th line starts a new simulation with the
mark on the last cell.

When a simulation finishes, the result is sent back towards the origin (on the first line).
At time t = 3n the simulation on line n is finished, and at time t = 4n the results of
all simulations are available on the origin (to be complete, the automaton must also run
an extra simulation on the first line that simulates the behavior of A on input w without
any mark). The language L̃ is therefore recognized in time n 7→ 4n, and by using a linear
acceleration we get L̃ ∈ CA2(2n). J

I Theorem 10. For any language L ⊆ (Σ × {0, 1})∗ of words having at most one marked
position, L ∈ CA(n)⇒ L̃ ∈ CA2(n).

Proof. The basic idea is again to run parallel simulations of a 1-dimensional CA on the
lines of the 2-dimensional CA, but because the automaton must work in real time it is not
possible to waste a linear time starting the simulations, nor a linear time bringing back
the results of the farthest simulation to the origin, which is why we use the compressed
simulation presented in Section 4.

Consider a language L ∈ (Σ×{0, 1})∗ such that all words of L have at most one marked
position and a 1-dimensional CA A that recognizes L in real time. We want to describe a
2-dimensional CA A2 that takes an unmarked word w ∈ Σ∗ of length n and decides in real
time if by adding at most one mark to w we can obtain a word in L.

For now, let us assume that the input word w has a mark on a position between bn3 c and
bn2 c so that we can run the compressed simulation easily. This mark will be referred to as
the compression mark, it is different from the marks of L that we want to simulate on each
line.

A. Grandjean and V. Poupet 377

Instead of simulating A, A2 will simulate an automaton AC that simulates A with a
central compression on the compression mark as described in Section 4.

The behavior of A2 is as follows:
at time t = 0, the first line of A2 starts a simulation of AC as if no letter of the input
was marked;
at each time, this “unmarked” simulation is copied to the next line (moving up), each
line continues the simulation from the step at which it is when copied (so that more and
more lines are performing the same simulation of AC , without suffering any delay);
meanwhile, each line has one or two special positions. The special position of the first
line is the one where the compression mark is, and the special positions of line (i + 1)
are the one left of the leftmost special position of i, and the one right of the rightmost
position of i (see Figure 9). Special positions on each line are marked when the line
copies the simulation from the previous line.
during the simulation of AC by a line, when one of the cells at a special position finishes
grouping 3 letters of the input word, 3 new simulations of AC are started on this line,
each considering that there was a mark on one of the letters of the input word that was
grouped on the special position. Because each line has at most two special positions, at
most 7 simulations of AC are run in parallel on each line (3 for each special position and
the unmarked one).

This construction works because of the properties of the central compression discussed
in Section 4.

First, the simulations of AC on each line can be performed properly without any delay
because the time at which an input letter that eventually is grouped on a special position of
the line becomes significant is after the activation of the line and the marking of its special
positions. Therefore, all simulations of AC on all lines are synchronized, and the farther
lines do not suffer any delay.

Second, the number of lines really used (on which significant simulations that correspond
to a potential mark on an input letter) is equal to the length of the largest side of the
compressed area (which is 1−α

3 , see Figure 7). This length is less than the time remaining
when the simulations of AC obtain their result (2α

3), so it means that there is enough time
to send back the result of the parallel simulations to the origin in real time.

The last detail is now to remove the requirement for the compression mark to be given
as input. From Theorem 6, we know that if the computation can be performed in real time
with a mark anywhere between positions bn3 c and bn2 c then it can be done in real time
without previous marking. Technically, Theorem 6 only applies to 1-dimensional CA, but
in this case the 2-dimensional CA performs 1-dimensional computations on each line almost
independently so by having each line perform the construction from the proof of Theorem 6
we obtain the result for this specific 2-dimensional CA. J

6 Consequences

Let us now discuss some consequences of Theorem 10.

I Corollary 11. The concatenation L1L2 of two 1-dimensional real time languages L1 and
L2 is recognizable in real time by a 2-dimensional CA working on the Moore neighborhood.

Proof. Given a word w = uv with a mark between u and v, it is easy to check in real time
if u ∈ L1 and v ∈ L2, so from Theorem 10 the unmarked language is in CA2(n). J

STACS 2015

378 Comparing 1D and 2D Real Time on Cellular Automata

I Corollary 12. If CA(n) = CA2(n), CA(n) is closed under concatenation.

Without the assumption that CA(n) = CA2(n), it is still unknown whether CA(n) is
closed under concatenation. Actually, it is also unknown whether CA(2n) is closed under
concatenation and even if the concatenation of two languages in CA(n) is in CA(2n).

I Corollary 13. For any language L and any α ∈ Q ∩ [0, 1], L[α] ∈ CA(n)⇒ L ∈ CA2(n).

Proof. Given a word with one marked position, it is easy to check simultaneously in real
time if the mark is at position bαnc and if the marked word is in L[α]. J

I Corollary 14. If CA(n) = CA2(n), for any language L and any α ∈ Q ∩ [0, 1], L[α] ∈
CA(n)⇒ L ∈ CA(n).

Under the assumption that CA(n) = CA2(n), Theorem 10 can also be strengthened:

I Corollary 15. If CA(n) = CA2(n), for any k ∈ N and any language L ⊆ (Σ× {0, 1})∗ of
words having up to k marked positions, L ∈ CA(n)⇒ L̃ ∈ CA(n).

Proof. By induction on k. The case k = 1 is a direct consequence of Theorem 10 and the
assumption that CA(n) = CA2(n).

If the corollary is true for up to k marks, and L is a language of words with up to
(k+ 1) marks, let us consider the language L′ ⊆ (Σ×{0, 1}2)∗ obtained from L by changing
the first marked letter (ui, 1) to (ui, 0, 1), all other marked letters (ui, 1) into (ui, 1, 0) and
all unmarked letters (ui, 0) into (ui, 0, 0) (effectively distinguishing the first mark from the
others).

If L ∈ CA(n) then L′ ∈ CA(n) since it’s possible to simulate the recognition of L by
considering that all marks are the same, while independently checking in real time that the
distinguished mark is the first marked position. From Theorem 10 the language of words
in L in which the first mark has been removed is therefore in CA2(n) and hence also in
CA(n). The words of this language have at most k marks so from the induction hypothesis,
L ∈ CA(n). J

References
1 Stephen N. Cole. Real-time computation by n-dimensional iterative arrays of finite-state

machines. IEEE Transactions on Computers, C-18(4):349–365, 1969.
2 Marianne Delorme, Enrico Formenti, and Jacques Mazoyer. Open problems on cellular

automata. Technical report, LIP - ENS Lyon, 2000.
3 Oscar H. Ibarra and Tao Jiang. Relating the power of cellular arrays to their closure

properties. Theoretical Computer Science, 57(2-3):225–238, 1988.
4 Jacques Mazoyer and Nicolas Reimen. A linear speed-up theorem for cellular automata.

Theor. Comput. Sci., 101(1):59–98, 1992.
5 Alvy R. Smith III. Simple computation-universal cellular spaces. J. ACM, 18(3):339–353,

1971.
6 Véronique Terrier. Low complexity classes of multidimensional cellular automata. Theor.

Comput. Sci., 369(1-3):142–156, 2006.
7 John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,

Urbana, IL, USA, 1966.

Tropical Effective Primary and Dual
Nullstellensätze∗

Dima Grigoriev1 and Vladimir V. Podolskii2,3

1 CNRS, Mathématiques, Université de Lille
France
Dmitry.Grigoryev@math.univ-lille1.fr

2 Steklov Mathematical Institute
Moscow, Russia
podolskii@mi.ras.ru

3 National Research University Higher School of Economics
Moscow, Russia

Abstract
Tropical algebra is an emerging field with a number of applications in various areas of mathem-
atics. In many of these applications appeal to tropical polynomials allows to study properties
of mathematical objects such as algebraic varieties and algebraic curves from the computational
point of view. This makes it important to study both mathematical and computational aspects
of tropical polynomials.

In this paper we prove tropical Nullstellensatz and moreover we show effective formulation
of this theorem. Nullstellensatz is a next natural step in building algebraic theory of tropical
polynomials and effective version is relevant for computational aspects of this field.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, G.2.1 Combinat-
orics

Keywords and phrases tropical algebra, tropical geometry, Nullstellensatz

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.379

1 Introduction

A min-plus or tropical semiring is defined by the set K, which can be R, R∞ = R∪{+∞}, Q or
Q∞ = Q∪{+∞} endowed with two operations tropical addition ⊕ and tropical multiplication
� defined in the following way:

x⊕ y = min{x, y}, x� y = x + y.

Tropical polynomials are a natural analog of classical polynomials. In classical terms it
can be expressed in the form f(~x) = mini Mi(~x), where each Mi(~x) is a linear polynomial (a
tropical monomial) in variables ~x = (x1, . . . , xn), and all coefficients of all Mi are nonnegative
integers except a free coefficient which can be any element of K.

The degree of a tropical monomial M is the sum of its coefficients (except the free
coefficient) and the degree of a tropical polynomial f denoted by deg(f) is the maximal

∗ The first author is grateful to Max-Planck Institut für Mathematik, Bonn for its hospitality during the
work on this paper.
The second author is partially supported by the Russian Foundation for Basic Research and the
programme “Leading Scientific Schools”. Part of the work of the second author was done during the
visit to Max-Planck Institut für Mathematik, Bonn.

© Dima Grigoriev and Vladimir V. Podolskii;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 379–391

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.379
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

380 Tropical Effective Nullstellensatz

degree of its monomials. A point ~a ∈ Kn is a root of the polynomial f if the minimum
mini{Mi(~a)} is either attained on at least two different monomials Mi or is infinite. We
defer a more detailed definitions on the basics of min-plus algebra to Preliminaries.

Tropical polynomials have appeared in various areas of mathematics and found many
applications (see, for example, [13, 20, 24, 21, 22, 12]). One of the most important advant-
age of tropical algebra is that it makes some properties of classical mathematical objects
computationally accessible [26, 13, 20, 24]. One of the main goals of min-plus mathematics
is to build a theory of tropical polynomials which would help to work with them and would
possibly lead to new results in the related areas. Computational reasons, on the other hand,
make it important to keep the theory maximally computationally efficient.

The best studied so far is the case of linear tropical polynomials and systems of linear
tropical polynomials. For them the analog of the large part of the theory of classical linear
polynomials was established. This includes studies of tropical analogs of the rank of a matrix
and the independence of vectors [4, 15, 1], the analog of the determinant of a matrix and
its properties [22], the analog of Gauss triangular form [8]. Also the solvability problem
for tropical linear systems was studied from the complexity point of view. Interestingly, it
turned out to be polynomially equivalent to a well known mean payoff games problem [10].
Thus, this problem lies in NP ∩ coNP, but is not known to be in P.

For tropical polynomials of arbitrary degree less is known. In [23] the radical of a tropical
ideal was explicitly described. In [26] it was shown that solvability problem for tropical
polynomial systems is NP-complete.

Along with tropical polynomials there were also studied min-plus polynomials. Min-plus
polynomial is an expression of the form mini Mi(~x) = minj Lj(~x), where Mi and Lj are
tropical monomials. A point ~a ∈ Kn is a root of the polynomial if mini Mi(~a) = minj Lj(~a).

Min-plus polynomials were studied mainly for its connections to dynamic programming
(see [3, 16]). As in the case of tropical polynomials here the best studied case is the case of
linear min-plus polynomials [3]. Also in [10] the connection of min-plus and tropical linear
polynomials was established.

As for the min-plus polynomials of arbitrary degree much less is known. We are only
aware of the result on the computational complexity of the system of min-plus polynomials:
paper [11] shows that this problem is NP-complete.

Our results

The next natural step in developing of the theory of tropical polynomials would be an analog
of classical Nullstellensatz, the theorem which for the classical polynomials constitutes one of
the cornerstones of algebraic geometry. Concerning the tropical Nullstellensatz, the problem
was already addressed in the paper [7]. In this paper there was established a general idea to
approach this theorem in the tropical case through the dual formulation. Moreover, in [7]
there was formulated a conjecture (which we restate below as Conjecture 3) capturing the
formulation of the tropical dual Nullstellensatz and this conjecture was proven for the case
of polynomials of 1 variable. Previously in [25] tropical dual Nullstellensatz was established
for a pair of polynomials (k = 2) in 1 variable relying on the classical resultant and on the
Kapranov’s theorem [5, 25].

More specifically, in [7] there was considered a Macaulay matrix of the system of tropical
polynomials F = {f1, . . . , fk}. This matrix can be easily constructed from F : we just
consider all polynomials fi + Mj (in classical notation) of degree at most N , where N is
a parameter and Mj is a tropical monomial. We put the coefficients of these polynomials
in the rows of the matrix, where columns of the matrix correspond to monomials. Empty

D. Grigoriev and V. V. Podolskii 381

entries of the matrix we fill with ∞. The resulting matrix we denote by CN . In [7] it was
conjectured that the system of polynomials F has a solution iff the tropical linear system
with the matrix CN has a solution, and moreover N can be bounded by some function on n,
k and the degree of polynomials in F (this refers to effectiveness).

In this paper we prove this conjecture. Moreover, we show an effective version of the
theorem. That is, we pose bounds on N and provide examples showing that they are close to
tight. These bounds are relevant for computational aspects of tropical polynomial systems.
Surprisingly, it turns out that the cases of tropical semiring with and without ∞ differ
dramatically. More specifically, in the case of tropical semirings K = R and K = Q we
show that F has a solution iff the tropical linear system with the matrix CN has a solution,
where N = (n + 2) · k · d, d is the maximal degree of polynomials in F , k is the number
of polynomials in F and n is the number of variables. For the case of tropical semirings
K = R∞ and K = Q∞ we show a similar result, but with N = (Cd)min(n,k) for some constant
C. Thus for the case without ∞ the bound on N is polynomial in n, k, d and for the case
with ∞ the bound on N is still polynomial in d, but is exponential in n and k. We give
examples showing that our bounds on N are qualitatively optimal, that is the difference of
the values of N in these cases is not an artifact of the proof, but is unavoidable. However,
quantitatively there is a gap between upper and lower bounds, see Section 3 for details.

Regarding the substantial gap between the required degree in the finite and infinite cases
we observe there is a similar situation for classical Nullstellensatz. Indeed, we show that
in case of semiring R the bound in a tropical effective Nullstellensatz depends on the sum
of the degrees of the polynomials, while in case of larger semiring R∞ the bound depends
on the product of the degrees (Theorems 4 and 9). We recall that for systems of classical
polynomials over an algebraically closed field the bound on the effective Nullstellensatz
depends on the sum of the degrees of polynomials in homogeneous (projective) case [18, 19]
while the bound depends on the product of the degrees for arbitrary polynomials (affine
case) [6, 17].

Next we show the primary version of tropical Nullstellensatz. We view Nullstellensatz as a
duality1 result for systems of polynomials: if there is no solution to the system of polynomials
then some positive property holds (something does exist). In the classical case this positive
property is the containment of 1 in the ideal generated by polynomials (over algebraically
closed field). The naive analog does not hold for the tropical case. Indeed, for example, in the
tropical ideal generated by the system of tropical polynomials {min(x, 0), min(x, 1)} there
are no polynomials with only one monomial and thus there is no polynomial 0. Basically, the
point is that in the tropical semiring there is no subtraction, so in any algebraic combination
of polynomials no monomials cancel out. To overcome this difficulty we introduce the notion
of nonsingular tropical algebraic combination of tropical polynomials (see the definition in
Preliminaries; here we only note that the property is simple and straightforward to check).
For the primary tropical Nullstellensatz we show that there is no solution to tropical linear
system F iff there is a nonsingular tropical algebraic combination of polynomials in F of
degree at most N . We show this result for both cases of tropical semiring with and without
∞ and the value N in both cases corresponds to the size of Macaulay matrix in the tropical
dual Nullstellensatz.

1 To avoid a confusion we note that the word ‘dual’ is used in two different meanings. First, we use
it in the term “dual Nullstellensatz” as opposed to standard version of Nullstellensatz. This means
that dual Nullstellensatz is obtained from standard Nullstellensatz by (linear) duality. Second, we
use the word ‘dual’ in term “duality result” to denote the general type of results. Since standard
Nullstellensatz is a duality result itself, applying linear duality to it results in a non-duality result. Thus,
dual Nullstellensatz is not a duality result.

STACS 2015

382 Tropical Effective Nullstellensatz

To establish primary Nullstellensatz we need a duality for tropical linear systems. We
show this duality result as a sidestep. However we note that this results is heavily based on
already known results [2] and is a simple corollary of them.

We also prove similar results for the case of min-plus polynomials. As a sidestep of our
analysis we show the close connection between tropical and min-plus systems of polynomials.
We argue that these two models are very closely connected and that this connection can be
used to establish new results in tropical algebra. The observation is that some results (like
linear duality) are easier to obtain for min-plus polynomials and then translate to tropical
polynomials, and some other results (like Nullstellensatz) on the other hand are easier to
obtain for tropical polynomials and then translate to min-plus polynomials. In our opinion it
is fruitful for further development of the theory to consider both models simultaneously.

Our techniques

We use the general approach of the paper [7] to Nullstellensatz through dual formulation.

To establish the dual Nullstellensatz we use methods of discrete geometry dealing with
integer polyhedra. First we obtain dual Nullstellensatz for the case without ∞. The case
with ∞ requires much more additional work.

To obtain primary Nullstellensatz we apply the duality results for linear tropical polyno-
mials. We note that these results rely on the completely different combinatorial techniques,
namely on the connection to mean payoff games [2].

Other works on tropical Nullstellensatz

In paper [14] there was established Nullstellensatz for tropical semiring augmented with
additional elements (called ghosts). This result is in the line with other results [24] trying to
capture tropical mathematics by the means of the classical ones. However, tropical semiring
augmented with ghosts constitutes (logically) a completely different model compared to usual
tropical semiring. Thus our results are incomparable with the one of the paper [14].

We also note that the paper [23] (which has Nullstellensatz in the title) takes completely
different view on Nullstellensatz. We consider Nullstellensatz as a result on the solvability of
system of polynomials, and paper [23] views Nullstellensatz as a result on the structure of
the radical of a tropical ideal. As it can be easily seen, for example, from our results during
the translation from classical world to the tropical one, the connection between these two
objects changes drastically (cf. with example F = {min(x, 0), min(x, 1)} above). Thus our
results are incomparable with the results of [23] as well.

The rest of the paper is organized as follows. In Section 2 we introduce main definitions.
In Section 3 we present tropical and min-plus dual Nullstellensätze. In Section 4 we present
tropical and min-plus primary Nullstellensätze. In Section 5 we present our results on tropical
and min-plus linear duality. In Section 6 we present results on connection between tropical
and min-plus polynomial systems.

Due to the space constraint in this extended abstract many proofs are omitted. They can
be found in the full version of the paper [9].

D. Grigoriev and V. V. Podolskii 383

2 Preliminaries

2.1 Min-plus algebra
Tropical and min-plus polynomials

A min-plus or tropical semiring is defined by the set K, which can be R, R∞ = R ∪ {+∞},
Q or Q∞ = Q ∪ {+∞} endowed with two operations, tropical addition ⊕ and tropical
multiplication � defined in the following way:

x⊕ y = min{x, y}, x� y = x + y.

Below we mainly consider K = R and K = R∞. The proofs however literally translate to the
cases of Q and Q∞.

The tropical (or min-plus) monomial in variables x1, . . . , xn is defined as

M = c� x�i1
1 � . . .� x�in

n , (1)

where c is an element of the semiring K and i1, . . . , in are nonnegative integers. In usual
notation the monomial is

M = c + i1x1 + . . . + inxn.

The degree of the monomial is defined as the sum i1 + . . . + in. We denote ~x = (x1, . . . , xn)
and for I = (i1, . . . , in) we introduce the notation

~xI = x�i1
1 � . . .� x�in

n .

A tropical polynomial is the tropical sum of tropical monomials

f =
⊕

i

Mi,

or in usual notation f = mini Mi. The degree of the tropical polynomial f denoted by deg(f)
is the maximal degree of its monomials. A point ~a ∈ Kn is a root of the polynomial f if
the minimum mini{Mi(~a)} is either attained on at least two different monomials Mi or is
infinite.

A min-plus polynomial is an expression of the form⊕
i

Mi(~x) =
⊕

j

Lj(~x),

where Mi, Lj are min-plus monomials. The degree of min-plus polynomial is the maximal
degree among monomials Mi and Lj over all i, j. A point ~a ∈ Kn is a root of this polynomial
if the equality holds for ~x = ~a.

Linear polynomials

An important special case of tropical and min-plus polynomials are linear polynomials. They
can be defined as general tropical polynomials of degree 1. However, it is convenient to
denote by a linear polynomial an expression of the form

min
1≤j≤n

{aj + xj}.

That is we assume that all variables are presented exactly once. The tropical linear system

min
1≤j≤n

{aij + xj}, 1 ≤ i ≤ m, (2)

STACS 2015

384 Tropical Effective Nullstellensatz

can be naturally associated with its matrix A ∈ Km×n. We will also use a matrix notation
A� ~x for such system.

Analogously min-plus linear systems

min
1≤j≤n

{aij + xj} = min
1≤j≤n

{bij + xj}, 1 ≤ i ≤ m,

can be associated with a pair of matrices A and B corresponding to the left-hand side and
the right-hand side of an equation. We will also write min-plus linear system in a matrix
form as A � ~x = B � ~x. It will be also convenient to consider min-plus linear systems of
(componentwise) inequalities A� ~x ≤ B� ~x. It is not hard to see that their expressive power
is the same as of equations.

I Lemma 1. Given a min-plus system of linear equations it is easy to construct an equivalent
system of min-plus linear inequalities and visa versa.

Proof. Indeed, each min-plus linear equation L1(~x) = L2(~x) is equivalent to the pair of
min-plus inequalities L1(~x) ≥ L2(~x) and L1(~x) ≤ L2(~x). On the other hand min-plus linear
inequality L1(~x) ≤ L2(~x) is equivalent to the min-plus equation L1(~x) = min(L1(~x), L2(~x)).
It is not hard to see that the last equation can be transformed to the form of min-plus linear
equation. J

There is one more important convention we make concerning the case of tropical semiring
with infinity. For two matrices A, B ∈ Rn×m

∞ we say that the system A � ~x < B � ~x has
a solution if there is ~x ∈ Rm

∞ such that for each row of the system if one of sides is finite,
then strict inequality holds, but also the case where both sides are equal to ∞ is allowed
(informally, we can say that ∞ <∞).

We also consider non-homogeneous tropical linear systems

min
1≤j≤n

{aij + xj , ai}, 1 ≤ i ≤ m. (3)

This system can be naturally associated to the matrix A ∈ Km×(n+1) and written in the
matrix form as A� (~x, 0). Analogously, we can consider non-homogeneous min-plus linear
systems A� (~x, 0) ≤ B � (~x, 0). We note that over ~x ∈ Rn the tropical system A� (~x, 0) is
solvable iff homogeneous system A� ~x′ is solvable, where ~x′ = (~x, xn+1). Indeed, we can add
the same number to all coordinates of the solution of the latter system to make xn+1 = 0.
The same is true for min-plus case. But the same is not true over R∞: homogeneous system
always has a solution (just let ~x = (∞, . . . ,∞)), but non-homogeneous system does not
always have a solution.

3 Tropical and Min-plus Dual Nullstellensatz

I Definition 2. For a given system of tropical polynomials F = {f1, . . . , fk} in n variables
we introduce its infinite Macaulay matrix C. The columns of C correspond to nonnegative
integer vectors I ∈ Zn

+ and the rows of C correspond to the pairs (j, J), where 1 ≤ j ≤ k

and J ∈ Zn
+. For given I and (j, J) we let the entry c(j,J),I be equal to the coefficient of

the monomial ~xI in the polynomial ~xJ � fj (if there is no such monomial in the polynomial
we assume that the entry is equal to +∞). By CN we denote the finite submatrix of the
matrix C consisting of the columns I such that i1 + . . . + in ≤ N and the rows which have
all their finite entries in these columns. The tropical linear system associated with CN will
be of interest to us. Over R∞ we consider non-homogeneous system with the matrix CN .
The column corresponding to constant monomial is a non-homogeneous column.

D. Grigoriev and V. V. Podolskii 385

For the system of min-plus polynomials F = {f1 = g1, . . . , fk = gk} we analogously
introduce the pair of matrices C and D corresponding to the left-hand sides and the right-
hand sides of polynomials respectively. In the same way we introduce matrices CN , DN and
the corresponding linear systems CN � ~y = DN � ~y. Analogously, for the case of R∞ we
consider non-homogeneous systems.

In the paper [7] there were conjectured three forms of the tropical dual Nullstellensatz
theorem. We state the most strong of them, effective Nullstellensatz theorem.

I Conjecture 3 ([7]). There is a function N of n and of deg(fi) for 1 ≤ i ≤ k such
that the system of polynomials F has a common tropical root iff the tropical linear system
corresponding to the matrix CN has a solution.

Note that the classical analog of this statement is precisely the effective Nullstellensatz
theorem in the dual form (see [7] for the detailed discussion).

In [7] the conjecture was proven for the case of n = 1. In this paper we prove the general
case of the conjecture.

I Theorem 4 (Tropical Dual Nulstellensatz). Consider the system of tropical polynomials
F = {f1, . . . , fk} of n variables. Denote by di the degree of the polynomial fi and let
d = maxi di.
(i) Over semiring R the system F has a solution iff the Macaulay tropical linear system

CN � ~y for
N = (n + 2) (d1 + . . . + dk)

has a solution.
(ii) Over semiring R∞ the system F has a solution iff the non-homogeneous Macaulay

tropical linear system CN � ~y for

N = poly(n, k) (2d)min(n,k)

has a solution.

Proof sketch. We describe the proof idea here. We concentrate on the case R. For the case
of R∞ much more additional work is required.

Throughout the proof we consider rows of the matrix CN , solutions to CN �~y, coefficients
of tropical polynomials fi. All of them can be viewed as vectors ~a = {aI}I which coordinates
are labeled by I ∈ D for some D ⊆ Zn

+. We further consider these vectors as the set of points
{(I, aI)}I in (n + 1)-dimensional space. It is convenient to consider the first n dimension as
horizontal and the last one as vertical.

We next consider, what does it mean for the vector ~a to be a solution to one of the tropical
linear equations ~c � ~y of the system CN � ~y. By the definition this means that the value
cI + aI is minimized for at least two different I. It is not hard to see that equivalently this
means that there is such t ∈ R that {−aI + t}I lies below {cI}I and has at least two common
points with it. That is, we can adjust the set of points corresponding to {−aI}I moving
it along the vertical line in such a way that it lies below the set of points corresponding
to the equation and has at least two common points with it. Thus we obtain geometrical
interpretation of tropical solutions.

Next, we note that if we talk about solution to polynomial f , we can still consider the
polynomial as a set of points {(I, fI)}I , where fI is a coefficient of the monomial ~xI in f ,
but now the solution corresponds not to an arbitrary set of points {aI}I but to a hyperplane.

STACS 2015

386 Tropical Effective Nullstellensatz

Now it is not hard to capture the goal in geometric terms. We know that there is a
solution to CN � ~y. We need to show that then there is a hyperplane solution to this system
(or to system F , which is the same in the case of hyperplanes).

An interesting feature of our proof is how we obtain a hyperplane solution. The natural
way would be to start with a non-hyperplane solution ~a and somehow modify it to make it a
hyperplane. This was an approach of paper [7] for the case n = 1. However, it is not clear
how to do it for n > 1. Instead we actually find the hyperplane solution inside the system F .

For this for each polynomial fj in F we consider the corresponding set of points {(I, fj,I)}I ,
add to them all points (I, t) for all I and t ≥ fj,I and consider the convex hull of this set of
points. As a result we obtain a polytope Pj which is called extended Newton polytope. Note
that Pj is infinite in the vertical direction.

Then we consider a new polytope P0. It can be expressed by the following formula:

P0 = (n + 2) · (P1 + . . . + Pk),

where all operations are in the sense of the Minkowski sum. It turns out that the solution to
the system F can be found in P0. Namely, one of the facets of P0 is a solution.

To see the idea behind this let the bottom of P0 be the set of lowest points of P0, first n

coordinates of which are integer. Informally, the bottom of P0 is a discrete version of the set
of its non-vertical facets. Note that the bottom of P0 can be considered as a vector {bI}I .
First, it turns out (and it is not hard to show) that {bI}I is a tropical linear combination
of the rows of CN . This means that a solution ~a to CN � ~y is also a solution to a tropical
linear equation given by ~b. Second observation is that it can be shown that for any i we can
translate Pi to any place inside P0. Now we can consider the set of points {(I, bI)}I and
adjust the set {(I, aI)}I in such a way that it is below {(I, bI)}I and has at least two points
in common with it. We consider one of these points and move Pi for arbitrary i to this point
and inside of P0. Then Pi will lie above {(I, bI)}I . On the other hand it will correspond to
one of the rows of CN and thus ~a will be a solution to it. Thus Pi and ~a will have two points
in common and they will also be common points of ~b which lie between ~a and Pi. Thus Pi

will have two common points with ~b, that is the bottom of P0 is a solution to Pi. A more
careful analysis along these lines shows that actually, one of the facets of P0 is a solution to
all polynomials in F . J

We show dual Nullstellensatz for min-plus case.

I Theorem 5 (Min-Plus Dual Nullstellensatz). Consider the system of min-plus polynomials
F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di the degree of the polynomial fi = gi

and let d = maxi di.
(i) Over semiring R the system F has a solution iff the Macaulay min-plus linear system

CN � ~y = DN � ~y for
N = (n + 2) (d1 + . . . + dk)

has a solution.
(ii) Over semiring R∞ the system F has a solution iff the non-homogeneous Macaulay

min-plus linear system CN � ~y = DN � ~y for

N = poly(n, k) (2d)min(n,k)

has a solution.

The proof of this theorem is based on the application of the connection between tropical
and min-plus polynomial systems, which we describe below, to tropical Dual Nullstellensatz.

D. Grigoriev and V. V. Podolskii 387

We provide examples showing that our bounds on N are qualitatively tight. Namely for
the semiring R we consider the following family F of (n + 1) tropical polynomials of degree d:

f1 = 0⊕ 0� x1,

fi+1 = 0� x�d
i ⊕ 0� xi+1, i ∈ [n− 1]

fn+1 = 0⊕ 1� xn.

It is not hard to see that this system has no solutions. Indeed, if there is a solution, then
from f1 we can see that x1 = 0, then from f2 we can see that x2 = 0 etc., from fn we can
see that xn = 0. However from fn+1 we have that xn = −1 which is a contradiction.

On the other hand, we show that the Macaulay tropical system with the matrix C(d−1)(n−1)
corresponding to the system F has a solution.

For the semiring R∞ for any d > 1 we consider the following system F of tropical
polynomials of variables x1, . . . , xn, y.

f1 = 0� x1 � y ⊕ 0,

fi+1 = 0� x�d
i ⊕ 0� xi+1, for i = 1, . . . , n− 1,

fn+1 = 0� x�d
n−1 ⊕ 1� xn.

This system clearly has no solutions. Indeed, we can consecutively show that all coordinates
of a solution should be finite and then the polynomials fn and fn+1 give a contradiction.

On the other hand, we show that non-homogeneous Macaulay system Cdn−1−1 � ~y has a
solution.

Both of these examples translate to min-plus setting straightforwardly. The details of the
proofs are omitted

We note that quantitatively there is a room for improvement between our lower and
upper bounds on N . The gap is more substantial in the case of semiring R. Assuming for
the sake of simplicity that n = k our upper bound gives approximately N ≤ dn2 and our
lower bound gives N ≥ dn. Thus we can formulate an open problem.

I Open Problem 6. Close the gap between the upper and the lower bound on N in the
tropical Nullstellensatz.

4 Primary Tropical and Min-Plus Nullstellensatz

Next we establish Nullstellensatz in a more standard primary form.
We start with a more intuitive min-plus Nullstellensatz.

I Theorem 7 (Min-Plus Primary Nullstellensatz). Consider the system of min-plus polynomials
F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di the degree of the polynomial fi = gi

and let d = maxi di.
Over semiring R the system F has no solution iff we can construct an algebraic min-plus

combination f = g of degree at most

N = (n + 2) (d1 + . . . + dk)

of them such that for each monomial M = x�j1
1 � . . .� x�jn

n its coefficient in f is greater
than its coefficient in g. In algebraic combination f = g we allow to use not only polynomials
fi = gi, but also gi = fi.

STACS 2015

388 Tropical Effective Nullstellensatz

Over semiring R∞ the system F has no solution iff we can construct an algebraic
combination f = g of degree at most

N = poly(n, k) (2d)min(n,k)

of them such that for each monomial M = x�j1
1 � . . .� x�jn

n its coefficient in f is greater
than its coefficient in g and with additional property that the constant term in g is finite.

Proof. We present a proof for the case R.
We will use the min-plus linear duality (Lemma 10 below) for the proof of this theorem.
By Theorem 1 the system of polynomials F has no solution over R iff the corresponding

Macaulay linear system
CN � ~y = DN � ~y

has no finite solution. By Lemma 1 this system is equivalent to the system of min-plus
inequalities (

CN

DN

)
� ~x ≤

(
DN

CN

)
� ~x.

By Lemma 10 the fact that this system has no finite solution is equivalent to the fact
that the dual system

(
DT

N CT
N

)
�
(

~y

~z

)
<
(

CT
N DT

N

)
�
(

~y

~z

)
has a solution in Rn

∞ (here we allow for both sides to be infinite in some rows; note that we
have to use linear duality over R∞ since CN and DN might have infinite entries).

This system can be interpreted back in terms of polynomials. Indeed, note that now the
columns of the matrices correspond to the equations of F multiplied by some ~xJ and rows
correspond to some monomials ~xI . Thus the solution to the system corresponds to the sum
of equations of F multiplied by some monomials, such that each coefficient of the sum on the
left side is smaller than the coefficient of the sum on the right side. The fact that we allow
both sides to be infinite in some row corresponds to the fact that some monomials might
be not presented in the sum. The fact that we allow infinite coordinates in the solution
correspond to the fact that we do not have to use all polynomials of ~xIfj = ~xIgj in algebraic
combination. J

For the tropical case we will need the following definition.

I Definition 8. For the system of tropical polynomials f1, . . . , fk and tropical monomials
M1, . . . , Mm the algebraic combination

g =
m⊕

j=1
gj ,

where
gj = Mj � fij

,

is called nonsingular if the following two properties hold:
for each monomial M of g there is a (unique) 1 ≤ l(M) ≤ m such that the coefficient of
M at polynomial gl(M) is less than the coefficients of M at all other polynomials gj for
j 6= l(M);
for different M and M ′ we have l(M) 6= l(M ′).

D. Grigoriev and V. V. Podolskii 389

Now we can formulate tropical Nullstellenstz in a primary form.

I Theorem 9 (Tropical Primary Nullstellensatz). Consider the system of tropical polynomials
F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di the degree of the polynomial fi and
let d = maxi di.

The system F has no solution over R iff there is a nonsingular algebraic combination g

for it of degree at most
N = (n + 2) (d1 + . . . + dk)

The system F has no solution over R∞ iff there is a nonsingular algebraic combination g

for it of degree at most
N = poly(n, k) (2d)min(n,k)

and with finite constant monomial.

For the proofs of the last two theorems we apply min-plus and tropical linear duality
(which we describe below) to min-plus and tropical dual Nullstellensätze respectively. The
idea is simple. By dual Nullstellensatz we have that there is solution for system F iff there is
a solution to Macaulay linear system. Applying linear duality to this system we get that
there is a solution for F iff there is no solution to some new (tropical or min-plus) linear
system. Finally, we interpret this solution back in terms of polynomials and obtain primary
Nullstellensätze.

5 Linear Duality

We show the following simple formulation of min-plus duality.

I Lemma 10. For two matrices A, B ∈ Rn×m exactly one of the following is true.
1. There is a solution to A� ~x ≤ B � ~x.
2. There is a solution to BT � ~y < AT � ~y.
For two matrices A, B ∈ Rn×m

∞ exactly one of the following is true.
1. There is a solution ~x 6= (∞, . . . ,∞) to A� ~x ≤ B � ~x.
2. There is a finite solution to BT � ~y < AT � ~y.
For two matrices A, B ∈ Rn×m

∞ exactly one of the following is true.
1. There is a finite solution to A� ~x ≤ B � ~x.
2. There is a solution ~y 6= (∞, . . . ,∞) to BT � ~y < AT � ~y.

We show similar result for tropical duality.

I Lemma 11. For a matrix A ∈ Rn×m exactly one of the following is true.
1. There is a solution to A� ~x.
2. There is ~z such that in each row of AT � ~z the minimum is attained only once and for

each two rows the minimums are in different columns.
For a matrix A ∈ Rn×m

∞ exactly one of the following is true.
1. There is a finite solution to A� ~x.
2. There is ~z such that in each row of AT � ~z the minimum is attained only once or is equal

to ∞ and for each two rows the (unique) minimums are in different columns.
For a matrix A ∈ Rn×m

∞ exactly one of the following is true.
1. There is a solution to A� ~x.
2. There is a finite ~z such that in each row of AT � ~z the minimum is attained only once

and for each two rows the minimums are in different columns.

STACS 2015

390 Tropical Effective Nullstellensatz

The idea for the proof of min-plus linear duality is a connection to mean payoff games
established in [2]. Once this connection is known the proof of min-plus linear duality is
rather simple. However, we are not aware of a presentation of this (or similar) result in the
literature, so due to the simplicity of the formulation and the fact that we use this result to
obtain primary Nullstellensatz, we decide to include it in the paper.

For the proof of tropical linear duality we use connection between tropical and min-plus
polynomials and deduce the tropical duality from the min-plus duality. However, we note
that it also can be shown directly using the analysis of the paper [8].

6 Tropical vs. Min-plus

We also establish the connection between tropical and min-plus polynomial systems.

I Lemma 12. For both R and R∞ given a system of tropical polynomials we can construct
a system of min-plus polynomials over the same set of variables and with the same set of
solutions.

In the other direction we do not have such a simple connection, but we can still prove
the following lemma.

I Lemma 13. For any system of min-plus polynomials F over n variables there is a system of
tropical polynomials T over 2n variables and an injective linear transformation H : Rn

∞ → R2n
∞

such that the image of the solutions of F coincides with the solution set of T . The same is
true over semiring R.

The proofs of these lemmas follow the lines of the proof of the analogous statement for
the case of linear polynomials in the paper [10].

References
1 Marianne Akian, Stephane Gaubert, and Alexander Guterman. Linear independence over

tropical semirings and beyond. Contemporary Mathematics, 495:1–33, 2009.
2 Marianne Akian, Stephane Gaubert, and Alexander Guterman. Tropical polyhedra are

equivalent to mean payoff games. International Journal of Algebra and Computation, 22(1),
2012.

3 Peter Butkovič. Max-linear Systems: Theory and Algorithms. Springer, 2010.
4 M. Develin, F. Santos, and B. Sturmfels. On the rank of a tropical matrix. Combinatorial

and computational geometry, 52:213–242, 2005.
5 Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind. Non-archimedean amoebas and

tropical varieties. Journal fur die reine und angewandte Mathematik (Crelles Journal),
2006.601:139–157, 2007.

6 Marc Giusti, Joos Heintz, and Juan Sabia. On the efficiency of effective Nullstellensätze.
Computational complexity, 3(1):56–95, 1993.

7 Dima Grigoriev. On a tropical dual Nullstellensatz. Advances in Applied Mathematics,
48(2):457 – 464, 2012.

8 Dima Grigoriev. Complexity of solving tropical linear systems. Computational Complexity,
22(1):71–88, 2013.

9 Dima Grigoriev and Vladimir V. Podolskii. Tropical effective primary and dual Nullstel-
lensätze. CoRR, abs/1409.6215, 2014.

10 Dima Grigoriev and Vladimir V. Podolskii. Complexity of tropical and min-plus linear
prevarieties. Computational complexity, to appear, pages 1–34, 2015.

D. Grigoriev and V. V. Podolskii 391

11 Dima Grigoriev and Vladimir Shpilrain. Tropical cryptography. Communications in Al-
gebra, 42(6):2624–2632, 2014.

12 Birkett Huber and Bernd Sturmfels. A polyhedral method for solving sparse polynomial
systems. Mathematics of Computation, 64:1541–1555, 1995.

13 I. Itenberg, G. Mikhalkin, and E.I. Shustin. Tropical Algebraic Geometry. Oberwolfach
Seminars. Birkhäuser, 2009.

14 Zur Izhakian. Tropical algebraic sets, ideals and an algebraic Nullstellensatz. International
Journal of Algebra and Computation, 18(06):1067–1098, 2008.

15 Zur Izhakian and Louis Rowen. The tropical rank of a tropical matrix. Communications
in Algebra, 37(11):3912–3927, 2009.

16 Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Electronic Col-
loquium on Computational Complexity (ECCC), 21:80, 2014.

17 János Kollár. Sharp effective Nullstellensatz. J. Amer. Math. Soc., 1:963–975, 1988.
18 D. Lazard. Algèbre linéaire sur K[X1, . . . , Xn] et élimination. Bull. Soc. Math. France,

105(2):165–190, 1977.
19 D. Lazard. Resolution des systemes d’equations algebriques. Theoret. Comput. Sci.,

15(1):77–110, 1981.
20 Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry, volume 161 of

AMS Graduate Studies in Mathematics. AMS, to appear, 2015.
21 Grigory Mikhalkin. Amoebas of algebraic varieties and tropical geometry. In Simon Donald-

son, Yakov Eliashberg, and Mikhael Gromov, editors, Different Faces of Geometry, volume 3
of International Mathematical Series, pages 257–300. Springer US, 2004.

22 Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical
geometry. Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics,
377:289–317, 2003.

23 Eugenii Shustin and Zur Izhakian. A tropical Nullstellensatz. Proceedings of the American
Mathematical Society, 135(12):3815–3821, 2007.

24 Bernd Sturmfels. Solving Systems of Polynomial Equations, volume 97 of CBMS Regional
Conference in Math. American Mathematical Society, 2002.

25 Luis Felipe Tabera. Tropical resultants for curves and stable intersection. Revista Matemát-
ica Iberoamericana, 24(3):941–961, 04 2008.

26 Thorsten Theobald. On the frontiers of polynomial computations in tropical geometry. J.
Symb. Comput., 41(12):1360–1375, 2006.

STACS 2015

Upper Tail Estimates with Combinatorial Proofs
Jan Hązła and Thomas Holenstein

ETH Zürich
Department of Computer Science, Zurich, Switzerland
{jan.hazla,thomas.holenstein}@inf.ethz.ch

Abstract
We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one
by Impagliazzo and Kabanets (RANDOM, 2010).

In particular, we prove a randomized version of the hitting property of expander random
walks and use it to obtain an optimal expander random walk concentration bound settling a
question asked by Impagliazzo and Kabanets.

Next, we obtain an upper tail bound for polynomials with input variables in [0, 1] which are
not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets.
The resulting bound is applied by Holenstein and Sinha (FOCS, 2012) in the proof of a lower
bound for the number of calls in a black-box construction of a pseudorandom generator from a
one-way function.

We also show that the same technique yields the upper tail bound for the number of copies of
a fixed graph in an Erdős–Rényi random graph, matching the one given by Janson, Oleszkiewicz,
and Ruciński (Israel J. Math, 2002).

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases concentration bounds, expander random walks, polynomial concentration

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.392

1 Introduction

Motivation and previous work

Concentration bounds are inequalities that estimate the probability of a random variable
assuming a value that is far from its expectation. They have a multitude of applications all
across the mathematics and theoretical computer science. See, e.g., textbooks [26, 25, 4, 10]
for uses in complexity theory and randomised algorithms.

A typical setting is when this variable is a function f(x) of n simpler random variables
x = (x1, . . . , xn) that possess a certain degree of independence and we try to bound said
probability with a function decaying exponentially with n (or, maybe, nε for some ε > 0).

The canonical examples are Chernoff-Hoeffding bounds [7, 13] for the sum of n independent
random variables in [0, 1] and Azuma’s inequality [5] for martingales.

The standard technique to prove Chernoff bounds is due to Bernstein [6]. The idea is to
bound E[etf(x)] for some appropriately chosen t, and then to apply Markov’s inequality.

Recently, Impagliazzo and Kabanets [16] gave a different, combinatorial proof of Chernoff
bound, arguing that its simplicity and nature provide additional insight into understanding
concentration. What is more, their proof is constructive in a certain sense (see [16] for
details).

The proof given by Impagliazzo and Kabanets is related to previous published results: in
[28], Schmidt, Siegel and Srinivasan give a Chernoff bound which is applicable in case the
random variables x = (x1, . . . , xn) are only m-wise independent for some large enough m. It

© Jan Hązła and Thomas Holenstein;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 392–405

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.392
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Hązła and T. Holenstein 393

turns out that the expressions which appear in their computations have close counterparts in
the proof in [16], but they still bound E[etf(x)], and it seems to us that the approach in [16]
makes the concepts clearer and the calculations shorter.

Another work related to [16] is due to Janson, Oleszkiewicz and Ruciński [17], who give
an upper tail bound (i.e., a one-sided concentration bound) for the number of subgraphs in
an Erdős-Rényi random graph Gn,p. The proof given in [17] bears much relationship to the
proof given in [16]. We elaborate on that in Section 3.2.

Finally, there is a connection to an argument used by Rao to prove a concentration bound
for parallel repetition of two-prover games [27]. As we will see, one of the ideas in the proof
given in [16] is to consider a subset of the variables (x1, . . . , xn). Rao also does this, with a
somewhat different purpose.

Our contributions

In this paper we modify the proof of Impagliazzo and Kabanets and introduce a more general
sufficient condition for concentration which we term growth boundedness (Section 3). Then,
we show some applications of our framework.

First, we prove a randomized version of the hitting property of expander random walks
(Theorem 4.1) and use it to obtain an optimal (up to a constant factor in the exponent)
expander random walk concentration bound settling a question asked in [16] (Theorem 4.2).1
We also show that our method is quite robust: with a little more effort one can improve
the constant factor to the optimal one in case of large number of steps and small deviation
(Theorem 4.3).

Second, we prove an upper tail bound for polynomials with input random variables in
[0, 1] (Theorem 5.2). Contrary to the previous work we are aware of, we do not assume that
those variables are independent, but rather that they obey a condition similar to growth
boundedness.

This bound is used in a proof of a lower bound for the complexity of a black-box
construction of a pseudorandom generator from a one-way function [14]. Although [14] was
published earlier, the proof of the bound is not contained there, but deferred to this paper
instead. We outline how the bound was used in [14] in Section 5.1.

Notation

Throughout the paper we focus on the bounds of the form Pr[f(x) ≥ µ(1 + ε)]). We call such
bounds “(multiplicative) upper tail bounds”.

Typically, we consider a probability distribution Px over some vector of random variables
x = (x1, . . . , xn). We denote a random choice from Px as x ← Px. We try to explicitly
indicate randomness whenever taking probability or expectation, i.e., we write Prx←Px

[. . .]
and so on. For a finite set A, let a← A be a shorthand for a uniform random choice of an
element from A.

For a natural number n, let [n] := {1, . . . , n}. As usual, by
(
n
k

)
we denote

∏k−1
i=0

(n−i)
k! for

n ∈ R and k ∈ N. For n ∈ N and 0 ≤ k ≤ n, we also identify
(
n
k

)
with the set of subsets of

[n] of size k.
In particular, (i1, . . . , im) ← [n]m denotes uniform choice of m elements from [n] with

repetition and M ←
(
n
m

)
uniform choice of a subset of [n] of size m.

1 Of course the bound itself is not new. Impagliazzo and Kabanets asked if such a concentration bound
can be obtained from the hitting property, i.e., using the technique from [16].

STACS 2015

394 Upper Tail Estimates with Combinatorial Proofs

2 A Simple Proof of a Chernoff Bound

We start by presenting a short proof of a Chernoff bound in, arguably, the most basic setting.

I Theorem 2.1. Let x = (x1, . . . , xn) be i.i.d. over {0, 1}n with Pr[xi = 1] = 1
2 and ε ∈ [0, 1

2].
Then,

Pr
x←Px

[
n∑
i=1

xi ≥
n

2 (1 + ε)
]
≤ exp

(
−ε

2n

6

)
.

Proof. Let m :=
⌈
εn
3
⌉
. We have

E
x←Px

[(
n∑
i=1

xi

)m]
= nm Pr

x←Px
(i1,...,im)←[n]m

[
∀j ∈ [m] : xij = 1

]
= nm

m∏
j=1

Pr
x←Px

(i1,...,im)←[n]m

[
xij = 1 | ∀k < j : xik = 1

]
≤ nm

(
ε

3 · 1 +
(

1− ε

3

)
· 1

2

)m
=
(n

2

)m (
1 + ε

3

)m
.

Using Markov’s inequality and 1+ε/3
1+ε ≤ exp

(
− ε

2
)
for ε ∈ [0, 1

2],

Pr
[(

n∑
i=1

xi

)m
≥
(n

2

)m
(1 + ε)m

]
≤
(1 + ε

3
1 + ε

)m
≤ exp

(
−ε

2n

6

)
.

J

The above is the simplest proof of the most basic Chernoff bound we know of, and we
believe that it is worthwhile to state it explicitly. It can be obtained by adapting the proof
given in [16] for the given setting, although a direct adaptation yields a slightly different
(and probably a bit longer) argument. Alternatively, it can be seen as an instantiation of
the proof given in [17] in case one is interested in counting the number of copies of K2 (i.e.,
the number of edges) in a random graph Gn,p, after rather many simplifications that can be
done for this very special case. Finally, it is a straightforward instantiation of our later proof
given in Section 3.

3 Growth Boundedness

In this section we present the definition of growth-boundedness and prove that it implies
concentration. In Section 3.1 we introduce growth boundedness without repetition: a
variation of our concept that we use to prove the expander random walk bound.

I Definition 3.1. Let δ ≥ 0 and m ∈ [n]. A distribution Px over x = (x1, . . . , xn) ∈ Rn≥0
with µ := E x←Px

i←[n]
[xi] is (δ,m)-growth bounded if

E
x←Px

[(
n∑
i=1

xi

)m]
≤ (µn)m(1 + δ)m .

Equivalently, Px is (δ,m)-growth bounded if and only if

E
x←Px

(i1,...,im)←[n]m

[m∏
j=1

xij

]
≤ µm(1 + δ)m .

J. Hązła and T. Holenstein 395

If random variables are over {0, 1}, this condition reduces to

Pr
x←Px

(i1,...,im)←[n]m

[
∀j ∈ [m] : xij = 1

]
≤ µm(1 + δ)m .

We now state our main theorem:

I Theorem 3.2. Let Px be a distribution over Rn≥0, µ := E x←Px
i←[n]

[xi], µ > 0, ε ≥ 0. If Px is
(δ,m)-growth bounded, then

Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(1 + δ

1 + ε

)m
.

Proof. By Markov’s inequality and growth boundedness of Px,

Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]

= Pr
x←Px

[(n∑
i=1

xi
)m ≥ (µn)m(1 + ε)m

]
≤
(1 + δ

1 + ε

)m
.

J

There is an interesting connection between this proof (inspired by [17]) and the one used
in [16], for details see Section 3.2.

We obtain more convenient bounds as a corollary:

I Corollary 3.3. Let ε ≥ 0 and Px be an (ε3 ,m)-growth bounded distribution over Rn≥0 with
µ := E x←Px

i←[n]
[xi], µ > 0.

1. If ε ≤ 1
2 : Pr

x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤ exp

(
− εm

2

)
.

2. If ε ≥ 1
2 : Pr

x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(4

5

)m
.

3. If ε ≥ 3: Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤ 2−m .

Proof. (1) follows because 1+ε/3
1+ε ≤ exp

(
− ε

2
)
for ε ∈ [0, 1

2], (2) since 1+ε/3
1+ε ≤

4
5 for ε ≥ 1

2
and (3) due to 1+ε/3

1+ε ≤
1
2 for ε ≥ 3. J

For example, suppose that x1, . . . , xn are independent over {0, 1}n, Pr[xi = 1] = µ > 0,
and ε ∈ [0, 1

2].
Using that for each M with |M | ≤ εµn

3 we have

Pr
x←Px
i←[n]

[xi = 1 | ∀j ∈M : xj = 1] =
(
|M |
n

+
(

1− |M |
n

)
µ

)
≤ |M |

n
+ µ ≤ µ

(
1 + ε

3

)
,

we can conclude that Px is (ε3 , d
εµn

3 e)-growth bounded and

Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤ exp(−ε2µn/6) .

STACS 2015

396 Upper Tail Estimates with Combinatorial Proofs

3.1 Growth boundedness without repetition
If one looks at the process in the growth boundedness definition as choosing a uniform
m-tuple of indices (i1, . . . , im) (with repetition), it is possible to make a similar argument for
choosing a uniform set of indices of size m instead. In particular, we find it convenient in
the proof of the expander random walk bound.

I Definition 3.4. Let δ ≥ −1 and m ∈ [n]. We say that a distribution Px over {0, 1}n with
µ := Pr x←Px

i←[n]
[xi = 1] is (δ,m)-growth bounded without repetition if

Pr
x←Px

M←(n
m)

[
∀i ∈M : xi = 1

]
≤ µm(1 + δ)m .

I Theorem 3.5. Let Px be a distribution over {0, 1}n, µ := Pr x←Px
i←[n]

[xi = 1], µ > 0, ε ≥ 0,
c ∈ [0, 1]. If Px is (δ, cεµn)-growth bounded without repetition then

Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(1 + δ

1 + (1− c)ε

)m
,

where m := cεµn.

Proof. Set q := Pr[
∑n
i=1 xi ≥ µn(1 + ε)] and compute:

µm(1 + δ)m ≥ Pr
x←Px

M←(n
m)

[∀i ∈M : xi = 1]

≥ q Pr
x←Px

M←(n
m)

[∀i ∈M : xi = 1 |
∑n
i=1 xi ≥ µn(1 + ε)]

≥ q
m−1∏
i=0

µn(1 + ε)− i
n− i

≥ qµm(1 + (1− c)ε)m .

J

I Corollary 3.6. Let ε ∈ [0, 4
5] and Px be a distribution over {0, 1}n that is (ε3 ,m)-growth

bounded without repetition for some m ≤ εµn
6 with µ := Pr x←Px

i←[n]
[xi = 1], µ > 0. Then,

Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤ exp

(
− εm

3

)
.

Proof. Apply Theorem 3.5 and note that 1+ε/3
1+5ε/6 ≤ exp

(
− ε

3
)
for ε ∈ [0, 4

5]. J

3.2 Connection of [16] and [17]
Recall the proof of Theorem 3.2. In the context of [16] and [17] we find it instructive to give
an alternative proof, restricted to distributions over {0, 1}n (essentially the same as the proof
of Theorem 3.5).

I Theorem 3.7. Let Px be a distribution over {0, 1}n, µ := Pr x←Px
i←[n]

[xi = 1], µ > 0, ε ≥ 0.
If Px is (δ,m)-growth bounded, then

Pr
x←Px

[n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(1 + δ

1 + ε

)m
.

J. Hązła and T. Holenstein 397

Proof. Set q := Pr
[∑n

i=1 xi ≥ µn(1 + ε)
]
, and see that2

µm(1 + δ)m ≥ Pr
x←Px

(i1,...,im)←[n]m

[∀j ∈ [m] : xij = 1]

≥ q Pr
x←Px

(i1,...,im)←[n]m

[∀j ∈ [m] : xij = 1 |
∑n
i=1 xi ≥ µn(1 + ε)]

≥ q µm(1 + ε)m .

J

The basic idea of the proof in [16] is to consider Prx,M [∀i ∈M : xi = 1], where M is a
subset of [n] obtained by including each element in M independently with some probability
q. Then, this is compared with Prx,M [∀i ∈ M : xi = 1 | E], where E is the event that∑n
i=1 xi ≥ µn(1 + ε). In fact, we have

Pr
x

[E] ≤ Prx,M [∀i ∈M : xi = 1]
Prx,M [∀i ∈M : xi = 1 | E] .

It is possible to show that for m := E[|M |] � n we have PrM [∀i ∈ M : xi = 1 | E] &
µm(1 + ε)m. To see the intuition of this, simply note that this probability roughly equals the
probability of only selecting red balls when one chooses with repetition m times out of n
balls, at least µn(1 + ε) of which are red.3 Thus,

Pr
x

[E] . Prx,M [∀i ∈M : xi = 1]
µm(1 + ε)m . (1)

Now note that this last argument only uses the probability over M , and so is independent of
the distribution of x. Thus, for any distribution on which we can give a good upper bound
on Prx,M [∀i ∈M : xi = 1], the technique of [16] gives a concentration result.

The argument we use is very similar, but we pick M as an m-tuple whose elements are
picked independently with repetition. However, then we also have

nm Pr
x,M

[∀i ∈M : xi = 1] = E
x,M

[(x1 + . . .+ xn)m] .

By Markov’s inequality,

Pr[E] = Pr [(x1 + · · ·+ xn)m ≥ (µn(1 + ε))m] ≤ Prx,M [∀i ∈M : xi = 1]
µm(1 + ε)m ,

which is almost the same as (1).
The view in (1) is the one adopted by [16]. Bounding the m-th moment and using Markov

is the view adopted in [17]. The above argument shows that these views are closely related,
and one can argue that the connection is given by growth boundedness.

4 Random Walks on Expanders

Overview and our results

For an introduction to expander graphs, see [15] or [30, Chapter 4]. In short, a λ-expander is
a d-regular undirected graph G with the second largest (in terms of absolute value) eigenvalue
of the transition matrix at most λ.

2 Clearly q = 0 is not a problem.
3 The difference to the actual random experiment is that we do not keep each ball with probability m/n

but instead choose exactly m times.

STACS 2015

398 Upper Tail Estimates with Combinatorial Proofs

We consider a random walk on λ-expander starting in a uniform random vertex. It is a
very useful fact in many applications that such a random walk behaves in certain respects
very similarly to a random walk on the complete graph.

In particular, the so called hitting property [2, 20] states that the probability that an
`-step random walk on a λ-expander G stays completely inside a set W ⊆ V := V (G) with
µ := |W |/|V | is at most (µ+ λ)`. A more general version [3] states that for each M ⊆ [`] the
probability that a random walk stays inside W in all steps from M is at most (µ+ 2λ)|M |.

Our first result, which may be of independent interest, can be considered as a randomized
version of the hitting property. Namely, we show that, given ε > 0, for a relatively small
random subset M ⊆ [`] of size m the probability that a random walk on a λ-expander stays
inside W in all steps from M is at most (µ(1 + ε))m:

I Theorem 4.1. Let G be a λ-expander with a distribution Pr over V ` representing an
(` − 1)-step random walk r = (v1, . . . , v`) (with v1 being a uniform starting vertex) and
W ⊆ V with µ := |W |/|V |. Let ε ≥ 0 and m ≤ min

(
1, 1−λ

λ
εµ
2
)
`. Then,

Pr
r←Pr

M←(`
m)

[
∀i ∈M : vi ∈W

]
≤ (µ(1 + ε))m .

Another important property of random walks on expander graphs is the Chernoff bound
estimating the probability that the number of times a random walk visits W is far from its
expectation. The first Chernoff bound for expander random walks was given by Gillman [11]
and the problem was treated further in numerous works [21, 24, 1, 12, 32, 8].

Impagliazzo and Kabanets [16] apply their technique to obtain a bound for random walks
on expander graphs, but in case of deviations smaller than λ they lose a factor of log

(1
ε

)
in

the exponent. They then ask if their technique can be modified to avoid this loss.
We answer this question affirmatively: using Theorem 4.1 we immediately obtain a bound

that matches the known ones and does not suffer from the additional log
(1
ε

)
factor while

preserving the simplicity of the proof.

I Theorem 4.2. Let the setting be as in Theorem 4.1 with µ > 0. Define Px over {0, 1}` as
xi = 1 ⇐⇒ vi ∈W and let ε ∈ [0, 4

5]. Then,

Pr
r←Pr

[∑̀
i=1

xi ≥ µ`(1 + ε)
]
≤ 2 exp

(
− (1− λ)ε2µ`

18

)
.

Furthermore, we demonstrate robustness of our method by improving the exponent to
1−λ
1+λ

µ
1−µ

ε2`
2 + o(ε2)`, which is optimal for fixed λ, µ and ε→ 0+ and `→∞:

I Theorem 4.3. Let the setting be as in Theorem 4.1 with µ ∈ (0, 1). Define Px over {0, 1}`
as xi = 1 ⇐⇒ vi ∈W and let ε ∈ [0, 1]. Then, there exists cµ that depends only on µ such
that

Pr
r←Pr

[∑̀
i=1

xi ≥ µ`(1 + ε)
]
≤ 2 exp

(
− 1− λ

1 + λ
· µ

1− µ ·
ε2`

2 + cµε
3 ln(1

ε
)`
)
.

For a proof of Theorem 4.3 see the full paper. In the following we prove Theorems 4.1
and 4.2.

J. Hązła and T. Holenstein 399

Proofs

First, we need a coupling argument: let m, ` ∈ N,m ≤ ` be given. We consider the
distribution Dm,` defined by the following process:

Pick uniformly M ←
(
`
m

)
and let M := {x1, . . . , xm} with x1 < . . . < xm.

Let d1 := x1 and di := xi − xi−1 for i > 1.
A bijection shows that d = (d1, . . . , dm) is distributed uniformly on the

(
`
m

)
m-tuples which

satisfy
∑m
i=1 di ≤ ` and di > 0. We now couple Dm,` with independent random variables

(see full paper for the proof):

I Lemma 4.4. Let 0 < m ≤ `. There exists a distribution over (d1, . . . , dm, e1, . . . , em) such
that:

ei ≤ di for 1 ≤ i ≤ m.
(d1, . . . , dm) is distributed according to Dm,`.
(e1, . . . , em) are i.i.d. with ei in N+ and Pr[ei = k] ≤ 2m

` for every k.

Proof of Theorem 4.1. Pick M ←
(
`
m

)
and let (d1, . . . , dm) be as in the definition of Dm,`.

I Lemma 4.5.

Pr
r←Pr

M←(`
m)

[
∀i ∈M : vi ∈W

]
≤ E
M←(`

m)

[m∏
i=1

(µ+ λdi)
]
.

Proof. Let v := (1
n , . . . ,

1
n) be the vector of the uniform distribution on V and let PW be

a diagonal n× n matrix with (PW)uu = 1 if u ∈ W and (PW)uu = 0 otherwise. Note that
P 2
W = PW .
Let AG be the probability transition matrix of G. Let us denote the spectral norm of a

matrix with || · ||. We bound the probability of a random walk staying in W on indices of M
using a standard technique. In particular, we use (for the proof see [30, Claim 4.21]):

I Claim 4.6.

||PWAkGPW || ≤ µ+ (1− µ)λk .

Fix M . First of all, by induction (and noting that vAG = v):

Pr
r←Pr

[∀i ∈M : vi ∈W] =
∣∣vPW m∏

i=2
Adi

GPW
∣∣
1 .

Estimate: ∣∣vPW m∏
i=2

Adi

GPW
∣∣
1 ≤
√
µn ·

∣∣∣∣vPW m∏
i=2

Adi

GPW
∣∣∣∣ (2)

≤ √µn ·
∣∣∣∣vPW ∣∣∣∣ m∏

i=2

∣∣∣∣PWAdi

GPW
∣∣∣∣ (3)

= µ
m∏
i=2

∣∣∣∣PWAdi

GPW
∣∣∣∣ (4)

≤
m∏
i=1

(µ+ λdi) , (5)

where (2) is due to Cauchy-Schwarz inequality (note there are at most µn non-zero coordinates
in the final vector), (3) follows from ||AB|| ≤ ||A|| · ||B||, (4) from ||vPW || =

√
µ
n and (5)

from Claim 4.6. J

STACS 2015

400 Upper Tail Estimates with Combinatorial Proofs

The hope is that (d1, . . . , dm) behave “almost” like i.i.d. uniform random variables. This is
indeed true, and by Corollary 4.4 we have (e1, . . . , em) such that ei ≤ di and ei are i.i.d. with
ei in N+ and Pr[ei = k] ≤ 2m

` for each k.
Putting this fact together with Lemma 4.5:

Pr
r←Pr

M←(`
m)

[
∀i ∈M : vi ∈W

]
≤ E

[m∏
i=1

(
µ+ λei

)]

=
m∏
i=1

(
µ+ E[λei]

)
≤
(
µ+ 2m

`
· λ

1− λ

)m
≤ µm(1 + ε)m .

J

An immediate corollary of Theorem 4.1 is:

I Corollary 4.7. Let the setting be as in Theorem 4.1. Define Px over {0, 1}` as xi = 1 ⇐⇒
vi ∈W . Then, Px is (ε,min

(
`, b 1−λ

λ
εµ`
2 c)-growth bounded without repetition.

Proof of Theorem 4.2. : Combine Corollary 4.7 with Corollary 3.6 (settingm := b (1−λ)εµ`
6 c).

J

5 Polynomial Concentration

In certain applications it is desired to bound the concentration not only of the sum, but
rather of a (low-degree) polynomial of some random variables.

In the case when (informally) the polynomial is such that the change in its value is
bounded when the value of a single input variable is changed the Azuma’s inequality can be
applied to bound concentration.

If this is not so, one can use techniques that were invented by Kim and Vu [22] and
developed in a body of work that followed (in particular [31, 29]). In the special case of a
multilinear low-degree polynomial p(v) and an independent distribution of input variables
Pv their concentration bound can be expressed, very roughly speaking, as a function of µ0

µ′ ,
where µ0 is the expectation of p(v) and µ′ = maxK 6=∅ E[∂Kp(v)].

We obtain a bound in similar spirit. It is not tight in general, but can be applied to
arbitrary polynomials with positive coefficients over input random variables in [0, 1] and is
tight in the case of elementary symmetric polynomials ek(v) :=

∑
|S|=k

∏
i∈S vi (see the full

paper for a proof).
Most importantly, as opposed to prior results, it does not require the input variables to

be independent, but rather almost independent in a certain sense (for simplicity we limit
ourselves to multilinear polynomials and inputs in {0,1}, full treatment can be found in the
full paper):

I Definition 5.1. Let Pv be a distribution over {0, 1}`, δ ≥ 0 and m ∈ [`]. Pv is (δ,m)-almost
independent if for each M ⊆ [`] with |M | ≤ m

Pr
v←Pv

[∀i ∈M : vi = 1] ≤ (1 + δ)m
∏
i∈M

Pr
v←Pv

[vi = 1] .

J. Hązła and T. Holenstein 401

Let us state our main theorem of this section.
Let Pv be a (δ, km)-almost independent distribution. Let p(v) be a multilinear polynomial

of degree k with positive coefficients. Our way to deal with dependencies in Pv is to state
the bound in terms of P∗v which is the distribution of independent variables with the same
marginals as Pv (i.e., each v∗i has the same distribution as vi).

We express the concentration in terms of

µ∗i := max
K⊆[`]
|K|=i

E
v←P∗v

[∂Kp(v)] .

Note that µ∗0 is the expectation of p(v) under P∗v.

I Theorem 5.2. Let the setting be as above and ε > 0. Then,

Pr
v←Pv

[
p(v) ≥ µ∗0(1 + ε)

]
≤
((1 + δ)k(1 +

∑k

i=1 (km
i)µ∗i

µ∗0
)

1 + ε

)m
.

Proof outline. Write p(v) as a sum of binary random variables (corresponding to the monomi-
als) x1, . . . , xn. Due to Theorem 3.2 it is enough to show that (x1, . . . , xn) are (δ′,m)-growth

bounded, where 1 + δ′ = (1 + δ)k
(
1 +

∑k

i=1 (km
i)µ∗i

µ∗0

)µ∗0
µ .

Since Pv is (δ, km)-almost independent, this task can be further reduced to showing
that if v is distributed according to P∗v instead of Pv, then (x1, . . . , xn) are (δ′′,m)-growth

bounded, where 1 + δ′′ =
(
1 +

∑k

i=1 (km
i)µ∗i

µ∗0

)
.

Fix s < m and (i1, . . . , is) ∈ [n]s and let M be the set of all indices j such that vj
influences at least one of xi1 , . . . , xis (note that |M | ≤ km).

We write p(v) =
∑
K⊆M :|K|≤k pK(v), where pK(v) consists of those monomials whose

variables intersected with M are exactly K. Observe that

E
v←P∗v

[
pK(v) | ∀i ∈M : vi = 1

]
≤ E
v←P∗v

[
∂Kp(v)

]
.

To get growth boundedness for x1, . . . , xn we proceed by induction and bound

Pr
v←P∗v

is+1←[n]

[
xis+1 = 1 | ∀j ∈ [s] : xij = 1

]
= 1
n

E
v←P∗v

[
p(v) | ∀i ∈M : vi = 1

]
≤ 1
n

∑
K⊆M :|K|≤k

E
v←P∗v

[
∂Kp(v)

]

≤ µ∗0
n

(
1 +

∑k
i=1
(
km
i

)
µ∗i

µ∗0

)
.

J

Let µ′ := maxi∈[k] µ
∗
i . Since

∑k
i=1
(
km
i

)
≤ (km)k, we have:

I Corollary 5.3. Let the setting be as in Theorem 5.2. Then,

Pr
v←Pv

[p(v) ≥ µ∗0(1 + ε)] ≤
((1 + δ)k(1 + (km)kµ′

µ∗0
)

1 + ε

)m
.

STACS 2015

402 Upper Tail Estimates with Combinatorial Proofs

5.1 An application in [14]
In [14] the authors prove a lower bound on the complexity of a black-box construction of a
pseudorandom generator from a one-way function.

Part of their proof consists in using Theorem 5.2 to show a concentration bound for a
certain polynomial. The proof of Theorem 5.2 is not included in [14], but deferred to this
paper instead. Since the input variables of the polynomial are not independent, to the best
of our knowledge no previous work is applicable to this case.4

The following random process is considered: pick a permutation f : {0, 1}n → {0, 1}n
u.a.r. and consider the distribution Pg over 22n random variables g := {gx,y : x, y ∈ {0, 1}n}
defined as gx,y = 1 if f(x) = y and gx,y = 0 otherwise.

The random variables in g are not independent, but it is easy to check that they are
(1, 2n−1)-almost independent. Also, the corresponding independent distribution P∗g has
expectation 2−n for each gx,y.

Fix k ≤ n
100 logn . [14] defines a certain multilinear polynomial p(g) of degree at most k

such that µ∗0 ≤ 2n/15 and µ′ ≤ 2n/15 (we omit the details).
[14] needs to show that (for n big enough):

Pr
g←Pg

[
p(g) ≥ 2n/10

]
≤ 2−2n/100k

.

To this end, calculate using Corollary 5.3 and setting δ := 1, ε := 29n/100/µ∗0 andm := 2n/100k:

Pr
g←Pg

[
p(g) ≥ µ∗0 + 29n/100

]
≤

2k max
(

2, 2kk2n/100µ′

µ∗0

)
29n/100

µ∗0

2n/100k

≤

(
2k+1 max

(
µ∗0, k

k2n/100µ′
)

29n/100

)2n/100k

≤ 2−2n/100k

.

5.2 Other applications
We note that despite the fact that the deviation for which we applied our theorem in Section
5.1 is big relative to the expectation, one can obtain meaningful bounds also for very small
deviations.

This can be seen by taking a restricted version of Theorem 5.2:

I Theorem 5.4. Let Pv be a distribution of independent variables (i.e., Pv = P∗v) over [0, 1]`.
Let p(v) be as in Theorem 5.2 and ε ∈ [0, 1

2]. Then:

Pr
v←Pv

[
p(v) ≥ µ(1 + ε)

]
≤ 2 exp

(
− ε

6k

(εµ
µ′

)1/k)
.

Proof. Note that Pv are (0, `)-almost independent. Take m :=
⌊

1
k

(
εµ
3µ′

)1/k⌋
, obtain (ε3 ,m)-

growth boundedness as in Corollary 5.3 and apply Corollary 3.3.1. J

4 It was pointed out to us that a generalisation of the result of Latała and Łochowski [23] might be
applicable (together with [9]). However, moment bound in [23] is optimal only up to a constant in the
exponent that depends on the degree and the degree is non-constant in our setting.

J. Hązła and T. Holenstein 403

For example, in a representative setting when Azuma-like methods fail: consider the
polynomial that counts the triangles in Erdős–Rényi random graph Gn,n−3/4 , i.e., p(v) =∑
{a,b,c}∈(n

3) vabvacvbc. We compute µ = Θ(n3/4) and µ′ = Θ(1).
For ε ∈ [0, 3

16] Theorem 5.4 gives:

Pr
v←Pv

[
p(v) ≥ µ(1 + n−ε)

]
≤ exp(−Ω(n1/4−4ε/3)) .

This is comparable to the bound from [22] (which was the first paper to give a good bound
in this setting). Better bounds are known, in particular we revisit the triangle counting in
Section 6.

For some more discussion on the tightness of Theorem 5.2, see the full paper.

6 Counting Subgraphs in Random Graphs

In the proof of the polynomial concentration bound we consider values µ∗i which are maxima
of expectations of ∂Kp(v) over sets K of size i. Each such value yields a contribution5 of(
km
i

)
µ∗i (proportional to the number of partial derivatives of this type in the subset of input

variables of size km) and the “quality” of a concentration bound depends, roughly, on the
maximum such contribution.

In principle, nothing prevents us from considering a different, possibly finer, division of
partial derivatives into a constant number of classes, each with its own contribution.

In particular, it is an obvious fact that the number of occurrences of a fixed subgraph H
in a random Erdős–Rényi graph (for some of the work on the problem see [18, 17, 19]) can
be expressed in terms of a multilinear polynomial. In this setting we may divide the partial
derivatives into classes corresponding to subgraphs of H. Interestingly, this yields an upper
tail bound proof that is basically isomorphic to the famous one of Janson, Oleszkiewicz and
Ruciński [17].

Our result holds in the setting of almost-independent distributions, readily applicable,
for example, to Gn,m random graphs (of course the proof of [17] also generalises to those
settings).

For details, see the full paper.

References
1 Carlos A. León and François Perron. Optimal Hoeffding bounds for discrete reversible

Markov chains. The Annals of Applied Probability, 14(2):958–970, 05 2004.
2 Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in

LOGSPACE. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 132–140, New York, NY, USA, 1987. ACM.

3 Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph prod-
ucts. Computational Complexity, 5(1):60–75, 1995.

4 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

5 Kazuoki Azuma. Weighted sums of certain dependent random variables. Tôhoku Math. J.
(2), 19:357–367, 1967.

6 Sergei N. Bernstein. On a modification of Chebyshev’s inequality and of the error formula
of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math., 1, 1924.

5 Think of a constant k and a family of polynomials with m going to infinity.

STACS 2015

404 Upper Tail Estimates with Combinatorial Proofs

7 Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, 23(4):pp. 493–507, 1952.

8 Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher. Chernoff-
Hoeffding bounds for Markov chains: Generalized and simplified. In Christoph Dürr and
Thomas Wilke, editors, STACS, volume 14 of LIPIcs, pages 124–135. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

9 Victor H. de la Peña and S. J. Montgomery-Smith. Bounds on the tail probability of U-
statistics and quadratic forms. Bulletin of the American Mathematical Society, 31(2):223–
227, 1994.

10 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st edition,
2009.

11 David Gillman. A Chernoff bound for random walks on expander graphs. SIAM J. Comput.,
27(4):1203–1220, 1998.

12 Alexander Healy. Randomness-efficient sampling within NC1. Computational Complexity,
17(1):3–37, 2008.

13 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):pp. 13–30, 1963.

14 Thomas Holenstein and Makrand Sinha. Constructing a pseudorandom generator requires
an almost linear number of calls. In FOCS, pages 698–707. IEEE Computer Society, 2012.

15 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the AMS, 43(4):439–561, 2006.

16 Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds.
In Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and José D. P. Rolim, editors, APPROX-
RANDOM, volume 6302 of Lecture Notes in Computer Science, pages 617–631. Springer,
2010.

17 Svante Janson, Krzysztof Oleszkiewicz, and Andrzej Ruciński. Upper tails for subgraph
counts in random graphs. Israel Journal of Mathematics, 142(1):61–92, 2004.

18 Svante Janson and Andrzej Ruciński. The infamous upper tail. Random Struct. Algorithms,
20(3):317–342, 2002.

19 Svante Janson and Andrzej Ruciński. Upper tails for counting objects in randomly induced
subhypergraphs and rooted random graphs. Arkiv för matematik, 49(1):79–96, 2011.

20 Nabil Kahalé. Eigenvalues and expansion of regular graphs. J. ACM, 42(5):1091–1106,
September 1995.

21 Nabil Kahalé. Large deviation bounds for Markov chains. Combinatorics, Probability &
Computing, 6(4):465–474, 1997.

22 Jeong Han Kim and Van H. Vu. Concentration of multivariate polynomials and its appli-
cations. Combinatorica, 20(3):417–434, 2000.

23 Rafał Latała and Rafał Łochowski. Moment and tail estimates for multidimensional chaoses
generated by positive random variables with logarithmically concave tails. Progr. Probab.,
56:77–92, 2003.

24 Pascal Lezaud. Chernoff-type bound for finite Markov chains. Ann. Appl. Probab., 8(3):849–
867, 1998.

25 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

26 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, Cambridge, New York, Melbourne, 1995. Réimpressions : 1997, 2000.

27 Anup Rao. Parallel repetition in projection games and a concentration bound. In In Proc.
40th STOC, pages 1–10. ACM, 2008.

J. Hązła and T. Holenstein 405

28 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds for
applications with limited independence. SIAM J. Discret. Math., 8(2):223–250, May 1995.

29 Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for poly-
nomials of independent random variables. In Yuval Rabani, editor, SODA, pages 437–446.
SIAM, 2012.

30 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

31 V. H. Vu. Concentration of non-Lipschitz functions and applications. Random Struct.
Algorithms, 20(3):262–316, May 2002.

32 RoyWagner. Tail estimates for sums of variables sampled by a random walk. Combinatorics,
Probability and Computing, 17:307–316, 3 2008.

STACS 2015

Minimum Cost Flows in Graphs with Unit
Capacities
Andrew V. Goldberg∗1, Haim Kaplan2, Sagi Hed2, and
Robert E. Tarjan*3,4

1 Amazon.com Inc.
2 School of Computer Science, Tel Aviv University
3 Department of Computer Science, Princeton University
4 Intertrust Technologies, Sunnyvale CA

Abstract
We consider the minimum cost flow problem on graphs with unit capacities and its special cases.
In previous studies, special purpose algorithms exploiting the fact that capacities are one have
been developed. In contrast, for maximum flow with unit capacities, the best bounds are proven
for slight modifications of classical blocking flow and push-relabel algorithms.

In this paper we show that the classical cost scaling algorithms of Goldberg and Tarjan (for
general integer capacities) applied to a problem with unit capacities achieve or improve the best
known bounds. For weighted bipartite matching we establish a bound of O(

√
rm logC) on a

slight variation of this algorithm. Here r is the size of the smaller side of the bipartite graph,
m is the number of edges, and C is the largest absolute value of an arc-cost. This simplifies a
result of [Duan et al. 2011] and improves the bound, answering an open question of [Tarjan and
Ramshaw 2012]. For graphs with unit vertex capacities we establish a novel O(

√
nm log(nC))

bound. We also give the first cycle canceling algorithm for minimum cost flow with unit capacities.
The algorithm naturally generalizes the single source shortest path algorithm of [Goldberg 1995].

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, G.2.2 Graph Theory

Keywords and phrases minimum cost flow, bipartite matching, unit capacity, cost scaling

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.406

1 Introduction

The input to the minimum cost flow (MCF) problem is a directed graph G = (V,E) with
integer arc costs and integer capacities. The goal is to find a circulation (flow) of minimum
cost, where a circulation is a function on arcs that satisfies capacity constraints for all arcs
and conservation constraints for all vertices. We denote |V | by n, |E| by m, the maximum
capacity by U and the maximum cost value by C.1 MCF has many applications (see e.g., [1])
and has been extensively studied.

An important subclass of MCF problems are the problems with unit capacities (UMCF).
In particular, the weighted bipartite matching (WBM) problem is a special case of UMCF.
The goal in WBM is to find a matching of maximum weight in a weighted bipartite graph.
The following two problems are closely related to WBM and are also a special case of UMCF.
The assignment (AS) problem is to find a perfect matching of maximum weight, and the

∗ Part of the work was done while the author was at Microsoft Research
1 When writing logU and logC, we assume that U > 1 and C > 1, respectively.

© Andrew V. Goldberg, Haim Kaplan, Sagi Hed and Robert E. Tarjan;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 406–419

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.406
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 407

imperfect assignment (IAS) problem is to find a maximum weight matching of a given size
F . The single source shortest path (SSSP) problem can be reduced to AS. Another special
case is the UMCF problem on graphs with unit vertex capacities (or equivalently with an
out-degree or an in-degree of one for every vertex).

The unit capacity maximum flow problem and the maximum bipartite matching problem
can be reduced, respectively, to the UMCF and WBM problems with most arc costs zero
and some arc costs plus or minus one. The best combinatorial bounds for these problems
are O(min(m1/2, n2/3)m) and O(

√
nm), respectively [13, 7]. Recently, Madry [15] proved an

Õ(m10/7) bound using interior point methods. Better combinatorial bounds are known for
important special cases of the maximum bipartite matching problem when the flow value
(which is the size of the matching) F is small and when the smaller of the two sizes of the
input bipartite graph, r, is small. The bound for the former case is O(

√
Fm) [12] and for the

latter case, O(
√
rm) [2]. The best combinatorial bound for maximum flow with unit vertex

capacities is O(
√
nm) [7].

Many of the results on unit-capacity maximum flow have been extended to UMCF.
Gabow and Tarjan [8] showed an O(min(m1/2, n2/3)m log(nC)) bound for UMCF and
O(
√
nm log(nC) bound for WBM, AS, and IAS problems. Goldberg [9] gave an O(

√
nm logC)

algorithm for SSSP, and Duan et al. [6] gave an algorithm for WBM with the same com-
plexity. Ramshaw and Tarjan [16] developed an O(

√
rm log(rC)) algorithm for WBM and

an O(
√
Fm log(FC)) algorithm for IAS. However, these extensions are ad hoc: the al-

gorithms are not MCF algorithms, and their connection to common MCF algorithms is not
straightforward.

In this paper we develop a unified MCF framework for problems with unit and small
integer capacities. The resulting algorithms are simple, intuitive, and match or improve the
previous bounds. In essence we show that classical algorithms with slight modifications and
a careful analysis give the same or better bounds for UMCF problems as special purpose
algorithms.

We show, in fact, two unified frameworks for UMCF. The first, in Section 4, is a novel
cycle canceling algorithm extending [9], which is the first cycle canceling algorithm that has
good time bounds for UMCF problems. The second, in Section 3, is a pseudoflow framework
which consists of the MCF cost-scaling algorithms of [11] with a fresh analysis for UMCF
problems. Section 5 shows how to apply these frameworks to the special cases of UMCF.
When applied to these special cases, the algorithms stay almost the same but require a more
careful analysis.

Our paper unifies (or replaces) [11, 8, 16, 9] and the second part of [6] and obtains the
following results:

A novel O(
√
rm log(C)) time bound for WBM, answering an open question of [16].2

A novel O(
√
nm log(nC)) time bound for UMCF with unit vertex capacities,

which is the first extension of Even and Tarjan [7] from maximum flow to MCF.
All the previous time bounds for UMCF, AS, IAS and SSSP.
Namely O(min(m1/2, n2/3)m log(nC)) for UMCF 3, O(

√
nm log(nC)) for AS,

O(
√
Fm log(FC)) for IAS and O(

√
nm logC) for SSSP.

2 Note that r < n, so this bound improves both the O(
√
nm logC) bound of Duan et al. [6] and the

O(
√
rm log(rC)) bound of Ramshaw and Tarjan [16].

3 And an O(min(n,
√
mU,n2/3U1/3)mmin(U, log n) log(nC)) bound for MCF.

STACS 2015

408 Minimum Cost Flows

2 Definitions and Notation

The input to the MCF problem is a directed graph G = (V,E) where |V | = n and |E| = m.
Each arc (v, w) ∈ E has an associated integer capacity 0 ≤ u(v, w) ≤ U and an associated
integer cost c(v, w) such that |c(v, w)| ≤ C. For every input arc e, we add to E a reverse arc
eR with u(eR) = 0 and c(eR) = −c(e). We also define (eR)R = e. To simplify notation, we
usually assume that the graph has no parallel or anti-parallel arcs, so every arc is uniquely
defined by its endpoints, and (v, w)R = (w, v).

A circulation f is a function f : E → R which is anti-symmetric: ∀(v,w)∈Ef(v, w) =
−f(w, v), satisfying the capacity constraints ∀(v,w)∈Ef(v, w) ≤ u(v, w) and the flow con-
servation constraints ∀v∈V

∑
w∈V |(v,w)∈E f(v, w) = 0. For any flow function f we define

cost(f) = 1
2

∑
(v,w)∈E f(v, w) · c(v, w). A circulation is optimal if its cost is minimal. The

MCF problem is to find an optimal circulation in G. The MCF problem with vertex capacities
of F has the added constraint that ∀v∈V

∑
(v,w)∈E,f(v,w)>0 f(v, w) ≤ F .

A pseudoflow f is a function f : E → R satisfying f(v, w) = −f(w, v) and f(v, w) ≤
u(v, w) for every arc (v, w) ∈ E. We define Ef = {(v, w) ∈ E | f(v, w) < u(v, w)} as the set
of residual arcs. For a vertex v we define ef (v) =

∑
(w,v)∈E f(w, v). We call a vertex v with

ef (v) > 0 an excess and a vertex v with ef (v) < 0 a deficit. Note that a circulation is just a
pseudoflow with no excesses or deficits.

Given a potential function p : V → R we call cp(v, w) = c(v, w)− p(v) + p(w) the reduced
cost of the arc (v, w). We say that a pseudoflow (or a circulation) f with potentials p is
ε-optimal if for every arc (v, w) ∈ Ef we have cp(v, w) ≥ −ε. By linear programming duality,
a 0-optimal circulation is optimal. We define EA = {(v, w) ∈ Ef | cp(v, w) < 0} as the set of
admissible arcs. We define GA = (V,EA) as the admissible subgraph.

A graph G is bipartite if we can partition V into V1 and V2 such that E ⊆ V1 × V2. A
bipartite graph G is balanced if |V1| = |V2|. Given a bipartite graph, a matching is a set of
edges that do not have common vertices. A perfect matching is a matching such that any
vertex is adjacent to an edge in the matching. If the edges have weights, the weight of a
matching is the sum of the edge weights. The WBM problem is to compute a matching with
maximum weight among all matchings. The AS problem is to compute a perfect matching in
a bipartite graph with maximum weight among all perfect matchings.4 The IAS problem is
to compute a matching of size F in a bipartite graph with maximum weight among all such
matchings. In these problems we use C as the maximum weight of an edge in the bipartite
graph. The WBM, AS, and IAS problems can be formulated as UMCF problems (see Section
5).

A circulation is optimal if and only if there exists a potential function such that all
residual arcs have non-negative reduced costs [14]. Another optimality condition is that a
circulation is optimal if and only if the residual graph has no cycles of negative cost.

The cost-scaling method was introduced in [3, 17]. We use the more efficient variant
due to Goldberg and Tarjan [11]. The cost-scaling method proceeds in iterations which we
call cost scales; each one starts with a 2ε-optimal circulation and ends with an ε-optimal
circulation. It starts with the zero circulation which is C-optimal. When ε < 1/n, an
ε-optimal circulation is optimal, so the method takes O(log(nC)) iterations. For efficiency, we
restrict ourselves to values of ε that are integral powers of two. Unless mentioned otherwise,
we use 2dlogCe as the initial value of ε. We assume that the reader is familiar with Dijkstra’s
algorithm [5] and its bucket-based implementation due to Dial [4].

4 Note that a perfect matching exists only in a balanced bipartite graph.

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 409

Algorithm 1 The cost scaling blocking flow algorithm of Goldberg and Tarjan [11].
function MCF(G)

ε← C, p← 0, f ← 0
while ε ≥ 1

n
do (ε, f, p)← Refine(ε, f, p)

end while
return f

end function
function Raise-Potentials(ε, f, p)

while @ EA-path from excess to deficit do
S ← {v ∈ V | ∃ EA-path from an excess to v}
∀v ∈ S : p(v)← p(v) + ε

end while
end function

function Refine(ε′, f ′, p′)
ε← ε′

2 , p← p′, f ← f ′

∀(v, w) ∈ EA: f(v, w)← u(v, w)
while f is not a circulation do

Raise-Potentials(ε, f, p)
f ← f + a blocking flow in GA

end while
return (ε, f, p)

end function

3 Pseudoflow Framework

Our pseudoflow framework for UMCF is based on the cost scaling algorithms of [11]. In this
section we analyze the blocking flow algorithm of [11] for UMCF. One can get similar bounds
for the push-relabel variant of [11]; we defer this result to the full version of the paper.

Algorithm 1 describes the blocking flow cost scaling algorithm of [11]. We say f is a
blocking flow in GA if f is a pseudoflow that: (i) Satisfies conservation constraints everywhere
except at the excesses and deficits of GA. (ii) Saturates at least one arc on every residual
path from an excess to a deficit in GA.

The algorithm starts a cost scale (the refine method in Algorithm 1) by saturating all
admissible arcs, which turns the circulation into a pseudoflow. It then performs the following
two steps until the pseudoflow becomes a circulation:
1. Iteratively increase by ε the potential of all vertices reachable from some excess in GA,

creating new admissible arcs. Stop when there is an admissible excess-to-deficit path.
2. Compute a blocking flow in GA and add it to the current pseudoflow.

We implement step (1) (the raise-potentials method in Algorithm 1) with a modific-
ation that makes its running time linear, as described in Section 3.1. To analyze step (2),
recall that Goldberg and Tarjan [11] show that GA is acyclic throughout the execution of
the algorithm. Since GA also has unit capacities, we can compute a blocking flow in GA in
O(m) time by a depth-first search in GA.

Let f ′ and p′ be the circulation and potentials at the start of the current cost scale (f ′
with p′ is 2ε-optimal). Let f and p be the current pseudoflow and potentials maintained by
the algorithm (f is ε-optimal w.r.t. p). Let λ = min(m1/2, n2/3). Let d(v) = p(v)−p′(v)

ε . Note
that d(v) must be integral. We divide every cost scale into two phases. The second phase
begins when every excess v has d(v) ≥ λ.

I Lemma 1. The first phase of every cost scale runs in O(mλ) time.

Proof. After every blocking flow computation, for every excess v, d(v) increases by at least
one. It follows that for every excess v, d(v) ≥ λ after at most λ blocking flow computations.
Since both step (1) and step (2) take O(m) time, the lemma follows. J

I Lemma 2. If k is the total excess at the start of the second phase, then the second phase
takes O(mk) time.

Proof. Every blocking flow computation sends at least one unit of flow from some excess to
some deficit. Since both step (1) and step (2) take O(m) time, the lemma follows. J

STACS 2015

410 Minimum Cost Flows

Lemma 1 and 2 imply an O(λm) time bound on the Goldberg-Tarjan algorithm on UMCF,
if we can show that when the second phase starts there is O(λ) excess left. We introduce the
following notation. We define E+ = {(v, w) ∈ E | f ′(v, w) > f(v, w)} and let G+ = (V,E+)
be the subgraph of G induced by the arcs of E+. Note that if (v, w) ∈ E+ then (v, w) ∈ Ef
and (w, v) ∈ Ef ′ . We say Y ⊆ E is an excess-deficit cut if every path from an excess to a
deficit contains an arc in Y .

Lemma 3 and 4 are the core of our analysis of the pseudoflow framework. They allow
us to extend the analysis of maximum flow algorithms to MCF by applying the classical
arguments to E+ rather then to Ef . Lemma 4 is an extension of Lemma 5.7 of [11]. It
essentially states that an excess-deficit cut in E+ bounds the total amount of excess, just as
a cut on EA does. Lemma 5 will then conclude the analysis.

I Lemma 3. If (v, w) ∈ E+ then d(v) ≤ d(w) + 3.

Proof. Since (w, v) ∈ Ef ′ then cp′(w, v) ≥ −ε′ = −2ε so we have cp′(v, w) ≤ 2ε. Since
(v, w) ∈ Ef we maintain the invariant cp(v, w) ≥ −ε. We subtract the inequalities and get
cp(v, w)−cp′(v, w) ≥ −ε−2ε and so d(w)ε−d(v)ε ≥ −3ε. It follows that d(v) ≤ d(w)+3. J

I Lemma 4. Let f ′ and f be a circulation and pseudoflow in G = (V,E). Let Y be an
excess-deficit cut in G+. Then∑

v∈V,ef (v)>0 ef (v) ≤
∑

(v,w)∈Y (f ′(v, w)− f(v, w)) ≤
∑

(v,w)∈Y uf (v, w).

Proof. The flow f ′ − f is a feasible flow in Gf since for every arc (v, w) ∈ Ef we have
f ′(v, w)− f(v, w) ≤ u(v, w)− f(v, w) = uf (v, w). By definition we get that f + (f ′− f) = f ′.
Since f ′ is a circulation, we get that f ′ − f drains all the excess in f . J

I Lemma 5. When the second phase starts there is O(λ) excess left.

Proof. During the second phase every excess v has d(v) ≥ λ and every deficit v has d(v) = 0.
Assume λ =

√
m. Consider the 1

3λ sets of arcs Ai = {(v, w) ∈ E+ | d(v) ∈ {3i, 3i −
1, 3i − 2} ∧ d(w) ∈ {3i − 3, 3i − 4, 3i − 5}} where 1 ≤ i ≤ λ

3 .
5 By Lemma 3 any set Ai is

an excess-deficit cut in Gf . By the pigeon hole principle there must be a set Ai such that
|Ai| ≤ m

λ/3 = 3
√
m. So by Lemma 4 the remaining excess is at most 3

√
m = 3λ.

Assume λ = n2/3. We apply the pigeon hole principle to the sets of nodes Ni = {v ∈
V | d(v) ∈ {6i, 6i− 1, 6i− 2, 6i− 3, 6i− 4, 6i− 5}} where 1 ≤ i ≤ λ

6 .
6 There must be a set

Ni such that |Ni| ≤ n
λ/6 = 6n1/3. So there are at most 36n2/3 arcs in A2i and therefore by

Lemma 4 the remaining excess is at most 36n2/3 = 36λ. J

Our analysis extends to networks with integer capacities bounded by U and produces a time
bound of O(min{n,m1/2U1/2, n2/3U1/3}mmin{log n,U} log(nC)). We defer an extended
description to the full version of the paper.

3.1 Raise Potentials
We describe a faster implementation of raise-potentials from Algorithm 1 using Dial’s
shortest path algorithm. This kind of implementation is well known, see e.g. [8, 9, 16].

5 Note that A1 = {(v, w) ∈ E+ | d(v) ∈ {3, 2, 1} ∧ d(w) = 0}. We assume for simplicity of presentation
that λ

3 is an integer.
6 Here we assume for simplicity that λ

6 is an integer.

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 411

Consider the length function `(v, w) = b cp(v,w)
ε c+ 1 and the graph Gf with an additional

source vertex r connected to every excess v with an arc (r, v) of length `(r, v) = 0. For every
vertex v reachable from r, we find the distance d`(v) from r to v w.r.t. `. Let u be the deficit
with the shortest distance d`(u). For a vertex v such that d`(v) < d`(u) we increase the
potential p(v) by (d`(u)− d`(v))ε. Lemma 6 shows that this computes the same potentials
as in the naive implementation of raise-potentials from Algorithm 1.

Lemma 7 shows that we need to compute distances only up to 3n. This implies that
Dial’s algorithm runs in linear time and space. We terminate the computation once we reach
a deficit; alternatively, we can add an arc (r, v) for every vertex v with `(r, v) = 3n and run
the algorithm to the end.

I Lemma 6. Consider a run of the naive implementation of raise-potentials from
Algorithm 1. Let Si be the set S computed at the i-th iteration, and let S0 = {v ∈ V : ∃u
with ef (u) > 0 and v reachable from u in GA}. Then Si = {v ∈ V | d`(v) ≤ i}.

Proof. The proof is by induction on iterations of the naive implementation. For the basis,
note that S0 is the set of vertices reachable from excesses in the admissible graph. If (v, w)
is admissible, then `(v, w) = 0, which implies the claim for S0. We assume the claim is true
for S0, .., Sk−1 and prove it for Sk. Note that p and ` are the potentials and lengths before
running raise-potentials.

First, we show that for every vertex v with d`(v) ≤ k we have v ∈ Sk. By definition of
the naive implementation Si ⊆ Sk for i < k since all admissible arcs into vertices in Si in
iteration i remain admissible in subsequent iterations. Therefore by the induction hypothesis
we need to consider only vertices v with d`(v) = k. Let P be the shortest path from r

to v (by ` distance). Going backwards from v towards r on P let (u, x) be the first arc
we encounter with d`(u) < d`(x) = k (possibly x = v). It follows that the arcs along P
from x to v have zero length ` and are therefore admissible. By the induction hypothesis
we have that u ∈ Sd`(u) \ Sd`(u)−1. So in the k’th iteration the reduced cost of (u, x) is
cp(u, x)− ε · (k− d`(u)) = cp(u, x)− ε · (d`(x)− d`(u)) = cp(u, x)− ε · b cp(u,x)

ε c− ε = (cp(u, x)
mod ε)− ε < 0. So (u, x) is admissible in the k’th iteration and since there is an admissible
path from x to v the claim follows.

Finally, we show that for every vertex v ∈ Sk we have d`(v) ≤ k. By the induction
hypothesis we need to consider only vertices v ∈ Sk \ Sk−1. By definition of the naive
implementation, in the k’th iteration we found an admissible path P from some vertex in
Sk−1 to v. Let (u, x) be the last arc on P such that u ∈ Sk−1 (possibly x = v). By the
induction hypothesis we get that u ∈ Sd`(u) \ Sd`(u)−1. So the reduced cost of (u, x) in the
k’th iteration is cp(u, x) − ε · (k − d`(u)) < 0. It follows that cp(u,x)

ε − (k − d`(u) − 1) < 1
and so b cp(u,x)

ε − (k − d`(u) − 1)c ≤ 0. So by definition of shortest distances we get that
d`(x) ≤ d`(u) + `(u, x) ≤ k. Since the subpath of P from x to v was always admissible we
get that d`(v) ≤ d`(x) ≤ k. J

I Lemma 7. For every v ∈ V with ef (v) < 0 we have d`(v) ≤ 3n.

Proof. We assume for contradiction that d`(v) > 3n. By Lemma 4 there must be an E+

path from some excess w to v. We run the naive implementation of raise-potentials
from Algorithm 1 for d`(v) iterations (we do not terminate if we find a deficit). By Lemma
6 after d`(v) iterations we have d(w) ≥ d`(v) > 3n and d(v) = 0. Applying Lemma 3
telescopically along the E+ path from w to v we get that d(w) ≤ d(v) + 3n = 3n which is a
contradiction. J

STACS 2015

412 Minimum Cost Flows

Algorithm 2 A scaling iteration of the UMCF cycle canceling algorithm.
function Refine(ε′, f, p)

ε← 1
2 ε
′

while |Ebad| > 0 do
k ← |Ebad|
Cancel admissible cycles
S ← Find-Set-Or-Chain()
if S is a set then ∀v ∈ S : p(v)← p(v) + ε
else Eliminate-Chain(S)
end if

end while
return (ε, f, p)

end function
function Eliminate-Chain(S = (v0, .., v|S|−1))
∀t∈{1...|S|−2} : Push(vt, vt+1)
Raise-Potentials(ε, f, p)
∀(v, w) ∈ EA-path from v|S|−1 to v0 :

Push(v, w)
end function

function Find-Set-Or-Chain()
∀(v, w) ∈ Ebad : `′(v, w) = −1
∀(v, w) /∈ Ebad : `′(v, w) = 0
G′ ← GA with a new vertex r
∀v ∈ V : connect r to v with `′(r, v) = 0
Compute `′ distances from r in G′
if ∃v ∈ V d`′ (r, v) ≤ −

√
k then

return EA-path from r to v
else
∀i<√k: Ai ← {v ∈ V | d`′ (r, v) = −i}
j ← argmaxi|{(v, w) ∈ Ebad | w ∈ Ai}|
return ∪j≤i≤√kAi

end if
end function
function Push(v, w)

f(v, w)← f(v, w) + 1, f(w, v)← f(w, v)− 1
end function

4 Cycle Canceling Framework

We present a cycle canceling algorithm that solves the UMCF problem in O(m3/2 log(nC))
time. Unlike the methods of the previous section, the cycle-canceling algorithm always
maintains a feasible circulation, which is desirable in some contexts. On the other hand, we
were unable to prove an O(mn2/3 log(nC)) bound as we did in the preflow framework. Our
algorithm is based on the shortest path algorithm of Goldberg [9]. The main difference is
that the shortest path algorithm halts when it finds a negative cycle and the MCF algorithm
cancels such cycles and proceeds.

We introduce more notation. We define Ebad = {(v, w) ∈ E | cp(v, w) < −ε} as the set
of bad arcs. Note that Ebad ⊆ EA. For a length function ` and vertices x, y ∈ V we define
d`(x, y) to be the distance according to ` from x to y. Given S ⊂ V and T ⊂ E, we say S is
T -closed if for every arc (v, w) ∈ T , v ∈ S implies w ∈ S.

We describe the cycle-canceling variant of refine in Algorithm 2. We use k to denote
the number of bad arcs. We perform iterations of canceling admissible cycles, finding either
a large EA-closed set or a long EA path and then using the set or path to raise potentials or
cancel more cycles and reduce the number of bad arcs. In each iteration we reduce k by at
least

√
k. The eliminate-chain method is the main place where our algorithm differs from

Goldberg’s shortest path algorithm. The latter stops when it finds a negative cycle, while we
need to cancel such cycles.

We define an iteration of the algorithm as one iteration of the loop of the refine method.
In every iteration we first cancel all admissible cycles in G. Goldberg and Tarjan [10]
describe how to perform this in O(m) time for unit capacity networks. Next we run the
find-set-or-chain method. This method finds either a path in GA with at least

√
k bad

arcs or an EA-closed set of vertices with at least
√
k incoming bad arcs.

We find the path or the set by creating a new graph G′ from GA with a length function
`′ as defined in Algorithm 2. Since we canceled admissible cycles in G, the graph G′ is
acyclic and we find a topological ordering of vertices in G′ in O(m) time. Using this ordering,
we compute the distance d`′(r, v) for every vertex v in O(m) time. If some vertex v has
d`′(r, v) ≤ −

√
k then the path from r to v is the path we seek. Otherwise, by the pigeon hole

principle, there is a set Ai of all the vertices with distance −i that has at least
√
k incoming

bad arcs. The set of all vertices with distance −i or less is therefore an EA-closed set of

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 413

vertices with at least
√
k incoming bad arcs.

If we find an EA-closed set S, we increase the potentials of the vertices in S by ε. Since
S is EA-closed, raising the potential of S by ε does not create new bad arcs out of S. On
the other hand each arc into S that was bad before the increase is no longer bad after the
increase (f is 2ε-optimal so reduced costs are at least −2ε). Since S contained at least

√
k

incoming bad arcs, we reduce the number of bad arcs by at least
√
k.

If we find a path, we run the eliminate-chain method. This method eliminates the bad
arcs on the path by adjusting potentials and canceling cycles with bad arcs, without creating
new bad arcs. The eliminate-chain method runs in linear time. See Section 4.1.

Each iteration in refine finds either a set or a chain and in either case eliminates at least√
k bad arcs. So the number of iterations is O(

√
m). Each iteration takes O(m) time. It

follows that a cost scale takes O(m3/2) time, yielding an O(m3/2 log(nC)) UMCF algorithm.

4.1 Chain Elimination
The input to eliminate-chain is an admissible path S = (v0, v1, . . . v|S|−1). It is possible
to implement eliminate-chain so that it cancels only negative cycles, but we describe a
simpler implementation that may cancel cycles with positive cost, and a variant for which
the circulation cost is monotonically decreasing.

The procedure starts by pushing a unit of flow from v0 to v|S|−1 along S. This saturates
the bad arcs on S without creating new ones, and introduces a unit of deficit at v0 and
a unit of excess at v|S|−1. We then run the raise-potentials method from Section 3.1
with a modified length function (see below). This increases the potentials and creates an
admissible path, P , from v|S|−1 to v0 without introducing new bad arcs. To convert the
pseudoflow into a circulation, we push a unit of flow on P . Since P is admissible, we do not
create new bad arcs. Since bad arcs have reduced costs in the interval [−2ε,−ε) the length
` of these arcs (defined in Section 3.1) is −1. We re-define ` to be zero on bad arcs, that
is `(v, w) = max(0, b cp(v,w)

ε c + 1). After raise-potentials updates p, the reduced costs
of admissible arcs (and in particular of bad arcs) cannot decrease, so no new bad arcs are
created.

Pushing a unit of flow on S and then returning it on P changes the flow on a set of
cycles. Reduced costs of arcs on P may be positive w.r.t. the potentials at the beginning of
eliminate-chain, and the cycles may have positive cost. We can modify the algorithm to
make sure the total cost of these cycles is negative; then at least one of the cycles is negative.
We use a different length function `m. The reverse arcs of arcs along S have reduced costs in
(0, 2ε]. For such arcs with reduced costs in (0, ε] we set `m = 0 (instead of 1) and for such
arcs with reduced costs in (ε,−2ε] we `m = 1 (instead of 2). For every other residual arc e we
define `m(e) = `(e). Also, if the reversal of S become admissible, we always select it as the
admissible path we push the flow back on; in this case eliminate-chain does not change
f . Running raise-potentials with `m is equivalent to running the naive implementation
from Algorithm 1 if we also treat reverse arcs of arcs along S with reduced costs in (0, ε] as
admissible. One can prove this using the same arguments as in the proof of Lemma 6. It
follows that the residual path we find from v|S|−1 to v0 may contain reverse arcs of arcs in S
with reduced costs in (0, ε]. Pushing the flow back on these arcs creates new admissible arcs
but cannot create new bad arcs. Lemma 8 proves that with `m we get decreasing circulation
costs.

I Lemma 8. Let f ′ be the flow before eliminate-chain and f after. If f ′ 6= f then
cost(f) < cost(f ′).

STACS 2015

414 Minimum Cost Flows

Proof. Let P be the return path we select after raise-potentials and S̄ the reversal of S. P
is a shortest path w..r.t. `m and S̄ is not, so we have

∑
(v,w)∈P `m(v, w) <

∑
(v,w)∈S̄ `m(v, w)

and so
∑

(v,w)∈P\S̄ `m(v, w) <
∑

(v,w)∈S̄\P `m(v, w). It follows that∑
(v,w)∈P\S̄

cp(v,w)
ε ≤

∑
(v,w)∈P\S̄ max(0, b cp(v,w)

ε c+ 1) =
∑

(v,w)∈P\S̄ `m(v, w)
<

∑
(v,w)∈S̄\P `m(v, w) =

∑
(v,w)∈S̄\P (d cp(v,w)

ε e − 1) ≤
∑

(v,w)∈S̄\P
cp(v,w)

ε . So we get that∑
(v,w)∈P cp(v, w) <

∑
(v,w)∈S̄ cp(v, w) and therefore

∑
(v,w)∈P∪S cp(v, w) < 0. J

5 Special Case Improvements and Generalizations

In this section we improve the bounds for our frameworks from Sections 3 and 4 for the
special cases of SSSP, IAS, WBM and UMCF with unit vertex capacities.

First we review reductions from the WBM, AS and IAS problems to UMCF. The reduction
from WBM is as follows. Given an instance H = (V1 ∪ V2, EH) of WBM, we create a graph
G = (V,E). We add two new vertices s and t so that V = V1 ∪ V2 ∪ {s, t}. For each edge
(v, w) ∈ EH we have an arc (v, w) ∈ E whose cost in G is the negation of its cost in H (so
that a maximum weight becomes a minimum cost). For every vertex v ∈ V1 we add a new
arc (s, v) with c(s, v) = 0. For every vertex v ∈ V2 we add a new arc (v, t) with c(v, t) = 0.
We also add the arc (t, s) with c(t, s) = 0. Let r = min{|V1|, |V2|}. We set the capacities of
all arcs to 1 except for the arc (t, s), which gets a capacity of u(t, s) = r (we can replace (t, s)
by r parallel unit capacity arcs to get an UMCF instance). Clearly a minimum cost flow in
G corresponds to a matching of maximum weight in H.

The reduction of AS to UMCF is the same as for WBM except that we set c(t, s) = −nC.
Clearly a minimum cost flow in G corresponds to a perfect matching of maximum weight
in H. The maximum absolute value of an arc cost in is nC rather than C. However we
still state our bounds as a function of C defined as the largest absolute value of a weight in
H. We reduce IAS to UMCF using the same reduction as for AS, except u(t, s) = F and
c(t, s) = −FC.

5.1 The Single Source Shortest Path Problem
We show how the cycle canceling algorithm of Section 4 can be slightly modified to match
the O(

√
nm logC) time bound of [9]. In the modified algorithm we maintain f as the zero

circulation except temporarily inside the eliminate-chain procedure. When the algorithm
terminates, the reduced costs of all arcs are non-negative, so we can find all shortest paths
from a source using Dijkstra’s algorithm in O(m+ n log n) time.

We run the O(logC) cost scales of the cycle canceling algorithm of Section 4 with the
length function `m until ε = 1. However, we terminate if we find an admissible cycle in
refine or if the return path in eliminate-chain is not the reversal of S. In these cases
there is a negative cycle in Gf . An analysis similar to the one of Section 4 shows that the
running time of a cost scale is O(

√
nm) rather than O(m3/2). This is done by defining a

vertex as bad if it has a bad incoming arc and fixing at least
√
k bad vertices in each iteration

of refine where k is the total number of bad vertices. The potential increase of an EA-closed
set fixes all the bad vertices in the set. Lemma 9 shows that running eliminate-chain with
`m either fixes all the bad vertices along S or there is a negative cycle and we can terminate.

I Lemma 9. If (x, vi) is bad and vi ∈ S then there is a negative cycle or d`m
(x) > d`m

(vi)

Proof. Let S′ be the part of the reverse path of S from v|S|−1 to vi. If d`m(x) ≤ d`m(vi) then
there is a path P from v|S|−1 to x with

∑
(v,w)∈P `(v, w) ≤

∑
(v,w)∈S′ `(v, w). Using the same

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 415

arguments as in the proof of Lemma 8 we get that
∑

(v,w)∈P cp(v, w)−
∑

(v,w)∈S′ cp(v, w) ≤ 0.
So the cycle of P then (x, vi) and then the part of S from vi to v|S|−1 is a negative cycle. J

When ε = 1 we run one last, slightly modified, cost scale. We change the definition of an
admissible arc to be an arc with non-positive reduced cost. Since all potentials and costs at
this point are integral and thereby multiples of ε, the reduced cost of an admissible arc is
either −1 or 0 and it is ≥ 1 for all other arcs. A bad arc is an admissible arc of reduced cost
−1. Since zero reduced cost arcs are admissible, there are no zero reduced cost arcs outgoing
from an EA-closed set, and an increase of the potentials of the vertices in the set by 1 does
not create new bad arcs. We define the length function ` in eliminate-chain accordingly:
for every residual arc (v, w) we define `(v, w) = max(0, cp(v, w)). The arguments of Lemma
6 show that running raise-potentials with this length function does not create new bad
arcs. The arguments of Lemma 8 show that if there isn’t a negative cycle then we can push
the flow back on the reversal of S.

It remains to show how to make the admissible network (by the new definition of
admissibility) acyclic. We start every iteration of refine by contracting strongly connected
components of G induced by zero reduced cost arcs. In the contracted graph we set the
potentials of vertices to zero and the costs of arcs to be the reduced costs of the corresponding
arcs before the contraction. This transformation takes linear time. At the end of the iteration
we set the potential of every original vertex v to be its potential before the contraction
plus the potential computed for the vertex into which v was contacted. See [9]. After the
contraction GA must be acyclic (otherwise there is a negative cycle and we terminate).

5.2 Imperfect Assignment Problem
We show an O(

√
Fm log(FC)) time bound for IAS using either the pseudoflow or the cycle

canceling framework. Since the cost of (t, s) is −FC, the zero circulation is not C-optimal
with respect to the zero potential function. So instead of starting with the zero circulation
we start with the circulation f consisting of a flow of value F from s to t together with
a flow of F through the arc (t, s), thereby saturating (t, s) (we assume that the value of
the maximum flow from s to t is at least F as otherwise the problem is infeasible). This
circulation is C-optimal with respect to the zero potential function.

The other modification we perform is a transformation of potentials before every cost
scale as follows. For every vertex v ∈ V1 we set p(v) = p(v) + ε. For every vertex v ∈ V2 we
set p(v) = p(v) + 2ε. We also set p(t) = p(t) + 3ε. Lemma 10 specifies the outcome of the
transformation.

I Lemma 10. After applying the potential transformation we have
∑

(v,w)∈EA
uf (v, w) ≤ 3F .

Proof. Consider an arc (v, w) ∈ {(s, t)} ∪ ({s} × V1) ∪ (V1 × V2) ∪ (V2 × {t}). Before the
transformation cp(v, w) ≥ −ε. After the transformation cp(v, w) ≥ ε− ε = 0. So (v, w) /∈ EA.

Let R = Ef ∩ ((V1 × {s}) ∪ (V2 × V1) ∪ ({t} × V2)) and consider an arc (v, w) ∈ R. Since
f(v, w) < u(v, w) = 0 then f(w, v) > 0. Since f is a circulation and since all flow cycles
of f contain (t, s) we get that |R| ≤ 3f(t, s). So

∑
(v,w)∈EA

uf (v, w) = |R| + uf (t, s) ≤
3f(t, s) + uf (t, s) = 3f(t, s) + u(t, s)− f(t, s) = 2f(t, s) + u(t, s) ≤ 3F . J

Lemma 10 implies that we start every cost scale in the cycle canceling framework with
O(F) bad arcs. An O(

√
Fm) time bound per cost scale follows using the same analysis as in

Section 4. Lemma 11 implies an log(FC) bound on the number of cost scales:

I Lemma 11. An ε-optimal circulation f with ε < 1
2F+4 is optimal.

STACS 2015

416 Minimum Cost Flows

Proof. Consider a simple residual cycle Y . Pair up consecutive arcs that are not incident
to s and t along Y . By the definition of G at least one arc in each pair is in V2 × V1. It
follows that |Y | ≤ 4 + 2|Ef ∩ (V2 × V1)| = 4 + 2|{(w, v) ∈ V1 × V2 | f(w, v) > 0}| ≤ 4 + 2F ,
where the last inequality holds since by the conservation constraints in G we have that
|{(w, v) ∈ V1×V2 | f(w, v) > 0}| ≤ u(t, s) ≤ F . It follows that cost(Y) =

∑
(v,w)∈Y c(v, w) =∑

(v,w)∈Y cp(v, w) ≥
∑

(v,w)∈Y −ε ≥ −(4 + 2F)ε > −1. Since costs are integral it follows
that cost(Y) ≥ 0 so there are no negative residual cycles and therefore f is optimal. J

For the pseudoflow framework we use the same notation as in Section 3 except that we
let λ =

√
F . We split a cost scale of the algorithm into two phases. The second phase starts

when every excess v has d(v) ≥ λ. Lemma 12 and the analysis from Section 3 yield the
O(
√
Fm) time bound per cost scale for the pseudoflow framework.

I Lemma 12. When the second phase starts there is O(
√
F) excess left.

Proof. Consider the decomposition of the current pseudoflow f into simple cycles and paths
from deficits to excesses. By the definition of G every simple flow cycle or path is of length
at most 4. By Lemma 10 the total excess generated when we start a cost scale is at most 3F
so there are at most 3F flow paths from deficits to excesses. Since u(t, s) = F there are at
most F flow cycles. It follows that |{(v, w) ∈ E | f(v, w) > 0}| ≤ 4 · 3F + 4F = 16F .

Let R = Ef ∩ ((V1×{s})∪ (V2×V1)∪ ({t}×V2)∪{(t, s)}). We have
∑

(v,w)∈R uf (v, w) ≤
|{(w, v) ∈ E | f(w, v) > 0}| + F ≤ 17F . For 1 ≤ i ≤ λ

12 let Ai = {(v, w) ∈ Ef | d(v) ∈
{12i, 12i− 1, ..., 12i− 11}}.7 We apply the pigeon hole principle to the sets of arcs Ai ∩R.
Since

∑
(v,w)∈R uf (v, w) ≤ 17F there must be a set Ai∩R such that

∑
(v,w)∈Ai∩R uf (v, w) ≤

17F/ 1
12λ = 204

√
F . We show that each Ai ∩R is an excess-deficit cut in G+. A bound of

204
√
F on the remaining excess follows using Lemma 4.

Consider an excess-deficit E+ residual path P . We show that it has an arc in each set
Ai ∩R. Clearly every simple residual path in Gf , and P in particular, must have at least
one arc in R out of every 4 consecutive arcs. Furthermore, since an excess has d(v) = λ,
a deficit has d(v) = 0, and by Lemma 3, P must contain 4 consecutive arcs in each Ai. It
follows that one of these 4 arcs is in R and therefore in Ai ∩R. J

5.3 Weighted Bipartite Matching
In this section we show the O(

√
rm log(C)) time bound for the WBM problem. Recall that r

is the number of vertices in the smaller “side” of the bipartite graph. We use the same ideas
as Duan at al. [6], but within our cost-scaling frameworks, obtaining a simpler algorithm
with the improved time bound. First we show how to obtain an O(

√
rm log(rC)) time bound

using either framework. Then we show how to improve the bound to O(
√
rm logC) by

introducing a preprocessing stage based on the pseudoflow framework and a postprocessing
stage based on the cycle canceling framework.

Before every cost scale we perform the same potential transformation as in Section 5.2. A
lemma analogous to Lemma 10 shows that following this transformation

∑
(v,w)∈EA

uf (v, w) ≤
3r. This gives a bound of O(

√
rm) time for a cost scale in the cycle canceling framework.

For the pseudoflow framework we define λ =
√
r and split a cost scale into two phases as in

Section 5.2. Lemma 13 implies the O(
√
rm) time bound for a cost sale in the pseudoflow

framework. For both frameworks, a lemma analogous to Lemma 11 implies O(log rC) cost
scales yielding the O(

√
rm log(rC)) bound.

7 As in the previous section, to simplify the presentation we assume that λ
12 is an integer.

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 417

I Lemma 13. When the second phase starts there is O(
√
r) excess left.

Proof. Assume without loss of generality that r = |V1| ≤ |V2|. For 1 ≤ i ≤ λ
12 let

Ki = {v ∈ V | d(v) ∈ {12i, 12i − 1, ..., 12i − 10, 12i − 11}} and let Ni = Ki ∩ V1.8 By the
pigeon hole principle there must be a set Nj such that |Nj | ≤ r

1
12λ

= 12
√
r. We argue in the

next paragraph that the set of E+ arcs outgoing from every Ni is an excess-deficit cut in
G+. Since each vertex in V1 has only one outgoing arc that may be in E+, the size of the
cut corresponding to Nj is at most 12

√
r and the lemma follows by Lemma 4.

Consider a simple path P of E+ arcs from an excess to a deficit. By Lemma 3, P must
have at least 4 consecutive vertices in Ki. Since P is simple, one of these vertices v has
v ∈ V1 and so we get v ∈ Ni. The single outgoing E+ arc of v must be on P . J

Next we improve the running time to O(
√
rm logC). The improved algorithm has three

stages. First we find an C√
r
-optimal circulation in O(

√
rm) time. Then we run cost scales

from either framework to get an 1√
r
-optimal circulation in O(

√
rm logC) time. Finally we

convert the circulation to an optimal one in O(
√
rm) time.

For the first stage we set ε = C√
r
. We set p(v) = −C for every vertex v ∈ {s} ∪ V1 and

p(v) = 0 for every vertex v ∈ V2 ∪ {t}. We initialize f with the zero circulation. Finally we
call the refine method of the blocking flow algorithm from Section 3. Lemma 14 shows that
this call to refine performs at most O(

√
r) blocking flow computations. It was first proved

for a balanced bipartite graph by Duan at al. [6]. It follows that this stage runs in O(
√
rm)

time.

I Lemma 14. The first stage performs at most
√
r + 2 blocking flow computations.

Proof. Consider the initial potentials. Arcs outgoing from s or incoming into t have reduced
cost 0. Every arc (v, w) ∈ V1 × V2 has cp(v, w) ≥ −C + C + 0 ≥ 0. The arc (t, s) has
cp(t, s) = −C. It follows that EA = {(t, s)}. So after saturating admissible arcs we have
ef (s) > 0, ef (t) < 0 and E+ = {(s, t)}. Since t is the only deficit we have p(t) = 0. After y
blocking flows we have that p(s) = −C + y C√

r
. It follows that cp(s, t) = −p(s) is nonnegative

for y ≤
√
r and is negative for y =

√
r + 1. So (s, t) is admissible after

√
r + 1 blocking

flows and the (
√
r + 2)’th blocking flow drains all remaining excess from s through the arc

(s, t). J

For the finish-up stage we run the last cost scale of the SSSP algorithm from Section
5.1, except that whenever we encounter an admissible (negative) cycle we do not terminate.
Instead we cancel the cycle and start a new iteration of refine. Consider a negative cycle.
By integrality, its cost is −1 or less, so by ε-optimality (recall that ε ≤ 1/

√
r at this point)

the cycle must contain at least
√
r arcs with negative reduced cost. This observation implies

that canceling a negative cycle saturates at least
√
r bad arcs. It follows that the number of

time we restart an iteration of refine is O(
√
r).

5.4 Minimum Cost Flow with Unit Vertex Capacities
We show an O(

√
nm log(nC)) time bound on the MCF problem with unit vertex capacities

using our pseudoflow framework. We consider the formulation of the problem on networks
where every vertex has an out-degree of 1 or an in-degree of 1. The time bound is proved in
the same way as in Section 3 except we let λ =

√
n and we let Lemma 15 replace Lemma 5.

8 To simplify the presentation we assume that λ/12 is an integer.

STACS 2015

418 Minimum Cost Flows

I Lemma 15. When the second phase starts there is O(
√
n) excess left.

Proof. During the second phase every excess v has d(v) ≥ λ and every deficit v has d(v) = 0.
Consider the 1

3λ sets of vertices Vi = {v ∈ V | d(v) ∈ {3i, 3i− 1, 3i− 2}} where 1 ≤ i ≤ λ
3 .

Also consider Ai = {(v, w) ∈ E+ | (v ∈ Vi and has out-degree 1) or (w ∈ Vi and has in-degree
1) }. By Lemma 3 for any set Vi, every E+ excess to deficit path must contain a vertex in
Vi. It follows that every Ai is an excess-deficit cut in Gf . By the pigeon hole principle there
must be a set Vi such that |Vi| ≤ n

λ/3 = 3
√
n = 3λ and therefore |Ai| ≤ 3

√
n. So by Lemma

4 the remaining excess is at most 3λ. J

Acknowledgements We thank an anonymous reviewer for a simplification of the algorithm
of Section 4.

References
1 R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, 1993.
2 R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved Algorithms for Bipartite

Network Flow. SIAM J. Comput., 23:906–933, 1994.
3 R. G. Bland and D. L. Jensen. On the Computational Behavior of a Polynomial-Time

Network Flow Algorithm. Math. Prog., 54:1–41, 1992.
4 R. B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering. Comm. ACM,

12:632–633, 1969.
5 E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math.,

1:269–271, 1959.
6 Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for approximate and exact

maximum weight matching. CoRR, abs/1112.0790, 2011.
7 S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM J.

Comput., 4:507–518, 1975.
8 H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM

J. Comput., 18:1013–1036, 1989.
9 A. V. Goldberg. Scaling Algorithms for the Shortest Paths Problem. SIAM J. Comput.,

24:494–504, 1995.
10 A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Canceling Neg-

ative Cycles. J. Assoc. Comput. Mach., 36:873–886, 1989.
11 A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive

Approximation. Math. of Oper. Res., 15:430–466, 1990.
12 J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for Maximum Matching in Bipartite

Graphs. SIAM J. Comput., 2:225–231, 1973.
13 A. V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo vida i neko-

torykh prilozheniyakh. In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5.
Moscow State University Press, Moscow, 1973. In Russian; title translation: On Finding
Maximum Flows in Networks with Special Structure and Some Applications.

14 Jr. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,
NJ, 1962.

15 A. Madry. "navigating central path with electrical flows: From flows to matchings, and
back". In FOCS, pages 253–262, 2013.

16 L. Ramshaw and R.Endre Tarjan. "a weight-scaling algorithm for min-cost imperfect match-
ings in bipartite graphs". In FOCS, pages 581–590, 2012.

A.V. Goldberg, H. Kaplan, S. Hed, and R. E. Tarjan 419

17 H. Röck. Scaling Techniques for Minimal Cost Network Flows. In U. Pape, editor, Discrete
Structures and Algorithms, pages 181–191. Carl Hansen, Münich, 1980.

STACS 2015

Inductive Inference and Reverse Mathematics∗

Rupert Hölzl1, Sanjay Jain2, and Frank Stephan3

1 Department of Mathematics, National University of Singapore, S17, 10 Lower
Kent Ridge Road, Singapore 119076, Republic of Singapore, r@hoelzl.fr

2 Department of Computer Science, National University of Singapore, COM2,
15 Computing Drive, Singapore 117417, Republic of Singapore,
sanjay@comp.nus.edu.sg

3 Department of Mathematics and Department of Computer Science, National
University of Singapore, S17, 10 Lower Kent Ridge Road, Singapore 119076,
Republic of Singapore, fstephan@comp.nus.edu.sg

Abstract
The present work investigates inductive inference from the perspective of reverse mathematics.
Reverse mathematics is a framework which relates the proof strength of theorems and axioms
throughout many areas of mathematics in an interdisciplinary way. The present work looks at
basic notions of learnability including Angluin’s tell-tale condition and its variants for learning in
the limit and for conservative learning. Furthermore, the more general criterion of partial learning
is investigated. These notions are studied in the reverse mathematics context for uniformly and
weakly represented families of languages. The results are stated in terms of axioms referring to
domination and induction strength.

1998 ACM Subject Classification F.4.1 Mathematical Logic.

Keywords and phrases reverse mathematics, recursion theory, inductive inference, learning from
positive data

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.420

1 Introduction

It is standard practice in mathematics to use known theorems to prove others. In these
cases it can often be observed that some theorem T seems to be “stronger” than another
theorem U in the sense that T allows proving U easily, but not vice versa. In the 1970s,
Friedman [11] proposed a framework that formalises this intuition and allows gauging the
different strengths of theorems that can be found in classical mathematics.

The general idea is to assume only a subset of the axioms of second order arithmetic,
which by itself is too weak to prove the theorems in question, and then to analyse whether
one theorem implies the other over this weak base system. Of course, if we want to exactly
determine the strength of a mathematical theorem T with regards to logical implication, then
we need to look in both directions: which theorems are implied by T and which imply T?
As all of mathematics is ultimately founded on axioms, it is a natural next step to extend
this study to the relation between axioms and theorems, and to wonder what axioms are
exactly equivalent to a given theorem T , that is, imply T and are implied by T .

This “inverted” approach – where one uses theorems to prove axioms instead of the other
way around – explains the name of this field of study: reverse mathematics. The subject has

∗ R. Hölzl was fully and S. Jain and F. Stephan partially supported by NUS/MOE grant R146-000-184-112
(MOE2013-T2-1-062); furthermore, S. Jain is partially supported by NUS grant C252-000-087-001.

© Rupert Hölzl, Sanjay Jain, and Frank Stephan;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 420–433

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.420
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Hölzl, S. Jain, and F. Stephan 421

developed well since its inception, in particular thanks to many substantial contributions
made by Simpson and his students [19]. The methodology of reverse mathematics has been
applied to many fields of classical mathematics, for example, to group theory, to vector
algebra, to analysis, and – especially in recent years – to combinatorics, including Ramsey
theory and related fields. We refer to the books of Hirschfeldt [14] and Simpson [19] which
are convenient resources for the topic and give many references.

In the practice of reverse mathematics we will look at proper subsets of the axioms of
second order arithmetic and will investigate the properties of possible models of these axiom
sets. Such a model will be of the form (M,+, ·, <, 0, 1,S), where M is a (not necessarily
standard) model of the natural numbers and S is a class of subsets of M . The minimal
axiom system over which we will work is called RCA0. Informally speaking, the axioms of
this system guarantee that S contains at least all recursive sets and is closed under join and
Turing reduction. Furthermore, the axioms ensure that the system satisfies Σ1-induction
with parameters from S; in particular, even in nonstandard models of RCA0 all numbers of
the form maxi<n f(i) exist for all functions f ∈ S.

More precisely, RCA0 postulates that (M,+, <, ·, 0, 1) behaves sufficiently similar to the
natural numbers, in the following sense, and that S satisfies the following closure properties:

The ordering < is linear, transitive and antireflexive and has 0 as the least element;
The successor mapping x 7→ x+ 1 satisfies that x < x+ 1 and x < y ⇔ x+ 1 < y + 1 as
well as that 0 is the only number x which is not equal to y + 1 for some other number y;
The addition + is inductively defined from the successor by x+ 0 = x and x+ (y + 1) =
(x+ y) + 1;
The ordering < is definable from + by x < y ⇔ ∃z [x+ z + 1 = y];
The multiplication is inductively defined from the addition by x · 0 = 0 and x · (y + 1) =
(x · y) + x;
The second order model satisfies Σ1-induction, that is, if I ⊆M is defined by a Σ1-formula
using parameters from S and satisfies for all e the implication [∀d < e (d ∈ I)]⇒ e ∈ I
then I is equal to M ;
The set S contains ∅ and all sets which are recursive in the model (M,+, <, ·, 0, 1);
The second order model is a Turing ideal, that is, if I, J ∈ S then I ⊕J = {i+ i : i ∈ I}∪
{j+ j+ 1: j ∈ J} is also a member of S and, furthermore, if I ∈ S and J can be obtained
from I by both a Σ1-definition and a Π1-definition then J ∈ S.

Note that the last statement ensures that S is closed under join and Turing reducibility.
The model which contains exactly the recursive sets is called the minimal model of RCA0.

Of course there are many models of RCA0 that are much richer than the minimal model. In
particular if M is the standard model of natural numbers, then there is also the model where
S is the power set of M ; for nonstandard models, the power-set of M cannot be a model as
it fails the induction axiom. There also exist many intermediate models between those two
extremes. When M is the standard model of the natural numbers, then (M,+, ·, <, 0, 1,S)
is called an ω-model and due to their well-behavedness (compared to nonstandard models),
they are better understood than nonstandard models in reverse mathematics. However,
various complicated results in reverse mathematics were only obtained through the use of
nonstandard models [8, 9].

As we will show in this article, many results in inductive inference relate to the following
three axioms from reverse mathematics:

The axiom DOM which says that for every weakly represented family of functions in S
(defined below) there exists a function in S growing faster than all members of the family;
The axiom ACA0 which says that the class S is closed under Turing jump;

STACS 2015

422 Inductive Inference and Reverse Mathematics

The axiom IΣ2 which postulates that every Σ2 set I definable using parameters from S
satisfies the induction axiom: if ∀e [[∀d < e [d ∈ I]]⇒ e ∈ I] then I = M .

Note that IΣ2 is satisfied for all standard models of the natural numbers; however, if M is a
nonstandard model, assuming IΣ2 is a nontrivial constraint. By identifying a function with
its graph we can also informally talk about the functions from M to M that exist in the
model (that is, whose graphs are in S).

In an informal way, we will often think of the sets in S as being the recursive sets, even for
sets that are not recursive in the classical sense of recursion theory. This seemingly strange
fact can be understood as follows: Often in the reverse mathematics context we wonder
whether a certain object exists in a model, or what additional axiom – say, for example,
comprehension for Σ0

2 formulas – is needed to ensure its existence. We are then allowed
to apply these additional axioms relative to any object X already existing in the model,
no matter if X is recursive in the classical sense. That is, as soon as we know that X is
guaranteed to exist in S, we are allowed to take advantage of it, so for our purposes it is as
good as recursive.

In this article we propose to apply the methodology of reverse mathematics to the field of
inductive inference. We would like to point out that articles by de Brecht and Yamamoto [5]
and by Hayashi [13] pursue the same idea, but in ways that differ from our approach and
from each other. We proceed with defining central notions and analysing basic results of the
field of inductive inference [1, 2, 3, 6, 7, 12, 15, 17, 21]. We will in particular study Angluin’s
tell-tale condition for learnability and related results. In this context the notion of finiteness
of a set is of high importance as Angluin’s tell-tale sets are finite. We point out that in the
reverse mathematics setting some care is required with regard to this, as the universe M of
the model S may be nonstandard. We therefore fix the term “finite” for a subset of M to
mean that the subset of M has an upper bound and “infinite” to mean that no such bound
exists. Furthermore, it should be noted that “finite sets” are always considered to be “finite
sets contained in S” and that they are precisely those sets E for which there is a member
e ∈M with e =

∑
d∈E 2d.

Furthermore, we use Cantor’s pairing function 〈x, y〉 = (x+ y) · (x+ y + 1)/2 + y and
extend it appropriately to triples and quadruples and so on. Now we code a family of
sets {Ae}e∈M using a single set A by defining x ∈ Ae ⇔ 〈e, x〉 ∈ A. Such families of sets
are called uniformly represented families. Similarly one can define a uniformly represented
family of functions by Fe(x) = F (〈e, x〉) using one representation function. This notion was
generalised to the notion of weakly represented families of functions as follows [18]. Assume
that a representation set A ∈ S satisfies the following conditions on quadruples:

For all e, x, y, z, y′, z′: If 〈e, x, y, z〉, 〈e, x, y′, z′〉 ∈ A then y = y′ and z = z′;
If 〈e, x, y, z〉 ∈ A and x′ < x then there exist y′ and z′ such that 〈e, x′, y′, z′〉 ∈ A and
〈e, x′, y′, z′〉 < 〈e, x, y, z〉.

The intention behind the second condition is to ensure that the coding quadruples for each
function appear in the family in order ascending in the function argument x, even if the
function is not monotone; for this purpose we use the fourth component of the quadruples as
padding parameter. The first condition ensures that for each e, x there is at most one code
defining Fe(x). An index is invalid if there is some x where Fe(x) is not defined. Hence the
set D = {e : ∀x ∃y, z [〈e, x, y, z〉 ∈ A]} is the index set of functions in the weakly represented
family and for e ∈ D, Fe(x) is the unique y such that 〈e, x, y, z〉 ∈ A for some z. The
family {Fe}e∈D is called the weakly represented family defined by A and every function Fe,
e ∈ D, is a function in the given second order model (M,+, ·, <, 0, 1,S). Furthermore, in
the case that all functions Fe in the family are {0, 1}-valued, they can also be viewed as the

R. Hölzl, S. Jain, and F. Stephan 423

characteristic functions of a weakly represented family of sets and might be denoted with Ae

rather than Fe. Note that Dzhafarov and Mummert [10] have considered the more general
concept of enumerated families of sets.

In some of the proofs in this article we will make statements of the form “Ae(x) can
be retrieved from A in time less than s.” By this we mean that the code number c =
〈e, x,Ae(x), z〉 ∈ A is bounded by s. The intuition of time is explained by the fact that Ae(x)
or the padding parameter z could be very large, so that it will depend on c how far we need
to search in A to determine the function value Ae(x) for a given x.

In the reverse mathematics setting, we will of course only work with representation sets A
as above that exist in the given model of second order arithmetic S. In the case of uniformly
represented families then also their index set D as above must exist in S. But note the
important fact that for families that are only weakly represented, this will typically not be
the case, that is, D is usually not required to exist in S, only A always exists in S. For
this reason, we need to be careful in this article when working with families of functions,
because a learner (which has to be a function in S from finite sequences of elements of
M ∪ {#} to M) may conjecture members of M that are not members of D, as at the time
of the conjecture it cannot know whether a particular member of M is a valid index or not.
Note that weakly represented families can be much more general than uniformly represented
families; for example, for a fixed member A ∈ S, the family of all A-recursive functions is
weakly representable but in general not uniformly representable.

We now turn to the more formal notations from learning theory. Note that the families
defined above correspond to the classes of possible learning targets in learning theory. The
general scenario is that one possible learning target is presented to the learner in an infinite
sequence of data and the learner has to identify which of the possible targets the data is
from. Such a data presentation is called a text. We define the notion of a text in a way that
is compatible with reverse mathematics, that is, in such a way that when M is equal to the
standard natural numbers the definition coincides with the traditional one, but in the case of
nonstandard models they may differ.

I Definition 1. A text for a set A ∈ S is a function T : M → M ∪ {#} in S such that
{T (n) : n ∈M ∧ T (n) 6= #} = A. We call # the pause symbol. Without loss of generality we
assume that T (x) ∈ {0, 1, . . . , x} ∪ {#}.

The pause symbol “#” is a padding symbol that carries no information and is useful to
give a text for empty set. Again as usual we will write M∗ for the set of finite sequences
over M ∪ {#}. These can be thought of as the prefixes of texts. Take note that the word
“finite” needs to be understood in the reverse mathematics sense discussed above. M∗ can
be represented by some canonical indexing, where each finite sequence σ is represented by
the canonical index of the set {〈x, 0〉 : σ(x) = #} ∪ {〈x, y + 1〉 : σ(x) = y}. One can prove by
induction over a text that such canonical indices exist for every prefix of a text.

I Definition 2 (Angluin [2]; Gold [12]; Osherson, Stob and Weinstein [17]). Let {Ae}e∈D be
a uniformly or weakly represented family and let {Be}e∈E be a hypothesis space such that
{Ae}e∈D ⊆ {Be}e∈E. A learner is a function L : M∗ →M , where the elements of M∗ are
represented by canonical indices.

A learner L learns in the limit a family {Ae}e∈D if for every e ∈ D and every text T for Ae

the learner outputs a sequence of hypotheses en = L(T (0) . . . T (n)) such that, for some n, for
all m ≥ n, each hypothesis em is equal to em+1 and em ∈ E and Bem

= Ae.
A conservative learner never makes an unjustified mind change. So if n < m and en 6= em

then either en /∈ E or there exists k ≤ m with T (k) ∈M −Ben
. Conservative learning then

requires learning in the limit by a conservative learner.

STACS 2015

424 Inductive Inference and Reverse Mathematics

A learner partially learns the family {Ae}e∈D if for every e ∈ D and every text T for Ae

the learner outputs a sequence of hypotheses as above such that there is exactly one d with
∀m ∃n > m [d = en] and, furthermore, this d satisfies d ∈ E and Bd = Ae.

Note that often Be = Ae for all e and E = D, that is, the original family is used as hypothesis
space. The intuition for learning in the limit is that when a learner learns a family, its output
should converge to an index of the member of the family that the given text corresponds to.
If invalid texts are presented to the learner, it may output numbers that are not actually in
the set D of valid indices. Partial learning is a more general learning notion which, in the
classical setting, allows learning the family of all r.e. sets.

Due to space constraints the proofs of most of the results in this article have been omitted.

2 Angluin’s Condition

Angluin [2] gave a fundamental condition for the learnability of so-called indexed families of
sets. These are families of sets such that there exists a computable two-place function F

which on input (e, x) outputs 1 if x ∈ Le and 0 if x 6∈ Le. As F works for all e, the closest
equivalent to indexed families in the area of reverse mathematics are uniformly represented
families. Angluin’s condition (also called Angluin’s tell-tale condition/criterion) says that one
can learn an indexed family from positive data in the limit if and only if one can enumerate
for each member Ae of the family a finite tell-tale subset Be of Ae such that there is no
other member Ad of the family with Be ⊆ Ad ⊂ Ae. In reverse mathematics, it is difficult to
handle finite sets, therefore one mostly represents them by canonical indices. However, for
the tell-tale sets it is sufficient to consider bounds (called tell-tale bounds) be for each Ae

such that there is no Ad with Ae ∩ {0, 1, . . . , be} ⊆ Ad ⊂ Ae.

I Definition 3. Let a weakly represented family {Ae}e∈D with index set D be given:
1. The family satisfies Angluin’s condition in general iff for each e ∈ D there is a bound be

such that there is no d ∈ D with Ae ∩ {0, 1, . . . , be} ⊆ Ad ⊂ Ae;
2. The family satisfies Angluin’s condition in the limit iff there is a two-place function g ∈ S

such that for every e ∈ D the values g(〈e, 0〉), g(〈e, 1〉), . . . approximate from below a bound
be such that there is no d ∈ D with Ae ∩ {0, 1, . . . , be} ⊆ Ad ⊂ Ae;

3. The family satisfies Angluin’s condition effectively iff there is a function g ∈ S such that
for all e ∈ D we have that there is no d ∈ D with Ae ∩ {0, 1, . . . , g(e)} ⊆ Ad ⊂ Ae.

To avoid confusion we point out the informal use of the word “effectively” in the third
item, which needs to be understood as “g ∈ S.”

Blum and Blum [3] established the existence of so-called locking-sequences; that is,
whenever a learner learns a language X there is a finite sequence of elements in X such that,
after having processed this sequence, the learner conjectures a hypothesis which will not be
changed on any subsequent data drawn from X ∪ {#}. Blum and Blum’s proof can easily
be modified to carry over to the reverse mathematics setting; it then proves the following
statement.

I Theorem 4. RCA0 proves the following: Suppose a weakly represented family {Ae}e∈D

and a learner L are given such that for every e ∈ D and every text T for Ae, L converges
on T to an index d ∈ D with Ad = Ae. Then, there is a procedure which for every index
e ∈ M converges in the limit to a finite sequence (represented by a code); in the case that
e ∈ D, this sequence is a locking sequence for Ae.

R. Hölzl, S. Jain, and F. Stephan 425

This existence of locking-sequences then shows that every weakly represented family
which is learnable in the limit must satisfy Angluin’s tell-tale condition with a general bound:
the bound is simply the largest element contained in the locking sequence. Section 3 will
address the question of which of the above variants of Angluin’s tell-tale condition is sufficient
for learning all weakly represented families satisfying it. The axiom DOM will be identified
as necessary and sufficient for this.

In Section 4 we will then follow Angluin’s approach more closely and investigate uniformly
represented families which, as mentioned before, are the closest equivalent in reverse mathem-
atics to the indexed families that Angluin studied. The difference is that Angluin’s families
are actually uniformly recursive, while our uniformly represented families are only uniformly
recursive relative to the parameter A representing them. This corresponds to the paradigm
described above that in the reverse mathematics context often all sets in S are treated as
if they were recursive. As we will show, for uniformly represented families, the degree of
effectiveness of the bound in Angluin’s condition is crucial. Section 5 then looks at sufficient
criteria for learning from the classical theory and shows that in reverse mathematics they
work for uniformly represented families as well. However, for weakly represented families we
will again require the axiom DOM. In Section 6 we will study partial learning.

3 Learnability of Weakly Represented Families

As mentioned above, the counterpart of the indexed families studied by Angluin are the
uniformly represented families in reverse mathematics. So it is not surprising that to prove
similar results for families that are represented in a less accessible way, such as weakly
represented families, we will need an additional assumption on the second order model. This
assumption is the axiom DOM which will turn out to be equivalent to saying that every
weakly represented family satisfying Angluin’s condition is learnable in the limit. The axiom
DOM says that every weakly represented family of functions is dominated by a single function
in S. Note that Adleman and Blum [1] showed that one can learn all classes of graphs of
recursive functions (which all satisfy Angluin’s condition) iff one has access to a dominating
function as an oracle. The axiom DOM now enforces that for every weakly represented
family of functions there is such a dominating function in S; this function can therefore be
used by the learner (which also has to be an object in S).

I Theorem 5. Over RCA0, the following conditions are equivalent:
1. The axiom DOM holds, that is, for every weakly represented family {Fe}e∈D of functions

there is a function f ∈ S dominating this family in the sense that ∀e ∈ D ∃x ∀y > x

[Fe(y) < f(y)];
2. The index set of every weakly represented family can be approximated in the limit;
3. Every weakly represented family satisfying Angluin’s condition effectively can be learnt in

the limit;
4. Every weakly represented family satisfying Angluin’s condition in the limit can be learnt

in the limit;
5. Every weakly represented family satisfying Angluin’s condition generally can be learnt in

the limit.

Proof. 1 ⇒ 2: Let {Fe}e∈D be a weakly represented family with representation set A. Then
the set of the functions Ge for e ∈ M which assign to x the minimum tuple (if it exists)
〈e, x, y, z〉 ∈ A also forms a weakly represented family, and Ge is total iff e ∈ D. Thus the
index set of this weakly represented family is also D.

STACS 2015

426 Inductive Inference and Reverse Mathematics

By assumption there is a function f dominating all {Ge}e∈D. Now it holds that e ∈ D
if and only if, for almost all numbers x, there are pairwise distinct elements of the form
〈e, 0, y0, z0〉, . . . , 〈e, x, yx, zx〉 ∈ A ∩ {0, 1, . . . , f(x)}. This is because on one hand, if e ∈ D,
the existence of these elements below f(x) follows from the fact that f dominates Ge. On
the other hand, if e /∈ D, then there exists an x such that A does not contain any element of
the form 〈e, x, ·, ·〉, so in particular there is no sequence as above.

Now one defines a function g by letting g(e, x) = 1 iff there are elements of the form
〈e, 0, y0, z0〉, . . . , 〈e, x, yx, zx〉 ∈ A∩ {0, 1, . . . , f(x)}, and g(e, x) = 0 otherwise. Then we have
that g(e, x) converges to 1 exactly when e ∈ D and g(e, x) converges to 0 exactly when e /∈ D,
so g is as needed.

2 ⇒ 1: Assume that a weakly represented family {Fe}e∈D has an index set D which is
approximated by g in the limit and has the representation set A. Then one can construct
the following function f :

f(x) = min{t : ∀e ≤ x [∃u, y, z ≤ t (g(e, u+ x) = 0 ∨ 〈e, x, y, z〉 ∈ A)]}.

This function f is total, as for all indices e either a stage u+ x is found with g(e, u+ x) = 0
or some value 〈e, x, y, z〉 is retrieved from A.

The minimum is taken over only finitely many conditions (in the square brackets) and for
every condition individually the minimal t can be computed from e and x (using the same
parameter set in the second order model as for the computation of A). Therefore, using
Σ1-induction, f(x) exists as the maximum over the t’s that are minimal for the individual
conditions (for each e ≤ x). Note that the “+x” in the definition of f ensures that wrong
behaviour of g during the first finitely many approximation stages is ignored in the limit.

The function f dominates each function Fe with e ∈ D, as for that function there is a
large enough x ≥ e with g(e, u+ x) = 1 for all u and therefore f(x′) ≥ Fe(x′) for all x′ ≥ x.

1 and 2 ⇒ 5: Let {Ae}e∈D be a weakly represented family satisfying Angluin’s tell-tale
condition generally. Furthermore, by the second condition there is a function g ∈ S such
that, if e ∈ D then limx g(e, x) = 1 else limx g(e, x) = 0. Now define for each e and bound b
a function Ge,b such that Ge,b(x) is the first t ≥ x found such that for each d ≤ x at least
one of the following three conditions applies:

We have g(d, u+ x) = 0 or g(e, u+ x) = 0 for some u ≤ t;
There is a number x′ ≤ t such that Ad(x′) and Ae(x′) can be retrieved from the
representation set within time t and either x′ ∈ Ad −Ae or x′ ∈ Ae −Ad ∧ x′ ≤ b;
The values of Ad and Ae up to x have been retrieved from the representation set within
time t and Ad(x′) = Ae(x′) for all x′ ≤ x.

These three conditions search for either e not being a valid index, or d not being a valid
index, or x′ witnessing that Ad is not a subset of Ae, or x′ being an element of the tell-tale
set of Ae that is not in Ad, or Ad being equal to Ae up to x. Note that the function Ge,b is
total for those b which are valid bounds for Fe; thus the index set of the family {Ge,b}(e,b)∈D′

is the set of all (e, b) such that either e /∈ D or b is a valid general bound for Angluin’s
condition with respect to Ae. Now there is a function f dominating all the Ge,b in the
weakly represented family. Note that whenever Ge,b is in this family then so is Ge,b+1 and
Ge,b(x) ≥ Ge,b+1(x) for all x.

Without loss of generality one can assume that any number x does not appear in the
text earlier than at stage x – this is achieved by inserting pause symbols into the text at all
places where needed. Let (e0, b0), (e1, b1), . . . be a sequence of pairs in which each pair of
index and bound appears infinitely often. The learner has the initial counter value 0, the
initial hypothesis e0 and initial bound b0. Assume that after processing s items, the learner

R. Hölzl, S. Jain, and F. Stephan 427

has the counter n, the previous hypothesis en and the bound bn. To determine whether an
update to these parameters is needed, the learner now checks whether they satisfy all of the
following conditions:

We have g(en, u+ s) = 1 for all u ≤ f(s) and all values Aen
(x) for x ≤ s can be retrieved

from the representation set within time f(s);
It holds that Gen,bn(s) is defined within f(s) steps;
All data x with x ≤ bn ∧ x ∈ Aen have been observed in the text so far;
No datum x with x /∈ Aen has been observed in the text so far.

If (en, bn) satisfies all these conditions then the learner keeps the counter n, hypothesis en

and the bound bn, else the learner changes the counter to n+ 1, the hypothesis to en+1 and
the bound to bn+1. Assume that the learner converges to an incorrect hypothesis en or a
hypothesis with an incorrect bound bn, then one of the following happens at some future
stage s eventually:

It holds that g(en, u+ s) = 0 for some u ≤ f(s) (in the case that en is not a valid index);
Gen,bn(s) is not defined (in the case that the bound bn is invalid and that there is a d ≤ s
inside D discovered with Ae ∩ {0, 1, . . . , bn} ⊆ Ad ⊂ Ae);
Not all data in Ae ∩ {0, 1, . . . , bn} have shown up in the text or some datum outside Ae

has shown up in the text (in the case that the index and the bound are valid but that
the hypothesis is not the correct one).

All these conditions imply that the hypothesis will be updated to en+1 (and the bound
to bn+1) in contradiction to the assumption. The next possibility is that the learner would
infinitely often have a counter value n such that (en, bn) is some fixed correct pair (e, b). As
the function f dominates Ge,b, it holds for all sufficiently large s where the current (en, bn)
is equal to (e, b) that all four conditions from the above update test are satisfied and that
therefore the current (en, bn) will be kept and n will not be incremented. So the learner
indeed converges to the correct hypothesis e. As the function h from s to the n currently
processed is increasing and grows each step at most by one and is a member of S, this function
h is either eventually constant or has range M ; hence the above two cases (converging to a
wrong hypothesis or taking one correct hypothesis infinitely often) are exhaustive and the
learner is correct.

5 ⇒ 4 ⇒ 3. This follows from the definition.
3 ⇒ 2. Let {Fe}e∈D be any weakly represented family of functions (as represented by

the set F ∈ S). Now define a new weakly represented family A〈e,s〉 of sets such that A〈e,0〉 =
{〈e, x〉 : x ∈ M} in case that e ∈ D and let 〈e, 0〉 be an invalid index in case that e /∈ D.
Let A〈e,s+1〉 = {〈e, x〉 : x ≤ s} in case that s = max {〈e, u, y, z〉 ∈ F : u, y, z ∈M} and let
〈e, s+ 1〉 be an invalid index otherwise. Note that for each e, there is a unique s such that
〈e, s〉 is a valid index: we denote the corresponding unique A〈e,s〉 as Ae.

Assume now that this weakly represented family is learnable in the limit. Then, uniformly
in e, there is a text Te which contains all the pairs 〈e, x〉 such that for some 〈e, u, y, z〉 ≥ x,
〈e, u, y, z〉 ∈ F . This text Te is a text for Ae. The learner converges on Te to some index d
in the limit. By simulating the learner one can make a function g such that

limt→∞ g(e, t) converges to 0 in the case that the learner converges on the text Te to an
index d for a set which does not contain 〈e, x〉 for some x ∈M ,
limt→∞ g(e, t) converges to 1 in the case that the learner converges on the text Te to an
index d for a set containing 〈e, x〉 for each x ∈M .

The first case occurs iff Ae = A〈e,s+1〉 for some s and the second case occurs iff Ae = A〈e,0〉.
Here the first case coincides with e /∈ D and the second with e ∈ D. Thus g is correct. J

STACS 2015

428 Inductive Inference and Reverse Mathematics

One might ask whether the necessity of DOM in this context is due to the difficulty
of finding indices in weakly represented families rather than the difficulty of learning the
languages. Therefore one might be inclined to choose a more comprehensive but somehow
easier hypothesis space. However, in the proof of Theorem 5 (3 ⇒ 2) we only check whether
the learner converges to an index of a set not containing some pair 〈e, x〉. As this is a property
of the set, and not of its index, the choice of hypothesis space is not crucial for the proof.

Raghavan, Stephan and Zhang [18] investigate the strength of DOM. They show that
under RCA0 and IΣ2, DOM implies COH but not vice versa. This result is the counterpart
to the recursion-theoretic result that every high Turing degree contains a cohesive set.
Furthermore, for ω-models, there are also connections to set-theoretically motivated axioms.
For example, DOM is true iff MAD is false [18]. Here MAD is the statement that there exists
a maximal almost disjoint family, that is, a weakly represented family of sets {Ae}e∈D such
that (i) for all d, e ∈ D with d 6= e, Ad ∩Ae is finite, and (ii) for every infinite B ∈ S there
is an e such that B ∩Ae is infinite. It is also known that DOM does not imply WKL0, the
statement that every infinite binary tree in S has an infinite branch in S.

4 Uniformly Represented Families

We now show that Angluin’s classical theorem also applies for uniformly represented families
in the framework of reverse mathematics.

I Theorem 6. Over RCA0, a uniformly represented family is learnable in the limit if and
only if it satisfies Angluin’s condition in the limit.

One might ask when a learner exists in the case of general bounds in place of limit bounds.

I Theorem 7. Over RCA0, DOM holds iff every uniformly represented family satisfying
Angluin’s condition with a general bound is learnable in the limit.

Angluin [2] introduced the notion of conservative learning by requiring that a conservative
learner only makes a mind change (that is, updates its hypothesis) if some datum observed
so far is not contained in the previously conjectured set. Conservative learners do, therefore,
never overgeneralise the language to be learnt. Thus before a conservative learner conjectures
some language X it needs to ensure that there is no proper subset of X in the family being
learnt that could explain the data observed so far. This requirement enforces the effective
version of Angluin’s condition and may require that the learner use a different hypothesis
space than the family to be learnt. Such a hypothesis space is itself a family which needs to
contain all sets from the family to be learnt but possibly also other sets.

I Theorem 8. Over RCA0, a uniformly represented family {Ce}e∈M is conservatively
learnable using some hypothesis space {Ae}e∈M if and only if {Ce}e∈M is contained in some
uniformly represented family {Be}e∈M (possibly different from {Ae}e∈M) which satisfies
Angluin’s condition effectively.

One might also ask in which cases every uniformly represented family satisfying Angluin’s
bound only in general is conservatively learnable. By Theorem 8 this only happens when
for every uniformly represented family it is equivalent whether it satisfies Angluin’s bound
in general or effectively. This then allows coding the halting problem into such a family,
and one obtains the following corollary. Finally, over ACA0, the index set D of any weakly
represented family is in S; so the result carries over to weakly represented families.

I Corollary 9. Over RCA0, the following statements are equivalent:

R. Hölzl, S. Jain, and F. Stephan 429

1. ACA0 (that is, every set arithmetically definable from parameters in S is also in S and,
in particular, S is closed under the Turing jump);

2. Every uniformly represented family satisfying Angluin’s tell-tale condition with a general
bound is conservatively learnable;

3. Every weakly represented family satisfying Angluin’s tell-tale condition with a general
bound is conservatively learnable.

5 Sufficient Criteria

Angluin [2] looked at sufficient criteria for learning. In the reverse mathematics setting, all
these criteria can be proven to be sufficient over RCA0 for uniformly represented families;
for weakly represented families, the additional axiom DOM is again needed and sufficient to
build the learners. The first of these criteria considered is finite thickness.

I Theorem 10. Say that a family {Ae}e∈D has finite thickness if and only if every x ∈M
is contained in only finitely many Ae, that is, for every x ∈M there is a bound b such that
for all e > b, either e /∈ D or x /∈ Ae or Ae = Ad for some d ≤ b.
1. Over RCA0, every uniformly represented family which has finite thickness is learnable in

the limit.
2. Over RCA0, DOM is equivalent to the statement that every weakly represented family

which has finite thickness is learnable in the limit.

The property of finite thickness has been strengthened to finite elasticity [20]. Finite
elasticity mainly says that one cannot construct a text which in each step makes a concept
inconsistent that was consistent before. Abstracting from the requirement that this happens
in every step, one can also formulate this the other way round: A family has finite elasticity
if and only if for every text there is a prefix of the text such that every concept inconstent
with the full text is also inconsistent with this prefix.

I Theorem 11. Say that a family {Ae}e∈D has finite elasticity if and only if for every
T : M → M ∪ {#} in S there is a prefix σ � T such that for all e ∈ D, range(σ) ⊆ Ae ⇒
range(T) ⊆ Ae.
1. Over RCA0, every uniformly represented family which has finite elasticity is learnable in

the limit.
2. Over RCA0, DOM is equivalent to the statement that every weakly represented family

which has finite elasticity is learnable in the limit.

Note that finite elasticity is only a sufficient criterion. For example the learnable class of
all sets of the form {0, 1, . . . , e} with e ∈M does not have finite elasticity.

Kobayashi [4, 16] considered another sufficient learnability criterion which is a further
strengthening of the property of finite elasticity: A class is learnable if for every language Ae

there is a finite subset E such that E ⊆ Ad ⇒ Ae ⊆ Ad for all other languages Ad in the
class. This learnability condition was proven in the context of indexed families and holds
without any effectivity requirement on finding this finite subset. One can carry it over to
uniformly represented and weakly represented families as follows.

I Theorem 12. Say that a family {Ae}e∈D admits characteristic subsets if and only if for all
e ∈ D exists b ∈M such that for all d ∈ D we have Ae∩{0, 1, . . . , b} ⊆ Ad ⇒ Ae ⊆ Ad.
1. Over RCA0, every uniformly represented family which admits characteristic subsets is

learnable in the limit.

STACS 2015

430 Inductive Inference and Reverse Mathematics

2. Over RCA0, DOM is equivalent to the statement that every weakly represented family
which admits characteristic subsets is learnable in the limit.

Note that admitting characteristic subsets is a stronger property than Angluin’s tell-tale
criterion, as the former condition enforces Ae ∩ {0, 1, ..., b} ⊆ Ad ⇒ Ae ⊆ Ad while Angluin’s
tell-tale criterion merely enforces Ae ∩ {0, 1, ..., b} ⊆ Ad ⇒ Ad 6⊂ Ae.

6 Partial Learning

Osherson, Stob and Weinstein [17] introduced the notion of partial learning where to be
successful a learner is required to output one correct hypothesis infinitely often and all
other hypotheses at most finitely often. This fundamental concept allows to learn all classes
of r.e. languages, provided that the hypothesis space permits padding. Our proofs of the
corresponding results in reverse mathematics depend on the axiom IΣ2 which, for example,
proves that every set in a weakly represented family has a least index. It is unknown whether
this is an inherent requirement for obtaining the statements, or one more involved arguments
could dispense with.

I Theorem 13. Over RCA0, a weakly represented family {Ad}d∈D is partially learnable if
and only if there is a further weakly represented family {Be}e∈E such that

for all d ∈ D there is exactly one e ∈ E with Be = Ad and
all e ∈ E are in D and satisfy Ae = Be.

That is, {Be}e∈E is a trimmed version of {Ad}d∈D containing exactly one index for each
set.

I Theorem 14. Over RCA0, every uniformly represented family is partially learnable.

I Theorem 15. Over RCA0 and IΣ2, for every weakly represented family {Ae}e∈D, there is
a partial learner using the weakly represented family {B〈e,b〉}e∈D,b∈M with B〈e,b〉 = Ae for
all e ∈ D, b ∈M as hypothesis space.

Proof. Let a weakly represented family {Ae}e∈D be given, let A be its representation set
and let X ∈ S. Now consider the Σ2 index set

I = {e : ∃x ∀y, z [〈e, x, y, z〉 /∈ A ∨ y 6= X(x)]}

consisting of the e’s which are not indices of X in {Ae}e∈D. In the case that X does not
have a minimal index, the index set I satisfies for all e the property (∀d < e [d ∈ I] ⇒ e ∈ I)
and then X does not have any index in the weakly represented family. Given the minimal
index e of a member of the family, one can define for d < e the uniform Σ2 singletons

Ud = {min{x : Ad(x) is not defined or Ad(x) 6= Ae(x)}}.

Let be be the least upper bound on all numbers appearing in some Ud, with d < e. Now one
defines the partial learner as follows: A hypothesis 〈e, b〉 is output at least n times if and
only if there is s ≥ n such that the following conditions are satisfied:

Ae(0), Ae(1), . . . , Ae(n) can be retrieved from A in time s;
There is no d < e such that for all x ≤ b the descriptions of Ad(x) and Ae(x) can be
retrieved from A in time s and such that Ad(x) = Ae(x);
For all b′ < b there is a d < e such that for all x ≤ b′ the descriptions of Ad(x) and Ae(x)
can be retrieved from A in time s and such that Ad(x) = Ae(x).

R. Hölzl, S. Jain, and F. Stephan 431

One can verify that on a text for a member X of the weakly represented family, exactly one
pair 〈e, b〉 is output infinitely often and this is given by the least index e of X and the least
bound b such that all d < e satisfy that either Ad(b) is not defined or there is x ≤ b with
Ae(x) 6= Ad(x). Thus the family is partially learnt by the given learner. J

The previous result establishes that, over RCA0 and IΣ2, every member of a weakly
represented family has a least index. This assumption is an essential ingredient of the learning
algorithm and is equivalent to IΣ2 over RCA0.

I Proposition 16. Over RCA0, the axiom IΣ2 is equivalent to the statement that in every
weakly represented family, all its members have a minimal index.

Proof. The sufficiency of IΣ2 was already shown in Theorem 15. For the necessity assume
that IΣ2 is not satisfied. Then there is a Σ2 set I which is a proper subset of M and satisfies
for all e that [(∀d < e : d ∈ I) ⇒ e ∈ I]. As the set is Σ2, there is a ternary {0, 1}-valued
function g ∈ S such that e ∈ I ⇔ ∃n ∈ M ∀m ∈ M [g(e, n,m) = 1]. Now define a weakly
represented family such that every member of it is equal to M and its description A contains,
for each e, inductively the pairs 〈e, n, 1, zn〉 with z0 = 0 and zn+1 = zn +m for the least m
such that g(e, n,m) = 0. Now consider an arbitrary e.

If there is a least n such that zn+1 is not defined then g(e, n,m) = 1 for all m and e ∈ I.
If there is no least n with the property that zn+1 is not defined then consider the Σ1 set
J ={n : zn+1 is defined} and use Σ1-induction to show that J = M . It follows that all zn

are defined and thus for all n exists an m = zn+1 − zn with g(e, n,m) = 0. Hence e /∈ I.
It follows that the complement of I is the index set of the so constructed weakly represented
family and this index set does not contain a minimal element by the choice of I. However,
the index set contains only indices of the unique member M of the family, contradiction. J

I Theorem 17. Over RCA0, IΣ2 and DOM, every weakly uniform family can be partially
learnt using the family itself as hypothesis space.

Proof. Given a weakly represented family {Ae}e∈D with representation set A, one can
consider the weakly represented family of functions {Ge}e∈D such that for each e ∈ D and
x ∈ M , Ge(x) is the unique tuple of the form 〈e, x, y, z〉 ∈ A defining Ae(x). The family
of these Ge is dominated by some function f ∈ S. Now, the learner outputs an index e at
least n times iff there is an m ≥ n and an s ≥ f(m) such that the following conditions are
met:
1. Ae(0), Ae(1), . . . , Ae(m) can be retrieved within time f(m) from A;
2. There is no d < e such that Ad(0), Ad(1), . . . , Ad(m) can be retrieved within time f(m)

from A and such that Ad(0) = Ae(0), Ad(1) = Ae(1), . . . , Ad(m) = Ae(m);
3. All numbers x ≤ m with Ae(x) = 1 have occurred within the first s members of the text;
4. No number x ≤ m with Ae(x) = 0 has occurred within the first s members of the text.

The assumptions are sufficient to prove that this partial learner indeed succeeds to
partially learn the languages in the family; note that the first two conditions together with f
being a dominating function enforce that only minimal indices – whose existence is ensured
by IΣ2 – are output infinitely often and that the last two conditions enforce that a minimal
index is output infinitely often iff it is correct. J

Acknowledgments. The authors would like to thank Chong Chi Tat and Yang Yue for
interesting discussions on aspects of reverse mathematics related to this paper.

STACS 2015

432 Inductive Inference and Reverse Mathematics

References
1 Lenny Adleman and Manuel Blum. Inductive inference and unsolvability. The Journal of

Symbolic Logic, 56:891–900, 1991.
2 Dana Angluin. Inductive inference of formal languages from positive data. Information

and Control, 45:117–135, 1980.
3 Lenore Blum and Manuel Blum. Towards a mathematical theory of inductive inference.

Information and Control, 28:125–155, 1975.
4 Matthew de Brecht, Masanori Kobayashi, Hiroo Tokunaga, and Akihiro Yamamoto. Infer-

ability of closed set systems from positive data. In New Frontiers in Artificial Intelligence,
JSAI 2006. Conference and Workshops, Tokyo, Japan, 5–9 June 2006, Revised Selected
Papers, volume 4384 of Lecture Notes in Computer Science, pages 265–275. Springer, 2007.

5 Matthew de Brecht and Akihiro Yamamoto. Mind change complexity of inferring un-
bounded unions of restricted pattern languages from positive data. Theoretical Computer
Science, 411(7–9):976–985, 2010.

6 Matthew de Brecht and Akihiro Yamamoto. Topological properties of concept spaces (full
version). Information and Computation, 208(4):327–340, 2010.

7 John Case and Chris Lynes. Machine inductive inference and language identification. In
Proceedings of the Nineth International Colloquium on Automata, Languages and Program-
ming, volume 140 of Lecture Notes in Computer Science, pages 107–115. Springer, 1982.

8 Chi Tat Chong, Theodore A. Slaman, and Yue Yang. Π1
1-conservation of combinatorial

principles weaker than Ramsey’s theorem for pairs. Advances in Mathematics, 230(3):1060–
1077, 2012.

9 Chi Tat Chong, Theodore A. Slaman, and Yue Yang. The metamathematics of stable
Ramsey’s theorem for pairs. The Journal of the American Mathematical Society, 27:863–
892, 2014.

10 Damir D. Dzhafarov and Carl Mummert. On the strength of the finite intersection principle.
Israel Journal of Mathematics, 196:345–361, 2013.

11 Harvey Friedman. Some systems of second order arithmetic and their use. In Proceedings of
the International Congress of Mathematicians, Vancouver, 1974, volume 1, pages 235–242,
1974.

12 E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

13 Susumu Hayashi. Mathematics based on incremental learning — excluded middle and
inductive inference. Theoretical Computer Science, 350:125–139, 2006.

14 Dennis Hirschfeldt. Slicing the Truth. On the Computable and Reverse Mathematics of
Combinatorial Principles, volume 28 of Lecture Notes Series, Institute for Mathematical
Sciences, National University of Singapore. World Scientific, 2014.

15 Sanjay Jain, Daniel Osherson, James Royer, and Arun Sharma. Systems That Learn: An
Introduction to Learning Theory, Second Edition. The MIT Press, Cambridge, Massachu-
setts, 1999.

16 Satoshi Kobayashi. Approximate identification, finite elasticity and lattice structure of
hypothesis space. Technical Report CSIM 96–04, Department of Computer Science and
Information Mathematics, University of Electro-Communications, 1996.

17 Daniel Osherson, Michael Stob, and Scott Weinstein. Systems That Learn, An Introduction
to Learning Theory for Cognitive and Computer Scientists. The MIT Press, Cambridge,
Massachusetts, 1986.

18 Dilip Raghavan, Frank Stephan, and Jing Zhang. Weakly represented families in reverse
mathematics. Manuscript, 2014.

19 Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press,
2009.

R. Hölzl, S. Jain, and F. Stephan 433

20 Keith Wright. Identification of unions of languages drawn from an identifiable class. In
Proceedings of the Second Annual Workshop on Computational Learning Theory, pages
328–333. Morgan Kaufmann, 1989.

21 Thomas Zeugmann, Steffen Lange, and Shyam Kapur. Characterizations of monotonic and
dual monotonic language learning. Information and Computation, 120(2):155–173, 1995.

STACS 2015

Dynamic Planar Embeddings of Dynamic Graphs
Jacob Holm and Eva Rotenberg

DIKU, Dept. of Computer Science, University of Copenhagen, Denmark
jh@poplar.dk, roden@di.ku.dk

Abstract
We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An
edge can be inserted across a face between two vertices on the boundary (we call such a vertex
pair linkable), and edges can be deleted. The planar embedding can also be changed locally
by flipping components that are connected to the rest of the graph by at most two vertices.
Given vertices u, v, linkable(u, v) decides whether u and v are linkable, and if so, returns a list of
suggestions for the placement of (u, v) in the embedding. For non-linkable vertices u, v, we define
a new query, one-flip-linkable(u, v) providing a suggestion for a flip that will make them linkable
if one exists. We will support all updates and queries in O(log2 n) time. Our time bounds match
those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm
is simpler, exploiting that the complement of a spanning tree of a connected plane graph is a
spanning tree of the dual graph. The primal and dual trees are interpreted as having the same
Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over
the two trees via their common Euler tour.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, G.2.2 Graph Theory

Keywords and phrases dynamic graphs, planar embeddings, data structures

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.434

1 Introduction

We present a data structure for supporting and maintaining a dynamic planar embedding
of a dynamic graph. In this article, a dynamic graph is a graph where edges can be removed
or inserted, and vertices can be cut or joined, but where an edge (u, v) can only be added
if it does not violate planarity. More precisely, the edges around each vertex are ordered
cyclically by the embedding, similar to the edge-list representation of the graph. A corner
(of a face) is the gap between consecutive edges incident to some vertex. Given two corners
cu and cv of the same face f , incident to the vertices u and v respectively, the operation
insert(cu, cv) inserts an edge between u and v in the dynamic graph, and embeds it across f
via the specified corners. We provide an operation linkable(u, v) that returns such a pair of
corners cu and cv if they exist. If there are more options, we can list them in constant time
per option after the first. A vertex may be cut through two corners, and linkable vertices
may be joined by corners incident to the same face, if they are connected, or incident to
any face otherwise. That is, joining vertices corresponds to linking them across a face with
some edge e, and then contracting e.

It may often be relevant to change the embedding, e.g. in order to be able to insert an
edge. In a dynamic embedding, the user is allowed to change the embedding by what we
call flips, that is, to turn part of the graph upside down in the embedding. Of course, the
relevance of this depends on what we want to describe with a dynamic plane graph. If the
application is to describe roads on the ground, flipping orientation would not make much

© Jacob Holm and Eva Rotenberg;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 434–446

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.434
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Holm and E. Rotenberg 435

sense. But if we have the application of graph drawing or chip design in mind, flips are
indeed relevant. In the case of chip design, a layer of a chip is a planar embedded circuit,
which can be thought of as a planar embedded graph. An operation similar to flip is also
supported by most drawing software.

Given two vertices u, v, we may ask whether they can be linked after modifying the
embedding with only one flip. We introduce a new operation, the one-flip-linkable(u, v)
query, which answers that question, and returns the vertices and corners describing the flip
if it exists.

Our data structure is an extension to a well-known duality-based dynamic representation
of a planar embedded graph known as a tree-cotree decomposition [4]. We maintain top-
trees [1] both for the primary and dual spanning trees. We use the fact that they share a
common (extended) Euler tour - in a new way - to coordinate the updates and enable queries
that either tree could not answer by itself. All updates and queries in the combined structure
are supported in O(log2 n), plus, in case of linkable(u, v), the length of the returned list.

1.1 Dynamic Decision Support Systems
An interesting and related problem is that of dynamic planarity testing of graphs. That is,
we have a planar graph, we insert some edge, is the graph still planar, that is, does there
still exist an embedding of it in the plane?

The problem of dynamic planarity testing appears technically harder than our problem,
and in its basic form it is only relevant when the user is completely indifferent to the actual
embedding of the graph. What we provide here falls more in the category of a decision
support system for the common situation where the desired solution is not completely cap-
tured by the simple mathematical objective, in this case planarity. We are supporting the
user in finding a good embedding, e.g., telling what are the options for inserting an edge
(the linkable query), but leave the actual choice to the user. We also support the users in
changing their mind about the embedding, e.g. by flipping components, so as to make edge
insertions possible. Using the one-flip-linkable query we can even suggest a flip that would
make a desired edge insertion possible if one exists.

1.2 Previous work
Dynamic graphs have been studied for several decades. Usually, a fully dynamic graph is
a graph that may be updated by the deletion or insertion of an edge, while decremental or
incremental refers to graphs where edges may only be deleted or inserted, respectively. A
dynamic graph can also be one where vertices may be deleted along with all their incident
edges, or some combination of edge- and vertex updates [14].

Hopcroft and Tarjan [9] were the first to solve planarity testing of static graphs in linear
time. Incremental planarity testing was solved by La Poutre [12], who improved on work by
Di Battista, Tamassia, and Westbrook [2,3,15], to obtain a total running time of O(α(q, n))
where q is the number of operations, and where α is the inverse-Ackermann function. Ga-
lil, Italiano, and Sarnak [8] made a data structure for fully dynamic planarity testing with
O(n 2/3) worst case time per update, which was improved to O(n 1/2) by Eppstein et al. [5].
For maintaining embeddings of planar graphs, Italiano, La Poutré, and Rauch [10] present a
data structure for maintaining a planar embedding of a dynamic graph, with time O(log2 n)
for update and for linkable-query, where insert only works when compatible with the embed-
ding. The dynamic tree-cotree decomposition was first introduced by Eppstein et al. [6] who
used it to maintain the MST of a planar embedded dynamic graph subject to a sequence of

STACS 2015

436 Dynamic Planar Embeddings

change-weight(e,∆x) operations in O(log n) time per update. Eppstein [4] presents a data
structure for maintaining the MST of a dynamic graph, which handles updates in O(log n)
if the graph remains plane. More precisely the user specifies a combinatorial embedding
in terms a cyclic ordering of the edges around each vertex. Planarity of the user specified
embedding is checked using Euler’s formula. Like our algorithm, Eppstein’s supports flips.
The fundamental difference is that Eppstein does not offer any support for keeping the em-
bedding planar, e.g., to answer linkable(u, v), the user would in principle have to try all n2

possible corner pairs cu and cv incident to u and v, and ask if insert(cu, cv) violates planarity.
As far as we know, the one-flip-linkable query has not been studied before. Technically

it is the most challenging operation supported in this paper.
The highest lower bound for the problem of planarity testing is Pǎtraşcu’s Ω(log n) lower

bound for fully dynamic planarity testing [13]. From the reduction it is clear that this lower
bound holds as well for maintaining an embedding of a planar graph as we do in this article.

2 Maintaining a dynamic embedding

In this section we present a high-level overview of a data structure to maintain a dynamic
embedding of a planar graph. In the following, unless otherwise stated, we will assume
G = (V,E) is a planar graph with a given combinatorial embedding and that G∗ = (F,E∗)
is its dual.

Our primary goal is to be able to answer linkable(u, v), where u and v are vertices:
Determine if an edge between u and v can be added to G without violating planarity and
without changing the embedding. If it can be inserted, return the list of pairs of corners
(see Definition 3 below). Each corner-pair, (cu, cv), describes a unique place where such an
edge may be inserted. If no such pair exists, return the empty list.

The data structure must allow efficient updates such as insert, remove, cut, join, and
flip. We defer the exact definitions of these operations to Section 2.4.

As in most other dynamic graph algorithms we will be using a spanning tree as the main
data structure, and note:

I Observation 1. If ET ⊆ E induces a spanning tree T in G, then (E \ ET)∗ induces a
spanning tree T ∗ in G∗ called the co-tree of T .

I Observation 2. If u and v are vertices, T is spanning tree, and e is any edge on the
T -path between u and v, then any face containing both u and v lies on the cycle induced by
e∗ in the co-tree T ∗.

Thus the main idea is to search a path in the co-tree. This is complicated by the fact (see
Figure 1) that the set of faces that are adjacent to u and/or to v need not be contiguous
in T ∗, so it is possible for the cycle to change arbitrarily between faces that are adjacent to
any combination of neither, one, or both of u, v.

Our linkable query will consist of two phases. A marking phase, in which we "activate"
(mark) all corners incident to each of the two vertices we want to link (see Section 2.2), and
a searching phase, in which we search for faces incident to "active" (marked) corners at both
vertices (see Section 2.3). But first, we define corners.

2.1 Corners and the extended Euler tour
The concept of a corner in an embedded graph turns out to be very important for our data
structure. Intuitively it is simply a place in the edge list of a vertex where you might insert
a new edge, but as we shall see it has many other uses.

J. Holm and E. Rotenberg 437

u v

Figure 1 The co-tree path may switch arbitrarily
between faces that are adjacent to any combination
of neither, one, or both of u, v.

a

b

c

d

e
f

g
h

i

1

2

3 8

18

17

4
5

6

7
9

10
11

12

13
14

15

16

Figure 2
This graph has extended Euler Tour 1a2b3c4d5b6e7d8f9e. . .18h,
or, to write only the edges: abcdbedfegahgficih. Edges not in
the spanning tree are drawn with dotted lines.

I Definition 3. If G is a non-trivial connected, combinatorially embedded graph, a corner
in G is a 4-tuple (f, v, e1, e2) where f is a face, v is a vertex, and e1, e2 are edges (not
necessarily distinct) that are consecutive in the edge lists of both v and f .
If G = ({v}, ∅) and G∗ = ({f}, ∅), there is only one corner, namely the tuple (f, v).

Note that faces and vertices appear symmetrically in the definition. Thus, there is a one-
to-one correspondence between the corners of G and the corners of G∗. This is important
because it lets us work with corners in G and G∗ interchangeably. Even more interesting is:

I Observation 4. Given a spanning tree T of G, there is a natural extension of the concept
of an Euler tour of T into an extended Euler tour EET(T) as a cyclic arrangement that
contains each edge in G exactly twice and each corner in G exactly once (see Figure 2).
Furthermore, the corresponding tour EET(T ∗) in G∗ defines exactly the opposite cyclical
arrangement of the corresponding edges and corners in G∗.

Thus, segments of the extended Euler tour translate directly between T and T ∗. By segment,
we mean any contiguous sub-list of the cycle.

The high level algorithm (to be explained in detail later) is now to build a structure
consisting of an arbitrary spanning tree T and its co-tree T ∗ such that we can
1. Find an edge e on the T -path between u and v. This is easy.
2. Mark all corners incident to u and v in T . This is complicated by the existence of vertices

of high degree, so a lazy marking scheme is needed. However, it is easier than marking
them in T ∗ directly, since each vertex has a unique place in T and no place in T ∗.

3. Transfer those marks from T to T ∗ using Observation 4. We can do this as long as the
lazy marking scheme works in terms of segments of the extended Euler tour.

4. Search the cycle induced by e∗ in T ∗ for faces that are incident to a marked corner on
both sides of the path.

2.2 Marking scheme
We need to be able to mark all corners incident to the two query vertices u and v, and we
need to do it in a way that operates on segments of the extended Euler tour. To this end

STACS 2015

438 Dynamic Planar Embeddings

Figure 3 The vertex w

is a boundary vertex of the
green clusters, but not of
their blue parent clusters.

w w

we will maintain a top tree over T (see [1]).
Given a tree T , a top tree for T is a binary tree. At the lowest level, its leaves are the

edges of T . Its internal nodes, called clusters, are sub-trees of T with at most two boundary
vertices. At the highest level its root is a single cluster containing all of T . A non-boundary
vertex of the subset S ⊂ V may not be adjacent to a vertex of V \ S. A cluster with two
boundary vertices is called a path cluster, and other clusters are called leaf clusters. Any
internal node is formed by the merged union of its (at most two) children. All operations
on the top tree are implemented by first breaking down part of the old tree from the top
with O(log n) calls to a split operation, end then building the new tree with O(log n) calls
to a merge operation.

I Observation 5. We can maintain a top tree over T such that each cluster consists of edges
from at most two segments of EET(T), using O(log n) calls to merge and split per update.
Path clusters will have edges from two segments, and leaf clusters, one segment.

The operation expose on the top tree takes one or two vertices and make them boundary
of the level root cluster. Modifying this only slightly, one may even expose corners, giving
complete control over which EET(T) segment is available for information or modification.
We may even expose any constant number of vertices or corners, but then at the highest
level of the top tree, in stead of only T , we may have some constant number of clusters.

I Observation 6. Whenever a merge of two clusters in the top tree causes a vertex w to
stop being a boundary vertex (see Figure 3), all corners incident to w are contained in one
or two EET(T) segments. These segments will be sub-segments of the (one or two) segments
corresponding to the parent cluster C (blue in Figure 3), and will not contain any corners
incident to the (one or two) boundary vertices of C.

Now suppose we associate a (lazy) deactivation count with each corner that is 0 before we
start building the top tree. Define the merge operation on the top tree such that whenever a
merge discards a boundary vertex we deactivate all corners on the at most two segments of
EET(T) mentioned in Observation 6 by increasing that count (and define the split operation
on the top tree to reactivate them as necessary). When the top tree is complete, the corners
that are still active (have deactivation count 0) are exactly those incident to the boundary
vertices of the root of the top tree. These boundary vertices are controlled by the expose
operation on the top tree and changing the boundary vertices require only O(log n) merges
and splits, so we have now argued the following

I Lemma 7. We can mark/unmark all corners incident to vertices u and v by increasing
and decreasing the deactivation counts on O(log n) segments of the extended Euler tour.

What we really want is to be able to search for the marked corners in T ∗, so instead of
storing the counts (even lazily) in the top tree over T , we will store them in a top tree over
T
∗. Again, each cluster in this top tree covers one or two segments of the extended Euler

tour. For each segment S we keep track of the minimum deactivation count cmin(S), and
a δ(S) that needs to be applied to all corners in the segment. To update the deactivation
counts of an arbitrary segment S, all we need to do is modify the O(log n) clusters that are
affected, which can be done in O(log n) time, leading to

J. Holm and E. Rotenberg 439

I Lemma 8. We can maintain a top tree over T ∗ that has cmin and δ values for each EET
segment in each cluster in O(log2 n) time per change to the marked u and v vertices.

I Observation 9. This is enough for, given a face f and a vertex u, checking whether f is
incident to u.

2.3 Linkable query
Unfortunately, the cmin and δ values discussed in Section 2.2 are not quite enough to let us
find the corners we are looking for. We can use it to ask what marked corners a given face
is incident to, but we do not have enough to find pairs of marked corners on opposite sides
of the same face on the co-tree path.

As noted in Observation 2 all candidates to a common face for two given vertices u and
v, must lie on some path in the dual tree. And a path which is easily found! Since the dual
of a primal tree edge induces a cycle that separates u and v, we may use the path between
the dual endpoints f, g of any edge on the primal tree path between u and v. Furthermore,
once we expose the path (f, g) in the dual tree, if f 6= g, it will have two EET-segments:
the minimum deactivation count of one EET-segment is 0 iff any non-endpoint faces are
incident to v, the other iff any are incident to u. Checking the endpoint faces can be done
(cf. Observation 9), but to find non-endpoint faces we need more structure.

To just output one common face, our solution is for each path cluster in the top tree over
the co-tree to keep track of a single internal face fmin on the cluster path that is incident
to minimally deactivated corners on either side of the cluster path if such a face exists.

I Lemma 10. We can maintain a top tree over T ∗ that has cmin and δ values for each
EET-segment in each cluster and fmin values for each path cluster in O(log2 n) time per
change to the marked u and v vertices.

Proof. Each merge only has to check the at most two fmin values at the children and may
discard or keep them based solely on the cmin and δ values available. J

I Lemma 11. We can support each linkable(u, v) in O(log2 n) time per operation.

Proof. If u and v are not in the same connected component we pick any corners cu and cv

adjacent to u and v and return them. Otherwise we use expose(u, v) on the top tree over T
to activate all corners adjacent to u and v and to find an edge e on the T -path from u to
v (e.g. the first edge on the path). Let f, g be the endpoints of e∗, and call expose(f, g) on
the top tree over T ∗. Let h be the fmin value of the resulting root. We can now test each of
f, g, h using the cmin values to find the desired corners if they exist. J

I Lemma 12. If there are more valid answers to linkable(u, v) we can find k of them in
O(log2 n+ k) time.

Proof. For each leaf cluster and for each side of each path cluster we can maintain the
list of minimally deactivated corners adjacent to each boundary vertex. Then, instead of
maintaining a single face fmin for each path cluster, we can maintain a linked list of all
relevant faces in the same time. And for each side of each face in the list we can point
to a list of minimally deactivated corners that are adjacent to that side. For leaf-clusters,
we point to a linked list of minimally deactivated corners incident to the boundary vertex.
Upon the merge of clusters, face-lists and corner-lists may be linked together, and the point
of concatenation is stored in the resulting merged cluster in case of a future split. Note that
each face occurs in exactly one face-list.

STACS 2015

440 Dynamic Planar Embeddings

As before, to perform linkable(u, v), expose u, v in the primal tree. Let e0 be an edge on
the tree-path between u and v, and expose the endpoints of e∗0 in the dual top tree. Now, the
maintained face-list in the root of the dual top tree contains all faces incident to u, v, except
maybe the endpoints of e∗0, which can be handled separately, as before. The total time is
therefore O(log2 n) for the necessary expose operations, and then O(1) for each reply. J

I Observation 13. If we separately maintain a version of this data structure for the dual
graph, then for faces f, g, linkable(f, g) in that structure lets us find vertices that are incident
to both f and g.

2.4 Updates
In addition to the query, our data structure supports the following set of update operations:

insert(cu, cv) where cu and cv are corners that are either in different connected compon-
ents, or incident to the same face. Adds a new edge to the graph, inserting it between
the edges of cu at one end and between the edges of cv at the other. Returns the new
edge.
remove(e). Removes the edge e from the graph. Returns the two corners that could be
used to insert the edge again.
join(cu, cv) where cu and cv are corners that are either in separate components of the
graph or in the same face. Combines the vertices u and v into a single new vertex w

and returns the two new corners cw and c′w that may be used to split it again using
cut(cw, c

′
w).

cut(cw, c
′
w) where cw and c′w are corners sharing a vertex w. Splits the vertex into two

new vertices u and v and returns corners cu and cw that might be used to join them
again using join(cu, cv).
flip(C) where C is any connected component of the graph. Reverses the order of the
edges at each vertex/face cycle of the component.
When calling remove(e) on a non-bridge tree-edge e, we need to search for a replacement

edge. Luckily, e∗ induces a cycle in the dual tree, and any other edge on that cycle is
a candidate for a replacement edge. If we like, we can augment the dual top tree so we
can find the minimal-weight replacement edge, simply let each path cluster remember the
cheapest edge on the tree-path, and expose the endpoints of e∗. If we want to keep T as a
minimum spanning tree, we also need to check at each insert and join that we remove the
maximum-weight edge on the induced cycle from the spanning tree.

In general, when we need to update both the top trees over T and T ∗ we must be careful
that we first do the splits needed in the top tree over T to make each unchanged sub-tree into
a (partial) top tree by itself, then update the top tree over T ∗ and finally do the remaining
splits and merges to rebuild the top tree over T . This is necessary because the merge and
split we use for T depend on T and T ∗ having related extended Euler tours.

α
αp
α

f2

f1

Figure 4 An articulation flip at the
vertex α.

Any change to the graph, especially to the span-
ning tree, implies a change to the extended Euler
Tour. Furthermore, any deletion or insertion of an
edge implies a merge or split in the dual tree. E.g.
if an edge is inserted across a face, that face is split
in two. As a more complex example, if the non-
bridge tree-edge e = (u, v) is deleted, the replace-
ment edge is removed from the dual tree, and the
endpoints of e∗ are merged.

J. Holm and E. Rotenberg 441

u

v v

u

Figure 5 A separation flip at a separation pair
(blue). The flip makes vertex u linkable with vertex v.

Finally, for flip to work we have to use a version of top trees that is not tied to a specific
clockwise orientation of the vertices. The version in [1] that is based on a reduction to
Frederickson’s topology trees [7] works fine for this purpose.

I Definition 14 (Articulation flip). Having vertex split and vertex join functions, we may
perform an articulation-flip — a flip in an articulation point: Given a vertex α incident to
the face f1 in two corners, c and c′, we may cut through c, c′, obtaining two graphs G1, G2,
having split α in vertices α1 ∈ G1, α2 ∈ G2, and having introduced new corners c1, c2 where
we cut. Now, given a corner αp incident to α1 and incident to some face f2, we may join α1
with α2 by the corners α2, αp, with or without having flipped the orientation of G2.

I Definition 15 (Separation flip). Similarly, given a separation pair α, β, incident to the
faces f, g with corners c1, . . . c4, we may split through those corners, obtaining two graphs.
We may then flip the orientation of one of them, and rejoin. We call this a separation-flip.

3 One-flip linkable query

Given vertices u, v, we have already presented a data structure to find a common face for
u, v. Given they do not share a common face, we will determine if an articulation flip exists
such that an edge between them can be inserted, and given no such articulation-flip exists,
we will determine if a separation-flip that makes the edge insertion (u, v) possible exists.

Let f1 and f2 be faces in G, and let S be a subgraph of G. We say that S separates f1
and f2 if f1 and f2 are not connected in G∗ \ (E[S])∗. Here, E[X] denotes the set of edges
of the subgraph X, E[f] the edges incident to the face f , and V [f] the incident vertices.

I Observation 16. Given a cycle C that is induced in T ∪ {e} by some edge e and given
any two faces f1, f2 not separated by C, any face f such that C ∪E[f] separates f1 and f2
lies on the path f1 · · · f2 in T ∗.

v' v

u

π(v)

π(u)

x

y

π(v')

fu

fv

Figure 6 The faces fu and fv

have five common vertices, and
there are eight flip-components
with respect to them.

Let f1 and f2 be faces of G, and let S = V [f1] ∩
V [f2] be the set of vertices they have in common. Let C
denote the set of corners between vertices in S and faces in
{f1, f2}. The sub-graphs obtained by cutting G through
all the corners of C are called flip-components of G w.r.t.
f1 and f2. Flip-components which are only incident to one
vertex of S can be flipped with an articulation-flip, and
flip-components incident to two vertices can be flipped
with a separation-flip. (See Figure 6.)

I Observation 17. Note that the perimeter of a flip com-
ponent always consists of the union of a path along the
face of fu with a path along the face of fv. One of these
paths is trivial (equal to a point) exactly when u, v are
linkable via an articulation-flip.

Given vertices u, v in G, that are connected and not incident to a common face, we wish
to find faces fu and fv such that u and v are in different flip-components w.r.t. fu and fv.

STACS 2015

442 Dynamic Planar Embeddings

3.1 Finding one face
Let u and v be given vertices, and assume there exists faces fu and fv such that u ∈
V [fu] \ V [fv], v ∈ V [fv] \ V [fu], and u and v are in different flip-components w.r.t. fu and
fv.

u

s

uL
uR

fu

Figure 7 The co-tree path from uL to
uR goes through fu. The proof uses that
the tree-path from u to v goes through
some s ∈ S on the boundary of u’s flip-
component.

Let uL, uR be the left and right faces adjacent
to the first edge on the path from u to v. Similarly
let vL, vR be the left and right faces adjacent to the
first edge on the path from v to u.

I Lemma 18. Face fu is on the T ∗-path uL · · ·uR

and face fv is on the T ∗-path vL · · · vR.

Proof. For symmetry reasons, we need only be con-
cerned with the case fu. The perimeter of a flip-
component consists of edges incident to fu and
edges incident to fv (see Observation 17). Further-
more, in order for u, v to be linkable via a flip, u
needs to lie on the perimeter of its flip-component. We also know that the tree-path from
v to u must go through a point s in S which lies on the boundary of u’s flip-component.
Thus, there must exist a path p in G from π ∈ S to u, consisting only of edges incident to
fu. Note that u /∈ S since u, v were not already linkable. If the first edge eu on the tree path
from u to v is not already incident to fu, then the union of p and the tree must contain an
induced cycle containing eu, separating uL from uR, induced by an edge ei incident to fu.
(See Figure 7.) But then, the co-tree path from uL to uR goes through e∗i , which means it
goes through fu. J

I Lemma 19. If there exists an induced cycle C separating fu from fv such that u /∈ V [C]
and v ∈ V [C], then fu = meet(uL, uR, f) where f ∈ {vL, vR} is the face that is on the same
side of C as u. Here, meet(a, b, c) denotes a’s projection to the path b · · · c.

Proof. By Lemma 18 fu is on the path uL · · ·uR. And since C ∪E[fu] separates f from uL

and uR it is on the paths uL · · · f and uR · · · f by Observation 16. J

I Lemma 20. If there exists an induced cycle C separating fu from fv such that u 6∈
V [C] and v 6∈ V [C], then either fu = meet(uL, uR, vL) = meet(uL, uR, vR) or fv =
meet(vL, vR, uL) = meet(vL, vR, uR).

Proof. Let e be the edge in C \ T , and let eu, ev be the faces adjacent to e that are on the
same side of C as fu and fv respectively. Then e is on all 4 paths in T ∗ with uL or uR at one
end and vL or vR at the other. At least one of u, v is in a different flip-component from e, so
we can assume without loss of generality that u is. By Lemma 18 fu is on the path uL · · ·uR.
And since C∪fu separates uL and uR from eu, fu is on both the paths uL · · · eu and uR · · · eu

by Observation 16. Thus fu = meet(uL, uR, eu) = meet(uL, uR, vL) = meet(uL, uR, vR). J

I Lemma 21. If an induced cycle C separates fu from fv such that u ∈ V [C] and v ∈
V [C], then either fu = meet(uL, vL, vR) = meet(uL, uR, vR) or fu = meet(uR, vL, vR) =
meet(uL, uR, vL) or fv = meet(vL, uL, uR) = meet(vL, vR, uR) or fv = meet(vR, uL, uR) =
meet(vL, vR, uL).

Proof. Let e be the edge in C \ T , and let eu, ev be the faces adjacent to e that are on the
same side of C as fu and fv respectively. Then e is on all 4 paths in T ∗ with uL or vR at one

J. Holm and E. Rotenberg 443

end and vL or uR at the other. Assume that uL and vR are on the side of C containing fu

and uR and vL are on the side of C containing fv. At least one of u, v is in a different flip-
component from e, so assume that v is. By lemma 18 fu is on the path uL · · · eu ⊂ uL · · ·uR.
And since C ∪fu separates uL and eu from vR it is on both the paths uL · · · vR and eu · · · vR

by Observation 16. Thus fu = meet(uL, eu, vR) = meet(uL, vL, vR) = meet(uL, uR, vR).
The remaining cases are symmetric. J

I Theorem 22. If fu, fv exist, either fu ∈ {meet(uL, uR, vL),meet(uL, uR, vR)} or fv ∈
{meet(uL, vL, vR),meet(uR, vL, vR)}.

Proof. If they exist there is at least one induced cycle C separating them. This cycle must
have the properties of at least one of Lemmas 19, 20, or 21. J

By computing the at most two different meet values and checking which ones (if any)
contain u or v we therefore get at most two candidates and are guaranteed that at least one
of them is in {fu, fv} if they exist.

I Lemma 23. Given a top tree over a tree T , with vertices a, b, c ∈ T , we can find
meet(a, b, c) in logarithmic time.

Proof. Split all clusters containing a, b, or c as a non-boundary vertex. There are only
O(log n) of those. After these split-operations, we have a tree with O(log n) vertices. Use
this tree to find meet(a, b, c) in linear time. J

3.2 Finding the other face
I Lemma 24. Let u, v, and fu be given. Then the first edge eL on fu · · · vL or the first edge
eR on fu · · · vR induces a cycle C(eR) or C(eL) in T that separates fu from fv.

Proof. By lemma 18, fv is on vL · · · vR in T ∗, so the first edge on fu · · · fv is also the first
edge on either fu · · · vL or fu · · · vR. J

Thus given the correct fu we can find at most two candidates for an edge e that induces
a cycle C(e) in T that separates fu from fv, and be guaranteed that one of them is correct.

I Observation 25. For each vertex, v, we may consider the projection π(v) of v onto the
cycle C. For each flip-component, X, we may consider the projection π(X) = {π(v) |
v ∈ X}. If X is an articulation-flip component, the projection π(X) is a single point in
S = V [fu] ∩ V [fv]. If X is a separation-flip component, its projection is a segment of the
cycle, π1 · · ·π2, between the separation pair (π1, π2) ⊂ C(e) where π1, π2 ∈ S.

3.2.1 Finding an articulation-flip
Let (x, y) be any edge inducing a cycle C in T ∪ {(x, y)} that separates fu from fv, let
π(u) = meetT (u, x, y) be the projection of u on C.

Now the articulation-flip cases are not necessarily symmetrical. First we present how to
detect an articulation-flip, given u, v, and fu, if fv plays the role of f2 (see Definition 14).

If the flip-component containing v is an articulation-flip component, then π(v) is an
articulation point incident to both fu and fv, but the opposite is not necessarily the case.
Assume π(v) is incident to both fu and fv and let cu denote a corner between π(v) and fu.

Note that if π(v) is an articulation point with corners c1, c2 both incident to fv, then fv is
an articulation point in the dual graph with corners c1, c2 both incident to π(v). Removing

STACS 2015

444 Dynamic Planar Embeddings

Figure 8 If fv is an articulation
point, so is π(v). But then the co-tree
path from uL to vL must go through
fv. Left: Primal graph. Right: Dual
graph.

π(v)

fv

v
u

fv

π(v)

v uL
vR

fv from the dual graph would split its component into several components, and clearly, aside
from fv, only faces in one of these components may contain faces incident to v. Any path in
the co-tree starting and ending in different components w.r.t the split will have the property
that the first face incident to v on that path is fv. (See Figure 8.)

Now, in the case fu = f1 and fv = f2, to find the corner of π(v) incident to fu, we can
simply use query(π(v), u) from before, which will return a corner of fu incident to π(v). To
find the two corners of fv: With the dual structure (see Observation 13) we may mark the
face fv, and expose the vertices u, v. Now, π(v) has a unique place in the face-list of some
cluster — if and only of that place is in the root cluster, and cmin = 0 for both segments
of that cluster, fv plays the role of f2. That is, iff π(v) has a corner incident to fv to one
side, and a corner incident to fv to the other side. In affirmative case, π(v) appears with at
least one corner to either vertex list; those corners can now be used as cutting-corners for
the articulation-flip.

If instead fv played the role of f1, a similar procedure is done with π(u).

I Theorem 26. Given u, v are not already linkable, we can determine whether u, v are
linkable via an articulation-flip in time O(log2 n).

3.2.2 Finding a separation-flip
Assume v, u are not linkable via an articulation-flip, determine if they are linkable via a
separation-flip.

I Lemma 27. Let (x, y) be any edge inducing a cycle C in T∪{(x, y)} that separates fu from
fv, let π(u) = meetT (u, x, y) be the projection of u on C. Let e1, e2 be the edges incident to
π(u) on C. Then at least one of e1, e2 is in the same flip-component as u w.r.t fu and fv.

Proof. This follows from Observation 25: If π(u) is an endpoint of an arc f1 · · · f2, then
only one of the edges is in the same flip-component. If the projection is not an endpoint,
then both of the edges are in the same flip-component. J

I Lemma 28. Let C be any induced cycle separating fu from fv, let eu be an edge on C in
the same flip-component as u, let f1 be the face adjacent to eu that is separated from fu by
C, and let f2 ∈ {vL, vR} be a face on the same side of C as f1. Then fv is the first face on
f1 · · · f2 that contains v.

Proof. C ∪ E[fv] separates f1 and f2, so by Observation 16 fv is on the f1 · · · f2 path. It
must be the first face on that path that contains v because for any face f after that, C∪V [f]
does not separate f1 and f2, since it can only touch the part of C between u′ = meet(u, x, y)
and v′ = meet(v, x, y) where (x, y) is the edge inducing C. J

3.3 Finding the separation pair and corners
Assume u, v are not linkable and not linkable via an articulation-flip.

J. Holm and E. Rotenberg 445

I Lemma 29. Given u, v, fu, and fv, let (x, y)∗ be any edge on fu · · · fv inducing a sep-
arating cycle C. If π(u) = π(v) = α, then α is one of the separation points if it is adjacent
to both fu and fv, and otherwise no separation pair for u, v exists. The other separation
point, β, is then the first vertex 6= α adjacent to both fu and fv on either α · · ·x or α · · · y.
If instead π(u) 6= π(v), then α, β are amongst the first two vertices adjacent to both fu and
fv either on π(u) · · ·x and v · · ·x, or on u · · · y and v · · · y.

Proof. If the projection of u equals the projection of v, but u and v are in different flip-
components, then the next point incident to both fu and fv along the cycle to either side
will be the one we are looking for. However, (x, y) may be internal in the flip component
containing u or that containing v, and thus one of the searches may return the empty list.
But then the other will return the desired pair of vertices.

If the projections are different, and do not themselves form the desired pair (α, β), then
we may assume without loss of generality that π(v) does not belong to the flip-component
containing u. Let Xv, Xu denote the flip-components containing u and v, respectively. If
(x, y) is in Xv, such that no edge on π(v) · · ·x is incident to both fu and fv, then the first
vertex on π(v) · · · y incident to fu and fv is α. Recall (Observation 25) that π(Xu) is an arc
π1 · · ·π2 ⊂ C, and suppose without loss of generality π1 is on the path u · · · v. If π(u) = π1,
β is the second vertex on the path u to y incident to both fu and fv, as π(u) itself is the
first. Otherwise, the first such vertex on the path is β. If, on the other hand, (x, y) did not
belong to Xv, let x be the vertex of x, y with the property that the path u · · ·x goes through
π(u). Then the first vertices on the paths to x which are incident to fu and fv both, will
be the desired separation pair. J

I Lemma 30. In the scenario above, we may find the first two vertices on the path incident
to both faces in time O(log2 n).

Proof. We use the dual structure (see Observation 13) to search for vertices incident to fu

and fv. Now since the path π(u) · · ·x is a sub-path of the cycle C induced by (x, y) which
separates fu from fv, all corners incident to fv will be on one side, and all corners incident
to fu will be on the other side of the path, or at the endpoints. Thus, we expose fu and fv in
the dual structure, which takes time O(log2 n). Now expose π(u), x in the primal tree. Since
this path is part of the separating cycle, if cmin = 0 for both segments, then the maintained
vertex-list will contain exactly those vertices incident to both faces, and a corner list for each
of them. We now deal separately with the endpoints exactly as with linkable, by exposing
the endpoint faces one by one in the dual structure, and noting whether cmin = 0 and in
that case, the corner list, for each endpoint. J

We conclude with the following theorem.

I Theorem 31. We can maintain an embedding of a dynamic graph under insert, remove,
split, join, and flip, together with queries that
1. Answer whether an edge can be inserted between given endpoints with no other changes

to embedding, and if so, where.
2. Answer whether there exists a flip that would change the answer for query 1 from “no”

to “yes”, and if so, what flip.
The worst case time per operation is O(log2 n).

Acknowledgments We would like to thank Christian Wulff-Nilsen and Mikkel Thorup for
many helpful and interesting discussions and ideas.

STACS 2015

446 Dynamic Planar Embeddings

References
1 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintain-

ing information in fully dynamic trees with top trees. ACM Transactions on Algorithms,
1(2):243–264, 2005.

2 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing. In FoCS,
1989., pages 436–441. IEEE, 1989.

3 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25:956–997, 1996.

4 David Eppstein. Dynamic generators of topologically embedded graphs. SODA ’03, pages
599–608, 2003.

5 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification: I. planarity testing and minimum spanning trees. J. CSS, 52(1):3 – 27, 1996.

6 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. J. Algorithms, 13(1):33–54, March 1992. Special issue for 1st SODA.

7 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985.

8 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. J. ACM, 46:28–91, 1999.

9 John Hopcroft and Robert E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
October 1974.

10 Giuseppe F. Italiano, Johannes A. La Poutré, and Monika H. Rauch. Fully dynamic
planarity testing in planar embedded graphs (extended abstract). ESA ’93, Proceedings,
pages 212–223, 1993.

11 David R. Karger. Random sampling in cut, flow, and network design problems. Mathematics
of Operations Research, pages 648–657, 1994.

12 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In STOC ’94, pages 706–715. ACM, 1994.

13 Mihai Pătraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006. See also STOC’04, SODA’04.

14 Mihai Pătraşcu and Mikkel Thorup. Planning for fast connectivity updates. In FOCS ’07,
pages 263–271, 2007.

15 Jeffery Westbrook. Fast incremental planarity testing. In W. Kuich, editor, ALP, volume
623, pages 342–353. Springer Berlin Heidelberg, 1992.

On the Information Carried by Programs about
the Objects They Compute∗

Mathieu Hoyrup1 and Cristóbal Rojas2

1 Inria Nancy Grand Est
615 rue du jardin botanique, 54600 Villers-lès-Nancy, France
hoyrup@inria.fr

2 Departamento de Matemáticas, Universidad Andres Bello
República 220, Santiago, Chile.
crojas@mat-unab.cl

Abstract
In computability theory and computable analysis, finite programs can compute infinite objects.
Presenting a computable object via any program for it, provides at least as much information as
presenting the object itself, written on an infinite tape. What additional information do programs
provide? We characterize this additional information to be any upper bound on the Kolmogorov
complexity of the object. Hence we identify the exact relationship between Markov-computability
and Type-2-computability. We then use this relationship to obtain several results characterizing
the computational and topological structure of Markov-semidecidable sets.

1998 ACM Subject Classification F.1.1 Models of Computation/Computability theory

Keywords and phrases Markov-computable, representation, Kolmogorov complexity, Ershov to-
pology

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.447

1 Introduction

We assume that the reader is familiar with Turing machines and basic computability theory
over the natural numbers. To define computability over infinite objects, one still uses Turing
Machines but has to set up a way for them to access such objects. In any case, the input of
the machine is a finite or infinite sequence of symbols written on the input tape and one has
to choose a suitable way to describe infinite objects by such symbolic sequences. We now
briefly describe the two main approaches that have been developed.

The first one was introduced and studied by Turing [20], Grzegorczyk [5], Lacombe [9]
and later Kreitz and Weihrauch [21] and is nowadays known as Type-2-computability. In
this model, the description itself is completely written on the input tape of the machine.
At any time, the machine can read a finite portion of this description. We will call this
the Type-2-model. The second approach, promoted by the Russian school led by Markov
[10, 8], gives an alternative. In this model one restricts the action of the machine to operate
on computable (infinite) objects only, in the sense that they have computable descriptions.
Instead of having access to the description itself as in the Type-2-model, the machine here
has access to a program computing a description. We will call this the Markov-model.

∗ This work was partially supported by Inria program “Chercheur invité”. CR was partially supported by
FONDECYT project 11110226 and BASAL PFB-03 CMM, Universidad de Chile.

© Mathieu Hoyrup and Cristóbal Rojas;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 447–459

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.447
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

448 On the Information Carried by Programs about the Objects They Compute

Table 1 Some celebrated results comparing Markov-computability to Type-2-computability.

Objects Decidability Semidecidability
Partial computable functions Markov ≡ Type-2

Rice

Markov ≡ Type-2
Rice−Shapiro

Total computable functions Markov ≡ Type-2
Kreisel et al/Ceitin

Markov > Type-2
F riedberg

These two approaches provide a priori different computability notions, and their comparison
has been an important subject of study [13, 11, 18, 7, 1, 4, 12, 6, 19].

It is clear that the Markov-model is at least as powerful as the Type-2-model, so the
question is: does it allow to compute strictly more than the Type-2-model? The answer
depends on the objects that we consider, and the algorithmic tasks we want to perform on
them. The computational power of these models can therefore be classified according to
these parameters. Table 1 summarizes the most celebrated results in this direction. The
computable objects considered are the partial computable functions and the total computable
functions. The algorithmic tasks considered are decidability and semidecidability of properties
about these objects.

Kreisel-Lacombe-Shœnfield/Ceitin’s Theorem [7, 1] for instance, states that over total
computable functions, Markov-decidability is equivalent to Type-2-decidability1. This means
that the machine trying to decide a property, when provided with a program p for a function
f , cannot do better than just running p to evaluate f . The machine gains no additional
information about f from p. We note that Ceitin’s version of this result shows that over the
real line, Markov-computable functions and Type-2-computable functions coincide.

On the other hand, Friedberg [4] exhibited properties about total computable functions
that are Markov-semidecidable but not Type-2-semidecidable. So that for semidecidability, a
program p for a function f does give some additional information that can be exploited by
the machine. The main question we raise in this paper is the following:

Can we characterize the additional useful information contained in a program computing an
object, as compared to having the object itself ?

To get some intuition, consider the following fundamental difference between the two
models. In the Type-2-model, at any given time only a finite portion of the description of x
is provided, which corresponds to a finite approximation of x. Clearly, this approximation
is also good for infinitely many other objects – all the ones that are “close enough” to x.
In particular, x is never completely specified. In the Markov-model on the other hand, the
program provided to the machine completely specifies x from the beginning of the calculation!
This increases the predictive power of M , which might therefore be able to perform stronger
calculations. The point is to understand in which situations this fact can be exploited. A
trivial example is obtained when one considers the relativized setting: every function is
Markov-computable relative to an appropriate (powerful enough) oracle. Whereas whatever
oracle A we consider, Type-2-computable functions relative to A must always be continuous.

This observation takes us to another interesting point that separates the Markov-model
from the Type-2-model, namely their topological structure. It is well known that Type-2-
computability and topology are closely related: e.g. the Type-2-computable functions are

1 In its original form, this theorem is stated for functionals.

M. Hoyrup and C. Rojas 449

exactly the effectively continuous ones, and the Type-2-semidecidable properties exactly
correspond to the effectively open sets. The connection between Markov-computability
and topology, on the other hand, appears to be much less clear. In particular, Friedberg’s
construction provides a Markov-semidecidable set which is not open (for the standard topology
restricted to computable elements).

An obvious solution to relate Markov-computability to topology is to consider precisely
the topology generated by all the Markov-semidecidable sets – the so called Ershov’s topology.
The question then becomes:

How do Markov-semidecidable sets look like? can we characterize Ershov’s open sets ?

In the present paper we make use of Kolmogorov Complexity to provide a fairly complete
answer to these and other questions in different settings. Our main result is a characterization
of the additional information provided by a program, when the class of objects considered
are the computable points of an effective topological space. It can be informally stated as
follows (see Section 3):

I Theorem A. Over effective topological spaces, a program computing x provides as much
information as a description of x itself together with any upper bound on the Kolmogorov
complexity of x.

Here, the Kolmogorov complexity K(x) of a computable infinite object x is to be
understood as the size of the shortest program computing a description of x (Kolmogorov
complexity of infinite objects was first defined by Schnorr [15]). Obviously, any program for x
trivially provides, in addition to a description, an upper bound on its Kolmogorov complexity.
Theorem A says that this bound is all the exploitable additional information it provides.

Thus, we have a third model to deal with computable infinite objects. In this model,
input x is presented to the machine as a pair (d, k), where d is a description for x and k a
bound on the Kolmogorov complexity of x. We shall call this the K-model. In these terms,
a particular case of Theorem A can be stated as follows: if X , Y are effective topological
spaces (not necessarily metric) and Xc, Yc are the corresponding sets of computable points,
then a function f : Xc → Yc is Markov-computable if and only if it is K-computable.

A simple observation shows that one can not in general compute a program for x from
a K-description of x, meaning that the two notions are not fully equivalent. Despite this
fact, Theorem A is valid in great generality: it holds for decidability, semidecidability and
also higher in the hierarchy. In proving this we make a fundamental use of the Recursion
Theorem. Interestingly, although the Recursion Theorem does not relativize (a well known
fact), Theorem A does in many cases.

The K-model also sheds light into the structure of the open sets of Ershov’s topology,
providing a nice characterization in terms of Kolmogorov complexity, at least in the particular
case of the extended natural numbers N = N ∪ {∞}.

I Theorem B. On the extended natural numbers, the Ershov topology is generated by the
sets {n} and {x ∈ N : K(x) < h(x)} for some computable order h.

With the same techniques, we are able to prove several other related results that are
interesting on their own. For example, we show that there is no effective enumeration of the
Markov-semidecidable sets of N and that there is a Markov-semidecidable subset of {0, 1}N
that is not Σ0

2.
Finally, in the search of the limitations of our techniques, we turn our attention to

more general spaces and analyze functions with values on topological spaces that have an

STACS 2015

450 On the Information Carried by Programs about the Objects They Compute

Table 2 Some results comparing Markov-computability, K-computability, and Type-2-
computability. S = {⊥,>} is the Sierpiński space whose topology is generated by {>}.

Space X Semidecidable ∅′-Semidecidable F: X → O(B)
S Markov ≡ K ≡ Type-2 Markov > K ≡ Type-2 Markov > K ≡ Type-2

Partial functions Markov ≡ K ≡ Type-2 Markov > K ≡ Type-2 Markov > K > Type-2
Total functions Markov ≡ K > Type-2 Markov ≡ K > Type-2 Markov ? K > Type-2

admissible representation but are not countably-based. In particular, when this is the space
of open subsets of Baire space O(B), we show that Markov-computability can be strictly
stronger than K-computability:

I Theorem C. For functions from the partial computable functions with values on O(B) one
has that:

Markov-computability > K-computability > Type-2-computability.

One of the main question that remains open is whether the first strict inequality in
Theorem C holds if we replace the partial computable functions by the total ones. The
situation is summarized in Table 2.

The paper is organized as follows. We start by providing the basic notions and definitions
in Section 2. In Section 3 we introduce the K-model and present our main results. Section 4
contains several results that shed light on the structure of Markov-semidecidable sets and
in Section 5 we present the announced negative results. Finally, Section 6 contains a list of
related problems for possible future work.

2 Background

2.1 Notations and basic definitions.
We assume the reader is familiar with computability theory. Let {ϕe}e∈N be an effective
enumeration of the set of computable partial functions. We denote by Pc(N) the collection
of c.e. subsets of N and We = dom(ϕe) the induced effective enumerations of its elements. If
A ∈ Pc(N), an index of A is a number e such that We = A. If A is a c.e. set, implicitly given
by an index, A[s] is the finite subset of A enumerated by stage s, so that A[s] ⊆ A[s + 1]
and A =

⋃
s A[s]. We use the notation A[at s] = A[s] \A[s− 1] if s ≥ 1 and A[at 0] = A[0].

If F is a finite subset of N then [F] is the collection of supersets of F . B = NN will denote
Baire space.

2.2 Effective topological spaces.
An effective topological space is a tuple (X , τ,B) where (X , τ) is a non-empty topological
space, B = {Bi}i∈N is numbered basis such that there exists a computable function f :
N× N→ N satisfying Bi ∩ Bj =

⋃
k∈Wf(i,j)

Bk.
Given an effective topological space X , the standard representation is defined as a

surjective map ρ : dom(ρ) ⊆ B→ X satisfying ρ(f) = x whenever {f(n) : n ∈ N} = {i : x ∈
Bi}. We will call any f ∈ ρ−1(x), a Type-2-name of x. An element x is computable if
it has a computable Type-2-name. We denote by Xc the set of computable points. The
countable set Xc has a canonical numbering ν defined by ν(e) = x if ϕe is a name of x. We

M. Hoyrup and C. Rojas 451

will call such an e a Markov-name of x. To facilitate the reading of the paper, we will use
the font A,N,U when working on the space Xc, and the fonts A,N ,U when working on X .

2.2.1 Type-2-computability and Markov-computability
Let (X , τ,B) and (Y, τ ′,B′) be effective topological spaces. In what follows R stands for
both Type-2 and Markov. A set A ⊆ Xc is R-semidecidable if there is a Turing machine
M which, when provided with an R-name of x, halts if and only if x ∈ A. A function
f : Xc → Yc is R-computable if there is a Turing machine M which, when provided with
an R-name of x, writes an R-name for f(x) on its one-way output tape. It is not hard to see
that a function f : Xc → Yc is R-computable if and only if the sets f−1(B′i) are uniformly
R-semidecidable.

I Remark. It is worth noting that for a function f : Xc → Yc, being Markov-computable
is equivalent to having a Machine M which, provided with a Markov-name of x, outputs a
Type-2-name of f(x). Indeed, combining the program for x with the program for M gives a
program for f(x). We also note that a function f : Xc → Yc which is Type-2-computable
does not necessarily extend to a Type-2-computable function f : X → Y.

A numbering η of Xc is admissible if it is equivalent to the canonical numbering ν in
the sense that there exists partial computable functions f and g such that ν = η ◦ f on
dom(ν) and η = ν ◦ g on dom(η). The Markov-computability notions do not depend on the
choice of the admissible numbering. We will often use the admissible numbering η of Xc

defined by η(e) = x whenever We = {i ∈ N : x ∈ Bi}.
Type-2-computability and topology are closely related. A set U ⊆ X is an effective

open set if there exists e ∈ N such that U =
⋃

i∈We
Bi. If A = U ∩Xc, we will then say that

A is effectively open in Xc. The connection is established by the following result (see [21]).

I Theorem 1. A set A ⊆ Xc is Type-2-semidecidable if and only if it is effectively open in
Xc. Therefore, a function f : Xc → Yc is Type-2-computable if and only if it is effectively
continuous, i.e. the sets f−1(B′i) are uniformly effectively open in Xc.

As mentioned in the introduction, in order to have an analogous result for Markov-
computability, we have to use Ershov’s topology on Xc, which may be different from the
topology of X restricted to Xc.

I Example 2. Let B = NN be the Baire space. For each finite sequence u, let [u] be the set
of infinite extensions of u, called a cylinder. We endow B with the topology generated by the
cylinders, which is an effective topology. The standard numbering ϕe of partial computable
functions, restricted to the indices of total functions is an admissible numbering of Bc.

I Example 3. Let P(N) be space of subsets of N. For each finite set F ⊆ N, let [F] be the
set of supersets of F . We endow P(N) with the Scott topology, generated by the sets [F],
which is an effective topology. The standard numbering We = dom(ϕe) of c.e. sets is an
admissible numbering of P (N)c.

3 Main results

In this section, (X , τ,B) is always an effective topological space and Xc is the subset of
computable elements. We start by explaining the main idea behind our results. Let x ∈ Xc

be a fixed element. From a machine Type-2-semideciding a set A containing x, one can

STACS 2015

452 On the Information Carried by Programs about the Objects They Compute

compute a neighborhood N of x such that for every element y ∈ Xc the following implication
holds:

y ∈ N =⇒ y ∈ A. (1)

Now assume that A has the weaker property of being Markov-semidecidable, and still
contains x. From a machine Markov-semideciding A one cannot in general compute such
a neighborhood, which may not exist as shown by Friedberg’s example. However, from
the Markov-name of any other element y ∈ Xc one can still compute a neighborhood Ny

of x such that implication (1) holds. Further, as a finite intersection of neighborhoods is
still a neighborhood, one can compute a neighborhood N satisfying implication (1) for all
y in a given finite set. Using this argument we can show that the problem x ∈ A can be
Type-2-semidecided as soon as we know, in addition, a finite list of programs containing at
least one for x. This additional information is equivalent to having any upper bound on the
Kolmogorov complexity of x, which leads us to the notion of K-computability that we now
introduce.

3.1 K-computability
I Definition 4. The Kolmogorov complexity K(x) of a computable element x ∈ Xc is
the length of a shortest program computing a Type-2-name of x.

In this paper, whether we use prefix-free, monotone or plain machines will not make any
difference so we do not need to specify the definition any further.

I Definition 5. A K-name of a computable element x ∈ Xc consists of a pair (k, f) where
k ≥ K(x) and f is a Type-2-name of x.

I Remark. Note that k is only an upper bound on the Kolmogorov complexity of x and not
necessarily of f , which may even be non computable. Note also that knowing any such k is
effectively equivalent to knowing any upper bound on a Markov-name of x. This is what we
will rather use in our proofs.

The K-computability notions are defined in the same way as in the previous section. We
will denote by Xc(k) the set of computable elements whose Kolmogorov complexity is at most
k. Note that Xc =

⋃
k Xc(k) and that K-computability is the same as Type-2-computability

on Xc(k), uniformly in k. In particular, a set A ⊆ Xc is K-semidecidable iff there exists
uniformly effective open sets Uk such that A ∩Xc(k) = Uk ∩Xc(k).

Thus, for each notion of computability we have so far three versions, depending on the
way the objects are represented.

It is clear that one can compute K-names from Markov-names. An important first
observation is the fact that the converse does not necessarily hold. In other words, the
representations underlying Markov-computability and K-computability are not equivalent.

I Proposition 6. In general, it is not possible to compute Markov-names from K-names.

One can show that on Cantor space, Markov-names are limit-computable (can be learned)
from K-names: given x and k ≥ K(x), one can compute a sequence of natural numbers
converging to an index of x (this problem was investigated in the context of inductive
inference [3]). One can moreover show that relative to the halting set, Markov-names are
uniformly computable from K-names. A c.e. set, however, cannot be learned. Actually one
can prove a stronger statement.

M. Hoyrup and C. Rojas 453

I Proposition 7. There is no Turing functional Φ that, given an index e and a Type-2-name
of a set W which is either N or We, computes a sequence of numbers converging to an index
of W .

The rest of this section is devoted to show that, despite the facts above, the notions of
Markov-computability and K-computability are indeed equivalent to a large extent.

3.2 Equivalence between Markov-computability and K-computability
We will use the Recursion Theorem. See [14].

I Theorem 8 (Recursion Theorem). For every computable total function f , there exists e
such that ϕe = ϕf(e). Moreover, e can be computed from an index of f .

The following Lemma contains the main technical arguments.

I Lemma 9. Let A be a c.e. subset of N. There exist uniformly effective Scott open sets
Uk ⊆ P(N), such that for every c.e. set E the following hold:
(i) if all the indices of E belong to A then E ∈ Uk for every k,
(ii) if no index of E belongs to A then E /∈ Uk for every k ≥ K(E).

The argument is uniform: the open sets Uk are effective, uniformly in a c.e. index of A.

Proof. Using the Recursion theorem, there is a computable function e(a, b) such that for all
a, b ∈ N,

We(a,b) =
{
Wa if e(a, b) /∈ A,
Wa[t] ∪Wb if e(a, b) ∈ A[at t].

Let k ∈ N. We define an effective open set Uk. Compute bk such that every element
whose complexity is less than k has an index less than bk. If a is such that for all b ≤ bk,
e(a, b) ∈ A then let t be minimal such that e(a, b) ∈ A[t] for all b ≤ bk, enumerate [Wa[t]]
into Uk.

We now check the two announced conditions. i) Let E ⊆ N be a c.e. set. Assume that
every index of E belongs to A and let a be an index of E. For all b, e(a, b) ∈ A (otherwise
e(a, b) is an index of Wa = E but e(a, b) /∈ A, contradiction), so Uk contains [Wa[t]] for some
t, which contains E. ii) Assume that K(E) ≤ k, that no index of E belongs to A and that
E ∈ Uk. Let b ≤ bk be an index of E. As E ∈ Uk, E belongs to some [Wa[t]] enumerated into
Uk (here a is not the same as above and is not assumed to be an index of E). As e(a, b) ∈ A,
We(a,b) = Wa[t′] ∪Wb for some t′ ≤ t. As Wa[t′] ⊆Wa[t] ⊆Wb, e(a, b) is an index of E that
belongs to A, contradicting the assumption. J

We now state the main explicit versions of Theorems A and B.

I Theorem 10. Let X be an effective topological space. A set A ⊆ Xc is Markov-semidecidable
iff it is K-semidecidable. The equivalence is uniform.

Proof. Every effective topological space is Type-2-computably homeomorphic to a subspace
of P(N): to x ∈ X , associate {i ∈ N : x ∈ Bi} where Bi is enumeration of the basis of X .
Hence we can assume that X is a subspace of P(N). Let I ⊆ N be a c.e. set such that for
all e ∈ N for which We ∈ Xc, it holds We ∈ A ⇐⇒ e ∈ I. Each c.e. set E ∈ Xc either has
all its indices in I or has no index in I, so the effective open sets Uk provided by Lemma 9
coincide with A on the set of elements of Xc whose complexity is at most k. Now, a machine
K-semideciding A works as follows: given a Type-2-name of E ∈ Xc and k ≥ K(E), it tests
whether E ∈ Uk and halts in this case only. J

STACS 2015

454 On the Information Carried by Programs about the Objects They Compute

I Corollary 11. Let X ,Y be effective topological spaces. A function f : Xc → Yc is Markov-
computable iff f is K-computable. The equivalence is uniform.

Proof. Let Bi be the numbered basis of Y. f is Markov-computable iff the sets f−1(Bi)
are uniformly Markov-semidecidable iff these sets are K-semidecidable (Theorem 10) iff f is
K-computable. J

We now show that the argument in the proof of Lemma 9 can be extended from semi-
decidability to weaker classes of properties, showing that for most algorithmic tasks, the
additional information given by programs is indeed just an upper bound on the Kolmogorov
complexity.

Hierarchies. Let X be an effective topological space. We consider the finite levels of the
effective Borel hierarchy, defined as follows. The class Σ0

1 consists of the effective open sets.
The class Σ0

n+1 consists of the effective unions of differences of Σ0
n-sets. The classes Π0

n

consists of complements of Σ0
n-sets. The class ∆0

n is the intersection of Σ0
n and Π0

n. Inside the
class ∆0

2 we consider the finite levels of the effective difference hierarchy. For n ∈ N, the class
Dn consists of the differences of n effective open sets, i.e. the sets (U0 \U1)∪ . . . (Un−2 \Un−1)
if n is even and the sets (U0 \ U1) ∪ . . .Un−1 if n is odd. In the case X = N with the discrete
topology, the effective Borel hierarchy is exactly the arithmetical hierarchy, the class Dn of
effective difference hierarchy is exactly the class of n-c.e. sets.

I Theorem 12. A set A ⊆ Xc is Markov-n-c.e. iff it is K-n-c.e. More precisely, the set of
indices of elements of A is n-c.e. on the set of indices of Xc iff there exist uniformly effective
open sets U1

k , . . . ,Un
k such that A ∩Xc(k) = Dn(U1

k , . . . ,Un
k) ∩Xc(k).

It is known from [17] that there exists a Markov-2-c.e. subset of P(N) that is not even
Π0

2. Hence Markov-2-c.e. sets are not the differences of Markov-semidecidable sets.
In the following theorem, we need to assume an additional property on the space X .

Namely, that the domain of the standard representation on X is a Π0
2 set. This is the case

for example for the so called quasi-Polish spaces (see [2]).

I Theorem 13. A set A ⊆ Xc is Markov-Σ0
2 iff it is K-Σ0

2. More precisely, the set of indices
of elements of A is Σ0

2 on the set of indices of Xc iff there exist uniformly effective open sets
Un

k ,Vn
k such that A ∩Xc(k) =

⋃
n(Un

k \ Vn
k) ∩Xc(k).

I Remark. In case X is a Polish space, the sets Vk are not needed and therefore the last part
of the statement reads A ∩Xc(k) =

⋃
n Un

k ∩Xc(k).

4 Structure of Markov-semidecidable sets

Here we provide several results that shed light on the computational and topological structure
of Markov-semidecidable sets. Our first result shows that Markov-semidecidable sets share
some of the nice properties of Type-2-semidecidable sets.

I Proposition 14. Assume that X contains a dense computable sequence. Given a Markov-
semidecidable set A, it is semi-decidable whether A is non-empty. If A is non-empty, one
can compute a sequence of points {xi} ⊆ A which is dense in A.

Proof. Using the Recursion theorem, there is a computable function e(a) such that xe(a) = xa

if e(a) /∈ A, or xe(a) is some point from the dense sequence in some neighborhood of xa if
e(a) ∈ A at time t. A is non-empty iff there is a such that e(a) ∈ A. When A is non-empty,

M. Hoyrup and C. Rojas 455

one can compute an element in A: look for a such that e(a) ∈ A, xe(a) is such a point. To
get a computable dense sequence, apply this argument in parallel to the intersection of A
with each basic open set Bi. J

The following result provides an upper bound on the effective Borel complexity of
Markov-semidecidable sets.

I Proposition 15. Let A ⊆ Xc be Markov-semidecidable. There exist uniformly effective
open sets Uk ⊆ X such that A =

⋂
k Uk ∩Xc.

Proof. Let Uk be the effective open sets from the proof of Theorem 10 and define S =
⋂

k Uk.
We already know that A ⊆ Uk for all k. If x ∈ Xc ∩ S then let k ≥ K(x). Since
x ∈ Xc(k) ∩ Uk = Xc(k) ∩A, we conclude that x ∈ A. J

The result above is actually tight, as the following theorem shows. For a finite string
u, let us define the monotone complexity Km(u) of u as the length of a shortest program
computing a (finite or infinite) binary sequence extending u. The program writes its output
on a one-way output tape and may never halt. Again the precise definition of Km(u) (Levin
or Schnorr monotone or process complexity) does not make any difference for our purposes.
The only important property is that for a computable sequence x, Km(x�n) ≤ Km(x) for
all n. For the sake of completeness, let us recall original Friedberg’s example. We present it
in a way that is more convenient for our purposes.

I Theorem 16 (Friedberg). On the Cantor space, the set

A = {0ω} ∪
⋃

n:Km(0n1)<log(n)−1

[0n1].

is Markov-semidecidable but not open. Hence the Ershov topology is strictly stronger than
the Cantor topology.

Proof. We show that A is K-semidecidable. Given an infinite binary sequence x (a Type-2-
description) and a bound k on K(x), we only need to read the first e = 2k+2 bits of x. If
we see only zeros, we accept. Otherwise one gets 0n1 . . . for some n < e, then test whether
Km(0n1) < log(n)− 1. J

I Remark. Friedberg’s example happens to be Σ0
2. It is an effective open set appended with

a limit point. We strengthen Friedberg’s example by constructing a Markov-semidecidable
set which is far from being open.

I Theorem 17. There is a Markov-semidecidable subset of {0, 1}Nc that is not Σ0
2. It is a

non-empty closed subset of {0, 1}Nc with empty interior, defined by

A = {x ∈ {0, 1}Nc : ∀n,Km(x�n) < n/2 + c} for some sufficiently large c ∈ N.

For the following results, we restrict our attention to the space X = N = N ∪ {∞} whose
topology is generated by the singletons {n} and the semi-lines [n,∞], for n ∈ N. Note that
every point in this space is computable, so that X = Xc.

Friedberg’s example translated to this space reads {x ∈ N : K(x) < log(x)− 1}, which
inspires the following definition.

I Definition 18. We define the Friedberg sets of N to be the ones of the form {x ∈ N :
K(x) < h(x)}, where h : N → N is any computable order, namely, any non decreasing
unbounded computable function.

STACS 2015

456 On the Information Carried by Programs about the Objects They Compute

Note that a computable order can always be extended to a computable function h : N→ N,
with h(∞) =∞.

Friedberg sets are Markov-semidecidable just like the original set. The next two results
show that, unlike Cantor space, the only Markov-semidecidable sets over N which are not
Type-2-semidecidable are essentially the Friedberg sets.

I Proposition 19. If A ⊆ N is Markov-semidecidable and contains ∞ then there is a
computable order h such that A contains a Friedberg set.

Proof. Since A is K-semidecidable, for each k one can compute p(k) such that [p(k),∞]∩{x :
K(x) ≤ k} ⊆ A. One can assume that p(k) is increasing. Let h(n) = min{i : p(i) > n}. If
n /∈ A then p(K(n)) > n (just take k = K(n)), so one has h(n) ≤ K(n). J

I Remark. Observe that K(x) here coincides with the usual notion of Kolmogorov complexity
of natural numbers.

Proposition 19 provides a nice characterization of the Ershov’s open sets.

I Corollary 20. The Ershov topology is generated by the singletons {n} and the Friedberg
sets.

I Remark. Note that the sets [n,∞] can be expressed as the Friedberg sets {x ∈ N : K(x) <
h(x)} where h(x) = 0 for x < n and h(x) = c(x + 1) for x ≥ n, where c is such that
K(n) ≤ c(n+ 1) for all n ∈ N.

Whether or not one can find such a characterization on other spaces such as the Cantor
space is an interesting question.

We end this section by observing that, unlike Type-2-semidecidable sets, Markov-
semidecidable sets cannot be effectively enumerated.

I Proposition 21. There is no effective enumeration of the Markov-semidecidable subsets of
N.

5 When Markov beats Kolmogorov

In this section we explore the limits of our methods. We first look at the relativized case, and
show that there are simple cases that separate Markov-computability from K-computability.
However, we also show that, interestingly, the equivalence persists if the space has a Polish
structure.

5.1 Relativization
Let S = {⊥,>} be the Sierpiński space with topology given by {∅, {>}, {⊥,>}}. Note that
as S is finite, K-computability is trivially equivalent to Type-2-computability simply because
all the elements share a common upper bound on their Kolmogorov complexities, which
therefore provides no interesting information. Relativizing w.r.t. the Halting set, we can then
separate Markov-decidability from Type-2-decidability, and therefore from K-decidability.

I Remark 22. The set {⊥} ⊆ S is Markov-decidable relative to the Halting set but is not
Type-2-decidable relative to any oracle.

Proof. It is not decidable relative to any oracle simply because it is not clopen. J

M. Hoyrup and C. Rojas 457

Similarly, over P(N), ∅′′ separates K-semidecidability from Type-2-semidecidability
(without oracle, the two notions coincide with Markov-semidecidability by Rice-Shapiro
theorem).

I Proposition 23. The set {N} ⊆ P(N) is K-semidecidable relative to ∅′′ but is not Type-2-
semidecidable relative to any oracle.

However, metric spaces behave differently. Although stated on Cantor space, the next
result extends to any computable metric space [21].

I Proposition 24. Let O ⊆ N. A subset of {0, 1}Nc is Markov-semidecidable relative to O if
and only if it is K-semidecidable relative to O.

Proof. There are two cases, depending on whether O computes the halting set or not.
If O computes the halting set then by the remark following Proposition 6, Markov-names

can be uniformly computed from K-names relative to O, which gives the result. This part
only works in the case of the Cantor space.

If O does not compute the halting set then we show that Lemma 9 and Theorem 10 still
hold relative to O on any effective topological space. We show an alternative proof of Lemma
9 avoiding the Recursion theorem. There is a computable function e(a, b, c) such that

We(a,b,c) =
{
Wa if ϕc(c) does not halt,
Wa[t] ∪Wb if ϕc(c) halts in time t.

Let A ⊆ N be c.e. relative to O. Given k ∈ N we define an effective open set Uk. Compute
bk such that every element whose complexity is less than k has an index less than bk. If a is
such that for all b ≤ bk, there exists c = c(a, b) such that e(a, b, c) ∈ A and ϕc(c) halts then
let t be the minimal halting time of ϕc(c) for c = c(a, b) with b ≤ bk.

By the same argument as in the proof of Lemma 9, if no index of E belongs to A then
E /∈ Uk for all k ≥ K(E). If all the indices of E ⊆ N belong to A but E /∈ Uk for some k
then let a be an index of E. For each b, c, if ϕc(c) does not halt then We(a,b,c) = Wa = E so
e(a, b, c) ∈ A. As E /∈ Uk, there is b ≤ bk such that for all c, if ϕc(c) halts then e(a, b, c) /∈ A.
As a result, for all c, ϕc(c) halts iff e(a, b, c) /∈ A, so the complement of the halting set is
many-one reducible to A so it is Turing reducible to O, a contradiction. J

5.2 Functions to non-effective topological spaces
In this section we provide results that strictly separate our three notions of computability:
Markov-computability, K-computability and Type-2-computability. The idea of the construc-
tions is to build uniform versions of the examples given in Remark 22 and Proposition 23. For
this, one can imagine a function with two arguments, where the second argument f ∈ B is
always provided to the machine by a Type-2-name and plays the role of the oracle. The only
difficulty is then to make the computation work in a uniform way in the oracle parameter. In
order to get a well defined function w.r.t. our models, we express it as a function of the first
argument only, but with values on O(B), which is the set of open subsets of the Baire space
endowed with the topology generated by the following sets: given a compact set K ⊆ B, the
class of open subsets of B containing K is open. This topology is not countably-based, and
hence it is not an effective topology. However it does have an admissible representation [16].

We now present the details of the simplest case, a uniform version of Remark 22. This
result contrasts with Corollary 11.

STACS 2015

458 On the Information Carried by Programs about the Objects They Compute

I Theorem 25. There exists a Markov-computable function F : S → O(B) that is not
K-computable.

Proof. We use the admissible numbering νS of S defined by νS(e) = > if ϕe(e)↓, νS(e) = ⊥
otherwise. We define two effective open sets U⊥, U> and define F (⊥) = U⊥ and F (>) = U>.
First, let U⊥ = B. Let T : N → N be defined as follows: T (n) is the halting time of
ϕn(n) if it halts, T (n) = 0 otherwise. The open set U> := B \ {T} happens to be effective.
First the function F is not Lacombe computable because it is not continuous: indeed, F
is not monotonic as ⊥ ≤ > but U⊥ = B is not contained in U> (B. As S is finite, F is
not K-computable neither. However F is Markov-computable. Given an index e of s ∈ S,
enumerate U> and enumerate the set of functions f such that ϕe(e) does not halt in exactly
f(e) steps. The latter set of functions is effectively open, uniformly in e. If ϕe(e)↑ then the
whole space B is enumerated. If ϕe(e)↓ then nothing more than U> is enumerated. Intuitively,
given e and f , from T one can decide whether ϕe(e) halts, i.e. whether νS(e) = ⊥. J

A similar construction, based on Proposition 23, yields a function F : P(N) → O(B)
which is K-computable but not Type-2-computable by replacing the function T from Theorem
25 by a function T ′ computing ∅′′ and such that B \ {T ′} is effectively open.

Combining all these results, and using that fact that Theorem 25 can clearly also be
realized using P(N) in place of S, we obtain our announced Theorem C.

I Theorem 26. For functions from P(N) with values on O(B) one has that:

Markov-computability > K-computability > Type-2-computability.

While Type-2-computable functions are always Scott continuous (i.e. monotone and
compact), one can show that K-computable functions are always monotone but not necessarily
compact. Markov-computable functions may even not be monotone.

Let us now briefly discuss whether Theorem 26 holds for functions from the Cantor
space to O(B). Friedberg’s example of a Markov (hence K)-semidecidable set that is not
Type-2-semidecidable directly implies the second inequality. However the idea behind the
proof of the first inequality cannot be applied on Cantor space. Indeed, using Proposition 24
one can show that the analog of the function of Theorem 25 is actually K-computable.

I Proposition 27. The function G : {0, 1}N → O(B) mapping 0ω to B and any other sequence
to B \ {T} is K-computable.

Proof. Given x, k and f , apply the algorithm given by Proposition 24 to semi-decide, if
f = T , whether x = 0ω. In parallel, semidecide whether f 6= T . J

We leave the following question open: is there a Markov-computable function from the
Cantor space to O(B) that is not K-computable?

6 Future work

We list a few problems for future work.
Find a characterization of the Ershov topology on other spaces than N, like the Cantor
space.
Determine for which levels of the effective difference hierarchy the Markov-model and the
K-model are equivalent. We know from Theorem 12 that the equivalence holds for the
finite levels. What about the level ω?

M. Hoyrup and C. Rojas 459

All our results hold when the space X is an effective topological space. However the three
models also make sense on any represented space. It seems like an interesting research
program to study the extent to which our results are valid in this case.
Compare the effective Borel hierarchy induced by the Markov-semidecidable sets, the
hierarchy induced by the arithmetical hierarchy on the indices and the effective Borel
hierarchy induced by the standard topology.

References
1 G. S. Ceitin. Algorithmic operators in constructive metric spaces. Trudy Matematiki

Instituta Steklov, 67:295–361, 1962. English translation: American Mathematical Society
Translations, series 2, 64:1-80, 1967.

2 Matthew de Brecht. Quasi-polish spaces. Ann. Pure Appl. Logic, 164(3):356–381, 2013.
3 Rusins Freivalds and Rolf Wiehagen. Inductive inference with additional information.

Journal of Information Processing and Cybernetics, 15:179–185, 1979.
4 Richard M. Friedberg. Un contre-exemple relatif aux fonctionnelles récursives. Comptes

Rendus de l’Académie des Sciences, 247:852–854, 1958.
5 Andrzej Grzegorczyk. On the definitions of computable real continuous functions. Funda-

menta Mathematicae, 44:61–71, 1957.
6 Peter Hertling. Computable real functions: Type 1 computability versus Type 2 comput-

ability. In CCA, 1996.
7 G. Kreisel, D. Lacombe, and J.R. Schœnfield. Fonctionnelles récursivement définissables et

fonctionnelles récursives. Comptes Rendus de l’Académie des Sciences, 245:399–402, 1957.
8 Boris A. Kushner. The constructive mathematics of A. A. Markov. Amer. Math. Monthly,

113(6):559–566, 2006.
9 Daniel Lacombe. Extension de la notion de fonction récursive aux fonctions d?une

ou plusieurs variables réelles I-III. Comptes Rendus Académie des Sciences Paris,
240,241:2478–2480,13–14,151–153, 1955.

10 A. A. Markov. On the continuity of constructive functions (russian). Uspekhi Mat. Nauk,
9:226–230, 1954.

11 J. Myhill and J. C. Shepherdson. Effective operations on partial recursive functions. Math-
ematical Logic Quarterly, 1(4):310–317, 1955.

12 Marian B. Pour-El. A comparison of five “computable” operators. Mathematical Logic
Quarterly, 6(15-22):325–340, 1960.

13 H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 74(2):pp. 358–366, 1953.

14 Hartley Jr. Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

15 C.P. Schnorr. Optimal enumerations and optimal gödel numberings. Mathematical systems
theory, 8(2):182–191, 1974.

16 Matthias Schröder. Extended admissibility. Theoretical Computer Science, 284(2):519–538,
2002.

17 Victor L. Selivanov. Index sets in the hyperarithmetical hierarchy. Siberian Mathematical
Journal, 25:474–488, 1984.

18 N. Shapiro. Degrees of computability. Transactions of the American Mathematical Society,
82:281–299, 1956.

19 Dieter Spreen. Representations versus numberings: on the relationship of two computability
notions. Theoretical Computer Science, 262(1):473–499, 2001.

20 Alan Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2, 42:230–265, 1936.

21 Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

STACS 2015

Communication Complexity of Approximate
Matching in Distributed Graphs
Zengfeng Huang1, Božidar Radunović2, Milan Vojnović3, and
Qin Zhang4

1 MADALGO, Aarhus University, Denmark
huangzf@cse.ust.hk

2,3 Microsoft Research, Cambridge, UK
{bozidar,milanv}@microsoft.com

4 Indiana University Bloomington, USA
qzhangcs@indiana.edu

Abstract
In this paper we consider the communication complexity of approximation algorithms for max-
imum matching in a graph in the message-passing model of distributed computation. The input
graph consists of n vertices and edges partitioned over a set of k sites. The output is an α-
approximate maximum matching in the input graph which has to be reported by one of the sites.
We show a lower bound on the communication complexity of Ω(α2kn) and show that it is tight
up to poly-logarithmic factors. This lower bound also applies to other combinatorial problems on
graphs in the message-passing computation model, including max-flow and graph sparsification.

1998 ACM Subject Classification F.2.3 Tradeoffs between Complexity Measures

Keywords and phrases approximate maximum matching, distributed computation, communica-
tion complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.460

1 Introduction

Massive data volumes require scaling out computations using distributed clusters of machines
which are nowadays commonly deployed in data centres. The data is typically stored
distributively across different machines (we refer to as sites) which are interconnected with
a communication network. It is desired to process such distributed data with a limited
communication among sites which avoids the communication network becoming a bottleneck.
A particular interest has been devoted to data in the form of a graph that arises in many
applications including online services, online social networks, biological and other networks.
There has been a surge of interest in distributed iterative computations using graph input
data and resolving queries in distributed graph databases. In practice, the size of a graph
can be as large as in the order of a billion of vertices and a trillion of edges, e.g. semantic
web knowledge graphs and online social networks [12]. An important research direction is to
design efficient algorithms for processing of large-scale graphs in distributed systems which
has been one of the focuses of the theoretical computer science community, e.g. [25, 23, 5, 4].

In this paper we consider the problem of approximate computation of a maximum matching
in a graph that is stored edge-partitioned across different sites. There are several performance
measures of interest in computations over distributed data including the communication
complexity in terms of the number of bits or messages, the time complexity in terms of the
number of time units or rounds, and the storage complexity in terms of the number of bits.

© Zengfeng Huang, Božidar Radunović,
Milan Vojnović, and Qin Zhang;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 460–473

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.460
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 461

In this paper we focus on the performance measure of the communication complexity in
the number of bits required to approximately compute a maximum matching in a graph.
Our main result is a tight lower bound on the communication complexity for computing an
approximate maximum matching in a graph.

We consider the distributed computation model known in the literature as the message-
passing model, see, e.g., [27, 10]. A message-passing model consists of k sites, P 1, . . . , P k.
Each site P i holds a piece of input data xi and the sites want to jointly compute a given
function f(x1, . . . , xk). The sites are allowed to have point-to-point communications between
each other. At the end of the computation, at least one site should return the answer. Our
goal is to minimize the total communication cost between the sites. For technical convenience,
we introduce another special party called the coordinator. The coordinator does not have
any input. We require that all sites can only talk with the coordinator, and at the end of the
computation, the coordinator should output the answer. We call this model the coordinator
model. Note that we have essentially replaced the clique communication topology with the
star topology, which increases the total communication cost only by a factor of 2, which does
not affect the order of the asymptotic communication complexity.

1.1 Our Results and Techniques
We study the approximate maximum matching problem in the message-passing model which
we refer to as Distributed Matching Reporting (DMR). Given a set of k > 1 sites and an
input graph G = (V,E) with |V | = n vertices and the set of edges E = E1 ∪ E2 ∪ · · · ∪ Ek
such that the set of edges Ei is assigned to site P i, at the end of the computation, the
coordinator is required to report an α-approximation of the maximum matching in graph G.
In this paper show the following main theorem.

I Theorem 1. Any approximation algorithm for computing an α-approximation for DMR
in the message-passing model with error probability 1/4 has the communication complexity
of Ω(α2kn) bits, under assumption that k ≤ n. This communication complexity holds for
bipartite graphs.

It is noteworthy that a simple greedy algorithm solves DMR for α = 1/2 with the
communication cost of O(kn log n) bits. This greedy algorithm is based on computing a
maximal matching by using a straightforward sequential procedure which we define as follows.
Let G(E′) be the graph induced by a subset of edges E′ ⊆ E. Site P 1 computes a maximal
matching M1 in G(E1), and sends it to P 2 via the coordinator. Site P 2 then computes a
maximal matching M2 in G(E1 ∩E2) by greedily adding edges in E2 to M1, and then sends
M2 to site P 3. This procedure continues until site is reached P k, which after computing Mk

sends it to the coordinator. The matching Mk is a maximal matching in the graph G, hence
it is a 1/2-approximation of a maximum matching in G. The communication cost of this
protocol is O(kn log n) bits because the size of each M i is at most n. This shows that our
lower bound it tight up to a log n factor. In Section 3.4, we show that our lower bound is
also tight with respect to the approximation factor α for any α ≤ 1/2 up to a log n factor.
It was showed by Woodruff and and Zhang [30] that many statistical estimation problems
and combinatorial graph problems require Ω(kn) bits of communication to obtain an exact
solution. Our lower bound shows that for DMR even computing a constant approximation
requires this amount of communication.

Our lower bound is also of wider applicability to other combinatorial problems on graphs.
Since a bipartite maximum matching problem can be find by solving a max-flow problem,
our lower bound also holds for approximate computation of a max-flow problem. Our lower

STACS 2015

462 Communication Complexity of Approximate Matching in Distributed Graphs

bound also implies a lower bound for graph sparsification problem, see the definition of graph
sparsification, e.g., in [5]. This is because in our lower bound construction (see Section 3), the
bipartite graph under consideration contains many cuts of size 1 which have to be included in
a sparsifier. By our construction these edges form a good approximate maximum matching.
In Ahn, Guha, and McGregor [5], it is shown that there is a sketch-based O(1)-approximate
graph sparsification algorithm with the sketch size of Õ(n), which directly translates to an
approximation algorithm of Õ(kn) communication in our model. Thus, our lower bound is
tight up to a polylogarithmic factor.

We briefly discuss the main ideas and techniques of our proof of the lower bound for
DMR. As a hard instance, we use a bipartite graph G = (U, V,E) with |U | = |V | = n/2.
Each site P i holds a set of q = n/(2k) vertices which is a partition of the set of left vertices
U . The neighbors of each vertex in U is determined by a two-party set-disjointness instance
(DISJ, defined formally in Section 3.2). In total there are q×k = n/2 DISJ instances, and we
want to perform a direct-sum type of argument on these n/2 DISJ instances. We show that
due to symmetry, the answer of DISJ can be recovered from a reported matching, and then
we use information complexity to establish the direct-sum theorem. For this purpose, we also
need to give a new definition of the information cost of a protocol in the message-passing
model. We believe that our techniques could prove useful in establishing communication
complexity for other graph problems in the message-passing model. One reason is that for
many graph problems whose solution certificates "span" the whole graph (e.g., connected
components, vertex cover, dominating set, etc), it is natural that hard instances would be
like for the matching problem, i.e., each of the k sites holds roughly n/k vertices and the
neighborhood of each vertex defines an independent instance of a two-party communication
problem.

1.2 Related Work
The approximate maximum matching problem has been studied extensively in the literature
in various settings. In this section we only review the results obtained in some most
related models, namely the streaming computation model [6], the MapReduce model [19, 14],
and the traditional distributed model of computation (which is different from ours, see
discussions below). In the streaming computation model, the maximum matching problem
was presented as one of the open problems by McGregor [1] and a number of results have
been established, e.g., by McGregor [26], Epstein et al. [13], Ahn and Guha [2, 3], Ahn, Guha
and McGregor [4], Zelke [32], Konard, Magniez and Mathieu [21], Kapralov [17], Kapralov,
Khanna and Sudan [18]. Much of the previous work was devoted to the semi-streaming
model that allows for Õ(n) space, and these algorithms can be directly used to obtain an
Õ(kn) communication cost for O(1)-approximate matching in the message-passing model.
The maximum matching problem was also studied in the MapReduce model, e.g., by Lattanzi
et.al. [23]. Under certain assumptions, they obtain a 1/2-approximation algorithm in O(1)
rounds and Õ(m) communication bits where m is the number of edges in the graph. In the
context of traditional distributed computation models, Lotker et al [25, 24] considered the
problem of approximate solving of maximum matching problem in a synchronous distributed
computation model. In this computation model, each vertex is associated with a processor
and edges represent bidirectional communication. The time is assumed to progress over
synchronous rounds where in each round each processor may send messages to its neighbors,
which are then received and processed in the same round by their recipients. This computation
model is different from the message-passing computation model considered in this paper.
In their model the input graph and the communication topology are the same while in the

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 463

message-passing model considered here the communication topology is essentially a complete
graph which is different from the input graph and in general sites are not vertices in the
topology graph. Lotker et al. [24] (built on Wattenhofer and Wattenhofer [28], Lotker et
al. [25]) showed existence of (1− ε)-approximation algorithms for the maximum matching
problem with O(log n) rounds. This implies the communication cost of Õ(m) bits.

The message-passing computation model has recently attracted quite some attention by
the research community, e.g. Phillips, Verbin and Zhang [27], Woodruff and Zhang [29],
Braverman et al [10], Woodruff and Zhang [30], Klauck et al [20], and Woodruff and Zhang [31].
A wide set of statistical and graph problems has been shown to be hard in the sense of
requiring Ω(kn) bits of communication, including the graph-connectivity problem [27, 30],
exact computation of the number of distinct elements [30], k-party set-disjointness [10], and
some were even showed to be hard for random order inputs [20]. A similar but different
input distribution from ours was used in [10] to show an Ω(kn) communication lower bound
for the k-party set-disjointness problem. The work presented in this paper was obtained
independently and concurrently with [10] with the first version of the paper made online
as a technical report [15] in April 2013. Similar distributions were also used previously in
[27, 29] which appears to be natural because of the nature of the message-passing model.
There may exist a reduction between the k-party set-disjointness studied in [10] and DMR
but this is not clear unless one would establish a rigorous proof of this claim. Our proof is
different from that in [10]: we use a reduction of the k-party DMR problem to a 2-party
set-disjointness problem using symmetrisation, while [10] use a coordinative-wise direct-sum
theorem to reduce the k-party set-disjointness problem to a k-party 1-bit problem.

2 Preliminaries

Conventions. Let [n] = {1, 2, . . . , n}. All logarithms are with base of 2. We use capital
letters X,Y, . . . to denote random variables or sets, and the lower case letters x, y, . . . to
denote specific values of random variables X,Y, We write x ∼ µ to mean that x is chosen
randomly according to the distribution µ. We ofter refer to a player as a site which is suitable
in the coordinator model under consideration.

Information Theory. For two random variables X and Y , we use H(X) to denote the
Shannon entropy of the random variable X, and H(X|Y) to denote the conditional entropy
of X given Y . Let I(X;Y) = H(X) − H(X|Y) denote the mutual information between
X and Y , and I(X;Y |Z) be the conditional mutual information given Z. We know that
I(X;Y) ≥ 0 for any X,Y . We will need the following inequalities from the information
theory.

Data processing inequality: If random variables X and Z are conditionally independent
given Y , then I(X;Y | Z) ≤ I(X;Y) and I(X;Z) ≤ I(X;Y).

Super-additivity of mutual information: If X1, · · · , Xt are independent, then
I(X1, · · · , Xt;Y) ≥

∑t
i=1 I(Xi;Y).

Sub-additivity of mutual information: If X1, · · · , Xt are conditional independent given
Y , then I(X1, · · · , Xt;Y) ≤

∑t
i=1 I(Xi;Y).

Communication Complexity. In the two party communication complexity, we have two
players Alice and Bob. Alice is given x ∈ X and Bob is given y ∈ Y, and they want to
jointly compute some function f : X × Y → Z, by exchanging messages according to a
randomized protocol Π. We use Πxy to denote the random transcript (i.e., the concatenation

STACS 2015

464 Communication Complexity of Approximate Matching in Distributed Graphs

of messages) when Alice and Bob run Π on the input (x, y), and Π(x, y) to denote the output
of the protocol. When the input (x, y) is clear from the context, we will simply use Π to
denote the transcript. We say Π is a δ-error protocol if for all (x, y), the probability that
Π(x, y) 6= f(x, y) is no larger than δ, where the probability is over the randomness used in Π.
Let |Πxy| be the length of the transcript. The communication cost of Π is maxx,y |Πxy|. The
δ-error randomized communication complexity of f , denoted by Rδ(f), is the minimal cost
of any δ-error protocol for f . The multi-party NIH communication complexity model is a
natural generalization of the two-party model, where we have k parties and each has a piece
of input, and they want to compute some function together by exchanging messages. For
more information about the communication complexity we refer readers to [22].

Information Complexity. The communication complexity measures the number of bits
needed to be exchanged by multiple players in order to compute some function together,
while the information complexity studies the amount of information of the inputs that must
be revealed by the protocol. It was extensively studied in the last decade, e.g., [11, 7, 8, 29, 9].
There are several definitions of information complexity. In this paper, we will follow the
definition used in [7]. In the two-party case, let µ be a distribution on X × Y, we define
the information cost of Π measured under µ as ICµ(Π) = I(XY ; Π | R), where (X,Y) ∼ µ
and R is the public randomness used in Π. For any function f , we define the information
complexity of f parameterized by µ and δ as ICµ,δ(f) = minδ-error Π ICµ(Π).

Information Complexity in the Coordinator Model. We can indeed extend the above
definition of information complexity to k-party coordinator model. That is, let Xi be the
input of i-th player with (X1, . . . , Xk) ∼ µ and Π be the whole transcript, then we could
define ICµ(Π) = I(X1, . . . , Xk; Π | R). However, such a definition does not fully explore the
point-to-point communication feature of the coordinator model. Indeed, the lower bound
we can prove using such a definition is at most what we can prove under the blackboard
model and our problem admits a simple algorithm with communication O(n log n + k) in
the blackboard model. In this paper we give a new definition of information complexity for
the coordinator model, which allows us to prove higher lower bounds compared with the
simple generalization. Let Πi be the transcript between i-th player and the coordinator,
thus Π = Π1 ◦ Π2 ◦ . . . ◦ Πk. We define the information cost of a problem f with respect
to input distribution µ and error parameter δ (0 ≤ δ ≤ 1) in the coordinator model as
ICµ,δ(f) = minδ-error Π

∑k
i=1 I(X1, · · · , Xk; Πi).

I Theorem 2. Rδ(f) ≥ ICµ,δ(f) for any distribution µ.

Proof. For any protocol Π, the expected size of its transcript is (we abuse the notation
by using Π also for the transcript) E[|Π|] =

∑k
i=1 E[|Πi|] ≥

∑k
i=1H(Πi) ≥ ICµ,δ(Π). The

theorem then follows since the worst-case cost is at least the average. J

I Lemma 3. If Y is independent of the random coins used by the protocol Π, then ICµ,δ(f) ≥
minΠ

∑k
i=1 I(Xi, Y ; Πi).

Proof. It follows directly from the data processing inequality, since Π and Y are conditionally
independent given X1, . . . , Xk. J

3 The Complexity of DMR

In this section we first prove the lower bound in Theorem 1 and then establish its tightness.

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 465

An outline of the proof of the lower bound is given as follows. The lower bound is
established by constructing a hard distribution on the set of bipartite graphs G = (U, V,E)
with |U | = |V | = n/2. For the purpose of this outline, we consider the special case in which
the number of sites is such that k = n/2. Each site is assigned one node in U together with
all its adjacent edges. A natural idea to approximately compute a maximum matching in a
graph is to randomly sample a few edges from each site, and hope that we can find a good
matching using these edges. To rule out such strategies, we create many noisy edges: we
randomly pick a small set of nodes V0 ⊂ V of size roughly αn/10 and connect each node in
U to each node in V0 randomly with a constant probability. There are Θ(αn2) such edges
and the size of the matching formed by these edges is at most αn/10 ≈ α/2 · OPT where
OPT is the size of the optimal solution. We next create a set of important edges between
U and V \ V0 such that each node in U is adjacent to at most one random node in V \ V0.
These edges are important in the sense that although there are only Θ(|U |) = Θ(n) of such
edges, the size of the matching they can form is Θ(OPT). Therefore, to compute a matching
of size at least α ·OPT, it is necessary to find and include Θ(α ·OPT) = Θ(αn) important
edges. We then show that finding an important edge is in some sense equivalent to solving
a set-disjointness (DISJ) instance, and thus we have to solve many DISJ instances. The
concrete implementation of this intuition is via an embedding argument. In the general case,
we create n/(2k) copies of the random bipartite graph, each of size 2k. Each site gets n/(2k)
nodes. We then prove a direct-sum theorem using information complexity.

The lower bound is established by characterizing the information cost of the DISJ problem
for specific input distributions. Before doing this we first characterize the information
complexity of a primitive problem AND. We next reduce DISJ to DMR and prove an
information cost lower bound for DMR.

3.1 The AND Problem
In the AND problem, Alice and Bob hold bits x and y, respectively, and they want to
compute AND(x, y) = x ∧ y. Let A be Alice’s input and B be Bob’s input. We define two
input distributions ν1 and µ1 for (A,B) as follows. Let p = c · α ∈ (0, 1/2], where c is a
constant to be chosen later.
ν1: Choose a random bit W ∈ {0, 1} such that Pr[W = 0] = p and Pr[W = 1] = 1 − p. If

W = 0, we set B = 0, and A = 0 or 1 with equal probability. If W = 1, we set A = 0,
and set B = 1 with probability 1− p and B = 0 with probability p. Thus, we have

(A,B) =

(0, 0) with probability 3p/2− p2,

(0, 1) with probability 1− 2p+ p2,

(1, 0) with probability p/2.
W here serves as an auxiliary random variable to break the dependence between A and
B, since ν1 is not a product distribution. The use of W will be clear in the reduction.
Let τ be the distribution of W . Note that τ partitions ν1, i.e, given τ , ν1 is a product
distribution.

µ1: Choose W according to τ , and then choose (A,B) according to ν1 given W . Next, we
reset A to be 0 or 1 with equal probability. Let δ1 be the probability that (A,B) = (1, 1)
under distribution µ1. We have δ1 = (1− 2p+ p2)/2.

For p = 1/2, it is proved in [7] that if a private coin protocol Π has worst case error
1/2− β, then I(A,B; Π | W) ≥ Ω(β2), where the information cost is measured with respect
to ν1. Here we extend this to any p ≤ 1/2 and distributional error. We say a protocol has a
one-sided error δ for AND under a distribution if it is always correct when AND(x, y) = 0,
and is correct with probability at least 1− δ when AND(x, y) = 1.

STACS 2015

466 Communication Complexity of Approximate Matching in Distributed Graphs

I Theorem 4. Let Π be the transcript of any public coin protocol for AND on input
distribution µ1 with error probability δ1 − β for a β ∈ (0, δ1). We have I(A,B; Π | W,R) =
Ω(β2p/δ1

2), where the information is measured when W ∼ τ , (A,B) ∼ ν1, and R is the
public randomness. If Π has a one-side error 1− β, then I(A,B; Π | W,R) = Ω(βp).

Proof. Our proof follows [7]. To handle a general p ≤ 1/2, we explore the convexity of
mutual information. To extend the result to distributional error, we give a more careful
analysis and show that the information cost is high as long as the average error is small. The
proof is somewhat technical and is deferred to the full version of the paper. J

3.2 The DISJ Problem
In the DISJ problem, Alice holds s = {s1, . . . , sk} ∈ {0, 1}k and Bob holds t = {t1, . . . , tk} ∈
{0, 1}k, and they want to compute DISJ(s, t) =

∨k
`=1 AND(s`, t`). Let S = {S1, . . . , Sk} be

Alice’s input and T = {T1, . . . , Tk} be Bob’s input. We define two input distributions νk and
µk for (S, T) as follows.
νk: Choose W = {W1, . . . ,Wk} ∼ τk, and then choose (S`, T`) ∼ ν1 given W`, for each

1 ≤ ` ≤ k. For notation convenience, let νk|∗w be the distribution of S conditioned on
W = w, and let νk|w∗ be the distribution of T conditioned on W = w.

µk: Choose W = {W1, . . . ,Wk} ∼ τk, and then choose (S`, T`) ∼ ν1 given W`, for each
1 ≤ ` ≤ k. Next, we pick a special coordinate D uniformly at random from {1, . . . , k},
and reset SD to be 0 or 1 with equal probability. Note that (SD, TD) ∼ µ1, and the
probability that DISJ(S, T) = 1 is also δ1. For notation convenience, let µk|S=s be the
distribution of T conditioned on S = s, and let µk|T=t be the distribution of S conditioned
on T = t.

We define the one-sided error for DISJ similarly: A protocol has a one-sided error δ for DISJ
if it is always correct when DISJ(x, y) = 0, and is correct with probability at least 1 − δ
when DISJ(x, y) = 1.

I Theorem 5. Let Π be the transcript of any public coin protocol for DISJ on input distri-
bution µk with error probability δ1 − γ for a γ ∈ (0, δ1). We have I(S, T ; Π | W,R) =
Ω(γ2pk/δ1

2), where the information is measured when W ∼ τk, (S, T) ∼ µk, and R

is the public randomness used by the protocol. If Π has a one-sided error 1 − γ, then
I(S, T ; Π | W,R) = Ω(γpk).

Proof. The proof is deferred to the full version of the paper. J

3.3 Proof of the Main Theorem
To give a proof for Theorem 1, we first reduce DISJ to DMR. Before going to the detailed
reduction, we provide an overview of the hard input distribution that we construct for
DMR. The whole graph is a random bipartite graph consisting of q = n/(2k) i.i.d. random
bipartite graphs G1, . . . , Gq, where Gj = (U j , V j , Ej) with U j = {uj,1, . . . , uj,k} and V j =
{vj,1, . . . , vj,k}. The set of neighbors of each vertex uj,i ∈ U j , for i ∈ [k], is determined
by a k-bit random vector Xj,i, that is, (uj,i, vj,`) ∈ Ej if Xj,i

` = 1. The k (k-bit) random
vectors {Xj,1, . . . , Xj,k} are chosen as follows: we first choose (Xj,1, Y j) ∼ µk, and then
independently choose for each i ∈ {2, . . . , k}, a k-bit vector Xj,i according to the conditional
distribution µk|T=Y j . Finally, the input for the i-th site is simply vertices {u1,i, . . . , uq,i}
and all their incident edges, which is actually determined by Xi = {X1,i, . . . , Xq,i}. Note
that Y = {Y 1, . . . , Y k} is not part of the input for DMR; it is used to construct Xj,i (i ∈
[k], j ∈ [q]).

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 467

Input Reduction. Let s ∈ {0, 1}k be Alice’s input and t ∈ {0, 1}k be Bob’s input for DISJ.
Alice and Bob construct an input {X1, . . . , Xk} for DMR, where Xi = {X1,i, . . . , Xq,i} with
Xj,i ∈ {0, 1}k (j ∈ [q]) is the input for site i.
1. Alice and Bob use public coins to sample an index I uniformly at random from {1, . . . , k}.

Alice constructs the input XI for the I-th site, and Bob constructs the inputs
X1, · · · , XI−1, XI+1, · · · , Xk for the other k − 1 sites.

2. Alice and Bob use public coins to sample an index J uniformly at random from {1, . . . , q}.
3. Alice sets XJ,I = s, and Bob sets Y J = t. For each i ∈ [k] ∧ i 6= I, Bob privately samples

XJ,i according to µk|T=t. This finishes the construction of GJ .
4. For each j ∈ [q] ∧ j 6= J , they construct Gj as follows,

(a) Alice and Bob first use public coins to sample W j = {W j
1 , . . . ,W

j
k} ∼ τk (see the

definition of τ in Section 3.1).
(b) Alice and Bob privately sample Xj,I and Y j according to conditional distributions

νk|∗W j and νk|W j∗, respectively. Bob also privately samples Xj,1, . . ., Xj,I−1, Xj,I+1,
. . ., Xj,k independently according to the conditional distribution νk|T=Y j .

(c) Alice privately samples Dj,I uniformly at random from {1, . . . , k}, and resets Xj,I
Dj,I

to be 0 or 1 with equal probability. This makes {Xj,I , Y j} ∼ µk. Bob does the
same for all i ∈ [k] ∧ i 6= I. That is, for each i ∈ [k] ∧ i 6= I, he privately samples
Dj,I uniformly at random from {1, . . . , k}, and resets Xj,i

Dj,I to be 0 or 1 with equal
probability.

Note that the I-th site’s input XI is determined by the public coins, Alice’s input s and
her private coins. And the remaining k − 1 sites’ inputs {X1, · · · , XI−1, XI+1, · · · , Xk}
are determined by the public coins, Bob’s input t and his private coins. Let φ denote the
distribution of {X1, . . . , Xk} when (s, t) is chosen according to the distribution µk. We have
included Figure 1 for the illustration purpose.

In this reduction, in each bipartite graph Gj , we carefully embed k instances of DISJ in
random positions, and the output of a DISJ instance determines whether a specific edge in
the graph exists or not. In the whole graph, we embed a total of k× q = n/2 DISJ instances.
The input of one such DISJ instance is just the original input of Alice and Bob, and the
other (n/2− 1) instances are sampled by Alice and Bob using public and private random
coins. Such a symmetric construction can be used to argue that if the original DISJ instance
is solved, then with a good probability, at least Ω(n) of embedded DISJ instances are solved.
We will see the proof that the original DISJ instance can be solved by solving DMR also
relies on the symmetric property.

Let p = α/20 ≤ 1/20, where recall that p is a parameter in distribution µk and α

is the approximation parameter. Now, given a protocol P ′ for DMR that achieves an α-
approximation and error probability 1/4 with respect to φ, we construct a protocol P for
DISJ with one-sided error probability 1− α/10 with respect to µk, as follows.

Protocol P
1. Given an input (S, T) ∼ µk, Alice and Bob construct an input {X1, . . . , Xk} ∼ φ for

DMR as described by the input reduction above. Let Y = {Y 1, . . . , Y q} be the set
sampled during the construction of {X1, . . . , Xk}. Let I, J be the two indices sampled
by Alice and Bob during the reduction.

2. Alice plays the I-th site, and Bob plays the other k − 1 sites and the coordinator. They
run P ′ for DMR. Any communication between the I-th site and the other k − 1 sites
and the coordinator will be exchanged between Alice and Bob. For any communication
between the other k − 1 sites and the coordinator, Bob just simulates it without any
actual communication. At the end the coordinator (that is, Bob) gets a matching M .

STACS 2015

468 Communication Complexity of Approximate Matching in Distributed Graphs

DISJ(·, ·) = 1

DISJ(·, ·) = 0

G1

GJ

Gk

neighbors decided by XJ,I

uJ,1 uJ,2 uJ,k

vJ,1 vJ,2 vJ,k

uJ,I

vJ,`

Figure 1 Each edge corresponds to a DISJ instance where a solid edge indicates an instance
with output 1 and a dashed edge indicates an instance with output 0. Solid thick edges are the
important edges. A good approximate matching has to output many important edges, thus a solid
thick edge needs to be in the output matching with sufficiently large probability. The thick edge
(uJ,I , vJ,`) corresponds to DISJ(XJ,I , Y J) = DISJ(s, t), that is to the original 2-party disjointness
problem embedded by Alice and Bob. If DISJ(s, t) = 1, then (uJ,I , vJ,`) is a solid edge and needs to
be included in the output matching with a sufficiently large probability.

3. Bob outputs 1 if and only if there exists an edge (uJ,I , vJ,`) in the matching M for some
` ∈ [k], such that Y J` ≡ T` = 1, and 0 otherwise.

Correctness. First, suppose DISJ(S, T) = 0, i.e., S` ∧ T` = 0 for all ` ∈ [k]. Then, for each
` ∈ [k], we must have either Y J` ≡ T` = 0 or XJ,I

` ≡ S` = 0, but XJ,I
` = 0 means no edge

between uJ,I and vJ,`. Thus P will always answer correctly when DISJ(S, T) = 0, i.e., it has
a one-sided error.

Now suppose that S` = T` = 1 for a certain ` ∈ [k] (note that there is at most one
such ` according to our construction), which we denoted by L. The output of P is correct
if (uJ,I , vJ,L) ∈ M . In the rest of the analysis we estimate the probability that this event
happens.

For each Gj = {U j , V j} (j ∈ [q]), let U j1 = {uj,i | DISJ(Xj,i, Y j) = 1} and U j0 = U j \U j1 .
Let V j1 = {vj,` | Y j` = 1} and V j0 = V j \ V j1 . Let U0 = ∪qj=1U

j
0 , U1 = ∪qj=1U

j
1 , V0 = ∪qj=1V

j
0

and V1 = ∪qj=1V
j
1 . Intuitively, edges between U0 ∪ U1 and V0 can be seen as noisy edges,

since the total number of such edges is large but the maximum matching they can form is
small (at most |V0| ≤ 2pn according to Lemma 6, see below). On the contrary, we say the

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 469

edges between U1 and V1 the important edges, since the maximum matching they can form is
large, though the total number of such edges is small. Note that there is no edge between U0
and V1. Therefore, to find a good matching we must choose many edges from the important
edges. A key feature here is that all important edges are symmetric, that is, each important
edge is equally likely to be the edge (uJ,I , vJ,L). Thus with a good probability (uJ,I , vJ,L) will
be included in the matching returned by P ′. Using this we can answer whether XJ,I (= S)
and Y J (= T) intersect or not, thus solving the original DISJ problem.

We first estimate the size of the maximum matching in graph G = {G1, . . . , Gq}. Recall
we set p = α/20 ≤ 1/20 and δ1 = (1− 2p+ p2)/2, thus 9/20 < δ1 < 1/2.

I Lemma 6. With probability 0.99, the following events happen.
1. |V0| ≤ 2pn. In this case the size of the maximum matching formed by edges between V0

and U0 ∪ U1 is no more than 2pn.
2. The maximum matching of the graph G is at least 0.2n.

Proof. The first item follows simply by a Chernoff bound. Note that each vertex in
⋃
j∈[q] V

j

is included in V0 independently with probability (2p − p2), and E[|V0|] = (2p − p2)n/2,
therefore Pr[|V0| ≥ 2pn] ≤ Pr[|V0| − E[|V0|] ≥ pn] ≤ e−Ω(p2n).

For the second item, we first consider the size of the matching in Gj for a fixed j ∈ [q],
that is, a matching between vertices in U j and V j . For each i ∈ [k], let Li be the coordinate
` where Xj,i

` = Y j` = 1 if such an ` exists (note that by our construction at most one such
coordinate exists), and NULL otherwise.

We use a greedy algorithm to construct a matching between U j and V j . For i from 1 to k,
we connect uj,i to vj,Li if Li is not NULL and vj,Li is not connected by any uj,i′ (i′ < i). At
the end, the size of the matching is essentially the number of distinct elements in {L1, . . . , Lk},
which we denote by R. We have the following claim.
I Claim 1. It holds R ≥ 0.25k with probability 1−O(1/k).

Proof. The proof is similar to Lemma 4 in [29]. By our construction, we have E[|U j1 |] = δ1k

and E[|V j1 |] = (1 − 2p + p2)k. Similar to the first item we have that with probability(
1− e−Ω(k)), |V j1 | ≥ 0.9 · E[|V j1 |] = 0.9 · (1 − 2p + p2)k ≥ 0.8k (recall p ≤ 1/20) and
|U j1 | ≥ 0.9 · E[|U j1 |] ≥ 0.4k. Therefore with probability

(
1− e−Ω(k)), R must be at least the

value R′ of the following bin-ball game: We throw each of 0.4k balls to one of the 0.8k bins
uniformly at random, and then count the number of non-empty bins at the end of the process.
By Fact 1 and Lemma 1 in [16], we have E[R′] = (1 − λ) · 0.4k for some λ ∈ [0, 1/4] and
Var[R′] < 4(0.4k)2/(0.8k) = 0.8k. Thus by Chebyshev’s Inequality we have

Pr[R′ < E[R′]− 0.05k] ≤ Var[R′]
(0.05k)2 < 320/k.

Thus with probability 1−O(1/k), we have R ≥ R′ ≥ 0.25k. J

Therefore, for each j ∈ [k], with probability 1−O(1/k), we can find a matching in Gj of
size at least 0.25k. If q = n/(2k) = o(k), then by a simple union bound it holds that with
probability at least 0.99, the size of the maximum matching in G = {G1, . . . , Gq} is at least
0.25n. Otherwise, since G1, . . . , Gq are constructed independently, by another application of
Chernoff bound, we have that with probability 1− e−Ω(q) ≥ 0.99, the size of the maximum
matching in G = {G1, . . . , Gq} is at least 0.2n. J

Now let us make our intuition above more precise. First, if P ′ is an α-approximation
protocol with error probability 1/4, then by Lemma 6 we have that with probability at

STACS 2015

470 Communication Complexity of Approximate Matching in Distributed Graphs

least 3/4 − 0.01 ≥ 2/3, P ′ will output a matching M containing at least (α · 0.2n − 2pn)
important edges. We know that there are at most n/2 important edges and the edge
(uJ,I , vJ,L) is one of them. We say (i, j, `) is important for G, if (uj,i, vj,`) is an important
edge in G. Since our construction is totally symmetric, for any G in the support, we have
Pr[I = i, J = j, L = ` | G] = Pr[I = i′, J = j′, L = `′ | G]. for any (i, j, `) and (i′, j′, `′)
which are important in G. In other words, given an input G, the protocol can not distinguish
between any two important edges. Then we can apply the principle of deferred decisions to
decide the value (I, J) after the matching has already been computed, i.e., the probability
(uJ,I , vJ,L) ∈M is at least 2/3 · α·0.2n−2pn

n/2 ≥ α/10. Recall that we have chosen p = α/20. To
sum up, protocol P solves DISJ correctly with one-sided error at most 1− α/10.

Information Cost. Now we analyze the information cost of DMR. Let Π = Π1 ◦Π2 ◦· · ·◦Πk

be the best protocol for DMR with respect to input distribution φ and one-sided error
probability 1 − α/10. By Lemma 3, we have ICφ,δ(DMR) ≥

∑k
i=1 I(Xi, Y ; Πi). Let

W−J = {W 1, . . . ,W q} \ W J , and W = W JW−J . Recall that in our input reduction
I, J,W−J are public coins used by Alice and Bob.

2/n · ICφ,δ(DMR) ≥ 1/(qk) ·
k∑
i=1

I(Xi, Y ; Πi)

≥ 1/(qk) ·
k∑
i=1

I(Xi, Y ; Πi | W) (data processing inequality)

≥ 1/(qk) ·
k∑
i=1

q∑
j=1

I(Xj,i, Y j ; Πi | W−j ,W j) (super-additivity) (1)

= 1/(qk) ·
k∑
i=1

q∑
j=1

I(S, T ; Πi | I = i, J = j,W−j ,WS,T) (2)

= I(S, T ; ΠI | I, J,W−J ,WS,T)
≥ I(S, T ; Π∗ | WS,T , R) (3)
= Ω(α2k), (4)

where
1. WS,T ∼ τk is the random variable used to sample (S, T) from µk. Eq. (2) holds because

the distribution of W j is the same as that of WS,T , and the conditional distribution of
(Xj,i, Y j ,Πi | W−j ,W j) is the same as (S, T,Πi | I = i, J = j,W−j ,WS,T).

2. In Eq. (3), Π∗ is the best protocol for DISJ with one-sided error probability at most
1 − α/10 and R is the public randomness used in Π∗. The information is measured
according to µk.

3. Eq. (4) holds by Theorem 5. Recall that we have set p = α/20.
Therefore, we have R1/4(DMR) ≥ ICφ,1/4(DMR) ≥ Ω(α2kn), proving our Theorem 1.

3.4 Tightness of the Lower Bound
In this section we present an α-approximation algorithm with an upper bound on the
communication complexity which matches the lower bound for α ≤ 1/2 up to polylogarithmic
factors.

The algorithm consists of two steps. In the first step, each site computes a local maximum
matching and sends its size to the coordinator. The coordinator compares these sizes, and

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 471

then sends a message to the site that has the largest local maximum matching. This site
then sends the local maximum matching to the coordinator. We can assume that the size
of this matching is not larger than αn, as otherwise, the local matching of that site can be
declared to be the output of the algorithm, since it is already an α-approximation. Note that
the communication cost of this step is at most O((k + αn) log n) bits. In the second step,
the coordinator picks each site randomly with probability α′ = 8α, and computes a maximal
matching among the sites picked using the straightforward algorithm that we described in
the introduction. The communication cost of this step is at most O((k + α2kn) log n) bits in
expectation. We next show correctness of the algorithm.

Let Xi be a random variable indicating the event that the i-th site is picked in the second
step, and we have E[Xi] = α′ and Var[Xi] = α′(1 − α′). Let M be the global maximum
matching and m = |M |. We use mi to denote the number of edges in M which belong
to the i-th site, thus

∑
imi = m (recall that we assume edge partitioning where edges

are partitioned disjointly across the set of k sites). For the same reason as in the first
step, we can again assume that mi ≤ αm for all i ∈ [k], since otherwise, we will already
get an α-approximation. Let Y be the size of the maximal matching that is obtained in
the second step. Recall that a maximal matching is at least 1/2 of a maximum matching,
thus we have Y ≥ 1

2 ·
∑k
i=1miXi. Let Y ′ =

∑k
i=1miXi. So we have E[Y ′] = α′m and

Var[Y ′] = α′(1 − α′)
∑k
i=1m

2
i ≤ α′ · αm2 = 8α2m2. The inequality holds since we assume

that mi ≤ αm for all i ∈ [k]. Now, we can apply Chebyshev’s inequality to bound the error
probability. We have Pr[|Y ′ − α′m| ≥ 6αm] ≤ 8/36 < 1/4. Therefore, with probability at
least 3/4, it holds Y ≥ 1/2 · Y ′ ≥ 1/2 · 2αm = αm.

I Theorem 7. For every given α ≤ 1/2, there exists a randomized algorithm that computes
an α-approximation of the maximum matching in a graph with probability at least 3/4 at the
communication cost of O((k + α2nk + αn) log n) bits.

Note that Ω(αn) is a trivial lower bound, simply because the size of the output could be
as large as Ω(αn). Obviously, Ω(k) is a lower bound, since the coordinator has to talk to
each of the sites at least once. Thus, together with the lower bound Ω(α2kn) in Theorem 1,
the upper bound above is tight up to a log n factor.

4 Concluding Remarks

In this paper we showed a tight lower bound on the communication complexity for the
approximate maximum matching problem in the message-passing model. An interesting open
problem is the complexity of the counting version of the problem, i.e., the communication
complexity if we only want to compute an approximation of the size of a maximum matching
in a graph. Note that our proof of the lower bound relies on the fact that the algorithm
has to return a certificate of the matching. Hence, in order to prove a lower bound for the
counting version of the problem one may need to use new ideas and it is also possible that
a better upper bound exists. In a recent work [18], the counting version of the matching
problem was studied in the random-order streaming model. They proposed an algorithm
that uses one pass and polylog space, which computes a polylog approximation of the size of
the maximum matching. A general interesting direction for future research is to investigate
the communication complexity for other combinatorial problems on graphs, for example,
connected components, minimum spanning tree, vertex cover and dominating set. The
techniques used for approximate maximum matching problem in the present paper could be
of use here.

STACS 2015

472 Communication Complexity of Approximate Matching in Distributed Graphs

Acknowledgements The authors would like to thank Ke Yi for useful discussions.

References

1 Question 16: Graph matchings (Andrew McGregor) in open problems in data streams and
related topics IITK workshop on algorithms for data streams, 2006. http://www.cse.iitk.
ac.in/users/sganguly/data-stream-probs.pdf.

2 Kook Jin Ahn and Sudipto Guha. Laminar families and metric embeddings: Non-bipartite
maximum matching problem in the semi-streaming model. CoRR, abs/1104.4058, 2011.

3 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. In Proceedings of the 38th international
conference on Automata, languages and programming - Volume Part II, ICALP’11, pages
526–538, Berlin, Heidelberg, 2011. Springer-Verlag.

4 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pages 459–467. SIAM, 2012.

5 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 31st symposium on Principles of Database
Systems, PODS ’12, pages 5–14, New York, NY, USA, 2012. ACM.

6 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

7 Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci., 68:702–
732, June 2004.

8 B. Barak, M. Braverman, X. Chen, and A. Rao. How to compress interactive communic-
ation. In Proceedings of the 42nd ACM symposium on Theory of computing, pages 67–76.
ACM, 2010.

9 M. Braverman. Interactive information complexity. In Proceedings of the 44th symposium
on Theory of Computing, pages 505–524. ACM, 2012.

10 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntan-
athan. A tight bound for set disjointness in the message-passing model. In FOCS, pages
668–677, 2013.

11 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational com-
plexity and the direct sum problem for simultaneous message complexity. In Proc. IEEE
Symposium on Foundations of Computer Science, pages 270–278, 2001.

12 Jack Clark. Facebook rides Unicorn to graph search nirvana. The Register, http://
www.theregister.co.uk/2013/03/07/facebook_unicorn_helps_graph_search, Janu-
ary 2013.

13 L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. SIAM Journal on Discrete Mathematics,
25(3):1251–1265, 2011.

14 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. pages 374–383, 2011.

15 Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate maximum matching in distributed graph data. no. MSR-TR-
2013-35, http://research.microsoft.com/apps/pubs/default.aspx?id=188946, 2013.

16 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proc. ACM Symposium on Principles of Database Systems,
2010.

http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf
http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf
http://www.theregister.co.uk/2013/03/07/facebook_unicorn_helps_graph_search
http://www.theregister.co.uk/2013/03/07/facebook_unicorn_helps_graph_search
http://research.microsoft.com/apps/pubs/default.aspx?id=188946

Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 473

17 Michael Kapralov. Improved lower bounds for matchings in the streaming model. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’13, 2013.

18 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
734–751, 2014.

19 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. pages 938–948, 2010.

20 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. The
distributed complexity of large-scale graph processing. CoRR, abs/1311.6209, 2013.

21 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In APPROX-RANDOM, pages 231–242, 2012.

22 E. Kushilevitz and N. Nisan. Communication complexity. 1997.
23 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a

method for solving graph problems in mapreduce. In Proceedings of the 23rd ACM sym-
posium on Parallelism in algorithms and architectures, SPAA ’11, pages 85–94, New York,
NY, USA, 2011. ACM.

24 Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate match-
ing. In SPAA, pages 129–136, 2008.

25 Zvi Lotker, Boaz Patt-Shamir, and Adi Rosen. Distributed approximate matching. In Pro-
ceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing,
PODC ’07, pages 167–174, New York, NY, USA, 2007. ACM.

26 Andrew McGregor. Finding graph matchings in data streams. In Proceedings of the 8th
international workshop on Approximation, Randomization and Combinatorial Optimization
Problems, and Proceedings of the 9th international conference on Randomization and Com-
putation: algorithms and techniques, APPROX’05/RANDOM’05, pages 170–181, Berlin,
Heidelberg, 2005. Springer-Verlag.

27 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 486–501. SIAM, 2012.

28 Mirjam Wattenhofer and Roger Wattenhofer. Distributed weighted matching. In Distrib-
uted Computing, 18th International Conference, DISC 2004, Amsterdam, The Netherlands,
October 4-7, 2004, Proceedings, pages 335–348, 2004.

29 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring.
In Proceedings of the 44th symposium on Theory of Computing, STOC ’12, pages 941–960,
New York, NY, USA, 2012. ACM.

30 David P. Woodruff and Qin Zhang. When distributed computation does not help. CoRR,
abs/1304.4636, 2013.

31 David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in the
message passing model. In SODA, pages 718–733, 2014.

32 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–
20, February 2012.

STACS 2015

Stochastic Scheduling of Heavy-tailed Jobs
Sungjin Im∗1, Benjamin Moseley2, and Kirk Pruhs†3

1 Electrical Engineering and Computer Science
University of California, Merced
sim3@ucmerced.edu

2 Computer Science and Engineering
Washington University in St. Louis
bmoseley@wustl.edu

3 Computer Science
University of Pittsburgh
kirk@cs.pitt.edu

Abstract
We revisit the classical stochastic scheduling problem of nonpreemptively scheduling n jobs so
as to minimize total completion time on m identical machines, P || E

∑
Cj in the standard 3-

field scheduling notation. Previously it was only known how to obtain reasonable approximation
if jobs sizes have low variability. However, distributions commonly arising in practice have
high variability, and the upper bounds on the approximation ratio for the previous algorithms
for such distributions can be even inverse-polynomial in the maximum possible job size. We
start by showing that the natural list scheduling algorithm Shortest Expected Processing Time
(SEPT) has a bad approximation ratio for high variability jobs. We observe that a simple
randomized rounding of a natural linear programming relaxation is a (1 + ε)-machine O(1)-
approximation assuming the number of machines is at least logarithmic in the number of jobs.
Turning to the case of a modest number of machines, we develop a list scheduling algorithm
that is O(log2 n+m log n)-approximate. Our results together imply a (1 + ε)-machine O(log2 n)-
approximation for an arbitrary number of machines. Intuitively our list scheduling algorithm
finds an ordering that not only takes the expected size of a job into account, but also takes into
account the probability that job will be big.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, Sequencing
and scheduling

Keywords and phrases stochastic scheduling, completion time, approximation

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.474

1 Introduction

Scheduling jobs on identical machines with the objective of minimizing total completion
time is a well studied class of scheduling problems as well as being one of the most basic
multiple machines scheduling settings. Basic versions of these problems and their variansts
are reasonably well understood in both the online and offline settings. For example, if the
processing times of the jobs are available to the scheduler, then list scheduling the jobs
in increasing order of their sizes yields an optimal nonpreemptive schedule [4]. See [16]

∗ Supported in part by NSF grant CCF-1409130.
† Supported in part by NSF grants CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty

Award.

© Sungjin Im, Benjamin Moseley, and Kirk Pruhs;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 474–486

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.474
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Im, B. Moseley, and K. Pruhs 475

for various approximation results. Unfortunately, in many systems, the scheduler may not
know a priori the exact processing times of jobs. But often the scheduler may know a priori,
from past invocations of the job, stochastic information about a job’s size. Thus there is
significant research on such stochastic scheduling problems (see for example [9]).

We revisit the classical stochastic scheduling problem of non-preemptively scheduling a
collection J of n jobs so as to minimize the total expected completion time on m identical
machines, P || E

∑
Cj in the standard 3-field scheduling notation. The algorithm and

optimal solution are assumed to be nonanticipatory. In the stochastic setting, a nonanti-
cipatory scheduler only knows a priori the probability distribution on the size Pj of each
job j. If a machine is not running a job at a particular time, the nonanticipatory scheduler
may optionally assign a job to that machine at that time; if it assigns a job, then the job
must be run to completion, which is when the nonanticipatory scheduler finally learns the
realized size of the job. Note that the scheduler can be dynamic in the sense that it can
make scheduling decisions at time t based on the revealed processing times of jobs scheduled
up to time t. If a job j is started at time Sj and is still being scheduled at time t then the
scheduler only knows the job’s size is at least t − Sj and if the job j completes by time t,
the scheduler knows its realized size.

In contrast to the worst-case offline and online settings, this problem is not well under-
stood in the stochastic setting for general distributions. The most natural nonanticipatory
algorithm is Shortest Expected Processing Time (SEPT), which always assigns a job with
the minimum expected size to a machine that is free. SEPT is known to be an optimal
nonanticipatory algorithm on a single machine [10]. As is standard in stochastic settings,
approximation is relative to the optimal nonanticipatory algorithm. For identical machines,
SEPT is optimal if job sizes are exponentially distributed or are stochastically comparable
in pairs [15, 14]. However, for general distributions, even the question of whether SEPT has
a reasonable approximation ratio independent of the variability of the jobs’ processing times
for identical machines was open.

We start by resolving this open question by showing that the approximation ratio of
SEPT is Ω(n1/4). For full details see Section 2. It is useful to consider this instance as it
also represents the types of instances that are hard to design and analyze algorithms for. In
this instance most of the jobs are small with high probability. The remaining jobs are either
of size zero, or are (very) big. The expected number of jobs that become big is approximately
m. If the high variability jobs are run first (as SEPT does given the proper settings of the
parameters) then there can be a large difference in the cost depending on whether m jobs
become big, clogging up the machines for a long period of time, or whether only m− 1 jobs
become big, leaving one machine to finish off the small jobs. This instance demonstrates
that the problem is delicate/fragile in the sense that small changes in the input, or changes
in the random realizations of sizes for a small number of jobs, can have a large impact on
the objective.

This demonstrates that the main difficulty in these types of stochastic scheduling prob-
lems is handling high variability jobs. A standard research approach for problems, that are
difficult when some parameter is large, is to seek algorithms that perform reasonably when
this parameter is small. To the best of our knowledge, this is the approach taken by all pre-
vious research for these types of stochastic scheduling problems. For example, [8, 13] give
algorithms for our problem P || E

∑
Cj , and generalizations thereof, and show that they

have approximation ratios that are roughly linear in the squared coefficient of variation,
which is the variance divided by the square of the expectation. So these algorithms would
provide reasonable approximation if the sizes of the jobs did not have high variability.

STACS 2015

476 Stochastic Scheduling of Heavy-tailed Jobs

Unfortunately, the distributions that most commonly arise in practice, Zipf distributions
with small α parameters, have high variability [3, 5, 1]. In a Zipf distribution the probability
that a job has size s is proportional to 1/sα. Zipf distributions with α ∈ (1, 2) have a squared
coefficient of variation which is Ω̃(Pα−1) where P is the maximum possible job size. For
example, for the common case that α ≈ 2, this gives approximation ratio approximately
O(P), which is quite weak as it is achieved by every algorithm that doesn’t unnecessarily
idle a processor.

The starting point for our research was to investigate whether one can obtain reason-
able approximation when jobs may have high variability. It was clear a priori that success
would require the development of new analysis techniques. The approaches in the stochastic
scheduling literature all require low variability. The approaches in the deterministic schedul-
ing literature are all essentially based on volume arguments, in which one bounds the total
volume of work that will be processed by the algorithm before a specific job completes. Un-
fortunately, on instances such as the lower bound instance for SEPT, similar volume based
arguments again only lead to approximate ratios depending on the squared coefficient of
variation [8, 13]. Further the most natural candidate algorithms, like SEPT, all perform
badly.

1.1 Our Results and Contributions
Our main result is a polynomial-time (1 + ε)-machine O(1

ε2 log2 n)-approximation algorithm
for any number of machines. Our analysis is broken into two parts depending on the number
of machines as compared to the number of jobs. The most challenging case is when the
number of machines is small. In Section 4 we develop a novel polynomial-time list scheduling
algorithm LS. Here list scheduling means that the algorithm initially computes an ordered
list of the jobs, and whenever a machine becomes free, the algorithm assigns the next job
on the list to the available machine. In Section 5 we show the approximation ratio for
LS is O(log2 n + m log n). When m is O(log n) this implies an O(log2 n)-approximation
without resource augmentation. Adopting the viewpoint of the approximation algorithms
community that a poly-log approximation is reasonable, albeit at the top end of reasonable,
then LS is reasonable for a smallish/poly-log number of machines. Our main result is based
on two, related, insights:

We can construct a lower bound for optimum using two characteristics of the jobs:
The expected size of a job (so the same characteristic that SEPT uses), and
the probability that a job becomes big.

We can construct a list using these same two parameters so that the list scheduling
algorithm LS will never be too far off from our lower bound.

In most stochastic approximation literature, finding a good lower bound for the adaptive
adversary is crucial for the analysis, and we believe our lower bound is worth further invest-
igation for other stochastic scheduling problems. As mentioned before, prior to our work,
the best known approximation ratio for arbitrary job size distributions was the maximum
possible job size, even when there are only two machines. A more detailed overview can be
found in Section 3.

We then consider the case that the number of machines is not small relative to n. In
our lower bound instance for SEPT it is the case that the objective could be significantly
affected by a small change in the amount of resources available. This is a clear signal
that a resource augmentation analysis might be useful. If the number of machines is large,
then allowing the algorithm some modest resource/machine augmentation seems reasonable.

S. Im, B. Moseley, and K. Pruhs 477

We show in Section 6 that a simple randomized rounding of a natural linear programming
relaxation is a (1 + ε)-machine O(1)-approximation provided that m ≥ Ω((1/ε2) log n); here
the algorithm is allowed to use (1 + ε)m machines and is compared against the optimal
adaptive algorithm that can only use m machines. The analysis follows by showing, using
standard concentration arguments, that if there are at least this many machines, then with
high probability it is never that case that all machines are “clogged up”.

Finally, we show in Section 2 that the approximation ratio of SEPT is Ω(n1/4).

1.2 Other Related Work
Most of the related results in the literature also hold for the more general problem where
jobs have weights and the objective is the weighted sum of completion times. For a single
machine, the algorithm WSEPT (running jobs with high weight to expected size ratio) is
2-approximate, and this approximation ratio is best possible [10]. Turning back to identical
machines, it is known that WSEPT is asymptotically optimal; that is, the approximation
tends to one as the number of jobs tends to infinity [14, 15]. [8] gives a list scheduling policy
based on a linear programming relaxation where the approximation is linear in the squared
coefficient of variation. It is known that this is the best approximation ratio possible if jobs
must be irrevocably assigned to machines a priori [13]. This approach was extended to an
online setting in [11], to allow the possibility of precedence constraints in [12], and to allow
the possibility of related machines in [13]. The fact that the approximation results also
hold for weighted completion time is in part explained by the fact that they are based on
linear programming formulations, which easily incorporate weights. [7] gives a combinatorial
algorithm for the setting that job arrive online in a list, and must be assigned to machines
as they arrive, and again show an approximation ratio that is linear in the square coefficient
of variation. For deterministic sizes, there is a polynomial time approximation scheme [2].

2 Lower Bound for SEPT

I Theorem 1. The algorithm SEPT rule has an approximation ratio Ω(n1/4).

Proof. We first describe the example. There are m machines where m is greater than a
sufficiently large constant such that exp(−m/16) < 1/m8. There are two types of jobs.

Type-1: There are 2m2 jobs, and each job has size 1 with probability 1/m, and 0
otherwise.
Type-2: There are m4/4 jobs, and each job has size m2 with probability 1/m3, and 0
otherwise.

Note that all jobs have the same expected size. Therefore, SEPT rule can schedule jobs in
arbitrarily order. Suppose it first schedules Type-1 jobs. By applying a standard Chernoff
bound (for example, Theorem 20 with µ = 2m and δ = 1/2), with a probability of at least
1 − exp(−m/4) ≥ 1 − 1/m8, at least m jobs will have size 1, thereby delaying all Type-2
jobs after time 1. Hence the total completion time of SEPT will be Ω(m4) in expectation.

In contrast, suppose the adversary schedule Type-2 jobs first. The adversary can learn at
an infinitesimally small time, say 1/m4, the empty machines. Let E denote the event that the
number of such machines is at least m/2. Observe that Pr[E] ≥ 1−exp(−m/16) ≥ 1−1/m8

by Theorem 20 with µ = m/4 and δ = 1. Since the total job size is at most O(m6) in
all cases, and the total number of jobs is O(m4), the expected total completion time of the
adversary in the event of ¬E is at most O(m6 ·m4 · 1

m8) = O(m2). Now consider the case that
the event E occurs. The adversary distributes Type-1 jobs evenly on the empty machines it

STACS 2015

478 Stochastic Scheduling of Heavy-tailed Jobs

discovered at an infinitesimally small time. Since there are at least m/2 empty machines,
and there are 2m2 Type-1 jobs to schedule, no machine is assigned more than O(m) Type-1
jobs. Hence, even in the worst case where all Type-1 jobs have size 1, every Type-1 job is
completed by time O(m). In sum, we have shown the adversary’s total completion time is
O(m3) in expectation. Since n = Θ(m4), the gap follows. J

3 Intuitive Overview of the Design and Analysis of the Algorithm LS

We now give an informal overview of the intuition behind the intertwined design and analysis
of the algorithm LS (occasionally oversimplifying some issues).

The initial starting point is the way in which we estimate the total completion time.
Let τk be the time that the n

2k th to last job completes. Let Gi be those jobs that complete
between τk−1 and τk. By rounding down the completion times in Gk to τk−1 we obtain an
estimate

∑
k τkn/2k of the total competition time that is accurate within a constant factor.

To see this note that the decrease in total completion time for the n/2k jobs in Gk can be
charged to a [τk−1, τk] portion of the competition times of the n/2k jobs that complete after
τk. It will be convenient to consider job starting times, instead of job competition times.
This is, without any real loss of generally, as the sum of the starting times differs from the
sum of the completion times by only the sum of the processing times, and the expected sum
of the processing times is the same for all algorithms. Then intuitively our algorithm needs
to determine the jobs in Gk, which roughly one would expect should be the n/2k jobs in
positions [n − n/2k−1, n − n/2k] in the algorithm’s list, so that these jobs are all likely to
start by a deadline τk that is as early as possible. Let us for the moment assume that the
algorithm knows the “correct” value of the deadline τk. The algorithm must then solve the
following informal subproblem:

Key Subproblem (k, τ): Given a cardinality k and a deadline τ , which set Ek,τ of n/2k
jobs should be excluded so as to maximize the probability that the remaining set Ak,τ of
n− n/2k jobs can all start by time τ?

We give an algorithm SPLIT for selecting Ek,τ . We then show that if SPLIT isn’t
likely to start all jobs in Ak,τ by deadline τk then the optimal adaptive algorithm likely
has a comparable number of jobs unfinished by deadline τ/∆. Here ∆ is a parameter that
we will eventually set to m + log n. This relaxed deadline contributes a ∆ factor to the
approximation ratio. It will be convenient to call a job small if it has size at most τ/∆, and
call a job big otherwise.

Our algorithm SPLIT certainly should exclude those jobs with high expected processing
time. Here all expected processing times will be conditioned on the fact that the job is small,
since all big jobs are equally bad for the optimal adaptive algorithm. Our lower bound for
SEPT suggests that we should also exclude those jobs that are most likely to be big as these
jobs are the ones most likely to clog up the machines. The algorithm SPLIT splits the n/2k
exclusions in Ek,τ equally between the n/2k+1 jobs with the highest expected processing
times, the n/2k+1 jobs with highest probability of being big. The algorithm SPLIT then list
schedules the jobs in Ak,τ in an arbitrary order.

The key part of our analysis of SPLIT, and of almost all algorithm analyses of such
stochastic problems, is lower bounding optimal. Here we are able to lower bound optimal
using the same exact two job characteristics, the probability that a job is big and the
expected size, that SPLIT uses. The analysis is split into two cases. The first case is when
the aggregate expected size jobs in Ak,τ is at least τ/2. In this case, there is sufficient
probability mass on small sizes (this is where we need that ∆ is sufficiently large) so that

S. Im, B. Moseley, and K. Pruhs 479

a standard lower tail bound can be used to show with high probability the aggregate size
of the small jobs is close to expectation. The result is then established using the fact that
the aggregate sizes divided by m is a lower bound for optimal. The second case is when the
aggregate expected size of jobs in Ak,τ is at most τ/2. Then with high probability the small
jobs from Ak,τ don’t have sufficient aggregate size to keep one machine busy until time τ .
Thus if SPLIT has all machines busy at time τ , then SPLIT must have seen at least m big
jobs. But as SPLIT excluded the jobs most likely to be big, the optimal algorithm also likely
saw m big jobs, and thus still have all machines busy at time τ/∆.

It is natural to try to extend the algorithm SPLIT to create a list for LS by first picking in
arbitrary order the jobs in J −E1,τ1 , which are intuitively the n/2 jobs most likely startable
by τ1, then picking in arbitrary order the jobs in J −E1,τ1 −E2,τ2 , which are intuitively the
n/4 jobs in the set of 3n/4 jobs most likely startable by τ2 that were not previously picked,
and on the phase k, picking in arbitrary order the jobs in J −∪i≤kEi,τi = ∩i≤kAi,τi . There
are two difficulties with this approach. We end up surmounting both difficulties in a similar
fashion.

The first difficulty is that we do know know a priori the “right” values for the τk’s. Using
standard transformations we can without loss of generality assume that the range of possible
times is polynomially bounded, and that we can restrict our attention to τk being one of the
logarithmically many times that are an integer power of two. We then modify our solution
Ek,τ to the subproblems (k, τ) by excluding n/(2k log n) jobs, instead of n/2k. Again the
exclusions in Ek,τ are split equally between jobs that are have the largest expected sizes,
and those that are most likely be be big. Let the excluded set Ek = ∪iEk,2i be the union
of the excluded sets for various possible values of τk. We could then construct our list by
first picking in arbitrary order the jobs in J − E1, then picking in arbitrary order the jobs
in J − E1 − E2, and on the phase k, picking in arbitrary order the jobs in J − ∪i≤kEi.
Because E is the union of essentially all possible Ek,τk ’s, we know that we are excluding the
excluded jobs from the subproblem corresponding to the “right” τk. The redefinition of the
Ek,τ ’s costs a log factor in our approximation ratio.

The remaining problem with this ordering is the possibility that the excluded sets may
not be consistent. For example, a job j such that j /∈ E1 and j ∈ E2 is an inconsistency
as it is not possible to schedule j after τ2 and before τ1. To solve this we let the excluded
set E′k = ∪i≥kEi be the union of the previously defined excluded sets for later times. The
algorithm LS then constructs its list by first picking in arbitrary order the jobs in J − E′1,
then picking in arbitrary order the jobs in J −E′1−E′2, and on phase k, picking in arbitrary
order the jobs in J − ∪i≤kE′i. Because a job is excluded in E′k if it is in any later excluded
set Ei, we know that there will be no inconsistencies. This also guarantees the hereditary
condition that E′k+1 ⊆ E′k, which means that earlier scheduled jobs are not in later excluded
sets. Because the size of the sets Ek are geometrically decreasing, these additional exclusions
don’t change the size of the excluded sets by more than a constant factor.

4 Algorithm LS

In this section we more formally describe the list scheduling algorithm LS, and introduce
some notation that will be needed in the analysis. To aid in our later analysis, we describe
the algorithm in terms of the complements of the excluded sets discussed in the last section.
Recall Ak,` is the complement of the excluded set Ek,`, and taking the complement of the
union is equivalent to taking the intersection of the complements.

We assume that the number of machinesm ≥ 2. We show in Lemma 2 that we can assume

STACS 2015

480 Stochastic Scheduling of Heavy-tailed Jobs

without loss of generality that all possible job sizes are in the range [1, n10]. Intuitively, if
a job is sufficiently small, then it can change the total completion time objective by very
little. The upper bound then follows by noting that at least two jobs have to become big
to clog up the machines for a long period of time, and the probability that this happens
is quite small. The proof of Lemma 2 can be found in Section 5.1. Let ∆ be the smallest
integer greater than 1000 max{m, log n} that is a power of two.

I Lemma 2. Suppose we have a nonanticipatory fixed-priority algorithm that is α-approxi-
mate for the simplified instances of n jobs where every job j is instantiated to a size between
1 and n10, i.e. 1 ≤ Pj ≤ n10 for all jobs j. Then one can get a O(α)-approximation for an
arbitrary instance consisting of n jobs.

We now introduce our algorithm. For intuition guiding the development of the algorithm,
we refer the reader to the overview of the algorithm given in Section 3.

Algorithm LS (k ∈ [log n], and ` ∈ [12 log n])
1. For each pair of k, `, compute Ak,` as follows. Let τ := 2`. Let Ak,` be the intersection of

the following two sets Ah
k,` and Av

k,`:
Let Ah

k,` be the n− n
24·2k·log n

jobs with the smallest hj,` values
where hj,` := Pr[Pj ≥ 2`/∆].
Let Av

k,` be the n− n
24·2k·log n

jobs with the smallest vj,` values
where vj,` :=

∑
s<2`/∆ s · Pr[Pj = s].

2. Define Ak :=
⋂

`∈[12 log n] Ak,`.

3. Define A′k :=
⋂

k≤k′≤log n
Ak′ .

4. Consider k in increasing order. For each k, schedule jobs in A′k \ A′k−1 in an arbitrary but
fixed order assigning jobs to any available machine.

The following Lemmas are immediate from the algorithm’s description, and will be useful
for our analysis.

I Lemma 3. It holds that
For all k, `, n− n

12·2k logn ≤ |Ak,`| ≤ n−
n

24·2k logn .
For all k, n− n

2k ≤ |Ak| ≤ n−
n

24·2k logn .
For all k, n− n

2k−1 ≤ |A′k| ≤ n− n
24·2k logn .

For all k, A′k ⊆ A′k+1.

5 Analysis

This section is devoted to proving Theorem 4.

I Theorem 4. The algorithm LS is O(log2 n+m log n)-approximate for scheduling n stochas-
tic jobs non-preemptively on m identical machines with the objective of minimizing the total
completion time in expectation.

Our analysis is based on Lemma 8 that states how the solution to the subproblem
parameterized by k, ` can be charged to the adversary’s cost. That is, we will show if the
algorithm cannot start all jobs in Ak, which is a subset of Ak,`, by a deadline τ = 2`, thereby
delaying n−|Ak| jobs after τ , then the adversary is more likely to delay a comparable number
of jobs after time τ/∆.

S. Im, B. Moseley, and K. Pruhs 481

To formally state Lemma 8, we need to introduce some notation. Let L(J ′) denote
the earliest time when a machine becomes available after starting all jobs in J ′; here the
associated algorithm is implicitly given. Note that L(J ′) depends on the realized processing
time of jobs. Let A∗k denote the n − n

24·2k logn jobs the adversary starts the earliest; recall
that |Ahk,`| = |Avk,`| = n − n

24·2k logn , and |Ak,`| ≥ n − n
12·2k logn . Note that A∗k could be

stochastic while Ak,` is deterministic.
The quantity LW (J ′) is defined similar to L(J), but for the the worst anticipatory list

scheduling algorithm W . So W knows the jobs sizes and it maximizes the earliest time
when a machine becomes available after starting all the jobs in J ′. Obviously LS performs
better than the worst anticipatory algorithm. Lemma 5, Lemma 6, and Lemma 7 state
straightforward properties of these times. The proof of Theorem 4 follows by application
of Lemma 8, Lemma 5, Lemma 6 and basic algebra. The cornerstone of the analysis is the
proof of Lemma 8, which we postpone until the end of the section.

I Lemma 5. The function LW (·) is monotone, i.e., for any realization of job sizes and any
two sets of jobs, J ′ ⊆ J , we have LW (J ′) ≤ LW (J).

I Lemma 6. For all k and ` and for any realization of job sizes, L(A′k) ≤ LW (A′k) ≤
LW (Ak) ≤ LW (Ak,`).

Proof. This follows from the the fact that A′k ⊆ Ak ⊆ Ak,`, and that LS is a list scheduling
algorithm. J

I Lemma 7. For all k, L(A∗k) ≤ L(A∗k+1).

Proof. By definition of A∗k, we know that A∗k ⊆ A∗k+1. Then, the lemma is immediate since
the earlist time when a machine becomes available after the optimal scheduler starts all jobs
in A∗k can be only smaller than the analgously defined time after the same optimal scheduler
starts all jobs in A∗k+1. J

We now formally state our key lemma.

I Lemma 8. For all k, we have Pr[LW (Ak) ≥ 2`] ≤ Pr[L(A∗k) ≥ 2`/∆] +O(1
n12).

Before proving Lemma 8, we show how it implies Theorem 4.

Proof of Theorem 4. Since all jobs have sizes at most n10, the maximum total completion
time can be at most n12. Hence we will proceed with our analysis ignoring the small additive
term in the right-hand-side of Lemma 8 since it will add only 1 to the total completion time
in expectation, and all jobs have sizes at least 1. Note that it suffices to bound E

∑
j Sj

where Sj is j’s starting time. This is because the algorithm’s cost is
∑
j Sj plus

∑
j Pj , and

E
∑
j Pj is a clear lower bound to the adversary as we can observe in Lemma 15. We let

1[E] be an indicator variable that is 1 if the event E occurs and 0 otherwise, for some event
E . ∑

j

Sj ≤
∑
j

∑
`≥0

2`+1 · 1[Sj ≥ 2`] ≤
∑
j

∑
`≥log ∆

2`+1 · 1[Sj ≥ 2`] +O(∆n)

=
∑
k≥1

∑
j∈A′

k
\A′

k−1

∑
`≥log ∆

2`+1 · 1[Sj ≥ 2`] +O(∆n)

≤
∑
k≥1
|A′k \A′k−1| ·

∑
`≥log ∆

2`+1 · 1[L(A′k) ≥ 2`] +O(∆n)

≤
∑
k≥1

O(n2k) ·
∑

`≥log ∆

2` · 1[L(A′k) ≥ 2`] +O(∆n) [Lemma 3]

STACS 2015

482 Stochastic Scheduling of Heavy-tailed Jobs

The first inequality follows since for some `, 2` ≤ Sj < 2`+1. By taking the expectation
on both sides, we have

E
∑
j

Sj ≤
∑
k≥1

O(n2k)
∑

`≥log ∆

2` · Pr[L(A′k) ≥ 2`] +O(∆n)

≤
∑
k≥1

O(n2k)
∑

`≥log ∆

2` · Pr[LW (Ak) ≥ 2`] +O(∆n)

≤
∑
k≥1

O(n2k)
∑

`≥log ∆

2` · Pr[L(A∗k) ≥ 2`/∆] +O(∆n)

≤
∑
k≥1

O(n2k)
∑
`≥1

∆ · 2` · Pr[L(A∗k) ≥ 2`] +O(∆n)

≤ 2
∑
k≥2

O(n2k)
∑
`≥1

∆ · 2` · Pr[L(A∗k) ≥ 2`] +O(∆n)

The second and third inequalities are due to Lemma 6 and Lemma 8, respectively. In the
last inequality, we used the fact L(A∗2) ≥ L(A∗1), which follows from Lemma 7. We can
charge O(∆n) to the optimal cost since the nonanticipatory optimal solution must have
total expected completion time at least

∑
j EPj ≥ n, and our goal is to show a O(∆ log n)-

approximation.
To upper bound the remaining terms, we lower bound OPT as follows.

OPT ≥
∑
k≥2
|A∗k+1 \A∗k| · L(A∗k) ≥ Θ(1) ·

∑
k≥2

O(n

2k log n)
∑
`

2` · 1[L(A∗k) ≥ 2`]

The first inequality follows since no job in A∗k+1 \ A∗k starts before time L(A∗k). By taking
the expectation on this equation and combining it with the above equation, we conclude
that our algorithm is O(∆ log n)-approximation, deriving Theorem 4. J

We are now ready to prove the key lemma.

Proof of Lemma 8. We will be concerned with the probability that the optimal adaptive
algorithm cannot start n′ := n− n

24·2k logn jobs before time τ/∆. We will say that a job j is
big if its realized size Pj ≥ τ/∆, and say the job is small otherwise. We consider two cases
depending on the volume of small jobs. Fix k and `. For notational simplicity, let τ := 2`.

Case A:
∑
j∈Ak vj ≥ τ/2: We first show in Lemma 9 and Lemma 10 that the aggregate size

of the first n′ small jobs that the optimal adaptive algorithms starts is likely at least τ/4.
Lemma 11 then shows that this is sufficient volume so that the optimal adaptive algorithm
cannot start n′ jobs before time τ/∆.

To make this formal, we define a sequence of random variables {Xq} where Xq refers to
the “small" size of the qth earliest job that is started by the optimal adaptive algorithm – Xq

is set to Pj if Pj < τ/∆, otherwise 0. Also let Yq be the 0-1 random variable that becomes
1 if the qth earliest job that the adversary starts becomes large, otherwise 0.

I Lemma 9.
∑
q∈[n′] E[Xq] ≥ τ/2.

Proof. This observation immediately follows from the fact that Ak ⊆ Ak,` ⊆ Avk,`, and Avk,`
consists of n′ jobs with the smallest vj,` :=

∑
s<τ/∆ s · Pr[Pj = s] values. J

I Lemma 10. Pr[
∑
q∈[n′]Xq ≤ τ/4] ≤ 1

n12 .

S. Im, B. Moseley, and K. Pruhs 483

Proof. To apply Theorem 20, we scale down Xq by τ/∆. Recall that Xq ≤ τ/∆ and
∆ ≥ 1000 max{m, log n}. By using Theorem 20 with µ ≥ τ

2/
τ
∆ ≥

∆
2 and ε ≥ 1/2, we derive

that the probability is at most exp(−ε2µ/2) ≤ exp(−∆/16) ≤ 1/n12. J

I Lemma 11. If
∑
q∈[n′]Xq ≥ τ/4, then L(A∗k) ≥ τ/∆.

Proof. For the sake of contradiction, suppose that L(A∗k) ≤ τ/∆. Since each small job has
size at most τ/∆, a machine can be busy until time 2τ/∆ due to small jobs that are started
by time τ/∆. Hence it must be the case that

∑
q∈[n′]Xq ≤ m · 2τ/∆ < τ/4, which is a

contradiction. J

Case B:
∑
j∈Ak vj ≤ τ/2: We show in Lemma 12 that the algorithm W likely didn’t start

enough small jobs to even fill up one machine until time τ . Lemma 13 then shows that it
must be the case that the algorithm W then must have started m big jobs before time τ .
Lemma 14 then shows that the optimal adaptive algorithm must have started m big jobs
before time τ/∆ and before starting n′ jobs. Thus the optimal adaptive likely cannot finish
n′ jobs before time τ/∆.

To make this formal, let X ′j denote job j’s small size. That is, X ′j is set to Pj if Pj ≤ τ/∆,
otherwise 0. Let Y ′j be the 0-1 random variable that becomes 1 if job j becomes large,
otherwise 0. The differnece between Xq and X ′j (likewise between Yq and Y ′j) is that X ′j is
concerned with the size of a fixed job j while Xq is concerned with the size of the qth earliest
job the adversary starts – the qth job cah change since the adversary is not necessarily a
fixed-priority scheduler. By applying a concentration inequality, we can show,

I Lemma 12. Pr[
∑
j∈Ak X

′
j ≥ τ] ≤ 1/n12.

Proof. We scale down Xq by τ/∆. By applying Theorem 20 with µ ≤ τ
2/

τ
∆ ≤

∆
2 and

ε = τ
τ/∆/µ− 1 = ∆

µ − 1 ≥ ∆
2µ , we upper bound the probability by exp

(
− (∆/(2µ))2µ

2(1+(∆
2µ−1)/3)

)
≤

exp
(
− (∆/(2µ))2µ

∆/µ

)
= exp(−∆/4) ≤ 1/n12. J

I Lemma 13. If
∑
j∈Ak X

′
j < τ and LW (Ak) ≥ τ , then there must be at least m jobs in Ak

with realized sizes at least τ/∆.

Proof. For the sake of contradiction, suppose there are less than m big jobs. Then there
must exist a machine that is busy until time τ scheduling small jobs, which is a contradiction
to the condition

∑
j∈Ak X

′
j < τ . J

I Lemma 14. Pr[
∑
q∈[n′] Yq ≥ m] ≥ Pr[

∑
j∈Ak,`′

Y ′j ≥ m] ≥ Pr[
∑
j∈Ak Y

′
j ≥ m].

Proof. Notice that Ak is a subset of Ahk,`′ with `′ = log2(τ/∆). Since Ahk,`′ consists of n′

jobs with the smallest hj,`′ := Pr[Pj ≥ 2`′ = τ/∆] values, the probability that the adversary
finds at least m big jobs while scheduling the first n′ jobs it starts must be as large as the
probability that our algorithm finds m big jobs while scheduling jobs in Ak. J

This concludes the proof of Lemma 8. J

STACS 2015

484 Stochastic Scheduling of Heavy-tailed Jobs

5.1 Proof of the Simplifying Assumption (Lemma 2)
In this section we prove Lemma 2. Due to the space constraints, we defer the proof of
Lemma 16, 17, and 18 to the full version of this paper.

We begin with the following simple lower bound on the adversary.

I Lemma 15. E OPT ≥ E
∑
j Pj.

Motivated by this lower bound, from now on we assume w.l.o.g. that E
∑
j Pj = 1 by scaling

jobs sizes uniformly.
We now show that one can assume that every job is instantiated to a size at least 1/n2.

Let I1 be the instance obtained from the original instance I0 := I by replacing Pj with
Pj + 1/n2. We show that the optimal completion time can only double in the transition
from I0 to I1. Let OPT(I) denote the adversary or its objective on instance I.

I Lemma 16. E OPT(I1) ≤ 2 · E OPT(I0).

I Lemma 17. Given an algorithm A1 for I1, one can derive an algorithm A0 for I0 with
the same expected total completion time or smaller.

Hence assuming all jobs have sizes at least 1/n2 only loses factor 2 in the approximation
ratio. Now we argue that if a job is instantiated to have a very large size, we can ignore such
a bad case since it contributes to the algorithm’s cost very little. To simplify our argument,
we will assume that our algorithm is the worst anticipatory fixed-priority algorithm. That
is, the worst algorithm does the following: it observes each job’s realized size, and finds
the worst ordering between jobs in J such that assigning each job to the earliest available
machine according to the ordering maximizes the total completion time. If we can show
that the event that there is a job that has a huge size can contribute to the expected total
completion time by only a fraction of E

∑
j Pj = 1, then we will be able to ignore such

an event. Let Bad denote the worst algorithm we will consider, or its total completion
time depending on the context. In the following, Bad(w) denote Bad’s objective when
an outcome (realization of job sizes) w occurs. Intuitively, Bad can have a huge total
completion time only when at least two jobs are realized to have huge sizes, which can
happen with a very small probability. This is where we use the fact m ≥ 2.

I Lemma 18. Let E be the event that maxj Pj ≥ n8. Then
∑
w∈E Bad(w) Pr[w] ≤

O(1) EOPT.

6 LP-based Algorithm with Machine Augmentation

I Theorem 19. Suppose m ≥ 36
ε2 log n. Then there is a polynomial time O(1)-approximation

that schedules n stochastic jobs non-preemptively on (1 + ε)m identical machines, when
compared against the adversary using m machines, with the goal of minimizing the total
completion time in expectation.

Proof. Let xi,τ be the probability that the adversary schedules job i at time τ . Let qi,d
denote the probability that job i has size no smaller than d. The following LP relaxation is
due to [13].

min
∑
i,τ

τ · xi,τ s.t.
∑
τ≥0

xi,τ ≥ 1 ∀i;
∑
i,τ≤t

qi,t−τ · xi,τ ≤ m ∀t ≥ 0; xi,τ ≥ 0 ∀i, τ ≥ 0

The objective is the total expected starting time of all jobs. The first constraints say
that each job must be scheduled. The second constraints ensure that at any time at most

S. Im, B. Moseley, and K. Pruhs 485

m machines are used. These are valid constraints due to the nonanticipatory nature of the
adversary: job i’s size is realized independent of when it is started.

We now show a simple algorithm using m′ = (1 + ε)m machines. Since {xi,τ}τ is a
distribution over job i’s starting times, we naturally set i’s starting time Si to τ with
probability xi,τ . We order jobs in increasing order of Si, and schedule job i on any available
machine at time t – we will show that this is always possible with a high probability. If not
possible, we switch to an arbitrary fixed-priority algorithm.

We first claim that we only need to consider times 1 ≤ t ≤ n5 in the LP. Unfortunately,
we cannot use Lemma 2 here since this LP-based algrotihm is not a fixed-priority algorithm.
However, we can use most of the simplifying argument in Section 5.1 with small tweak. We
can show that one can assume without loss of generality that all jobs have sizes at least 1 and
n ≤ E

∑
j Pj ≤ n2. Then, we know that any non-idle algorithm has total completion time

at most n2Emaxj Pj ≤ n4 in expectation. This implies no optimal LP solution schedules
a job by more than 1/n after time n5, i.e.

∑
t′≥n5 xi,t′ ≤ 1/n for all i. This is because

the second constriant of the LP is trivially satisfied for any optimal solution for all times
after n5. Hence we only need to consider times 1 ≤ t ≤ n5. This proves the LP has a size
polynomial in n.

We will show that for each 1 ≤ t ≤ n5, the number of jobs whose intervals (Si, Si + Pi)
intersect time t is at least m′ with a probability of at most 1/n23; let Bt refer to the bad
event with respect to time t. To show Pr[Bt] ≤ 1/n23 fix a time t ∈ [0, n5]. Observe that
the probability that job i’s interval intersects time t is

∑
i,τ≤t qi,t−τ · xi,τ , and let Xi is the

0-1 random variable that becomes 1 if such an event happens. By the second constraints of
the LP, we have E

∑
iXi ≤ m. By the applying Bernstein inequalities (Theorem 21) with

∆ = m′−m, b = 1, and V ≤ m, we can upper bound the probability by exp(− ∆2

2V+2b∆/3) ≤
exp(− ε2m

2+2ε/3) ≤ 1
n12 . when m ≥ 36

ε2 log n and ε ≤ 1.
Now consider a fixed job i. The probability job i can be started at time Si as suggsted

by the LP is at least 1 − 1/n18 via a simple union bound over all times between 1 and
n5. If it is the case, we can charge i’s starting time to the LP cost. Otherwise, we can
still charge i’s expected starting time when it starts before time n10 to EPi ≥ 1. Now let
E(q) denote the event that job i starts between time nq and nq+1. Note that for event
E(q) to happen, there must be at least m jobs that have size at least nq−2 blocking all m
machines. Hence Pr[E(q)] ≤

(
n
m

)
· (1
nq−4)m ≤ 1

nm(q−5) ; here Markov inequliay was used with
EPi ≤ n2. Hence the expected starting time of job i when it is at least n10 is at most∑
q≥10 n

q+1 · Pr[E(q)] ≤ o(1) when m ≥ 3. Again, we can charge this to EPi ≥ 1. J

7 Concentration Inequalities

I Theorem 20 ([6]). Let the random variables X1, X2, ..., Xn be independent, with 0 ≤
Xi ≤ 1 for each i. Let Sn =

∑
Xi, let µ = E(Sn). Then, any δ > 0, Pr[Sn ≥ (1 + δ)µ] ≤

exp(− δ2µ
2(1+δ/3)) and Pr[Sn ≤ (1− δ)µ] ≤ exp(− 1

2δ
2µ).

I Theorem 21 ([6]). Let X1, X2, ..., Xn be n independent random variables such that for all
i ∈ [n], Xi ≤ b. Let Y =

∑n
i=iXi, µ := E[Y], and V := Var[Y]. Then it follow that

Pr[Y − µ ≥ ∆] ≤ exp(−∆2/(2V (1 + (b∆/3V)))).

Acknowledgements We thank Marc Uetz for bringing this problem to our attention, for
helpful discussions through the research process, and for his assistance during the writing
process.

STACS 2015

486 Stochastic Scheduling of Heavy-tailed Jobs

References
1 L. A. Adamic and B. A. Huberman. Zipf’s law and the internet. Glottometrics, 3:143–150,

2002.
2 Foto N. Afrati, Evripidis Bampis, Chandra Chekuri, David R. Karger, Claire Kenyon,

Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Martin Skutella, Clifford Stein, and
Maxim Sviridenko. Approximation schemes for minimizing average weighted completion
time with release dates. In FOCS, pages 32–44, 1999.

3 David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York, NY, USA, 2010.

4 W. Horn. Minimizing average flowtime with parallel machines. Operations Research,
21:846– 847, 2006.

5 Blachander Krishnamurthy and Jennifer Wexford. Web Protocols and Practice: HTTP/1.1,
Networking Protocols, Caching, and Traffic Measurement. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

6 Colin McDiarmid. Concentration. In Michel Habib, Colin McDiarmid, Jorge Ramirez-
Alfonsin, and Bruce Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathem-
atics, volume 16 of Algorithms and Combinatorics, pages 195–248. Springer Berlin Heidel-
berg, 1998.

7 N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online schedul-
ing. Mathematics of Operations Research, 31(3):513–525, 2006.

8 R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of LP-based priority policies. Journal of the ACM, 46:924–942, 1999.

9 Michael Pinedo. Scheduling Theory, Algorithms, and Systems. Springer, 2008.
10 M. H. Rothkopf. Scheduling with random service times. Management Science, 12:703–713,

1966.
11 A. S. Schulz. Stochastic online scheduling revisited. In B. Yang, D.-Z. Du, and C. Wang,

editors, Combinatorial Optimization and Applications, volume 5165 of Lecture Notes in
Computer Science, pages 448–457. Springer, 2008.

12 M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints. SIAM
Journal on Computing, 34:788–802, 2005.

13 Martin Skutella, Maxim Sviridenko, and Marc Uetz. Stochastic scheduling on unrelated
machines. In STACS, pages 639–650, 2014.

14 Gideon Weiss. Approximation results in parallel machines stochastic scheduling. Annals of
Operations Research, 26:195–242, 1990.

15 Gideon Weiss. Turnpike optimality of Smith’s rule in parallel machines stochastic schedul-
ing. Mathematics of Operations Research, 17:255–270, 1992.

16 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

On Finding the Adams Consensus Tree
Jesper Jansson1, Zhaoxian Li2, and Wing-Kin Sung2,3

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
E-mail: jj@kuicr.kyoto-u.ac.jp
Funded by The Hakubi Project and KAKENHI grant number 26330014.

2 School of Computing, National University of Singapore, 13 Computing Drive,
Singapore 117417
E-mail: lizhaoxianfgg@gmail.com, ksung@comp.nus.edu.sg

3 Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672

Abstract
This paper presents a fast algorithm for finding the Adams consensus tree of a set of conflicting
phylogenetic trees with identical leaf labels, for the first time improving the time complexity of
a widely used algorithm invented by Adams in 1972 [1]. Our algorithm applies the centroid path
decomposition technique [9] in a new way to traverse the input trees’ centroid paths in unison,
and runs in O(kn log n) time, where k is the number of input trees and n is the size of the leaf
label set. (In comparison, the old algorithm from 1972 has a worst-case running time of O(kn2).)
For the special case of k = 2, an even faster algorithm running in O(n · logn

log logn) time is provided,
which relies on an extension of the wavelet tree-based technique by Bose et al. [6] for orthogonal
range counting on a grid. Our extended wavelet tree data structure also supports truncated
range maximum queries efficiently and may be of independent interest to algorithm designers.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, J.3 Life and Medical Sciences

Keywords and phrases phylogenetic tree, Adams consensus, centroid path, wavelet tree

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.487

1 Introduction

Scientists use phylogenetic trees to describe treelike evolutionary history [10, 17, 20, 22]. A
consensus tree is a phylogenetic tree that reconciles two or more given phylogenetic trees with
identical leaf labels but different branching patterns, e.g., obtained from alternative data
sets or obtained by resampling during phylogenetic reconstruction or phylogenetic analysis.

The concept of a consensus tree was introduced by Adams in 1972 [1], and the tree
constructed by the algorithm in [1] is nowadays referred to as the Adams consensus tree. Since
conflicting branching information can be resolved in various ways, a number of alternative
definitions of consensus trees have been proposed and analyzed in the literature since then;
see, e.g., the surveys in [8], Chapter 30 in [10], or Chapter 8.4 in [22]. However, the Adams
consensus tree was the only existing consensus tree of any kind for several years and thus
gained popularity among the research community early on. It has been implemented in
classic phylogenetics software packages such as PAUP* [23] and COMPONENT [18]. Over
the decades, many articles in biology have utilized the Adams consensus tree to reach their
conclusions; some examples of highly cited ones include [15, 19, 24].

Apart from its historical significance, two useful features of the Adams consensus tree
are that it preserves the nesting information common to all the input trees [2] and that it

© Jesper Jansson, Zhaoxian Li, and Wing-Kin Sung;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 487–499

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.487
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

488 On Finding the Adams Consensus Tree

does not introduce any new rooted triplet information [8]. Another feature of the Adams
consensus tree is its robustness; adding extra copies of any of the input trees will not affect
the output [10], whereas the structure of the so-called majority rule consensus tree [16] or
the frequency difference consensus tree [12] may change completely. In addition, the Adams
consensus tree is insensitive to the order in which the input trees are provided [1], as opposed
to the greedy consensus tree [8, 11]. Finally, it may be much more informative than the
strict consensus tree [21] and the loose consensus tree [7] in cases where a few leaves are in
the wrong positions in some of the input trees due to noisy data (for an example, refer to
Figure 1 in reference [2]).

The original algorithm of [1] for building the Adams consensus tree has a worst-case
running time of O(kn2), where k is the number of input trees and n is the size of the leaf
label set [20]. Despite its practical usefulness, its running time has not been improved in
the last forty years. The purpose of this paper is to achieve a better time complexity. The
algorithm of [1] is reviewed in Section 1.2, and Section 2 shows that its expected running time
is in fact o(kn2) for trees generated by some realistic models of evolution. Next, Section 3
gives an improved algorithm whose worst-case running time is O(kn log n), based on a new
way of applying the centroid path decomposition technique [9]. Finally, Section 4 presents
an even faster method for the case k = 2 with a worst-case running time of O(n · logn

log logn),
using an extension of the wavelet tree of Bose et al. [6] (described in Section 4.2).

1.1 Definitions and notation
We will use the following definitions. A phylogenetic tree is a rooted, unordered, leaf-labeled
tree such that all leaves have different labels and every internal node has at least two children.
Below, phylogenetic trees are called “trees” for short, and every leaf in a tree is identified
with its label. All edges in a tree are assumed to be directed from the root to the leaves.

Let T be a tree. The set of all nodes in T and the set of all leaves in T are denoted by
V (T) and Λ(T), respectively. For any u, v ∈ V (T), u is called a descendant of v and v is
called an ancestor of u if there exists a (possibly empty) directed path in T from v to u;
if this path is nonempty then we write u ≺ v and call u a proper descendant of v and v a
proper ancestor of u. For any u ∈ V (T), Tu is the subtree of T rooted at u, i.e., the subgraph
of T induced by the node u and all of its proper descendants in T . For any u ∈ V (T), let
ChildT (u) be the set of all children of u in T . The depth of any u ∈ V (T), denoted by
depthT (u), is the number of edges on the unique path from the root of T to u. For any
nonempty X ⊆ V (T), lcaT (X) is the lowest common ancestor in T of the nodes in X.

For any nonempty B ⊆ Λ(T), define the restriction of T to B, denoted by T |B, as the
tree T ′ with leaf label set B and node set {lcaT ({u, v}) : u, v ∈ B} that preserves the ancestor
relations from T , i.e., that satisfies lcaT (B′) = lcaT

′
(B′) for all nonempty B′ ⊆ B.

Next, let S = {T1, T2, . . . , Tk} be any set of trees satisfying Λ(T1) = Λ(T2) = · · · =
Λ(Tk) = L for some leaf label set L. The Adams consensus tree of S [1, 2] is the unique
tree T with Λ(T) = L for which the following two properties hold:

For any A,B ⊆ L, if lcaTj (A) ≺ lcaTj (B) in every Tj ∈ S then lcaT (A) ≺ lcaT (B).
For any u, v ∈ V (T), if u ≺ v in T then lcaTj (Λ(Tu)) ≺ lcaTj (Λ(T v)) in every Tj ∈ S.

See Figure 1 for an example. Importantly, it was proved in [2] that these two properties are
satisfied by the output of the algorithm in [1] (reviewed in Section 1.2 below). This means
that to prove the correctness of a new algorithm for building the Adams consensus tree, one
just needs to show that its output is equal to the output of the algorithm in [1].

J. Jansson, Z. Li, and W.-K. Sung 489

T :
1

a b

d

e

f

c

T :

e

c

b

2

f

a

d

b

a

cd

fe

T :
3

c db

a e f

Adams:

Figure 1 An example. Let S = {T1, T2, T3} as above with Λ(T1) = Λ(T2) = Λ(T3) =
{a, b, c, d, e, f}. The Adams consensus tree of S is shown on the right. Also note that in this
particular example, the Adams consensus tree of S does not equal the Adams consensus tree
of {A, T3}, where A is the Adams consensus tree of {T1, T2}.

For any input set S of trees with identical leaf label sets, we write S = {T1, T2, . . . , Tk}
and define L = Λ(T1) = Λ(T2) = · · · = Λ(Tk). To express the time complexity of any
algorithm computing the Adams consensus tree of S, we define k = |S| and n = |L|.

1.2 Previous work
The Adams consensus tree can be computed by the algorithm from [1], which we will now
describe. From here on, it will be referred to as Old_Adams_consensus. The pseudocode is
given in Algorithm 1.

For any tree T , define π(T) = {Λ(T c) : c ∈ ChildT (r), where r is the root of T}. Observe
that π(T) is a partition of Λ(T). Next, for any set of trees S = {T1, T2, . . . , Tk} with Λ(T1) =
Λ(T2) = · · · = Λ(Tk) = L for a leaf label set L, define π(S) to be the partition of L in which,
for every part B ∈ π(S), it holds that B = ∩kj=1Λ(T cjj) for some child cj of the root of Tj for
each j ∈ {1, 2, . . . , k}. Thus, π(S) is the product of the partitions π(T1), π(T2), . . . , π(Tk). As
an example, in Figure 1, we have π(T1) =

{
{a, b, c, d, e}, {f}

}
, π(T2) =

{
{a}, {b, c, d, e, f}

}
,

π(T3) =
{
{a, b, c, d}, {e, f}

}
, and π(S) =

{
{a}, {b, c, d}, {e}, {f}

}
.

To compute π(S), one can apply Procedure Compute_partition in Algorithm 2. It
encodes each ` ∈ L by a vector of length k whose jth entry mj(`) (for j ∈ {1, 2, . . . , k})
indicates which child of the root of Tj is an ancestor of `. In this way, any two leaf labels

Algorithm 1 Algorithm Old_Adams_consensus, adapted from [1].
Algorithm Old_Adams_consensus
Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk).
Output: The Adams consensus tree of S.

1: if T1 has only one leaf then let T := T1; /* Base case of the recursion */
2: else /* General case of the recursion */
3: π := Compute_partition(S);
4: for every B ∈ π do TB := Old_Adams_consensus({T1|B, T2|B, . . . , Tk|B});
5: Create a tree T whose root is the parent of the root of TB for every B ∈ π;
6: end if
7: return T ;

STACS 2015

490 On Finding the Adams Consensus Tree

Algorithm 2 Procedure Compute_partition.
Procedure Compute_partition
Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L′.
Output: A list of all parts in the partition π(S) of L′.

1: Fix an arbitrary left-to-right ordering of the children of the root of every Tj ∈ S and
denote the ith child (according to this ordering) of the root of Tj by cij ;

2: for every ` ∈ L′ do compute the vector (m1(`),m2(`), . . . ,mk(`)), where for j ∈
{1, 2, . . . , k}, mj(`) = i if and only if ` is a descendant of cij in Tj ;

3: Put the vectors (m1(`),m2(`), . . . ,mk(`)) for all ` ∈ L′ in a list W and sort W;
4: Do a single scan of W to identify the parts in π(S) and return them;

in L belong to the same part in π(S) if and only if their vectors are identical. By sorting the
list W of all vectors and scanning W to find vectors that are identical, the parts in π(S) are
obtained.

Old_Adams_consensus first computes π(S). It then recursively constructs the Adams
consensus tree of {T1|B, T2|B, . . . , Tk|B} for each B in π(S) and attaches all of them to a
newly created common root node. By Theorem 3 in [2], this yields the Adams consensus
tree of S. According to [20], the time complexity of Old_Adams_consensus is O(kn2).

2 Preliminaries

This section reanalyzes the time complexity of Old_Adams_consensus. For any B ⊆ L,
say that B is a relevant block if at any point of the algorithm’s execution, Step 4 makes
a recursive call with {T1|B, T2|B, . . . , Tk|B} as the argument. Define B = {B : B is a
relevant block}. For every ` ∈ L, define B(`) = {B ∈ B : ` ∈ B}.

I Lemma 1. For every ` ∈ L, it holds that |B(`)| ≤ minkj=1 depth
Tj (`).

Proof. Step 3 of Old_Adams_consensus initially generates a partition π1 of L, and there
exists exactly one relevant block B1 in π1 such that ` ∈ B1. Then, during the recursive
call Old_Adams_consensus ({T1|B1, T2|B1, . . . , Tk|B1}), a partition π2 of B1 is generated
in the same way, and there exists exactly one relevant block B2 in π2 such that ` ∈ B2. This
process is repeated until a relevant block of the form Bm = {`} is reached and the recursion
stops. At any recursion level i, when Old_Adams_consensus({T1|Bi, T2|Bi, . . . , Tk|Bi})
makes a call to Old_Adams_consensus ({T1|Bi+1, T2|Bi+1, . . . , Tk|Bi+1}), it always holds
that depthTj |Bi+1(`) ≤ depthTj |Bi(`)− 1 for all trees Tj ∈ S. Hence, the number of recursive
calls that involve ` is upper-bounded by minkj=1 depth

Tj (`). J

I Theorem 2. Old_Adams_consensus runs in O(k ·
∑
`∈L minkj=1 depth

Tj (`)) time.

Proof. We first explain how to implement the procedure Compute_partition to run in
O(k|L′|) time, where L′ is the leaf label set of its input S. In Step 2, use the level ancestor
data structure from [4] as follows: Spend O(|L′|) time to preprocess each Tj ∈ S so that the
ancestor of any ` ∈ L′ at depth 1 in Tj can be retrieved in O(1) time. This preprocessing takes
O(k|L′|) time, and finding the vectors (m1(`),m2(`), . . . ,mk(`)) for all ` ∈ L′ subsequently
takes a total of O(k|L′|) time. In Step 3, sort the list W in O(k|L′|) time by radix sort.

Next, we consider Old_Adams_consensus. Before running the algorithm, use the method
in Section 8 of [9] to preprocess each Tj ∈ S in O(n) time so that Tj |B for any B ⊆ L

can be constructed in O(|B|) time. This takes O(kn) time in total. It follows from the

J. Jansson, Z. Li, and W.-K. Sung 491

definition of Tj |B in Section 1.1 that for any A (B, (Tj |B)|A = Tj |A holds, so the
same preprocessing works for all recursion levels and does not need to be repeated during
recursive calls. Excluding the time required by its recursive calls, the running time of
Old_Adams_consensus({T1|B, T2|B, . . . , Tk|B}) then becomes O(k|B|) for each B ∈ B.
In total, the running time of Old_Adams_consensus(S) is O(kn +

∑
B∈B k|B|) = O(k ·∑

B∈B |B|) = O(k ·
∑
`∈L |B(`)|). By Lemma 1,

∑
`∈L |B(`)| ≤

∑
`∈L minkj=1 depth

Tj (`).
The theorem follows. J

Since |L| = n and depthTj (`) < n for all ` ∈ L and Tj ∈ S, Theorem 2 implies that the
worst-case running time of Old_Adams_consensus is O(kn2), as already mentioned in [20].
However, if the average leaf depth is small then the running time will be better. According
to Theorem 2, we obtain:

I Corollary 3. If S is a set of trees with expected average leaf depth α then the expected
running time of Old_Adams_consensus is O(knα).

For example, the expected average leaf depth in a random binary phylogenetic tree
with n leaves generated in the Yule-Harding model [5, 14, 20], the uniform model [5, 20],
and the activity model [14] (with the activity parameter p set to 1

2) is O(log n) [5, 14],
O(n1/2) [5], and O(n1/2) [14], respectively. In these cases, the expected running time of
Old_Adams_consensus will be O(kn log n), O(kn1.5), and O(kn1.5).

3 New algorithm for k input trees

This section gives a more efficient solution for computing the Adams consensus tree of k input
trees. The algorithm is called New_Adams_consensus_k and its worst-case running time is
O(kn log n).

The main idea is to use the centroid path decomposition technique [9] in a new manner
to avoid making recursive calls to “large” subproblems, and treat them iteratively instead.
Essentially, by utilizing Lemma 4 below, the algorithm implicitly computes π(S) in such a
way that the Adams consensus tree can be constructed recursively for all parts in π(S), except
for one. To handle the remaining part, its corresponding Adams consensus tree is constructed
iteratively by going down the centroid paths in all the trees in unison and applying Lemma 4
at each level. (As a side note, this kind of “synchronized centroid path traversal” appears to
be a novel way of applying the centroid path decomposition technique.) Finally, the Adams
consensus tree of S is assembled by attaching the root of each tree constructed for the parts
in π(S) to a new root node.

The details of the algorithm are described below, and the pseudocode is listed in Al-
gorithm 3.

Some additional definitions are needed. Recall from [9] that a centroid path in a tree T is
a path in T of the form P = 〈pα, pα−1, . . . , p1〉, where the node pw−1 for every w ∈ {2, . . . , α}
is any child of pw with the maximum number of leaf descendants, and p1 is a leaf. Let P be
a centroid path in a tree T . For any u ∈ V (T) such that u does not belong to P but the
parent of u does, the subtree Tu is called a side tree of P . For any side tree τ of a centroid
path starting at the root of a tree T , the property |Λ(τ)| ≤ |Λ(T)|/2 holds.

A delete operation on any non-root, internal node u in a tree is the operation of letting
all of u’s children become children of the parent of u, and then removing u and the edge
between u and its parent. A fan tree is a tree in which either all the leaves are children of
the root, or there is just a single leaf.

STACS 2015

492 On Finding the Adams Consensus Tree

Algorithm 3 Algorithm New_Adams_consensus_k.
Algorithm New_Adams_consensus_k
Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.
Output: The Adams consensus tree of S.

1: if T1 has only one leaf then
2: T := T1;
3: else
4: for j := 1 to k do
5: Let Pj be a centroid path in Tj starting at the root, construct the tree T ′j based

on Pj , and preprocess Tj ;
6: end for
7: h := 0;
8: repeat
9: h := h+ 1;

10: Xh :=
{
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree attached to the

root of T ′j
}
;

11: πXh := Compute_restricted_partition({T ′1, T ′2, . . . , T ′k};Xh);
12: for j := 1 to k do T ′j := T ′j |(Λ(T ′j) \Xh);
13: until Λ(T ′1) = ∅;
14: for j := 1 to k do
15: for w := 1 to h do construct Ti|B for all B ∈ πXw ;
16: end for
17: for w := h downto 1 do
18: for B ∈ πXw do TB := New_Adams_consensus_k({T1|B, T2|B, . . . , Tk|B});
19: Create a tree Qw whose root is the parent of the root of every TB , B ∈ πXw ;
20: if w < h then attach the root of Qw+1 as a child of the root of Qw;
21: end for
22: T := Q1;
23: end if
24: return T ;

For each j ∈ {1, 2, . . . , k}, let Pj be a centroid path in Tj that starts at the root of Tj .
Let T ′j be the tree obtained by taking a copy of Tj and doing a delete operation on every
non-root, internal node whose parent does not belong to Pj ; note that by performing all
delete operations in top-down order, T ′j can be constructed in O(n) time. Thus, T ′j consists
of the centroid path Pj with a collection of fan trees attached to it, and each such fan tree’s
leaf label set is equal to the leaf label set of one of the side trees of Pj . The T ′j-tree is a
useful summary of Tj that enables us to quickly retrieve the leaf label set of any side tree
in Tj or to check which side tree in Tj that a specified leaf belongs to in O(1) time.

As in Old_Adams_consensus above, New_Adams_consensus_k needs to compute the
partition π(S) of L to determine the branching structure at the top level of the Adams
consensus tree. However, for efficiency reasons, it does not compute π(S) directly. Instead,
it computes a restricted partition, defined as follows: For any X ⊆ L, let π(S;X) =
{B ∩ X : B ∈ π(S) and |B ∩ X| ≥ 1}. In other words, π(S;X) is the partition π(S)
restricted to elements in X. Note that π(S;X) may not be a true partition of X as
it can be a singleton. To continue the example from Figure 1 in Section 1.2 where we
had π(S) =

{
{a}, {b, c, d}, {e}, {f}

}
, if X = {a, b, c} then π(S;X) =

{
{a}, {b, c}

}
and if

X = {b, c} then π(S;X) =
{
{b, c}

}
.

J. Jansson, Z. Li, and W.-K. Sung 493

I Lemma 4. Let X =
{
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree attached

to the root of T ′j
}
. If X 6= L then π({T1, T2, . . . , Tk}) = π({T ′1, T ′2, . . . , T ′k};X) ∪ {L \X},

and if X = L then π({T1, T2, . . . , Tk}) = π({T ′1, T ′2, . . . , T ′k};X).

Proof. X is also equal to
{
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a side tree of Pj

attached to the root of Tj
}
. Consider any B ∈ π({T1, T2, . . . , Tk}). If B contains at least one

element from X then B ⊆ X, and consequently B ∩X = B and B ∈ π({T1, T2, . . . , Tk};X).
On the other hand, if B contains no elements from X then B must be equal to L \
X. Therefore, π({T1, T2, . . . , Tk}) ⊆ π({T1, T2, . . . , Tk};X) ∪ {L \ X} when X 6= L, and
π({T1, T2, . . . , Tk}) ⊆ π({T1, T2, . . . , Tk};X) when X = L.

Next, consider any B ∈ π({T1, T2, . . . , Tk};X). By definition, B ∈ π({T1, T2, . . . , Tk}).
Also, if X 6= L then L \ X is nonempty and consists of all leaves that are descend-
ants of the child of the root of Tj that lies on Pj for every j ∈ {1, 2, . . . , k}; since
all these leaves belong to the same part in π(Tj) for each j ∈ {1, 2, . . . , k}, we have
L \X ∈ π({T1, T2, . . . , Tk}). Thus, π({T1, T2, . . . , Tk};X) ∪ {L \X} ⊆ π({T1, T2, . . . , Tk})
when X 6= L, and π({T1, T2, . . . , Tk};X) ⊆ π({T1, T2, . . . , Tk}) when X = L.

Finally, π({T ′1, T ′2, . . . , T ′k};X) = π({T1, T2, . . . , Tk};X) by the construction of the T ′j-
trees. The lemma follows. J

We now describe New_Adams_consensus_k.
First, for each j ∈ {1, 2, . . . , k}, Steps 4–6 build Pj and T ′j and preprocess Tj in O(n)

time as in Section 8 of [9] so that for any specified partition π of L, the set of all trees of
the form Tj |Bi with Bi ∈ π can be constructed in O(n) total time later on. The algorithm
then enters a repeat-loop (Steps 8–13) that computes and stores the restricted partition
π({T ′1, T ′2, . . . , T ′k};X1), where X1 is the subset X of Λ(T ′1) (= Λ(T ′2) = . . . = Λ(T ′k)) defined
in Lemma 4. By Lemma 4, the parts in π({T ′1, T ′2, . . . , T ′k};X1) along with Λ(T ′1) \X1 yield
the partition at the top level of the Adams consensus tree. After that, the leaves belonging
to X1 are removed from all the T ′j-trees. The process is repeated until the T ′j-trees are empty,
and each subsequent iteration of the repeat-loop mimics the computations at one recursion
level in Old_Adams_consensus that determine how to further partition the leaves in the
set Λ(T ′1)\X1. Next, the algorithm constructs Tj |B for every part B previously computed by
the repeat-loop for all j ∈ {1, 2, . . . , k} (Steps 14–16). Then, the Adams consensus tree Qw
at each level w is built by recursively computing the Adams consensus tree TB for every
part B in π({T ′1, T ′2, . . . , T ′k};Xw) at this level (Step 18), combining the obtained solutions
(Step 19), and attaching the Adams consensus tree Qw+1 for the part corresponding to L\Xw

in Lemma 4 (Step 20). Lastly, the tree Q1 obtained at the topmost level is returned (Step 24).
The correctness follows from Lemma 4 and the correctness of Old_Adams_consensus.

The time complexity is given by the next theorem:

I Theorem 5. New_Adams_consensus_k runs in O(kn log n) time.

Proof. Denote the time complexity of New_Adams_consensus_k({T1|L′, T2|L′, . . . , Tk|L′})
for any L′ ⊆ L by t(L′).

We derive a recurrence for t(L′) in the following way. Steps 4–6 build Pj and T ′j and pre-
process Tj in O(|L′|) time for each j ∈ {1, 2, . . . , k}, i.e., in O(k|L′|) time in total. Iteration h
of the repeat-loop computes a set Xh in Step 10, which takes O(k|Xh|) time by using the
T ′j-trees, and the restricted partition πXh = π({T ′1, T ′2, . . . , T ′k};Xh) of Xh in Step 11, which
also takes O(k|Xh|) time by using the technique from Procedure Compute_partition in
Algorithm 2 and the first part of the proof of Theorem 2. To implement Step 12 in O(k|Xh|)
time, update each T ′j-tree directly by removing all leaves that belong to Xh as well as any pre-
viously internal node that turns into a leaf as a result and contracting any outgoing edge from

STACS 2015

494 On Finding the Adams Consensus Tree

a node of degree 1. Constructing all the trees Tj |B in Steps 14–16 takes a total of O(k|L′|)
time with the technique from Section 8 of [9]. Finally, for each w ∈ {1, 2, . . . , h}, the recursive
calls in Step 18 take

∑
B∈πXw

t(B) time and building Qw in Steps 19 and 20 takes O(|Xw|)
time. In total, the time complexity is t(L′) = O(k|L′|) +

∑h
w=1

(
O(k|Xw|) +

∑
B∈πXw

t(B)
)
.

To solve the recurrence, we use the fact that
⋃h
w=1 πXw is a partition of L′. Write

πL′ =
⋃h
w=1 πXw . Then t(L′) = O(k|L′|) +

∑
B∈πL′ t(B). Since every part B ∈ πL′ is of

size at most |L′|/2 according to the definition of a side tree of a centroid path, the problem
size is reduced by (at least) half for each successive recursive call. Thus, there are O(log |L′|)
recursion levels. The total size of all subproblems in each recursive level is O(|L′|), so each
recursion level takes O(k|L′|) time. This gives t(L′) = O(k|L′| log |L′|). J

4 New algorithm for two input trees

Here, we present an even faster algorithm for the case k = 2. The algorithm is named
New_Adams_consensus_2 and has a worst-case running time of O(n · logn

log logn).

4.1 Outline of the algorithm

Consider any recursive call of the form Old_Adams_consensus({T1|B, T2|B}) for some B ⊆ L
in the algorithm in Section 1.2. To obtain the partition of the leaves in B, the algorithm will
spend Ω(|B|) time using the procedure Compute_partition. A faster method for doing the
partitioning is needed to improve the overall running time. First, we observe that by the
definition of the algorithm, B always satisfies B = Λ(Tu1) ∩ Λ(T v2) for some pair of nodes
u ∈ V (T1), v ∈ V (T2). This means that successive recursive calls to the algorithm can
be specified by pairs of vertices from T1 and T2. Secondly, we observe that the algorithm
needs to proceed recursively from (u, v) only to those (u′, v′), where u′ ∈ ChildT1(u) and
v′ ∈ ChildT2(v), for which |Λ(Tu′

1) ∩ Λ(T v′

2)| > 0. Based on these observations, define
Zu,v = {(u′, v′) : u′ ∈ ChildT1(u), v′ ∈ ChildT2(v), |Λ(Tu′

1) ∩ Λ(T v′

2)| > 0}. We have:

I Lemma 6. Suppose u ∈ V (T1) and v ∈ V (T2) are given. Let B = Λ(Tu1) ∩ Λ(T v2),
γ = lcaT1(B), and δ = lcaT2(B). If |B| > 1 then π({T1|B, T2|B}) = π({Tu1 |B, T v2 |B}) =
π({T γ1 |B, T δ2 |B}) = {Λ(Tu′

1) ∩ Λ(T v′

2) : (u′, v′) ∈ Zγ,δ}.

Proof. By definition, π({T γ1 |B, T δ2 |B}) is equal to {Λ(Tu′

1)∩Λ(T v′

2) : u′ ∈ ChildT1(γ), v′ ∈
ChildT2(δ), Λ(Tu′

1) ∩ Λ(T v′

2) 6= ∅} = {Λ(Tu′

1) ∩ Λ(T v′

2) : (u′, v′) ∈ Zγ,δ}. J

Algorithm New_Adams_consensus_2 (summarized in Algorithm 4) uses this lemma to
compute the Adams consensus tree of {Tu1 |B, T v2 |B} for any two specified nodes u ∈ V (T1),
v ∈ V (T2), where B = Λ(Tu1) ∩ Λ(T v2). (Selecting u and v to be the roots of T1 and T2 thus
yields the Adams consensus tree of T1 and T2.)

The algorithm works as follows. If |B| = 1 then the answer is just the common leaf in
Λ(Tu1) ∩ Λ(T v2). Otherwise, the algorithm computes γ = lcaT1(B) and δ = lcaT2(B), calls a
procedure Compute_Z (to be described in Section 4.3) to construct Zγ,δ, and then, for every
(u′, v′) ∈ Zγ,δ, computes its corresponding Adams consensus tree Tu′,v′ recursively. The
Adams consensus tree of {Tu1 |B, T v2 |B} is obtained by attaching the computed Tu′,v′-trees
to a newly created common root node. Lemma 6 implies that this gives the same output as
Old_Adams_consensus, so the correctness is guaranteed by the correctness of the latter.

J. Jansson, Z. Li, and W.-K. Sung 495

Algorithm 4 Algorithm New_Adams_consensus_2.
Algorithm New_Adams_consensus_2
Input: u ∈ V (T1), v ∈ V (T2), where T1, T2 are two given trees with Λ(T1) = Λ(T2).
Output: The Adams consensus tree of {Tu1 |B, T v2 |B}, where B = Λ(Tu1) ∩ Λ(T v2).

1: Compute c := |Λ(Tu1) ∩ Λ(T v2)|;
2: if c = 1 then
3: Let T be a tree consisting of the only common leaf in Λ(Tu1) ∩ Λ(T v2);
4: else
5: Find the leftmost leaf a and the rightmost leaf a′ in T1|(Λ(Tu1) ∩ Λ(T v2)), and the

leftmost leaf b and the rightmost leaf b′ in T2|(Λ(Tu1) ∩ Λ(T v2));
6: γ := lcaT1(a, a′); δ = lcaT2(b, b′);
7: Z := Compute_Z(γ, δ);
8: Let T be a tree consisting of a single root node r;
9: for every (u′, v′) ∈ Z do

10: Tu′,v′ := New_Adams_consensus_2(u′, v′);
11: Attach Tu′,v′ as a child of r;
12: end for
13: end if
14: return T ;

4.2 Auxiliary data structure for orthogonal range counting on a grid
The time complexity of New_Adams_consensus_2 is analyzed in Section 4.3 below. It relies
on an efficient data structure for orthogonal range counting on a grid, developed in this
subsection and summarized in Lemma 8. This data structure is an extension of the wavelet
tree-based data structure used by Bose et al. [6] for supporting orthogonal range counting
queries on a grid. Our extension consists of also supporting truncated range maximum (or
minimum) queries efficiently, where the objective is to report the point with the maximum
(or minimum) x-coordinate inside any query rectangle [1..`]× [s..s′], if any. Furthermore, we
bound the time needed to construct the data structure since this is crucial in our application.

Firstly, for smaller grids, we have:

I Lemma 7. Let N = {(1, N [1]), . . . , (n,N [n])} be a set of points on an n× t grid, where
t = O(logε n) for any constant ε with 0 < ε < 1/2, such that every column contains exactly
one point. We can build a data structure in O(n) time after which: (i) counting the number
of points inside any query rectangle [1..`]× [s..s′] takes O(1) time; and (ii) reporting the point
with the maximum (or minimum) x-coordinate inside any query rectangle [1..`]× [s..s′] takes
O(1) time.

Proof. Omitted from the conference version of the paper due to space constraints. J

For larger grids, we apply Lemma 7 to obtain:

I Lemma 8. Let N = {(1, N [1]), . . . , (n,N [n])} be a set of points on an n×n grid such that
every column contains exactly one point and every row contains exactly one point. We can
build a data structure D(N) in O(n · logn

log logn) time after which: (i) counting the number of
points inside any query rectangle [x..x′]× [y..y′] takes O(logn

log logn) time; and (ii) reporting the
point with the maximum (or minimum) x-coordinate inside any query rectangle [x..x′]× [y..y′]
takes O(logn

log logn) time.

STACS 2015

496 On Finding the Adams Consensus Tree

Proof. The basic data structure is the same as in the proof of Lemma 6 in [6], namely a
t-ary wavelet tree. Here, we select t = logε n for any 0 < ε < 0.5.

On the top level, we project the n points into the 2d-space [1..n]× [1..t] by converting
each point (i,N [i]) to (i,N1[i]), where N1[i] = bN [i]/(n/t)c. We use Lemma 7 to maintain a
range query data structure for {(i,N1[i]) : i = 1, . . . , n}, and also build a rank data structure
that lets us compute rankj(i) in N1[1..n] (here, rankj(i) is the number of occurrences of
j in N1[1..i]). This data structure can be built in O(n) time. To be precise, we store
rankj(i) for every i which is a multiple of log2 n, requiring O(nt logn

log2 n
) = O(n) bits space. We

also store rankj(i)− rankj(log2 nb i
logn c) for every i which is a multiple of logn

log logn , requiring
O(tn log logn

logn log log nt) = O(n) bits. We precompute a table occtable(x1, . . . , x`, j) that stores
the number of occurrences of j in x1, . . . , x`, where 1 ≤ xi ≤ t, 1 ≤ j ≤ t, ` ≤ logn

log logn . This
table has o(n) entries and can be computed in o(n) time. By taking x = b i

log2 n
c log2 n and

y = b i log logn
logn c logn

log logn , we have rankj(i) = rankj(x)+(rankj(y)−rankj(x))+ occtable(N [i−
y + 1], . . . , N [i], j), which can be computed in constant time.

On the second level, based on N1[], we partition the n points into t point sets N2,1, . . . , N2,t.
The set N2,j contains all the points where N1[i] = j. Let n2,j = |N2,j |. Every point (i,N [i])
in N2,j is projected into the 2d-space [1..n2,j] × [1..t]. Suppose the rank of i is r among
all the x-coordinates of the points in N2,j . Then, (i,N [i]) is converted to (r,N2,j [r]) where
N2,j [r] = b(N [i]− (n/t)j)/(n/t2)c. We use Lemma 7 again to maintain a range query data
structure for these n2,j points. We also build a rank data structure for N2,j [1..n2,j] in O(n2,j)
time. We continue the process recursively and build the above data structures on each level.
Since there are logt n levels, the entire data structure can be constructed in O(n logt n) time.

Next, given any query rectangle [`1..`2] × [s1..s2], we proceed in a similar manner as
in [6]. Let z1 = ds1/(n/t)e and z2 = bs2/(n/t)c. The query is partitioned into: (1) [`1..`2]×
[s1..(n/t)z1]; (2) [`1..`2]× [(n/t)z1 + 1..(n/t)z2]; and (3) [`1..`2]× [(n/t)z2 + 1..s2].

Query (2) is equivalent to the query [`1..`2]× [z1 + 1..z2] among the points in {(i,N1[i]) :
i = 1, . . . , n}, and can be solved in O(1) time according to Lemma 7. Let x1 = rankz1−1(`1)
and x2 = rankz1−1(`2), and denote y1 = s1 − (n/t)(z1 − 1) and y2 = s2 − (n/t)(z2 − 1).
Query (1) is equivalent to the query [x1..x2] × [y1..y2] among the points in N2,z1−1. We
handle this query recursively. Query (3) is handled in the same way. As there are logt n levels
and each level takes O(1) time, the query is answered in O(logt n) = O(logn

log logn) time. J

4.3 Time complexity
This subsection explains how to implement New_Adams_consensus_2. Do the following
preprocessing:

Fix an arbitrary left-to-right ordering of the children at every node in T1. For i ∈
{1, 2, . . . , n}, let L1(i) be the ith leaf in T1 in the resulting left-to-right ordering. (Thus,
(L1(1), L1(2), . . . , L1(n)) is a permutation of L.) Define L2(i) for i ∈ {1, 2, . . . , n} analog-
ously using T2. Let N =

{
(L−1

1 (`), L−1
2 (`)) : ` ∈ L

}
and build the data structure D(N)

from Lemma 8.
For j ∈ {1, 2}, preprocess Tj in O(n) time so that any lcaTj (B)-query can be answered
in O(|B|) time [3, 13].
As in the proof of Theorem 2 in Section 2 above, preprocess Tj for j ∈ {1, 2} with the
level ancestor data structure of [4] in O(n) time so that the ancestor of any ` ∈ L at
depth 1 in Tj can be returned in O(1) time. Also preprocess Tj for j ∈ {1, 2} in O(n)
time as in Section 8 of [9] so that Tj |B for any B ⊆ L can be constructed in O(|B|) time.

J. Jansson, Z. Li, and W.-K. Sung 497

The preprocessing takes O(n · logn
log logn) time in total.

Next, for any pair of siblings u, u′ ∈ V (Tj), j ∈ {1, 2}, let Tu..u
′

j denote the set of all
rooted subtrees of the form T xj , where x belongs to the interval of siblings [u, . . . , u′] in Tj ,
and define Λ(Tu..u′

j) =
⋃
x∈[u,...,u′] Λ(T xj).

I Lemma 9. Given the data structure D(N) in Lemma 8, for any siblings u and u′ in T1
and any siblings v and v′ in T2, the value of |Λ(Tu..u′

1)∩Λ(T v..v′

2)| can be found in O(logn
log logn)

time. Furthermore, the leftmost and rightmost leaves in T1 (or T2) among all leaves in
Λ(Tu..u′

1) ∩ Λ(T v..v′

2) can be reported in O(logn
log logn) time.

Proof. Let lu be the leftmost leaf in Tu1 and ru′ the rightmost leaf in Tu
′

1 . Then each
` ∈ Λ(Tu..u′

1) satisfies L−1
1 (lu) ≤ L−1

1 (`) ≤ L−1
1 (ru′). Similarly, each ` ∈ Λ(T v..v′

2) satisfies
L−1

2 (lv) ≤ L−1
2 (`) ≤ L−1

2 (rv′), where lv is the leftmost leaf in T v2 and rv′ the rightmost
leaf in T v

′

2 . Hence, any ` ∈ L belongs to Λ(Tu..u′

1) ∩ Λ(T v..v′

2) if and only if the point
(L−1

1 (`), L−1
2 (`)) lies in the rectangle defined by [L−1

1 (lu)..L−1
1 (ru′)]× [L−1

2 (lv)..L−1
2 (rv′)] on

the grid represented by D(N). By Lemma 8, the lemma follows. J

Lemma 9 allows the Zu,v-sets to be computed quickly by the procedure Compute_Z shown
in Algorithm 5. More precisely:

I Lemma 10. Given the data structure D(N) in Lemma 8, the procedure Compute_Z can
compute the set Zu,v for any u ∈ V (T1) and v ∈ V (T2) in O(|Zu,v| · logn

log logn) time.

Proof. Let u1, . . . , uα be the ordered list of children of u and v1, . . . , vβ the ordered list
of children of v. The procedure identifies the pairs (up, vq) ∈ Zu,v in increasing order
of up and then in increasing order of vq. In the outer loop, each child up of u satisfying
Λ(Tup1) ∩ Λ(T v2) 6= ∅ is identified from left to right by using Lemma 9 in Step 4 and the level

Algorithm 5 Procedure Compute_Z.
Procedure Compute_Z
Input: u ∈ V (T1), v ∈ V (T2), where T1, T2 are two given trees with Λ(T1) = Λ(T2).
Output: Zu,v = {(u′, v′) : u′ ∈ ChildT1(u), v′ ∈ ChildT2(v), |Λ(Tu′

1) ∩ Λ(T v′

2)| > 0}.
1: Let u1..uα and v1..vβ be the ordered lists of children of u and v, respectively;
2: Z := ∅; i := 1;
3: while i ≤ α do
4: Find the leftmost leaf a in T1 such that a ∈ Λ(Tui..uα1) ∩ Λ(T v2);
5: If no such a exists, break;
6: Identify the up ∈ ChildT1(u) such that a ∈ Λ(Tup1);
7: j := 1;
8: while j ≤ β do
9: Find the leftmost leaf b in T2 such that b ∈ Λ(Tup1) ∩ Λ(T vj ..vβ2);

10: If no such b exists, break;
11: Identify the vq ∈ ChildT2(v) such that b ∈ Λ(T vq2);
12: Let Z := Z ∪ {(up, vq)} and j := q + 1;
13: end while
14: Let i := p+ 1;
15: end while
16: return Z;

STACS 2015

498 On Finding the Adams Consensus Tree

ancestor data structure in Step 6. Each up is thus identified in O(logn
log logn) time. Then, for

each such up, the inner loop similarly finds every child vq of v with Λ(Tup1)∩Λ(T vq2) 6= ∅ from
left to right, using O(logn

log logn) time per vq. In total, the procedure spends O(|Zu,v| · logn
log logn)

time to compute Zu,v. J

Finally, we are ready to analyze the running time of New_Adams_consensus_2. For any
u′ ∈ V (T1), v′ ∈ V (T2), denote Su′,v′ = Λ(Tu′

1) ∩ Λ(T v′

2).

I Theorem 11. Given the data structure D(N) in Lemma 8, New_Adams_consensus_2(u, v)
for any u ∈ V (T1) and v ∈ V (T2) runs in O(|Su,v| · logn

log logn) time.

Proof. Let T (u, v) be the running time of New_Adams_consensus_2(u, v), including the time
required to compute γ, δ, and Zγ,δ and the recursive calls New_Adams_consensus_2(u′, v′)
for all (u′, v′) ∈ Zγ,δ. By using Lemma 9, Steps 1 and 5 can be carried out in O(logn

log logn) time.
Step 6 takes O(1) time because of the preprocessing and Step 7 takes O(|Zγ,δ| · logn

log logn) time
according to Lemma 10. We therefore have T (u, v) =

∑
(u′,v′)∈Zγ,δ T (u′, v′) + O(|Zγ,δ| ·

logn
log logn). Observe that in the base case, i.e., where |Su,v| = 1, it holds that T (u, v) =
O(logn

log logn).
We apply the recursion-tree method to solve the recurrence for T (u, v). The root of the

recursion tree for T (u, v) represents the top level of recursion, and its cost is O(|Zγ,δ| · logn
log logn).

There are |Zγ,δ| subtrees attached to the root, each of which corresponds to a recursion
tree for one T (u′, v′) where (u′, v′) ∈ Zγ,δ. The leaves of the recursion tree represent the
base cases of the recursion, i.e., those T (x, y) satisfying |Sx,y| = 1, and they each have cost
O(logn

log logn). It follows that the recursion tree for T (u, v) has exactly |Su,v| leaves and no
nodes with degree 1. Now, the value of T (u, v) is equal to the sum of the costs taken over all
nodes in the recursion tree. Clearly, the total contribution of the leaves is O(|Su,v| · logn

log logn).
We rewrite the cost of each internal node in the recursion tree as O(d · logn

log logn), where d is
the degree of that node. Since the sum of the degrees of all internal nodes in a tree without
any nodes of degree 1 is less than twice the number of leaves, the contribution of the internal
nodes is also O(|Su,v| · logn

log logn). The total running time is T (u, v) = O(|Su,v| · logn
log logn). J

Recall that D(N) is constructed during the preprocessing phase using O(n · logn
log logn)

time. Theorem 11 implies that New_Adams_consensus_2(r1, r2), where ri is the root of Ti
for i ∈ {1, 2}, computes the Adams consensus tree of {T1, T2} in O(n · logn

log logn) time.

Acknowledgments: The authors would like to thank the anonymous reviewers for their
suggestions.

References
1 E. N. Adams III. Consensus techniques and the comparison of taxonomic trees. Systematic

Zoology, 21(4):390–397, 1972.
2 E. N. Adams III. N-trees as nestings: Complexity, similarity, and consensus. Journal of

Classification, 3(2):299–317, 1986.
3 M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of the

4 thLatin American Symposium on Theoretical Informatics (LATIN 2000), volume 1776 of
LNCS, pages 88–94. Springer-Verlag, 2000.

4 M. A. Bender and M. Farach-Colton. The Level Ancestor Problem simplified. Theoretical
Computer Science, 321(1):5–12, 2004.

J. Jansson, Z. Li, and W.-K. Sung 499

5 M. G. B. Blum, O. François, and S. Janson. The mean, variance and limiting distribution
of two statistics sensitive to phylogenetic tree balance. The Annals of Applied Probability,
16(4):2195–2214, 2006.

6 P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search structures
on a grid with applications to text indexing. In Proceedings of the 11th International Sym-
posium on Algorithms and Data Structures (WADS 2009), volume 5664 of LNCS, pages
98–109. Springer-Verlag, 2009.

7 K. Bremer. Combinable component consensus. Cladistics, 6(4):369–372, 1990.
8 D. Bryant. A classification of consensus methods for phylogenetics. In M. F. Janowitz, F.-J.

Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts, editors, Bioconsensus, volume 61
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 163–
184. American Mathematical Society, 2003.

9 R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An O(n log n)
algorithm for the maximum agreement subtree problem for binary trees. SIAM Journal on
Computing, 30(5):1385–1404, 2000.

10 J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts,
2004.

11 J. Felsenstein. PHYLIP, version 3.6. Software package, Department of Genome Sciences,
University of Washington, Seattle, U.S.A., 2005.

12 P. A. Goloboff, J. S. Farris, M. Källersjö, B. Oxelman, M. J. Ramírez, and C. A. Szumik.
Improvements to resampling measures of group support. Cladistics, 19(4):324–332, 2003.

13 D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984.

14 E. Hernández-García, M. Tuǧrul, E. Alejandro Herrada, V. M. Eguíluz, and K. Klemm.
Simple models for scaling in phylogenetic trees. International Journal of Bifurcation and
Chaos, 20(3):805–811, 2010.

15 Z.-X. Luo, Q. Ji, J. R. Wible, and C.-X. Yuan. An early Cretaceous tribosphenic mammal
and metatherian evolution. Science, 302(5652):1934–1940, 2003.

16 T. Margush and F. R. McMorris. Consensus n-Trees. Bulletin of Mathematical Biology,
43(2):239–244, 1981.

17 L. Nakhleh, T. Warnow, D. Ringe, and S. N. Evans. A comparison of phylogenetic recon-
struction methods on an Indo-European dataset. Transactions of the Philological Society,
103(2):171–192, 2005.

18 R. Page. COMPONENT, version 2.0. Software package, University of Glasgow, U.K., 1993.
19 E. R. Seiffert. Revised age estimates for the later Paleogene mammal faunas of Egypt and

Oman. Proceedings of the National Academy of Sciences of the United States of America
(PNAS), 103(13):5000–5005, 2006.

20 C. Semple and M. Steel. Phylogenetics, volume 24 of Oxford Lecture Series in Mathematics
and its Applications. Oxford University Press, 2003.

21 R. R. Sokal and F. J. Rohlf. Taxonomic congruence in the Leptopodomorpha re-examined.
Systematic Zoology, 30(3):309–325, 1981.

22 W.-K. Sung. Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC, 2010.

23 D. L. Swofford. PAUP*, version 4.0. Software package, Sinauer Associates, Inc., Sunderland,
Massachusetts, 2003.

24 X. Xu, J. M. Clark, C. A. Forster, M. A. Norell, G. M. Erickson, D. A. Eberth, C. Jia,
and Q. Zhao. A basal tyrannosauroid dinosaur from the Late Jurassic of China. Nature,
439(7077):715–718, 2006.

STACS 2015

Flip Distance Is in F P T Time O(n + k · ck)
Iyad Kanj1 and Ge Xia2

1 School of Computing, DePaul University
Chicago, USA
ikanj@cs.depaul.edu

2 Department of Computer Science
Lafayette College
Easton, USA, xiag@lafayette.edu

Abstract
Let T be a triangulation of a set P of n points in the plane, and let e be an edge shared by two
triangles in T such that the quadrilateral Q formed by these two triangles is convex. A flip of e
is the operation of replacing e by the other diagonal of Q to obtain a new triangulation of P from
T . The flip distance between two triangulations of P is the minimum number of flips needed to
transform one triangulation into the other. The Flip Distance problem asks if the flip distance
between two given triangulations of P is k, for some given k ∈ N. It is a fundamental and a
challenging problem.

In this paper we present an algorithm for the Flip Distance problem that runs in time O(n+
k ·ck), for a constant c ≤ 2·1411, which implies that the problem is fixed-parameter tractable. The
NP-hardness reduction for the Flip Distance problem given by Lubiw and Pathak can be used
to show that, unless the exponential-time hypothesis (ETH) fails, the Flip Distance problem
cannot be solved in time O∗(2o(k)). Therefore, one cannot expect an asymptotic improvement in
the exponent of the running time of our algorithm.

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations, G.2.1 Com-
binatorial Algorithms

Keywords and phrases triangulations, flip distance, parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.500

1 Introduction

Let P be a set of n points in the plane. A triangulation of P is a partitioning of the convex
hull of P into triangles such that the set of vertices of the triangles in the triangulation is P .
Note that the convex hull of P may contain points of P in its interior.

A flip to an (interior) edge e in a triangulation of P is the operation of replacing e by
the other diagonal of the quadrilateral formed by the two triangles that share e, provided
that this quadrilateral is convex; otherwise, flipping e is not permissible. The flip distance
between two triangulations Tinitial and Tfinal of P is the length of a shortest sequence of
flips that transforms Tinitial into Tfinal. This distance is always well-defined and is O(|P|2)
(e.g., see [8]). The Flip Distance problem is: Given two triangulation Tinitial and Tfinal of
P, and k ∈ N, decide if the flip distance between Tinitial and Tfinal is k.

Triangulations are a very important subject of study in computational geometry, and
they have applications in computer graphics, visualization, and geometric design (see [17,
19, 20, 24], to name a few). Flips in triangulations and the Flip Distance problem have
received a large share of attention (see [3] for a review). The Flip Distance problem is
a very fundamental and challenging problem, and different aspects of this problem have

© Iyad Kanj and Ge Xia;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 500–512

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.500
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Kanj and G. Xia 501

been studied, including the combinatorial, geometrical, topological, and computational
aspects [1, 2, 3, 4, 7, 8, 10, 18, 21, 22]. We can define the triangulations graph of P, whose
vertex-set is the set of all triangulations of P, and in which two triangulations/vertices
are adjacent if and only if their distance is 1. It is well-known that the triangulations
graph has diameter O(n2) [8], and hence, we can transform any triangulation into another
by a sequence of O(n2) flips. Moreover, it is known that the number of vertices in the
triangulations graph is Ω(2.33n) [1]. Therefore, solving the Flip Distance problem by
finding a shortest path between the two triangulations in the triangulations graph is not
feasible. A very similar problem to the Flip Distance was studied by Wagner [23] in 1936,
who considered triangulated planar graphs instead.

The complexity of the Flip Distance problem was resolved very recently (2012) by
Lubiw and Pathak [10, 11] who showed the problem to be NP-complete. Simultaneously,
and independently, the problem was shown to be APX-hard by Pilz [18]. Very recently,
Aichholzer et al. [2] showed the problem to be NP-complete for triangulations of a simple
polygon. Resolving the complexity of the problem for the special case when P is in a convex
position (i.e., triangulations of a convex polygon) remains a longstanding open problem for at
least 25 years (see [22]); this problem is equivalent to the problem of computing the rotation
distance between two rooted binary trees [4, 22]. Cleary and St. John [4] showed that this
special case (convex polygon) is fixed-parameter tractable (FPT): They gave a kernel of size
5k for the problem and presented an O∗((5k)k)-time FPT algorithm based on this kernel
(the O∗() notation suppresses polynomial factors in the input size). The upper bound on the
kernel size for the convex case was subsequently improved to 2k by Lucas [12], who also gave
an O∗(kk)-time FPT algorithm for this case. The kernelization approaches used in [4, 12]
for the convex case are not applicable to the general case. In particular, the reduction rules
used in [4, 12] to obtain a kernel for the convex case, and hence the FPT algorithms based
on these kernels, do not generalize to the problem under consideration in this paper.

In this paper we present an O(n + k · ck)-time algorithm (c ≤ 2 · 1411) for the Flip
Distance problem for triangulations of an arbitrary point-set in the plane, which shows that
the problem is FPT. Our result is a significant improvement over the O∗(kk)-time algorithm
by Lucas [12] for the simpler convex case. The NP-hardness reduction by Lubiw and Pathak
can be used to show that, unless the exponential-time hypothesis (ETH) fails [9], the Flip
Distance problem cannot be solved in time O∗(2o(k)). Therefore, one should not expect an
asymptotic improvement in the exponent of the running time of the presented algorithm.
While it is not very difficult to show that the Flip Distance problem is FPT based on some
of the structural results in this paper, obtaining an O∗(ck)-time algorithm, for some constant
c, is quite involved, and requires a deep understanding of the structure of the problem.

Our approach is as follows. For any solution to a given instance of the problem, we can
define a directed acyclic graph (DAG), whose nodes are the flips in the solution, that captures
the dependency relation among the flips. We show that any topological sorting of this DAG
corresponds to a valid solution of the instance. The difficult part is how, without knowing
the DAG, to navigate the triangulation and perform the flips in an order that corresponds to
a topological sorting of the DAG. We present a very simple nondeterministic algorithm that
performs a sequence of “flip/move"-type local actions in a triangulation, where each local
action has constant-many choices. The key is to show that there exists such a sequence of
actions that corresponds to a topological sorting of the DAG associated with a solution to the
instance, and that the length of this sequence is linear in the number of nodes in the DAG.
This will us to simulate the nondeterministic algorithm by an O∗(ck)-time deterministic
algorithm. To achieve the above goal, we develop structural results that reveal some of the
structural intricacies of this fundamental and challenging problem.

STACS 2015

502 Flip Distance Is in FPT Time O(n+ k · ck)

Even though the triangulations considered in the paper are triangulations of a point-set
in the plane, the presented algorithm works as well for triangulations of any polygonal region
(even with points in its interior). Moreover, using a reduction in [11] from the Flip Distance
of triangulations of a polygonal region with holes to the Flip Distance of triangulations
of a polygonal region with points in its interior, the algorithm presented in this paper can
solve the (more general) Flip Distance problem of triangulations of a polygonal region
with (possible) holes within the same time upper bound.

2 Preliminaries

Let P be a set of n points in the plane, and let T be a triangulation of P. Let e be an
interior (non-boundary) edge in T . The quadrilateral associated with e in T is defined to be
the quadrilateral formed by the two adjacent triangles in T that share e as an edge. Let e
be an edge in T such that the quadrilateral Q in T associated with e is convex. A flip f
with underlying edge e is an operation performed to e in triangulation T that removes e and
replaces it with the other diagonal of Q, thus obtaining a new triangulation of P from T .
We use the notation ε(f) to denote the underlying edge e of a flip f in T , and the notation
ϕ(f) to denote the new diagonal/edge resulting from flip f . Note that ϕ(f) is not in T . We
say that a flip to an edge e is admissible in triangulation T if e is in T and the quadrilateral
associated with e is convex. We say that two distinct edges e and e′ in T share a triangle if
e and e′ appear in the same triangle in T . We say that two distinct edges e and e′ between
points in P cross if e and e′ intersect in their interior.

Let T be a triangulation. A sequence of flips F = 〈f1, . . . , fr〉 is valid with respect to
T if there exist triangulations T0, . . . , Tr such that T0 = T , fi is admissible in Ti−1, and
performing flip fi in Ti−1 results in triangulation Ti, for i = 1, . . . , r. In this case we say
that Tr is the outcome of applying F to T and that F transforms T into Tr, and we write
T F−→ Tr. The length of F , denoted |F |, is the number of flips in it. Many flips in a sequence
F may have the same underlying edge, but all those flips are distinct flips. For two flips fi
and fh of F such that i < h, a flip fp in F is said to be between fi and fh if i < p < h.

For two triangulations Tinitial and Tfinal of P, the flip distance between Tinitial and
Tfinal is the smallest d ∈ N such that there is a sequence F of length d satisfying that
Tinitial

F−→ Tfinal. The Flip Distance problem is defined as follows:

Flip Distance
Given: Two triangulation Tinitial and Tfinal of P.
Parameter: k.
Question: Is the flip distance between Tinitial and Tfinal equal to k?

Let G be a graph. V (G) and E(G) denote the vertex-set and the edge-set of G, respectively,
and |G| denotes the size of G, which is |V (G)|+ |E(G)|. For a directed graph G, a weakly
connected component of G is a (maximal) connected component of the underlying undirected
graph of G; for simplicity, we will use the term component of a directed graph G to refer
to a weakly connected component of G. Otherwise, we assume familiarity with basic graph
theory, and refer to [5] for more information.

A parameterized problem is a set of instances of the form (x, k), where x is the input
instance and k ∈ N is the parameter. A parameterized problem is fixed-parameter tractable,
shortly FPT, if there is an algorithm that solves the problem in time f(k)|x|c, where f is a

I. Kanj and G. Xia 503

computable function and c > 0 is a constant. We refer to [6, 16] for more information about
parameterized complexity.

3 Structural results

Let T be a triangulation and let F = 〈f1, . . . , fr〉 be a valid sequence of flips with respect to
T . We denote by Ti, for i = 1, . . . , r, the triangulation that is the outcome of applying the
(valid) subsequence of flips 〈f1, . . . , fi〉 to T .

I Definition 1. Let fi and fj be two flips in F such that 1 ≤ i < j ≤ r. Flip fj is said to
be adjacent to flip fi, denoted fi → fj , if:
(1) either ϕ(fi) = ε(fj) or ϕ(fi) and ε(fj) share a triangle in triangulation Tj−1; and
(2) ϕ(fi) is not flipped between fi and fj , that is, there does not exist a flip fp in F , where

i < p < j, such that ε(fp) = ϕ(fi).

The above adjacency relation defined on the flips in F can be naturally represented by a
directed acyclic graph (DAG), denoted DF , where the nodes of DF are the flips in F , and its
arcs represent the (directed) adjacencies in F . Note that by definition, if fi → fj then i < j.
For simplicity, we will label the nodes in DF with the labels of their corresponding flips in F .

I Lemma 2. Every node in DF has indegree at most 5. Therefore, |E(DF)| ≤ 5 · |V (DF)|
and |DF | ≤ 6 · |V (DF)|.

I Lemma 3. Let T0 be a triangulation and let F = 〈f1, . . . , fr〉 be a sequence of flips such
that T0

F−→ Tr. Let π(F) be a permutation of the flips in F such that π(F) is a topological
sorting of DF . Then π(F) is a valid sequence of flips such that T0

π(F)−−−→ Tr.

Proof. Proceed by induction on |F |. If |F | ≤ 1, then the statement obviously holds true.
Suppose that the statement is true for any F such that |F | < r, where r > 1, and consider a
sequence F such that |F | = r.

Let fs be the last flip in π(F). Since π(F) is a topological sorting of DF , fs must be
a sink in DF . It follows that no flip after fs in F is adjacent to fs in DF . Let Q be the
quadrilateral associated with ϕ(fs) in triangulation Ts. Then no flips after fs in F has its
underlying edge in Q (i.e., as a boundary edge of Q or as a diagonal of Q), which means that
the two adjacent triangles forming Q in Ts remain unchanged throughout the flips after fs in
F . Therefore, we can safely move the flip fs to the end of the sequence F without affecting
the other flips in F nor the validity of F . Let this new sequence be F ′; then it follows from
the previous argument that T0

F ′

−→ Tr. Since fs appears at the end of F ′, F ′ − fs is a valid
sequence with respect to T0 that transforms T0 into some triangulation T such that T fs−→ Tr.
Note that since fs is a sink in DF , π(F)− fs is a permutation of the flips in F ′ − fs that is
a topological sorting of DF − fs. By the inductive hypothesis, π(F)− {fs} transforms T0

into T . Since T fs−→ Tr, appending fs to the end of π(F)− {fs} results in π(F) such that
T0

π(F)−−−→ Tr. This completes the inductive proof. J

I Corollary 4. Let T0 be a triangulation and let F = 〈f1, . . . , fr〉 be a sequence of flips such
that T0

F−→ Tr. For any given ordering (C1, . . . , C`) of the components in DF , there is a
permutation π(F) of the flips in F such that T0

π(F)−−−→ Tr, and such that for any two flips
fi ∈ Ct and fj ∈ Cs, where 1 ≤ t < s ≤ `, fi appears before fj in π(F). That is, all the flips
in the same component appear as a consecutive block in π(F), and the order of the blocks in
π(F) is the same as the given order of their corresponding components.

STACS 2015

504 Flip Distance Is in FPT Time O(n+ k · ck)

I Definition 5. Let (Tinitial, Tfinal, k) be an instance of Flip Distance. An edge in Tinitial
that is not in Tfinal is called a changed edge. If a sequence F is a solution to the instance
(Tinitial, Tfinal, k), we call a component in DF essential if the component contains a flip f
such that ε(f) is a changed edge, otherwise, the component is called nonessential.

I Lemma 6. Let (Tinitial, Tfinal, k) be an instance of Flip Distance, and suppose that F
is a solution to the instance. Then every component of DF is essential.

Proof. Suppose, to get a contradiction, that DF contains a nonessential component C. Let
FC be the subsequence of F consisting of the flips that are in C. We will show that F − FC
is a solution to the instance (Tinitial, Tfinal, k). This will contradict the minimality of F
because the number of flips in F is the flip distance between Tinitial and Tfinal.

By Corollary 4, we can assume that all the flips in FC appear consecutively (i.e., as a
single block) at the end of F . Let T ′ be the outcome of applying F − FC to Tinitial. It
suffices to show that T ′ = Tfinal. Suppose that this is not the case. Since the number of
edges in T ′ and Tfinal is the same, there must exist an edge e ∈ T ′ such that e /∈ Tfinal.
Therefore, C must contain a flip f such that ε(f) = e; assume that f is the first such flip
in C. Since C is nonessential, e /∈ Tinitial, otherwise e would be a changed edge. Therefore,
there must exist a flip f ′ in F − FC such that ϕ(f ′) = e; we can assume that f ′ is the last
such flip in F − FC . By the definition of adjacency in DF , there is an arc from node f ′ in
DF − C to node f in C, contradicting the assumption that C is a component of DF . J

Let (Tinitial, Tfinal, k) be an instance of Flip Distance, and suppose that F is a solution
for (Tinitial, Tfinal, k). By Lemma 6, DF does not contain nonessential components, and by
Corollary 4, we can assume that all the flips in the same component of DF appear as a
consecutive block in F . We shall call such a solution F satisfying the above properties a
normalized solution. Suppose that F = 〈f1, . . . , fk〉 is a normalized solution to an instance
(Tinitial, Tfinal, k) of Flip Distance, and let C be a component of DF . The following lemma
provides several sufficient conditions for a directed path to exist between two flips in C:

I Lemma 7. Let fi and fh, where i < h, be two flips in C. If one of the following conditions
is true, then there is a directed path from fi to fh in C:
(1) ϕ(fh) crosses ε(fi).
(2) ϕ(fh) = ε(fi).
(3) ε(fi) = ε(fh).
(4) ϕ(fi) = ε(fh), or ϕ(fi) and ε(fh) share a triangle T in Tj, for some j satisfying

i ≤ j < h.

4 The algorithm

Using the structural results in Section 3, it is not difficult to obtain an FPT algorithm for
Flip Distance that runs in O∗(ck2) time, for some constant c. For instance, starting from
an edge in the current triangulation (which corresponds to a flip in the DAG representing
the remaining solution), we can grow a BFS-like tree of size ck searching for the next edge to
flip (corresponding to a source node in the DAG), and flip this edge. Repeating this process
k times gives an O∗(ck2)-time algorithm for the problem. Our goal, however, is to obtain an
O∗(ck)-time algorithm for the problem, for some constant c. Achieving this goal turns out to
be quite challenging, and requires a deep understanding of the structure of the problem. We
did so by analyzing the relation between the DAG associated with a solution to a problem
instance and the changing structure of the underlying triangulations.

I. Kanj and G. Xia 505

4.1 Overview of the algorithm

In this subsection we give an intuitive description of how our algorithm works. Let
(Tinitial, Tfinal, k) be an instance of Flip Distance. In order to solve the instance, by
Lemma 3, it suffices for the algorithm to perform a sequence of k flips that is a topological
sorting of the DAG DF associated with a normalized solution F to the instance. Needless
to say, the difficulty is that we do not know F , nor do we know DF . By Lemma 6, each
component of DF is essential, and hence, must contain a changed edge. The algorithm starts
by picking a changed edge e in Tinitial. There must exist a flip f in DF such that e = ε(f);
let us refer to the component of DF containing f by C. We explain next how the algorithm,
starting at e in Tinitial, performs a sequence of flips that is a topological sorting of C; this
can be easily extended to a sequence of flips that is a topological sorting of DF .

Clearly, the algorithm cannot start by performing f because other flips may precede
f in the solution. Instead, the algorithm searches for an edge ε(fs) in Tinitial that is the
underlying edge of a source node fs in C, and flips ε(fs). Now we explain how the algorithm
searches for ε(fs) in Tinitial without having access to C. The algorithm starts at edge e in
Tinitial and nondeterministically “takes a walk" in which each step/action consists of moving
to an edge that shares a triangle with the edge that the algorithm is currently at; the number
of such local actions is the length of the walk. We show (Lemma 10) that there exists a
source node fs in C such that, starting at the changed edge e, the algorithm can walk in
the current triangulation Tinitial from e to ε(fs), and that the length of this walk is at most
the length of the path from fs to f in C. Suppose that the algorithm nondeterministically
guessed the right walk, and walked to ε(fs) in Tinitial. The algorithm then flips ε(fs), thus
performing flip fs in C, to obtain a new triangulation Tcurrent, and stays at the edge ϕ(fs)
in Tcurrent. To continue the sequence of flips that corresponds to a topological sorting of
C, the algorithm should flip next an edge in Tcurrent that corresponds to a source node
in the resulting DAG Ccurrent = C − fs. Hence, the algorithm needs to walk from ϕ(fs)
in Tcurrent to a source node in Ccurrent, and to flip the edge corresponding to that source
node in Tcurrent, and so on and so forth. To show how to perform this desired sequence
of nondeterministic actions so that total number of actions remains linear in k, we define
a spanning subgraph JC of the underlying graph of C. We then show that there exists a
sequence of local actions by the algorithm, in which the edge-flips is a topological sorting of
C, that simulates a recursive traversal of JC . This mapping of the actions of the algorithm
to a specific traversal of JC will allow us to “charge" the actions of the algorithm to the
nodes and edges of JC , thus obtaining the desired linear upper bound on the number of
actions of the algorithm in terms of the size of JC , and hence the size of C.

4.2 The nondeterministic actions of the algorithm

The algorithm is a nondeterministic algorithm that starts from a changed edge in a triangu-
lation Tinitial and performs a sequence of actions. The algorithm is equipped with a stack.
Each action σ of the algorithm acts on some edge e in a triangulation that we refer to as the
current triangulation (before σ), denoted Tcurrent. Initially Tcurrent = Tinitial, and Tcurrent
before action σ is the triangulation resulting from applying the sequence of actions preceding
σ to Tinitial. Each action σ of the algorithm is of the following possible types:
(i) Move to one of the (at most 4) edges that share a triangle with e in Tcurrent.
(ii) Flip e, and move to one of the 4 edges that shared a triangle with e in Tcurrent.
(iii) Flip e, push the edge created by the flip into the stack, and move to one of the 4 edges

that shared a triangle with e in Tcurrent.

STACS 2015

506 Flip Distance Is in FPT Time O(n+ k · ck)

(iv) Flip e, jump to the edge on the top of the stack.
(v) Flip e, jump to the edge on the top of the stack, and pop the stack.

A walk starting from an edge e in a triangulation is a sequence of actions all of which are
of type (i). Since there are 4 choices for each action of types (i)-(iii) and 1 choice for each
action of types (iv)-(v), we have:

I Proposition 8. The number of choices for any action by the algorithm is at most 14.

4.3 The sequence of actions on a component of DF

Let F = 〈f1, . . . , fk〉 be a normalized solution to an instance of Flip Distance. Let C
be a component of DF . By Corollary 4, we can assume that all the flips in C appear at
the beginning of F , that is, form a prefix of F ; let FC = 〈f1, . . . , ft〉 be the prefix of F
corresponding to the flips in C. This subsection is dedicated to proving the following theorem:

I Theorem 9. Let C be a component of DF . There is a sequence of actions for the
nondeterministic algorithm of length at most 11|V (C)| that, starting from a changed edge
ε(fh) for some fh ∈ C, performs the flips in C in a topologically-sorted order.

To prove the above theorem, we define a spanning subgraph JC of the underlying graph of
C recursively. We then exhibit a sequence of actions of the algorithm that can be depicted by
a recursive traversal of JC . By that we mean that the actions performed by the algorithm in
the triangulations correspond to a traversal of the edges and nodes of JC , and such that the
sequence of edge-flips performed by the algorithm is a topological sorting of C. We initialize
JC to be empty, and we start the recursive definition of JC at a node in C that corresponds
to a changed edge in the current triangulation. We will then add edges and nodes to JC , and
recurse on the connected components of the graph resulting from C after a source node in
C has been removed. Since during the recursion nodes and edges get removed from C, the
resulting graph of C may consist of several connected components that we will refer to as
chunks, in order to distinguish them from the components of DF . Assume that the current
triangulation is T when we are recursing on a chunk H to define its spanning subgraph JH .
The recursive call starts at a node fh in H that we call the entry point of H. At the top
level of the recursion, C is the only chunk (in the recursive definition), and the entry point
of H = C is a node in C corresponding to a changed edge in the current triangulation. We
will define in Lemma 10 a directed path B = 〈b1 = fs, . . . , b` = fh〉 in H from a source node
fs in H to the entry point fh of H. With the path B, we correspond a walk W , defined in
Lemma 10, that the algorithm performs in the current triangulation from ε(fh) to ε(fs). We
add B to JH , we add the edges between fs and the entry point of each chunk in H − fs
to JH , and we recurse on the chunks of H − fs to complete the recursive definition of JH .
The corresponding actions of the algorithm (with the recursive definition of JH) consist of
performing the walk W , flipping ε(fs), and recursively performing the sequence of actions
corresponding to the traversals of the chunks in H − fs. Note that to flip a single edge,
the algorithm takes a walk in the current triangulation to a source node in C. Therefore,
if we are not careful in how we do the traversal of C, the length of all these walks could
be quadratic in k. To ensure that when the algorithm is done performing the sequence of
actions in a chunk it can go back to continue with the other chunks, the algorithm uses a
stack to store the edge ϕ(fs), resulting from flipping the “connecting node" fs of all these
chunks, so that the algorithm, after performing all the flips in a chunk of H − fs, can go
back by a single action to ϕ(fs). We start with the following lemma:

I. Kanj and G. Xia 507

I Lemma 10. Let fh be a node in a chunk H such that ε(fh) is an edge in the current
triangulation T . There is a walk W in T from ε(fh) to an edge ε(fs) in T , where fs is a
source node of H, such that there is a directed path B from fs to fh in H that we refer to as
the backbone of H. Moreover, the length of the walk W is at most the length of B.

Proof. If fh is a source in H then fh = fs, the path B consists of fs, and the length of the
walk W is 0. The statement is trivially true in this case. Now assume that fh is not a source
node in H.

Since ε(fh) is an edge in T , let Q be the quadrilateral associated with ε(fh) in T . Since
fh is not a source in H and F is a minimal solution, one of the edges on the boundary of Q
must be flipped before fh; let fp be the first such flip in H. Since ε(fp) and ε(fh) share a
triangle in Tp−1, ϕ(fp) and ε(fh) share a triangle in Tp, and by Lemma 7, there is a directed
path from fp to fh in the component C of DF . Since the nodes removed from C during the
recursive definition are always source nodes in their current chunks, there is a directed path
from fp to fh in the current chunk H. The edges ε(fh) and ε(fp) share a triangle in T , and
hence, in one action (of type (i)) the algorithm can go from ε(fp) to ε(fh) in T .

If fp is a source node in H, then we are done; otherwise, applying the above argument
to fp, we can find a flip fq such that ε(fp) and ε(fq) share a triangle in T and there is a
directed path from fq to fp in H. We can repeat this process until we reach a source node
fs in H. Going from ε(fh) to ε(fs) in T involves only actions of type (i), and hence, defines
a walk W from ε(fh) to ε(fs) in T . The length of W is at most the total number of flips in
a directed path B from fs to fh in H, which is composed of the directed paths defined in
the process described above (from fp to fh, fq to fp, and so on). J

We now formally give the recursive definition of JC , described for a chunk H with entry
point fh of a graph resulting from C during the recursion. Recall that at the top level of
the recursion H = C, and fh is a node in C corresponding to changed edge in the starting
triangulation.

I Definition 11. Let H be a chunk with entry point fh. The subgraph JH of H is defined
recursively as follows.
(1) Let B = 〈fs = b1, . . . , b` = fh〉, where fs is a source node in H (possibly fh = fs), be

the backbone of H defined in Lemma 10.
(2) Remove fs from H and let H1, . . . ,Hx be the chunks of H− = H − fs; define fs to be

the connecting point to each of the chunks H1, . . . ,Hx.
(3) For each chunk Hp, p = 1, . . . , x, if Hp contains nodes from previously-defined backbones

during the recursive definition, then let fmin be the node in Hp of minimum index (with
respect to F) that belongs to a previously-defined backbone; define the entry point of Hp

to be the node fhp in Hp that is adjacent to fs and that has a path to fmin in Hp, and
in case more than one neighbor of fs satisfies this property pick the neighbor with the
minimum index with respect to F (we will prove in Lemma 12 that the node fhp is well
defined). Otherwise (Hp does not contains nodes from previously-defined backbones),
define the entry point of Hp to be the flip fhp

in Hp with the minimum index hp (with
respect to F) that is adjacent to fs. (See Figure 1 for illustration.)

(4) Define the subgraph Jp of Hp with entry point fhp
recursively, for p = 1, . . . , x.

(5) Define JH to be the union of the edges in B, the edges in Jp and the edges between fs
and each entry point of Hp, for p = 1, . . . , x.

Let JC be the subgraph of the underlying graph of C resulting from applying the above
recursive definition to C starting at a flip corresponding to a changed edge in C. We have:

STACS 2015

508 Flip Distance Is in FPT Time O(n+ k · ck)

b` = fh

fmin = b2

H1

fh1

fh2

b1 = fs

H2

Figure 1 Illustration of the definition of entry points, where backbone nodes are colored gray.
The entry point of H1 is the node fh1 in H1 adjacent to fs that has a path to the backbone node
fmin with the minimum index (node b2 in this case). The entry point of H2, which does not contain
backbone nodes in this case, is the node fh2 of minimum index (h2) that is adjacent to fs.

I Lemma 12. All the backbones, defined during the recursive definition of JC , that exist in
the same chunk are edge disjoint, and belong to a single (simple) path in the chunk; on this
path the (remaining) nodes from each backbone appear consecutively. Moreover, the entry
node of a chunk, defined in step 3 of Definition 11, is well-defined.

Proof. The proof is by induction on the number of recursive steps (depth of the recursion)
taken to form a chunk. The statement is clearly true at the top level of the recursion where
the only chunk is C, whose entry point is defined to be a flip corresponding to a changed
edge, and there is only one defined backbone. Suppose now that chunk Hp resulted from a
chunk H in one recursive step, and that the statement is true for H (inductive hypothesis).

Hp was obtained by removing a source node fs from H, which is a backbone node. By
the inductive hypothesis, all the backbones in H are edge-disjoint and belong to a path P
in H. Since fs is a source node in H, fs must be the tail of P . If Hp does not contain any
previously-defined backbone nodes, then the entry point fhp

of Hp is defined to be the node
in Hp with the minimum index that is adjacent to fs, and in this case fhp

is well-defined.
Moreover, there is only one backbone in Hp. Therefore, the statement of the lemma is true
in this case. Suppose now that Hp contains at least one node from a previously-defined
backbone. Because the underlying graph of Hp is connected and P− = P − fs is a path, it
follows that Hp contains P−. Let b be the node adjacent to fs on P−, i.e., the tail of P−.
By the inductive hypothesis, P− contains all the previously-defined backbone nodes in Hp,
and in particular, P− contains the node fmin in Hp of minimum index (the minimum index
is with respect to F) that belongs to a previously-defined backbone. Since b is adjacent to
fs, it follows from the preceding that node fhp

is well-defined because b satisfies that it is

I. Kanj and G. Xia 509

adjacent to fs and there is a path from b to the backbone node in H with the minimum
index, namely fmin (possibly b itself). Now let BHp

be the backbone of Hp. Since BHp
is a

path whose head is fhp
, and since — by the choice of fhp

— there is a path from fhp
to fmin,

the indices of the nodes in BHp are not larger than the index of fmin, which is the backbone
node on P− of the minimum index. Therefore, the set of edges in BHp

is disjoint from the
set of backbone edges on P− (and hence, from the set of backbone edges in Hp) that belong
to previously-defined backbones. Since BHp

is a path in Hp, and since there is a path from
fhp to fmin in Hp, all the backbone edges in Hp form a path in which all the (remaining)
nodes of each backbone appear consecutively. This completes the inductive proof. J

I Corollary 13. All the backbones defined in the recursive definition of JC are edge-disjoint.

Proof. It suffices to show that when a backbone B of a chunk H is defined during the
recursive definition of JC , the edges of B are different from the edges of all previously-defined
backbones. Clearly, the edges of B are different from those of the backbones in chunks
other than H , and from the edges of previously-defined backbones that have been previously
removed during the recursive definition of JC . By Lemma 12, the edges of B are different
from those of the backbones other than B that (may) exist in H . The statement follows. J

I Lemma 14. Let C be a component of DF . The subgraph JC formed by applying Defini-
tion 11 to C is a spanning subgraph of the underlying graph of C.

Proof. The statement follows from the connectedness of C and Definition 11 by a simple
inductive argument: JC contains a source node fs of C and an edge from fs to each chunk
in C − fs. J

We define next a sequence of actions that the algorithm performs starting at a changed
edge (corresponding to a node in C) in the current triangulation and that corresponds to
a traversal of JC . Let fi, fh be the connecting and the entry points to a chunk H 6= C,
respectively. At the top level of the recursion, where H = C is a component of DF , define fh
to be a flip in C whose underlying edge ε(fh) is a changed edge (fi need not be defined).

I Definition 15. Let H be a chunk with entry point fh. The sequence of actions of the
nondeterministic algorithm on H is defined as follows.
(a) The nondeterministic algorithm performs the walk W from ε(fh) to ε(fs) (in the current

triangulation T) defined in Lemma 10 that corresponds to the backbone B = 〈fs =
b1, . . . , b` = fh〉 of H.

(b) The nondeterministic algorithm flips the edge ε(fs).
(c) The algorithm nondeterministically pushes ϕ(fs) into the stack if there is more than

one chunk in H− = H − fs, and moves to the entry point of the first chunk in H−.
(d) The nondeterministic algorithm recursively performs the sequence of actions on each

chunk of H−, nondeterministically moving to the edge ϕ(fs) on the top of the stack
when performing the last action in each chunk, and following that with a move (if
needed) to the underlying edge of the entry point of a new chunk, which shares a triangle
with ϕ(fs) (or is identical to it) by Lemma 16 below.

(e) The algorithm nondeterministically moves to the top of the stack and pops the stack
after performing the last action in the last chunk of H− (in case there is more than one).

I Lemma 16. Let fi, fh be the connecting and entry points to a chunk H 6= C, respectively.
Suppose that the current triangulation is T when the sequence of actions of the algorithm
defined in Definition 15 is applied on H. Then either ϕ(fi) = ε(fh), or ϕ(fi) and ε(fh) share
a triangle in T .

STACS 2015

510 Flip Distance Is in FPT Time O(n+ k · ck)

Proof (Theorem 9). It is clear that the order of the flips performed by the algorithm in
the sequence of actions described in Definition 15 corresponds to a topological sorting of C
because every flip corresponds to the removal of a source node from a DAG resulting from C

in the recursive definition of JC , and because JC is a spanning subgraph of C by Lemma 14.
Therefore, it suffices to show that this sequence has length at most 11|V (C)|. To do so, we
charge the actions of the algorithms to the nodes and edges of JC .

When invoked on a chunk H, the algorithm starts at an entry node fh of H; initially
H = C and fh is a node in C whose underlying edge is a changed edge in the current
triangulation T . In Lemma 10 we showed that there is a path B = 〈fs = b1, . . . , b` = fh〉
from a source node fs in H to fh that corresponds to a walk by the algorithm from edge ε(fh)
to ε(fs) in T ; moreover, the length of this walk is at most the length of B. The algorithm
can perform this walk using actions of type (i) (as defined in Subsection 4.2), and the number
of such actions is at most the length of B. When the algorithm is at edge ε(fs) in T , it flips
edge ε(fs), which is one action either of type (ii) or (iii). Next, the algorithm recurses on
each chunk Hp of H − fs, starting at the entry point fhp

of Hp. In Lemma 16, we showed
that the edges ϕ(fs) and ε(fhp) are either identical, or they share a triangle in the current
triangulation when the algorithm is recursively called on Hp. Hence, in at most one action
the algorithm can move from ϕ(fs) to ε(fhp

). If there is more than one chunk in H − fs
(the algorithm nondeterministically decides), the algorithm pushes ϕ(fs) into the stack after
flipping fs. In case there is only one chunk left, the algorithm also pops the stack after
jumping to the top of the stack. It is not difficult to see that each of the steps corresponds
to one action of the algorithm from types (i)-(v).

To prove that the length of the sequence of actions is at most 11|V (C)|, we charge these
actions to the nodes and edges of JC . The sequence of actions can be classified into two
categories: actions with flips and actions without flips. The number of actions with flips is
at most the number of nodes in JC , which is |V (C)|. Note that actions that involve moving
to the top of the stack, or popping the stack, or both, are combined with flips, and hence
have been accounted for. The actions without flips are all of type (i), and can be further
divided into two groups: (I) those done in a walk W corresponding to a backbone B of a
chunk H, and (II) those done when the algorithm moves from an underlying edge ϕ(fs) (on
the top of the stack) of a source node fs in a chunk H to an edge whose corresponding node
is an entry point of a chunk resulting from removing fs from H. The number of actions in
group (I) is at most |E(C)|; this is because, by Corollary 13, the edges of different backbones
are distinct, and hence the total number of such edges (and hence actions in group (I)) is at
most |E(JC)| ≤ |E(C)|. To bound the number of actions in group (II), observe that each
such action corresponds to an edge in C from fs to the entry point of a chunk resulting
from removing fs from H. Since fs is removed from JC upon making the recursive calls
to the resulting chunks, we can charge each such action in a one-to-one fashion to edges
of E(JC). Therefore, the number of actions in group (II) is at most |E(JC)| ≤ |E(C)|.
Therefore, the total number of actions of type (i) is at most 2|E(JC)| ≤ 2|E(C)|. It follows
that the total number of actions performed by the algorithm when applied to C is at most
|V (C)|+ 2|E(JC)| ≤ 11|V (C)| (by Lemma 2).

J

4.4 Putting all together: the whole algorithm
Let F be a normalized solution to the instance (Tinitial, Tfinal, k). Order the changed edges
arbitrarily, and denote this ordering by O. The algorithm starts by guessing the number
of components t, where t ≤ k, in DF . The algorithm then guesses the number of flips

I. Kanj and G. Xia 511

k1, . . . , kt in the components C1, . . . , Ct, respectively, of DF satisfying k1, . . . , kt ≥ 1 and
k1 + k2 + . . .+ kt = k. Fix such a guess (k1, . . . , kt).

The algorithm performs t iterations: ` = 1, . . . , t. We define T `initial, ` = 1, . . . , t, to
be the triangulation that resulted from Tinitial after the flips in the first ` iterations are
performed. We define T 0

initial = Tinitial. For each ` = 1, . . . , t, do the following: Pick the
next edge e ∈ O. If e is not a changed edge anymore with respect to T `−1

initial and Tfinal,
then skip to the next edge in O. Otherwise (e is in T `−1

initial but not in Tfinal), perform a
sequence of actions starting from e in T `−1

initial until either the number of flips performed is k`,
or the number of actions performed reaches 11k`. Let F` be the sequence of flips performed
in the current iteration, and note that T `−1

initial

F`−→ T `initial. After the last iteration ` = t, if
T tinitial = Tfinal then accept; otherwise reject.

I Theorem 17. Let (Tinitial, Tfinal, k) be an instance of Flip Distance. The above non-
deterministic algorithm decides (Tinitial, Tfinal, k) correctly, and it can be simulated by a
deterministic algorithm that runs in time O(n+ k · ck).

Proof. It is easy to see that the correctness of the algorithm follows from the following: (1)
there is a guess for the algorithm of the correct number of components t, and of (k1, . . . , kt)
such that ki is the exact number of flips in Ci, i = 1, . . . , t; and (2) by Theorem 9, there is a
nondeterministic sequence of actions by the algorithm of length at most 11ki that, starting
from a changed edge in Ci, performs the ki flips in Ci in a topologically-sorted order.

We only need to analyze the deterministic running time needed to simulate the non-
deterministic algorithm. The initial processing of the triangulations to find the changed
edges takes O(n) time. The total number of sequences (k1, . . . , kt), for t = 1, . . . , k, satisfying
k1 + . . .+kt = k and k1, . . . , kt ≥ 1, is known as the composition number of (integer) k, and is
equal to 2k−1. For each such sequence (k1, . . . , kt), we iterate through the numbers k1, . . . , kt
in the sequence. For a number ki, 1 ≤ i ≤ t, by Theorem 9, we need to try every sequence
of at most 11ki actions, and in which each action is one of 14 choices (by Proposition 8).
Therefore, the number of such sequences is at most 1411ki . It follows that the total number
of sequences that the algorithm needs to enumerate to find a witness to the solution (if it
exists) is at most:

∑k
t=1

∑
(k1, . . . , kt)(1411k1 × . . .× 1411kt) = O(2k−11411k) = O(ck), where

c ≤ 2 · 1411. Since each sequence of actions can be carried out in time O(k), and the resulting
triangulation at the end of the sequence can be compared to Tfinal in O(k) time as well,
the running time for each enumerated sequence is O(k). It follows from the above that the
running of the deterministic algorithm is O(n+k ·ck). Finally we point out that the algorithm
needs to decide whether k is the flip distance between Tinitial and Tfinal, which means that
no sequence of flips of length smaller than k exists that transforms Tinitial to Tfinal. This
can be decided by invoking the algorithm on each of the instances (Tinitial, Tfinal, k′), for
k′ = 0, . . . , k. The running time remains O(n+k·ck) because

∑k
k′=0O(k′ ·ck′) = O(k·ck). J

5 Concluding remarks

Improving the upper bound 2 · 1411 on the constant c in the running time of our algorithm to
a small value is an important open problem. Another important open problem is investigating
the kernelization of Flip Distance. One can obtain an exponential-size kernel based on
the results in this paper, but the question of whether there is a polynomial-size kernel is
important and challenging. Recall that a kernel of size 2k was given by Lucas [12] for
the convex case. Finally, we note that Flip Distance falls broadly into the category of
reconfiguration problems, for which several parameterized complexity results appeared very
recently (see [13, 14, 15]).

STACS 2015

512 Flip Distance Is in FPT Time O(n+ k · ck)

References
1 O. Aichholzer, F. Hurtado, and M. Noy. A lower bound on the number of triangulations

of planar point sets. Computational Geometry, 29(2):135–145, 2004.
2 O. Aichholzer, W. Mulzer, and A. Pilz. Flip distance between triangulations of a simple

polygon is NP-complete. In Proceedings of ESA, volume 8125 of Lecture Notes in Computer
Science, pages 13–24. Springer, 2013.

3 P. Bose and F. Hurtado. Flips in planar graphs. Computational Geometry, 42(1):60–80,
2009.

4 S. Cleary and K. St. John. Rotation distance is fixed-parameter tractable. Information
Processing Letters, 109(16):918–922, 2009.

5 R. Diestel. Graph Theory. Springer, Berlin, 4th edition, 2010.
6 R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.
7 S. Hanke, T. Ottmann, and S. Schuierer. The edge-flipping distance of triangulations.

Journal of Universal Computer Science, 2(8):570–579, 1996.
8 F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete & Compu-

tational Geometry, 22(3):333–346, 1999.
9 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-

plexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
10 A. Lubiw and V. Pathak. Flip distance between two triangulations of a point set is NP-

complete. In Proceedings of CCCG, pages 119–124, 2012.
11 A. Lubiw and V. Pathak. Flip distance between two triangulations of a point set is NP-

complete. arXiv.org e-Print archive, paper cs.CG/1205.2425, May 2012.
12 J. Lucas. An improved kernel size for rotation distance in binary trees. Information

Processing Letters, 110(12):481–484, 2010.
13 A. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and beyond. In

Proceedings of ISAAC, volume 8889 of Lecture Notes in Computer Science, pages 452–463.
Springer, 2014.

14 A. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the parameterized
complexity of reconfiguration problems. In Proceedings of IPEC, volume 8246 of Lecture
Notes in Computer Science, pages 281–294. Springer, 2013.

15 A. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration over tree de-
compositions. In Proceedings of IPEC, volume 8894 of Lecture Notes in Computer Science,
pages 246–257. Springer, 2014.

16 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, USA,
2006.

17 A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. John Wiley & Sons, New York, NY, USA, 1992.

18 A. Pilz. Flip distance between triangulations of a planar point set is APX-hard. Computa-
tional Geometry, 47(5):589–604, 2014.

19 A. Saalfeld. Joint triangulations and triangulation maps. In Proceedings of SoCG, pages
195–204. ACM, 1987.

20 L. Schumaker. Triangulations in CAGD. IEEE Computer Graphics and Applications,
13(1):47–52, 1993.

21 R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243–245, 1978.
22 D. Sleator, R. Tarjan, and W. Thurston. Rotation distance, triangulations, and hyperbolic

geometry. In Proceedings of STOC, pages 122–135. ACM, 1986.
23 K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathema-

tiker-Vereinigung, 46:26–32, 1936.
24 D. Watson and G. Philip. Systematic triangulations. Computer Vision, Graphics, and

Image Processing, 22(2):310, 1983.

New Pairwise Spanners
Telikepalli Kavitha

Tata Institute of Fundamental Research, India
kavitha@tcs.tifr.res.in

Abstract
Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called
an (all-pairs) purely additive spanner with stretch β if for every (u, v) ∈ V × V , distH(u, v) ≤
distG(u, v) + β. The problem of computing sparse spanners with small stretch β is well-studied.
Here we consider the following relaxation: we are given P ⊆ V ×V and we seek a sparse subgraph
H where distH(u, v) ≤ distG(u, v) + β for each (u, v) ∈ P . Such a subgraph is called a pairwise
spanner with additive stretch β and our goal is to construct such subgraphs that are sparser
than all-pairs spanners with the same stretch. We show sparse pairwise spanners with additive
stretch 4 and with additive stretch 6. We also consider the following special cases: P = S × V
and P = S × T , where S ⊆ V and T ⊆ V , and show sparser pairwise spanners for these cases.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases undirected graphs, spanners, approximate distances, additive stretch

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.513

1 Introduction

Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G
is called a spanner with multiplicative stretch α and additive stretch β if for every pair
(u, v) ∈ V × V , we have δH(u, v) ≤ α · δG(u, v) + β, where δG(u, v) (similarly, δH(u, v))
is the u-v distance in G (resp., H). The objective in spanner problems is to construct a
subgraph H that is as sparse as possible, however for each pair of vertices (u, v), the u-v
distance in H is close to the u-v distance in G, i.e., the stretch is small.

When the multiplicative stretch α is 1 and the additive stretch β is O(1), the span-
ner H is said to be purely additive. We currently know purely additive spanners only for
additive stretches 2, 4, and 6. The additive stretch 2 spanner has size O(n3/2) [1], the
additive stretch 4 spanner has size Õ(n7/5) [10], and the additive stretch 6 spanner has size
O(n4/3) [6]. In this paper we consider the problem of obtaining sparser subgraphs for the
following relaxed problem: distances for all pairs in V × V need not be well-approximated
in the subgraph – here we have a subset P ⊆ V ×V of critical pairs and we seek a subgraph
H where δH(u, v) ≤ δG(u, v) +O(1) for every (u, v) ∈ P .

Our goal is to find a subgraph H that is sparser (for a large range of values of |P|)
than the all-pairs spanner with the same additive stretch. This problem was first studied by
Coppersmith and Elkin [12] who sought subgraphs where distances for pairs in P were exactly
preserved. They called such subgraphs pairwise preservers and showed such subgraphs of
size O(min{n

√
|P|, n + |P|

√
n}) for any P ⊆ V × V . They left it as an open question to

study the approximate variants of pairwise preservers.
This question was studied by Cygan et al. [15] who called such subgraphs pairwise span-

ners or P-spanners. A trade-off between the additive stretch and size of a P-spanner
was shown in [15], where the least stretch P-spanner had additive stretch 4 with size
O(n4/3|P|1/6) and the sparsest P-spanner had size Õ(n|P|1/4) with additive stretch 4 logn.

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 513–526

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.513
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

514 New Pairwise Spanners

Subsequently, a pairwise spanner of size Õ(n|P|1/3) and additive stretch 2 was shown in
[20]. We show the following results here.

I Theorem 1. Let G = (V,E) be an undirected unweighted graph. Then for any P ⊆ V ×V ,
the following subgraphs can be constructed in polynomial time (where |V | = n):
1. a P-spanner of size Õ(n · |P|2/7) and additive stretch 4,
2. a P-spanner of size O(n · |P|1/4) and additive stretch 6.

Comparing our pairwise spanners with pairwise preservers and all-pairs spanners: the
pairwise spanner in Theorem 1.1 is sparser than the Õ(n7/5)-sized all-pairs spanner with
additive stretch 4 when |P| is o(n7/5) and it is sparser than the O(n+ |P|

√
n)-sized pairwise

preserver when |P| is ω(n7/10). The pairwise spanner in Theorem 1.2 is sparser than the
above pairwise preserver when |P| is ω(n2/3) and it is sparser than the O(n4/3)-sized all-pairs
spanner with additive stretch 6 when |P| is o(n4/3).

A natural setting for P ⊆ V × V is when the set P of relevant pairs is S × T , where S
is one set of endpoints or sources and T is another set of endpoints or destinations and we
seek a subgraph where s-t distances are well-approximated for every (s, t) ∈ S × T . The
case where S = T was considered earlier and an (S × S)-spanner of size O(n

√
|S|) with

additive stretch 2 is known [15, 25]. Here we seek (S × T)-spanners that are sparser than
an (S ∪T)× (S ∪T)-spanner or an (S×V)-spanner (for instance, when |S| � |T | � n). To
the best of our knowledge, (S×T)-spanners are being studied for the first time here and we
will refer to them as ST -spanners. We show the following result on ST -spanners.

I Theorem 2. For any subsets S and T of V , an ST -spanner of size O(n · (|S| |T |)1/4) and
additive stretch 4 can be constructed in polynomial time.

Thus the above result combines the size of the pairwise spanner in Theorem 1.2 with the
stretch of the one in Theorem 1.1, in other words, we get a P-spanner of size O(n|P|1/4)
with additive stretch 4 when P = S × T . Our next theorem shows that Theorem 1 can be
further improved for sourcewise spanners, i.e., when P = S × V . Sourcewise spanners form
a natural and interesting class of general P-spanners and ST -spanners.

I Theorem 3. The following subgraphs can be constructed in polynomial time for any S ⊆
V :
1. an (S × V)-spanner of size Õ(n · (n|S|)2/9) and additive stretch 4,
2. an (S × V)-spanner of size O(n · (n|S|)1/5) and additive stretch 6.

Sourcewise spanners of size Õ(n · (n|S|)1/4) and additive stretch 2 were shown in [20].
Trade-off results between the size and additive stretch of sourcewise spanners were shown
in [15, 21]. We show a size vs additive stretch trade-off for ST -spanners in Theorem 4.

I Theorem 4. For any integer k ≥ 1 and S, T ⊆ V , an ST -spanner with additive stretch
2k and size Õ(n · (|S|γ |T |)1/(2γ+1)), where γ = k+ 1, can be constructed in polynomial time.

By setting T to be the set of cluster centers (defined in Section 2) in Theorem 4, we
get for k ≥ 2, sourcewise spanners with additive stretch 2k and size Õ(n1+1/r|S|k/r), where
r = 2k + 2. This matches the current best trade-off for sourcewise spanners (from [21]).
An advantage with our construction is that it is deterministic, hence the bound is on the
worst case size of the sourcewise spanner constructed here while the construction in [21] was
randomized, hence the bound there was on the expected size of the sourcewise spanner.

An all-pairs purely additive spanner of size O(n1+ 2δ
2δ+1) can be obtained from a P-spanner

with additive stretch O(1) and size O(n · |P|δ) by taking P = T × T , where T = {cluster
centers}; thus if δ < 1/4, we get an all-pairs purely additive spanner of size O(n1+ε), where
ε < 1/3. No such purely additive spanners are currently known.

T. Kavitha 515

1.1 Background and Related Results
Graph spanners were introduced by Peleg and Schaffer [23] in 1989. The problem of effi-
ciently constructing sparse spanners with a small multiplicative stretch is well-understood:
Althöfer et al. [2] in 1993 showed that in any weighted graph G on n vertices and for any
integer k ≥ 1, there is a spanner of size O(n1+1/k) with multiplicative stretch 2k − 1. More
efficient constructions of spanners in weighted graphs can be found in [8, 27, 26]. There are
several applications in graph/network algorithms that use spanners: for instance, approxim-
ate shortest paths [3, 11, 17], approximate distance oracles [28, 7, 5], labeling schemes [22, 19],
network design [24], routing [4, 13, 14].

For unweighted graphs, we seek spanners with purely additive stretch – the first such
spanner was by Aingworth et al. [1] (with followup work in [16, 18]) which showed a spanner
with additive stretch 2 and size O(n3/2). The additive stretch 6 spanner is due to Baswana
et al. [6] and the additive stretch 4 spanner is due to Chechik [10]. The current best trade-
off between sparsity and additive stretch is from [10]: for any δ ∈ [3/17, 1/3), there is a
subgraph of size Õ(n1+δ) and additive stretch Õ(n(1−3δ)/2).

Bollobás et al. [9] were the first to study a variant of pairwise preservers – they studied
D-preservers where the problem was to compute a sparse pairwise preserver for the set
P = {(u, v) : δG(u, v) ≥ D}. As mentioned earlier, Coppersmith and Elkin [12] studied the
general problem of pairwise preservers for any P ⊆ V × V .

The study of pairwise spanners was initiated by Cygan et al. [15] who showed the fol-
lowing trade-off for pairwise spanners – for any P ⊆ V × V and integer k ≥ 1: additive
stretch 4k and size O(n1+1/r · (k|P|)k/2r), where r = 2k + 1 and the following trade-off
between size and additive stretch for sourcewise spanners – for any subset S and any integer
k ≥ 1: additive stretch 2k and size O(n1+1/r(k|S|)k/r), where r = 2k+1. Parter [21] showed
sparse multiplicative sourcewise spanners and a lower bound of Ω(n|S|1/k/k) on the size of
a sourcewise spanner with additive stretch 2(k − 1), for any integer k ≥ 1.

1.2 Techniques
All our algorithms start with the clustering step where vertices are grouped into clusters and
at the end of this step, we are left with a post-clustering subgraph that contains all edges of
G, except some inter-cluster edges. In each of our algorithms, the rest of the algorithm has
to decide which of these missing inter-cluster edges should get added to the post-clustering
subgraph. We use the steps of path-buying and path-hitting to make these decisions.

The path-buying step was introduced in [6] and has been used in several spanner al-
gorithms [15, 20, 21]; here each shortest path is “evaluated” and if it is affordable, the path
is bought, i.e., its missing edges are added to the current subgraph. Otherwise it will have
to be the case that the path is already well-approximated in the current subgraph. We
use path-buying with appropriate value functions in our algorithms for pairwise/sourcewise
spanner with additive stretch 6 and ST -spanner with additive stretch 4.

We use path-hitting in our other algorithms. Path-hitting was first seen in the near-
quadratic time algorithm in [29] for an Õ(n4/3)-sized spanner with additive stretch 6. This
technique aims at hitting the neighborhood of each shortest path: this was done in [29]
by randomly sampling vertices and appropriate near-shortest paths between the sampled
vertices and other vertices were added to form the spanner. In our path-hitting subroutines
here, we select a small number of clusters so that certain critical subpaths of all our relevant
shortest paths are hit, i.e., for each such subpath, there will be some cluster among our
selected ones that intersects it. Finally, our subgraph will contain shortest paths between

STACS 2015

516 New Pairwise Spanners

appropriate pairs of selected clusters.
Section 2 describes the clustering step and other preliminaries. Theorems 1 and 2 are

shown in Section 3. Section 4 has our results on sourcewise spanners and Section 5 has the
trade-off result for ST -spanners. Due to space constraints, the proofs of some lemmas are
omitted; they will be included in the full version of the paper.

2 Preliminaries

A clustering of a graph G = (V,E) is a collection {C1, . . . , Cr} where each Ci is a subset of
vertices and Ci ∩ Cj = ∅ for i 6= j. Note that we do not require ∪iCi to be equal to V ; the
vertices in V − ∪iCi will be called unclustered. Associated with each cluster Ci is a vertex
called its center, denoted by center(Ci), with the following property: every vertex in Ci is a
neighbor of center(Ci). Note that center(Ci) /∈ Ci.

Given a graph G and an integer h, where 1 ≤ h ≤ n, the following simple procedure
constructs a clustering Ch = {C1, . . . , Cr} and returns 〈Ch, U〉, where U = V − ∪iCi is the
set of unclustered vertices.

– Initially all vertices are unclustered and Ch is empty. While there is a vertex v with at
least h unclustered neighbors, we form a new cluster C by picking any h of these neighbors
of v and these vertices are now clustered; v becomes center(C) and C gets added to Ch.
When no vertex has h or more unclustered neighbors, this procedure terminates and returns
〈Ch, U〉, where U is the set of unclustered vertices.

It is easy to see that every pair of clusters is disjoint and each cluster C is a collection
of h vertices. So |Ch|, the number of clusters, is at most n/h. Associated with Ch is a
post-clustering subgraph Gh that consists of all the edges incident to unclustered vertices,
all intra-cluster edges (i.e., edges (u, v) where both u and v belong to the same cluster), as
well as the edges (v, c), where v is a clustered vertex and c is the center of v’s cluster. It
can be shown that Gh has O(nh) edges. We define the cost of a path below.

I Definition 5. For any path ρ in G, let cost(ρ) denote the number of edges of ρ that are
missing in the post-clustering subgraph Gh.

The following lemma from [15] gives a lower bound on the number of distinct clusters
that are incident on a shortest path ρ whose cost is t or more. We say a cluster C and a
shortest path ρ intersect each other if C and ρ have at least one vertex in common.

I Lemma 6 (from [15]). Let ρ be a shortest path in G with cost(ρ) ≥ t. Then there are at
least t/2 distinct clusters of Ch that intersect ρ.

Another subroutine that our algorithms will use is that of efficiently computing a small-
sized “hitting set” A ⊆ Ch for a set Q of paths. We define such a set A below.

I Definition 7. Let Q be a set of paths. Then A ⊆ Ch is a hitting set for Q if for every path
q ∈ Q, there is at least one cluster in A that intersects q.

When each q ∈ Q has several clusters incident on it, a small-sized hitting set can be
computed easily by the greedy algorithm. We know from Lemma 6 that if a shortest path
has many missing edges in Gh, then it has several distinct clusters incident on it. Lemma 8
uses this property to obtain a small-sized hitting set for such a set Q of paths.

I Lemma 8. Let Q be a set of shortest paths such that each q ∈ Q has at least λ missing
edges in Gh. Then the greedy algorithm finds a hitting set A ⊆ Ch of size O(n/(hλ) · log |Q|)
for Q.

T. Kavitha 517

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

u v

C ′′
x y

a b

C ′

Figure 1 If δH(a, b) > δG(a, b) + 4 before Step 5 of our algorithm, then we would have bought a
path SP (x, y) of length at most δG(a, b) between C′ and C′′ in Step 5. The u-v path u−a−x−y−b−v
has length at most δG(u, v) + 4.

It will be convenient to assume that there is a unique shortest path between any pair of
vertices. So for every pair of vertices u and v, we will choose one u-v shortest path in G

as the u-v shortest path (denoted by SP (u, v)) and we will ensure that every subpath of a
chosen shortest path is again a chosen shortest path. Let F = {ρ1, . . . , ρ(n2)} be the set of
all these chosen shortest paths in G.

Let Q ⊆ F be the set of shortest paths p such that cost(p) ≥ (n log n)/h2. Lemma 8
tells us that Q has a hitting set Xh of size O(h). Consider the step of augmenting the post-
clustering subgraph Gh with the edges of BFS trees rooted at the centers of clusters in Xh.
As there are only O(h) such trees, the total number of edges added by this augmentation is
O(nh). The following lemma from [20] is a useful consequence of this augmentation.

I Lemma 9. Let u and v be a pair of vertices such that cost(SP (u, v)) ≥ (n log n)/h2. Then
the augmented post-clustering graph has a u-v path of length at most δG(u, v) + 2.

3 Pairwise Spanners

In this section we prove Theorems 1 and 2 stated in Section 1. We first describe the
construction of a P-spanner of size Õ(n|P|2/7) with additive stretch 4. The input is an
undirected unweighted graph G = (V,E) along with P ⊆ V × V .

Our algorithm starts by running the clustering step with an appropriate parameter h and
augments the post-clustering graph Gh by adding BFS trees rooted at the centers of clusters
in Xh, where Xh is an O(h)-sized hitting set for Q = {ρ ∈ F : cost(ρ) ≥ (n log n)/h2}. Call
the resulting graph H.

We are ready to buy 2` new edges for each (u, v) ∈ P , for an appropriate parameter `. If
p = SP (u, v) is expensive, i.e., cost(p) > 2`, then we buy only a prefix p′ and a suffix p′′ of
p such that cost(p′) = cost(p′′) = `. The main idea here is path-hitting – we find small-sized
sets A and B of clusters so that there is a cluster C ′ ∈ A that intersects p′ and there is a
cluster in C ′′ ∈ B that intersects p′′.

For each pair of clusters (C0, C1) ∈ A× B, we add to H at most one shortest path over
all pairs of vertices in C0 ×C1. Then we have an approximate shortest path between u and
v of the form u − C ′ C ′′ − v, where C ′ ∈ A and C ′′ ∈ B, and we will show that this
resulting u-v path has additive stretch 4 (see Figure 1).

Our algorithm is presented below, let h = d|P|2/7 log3/7 ne and ` = d(n log3/2 n)/h5/2e.

1. Run the clustering step with the above h and let Gh be the post-clustering subgraph.
Augment Gh with O(h) BFS trees as described above. Let H be the resulting graph.

2. For each (u, v) ∈ P do: (let ρ = SP (u, v))
(a) if cost(ρ) ≤ 2` then add all the missing edges of ρ to H.

STACS 2015

518 New Pairwise Spanners

(b) else add to H all the missing edges of prefix(ρ) and suffix(ρ), where prefix(ρ) (simil-
arly, suffix(ρ)) is the minimal prefix (resp., suffix) of ρ that has ` edges missing in
Gh.

3. For each p ∈ F such that cost(p) > 2` do: {recall that F is the set of all shortest paths}
let Q0 = {prefix(p) : p ∈ F} and Q1 = {suffix(p) : p ∈ F}.

4. Determine A and B greedily, where A = hitting set for Q0 and B = hitting set for Q1.
5. For each C0 ∈ A and C1 ∈ B do:

if there is a pair (x, y) ∈ C0 × C1 such that δH(x, y) > δG(x, y) + 4, then find such
a pair (x′, y′) ∈ C0 × C1 with least δG(x′, y′) and add to H all the missing edges in
SP (x′, y′).

Lemma 10 shows that H is a P-spanner with additive stretch 4 and Lemma 11 bounds
the size of the subgraph H. Thus Theorem 1.1 follows.

I Lemma 10. Let H be the subgraph computed by the algorithm above. Then δH(u, v) ≤
δG(u, v) + 4 for each (u, v) ∈ P.

Proof. Consider any pair (u, v) ∈ P and let ρ = SP (u, v). If cost(ρ) ≤ 2` then by Step 2(a),
the entire path ρ is present in H and so δH(u, v) = δG(u, v) in this case. If cost(ρ) > 2`
then there is a cluster C ′ ∈ A incident on the prefix ρ′ of ρ and a cluster C ′′ ∈ B incident
on the suffix ρ′′ of ρ.

Let a be the first vertex of C ′ incident on ρ and b be the last vertex of C ′′ incident on ρ
(see Figure 1). If δH(a, b) > δG(a, b) + 4 before Step 5 of our algorithm, then we would have
bought a path of length at most δG(a, b) between C ′ and C ′′ in Step 5. Thus after Step 5,
we have δH(a, b) ≤ diameterH(C ′) + δH(C ′, C ′′) + diameterH(C ′′) ≤ δG(a, b) + 4.

In Step 2(b) of our algorithm, we would have added all edges in the u-a subpath and
the b-v subpath of ρ, so δH(u, a) = δG(u, a) and δH(b, v) = δG(b, v). Thus at the end of the
algorithm, we have δH(u, v) ≤ δH(u, a) + δH(a, b) + δH(b, v) ≤ δG(u, v) + 4. J

I Lemma 11. The size of the final subgraph H is O(nh), where h = d|P|2/7 log3/7 ne.

Proof. Initially the size of H is the size of the post-clustering graph Gh, which is O(nh).
The size of H remains O(nh) after the augmentation with O(h) BFS trees. We buy at most
2` edges per pair in P in Step 2, so this adds to 2`|P|. For each (C0, C1) ∈ A×B, we buy at
most one shortest path – also such a shortest path has at most (n log n)/h2 missing edges in
Gh; otherwise it would already have been approximated within an additive stretch of 2 in H
by some BFS tree (by Lemma 9). So we buy at most (n log n)/h2 edges per (C0, C1) ∈ A×B.

It follows from Lemma 8 that |A| and |B| are at most O(n log n/(h`)). Thus the total
number of edges bought in Step 5 is O((n log n)/h2 · (n log n/h`)2). This is O(nh) since
` = d(n log3/2 n)/h5/2e. Thus the total size of H is O(nh+ `|P|). Substituting the values of
` and h, it follows that the size of H is O(n |P|2/7 log3/7 n). J

A pairwise spanner with additive stretch 6. We now show a simple algorithm to construct
a P-spanner of size O(n|P|1/4) and additive stretch 6. The main step here is path-buying –
for each shortest path ρ whose endpoints are in P, if ρ is “affordable”, then we buy ρ, i.e.,
add to H all the missing edges of ρ.

Definition 12 captures the value of a path. For any pair of clusters C1, C2 in a subgraph
H, let δH(C1, C2) = min{δH(a, b) : a ∈ C1, b ∈ C2}. Similarly, for any pair of clusters C1, C2
incident on a path p, let δp(C1, C2) be the minimum value of δp(x, y), where x ∈ C1 and
y ∈ C2 lie on path p.

T. Kavitha 519

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

a b v

C1
C ′C0

u

Figure 2 We have δH(C0, C
′) ≤ δρ(C0, C

′) and δH(C′, C1) ≤ δρ(C′, C1). Since the diameter of
each cluster is 2, this implies δH(a, b) ≤ δG(a, b) + 6.

I Definition 12. For any subgraph H of G and path p in G, let valueH(p) be the number
of pairs of clusters (C1, C2) incident on p such that δp(C1, C2) < δH(C1, C2).

Thus valueH(p) is the number of pairs of clusters incident on p whose distance in H

would improve upon adding p to H. We also extend the cost function used in our earlier
algorithm to costH(): for any path p, let costH(p) be the number of edges of p that are
missing in H. Our algorithm is described below. Let h = d|P|1/4e and ` = dn/h3e.

1. Run the clustering step with parameter h. Let H be the post-clustering subgraph Gh.
2. For each (u, v) ∈ P do: (let ρ = SP (u, v))

(a) if costH(ρ) ≤ max{4`, 8 valueH(ρ)/`} then buy ρ.
(b) else buy prefix(ρ) and suffix(ρ).

[prefix(ρ) is the minimal prefix of ρ such that costH(prefix(ρ)) = ` and similarly,
suffix(ρ) is the minimal suffix of ρ such that costH(suffix(ρ)) = `.]

I Lemma 13. For every pair (u, v) ∈ P, we have δH(u, v) ≤ δG(u, v) + 6.

Proof. Let ρ ∈ F be the u-v shortest path, where (u, v) ∈ P . This path ρ gets considered in
Step 2 of our algorithm. If we buy ρ in Step 2(a), then δH(u, v) = δG(u, v). Hence assume
ρ was not bought, let costH(ρ) = t when ρ gets considered in Step 2. That is, at the time
of processing ρ in Step 2, there are t edges of ρ missing in the current subgraph H.

We know that t > 4`, otherwise ρ would have been bought in Step 2(a). In Step 2(b),
the prefix and suffix of ρ with ` edges missing in H, i.e., ρ′ = prefix(ρ) and ρ′′ = suffix(ρ),
are bought. Let q = ρ− (ρ′ ∪ ρ′′), this is the middle portion of ρ consisting of t− 2` missing
edges. It follows from Lemma 6 that there are at least `/2 clusters incident on ρ′ and on ρ′′.

Let A0 (similarly, A1) be the set of clusters incident on ρ′ (resp., ρ′′). The subpath q

has at least (t− 2`)/2 incident clusters (call this set of clusters B). We will show Claim 1.

I Claim 1. There are clusters C0 ∈ A0, C ′ ∈ B, and C1 ∈ A1 such that δH(C0, C
′) ≤

δρ(C0, C
′) and δH(C ′, C1) ≤ δρ(C ′, C1).

We will now assume the above claim and finish the proof of Lemma 13. Then we will
prove Claim 1. This claim guarantees that the graph H contains a path C0 C ′ C1
such that the C0 C ′ subpath has length at most δρ(C0, C

′) and the C ′ C1 subpath has
length at most δρ(C ′, C1) (see Figure 2). Thus there are vertices a ∈ ρ′∩C0 and b ∈ ρ′′∩C1
such that δH(a, b) ≤ δG(a, b) + 6 (via the C0 C ′ C1 path in H and diameterH(C) ≤ 2
for all C ∈ Ch). We buy all the missing edges in ρ′ and in ρ′′ in Step 2(b), hence we have
δH(u, a) = δG(u, a) and δH(b, v) = δG(b, v). Since δH(u, v) ≤ δH(u, a) + δH(a, b) + δH(b, v),
we get δH(u, v) ≤ δG(u, v) + 6. J

Proof of Claim 1. Suppose there are no such clusters C0, C
′, and C1. Then for each

cluster C ′ ∈ B, either δρ(C0, C
′) < δH(C0, C

′) for every C0 ∈ A0 or δρ(C ′, C1) < δH(C ′, C1)

STACS 2015

520 New Pairwise Spanners

for every C1 ∈ A1. Since |A0| ≥ `/2, |A1| ≥ `/2, and |B| ≥ (t− 2`)/2, this means that

valueH(ρ) ≥ `

2 ·
t− 2`

2 >
`

2 ·
t

4 = ` · t
8 , (1)

where the second inequality follows from the fact that t > 4`, so ` < t/4, thus t − 2` >
t/2. Since we did not buy ρ in Step 2(a), it must be the case that t > 8 valueH(p)/`, i.e,
valueH(ρ) < ` · t/8. This contradicts Inequality (1). J

I Lemma 14. The size of the final subgraph H is O(n|P|1/4).

Proof. Initially the size of H is O(nh) which is O(n|P|1/4). The total number of edges
added in Step 2(b) is at most 2`|P| since we buy at most 2` edges per element in P. Since
` = dn/h3e where h = d|P|1/4e, it follows that O(`|P|) is O(n|P|1/4). The total number of
edges added in Step 2(a) is

∑
ρ cost(ρ) where the sum is over all the paths ρ that got bought

in this step during the entire algorithm.
Let us evaluate

∑
ρ cost(ρ) for the paths ρ bought in Step 2(a) – this is at most 4`|P|+∑

ρ 8 valueH(ρ)/` since we buy ρ only when costH(ρ) ≤ max{4`, 8 valueH(ρ)/`}. Let us
bound

∑
ρ valueH(ρ)/` where the sum is over all the paths bought.

We say a pair of clusters (C1, C2) ∈ Ch × Ch supports ρ if (C1, C2) contributes positively
to valueH(ρ). Consider all the shortest paths that were supported by a fixed pair (C1, C2).
We claim at most 5 of them could have been bought in our algorithm. This is because once
a shortest path ρ supported by (C1, C2) gets bought, we have δH(C1, C2) ≤ δG(C1, C2) + 4
since this path ρ is SP (x, y) for some (x, y) ∈ C1 × C2. Thereafter, every time a path
supported by (C1, C2) gets bought, δH(C1, C2) (strictly) decreases. Thus

∑
ρ

valueH(ρ)
`

= 1
`

∑
(C1,C2)

number of paths supported by (C1, C2) that got bought ≤ 5 |Ch|2

`
,

where the middle sum is over all pairs of clusters (C1, C2) ∈ Ch × Ch. Substituting |Ch| ≤
n/h and ` = dn/h3e, the right side above is bounded by O(nh). Hence the size of H is
O(n|P|1/4). J

Theorem 1.2 follows from Lemmas 13 and 14. This finishes the proof of Theorem 1
stated in Section 1.

An ST -spanner with additive stretch 4. The input here is G = (V,E) along with S ⊆ V

and T ⊆ V . We assume without loss of generality that |S| ≤ |T |. Our algorithm here again
uses path-buying, however with a new value function that is defined below.

I Definition 15. For any subgraph H of G and any path p in G with one endpoint in S (call
this vertex s) and the other endpoint in T (call this vertex t), define valueH(p) as follows:

valueH(p) = `·|{C0 : δp(s, C0) < δH(s, C0)}| + 2·|{(C1, C2) : δp(C1, C2) < δH(C1, C2)}|,

where all the clusters C0, C1, C2 above have to be incident on p and the value ` = dn/h3e
(the parameter h will be set to d(|S| |T |)1/4e).

In other words, valueH(p) = `α1 + 2α2, where α1 is the number of clusters incident on p
whose distance to s via p is better than the current distance to s in H and α2 is the number
of pairs of clusters incident on p whose distance in p is better than their current distance in
H. Our algorithm is described below. Let h = d(|S| |T |)1/4e.

T. Kavitha 521

1. Run the clustering step with parameter h. Let H be the post-clustering subgraph Gh.
2. For each (s, t) ∈ S × T do: (let p = SP (s, t))

(a) If costH(p) ≤ max{2`, 4 valueH(p)/`} then add to H all the missing edges of p.
(b) Else buy the minimal suffix p′ of p such that costH(p′) = `, i.e., add to H the last `

missing edges of p.

Lemma 16 states the correctness of the above algorithm. Its proof (which is omitted
here) is similar to the proofs of Lemmas 13 and 14. Theorem 2 stated in Section 1 thus
follows.

I Lemma 16. The size of the final subgraph H is O(n · (|S| |T |)1/4). For every pair (s, t) ∈
S × T , we have δH(s, t) ≤ δG(s, t) + 4.

4 Sourcewise spanners

The input here is G = (V,E) along with a subset of V , which is the set of sources. In this
section we will prove Theorem 3. We first show Theorem 3.2 whose proof follows quite easily
from our ST -spanner with additive stretch 4 (shown in the previous section). Let S′ ⊆ V

be the set of sources here – we will be using the symbols S and T for the 2 sets in the
ST -spanner algorithm, so we use the symbol S′ to refer to the set of sources here. Broadly
speaking, we take the sets S and T in the ST -spanner to be the set S′ and the set of all
cluster centers to get a sourcewise spanner.

However we need to be careful about which of S, T becomes S′ and which becomes the
set of cluster centers: recall that our algorithm for ST -spanners assumed |S| ≤ |T |. So we
assign the sets S and T as follows: if |S′| ≤ n2/3 then assign S = S′ else assign T = S′.
More precisely, our algorithm does the following:

1. Run the clustering step with parameter h = d(n|S′|)1/5e. Let H be the post-clustering
subgraph Gh. Let T ′ = {cluster centers}.

2. If |S′| ≤ n2/3 then set S = S′ and T = T ′; else set S = T ′ and T = S′.
3. Run Step 2 of our ST -spanner algorithm with additive stretch 4 (the parameter ` =
dn/h3e); return the ST -spanner H.

It can be shown (proof omitted here) that the subgraph returned by the ST -spanner
algorithm is an (S′ × V)-spanner with additive stretch 6 and that this subgraph has size
O(n · (n|S′|)1/5). Thus Theorem 3.2 stated in Section 1 follows.

We now prove Theorem 3.1 by describing an algorithm to construct a sparse (S × V)-
spanner with additive stretch 4, where S ⊆ V is the set of sources. We run the clustering step
with h = d(|S|n log2 n)2/9e and initialize the subgraph H to the post-clustering subgraph
Gh. Then we augment H with BFS trees rooted at O(h) selected cluster centers so that
every path p ∈ F with cost(p) ≥ (n log n)/h2 has some adjacent cluster center that has been
selected. For every s ∈ S and cluster C, we pick the shortest path between s and its closest
vertex x ∈ C (in case of ties, x is chosen arbitrarily) and call it SP (s, C) henceforth.

Let R ⊆ F be the collection of paths SP (s, C) where s ∈ S and C ∈ Ch. Corresponding
to each ρ ∈ R, we are ready to buy λ new edges, where λ2 = (n log n)2/h5. So if cost(ρ) ≤ λ,
then we buy ρ. For any ρ ∈ R, if cost(ρ) > λ, then let ρ0 to be the minimal suffix of ρ that
has bλc missing edges in the post-clustering subgraph Gh; let Q0 be the set containing all
such suffixes ρ0. We now use path-hitting to determine A0 ⊆ Ch so that for each ρ0 ∈ Q0
there is at least one cluster C0 ∈ A0 that intersects ρ0.

STACS 2015

522 New Pairwise Spanners

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

y z

C0
C

s v
SP (y, z)SP (s, y)

Figure 3 There are at most λ2 missing edges in the path SP (s, y) and at most λ missing edges
in the path SP (y, z). We will buy a path s C0 C, where C is the last cluster on SP (s, v).

1. For each s ∈ S and C0 ∈ A0: if there exists any x ∈ C0 such that cost(SP (s, x)) ≤ λ2 then
buy SP (s, x′) where x′ ∈ C0 is the closest vertex to s that satisfies cost(SP (s, x′)) ≤ λ2

and also run the following step.

1.1. For each C ∈ Ch such that C0 intersects SP (s, u) for some u ∈ C do:
– if there is some path SP (a, b) where (a, b) ∈ C0 × C with cost(SP (a, b)) ≤ λ and

buying this path improves δH(s, C), then buy SP (a, b).

We now deal with ρ ∈ R such that cost(ρ) > λ2. For any such ρ, define ρ1 be the minimal
prefix of ρ with bλ2c missing edges in the current H; let Q1 be the set containing all such
prefixes ρ1. We again use path-hitting to determine A1 ⊆ Ch so that for each ρ1 ∈ Q1 there
is at least one cluster C1 ∈ A1 that intersects ρ1. We run the following two steps now.
2. For each (s, C1) ∈ S×A1: if there exists any w ∈ C1 such that cost(SP (s, w)) ≤ λ2 then

buy SP (s, w′) where w′ ∈ C1 is the closest vertex to s that satisfies cost(SP (s, w′)) ≤ λ2.
3. For each (C1, C) ∈ A1 × Ch: if there is a pair (a, b) ∈ C1 × C such that δH(a, b) >

δG(a, b) + 2 and buying SP (a, b) improves δH(C1, C), then buy SP (a, b).

I Lemma 17. For every pair (s, v) ∈ S × V , we have δH(s, v) ≤ δG(s, v) + 4.

Proof. Consider any pair (s, v) ∈ S×V and let p = SP (s, v). We can assume that cost(p) <
(n log n)/h2, otherwise δH(s, v) ≤ δG(s, v) + 2 due to adding certain BFS trees to H.

Let z be the last clustered vertex on p, i.e., z is the clustered vertex that is closest to v on
this path p. Let C be the cluster containing z. Consider ρ = SP (s, C). If cost(ρ) ≤ λ, then
we would have bought ρ, which means δH(s, z) ≤ δG(s, z) + 2, thus δH(s, v) ≤ δG(s, v) + 2.
So let us assume that cost(ρ) > λ. We have two cases here:

Case(1): Suppose λ < cost(ρ) ≤ λ2. There is a cluster C0 ∈ A0 incident on the suffix ρ0
of ρ. In other words, the path ρ restricted to the subpath C0 C has at most λ missing
edges. Let y be the first vertex of C0 on ρ. Since cost(ρ) ≤ λ2, we have cost(SP (s, y)) ≤ λ2.
So in Step (1) we either buy all the missing edges of SP (s, y) or we already have a path
s C0 in H of length at most δG(s, y). Thus we have δH(s, C0) ≤ δG(s, y).

Now consider the y-z subpath of ρ (see Figure 3). We know that there are at most
λ edges of SP (y, z) that are missing in the subgraph H. Buying these λ edges causes
δH(s, C) ≤ δH(s, C0) + 2 + |SP (y, z)| ≤ δG(s, z) + 2.

So either δH(s, C) is already at most δG(s, z)+2 or we buy the missing edges of SP (y, z)
in Step (1.1) and make δH(s, C) ≤ δG(s, z) + 2. Thus after this step, we have δH(s, v) ≤
δG(s, v) + 4 using the path s C0 C v.

Case(2): We are left with the case when cost(ρ) > λ2. In this case we would have a
cluster C1 ∈ A1 incident on the prefix ρ1 of ρ with at most λ2 missing edges. Let x be the
first vertex of C1 on ρ (see Figure 4). While considering the pair (s, C1), we would have
either bought all the missing edges of SP (s, x) in Step (2) (as there are at most λ2 missing
edges here) or we already have a path s C1 of length at most δG(s, x).

T. Kavitha 523

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

x z

C1

≤ |SP (x, z)|≤ |SP (s, x)|
C

vs

Figure 4 H has an s C1 path of length |SP (s, C1)|. There is also a C1 C path of length
|SP (x, z)|.

Consider the pair (C1, C) ∈ A1 × Ch. Step (3) for the pair (x, z) ∈ (C1, C) ensures
that either δH(x, z) ≤ δG(x, z) + 2 or there is already a C1 C path of length at most
|SP (x, z)|. In either case there is a path C1 z of length at most δG(x, z) + 2. Since
δH(s, C1) ≤ δG(s, x) and δH(C1, z) ≤ δG(x, z)+2, it follows that δH(s, v) ≤ δG(s, v)+4. J

Theorem 3.1 stated in Section 1 follows from Lemma 17 and Lemma 18 stated below.

I Lemma 18. The size of the final subgraph H is O(nh), where h = d(|S|n log2 n)2/9e.

5 ST-spanners: A trade-off result

In this section we present our algorithm to construct a sparse ST -spanner with additive
stretch 2k, for any integer k ≥ 1. We first describe the algorithm and show that for any
(s, t) ∈ S × T , the final subgraph H has an s-t path of length at most |SP (s, t)|+ 2k.

Initialization. We run the clustering step with an appropriate parameter h and the
subgraph H is initialized to the post-clustering subgraph Gh. Then we augment H using
O(h) BFS trees so that for each shortest path p ∈ F with cost(p) ≥ (n log n)/h2, the
subgraph H has a path of length at most |p|+ 2 between p’s endpoints.

Set the parameters ` = nh/(k |S| |T |) and α = (|S| |T | k log n/h3)1/k. Note that these
parameters have been set so that αk` = (n log n)/h2. For (s, t) ∈ S×T , if cost(SP (s, t)) ≤ `,
then we buy SP (s, t). So we now have to deal with approximating shortest paths p ∈ F
with endpoints in S × T that satisfy ` < cost(p) < αk`.

Divide each such path p into critical subpaths as follows. Let αr−1` < cost(p) ≤ αr` for
some r ∈ {1, . . . , k}. Then for each j ∈ {0, 1, . . . , (r − 1)}:

let pj = minimal suffix of p with bαj`c edges missing in the post-clustering graph Gh.

Thus p can be split as p′ ‖ pr−1 for some prefix p′. Split pr−1 into qr−1 ‖ qr−2 ‖ · · · ‖ q0
as follows: let q0 = p0 and for 1 ≤ j ≤ r− 1, let qj be the prefix of pj obtained by removing
pj−1 (a suffix of pj) from pj . For each j, let Qj be the set of all qj ’s. So each p = SP (s, t)
with cost(p) ≥ αr−1` has a subpath qj ∈ Qj , for j = 0, . . . , r − 1.

Determine hitting sets A0, . . . ,Ak−1 for these sets Q0, . . . , Qk−1, respectively. In other
words, Aj is a set of clusters such that for every qj ∈ Qj , there is at least one cluster in Aj
that intersects qj .
1. For each s ∈ S and cluster Cj−1 ∈ Aj−1 (where 1 ≤ j ≤ k) do

for every vertex x in Cj−1: if cost(SP (s, x)) ≤ αj` and buying SP (s, x) improves
δH(s, Cj−1), then buy SP (s, x).

In order to see why this step is useful, consider p = SP (s, t) such that αr−1` < cost(p) ≤
αr` for some 1 ≤ r ≤ k. As described above, we can write p as p′ ‖ qr−1 ‖ qr−2 ‖ · · · ‖ q0. In
each hitting set Aj (for 0 ≤ j ≤ r− 1), we would have at least one cluster that intersects qj :
let Cj be such a cluster. For each j, let uj be the first vertex of cluster Cj on the path p, i.e.,
while traversing p from s to t, the first vertex of Cj that we encounter is uj (see Figure 5).

STACS 2015

524 New Pairwise Spanners

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

s ur−1 ur−2 u0 t

C0Cr−2Cr−1

Figure 5 The subgraph H has a path of length at most |SP (s, ur−1)| between s and Cr−1.

Consider the s−ur−1 subpath of p. The shortest path SP (s, ur−1), being a subpath of p,
has cost at most αr`. Hence while processing the pair (s, Cr−1) when we consider SP (s, ur−1)
in Step (1) above, we either buy SP (s, ur−1) or we already have δH(s, Cr−1) ≤ δG(s, ur−1).
In other words, after Step (1) we have δH(s, Cr−1) ≤ δG(s, ur−1). We would similarly like
to have δH(Ci−1, Cr−2) ≤ |SP (ur−1, ur−2)| and make δH(s, Cr−2) ≤ δG(s, ur−2) + 2 and so
on. In order to accomplish this, we do as follows.
2. For each s ∈ S and for j = k − 1 downto 1 do

for every (Cj , Cj−1) ∈ Aj×Aj−1 so that there is some v ∈ Cj−1 with SP (s, v)∩Cj 6= ∅
– for each (x, y) ∈ Cj×Cj−1: if cost(SP (x, y)) ≤ 2αj` and buying SP (x, y) improves
δH(s, Cj−1), then buy SP (x, y).

In the above step, corresponding to j = r− 1 and the vertex s ∈ S, we consider the pair
(Cr−1, Cr−2) on the path p shown in Figure 5. Since there is a vertex ur−2 ∈ Cr−2 such that
SP (s, ur−2) intersects Cr−1, we run the innermost for loop of Step (2) for (Cr−1, Cr−2).
Also cost(SP (ur−1, ur−2)) ≤ cost(qr−1) + cost(qr−2) ≤ 2αr−1`.

So either we already have δH(s, Cr−2) ≤ δG(s, ur−2) + 2 or we buy SP (ur−1, ur−2) and
make δH(s, Cr−2) ≤ δH(s, Cr−1) + 2 + |SP (ur−1, ur−2)|, which is at most δG(s, ur−2) + 2
since δH(s, Cr−1) ≤ δG(s, ur−1) by the end of Step (1).

It is easy to see that for any 1 ≤ i ≤ r − 1, if δH(s, Ci) ≤ δG(s, ui) + 2(r − i − 1)
when the index j = i + 1, then when the index j = i and the pair (Ci, Ci−1) on path p

gets considered, then δH(s, Ci−1) becomes at most δH(s, Ci) + 2 + |SP (ui, ui−1)| which is
at most δG(s, ui−1) + 2(r − i).

Thus at the end of Step (2), we have δH(s, C0) ≤ δG(s, u0) + 2(r − 1).
3. Finally for each (s, t) ∈ S × T and C0 ∈ A0 such that C0 intersects SP (s, t) do

– for each w ∈ C0: if cost(SP (w, t)) ≤ ` and buying SP (w, t) improves δH(s, t), then
buy SP (w, t).

Thus in Step (3), when we consider the cluster C0 and the pair (s, t), we either buy
SP (u0, t) which ensures δH(s, t) ≤ δH(s, C0) + 2 + |SP (u0, t)| ≤ δG(s, t) + 2r or we already
have δH(s, t) ≤ δG(s, t) + 2r. Since r ≤ k, it follows that H has an additive stretch of 2k
for all distances in S × T . This finishes the description of our algorithm and its correctness.
Lemma 19 (proof omitted here) bounds the size of H.

I Lemma 19. The final subgraph H has O(nh) edges, where h = dk
√

log n·(|S|k+1 |T |)
1

2k+3 e.

We can now conclude Theorem 4 stated in Section 1, i.e., for any integer k ≥ 1 and
S, T ⊆ V , an ST -spanner with additive stretch 2k and size Õ(n · (|S|γ |T |)1/(2γ+1)), where
γ = k + 1, can be constructed in polynomial time.

By running the clustering step with h = dk
√

log n · (|S|k+1 n)1/(2k+4)e and taking T =
{cluster centers}, Theorem 4 gives us an ST -spanner H of size O(nh) and additive stretch
2k. Since T is the set of cluster centers, it is easy to see that H is an (S × V)-spanner with
additive stretch 2k + 2.

T. Kavitha 525

I Corollary 20. For any integer k ≥ 1 and subset S ⊆ V , an (S × V)spanner with addit-
ive stretch 2t and size Õ(n1+1/(2t+2) · |S|t/(2t+2)), where t = k + 1, can be constructed in
polynomial time.

Acknowledgments. Thanks to the reviewers for their helpful comments.

References
1 D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and

shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167–
1181, 1999.

2 I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete and Computational Geometry, 9:81–100, 1993.

3 B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse
neighborhood covers. SIAM Journal on Computing, 28(1):263–277, 1998.

4 B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM
Journal on Computing, 5(2):151–162, 1992.

5 S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in
undirected graphs. SIAM Journal on Computing, 39(7):2865–2896, 2010.

6 S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (α, β)-spanners.
ACM Transactions on Algorithms, 7(1), 2010.

7 S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in o(n2 log n)
time. ACM Transactions on Algorithms, 2(4):557–577, 2006.

8 S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-spanner
of o(n1+1/k) size in weighted graphs. Random Structures and Algorithms, 30(4):532–563,
2007.

9 B. Bollobás, D. Coppersmith, and M. Elkin. Sparse distance preservers and additive span-
ners. SIAM Journal on Discrete Math., 19(4):1029–1055, 2005.

10 S. Chechik. New additive spanners. In Proceedings of the 24th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 498–512, 2013.

11 E. Cohen. Fast algorithms for constructing t-spanners and paths of stretch t. In Proceedings
of the 34th IEEE Symp. on Foundations of Computer Science (FOCS), pages 648–658, 1993.

12 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
660–669, 2005.

13 L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 28:170–183,
2001.

14 L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. Journal
of Algorithms, 50(1):79–95, 2004.

15 M. Cygan, F. Grandoni, and T. Kavitha. On pairwise spanners. In Proceedings of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS), pages 209–
220, 2013.

16 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2004.

17 M. Elkin. Computing almost shortest paths. ACM Transactions on Algorithms, 1(2):283–
323, 2005.

18 M. Elkin and D. Peleg. (1 + ε, β)-spanner construction for general graphs. SIAM Journal
on Computing, 33(3):608–631, 2004.

19 C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs. In Proceedings
of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 210–219, 2001.

STACS 2015

526 New Pairwise Spanners

20 T. Kavitha and N. M. Varma. Small stretch pairwise spanners. In Proceedings of the 40th
International Colloquium on Automata, Languages and Programming (ICALP), pages 601–
612, 2013.

21 M. Parter. Bypassing Erdős’ girth conjecture: Hybrid spanners and sourcewise spanners.
In Proceedings of the 41st International Colloquium on Automata, Languages and Program-
ming (ICALP), pages 608–619, 2014.

22 D. Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory, 33(3):167–176,
2000.

23 D. Peleg and A. A. Schaffer. Graph spanners. Journal of Graph Theory, 13:99–116, 1989.
24 D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on

Computing, 18:740–747, 1989.
25 S. Pettie. Low distortion spanners. ACM Transactions on Algorithms, 6(1), 2009.
26 L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance

oracles and spanners. In Proceedings of the 32nd Int. Colloq. on Automata, Languages, and
Programming (ICALP), pages 261–272, 2005.

27 L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proceedings of the 12th
Annual European Symposium on Algorithms (ESA), pages 580–591, 2004.

28 M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
2005.

29 D. P. Woodruff. Additive spanners in nearly quadratic time. In Proceedings of the 37th
Int. Colloq. on Automata, Languages, and Programming (ICALP), pages 463–474, 2010.

Multi-k-ic Depth Three Circuit Lower Bound

Neeraj Kayal1 and Chandan Saha2

1 Microsoft Research India
neeraka@microsoft.com

2 Indian Institute of Science
chandan@csa.iisc.ernet.in

Abstract
In a multi-k-ic depth three circuit every variable appears in at most k of the linear polynomials
in every product gate of the circuit. This model is a natural generalization of multilinear depth
three circuits that allows the formal degree of the circuit to exceed the number of underlying
variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is the number
of variables). The problem of proving lower bounds for depth three circuits with high formal
degree has gained in importance following a work by Gupta, Kamath, Kayal and Saptharishi
[7] on depth reduction to high formal degree depth three circuits. In this work, we show an
exponential lower bound for multi-k-ic depth three circuits for any arbitrary constant k.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, I.1.1 Expressions
and Their Representation

Keywords and phrases arithmetic circuits, multilinear circuits, depth three circuits, lower bound,
individual degree

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.527

1 Introduction

The recent years have witnessed some promising progress in arithmetic circuit lower bounds.
A line of research attempts to better understand the prospect of proving super-polynomial
arithmetic circuit lower bound by proving strong lower bounds for small depth circuits -
thanks to the beautiful depth reduction results in these works [20, 2, 13, 19]. A work by
Gupta, Kamath, Kayal and Saptharishi [7] showed that in order to separate VP from VNP,
it is sufficient to prove a strong-enough lower bound for depth three circuits. The formal
degree 1 of a depth three circuit can be much larger than the degree of the polynomial that
it computes. This fact is exhibited in [7]: quite interestingly, there is a depth three circuit
with formal degree nO(

√
n) (and also size nO(

√
n)) that computes Detn, the determinant of an

n× n symbolic matrix. Note that in this case the formal degree nO(
√
n) is also much higher

than the number of variables n2. It follows from [7] that if we are able to show an nω(
√
n)

size lower bound for depth three circuits of formal degree nO(
√
n) computing the Permn

(the permanent of an n× n symbolic matrix) then we would end up separating the circuit
complexity of the determinant and the permanent polynomials (also proving VP 6= VNP).

1 formal degree of a circuit C is the formal degree of its output gate. Formal degree of a + gate is the
maximum of the formal degrees of its children, whereas formal degree of a × gate is the sum of the
formal degrees of its children.

© Neeraj Kayal and Chandan Saha;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 527–539

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.527
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

528 Multi-k-ic Depth Three Circuit Lower Bound

1.1 Motivation and our result
The issue of large formal degree of a circuit, compared to the actual degree and the number
of variables of the polynomial being computed, poses a challenge to the existing lower bound
techniques in particular the complexity measures that have been used successfully to prove
lower bounds for certain interesting models of circuits having low formal degree. The partial
derivatives measure, the shifted partials and the closely related projected shifted partials,
and the evaluation dimension are examples of such effective measures.

The partial derivatives measure was introduced and used by Nisan and Wigderson in an
influential work [15] to prove an exponential lower bound for homogeneous 2 depth three
circuits with formal degree less than the number of variables. A lower bound for depth three
circuits with large formal degree will trivially imply a lower bound for homogeneous depth
three circuits with large formal degree. This prompts us to pose the following problem,

I Problem 1. Over fields of characteristic zero, prove a super polynomial lower bound for
homogeneous depth three circuits with formal degree D = k · n, where k is an arbitrary
constant and n is the number of variables.3

In other words, can we prove a lower bound even if we allow the degree of the polynomial
(being computed) to equal the formal degree of the depth three circuit that is only modestly
higher than the number of variables? We do not know if the partial derivatives measure, or
in fact any of the known measures and techniques, can be used to solve this problem. But,
doing so might offer some insight into depth three circuits with large formal degree. We
note that solving Problem 1 would automatically take us to the realm of non-multilinear
polynomials.

Building on the partial derivatives measure, Kayal [9] has introduced the shifted par-
tials measure which has been used subsequently to prove an exponential lower bound for
homogeneous depth four circuits 4 [10, 14] (albeit, using a variant of the shifted partials
measure called the projected shifted partials) 5. A recent work by Kayal and Saha [11] uses
the projected shifted partials measure to prove an exponential lower bound for depth three
circuits with arbitrarily large formal degree but with somewhat low bottom fanin. It is not
clear to us if the projected shifted partials can be used to solve Problem 1.

The evaluation dimension measure (defined later) has been used by Raz and Yehudayoff
[18] to prove an exponential lower bound for multilinear 6 depth three circuits 7. More
precisely, they have shown a size lower bound of 2Ω(d) for any multilinear depth three circuit
computing Detd. Note that the formal degree of a multilinear depth three circuit is less or
equal to the number of variables of the polynomial it computes. In the context of studying

2 a circuit is homogeneous if every gate of the circuit computes a homogeneous polynomial (meaning, all
monomials have the same degree)

3 Over any fixed finite field, a solution to this problem already follows from the works of [6] and [5].
4 with formal degree less than the number of variables
5 [10] builds upon the works of [8] and [12].
6 every variable occurs in at most one of the linear polynomials in every product gate of a multilinear

depth three circuit
7 in fact, their result is more general and applies to constant depth multilinear circuits. Also, their result

builds on an earlier work by Raz [16] who showed a quasi-polynomial lower bound for general multilinear
formulas. Both [18] and [16] use the rank of a partial derivatives matrix as a measure which can be
shown to be the same as the evaluation dimension - a concept used in [3].

N. Kayal and C. Saha 529

depth three circuits with large formal degree, a natural generalization of multilinear depth
three circuits is the model of multi-k-ic depth three circuits (defined below) that allows the
formal degree of the circuit to be higher than the number of variables.

I Definition 1. A depth three circuit is multi-k-ic if every variable appears in at most k of
the linear polynomials in every product gate of the circuit.

For example, the expression (x1 + 2x2)(4x1−x3) +x2
2 + (x3−x2)(x1 +x2) is a multi-2-ic8

depth three circuit. The formal degree of a multi-k-ic depth three circuit can be as high as
k · n, where n is the number of variables. A question, related to Problem 1, is the following:
even if we allow the degree of the polynomial computed to equal the formal degree of the
multi-k-ic circuit that computes it, can we prove a lower bound for this model?

I Problem 2. Prove an exponential lower bound for multi-k-ic depth three circuits for any
arbitrary constant k.

Could the evaluation dimension be useful in solving this problem9? In this work, we
answer this question in the affirmative.

I Theorem 2. Let k be any arbitrary constant. There is a family of n-variate, degree k · n
polynomials {fn} in VNP such that any multi-k-ic depth three circuit computing fn must
have size 2Ω(n/225k).

We will prove the above theorem in the rest of this article, but leave Problem 1 open.
(We have not tried to optimize the constant 225 in the above theorem.)

2 The measure - evaluation dimension

Let f(x1, . . . , xn) be a polynomial in F[x1, . . . , xn], and S = {xi1 , . . . , xim} be a subset of the
variables x = {x1, . . . , xn}. For a point a = (a1, . . . , am) ∈ Fm, let fS=a ∈ F[x\S] denote
the polynomial f evaluated at xij = aj for every j ∈ [m]. Let evalS(f) be the F-linear space
spanned by the polynomials {fS=a}a∈Fm , i.e.

evalS(f) = F-span ({fS=a : a ∈ Fm})

I Definition 3. Evaluation dimension of a polynomial f with respect to a subset of variables
S is defined as the dimension of the vector space evalS(f). It is denoted by evalDimS(f).

Let us state a couple of useful properties of the evaluation dimension.

I Lemma 4. Let f and g be two polynomials in F[x] and S ⊆ x. Then
1. (subadditivity) evalDimS(f + g) ≤ evalDimS(f) + evalDimS(g)
2. (submultiplicativity) evalDimS(f · g) ≤ evalDimS(f) · evalDimS(g)

8 ‘multiquadratic’ sounds better here
9 The works of Grenet, Koiran, Portier, and Strozecki [4] and of Agrawal, Saha, Saptharishi and Saxena

[1] proved lower bounds for certain models of depth four circuits with high formal degree, using properties
of the real-τ -conjecture and the Jacobian respectively. The top fanin of such depth four circuits is
essentially low or can be assumed to be low without loss of generality - a feature that is crucially used
in their proofs. We do not know if their techniques can be used to solve Problem 2.

STACS 2015

530 Multi-k-ic Depth Three Circuit Lower Bound

Proof. The subadditivity property follows from the observation that every polynomial in
the space evalS(f + g) is a sum of a polynomial in evalS(f) and a polynomial in evalS(g).
Now suppose the polynomials f1, . . . , fp form a basis of the space evalS(f) and similarly
g1, . . . , gq form a basis of evalS(g). Then every polynomial in the space evalS(f · g) can be
expressed as an F-linear combination of polynomials figj with i ∈ [p] and j ∈ [q]. This shows
the submultiplicativity property. J

3 An explicit polynomial with high evaluation dimension

Let g be a polynomial in 4n variables u = {u1, . . . , u2n} and x = {x1, . . . , x2n}, and k ∈ Z+

be an arbitrary positive integer. To every set A ⊆ [2n], associate a set BA in the following
manner:

If |A| ≥ n then BA is a fixed subset of A of size exactly equal to Ā = [2n]\A.
If |A| < n then BA is a fixed subset of Ā of size exactly equal to A.

One way of fixing BA is to take lexicographically the smallest subset. For a set A ⊆ [2n]
and e = {e1, . . . , e|A|} ∈ Z|A|, let xe

A
def=
∏
i∈A x

ei
i and uA

def=
∏
i∈A ui. Define the polynomial

fA(x) as follows.

fA(x) =
{∑

e∈{0,...,k}|Ā| x
e
BA
· xe

Ā
if |A| ≥ n∑

e∈{0,...,k}|A| x
e
A · xe

BA
if |A| < n

Define g as,

g =
∑

A⊆[2n]

uA · fA(x). (1)

Polynomial g satisfies the following property.

I Lemma 5. For every A ⊆ [2n], there is an assignment of the u variables to field constants
such that evalDimxA(g), where xA = {xi : i ∈ A}, (after setting the u variables) is (k +
1)min(|A|,|Ā|).

Proof. Let A ⊆ [2n]. Consider this assignment of the u variables: ui = 1 if i ∈ A and zero
otherwise. Denote the polynomial g under this assignment by guA=1, which equals fA(x).
Hence,

evalDimxA(guA=1) = evalDimxA(fA)

Now, it is not difficult to see that the evaluation dimension of fA with respect to xA equals
(k + 1)|A| (respectively, (k + 1)|Ā|) if |A| < n (respectively, |A| ≥ n). J

We also note that g defines a polynomial family in VNP. The construction of g is inspired
by a similar construction in an earlier work of Raz [17].

Picking a random xA. Suppose we form a set A by picking every i ∈ [2n] independently at
random with probability 1

2 . By Chernoff bound, |A| ∈ [(1− δ)n, (1 + δ)n] with probability at
least 1−e−nδ2/3 for any δ > 0. We will study the evaluation dimension of g and the multi-k-ic
depth three circuit that computes it with respect to such a random xA = {xi : i ∈ A} after
assigning field values to the u-variables. The parameter δ will be a fixed function of k (to be
specified later in Section 6).

N. Kayal and C. Saha 531

I Corollary 6. By Lemma 5, if A is chosen randomly (as described above) then
evalDimxA(guA=1) is at least (k + 1)(1−δ)n with probability higher than 1 − e−nδ

2/3, for
any δ > 0.

The above corollary provides a lower bound on the evaluation dimension of g. We will
now show an upper bound on the evaluation dimension of a multi-k-ic depth three circuit
with respect to a random xA. This, together with Corollary 6, will give us the relevant lower
bound as outlined below. In the rest of this article whenever we write A is ‘random’ we mean
A is formed by picking every i ∈ [2n] independently at random with probability 1

2 .

4 Proof outline

Let C =
∑s
i=1 T

(i) be a multi-k-ic depth three circuit computing g (as defined in Equation
1), where every T (i) is a product of linear polynomials. We will refer to T (i) as a product
term (or simply a term) of C. Since C is multi-k-ic, every variable appears in at most k
linear polynomials in every T (i). Let A ⊆ [2n] be a random set and xA = {xi : i ∈ A} be
the corresponding subset of x. For any polynomial h(x,u), denote by huA=1 the polynomial
h with ui = 1 if i ∈ A and ui = 0 if i /∈ A. Note that huA=1 is a polynomial in only the
x-variables.

g = C =
s∑
i=1

T (i)

⇒ guA=1 = CuA=1 =
s∑
i=1

T
(i)
uA=1

⇒ evalDimxA(guA=1) ≤
s∑
i=1

evalDimxA(T (i)
uA=1),

where the last inequality follows from the subadditive property of the evaluation dimension
(Lemma 4). Now, suppose we are able to show that evalDimxA(T (i)

uA=1) is upper bounded
by a quantity U(k, n, δ) for every i ∈ [s] with high probability over the random choice of A.
Then by applying union bound,

evalDimxA(guA=1) ≤ s · U(k, n, δ),

also with high probability. In other words, by the above observation and Corollary 6, there
exists a choice of A such that

(k + 1)(1−δ)n ≤ evalDimxA(guA=1) ≤ s · U(k, n, δ)

⇒ s ≥ (k + 1)(1−δ)n

U(k, n, δ) .

This will give us a lower bound on the top fanin of C. We are now left with the task of
finding a suitable expression for U(k, n, δ), which we do in the following section.

5 Evaluation dimension of a term of a multi-k-ic depth-3 circuit

Notations

Let us focus on a product term T (i) = T (say). Let T =
∏d
j=1 `j , where `j is a linear

polynomial and c be a positive integer constant (to be fixed later in Section 6). Split the
linear polynomials in T into three parts:

STACS 2015

532 Multi-k-ic Depth Three Circuit Lower Bound

P (1) :=
∏
j∈[d]

`j such that `j has exactly one or no x-variables

P (2) :=
∏
j∈[d]

`j such that the number of x-variables in `j is between two and ck

P (3) :=
∏
j∈[d]

`j such that `j has greater than ck x-variables

Also let,

mi := the number of linear polynomials in T with exactly i x-variables.

Naturally, T = P (1) ·P (2) ·P (3). Also, the number of linear polynomials in P (1) ism0+m1, the
number of linear polynomials in P (2) equals

∑ck
i=2mi, and the number of linear polynomials

in P (3) equals
∑
i>ckmi.

I Claim 7. For any A ⊆ [2n], evalDimxA(TuA=1) ≤ evalDimxA(P (2)
uA=1) · evalDimxA(P (3)

uA=1)

Proof. By the submultiplicativity property of evaluation dimension (Lemma 4),

evalDimxA(TuA=1) ≤ evalDimxA(P (1)
uA=1) · evalDimxA(P (2)

uA=1) · evalDimxA(P (3)
uA=1).

However, it is easy to see that evalDimxA(P (1)
uA=1) = 1. J

We will upper bound the evaluation dimension of P (3)
uA=1 with respect to xA for any A,

and the evaluation dimension of P (2)
uA=1 with respect to xA for a random A. Let r2 be the

number of occurrences of the x-variables among the linear polynomials in P (2) and r3 be the
number of occurrences of the x-variables in P (3). Since every variable occurs in at most k
linear polynomials in T and there are 2n x-variables,

r2 + r3 ≤ 2kn (2)

5.1 Evaluation dimension of P (3)

I Lemma 8. For any A ⊆ [2n], evalDimxA(P (3)
uA=1) ≤ 2

r3
ck .

Proof. The evaluation dimension of P (3)
uA=1 with respect to the xA-variables cannot exceed

2b, where b is the number of linear polynomials in P (3). Observe that the degree of P (3) with
respect to the x-variables is less than r3

ck , as every linear polynomial in the product P (3) has
more than ck x-variables. J

5.2 Evaluation dimension of P (2)

Coloring of linear polynomials. Every linear polynomial in the product P (2) = P (say) has
more than one and less than or equal to ck x-variables. We color the linear polynomials
in P in such a way that no two linear polynomials with the same color have a common
x-variable. This coloring can be done greedily using at most (k − 1)ck + 1 ≤ ck2 colors. Let
the number of colors used be q; we will identify these colors with {1, . . . , q}. Now we can
split the product P into at most q ≤ ck2 parts (one per color), say Q(1), . . . , Q(q), such that

N. Kayal and C. Saha 533

every Q(j) is a product of linear polynomials in P that are colored j. This also implies that
Q(j) is multilinear in the x-variables. Naturally,

P =
q∏
j=1

Q(j).

To understand the evaluation dimension of P , we will focus on the polynomials Q(j).

5.2.1 Some more notations and bounds
Let mi,j be the number of linear polynomials in Q(j) with exactly i many x-variables. Hence,
mi =

∑
j∈[q]mi,j for every integer i ∈ [2, ck]. Let A be a random subset of [2n] (in the sense

described in Section 3). Let ri,j be the number of linear polynomials in Q(j) with strictly
more than i x-variables and exactly i xA-variables. Note that only such linear polynomials
with at least one xA-variable, but not all x-variables are xA-variables, contribute to the
evaluation dimension of P with respect to xA. We will refer to such linear polynomials as
partially touched (by A) linear polynomials. The expected value of ri,j over the random
choice of A is

E [ri,j] =
ck∑

`=i+1

(
`

i

)
· 1

2` ·m`,j

≥ i+ 1
2ck ·

ck∑
`=i+1

m`,j

≥ 1
2ck−1 ·

ck∑
`=i+1

m`,j (as i ≥ 1) (3)

The above expression for the expectation can be derived from the observation that a linear
polynomial with ` x-variables (` > i) has exactly i xA-variables with probability

(
`
i

)
· 1

2` . We
will see how ri,j contributes to the evaluation dimension of P later. But, first, in order to get
a handle on the value of ri,j we would like to argue that it is close to its expected value with
high probability. Since Q(j) is multilinear, if E [ri,j] is sufficiently large, we can apply Chernoff
bound on ri,j and show that (1− δ)E [ri,j] ≤ ri,j ≤ (1 + δ)E [ri,j] with high probability. By
Equation 3, expectation of ri,j is large if

∑ck
`=i+1m`,j is large. This motivates us to split

Q(j) further depending on the value of
∑ck
`=i+1m`,j .

5.2.2 Splitting Q(j) further
Let τj be the maximum number less than ck such that

ck∑
`=τj+1

m`,j ≥
n

ck2 ·∆ , (4)

where ∆ = ∆(k) is a sufficiently large constant, dependent on k, to be fixed later in Section
6. Let Q′(j) be the product of those linear polynomials in Q(j) that contribute to ri,j for
i > τj , and Q̃(j) the product of those linear polynomials in Q(j) that contribute to ri,j for
i ∈ [1, τj]. By Equation 4,

ck−1∑
i=τj+1

ri,j ≤
ck∑

i=τj+2
mi,j <

n

ck2 ·∆ (5)

STACS 2015

534 Multi-k-ic Depth Three Circuit Lower Bound

Let P ′ =
∏q
j=1Q

′(j) and P̃ =
∏q
j=1 Q̃

(j). Then,

evalDimxA(PuA=1) ≤ evalDimxA(P̃uA=1) · evalDimxA(P ′uA=1),

as a linear polynomial contributes to the evaluation dimension of P only if it is partially
touched (by A). By Equation 5, the number of linear polynomials in P ′ is upper bounded by

q∑
j=1

ck−1∑
i=τj+1

ri,j ≤
n

ck2 ·∆ · q ≤
n

∆ (as q ≤ ck2)

Hence,

evalDimxA(P ′uA=1) ≤ 2 n
∆ , (6)

as the evaluation dimension cannot exceed 2b, where b is the number of linear polynomials in
P ′. By choosing a large enough ∆ in the analysis later, we will ensure that evalDimxA(P ′uA=1)
is negligible compared to other relevant terms.

5.2.3 Computing evaluation dimension of P̃

Since Q̃(j) is a product of those linear polynomials that contribute to ri,j for i ∈ [1, τj], by
Equations 3 and 4,

E [ri,j] ≥
1

2ck−1 ·
n

ck2 ·∆ ,

for every i ∈ [1, τj]. For any fixed j ∈ [q], Q(j) is multilinear. Hence, by applying Chernoff
bound,

Pr{|ri,j − E [ri,j]| > δ · E [ri,j]} ≤ e−
δ2·E[ri,j]

3 ≤ e−
δ2·n

3·2ck−1ck2∆

By union bound, Pr{|ri,j −E [ri,j]| > δ · E [ri,j]} for any j ∈ [q] and i ∈ [1, τj], is bounded by,

ε1 := ck2 · ck · e−
δ2·n

3·2ck−1ck2∆ (7)

As n is much larger compared to the constants k, c, δ,∆, the above ‘error probability’ ε1 is
negligible. Hence, with probability at least 1− ε1,

(1− δ) · E [ri,j] ≤ ri,j ≤ (1 + δ) · E [ri,j] (8)

for every j ∈ [q], i ∈ [1, τj].
Let ri be the number of linear polynomials in P̃ with more that i x-variables and

exactly i xA-variables. Then,

ri =
∑

j∈[q]:i∈[1,τj]

ri,j

E [ri] =
∑

j∈[q]:i∈[1,τj]

E [ri,j]

The notation j ∈ [q] : i ∈ [1, τj] means the sum is over those j ∈ [q] for which i ∈ [1, τj]. By
Equation 8,

(1− δ)E [ri] ≤ ri ≤ (1 + δ)E [ri]

N. Kayal and C. Saha 535

with probability at least 1− ε1. This implies

ri ≤ (1 + δ) ·
∑

j∈[q]:i∈[1,τj]

E [ri,j]

= (1 + δ) ·
∑

j∈[q]:i∈[1,τj]

ck∑
`=i+1

(
`

i

)
· 1

2` ·m`,j (by Equation 3)

= (1 + δ) ·
ck∑

`=i+1

(
`

i

)
· 1

2` ·
∑

j∈[q]:i∈[1,τj]

m`,j

≤ (1 + δ) ·
ck∑

`=i+1

(
`

i

)
· 1

2` ·
∑
j∈[q]

m`,j

= (1 + δ) ·
ck∑

`=i+1

(
`

i

)
· 1

2` ·m`.

Let ex be the number of occurrences of a variable x ∈ xA in the linear polynomials in P̃ .
Then, by the above equation, with probability at least 1− ε1,∑

x∈xA

ex =
ck−1∑
i=1

i · ri

≤ (1 + δ) ·
ck−1∑
i=1

i ·
ck∑

`=i+1

(
`

i

)
· 1

2` ·m`

= (1 + δ) ·
ck−1∑
i=1

ck∑
`=i+1

(
`− 1
i− 1

)
· 1

2` · ` ·m`

≤ (1 + δ) ·
ck∑
`=2

`−1∑
i=1

(
`− 1
i− 1

)
· 1

2` · ` ·m`

= (1 + δ) ·
ck∑
`=2

(2`−1 − 1) · 1
2` · ` ·m`

= (1 + δ) ·
ck∑
`=2

(
1− 1

2`−1

)
· 1

2 · ` ·m`

≤ (1 + δ) ·
(

1− 1
2ck−1

)
· 1

2 ·
ck∑
`=2

` ·m`

Observe that
∑ck
`=2 ` ·m` is the number of occurrences of the x-variables in P . Hence,∑ck

`=2 ` ·m` = r2 and so with probability at least 1− ε1,∑
x∈xA

ex ≤ (1 + δ) ·
(

1− 1
2ck−1

)
· r2

2 (9)

Let ε0 = e−
δ2n

3 .

I Lemma 9. With probability at least 1− (ε0 + ε1) over the random choice of A,

evalDimxA(P̃uA=1) ≤
[(

1− 1
2ck−1

)
· r2

2n + 1
](1+δ)·n

STACS 2015

536 Multi-k-ic Depth Three Circuit Lower Bound

Proof. Since A is chosen randomly by picking every i ∈ [2n] independently at random with
probability 1

2 , |xA| ≤ (1+δ) ·n with probability at least 1−ε0. The evaluation dimension of P̃
with respect to xA cannot exceed the number of distinct xA-monomials in P̃ with coefficients
from F[x\xA]. The number of such monomials is upper bounded by

∏
x∈xA(ex + 1). By

AM-GM inequality,

∏
x∈xA

(ex + 1) ≤
[∑

x∈xA (ex + 1)
|xA|

]|xA|

≤

[
(1 + δ)(1− 1

2ck−1) · r22
|xA|

+ 1
]|xA|

, (by Equation 9)

with probability at least 1− ε1. Hence, with probability at least 1− (ε0 + ε1),

∏
x∈xA

(ex + 1) ≤
[(

1− 1
2ck−1

)
· r2

2n + 1
](1+δ)n

,

as the above expression increases with |xA| and |xA| ∈ [(1− δ)n, (1 + δ)n] with probability
at least 1− ε0. J

I Corollary 10. With probability at least 1− (ε0 + ε1) over the random choice of A,

evalDimxA(P (2)
uA=1) ≤

[(
1− 1

2ck−1

)
· r2

2n + 1
](1+δ)n

· 2 n
∆

Proof. Follows from the above lemma and Equation 6. J

5.3 Evaluation dimension of a term
Let T be a product term in a multi-k-ic depth three circuit.

I Lemma 11. With probability at least 1− (ε0 + ε1) over the random choice of A,

evalDimxA(TuA=1) ≤
[(

1− 1
22ck

)
(k + 1)

]n
· (k + 1)δn,

if c ≥ 3, k ≥ 4 and ∆ = 22ck.

Proof. By Claim 7, Lemma 8 and Corollary 10,

evalDimxA(TuA=1) ≤
[(

1− 1
2ck−1

)
· r2

2n + 1
](1+δ)n

· 2 n
∆ · 2

r3
ck

Recall from Equation 2, r2 + r3 ≤ 2kn. Let r2 ≤ α · 2kn and r3 ≤ (1 − α) · 2kn where
0 ≤ α ≤ 1. Then,

evalDimxA(TuA=1) ≤
[(

1− 1
2ck−1

)
· αk + 1

]n
· 2 n

∆ · 2
2(1−α)n

c ·
[(

1− 1
2ck−1

)
k + 1

]δn
Since 2

1
y ≤ 1 + 1

y for every y ≥ 1,[(
1− 1

2ck−1

)
· αk + 1

]
·2 1

∆ ·2
2(1−α)

c ≤
[(

1− 1
2ck−1

)
αk + 1

]
·
(

1 + 1
∆

)
·
(

1 + 2(1− α)
c

)
,

N. Kayal and C. Saha 537

as ∆ ≥ 1 and c ≥ 3. The quantity
[(

1− 1
2ck−1

)
αk + 1

]
·
(

1 + 2(1−α)
c

)
when treated as a

function of α ∈ [0, 1] is maximized at α = 1, assuming c ≥ 3, k ≥ 4. Therefore,[(
1− 1

2ck−1

)
· αk + 1

]
· 2 1

∆ · 2
2(1−α)

c ≤
[(

1− 1
2ck−1

)
k + 1

]
·
(

1 + 1
∆

)
≤

(
1− 1

22ck

)
· (k + 1) (as ∆ = 22ck)

This proves the lemma as [(1− 1
2ck−1)k + 1]δn ≤ (k + 1)δn. J

6 Proof of Theorem 2

Following the setting of parameters in Lemma 11, let c = 3,∆ = 26k and without loss of
generality k ≥ 4. Also, let

δ =
ln(1 + 1

22ck+1)
2 · ln(k + 1) =

ln(1 + 1
26k+1)

2 · ln(k + 1) ,

and denote the upper bound in Lemma 11 by U(k, n, δ).

I Lemma 12. If g(x,u), as defined in Equation 1, is computed by a multi-k-ic depth three
circuit C then the top fanin s of C is at least 2Ω(n

225k).

Proof. By union bound, with probability at least 1− (ε0 + s · ε1) over the random choice of
A, the evaluation dimension of every term in C is upper bounded by U(k, n, δ). By Equation
7,

ε1 := ck2 · ck · e−
δ2·n

3·2ck−1ck2∆ .

So, if s ≤ e
δ2n

9·23k·k2·∆ then there exists an A such that evaluation dimension of every term of
C is upper bounded by U(k, n, δ). Otherwise,

s > e
δ2n

9·23k·k2·∆ = 2Ω(n

225k)

and we already have the lower bound. If evaluation dimension of every term is upper bounded
by U(k, n, δ) then following the discussion in Section 4,

s ≥ (k + 1)(1−δ)n

U(k, n, δ)

=
(

1− 1
22ck

)−n
· (k + 1)−2δn = 2Ω(n

26k),

after plugging in the value of δ from above. J

The proof of Theorem 2 is immediate from the above lemma.

7 Discussion

In order to gain a better understanding of the strengths and limitations of the existing
complexity measures, like partial derivatives, (projected) shifted partials, evaluation dimesion
etc., it is perhaps worth exploring some natural and interesting models of circuits for which
we still do not know of any super-polynomial lower bound. Such a model of circuits emerging

STACS 2015

538 Multi-k-ic Depth Three Circuit Lower Bound

from our work is multi-k-ic formulas: Let x be a variable and g be a gate. The formal
degree of x at g, denoted degx(g), is defined as follows. If g is a ×-gate with children g1
and g2 then degx(g) = degx(g1) + degx(g2). If g is a +-gate with children g1 and g2 then
degx(g) = max{degx(g1), degx(g2)}. If g is an input gate labelled with x then degx(g) = 1,
otherwise degx(g) = 0. A formula is multi-k-ic if for every variable x and every gate g, the
formal degree of x at g is bounded by k.

Can we prove super-polynomial lower bounds for constant depth multi-k-ic formulas?
Can we prove super-polynomial lower bounds for multi-k-ic formulas?

References
1 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian

hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcend-
ence degree-k circuits. In STOC, pages 599–614, 2012.

2 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In FOCS,
pages 67–75, 2008.

3 Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 243–252, 2013.

4 Bruno Grenet, Pascal Koiran, Natacha Portier, and Yann Strozecki. The Limited Power of
Powering: Polynomial Identity Testing and a Depth-four Lower Bound for the Permanent.
In Proceedings of the 30th Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 127–139, 2011.

5 Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic
circuits. In STOC, pages 577–582, 1998.

6 Dima Grigoriev and Alexander A. Razborov. Exponential complexity lower bounds for
depth 3 arithmetic circuits in algebras of functions over finite fields. In FOCS, pages
269–278, 1998.

7 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth three. In Foundations of Computer Science (FOCS), pages
578–587, 2013.

8 Ankit Gupta, Neeraj Kayal, Pritish Kamath, and Ramprasad Saptharishi. Approaching
the chasm at depth four. In Conference on Computational Complexity (CCC), 2013.

9 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree poly-
nomials. Technical report, Electronic Colloquium on Computational Complexity (ECCC),
2012.

10 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential
Lower Bound for Homogeneous Depth Four Arithmetic Formulas. In Foundations of Com-
puter Science (FOCS), pages 61–70, 2014.

11 Neeraj Kayal and Chandan Saha. Lower Bounds for Depth Three Arithmetic Circuits with
small bottom fanin. Electronic Colloquium on Computational Complexity (ECCC), 21:89,
2014.

12 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower
bound for regular arithmetic formulas. In STOC, pages 146–153, 2014.

13 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput.
Sci., 448:56–65, 2012.

14 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic
circuits. In Foundations of Computer Science (FOCS), pages 363–373, 2014.

N. Kayal and C. Saha 539

15 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997.

16 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2), 2009.

17 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6(1):135–177, 2010.

18 Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multi-
linear Circuits. Computational Complexity, 18(2):171–207, 2009.

19 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In MFCS,
pages 813–824, 2013.

20 L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of poly-
nomials using few processors. SIAM Journal on Computing, 12(4):641–644, 1983.

STACS 2015

Automorphism Groups of Geometrically
Represented Graphs∗

Pavel Klavík and Peter Zeman

Computer Science Institute, Charles University in Prague,
Address, Czech Republic
{klavik,zeman}@iuuk.mff.cuni.cz.

Abstract
Interval graphs are intersection graphs of closed intervals and circle graphs are intersection graphs
of chords of a circle. We study automorphism groups of these graphs. We show that interval
graphs have the same automorphism groups as trees, and circle graphs have the same as pseudo-
forests, which are graphs with at most one cycle in every connected component.

Our technique determines automorphism groups for classes with a strong structure of all
geometric representations, and it can be applied to other graph classes. Our results imply
polynomial-time algorithms for computing automorphism groups in term of group products.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases automorphism group, geometric intersection graph, interval graph, circle
graph

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.540

1 Introduction

The study of symmetries of geometrical objects is an ancient topic in mathematics and its
precise formulation led to group theory. Symmetries play an important role in many distinct
areas. In 1846, Galois used symmetries of the roots of a polynomial in order to characterize
polynomials which are solvable by radicals. Some big objects are highly symmetrical, for
instance the well-known Rubik’s Cube has 43, 252, 003, 274, 489, 856, 000 symmetries. They
can be understood using group theory and used for working with the Rubik’s Cube (design-
ing algorithms for solving it, etc.). Symmetries have important applications in differential
equations, physics, chemistry, crystallography, etc.

Automorphism Groups of Graphs. The symmetries of a graph X are described by its
automorphism group Aut(X). Every automorphism is a permutation of the vertices which
preserves adjacencies and non-adjacencies. Frucht [9] proved that every finite group is
isomorphic to the automorphism group of some graph X. General mathematical structures
can be encoded by graphs [18] while preserving automorphism groups.

Most graphs are asymmetric, i.e., have only the trivial automorphism [14]. However,
many combinatorial and graph theory results rely on highly symmetrical graphs. Auto-
morphism groups are important for studying large objects, since these symmetries allow
one to simplify and understand the objects. This algebraic approach is together with the
recursion and counting arguments the only technique known for working with big objects.

∗Supported by CE-ITI (P202/12/G061 of GAČR) and Charles University as GAUK 196213. Many
omited details and proofs are in the full version: arXiv:1407.2136.

© Pavel Klavík and Peter Zeman;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 540–553

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.540
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Klavík and P. Zeman 541

Highly symmetrical large graphs with nice properties are often constructed algebraically
from small graphs. For instance, Hoffman-Singleton graph is a 7-regular graph of diameter 2
with 50 vertices [19]. It has 252000 automorphisms and can be constructed from 25 “copies”
of a small multigraph with 2 vertices and 7 edges [26]. Similar constructions are used in
designing large computer networks [7, 34]. For instance the well-studied degree-diameter
problem asks, given integers d and k, to find a maximal graph X with diameter d and
degree k. Such graphs are desirable networks having small degrees and short distances.
Currently, the best constructions are highly symmetrical graphs made using groups [27].

For a class C of graphs, let Aut(C) denote its automorphism groups, i.e., Aut(C) =
{Aut(X) : X ∈ C}. We say that a class C of graphs is universal if every finite group is
isomorphic to some group in Aut(C), and non-universal otherwise.

The oldest non-trivial result concerning automorphism groups of restricted graph classes
is for trees (TREE) by Jordan [21] from 1869. He proved that Aut(TREE) contains precisely
those groups that can be obtained from the trivial group by a sequence of two operations:
the direct product and the wreath product with a symmetric group. The direct product
constructs the automorphisms that act independently on non-isomorphic subtrees and the
wreath product constructs the automorphisms that permute isomorphic subtrees.

Graph Isomorphism Problem. This famous problem asks whether two input graphs X and
Y are the same up to a relabeling. This problem is obviously in NP, and not known to be
polynomially-solvable or NP-complete. Aside integer factorization, this is a prime candidate
for an intermediate problem with the complexity between P and NP-complete. It belongs
to the low hierarchy of NP [30], which implies that it is unlikely NP-complete. (Unless the
polynomial-time hierarchy collapses to its second level.) The graph isomorphism problem is
known to be polynomially solvable for the classes of graphs with bounded degree [24] and
with excluded topological subgraphs [16].

The graph isomorphism problem is closely related to computing generators of an auto-
morphism group. Assuming X and Y are connected, we can test X ∼= Y by computing
generators of Aut(X ∪̇ Y) and checking whether there exists a generator which swaps X
and Y . For the converse relation, Mathon [25] proved that generators of the automorphism
group can be computed using O(n4) instances of graph isomorphism. Compared to graph
isomorphism, automorphism groups of restricted graph classes are much less understood.

Geometric Representations. In this paper, we study automorphism groups of geomet-
rically represented graphs. The main question is how the geometry influences their auto-
morphism groups. For instance, the geometry of a sphere translates to 3-connected planar
graphs which have unique embeddings [32]. Thus, their automorphism groups are so called
spherical groups which are automorphism groups of tilings of a sphere. For general planar
graphs, the automorphism groups are more complex and they were described by Babai [1]
using semidirect products of spherical and symmetric groups; see also [8].

We focus on intersection representations. An intersection representation R of a graph
X is a collection {Rv : v ∈ V (X)} such that uv ∈ E(X) if and only if Ru ∩ Rv 6= ∅; the
intersections encode the edges. To get nice graph classes, one typically restricts the sets Rv
to particular classes of geometrical objects; for an overview, see the classical books [15, 31].
We show that a well-understood structure of all intersection representations allows one
to determine the automorphism group. In particular, we study interval graphs and circle
graphs, and our technique can be also applied to other graph classes.

To obtain an interval representation of a graph, we restrict the sets Rv to closed intervals
of the real line. In a circle representation, the sets Rv are chords of a circle. A graph is an

STACS 2015

542 Automorphism Groups of Geometrically Represented Graphs

1

23

4 5

6

7

8

9

10

12

1
2

3
4

34

5
6

5
6

7 8

7
8

9
10

9 10
3 12

1
2

10
9

5

64 11

7 8
3 4 7 8 11 12

6
5

2
1

10
9

Figure 1 On the left, an interval graph and one of its interval representations. On the right,
a circle graph and one of its circle representations.

CATERPILLAR

TREE
INT

CHOR

PSEUDOFOREST

CIRCLE FUN

IFA

PROPER INT

PERM

CLAW-FREE

co-BIP

U

¬U

Figure 2 The inclusions between considered graph classes. We denote universal classes by U ,
and non-universal by ¬U . The bold edges are two infinite hierarchies, discussed in Section 6.

interval (resp. circle) graph if it has an interval (resp. circle) representation; see Fig. 1 for
examples. We denote these classes by INT and CIRCLE, respectively.

Related Graph Classes. Figure 2 depicts graph classes important for this paper. Caterpil-
lar graphs (CATERPILLAR) are trees with every leaf attached to a central path. They form
the intersection of trees and interval graphs. Chordal graphs (CHOR) are intersection graphs
of subtrees of trees. They contain no induced cycles of length four or more and naturally
generalize interval graphs. Chordal graphs have universal automorphism groups [23].

Pseudoforests (PSEUDOFOREST) are graphs for which every connected component is a
pseudotree, where pseudotree is a connected graph with at most one cycle. Each pseudoforest
is a circle graph. The automorphism groups of pseudoforests can be constructed from the
automorphism groups of trees by semidirect products with cyclic and dihedral groups, which
constructs the automorphisms rotating/reflecting unique cycles.

Function graphs (FUN) are intersection graphs of continuous functions f : [0, 1] → R.
Equivalently, function graphs are co-comparability graphs which means their complements
can be transitively oriented. Every interval graph is a co-comparability graph since disjoint
pairs of intervals can be oriented from left to right. Permutation graphs (PERM) are function
graphs which can be represented by linear functions.

Claw-free graphs (CLAW-FREE) are graphs with no induced K1,3. Roberts proved [28]
that CLAW-FREE∩ INT is equal to the class of proper interval graphs (PROPER INT) which
are interval graphs with representations in which no interval properly contains another. The
complements of bipartite graphs (co-BIP) are universal. They are claw-free and contained
in function graphs since each bipartite graph is transitively orientable.

Interval filament graphs (IFA) are intersection graphs of the following sets. For every Ru,
we choose an interval [a, b] and Ru is a continuous function [a, b] → R such that Ru(a) =
Ru(b) = 0 and Ru(x) > 0 for x ∈ (a, b). They generalize circle, chordal, and function graphs.

P. Klavík and P. Zeman 543

I Theorem 1.
(i) Aut(INT) = Aut(TREE),
(ii) Aut(connected PROPER INT) = Aut(CATERPILLAR),
(iii) Aut(CIRCLE) = Aut(PSEUDOFOREST).

Concerning (i), this equality is not well known. It was stated by Hanlon [17] without
a proof in the conclusion of his paper from 1982 on enumeration of interval graphs. Our
structural analysis is based on PQ-trees [2] which combinatorially describe all interval repres-
entations of an interval graph. It explains this equality and further solves an open problem
of Hanlon: for a given interval graph, to construct a tree with the same automorphism
group. Without PQ-trees, this equality is surprising since these classes are very different.
Caterpillar graphs which form their intersection have very limited groups and we charac-
terize them in Lemma 5. The result (ii) easily follows from the known properties of proper
interval graphs and our structural understanding of Aut(INT).

Using PQ-trees, Colbourn and Booth [4] give a linear-time algorithm to compute per-
mutation generators of the automorphism group of an interval graph. In comparison, our
description allows to construct an algorithm which outputs the automorphism group in the
form of group products which reveals its structure.

Concerning (iii), we are not aware of any results on automorphism groups of circle graphs.
One inclusion is trivial since PSEUDOFOREST (CIRCLE. The other one is based on split-
trees which describe all representations of circle graphs. The semidirect product with a
cyclic or a dihedral group corresponds to the rotations/reflections of the central vertex of a
split-tree. Geometrically, it corresponds to the rotations/reflections of the entire symmetric
representation. Our approach is similar to the algorithm for circle graph isomorphism [20].

Structure. We describe the automorphism groups of interval graphs in Section 2 and of
circle graphs in Section 3. In Section 4, we interpret our results in terms of actions of
automorphism groups on sets of all representations. We explain our general technique for
determining the automorphism group from the geometric structure of all representations.
Further, we relate it to well-known results of map theory. Our results are constructive and
lead to polynomial-time algorithms computing automorphism groups of interval and circle
graphs; see Section 5. We conclude with several open problems.

Preliminaries. We use X and Y for graphs, M , T and S for trees and G, H and others for
groups. The vertices and edges of X are V (X) and E(X). The set of all maximal cliques
is denoted by C(X). A permutation π of V (G) is an automorphism if uv ∈ E(G) ⇐⇒
π(u)π(v) ∈ E(G). We use Sn, Dn and Zn for the symmetric, dihedral and cyclic groups.

We quickly define semidirect and wreath products; see [3, 29] for details. Given two
groups N and H, and a group homomorphism ϕ : H → Aut(N), we can construct a new
group N oϕ H as the Cartesian product N × H with the operation defined as (n1, h1) ·
(n2, h2) = (n1 ·ϕ(h1)(n2), h1 · h2). The group N oϕH is called the semidirect product of N
and H with respect to the homomorphism ϕ. The wreath product G o Sn is a shorthand for
Gn oψ Sn where ψ is defined naturally by ψ(π) = (g1, . . . , gn) 7→ (gπ(1), . . . , gπ(n)).

2 Automorphism Groups of Interval Graphs

In this section, we prove Theorem 1(i) and (ii). We introduce PQ-trees which describe
all interval representations. Using them, we derive a characterization of Aut(INT) which
we prove to be equivalent to Jordan’s characterization of Aut(TREE). We solve the open

STACS 2015

544 Automorphism Groups of Geometrically Represented Graphs

C1

3

C2

4

C3

7

C4

8

C5

11

C6

12

6
5

2
1

10
9

C1 C2 C5 C6

C3 C4

1, 2 1, 2, 5, 6 5, 6 5, 6, 9, 10 9, 10

∅
[3] [4] [11] [12]

[7] [8]

Figure 3 An ordering of the maximal cliques, and the corresponding PQ-tree and MPQ-tree.
The P-nodes are denoted by circles, the Q-nodes by rectangles.

problem of Hanlon [17] by constructing for a given interval graph a tree with the same
automorphism group, and we also show the converse construction.

PQ-trees. Booth and Lueker [2] invented a data structure called PQ-tree to solve the
long-standing open problem of recognizing interval graphs in linear time. It is based on the
following characterization of interval graphs.

I Lemma 2 (Fulkerson and Gross [10]). A graph X is an interval graph if and only if there
exists an ordering of the maximal cliques such that for every x ∈ V (X) the maximal cliques
containing x appear consecutively.

PQ-trees are rooted trees with two types of inner nodes: P-nodes and Q-nodes. The leaves
correspond one-to-one to the maximal cliques of X. For every inner node, the order of its
children is fixed. The order of the leaves from left to right is called a frontier. See Fig. 3.

There are two equivalence transformations: (i) an arbitrary permutation of the children
of a P-node, and (ii) a reversal of the order of the children of a Q-node. Two PQ-trees are
equivalent if we can get one from the other by a sequence of equivalence transformations.
Booth and Lueker [2] proved that for every interval graph there exists a unique PQ-tree
representing all possible orderings of the maximal cliques as frontiers of its equivalent trees.
In other words, this PQ-tree encodes all interval representations.

Every automorphism α ∈ Aut(X) induces some permutation of the maximal cliques
C(X). However, multiple automorphisms can reorder C(X) in the same way. Two vertices
are called twin vertices if they belong to the same maximal cliques. Two automorphisms
of X can permute the maximal cliques the same but permute the twin vertices differently.
PQ-trees describe the structure of the maximal cliques of an interval graph, but to determine
Aut(X) we need some additional information about the twin vertices.

MPQ-trees. Amodified PQ-tree is created from a PQ-tree by adding information about the
vertices. They were described by Korte and Möhring [22] to simplify linear-time recognition
of interval graphs. An equivalent idea was already used by Coulborn and Booth [4] for
computing automorphism groups of interval graphs.

Suppose that T is a PQ-tree corresponding to an interval graph X. In the MPQ-tree M ,
we assign sets, called sections, to the nodes of T ; see Fig. 3. The leaves and P-nodes have
each assigned only one section, while Q-nodes have one section for every child. We assign
these sections in the following way:

For every leaf L, the section sec(L) contains those vertices that are only in the maximal
clique represented by L, and no other maximal cliques.
For every P-node P , the section sec(P) contains those vertices that are in all maximal
cliques of the subtree of P , and no other maximal cliques.
For every Q-node Q and its children T1, . . . , Tn, the section seci(Q) contains those vertices
that are in the maximal cliques represented by the leaves of the subtree of Ti and also

P. Klavík and P. Zeman 545

Y1 Y2 Y3(a)

v1 v2 v3

(b)
T1 T2

T3

Figure 4 (a) Construction of the operation (d) from Lemma 4. (b) Trees attached to a path by
their roots. Since the automorphism group is not isomorphic to

(
Aut(T1)×Aut(T2)×Aut(T3)

)
oϕZ2,

we fix it by subdividing v1v2 and v2v3.

some other Tj , but not in any other maximal clique outside the subtree of Q. We put
sec(Q) = sec1(Q) ∪ · · · ∪ secn(Q).

Two vertices are in the same sections of an MPQ-tree if and only if they are twin vertices.

Automorphisms of PQ and MPQ-trees. Let T be a PQ-tree corresponding to an interval
graph X. A sequence ε of equivalence transformations is an automorphism of T if there
exists α ∈ Aut(X) such that α reorders the maximal cliques C(X) in the same way as ε. We
get a group homomorphism φ : Aut(X)→ Aut(T) where φ(α) is the unique automorphism
of T permuting C(X) the same as α. By the first isomorphism theorem, we have that Aut(T)
is isomorphic to a subgroup of Aut(X).

Let M be the MPQ-tree with its nodes N1, . . . , Nk. An automorphism of a node N is a
permutation of the vertices inside the sections of N . For a P-node, Aut(N) is isomorphic
to Sn. For a Q-node, it is a direct product of symmetric groups. An automorphism of M is
a (k + 1)-tuple (νN1 , . . . , νNk

, ε) where νNi
is an automorphism of the node Ni and ε is an

automorphism of the underlying PQ-tree T . Each automorphism of N uniquely corresponds
to an automorphism α of X, so Aut(M) ∼= Aut(X).

Automorphism Groups of Interval Graphs. To get Aut(X), we just need to determine
Aut(M). We also make use of the following result due to Jordan:

I Theorem 3 (Jordan [21]). If X1, . . . , Xn are pairwise non-isomorphic connected graphs and
X is the disjoint union of ki copies of Xi, then Aut(X) ∼= Aut(X1) oSk1×· · ·×Aut(Xn) oSkn .

I Lemma 4. A group G ∈ Aut(INT) if and only if G ∈ I, where the class I is defined
inductively as follows:
(a) {1} ∈ I.
(b) If G1, G2 ∈ I, then G1 ×G2 ∈ I.
(c) If G ∈ I and n ≥ 2, then G o Sn ∈ I.
(d) If G1, G2, G3 ∈ I and G1 ∼= G3, then (G1 × G2 × G3) oϕ Z2 ∈ I, where ϕ : Z2 →

Aut(G1×G2×G3) is the homomorphism defined as ϕ(0) = id and ϕ(1) = (g1, g2, g3) 7→
(g3, g2, g1).

Proof (Sketch). We first prove that I ⊆ Aut(INT). Clearly {1} ∈ Aut(INT). It remains
to show that the class Aut(INT) is closed under (b), (c) and (d). For (b), we can show
this by attaching two interval graphs X1 and X2 on an asymmetric interval graph. Clearly,
the resulting graph represents the direct product of Aut(X1) and Aut(X2). For (c), let
G ∈ Aut(INT) and n ≥ 2. There exists an interval graph Y such that Aut(Y) ∼= G.
We construct X as the disjoint union of n copies of Y . By Theorem 3, it follows that
Aut(X) ∼= GoSn. For (d), we construct an interval graph X by attaching X1, X2 and X3 to a
path as in Fig. 4a, where Aut(Xi) = Gi and X1 ∼= X3. Then Aut(X) ∼= (G1×G2×G3)oϕZ2.

For the converse, we show that Aut(M) ∈ I. We have three cases for the root of M .
For a P-node, Aut(M) is determined by the automorphism groups of its subtrees using

STACS 2015

546 Automorphism Groups of Geometrically Represented Graphs

A
A

Figure 5 First, we place the intervals according to the structure of the tree. We get Aut(X) ∼=
S3 × S2 × S3, but Aut(T) ∼= S2 × S3. We fix this by adding copies of an asymmetric path A which
has the trivial automorphism group.

Theorem 3, so the operations (b) and (c) are sufficient. For an asymmetric Q-node, Aut(M)
is the direct product of the automorphism groups of its subtrees. For a symmetric Q-node,
we apply the operation (d) where G1 corresponds to the automorphisms of the left part of
the Q-node, G2 to the middle part and G3 to the right part. The semidirect product with
Z2 corresponds to reversing the Q-node. J

This lemma connects Aut(INT) and the geometrical structure of an interval representa-
tion. The operation (b) applies to non-isomorphic independent parts of the representation,
(c) to isomorphic parts which can be arbitrary permuted, and (d) to parts which can only
be reflected vertically.

Proof of Theorem 1(i). It easily follows from Lemma 4 that Aut(INT) = Aut(TREE). We
show that (d) can be expressed using (b) and (c). Assuming G1 ∼= G3, we get

(G1 ×G2 ×G3) oϕ Z2 ∼= (G1 ×G3) oϕ Z2 ×G2 ∼= G1 o Z2 ×G2.

An alternative proof shows that the automorphism groups of trees are closed under (d).
Suppose that G1, G2, G3 ∈ Aut(TREE) and G1 ∼= G3. Then there exist trees T1, T2 and T3
such that Aut(Ti) ∼= Gi and T1 ∼= T3. We construct a tree T by attaching T1, T2, and T3 to
a path by the roots, as shown in Fig. 4b. J

From Interval Graphs to Trees. We solve the open problem of Hanlon [17]. For an interval
graph X, we construct a tree T such that Aut(X) ∼= Aut(T). Consider the MPQ-tree M for
X. We know that Aut(M) ∼= Aut(X) and we just need to encode the structure of M into
T . We do this inductively.

Suppose a P-node P is in the root. Then its subtrees can be encoded by trees and we
just attach them to a common root. Further, if sec(P) is non-empty, we attach a star with
|sec(P)| leaves to the root. As before, we possibly need to modify this by subdivision, and
we get Aut(T) ∼= Aut(M).

Let a Q-node Q be in the root. If Q is asymmetric, we attach the trees corresponding
to the subtrees of Q and stars corresponding to the vertices of equal sections of Q to an
asymmetric path. If Q is symmetric, then Aut(M) ∼= (G1 × G2 × G3) o Z2 and we just
attach trees T1, T2 and T3 to a path as in Fig. 4b. In both cases, Aut(T) ∼= Aut(M).

From Trees to Interval Graphs. For a rooted tree T , we construct an interval graph X

such that Aut(T) ∼= Aut(X) as follows. We place the intervals by copying the structure of
T , as shown in Fig. 5. Each interval is contained exactly in the intervals of its ancestors.
If T contains a vertex with only one child, then Aut(T) < Aut(X). This can be fixed by
adding asymmetric paths, as in Fig. 5.

P. Klavík and P. Zeman 547

Automorphism Groups of Proper Interval Graphs. As an application of the previously
derived characterization of Aut(INT), we show that the automorphism groups of connected
proper interval graphs are the same as the automorphism groups of caterpillars. First, we
derive a characterization of Aut(CATERPILLAR).

I Lemma 5. Let X be a caterpillar graph and let P be the central path.
(i) If no automorphism swaps the path P , then the group Aut(X) is isomorphic to a direct

product of symmetric groups.
(ii) If there exists an automorphism of X that swaps the path P , then

Aut(X) ∼= (G1 ×G2 ×G3) oϕ Z2,

where G2 is isomorphic to Sk, G1 ∼= G3 are isomorphic to a direct product of symmetric
groups, and ϕ is the homomorphism defined as ϕ(0) = id and ϕ(1) = (g1, g2, g3) 7→
(g3, g2, g1).

Proof (Sketch). The root of an MPQ-tree M representing a caterpillar graph X is a Q-
node. All twin classes are trivial, since X is a tree. Each child of the root is either a P-node,
or a leaf. All children of every P-node are leaves. If there exist an automorphism that
swaps the central path P , then the root is symmetric, otherwise it is asymmetric. We can
determine Aut(M) similarly as in the proof of Lemma 4. J

Proof of Theorem 1(ii). According to Corneil [5], the MPQ-tree representing a connected
proper interval graph contains only one Q-node with the maximal cliques attached to it. It
is possible that the sections of this Q-node are nontrivial. This equality of automorphism
groups follows by Lemma 5 and the proof of Lemma 4. J

3 Automorphism Groups of Circle Graphs

In this section, we prove Theorem 1(iii). We start by introducing split decomposition (used
for recognizing circle graphs) which is described by a split-tree. Similarly as in Section 2,
we show for a split-tree S that Aut(S) ∼= Aut(X). From now on, we focus on connected
circle graphs and we want to establish that their automorphism groups are the same as the
automorphism groups of pseudotrees (PSEUDOTREE).

Split Decomposition. A split of X is a partition of the set V (X) into four parts A, B, A′
and B′ such that:

For every a ∈ A and every b ∈ B, we have ab ∈ E(X).
There is no edge between A′ and B ∪B′, and between B′ and A ∪A′.
Both sides have at least two vertices: |A ∪A′| ≥ 2 and |B ∪B′| ≥ 2.

The split decomposition takes any split of X, and replaces X by graphs XA and XB .
The graph XA is induced by A∪A′ ∪ {mA}, where mA is a marker vertex adjacent exactly
to the vertices in A. The graph XB is defined similarly for B, B′ and mB ; see Fig. 6a.
The decomposition is then applied recursively on XA and XB . Graphs containing no splits
are called prime graphs. According to [11], every prime circle graph has a unique circle
representation up to rotations and reflections. It is standard to stop the split decomposition
also on degenerate graphs which are Kn and K1,n (which clearly are circle graphs). The
reason is that these graphs have many splits but are very simple. The fundamental property
is that a graph X is a circle graph if and only if XA and XB are circle graphs.

STACS 2015

548 Automorphism Groups of Geometrically Represented Graphs

X

B
A′ A

mA mBsplit

XA XB

12
3

4

5

6 7

8

9

10

1

23

4 5

6

7

8

9

10

X S(a) (b)

Figure 6 (a) An example of a split. The marker vertices are depicted in white. (b) The split-tree
S with dashed tree-edges. We have Aut(S) ∼= Z5

2 o D5.

Split-tree. We encode the steps of the split decomposition by a tree structure. If X contains
a split (A,B,A′, B′), then we replace X by the graphs XA and XB , and connect the marker
verticesmA andmB by a tree-edge. We repeat this recursively on XA and XB . The resulting
graph is called a split-tree, since tree-edges connect prime and degenerate graphs in a tree
pattern; see Fig. 6b. Each prime or degenerate graph is a node of the split-tree.

In [12], split-trees are defined in terms of graph-labeled trees. However, our definition
is more suitable for working with automorphism groups. Cunningham [6] proved that the
split-tree S for a graph X is uniquely determined. Clearly, a graph is a circle graph if
and only if each node of its split-tree is a circle graph. The following lemma says that the
split-tree S captures the adjacencies in X; we omit the proof.

I Lemma 6. The vertices x, y ∈ V (X) are adjacent if and only if there exists an alternating
path x,m1,m2, . . . ,mk, y in the split-tree S such that each mi is a marker vertex, each
m2i−1m2i is a tree-edge and the remaining edges belong to E(X).

Automorphisms of a Split-tree. The split-tree S is a labeled graph where some vertices
are labeled as marker vertices and some edges are labeled as tree-edges. An automorphism
of S is required to preserve these labels, so it maps marker vertices only to marker vertices
and tree-edges only to tree-edges. We show that the automorphism group of S is isomorphic
to Aut(X).

I Lemma 7. Let S be a split-tree representing X. Then Aut(S) ∼= Aut(X).

Proof. First, we show that each σ ∈ Aut(S) induces a unique automorphism α of X. We
define α = σ �V (X). By Lemma 6, two vertices x, y ∈ V (X) are adjacent if and only if there
exists an alternating path in S connecting them. Since σ is an automorphism, the existence
of this alternating path is preserved between x and y and between σ(x) and σ(y). Therefore
xy ∈ E(X) ⇐⇒ α(x)α(y) ∈ E(X).

For the converse, we show that α ∈ Aut(X) induces a unique automorphism σ ∈ Aut(S).
On the non-marker vertices, σ is determined. On the marker vertices, we define σ recursively.
Let (A,B,A′, B′) be a split in X. This split is mapped by α to another split (C,D,C ′, D′),
i.e., α(A) = C, α(A′) = C ′, α(B) = D, and α(B′) = D′. By applying the split decomposi-
tion to the first split, we get the graphs XA and XB with the marker vertices mA ∈ V (XA)
and mB ∈ V (XB). Similarly, for the second split we get XC , XD with mC ∈ V (XC) and
mD ∈ V (XD). Since α is an automorphism, we have that XA

∼= XC and XB
∼= XD. It fol-

lows that the unique split-trees of XA and XC are isomorphic, and similarly for XB and XD.
Therefore, we define σ(mA) = mC and σ(mB) = mD, and we finish the rest recursively. J

I Lemma 8. A connected circle graph X has Aut(X) ∈ Aut(PSEUDOTREE).

Proof (Sketch). We begin by proving the following characterization:

Aut(PSEUDOTREE) =
⋃
n≥1

Aut(TREE) oDn ∪Aut(TREE) o Zn.

P. Klavík and P. Zeman 549

Suppose a pseudotree Y contains a cycle, otherwise Aut(Y) ∈ Aut(TREE)oZ1. Then Aut(Y)
preserves the cycle. The subgroup of Aut(Y) fixing the cycle belongs to Aut(FOREST) =
Aut(TREE), and Aut(Y) acts on the cycle as a dihedral or cyclic group. This can be described
by a semidirect product, and so Aut(Y) ∈ Aut(TREE) oDn or Aut(TREE) o Zn.

Let X be a connected circle graph and S a split-tree for X. By Lemma 7 we have that
Aut(X) ∼= Aut(S). Since X is a circle graph, each node of S is a prime or degenerate graph.
The automorphism group of a degenerate graph is isomorphic to Sn. According to [11], each
circle graph that is prime has a unique circle representation, up to rotations and reflections.
It follows that the automorphism group of a prime circle graph is a subgroup of Dn.

The split tree S consists of prime and degenerate graphs connected by tree-edges. The
center of the split-tree is a node or a tree-edge. In the latter case, we subdivide the tree-edge
by creating two new marker vertices and connecting them by a normal edge. So, we assume
that the center is a node C. Every automorphism of S maps C to C.

We root S by C. Let N 6= C be a node of S. If N is a degenerate graph, then we
can arbitrarily permute its isomorphic children. If N is a prime graph, then we can only
reverse the order of its children. This is because the vertex of N which is connected by a
tree-edge with the parent of N has to be fixed. The subgroup of Aut(S) that fixes C is in
Aut(FOREST) = Aut(TREE), similarly as for interval graphs.

If the center C is a degenerate graph, then Aut(S) ∈ Aut(TREE) since it closed under
(b) and (c) of Lemma 4. Otherwise, C is a prime graph and Aut(S) acts on C as a subgroup
of a dihedral group. Therefore, Aut(S) ∈ Aut(PSEUDOTREE). J

The above lemma geometrically describes automorphisms of circle graphs. The center C
corresponds to the essential geometrical structure of X, and it can be rotated and possibly
reflected. The remainder of X is attached to C via the structure of S, so it is less free.
We note that the automorphism groups Aut(PSEUDOFOREST) can be constructed from
Aut(PSEUDOTREE) by Theorem 3.

We are ready to prove that Aut(CIRCLE) = Aut(PSEUDOFOREST):

Proof of Theorem 1(iii). Each connected circle graph X has Aut(X)∈Aut(PSEUDOTREE)
according to Lemma 8. Since every pseudotree is a connected circle graph, these two classes
have the same automorphism groups. Circle graphs and pseudotrees are closed under disjoint
unions, hence the equality follows. J

4 Automorphism Groups Acting on Intersection Representations

We denote by Rep the set of all intersection representations of a graph X. Every automorph-
ism π ∈ Aut(X) creates from R ∈ Rep another representation R′ such that R′π(u) = Ru; so
π swaps the labels of the sets of R. We denote R′ as π(R), and Aut(X) acts on Rep.

The general set Rep is too large. Therefore it is more convenient to define a suitable
equivalence relation ∼. We factorize Rep by ∼ and we work with Rep/∼, which contains
exactly one representation from every equivalence class. It is reasonable to assume that ∼ is
a congruence with respect to the action of Aut(X), which means that for every R ∼ R′ and
π ∈ Aut(X), we have π(R) ∼ π(R′). We consider the induced action of Aut(X) on Rep/∼.

We assume that stabilizer of R ∈ Rep/∼ is a normal subgroup Aut(R) of Aut(X)
which describes automorphisms inside this representation. The quotient Aut(X)/Aut(R)
describes all morphisms which change one representation in the orbit of R into another one.
Our strategy for understanding Aut(X) is by decomposing it geometrically into Aut(R),

STACS 2015

550 Automorphism Groups of Geometrically Represented Graphs

3 4 7 8 11 12

6
5

2 10
1 9
C1C2C3C4C5C6

12 11 7 8 4 3

6
5

10 2
9 1
C6C5C3C4C2C1

12 11 8 7 4 3

6
5

10 2
9 1
C6C5C4C3C2C1 3 4 8 7 11 12

6
5

2 10
1 9
C1C2C4C3C5C6

πQ

πP πQ

πP

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Figure 7 An interval graph with four non-equivalent representations. Its MPQ-tree M , depicted
in Fig. 3, has one Q-node and one P-node. The graph has three classes of twin vertices of size two,
so Aut(R) ∼= S3

2. The quotient group Aut(T) is generated by two automorphism: πQ corresponding
to flipping the Q-node, and πP corresponding to permuting the P-node. We have Aut(T) ∼= Z2

2.

which is mostly very simple, and Aut(X)/Aut(R), for which we need to understand the
structure of all representations.

This approach is inspired by well-known results in map theory. A map M is a 2-cell
embedding of a graph; i.e, aside vertices and edges, it prescribes a rotation scheme for the
edges incident with each vertex. One defines Aut(M) as the subgroup of Aut(X) which
preserves/reflects the rotational schemes. Unlike Aut(X), we know that Aut(M) is always
small and can be easily determined in polynomial time. But the quotient Aut(X)/Aut(M)
describes morphisms between different maps and can be very complicated.

Interval Graphs. For an interval graph X, the set Rep consists of all assignments of closed
intervals which define X. It is natural to consider two interval representations equivalent if
one can be transformed into the other by continuous shifting of the endpoints of the intervals
while preserving the correctness of the representation. Then each representation of Rep/∼
corresponds to a different ordering of the maximal cliques from left to right. Figure 7 depicts
an interval graph with four different non-equivalent representations in Rep/∼.

We interpret our results of Section 2 in terms of the action of Aut(X) on Rep. We
proved that Aut(X) ∼= Aut(M) where M is the MPQ-tree. If an automorphism is in the
stabilizer, then it fixes the ordering of the maximal cliques and it can only permute twin
vertices. Therefore Aut(R) is a product of symmetric groups, one for each equivalence class
of twin vertices. In the description using MPQ-trees, each equivalence class corresponds to
a set of vertices which are contained in the same sections. Every stabilizer is the same and
every orbit of the action of Aut(X) is isomorphic. Different orderings of the maximal cliques
correspond to different reorderings of the PQ-tree. The defined Aut(T) describes morphisms
of representations belonging to one orbit of the action of Aut(X), so these representations
are the same up to the labeling of the intervals. It is the quotient group Aut(M)/Aut(R)
which is isomorphic to Aut(X)/Aut(R).

Circle Graphs. For a circle graph X, the set Rep consists of all assignments of chords
of a circle which define X. Two representations are considered equivalent if one can be
transformed into other by (i) continuos shifting of chords while preserving the representation
and (ii) swapping two chords with the same neighbors such that there is no other endpoint
in between them. We call two vertices x and y semi-twin vertices if N(x) = N(y). They

P. Klavík and P. Zeman 551

again form equivalence classes, and two representation are equivalent if they have the same
circular ordering of chords up to permuting semi-twin vertices.

We interpret the results of Section 3 in terms of the action of Aut(X). It follows that
Aut(R) is a direct product of symmetric groups, corresponding to permuting semi-twin
vertices. It consists of all automorphisms which fix marker vertices of the split tree S. The
quotient Aut(X)/Aut(R) describes all structural transformations of the split tree. For the
central node C, rotation/reflection is possible, so we get a subgroup of Dn. If N 6= C is a
prime graph, we can only apply the geometric reflection with the axis perpendicular to the
chord of the marker vertex, so their symmetries are trivial or Z2. For a degenerate graph
N 6= C, one can arbitrary permute isomorphic subtrees, so it is a direct product of wreath
products with symmetric groups. So Aut(X)/Aut(R) ∈ Aut(PSEUDOTREE).

5 Algorithms for Computing Automorphism Groups

We have described the structure of automorphism groups of interval and circle graphs. In
this section, we briefly explain algorithmic implications of our results which allow to compute
automorphism groups in terms of basic groups Zn, Dn and Sn, and their group products.
This description is much better than just outputting permutations generating Aut(X). Many
tools of the computational group theory are devoted to getting better understanding of an
unknown group, described by generators (permutations, matrices) or relators (presenta-
tions). Our description gives this structural understanding of Aut(X) for free.

For interval graphs, a linear-time algorithm follows from the standard tools and tech-
niques. The MPQ-tree M is computed in time O(n + m). We can compute Aut(T) in a
similar manner as the automorphism group of a rooted tree. Therefore, we get a recursive
description in terms of group products, and we can describe their generators.

For circle graphs, our description easily leads to a polynomial-time algorithm, by com-
puting the split tree and understanding its symmetries. The best algorithm for computing
split-trees runs in almost linear time [13]. With a careful implementation and checking all
details, one can likely match this time for computing Aut(X) using our results.

6 Open Problems

We conclude this paper with several open problems concerning automorphism groups of
other intersection-defined classes of graphs; for an overview see [15, 31].

We do not describe Aut(PERM). But our results and the inclusions CATERPILLAR (
PERM (CIRCLE imply that they are non-universal, between Aut(CATERPILLAR) and
Aut(CIRCLE). We believe that our techniques can be applied.

I Problem 1. What is Aut(PERM)?

Circular-arc graphs (CIRCULAR-ARC) are intersection graphs of circular arcs and they
naturally generalize interval graphs. Surprisingly, this class is very complex and more dif-
ferent from interval graphs than it seems. The paper of Hsu [20] relates circular-arc graphs
to circle graphs. It easily follows that Aut(CIRCULAR-ARC) ⊇ Aut(PSEUDOTREE).

I Problem 2. What is Aut(CIRCULAR-ARC)? Is it equal to Aut(PSEUDOTREE)?

Figure 2 depicts two infinite hierarchies of graph classes, one between INT and CHOR,
and the other one between PERM and FUN. In both cases, the bottom graph class has
non-universal automorphism groups and the top one has universal automorphism groups.

STACS 2015

552 Automorphism Groups of Geometrically Represented Graphs

Let Y be any fixed graph. The class Y -GRAPH consists of all intersections graphs of
connected subgraphs of a subdivision of Y . Observe that K2-GRAPH = INT and⋃

T∈TREE
T -GRAPH = CHOR.

The infinite hierarchy between INT and CHOR is formed by T -GRAPH for which INT ⊆
T -GRAPH (CHOR. If Y contains a cycle, then Y -GRAPH is no longer contained in CHOR.
The simplest of these classes are circular-arc graphs which are equal to K3-GRAPH.
I Conjecture 1. For every fixed graph Y , the class Y -GRAPH is non-universal.

The hierarchy between PERM and FUN is defined using the Dushnik-Miller dimension
of partially ordered sets. Every poset is equal to the intersection of some linear orderings,
and this dimension is the least number of these linear orderings. The complement of every
function graph can be transitively oriented, and its dimension is the least dimension of all
its transitive orientations. We denote the class of all function graphs of the dimension at
most k by k-DIM. It follows that 1-DIM are all complete graphs, 2-DIM = PERM, and⋃

k∈N
k-DIM = FUN.

We note that recognition of k-DIM is NP-complete for k > 2 [33].
I Problem 3. What are Aut(k-DIM)? Are they non-universal for every k ∈ N?

References
1 L. Babai. Automorphism groups of planar graphs II. In Infinite and finite sets (Proc. Conf.

Kestzthely, Hungary), 1973.
2 K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,

and planarity using PQ-tree algorithms. J. Comput. System Sci., 13:335–379, 1976.
3 N. Carter. Visual group theory. MAA, 2009.
4 C. J. Colbourn and K. S. Booth. Linear times automorphism algorithms for trees, interval

graphs, and planar graphs. SIAM J. Comput., 10(1):203–225, 1981.
5 Derek G Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and Alan P Sprague.

Simple linear time recognition of unit interval graphs. Information Processing Letters,
55(2):99–104, 1995.

6 W.H. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic Discrete
Methods, 3:214–228, 1982.

7 P. Erdös, S. Fajtlowicz, and A. J. Hoffman. Maximum degree in graphs of diameter 2.
Networks, 10(1):87–90, 1980.

8 J. Fiala, P. Klavík, J. Kratochvíl, and R. Nedela. Algorithmic aspects of regular graphs
covers with applications to planar graphs. In Lecture Notes in Computer Science, Automata,
Languages, and Programming ICALP 2014, volume 8572, pages 489–501, 2014.

9 R. Frucht. Herstellung von graphen mit vorgegebener abstrakter gruppe. Compositio
Mathematica, 6:239–250, 1939.

10 D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pac. J. Math.,
15:835–855, 1965.

11 C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Recognizing circle graphs in polynomial time.
Journal of the ACM (JACM), 36(3):435–473, 1989.

12 E. Gioan and C. Paul. Split decomposition and graph-labelled trees: Characterizations
and fully dynamic algorithms for totally decomposable graphs. Discrete Appl. Math.,
160(6):708–733, 2012.

P. Klavík and P. Zeman 553

13 E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle graph recogni-
tion. Algorithmica, pages 1–30, 2013.

14 C. D. Godsil and G. Royle. Algebraic graph theory, volume 207. Springer New York, 2001.
15 M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier, 2004.
16 M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded

topological subgraphs. In Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, pages 173–192, 2012.

17 P. Hanlon. Counting interval graphs. Transactions of the American Mathematical Society,
272(2):383–426, 1982.

18 Z. Hedrlín, A. Pultr, et al. On full embeddings of categories of algebras. Illinois Journal
of Mathematics, 10(3):392–406, 1966.

19 A. J. Hoffman and R. R. Singleton. On moore graphs with diameters 2 and 3. IBM Journal
of Research and Development, 4(5):497–504, 1960.

20 W. L. Hsu. O(M ·N) algorithms for the recognition and isomorphism problems on circular-
arc graphs. SIAM Journal on Computing, 24(3):411–439, 1995.

21 C. Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathematik,
70:185–190, 1869.

22 N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing interval
graphs. SIAM J. Comput., 18(1):68–81, 1989.

23 G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph iso-
morphism. Journal of the ACM (JACM), 26(2):183–195, 1979.

24 E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982.

25 R. Mathon. A note on the graph isomorphism counting problem. Information Processing
Letters, 8(3):131–136, 1979.

26 B. D. McKay, M. Miller, and J. Širáň. A note on large graphs of diameter two and given
maximum degree. J. Combin. Theory Ser. B, 74(1):110–118, 1998.

27 M. Miller and J. Širáň. Moore graphs and beyond: A survey of the degree/diameter
problem. Electronic Journal of Combinatorics, 61:1–63, 2005.

28 Fred S Roberts. Indifference graphs. Proof techniques in graph theory, 139:146, 1969.
29 J. J. Rotman. An introduction to the theory of groups, volume 148. Springer, 1995.
30 U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System

Sciences, 37(3):312–323, 1988.
31 J. P. Spinrad. Efficient Graph Representations.: The Fields Institute for Research in Math-

ematical Sciences., volume 19. American Mathematical Soc., 2003.
32 H. Whitney. Nonseparable and planar graphs. Trans. Amer. Math. Soc., 34:339–362, 1932.
33 Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM Journal

on Algebraic Discrete Methods, 3(3):351–358, 1982.
34 S. Zhou. A class of arc-transitive Cayley graphs as models for interconnection networks.

SIAM Journal on Discrete Mathematics, 23(2):694–714, 2009.

STACS 2015

Correlation Clustering and Two-edge-connected
Augmentation for Planar Graphs∗

Philip N. Klein†‡1, Claire Mathieu‡2, and Hang Zhou‡3

1 Brown University, United States
klein@brown.edu

2 CNRS, École Normale Supérieure, France
cmathieu@di.ens.fr

3 École Normale Supérieure, France
hangzhou@di.ens.fr

Abstract
In correlation clustering, the input is a graph with edge-weights, where every edge is labelled
either + or − according to similarity of its endpoints. The goal is to produce a partition of the
vertices that disagrees with the edge labels as little as possible.

In two-edge-connected augmentation, the input is a graph with edge-weights and a subset R
of edges of the graph. The goal is to produce a minimum weight subset S of edges of the graph,
such that for every edge in R, its endpoints are two-edge-connected in R ∪ S.

For planar graphs, we prove that correlation clustering reduces to two-edge-connected aug-
mentation, and that both problems have a polynomial-time approximation scheme.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases correlation clustering, two-edge-connected augmentation, polynomial-
time approximation scheme, planar graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.554

1 Introduction

1.1 Correlation Clustering
Correlation clustering takes as input a graph whose edges are labelled either 〈+〉 or 〈−〉.
A 〈+〉 edge represents evidence that its endpoints belong in the same cluster, and a 〈−〉
edge represents evidence that its endpoints belong in different clusters. Each edge has a
non-negative weight reflecting the strength of the evidence. The goal is to find a clustering
minimizing the total weight of edges inconsistent with that evidence. This formulation,
previously from computational biology [10], was introduced by Bansal, Blum, and Chawla [8].
They suggested as an application the clustering of documents into topics.

In this paper, we study the case when the graph is planar. The motivation comes from
image segmentation. The goal is to partition the image into regions representing different
image components. An image is represented by a grid of pixels. For each pair of neighboring
pixels, comparing the pixels’ values yields an assessment of how likely the pixels are to belong

∗ The full version of the paper is available on the authors’ websites.
† Research funded by NSF Grants CCF-0964037 and CCF-1409520.
‡ Some of this research was done during a semester program at ICERM, the NSF-supported Institute for

Computational and Experimental Research in Mathematics at Brown University.

© Philip N. Klein, Claire Mathieu, and Hang Zhou;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 554–567

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.554
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P.N. Klein, C. Mathieu, and H. Zhou 555

e1

e3

e2

Figure 1 In this unweighted grid, every solid (resp. dashed) edge represents a pair of similar
(resp. dissimilar) pixels. Dotted lines indicate an optimal partition with inconsistent edges e1, e2, e3.

to the same region. There can be spurious assessments. So global optimization is needed
to find a good segmentation. See Figure 1. When an image is large, it is common for a
visual task to first coalesce coherent uniform neighborhoods of pixels into superpixels, using
preprocessing based on local properties such as brightness, color, and texture, see [3, 30]. We
then extract a local similarity measure on pairs of adjacent superpixels, and the goal is to find
a good segmentation of the superpixel graph under that measure. To achieve this, researchers
used correlation clustering as the formulation [4, 5, 6, 26, 36]. They gave experimental results
based on techniques such as integer linear programming or linear programming relaxation.

Note that the superpixel graph is planar. However, correlation clustering is NP-hard
for planar graphs [7]. Prior to this work, the best result with theoretical guarantee was a
constant-factor approximation for minor-excluded graphs by Demaine, Emanuel, Fiat, and
Immorlica [17]. In this paper, we give a polynomial-time approximation scheme (PTAS).

I Theorem 1. For any ε > 0, there is a polynomial-time (1 + ε)-approximation algorithm
for correlation clustering in weighted planar graphs.

Related work

Why do we restrict ourselves to planar graphs? Because the general (weighted) problem is
APX-hard [8]. Charikar, Guruswami, and Wirth [16] and independently Demaine, Emanuel,
Fiat, and Immorlica [17] gave logarithmic-factor approximation algorithms. There have been
improved approximation algorithms when the graph is complete [1, 8, 16]; or when, for each
edge, the agreement weight and disagreement weight of that edge sum to one [1, 8]; or when,
in addition, the weights satisfy the triangle inequality [22]. When the number of clusters
is limited to a constant, Giotis and Guruswami [23] gave a PTAS. The problem was also
studied in a planted model [31] and from the viewpoint of fixed-parameter tractability [15].

We discussed the problem of minimizing weight of disagreement; maximizing weight of
agreement is equivalent at optimality but easier to approximate [8, 16, 35]. Researchers have
also considered other objective functions [2].

1.2 Two-edge-connected Augmentation
In the field of telecommunications, an important task is to ensure that the network is resilient
against single-link failures [34]. The two-edge-connected augmentation problem takes as input
a graph G with non-negative edge-weights and a subset R of edges of the graph. The goal is

STACS 2015

556 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

to find a minimum-weight subset S of edges of the graph such that for every edge uv ∈ R,
u and v are two-edge-connected in the subgraph R ∪ S. We give a PTAS for this problem
when the graph is planar.

I Theorem 2. For any ε > 0, there is a polynomial-time (1 + ε)-approximation algorithm
for two-edge-connected augmentation in weighted planar graphs.

Related work

A closely related problem is two-edge-connected spanning subgraph, for which a constant-factor
approximation algorithm was known [25]. When the graph is planar, Berger and Grigni [11]
gave a PTAS. One might think that this would lead to a PTAS for our problem, but it is
not the case because the weight of a two-edge-connected augmentation can be much smaller
than the minimum weight of a two-edge-connected spanning subgraph. For the Steiner-type
generalization of the two-edge-connected subgraph problem, there was a constant-factor
approximation algorithms [28]. When the graph is planar, Borradaile and Klein [13] gave a
PTAS.1

There is a variety of other related work, see [29] for a survey. Some studied the special
case when the weights are all one [20, 21, 32], or when, in addition, the graph is complete [19].
There was a 2-approximation algorithm for the related problem of augmenting a connected
subgraph to achieve two-edge-connectivity among a pre-specified set of terminal vertices [33].
Edge-connectivity augmentation problems were subsumed by the work of Jain [24] on
survivable network design.

2 Techniques and Notations

Our techniques for proving Theorem 1 and Theorem 2 include planar duality, prize-collecting
clustering, brick decomposition, sphere-cut decomposition, and dynamic programming.

Throughout the paper, we allow graphs to have parallel edges. For a graph G, we note
V [G] as its vertex set and E[G] as its edge set. For a subset H ⊆ E[G], we identify H with
the subgraph induced by edges from H. The weight of H is defined by

∑
e∈H weight (e).

The boundary ∂(H) is the set of vertices u that are incident to some edge of H and to some
edge of E[G] \H. Similarly, for a subset U ⊆ V [G], its boundary ∂(U) is the set of edges
uv such that u ∈ U and v ∈ V [G] \ U . A plane graph is a planar graph together with a
planar embedding. We use the phrases plane graph and planar graph interchangeably. We
use OPT (G,R) to denote the weight of the optimal two-edge-connected augmentation for
(G,R). The parameters G and R are omitted when they are clear from the context.

3 Theorem 2 Implies Theorem 1

We address correlation clustering and two-edge-connected augmentation in one paper because
of the reduction in Theorem 3, which shows that Theorem 2 implies Theorem 1.

I Theorem 3. There is an approximation-preserving reduction from correlation clustering
in a weighted planar graph to two-edge-connected augmentation in a weighted planar graph.

1 In their problem, a solution is allowed to include multiple copies of edges of the input graph.

P.N. Klein, C. Mathieu, and H. Zhou 557

e1

e2

e3

e4

e5 e6

e7

e8

Figure 2 In the example, R = {e1, e2, e3, e4}. The optimal two-edge-connected augmentation
consists of edges e5 and e6. However, any Steiner tree connecting the edges of R must include one
of the edges e7 and e8, whose weight may be much higher than weight ({e5, e6}).

I Remark. In practice, we may use an approximation algorithm for two-edge-connected
augmentation that is different from the algorithm in Theorem 2, and then from the reduc-
tion (Theorem 3), we obtain an algorithm for planar correlation clustering with the same
approximation factor.

I Lemma 4 (Bridge-Deletion Lemma). Let G be a plane graph. Let R be a subset of E[G].
Let S be a minimal two-edge-connected augmentation for (G,R). Then every connected
component in the subgraph R ∪ S is two-edge-connected.

Proof of Theorem 3. Given a correlation-clustering instance G0 with 〈−〉 edges, construct
an instance (G,R) of two-edge-connected augmentation as follows: To obtain the graph G,
start with the planar dual of the G0, and add duplicates of the duals of the 〈−〉 edges. The
weights are preserved. Define R to be the original (non-duplicate) duals of the 〈−〉 edges. Let
S be a minimal two-edge-connected augmentation. By the Bridge-Deletion Lemma, every
connected component in R ∪ S is two-edge-connected. Define the clusters of G0 to be the
connected components when edges dual to R ∪ S are removed. J

4 Reduction to Instance with a Connected Skeleton

Without loss of generality, we assume for the rest of the paper that the edges of R have
weight zero.

To prove Theorem 2, we focus on a related version (Theorem 5), where we are given
in addition a connected subgraph T that contains every edge of R. We defer the proof of
Theorem 5 to later sections.

I Theorem 5 (Augmentation Theorem). Let G be a plane graph with edge-weights. Let R
be a subset of E[G]. Let T be a connected subgraph of G that contains every edge of R.
For every ε > 0, there is a polynomial-time algorithm Augment-Connected(G,R, T, ε)
that computes a two-edge-connected augmentation S for (G,R) such that weight (S) ≤
(1 + ε)OPT (G,R) + ε2 · weight (T).

In the rest of this section, we prove Theorem 2 using the Augmentation Theorem. One
might consider connecting all edges of R with a Steiner tree T , and then applying the
Augmentation Theorem. However, OPT could be much smaller than the minimum weight
of a Steiner tree when the solution is not connected (see Figure 2). In that case, the upper
bound given by the Augmentation Theorem would not imply an approximation scheme.

Fortunately, there is an algorithmic tool, called prize-collecting clustering, due to Bateni,
Hajiaghayi, and Marx [9], that addresses exactly this kind of obstacle. They used it in
addressing the Steiner forest problem. They started with a 2-approximate solution, and used
prize-collecting clustering to decompose the instance into subinstances. We use the same
approach for two-edge-connected augmentation, see Algorithm 1.

STACS 2015

558 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

Algorithm 1 Reduce-to-Connected
Input: a weighted planar graph G and a subset R of edges, ε > 0
Output: connected subgraphs T1, . . . , Tk

1: Y ← two-edge-connected augmentation with weight at most 2 ·OPT
2: (U1, · · · , U`)← two-edge-connected components of R ∪ Y
3: Contract each component Ui to build a new graph Ĝ
4: For every v ∈ Ĝ, let φv be ε−1 times the weight of the component corresponding to v
5: Do prize-collecting clustering on Ĝ and φ, obtaining a forest F
6: Return the connected components T1, . . . , Tk of the subgraph F ∪R ∪ Y of G

Algorithm 2 Augment
Input: a planar graph G, a subset of edges R, and ε > 0
Output: two-edge-connected augmentation S for (G,R)
1: (T1, . . . , Tk)← Reduce-to-Connected(G,R, ε/7) . Theorem 7
2: for i← 1 to k do
3: Si ← Augment-Connected(G,R ∩ Ti, Ti, ε/7) . Theorem 5
4: return (

⋃
i Si) \R

Line 1 computes a 2-approximate solution using Jain’s algorithm [24] (which solves a
much more general problem).

I Lemma 6 (corollary from [24]). There is an algorithm that computes in polynomial time
a two-edge-connected augmentation Y for (G,R) such that weight (Y) ≤ 2 ·OPT and that
every connected component in R ∪ Y is two-edge-connected.

Line 5 uses prize-collecting clustering, which receives a graph with vertex-potentials φv

and returns a forest F of edges of weight at most 2
∑

v φv. Since the sum of vertex-potentials
is at most 2ε−1 ·OPT , the weight of F is at most 4ε−1 ·OPT . Using essentially the same
arguments as in [9], we obtain the following.

I Theorem 7 (variant of Theorem 1.3 in [9]). Let G be a plane graph with edge-weights.
Let R be a subset of E[G]. For fixed ε, Algorithm 1 computes in polynomial time a set of
connected subgraphs T1, . . . , Tk with the following properties:⋃

i Ti contains every edge of R.∑
i weight (Ti) ≤ (4/ε+ 2)OPT (G,R).∑
i OPT (Gi, Ri) ≤ (1 + ε)OPT (G,R ∩ Ti)

Proof of Theorem 2. The top-level algorithm of Theorem 2 is given in Algorithm 2. By
the Augmentation Theorem (Theorem 5) and Property 1 of Theorem 7, the output is a
two-edge-connected augmentation for (G,R).

For each i, the weight of Si is at most (1 + ε/7)OPT (G,R ∩ Ti) + (ε/7)2 · weight (Ti).
Summing over i and combining Properties 2 and 3 of Theorem 7, we infer that the weight of
the output solution is at most (1 + ε)OPT (G,R). J

P.N. Klein, C. Mathieu, and H. Zhou 559

Figure 3 The rectangle is a brick. The solid curves are parts of a near-optimal solution. The
dashed curves illustrate the u1-to-v1 path and the u2-to-v2 path inside the brick.

5 Techniques for Proving the Augmentation Theorem

5.1 New Use of Brick Decomposition
For non-local problems in weighted planar graphs in which the weight of the optimal solution
can be much smaller than the weight of the graph, the brick decomposition technique of [14]
has proved to be quite versatile: a planar embedded subgraph M (called the mortar graph) is
selected, and the bricks are the subgraphs of G embedded in the faces of M (see Section 6.1).
The key is the following properties of M .
Property 1: M has weight O(OPT);
Property 2: There exists a near-optimal solution that crosses the boundary of each brick

only a constant number of times.
Both properties are achievable for problems such as Steiner tree [14], Steiner forest [9],
TSP [12], and two-edge-connected survivability [13] for the variant in which the solution is
allowed to include multiple copies of edges of the input graph.

The main obstacle in applying this approach to two-edge-connected augmentation is
that Property 2 seems unachievable using the known brick-decomposition construction. We
therefore use the mortar graph in a new way. We take additional care in the construction of
the mortar graph because of the edges of R. As a consequence, instead of Property 2, we
can show that, after a transformation2 of the instance, we have:

Property 2′ (Structure Theorem): There exists a near-optimal solution such that, for any
brick and any two vertices u, v on the boundary of the brick, there exists a u-to-v Jordan
curve inside the brick that intersects the near-optimal solution at only a constant
number of points.3 See Figure 3.

Property 2′ is proved by reducing nesting and adding boundary cycles. See Section 6.

5.2 Outline of Algorithm Augment-Connected
We use ideas from [14] which we now summarize:
1. Build a mortar graph of G based on the connected skeleton T .
2. Do Breadth-First Search (BFS) on the dual of the mortar graph, and select a mod-k

residue j such that edges whose levels are congruent to j have total weight at most 1/k
times the weight of the mortar graph.

2 The transformation is to add artificial copies of the brick boundaries. See Figure 4 in Section 6.
3 The constant depends on ε.

STACS 2015

560 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

3. Commit to including these edges in the ultimate solution; this decomposes the graph into
subinstances each consisting of at most k levels of bricks.

4. A planar graph consisting of only k BFS levels has branchwidth 2k, i.e., can be recursively
decomposed into clusters of edges such that each cluster is bounded by at most 2k vertices.

However, here we must diverge. Note that the branch decomposition obtained above has
a special form: it is a sphere-cut decomposition, which means that each cluster of edges
is precisely the set of edges enclosed by a Jordan curve J that intersects no edges (and
intersects a constant number of vertices) of the mortar graph. This is where Property 2′
comes in: each segment of J traversing a brick can be replaced with a curve that intersects a
constant number of points of the near-optimal solution. This yields a new Jordan curve J ′
that passes through a constant number of points of the near-optimal solution. Such structure
enables us to design a dynamic program (DP), given in Section 7.

For each cluster of the sphere-cut decomposition, the DP enumerates all possibilities of
the intersection points of the unknown near-optimal solution with the partially unknown
Jordan curve J ′. The DP also enumerates all possiblities of the connected structure of the
part of the solution inside J ′. See Section 7.2. Note that there may be some edges of the
graph that are in the parent cluster but not in the child clusters (Figure 8), so the DP must
do a bit of extra work to go from tables for the children to the table for the parent. See
Section 7.3.

6 Structure Theorem

The Structure Theorem (Theorem 11) is the key to the polynomial-time performance of
the dynamic program (Section 7). Before stating the theorem, we recall the definition and
properties of brick decomposition from [14] in Section 6.1, and we illustrate the transformation
of doubling brick boundaries in Section 6.2.

6.1 Mortar Graph and Brick Decomposition
I Definition 8 (Mortar Graph and Bricks, slight adaptation from [14]). Let G be a plane graph
with edge-weights. Let R be a subset of E[G]. Let M be a subgraph of G. For each face F of
M , we define a brick B as the planar subgraph of G embedded inside the face, including the
boundary edges of F . We denote the interior of B as the brick without the boundary edges
of F . We call M a mortar graph of G if the boundary of every brick B, in counter-clockwise
order, is the concatenation of four paths NorthB , SouthB , EastB , WestB (the subscript B is
omitted when it is clear from the context), such that:
1. No edge of R is in the interior of B, or on SouthB , EastB , or WestB .
2. SouthB is a shortest path in B, and every proper subpath of NorthB is an almost shortest

path in B, i.e., its weight is at most (1 + ε) times the weight of the shortest path between
its endpoints in B;

3. There exists an integer k = O(1/ε4) and vertices s0, s1, . . . , sk ordered from west to east
along SouthB such that, for any vertex x on the segment [si, si+1) of SouthB , the weight
of the segment between x and si along SouthB is less than ε times the weight of the
shortest path between x and NorthB in B.

I Lemma 9 (Brick-Decomposition Lemma, slight adaptation from [14]). Let G be a planar
graph with edge-weights. Let R be a subset of E[G]. Let T be a connected subgraph of G
that contains every edge of R. There is a polynomial-time algorithm that computes a mortar
graph M of G such that:

P.N. Klein, C. Mathieu, and H. Zhou 561

B
East

South

West

North

=⇒

B
East

South

West

North

Figure 4 Doubling the South, East, and West boundaries of the brick B. The new edges between
vertices and their copies have weight 0.

1. weight (M) = O(weight (T) /ε);
2.

∑
brick B weight (EastB ∪WestB) = O(ε2 · weight (T)).

6.2 Doubling Brick Boundaries
The proof of the Structure Theorem applies to a modified version of the graph in which
artificial copies of the South, East, and West brick boundaries are added (Figure 4), and
zero-weight edges are added between corresponding vertices. We call this doubling these
boundaries. Note that no edges of R are duplicated (according to Property 1 of Definition 8).
Let H be the resulting graph.

I Lemma 10 (Boundary-Doubling Lemma). A two-edge-connected augmentation for (G,R)
can be transformed into a two-edge-connected augmentation for (H,R) in linear time without
increasing the weight, and vice versa.

As a consequence, it suffices to find a near-optimal solution for (H,R).

6.3 Theorem Statement
I Theorem 11 (Structure Theorem). Let G be a plane graph with edge-weights. Let R be a
subset of E[G]. Let M be the mortar graph of G. Let H be the graph obtained from G by
doubling the South, East, and West boundaries of every brick.

For any two-edge-connected augmentation S0 for (H,R), there exists a two-edge-connected
augmentation S for (H,R) such that:

weight (S) ≤ (1 + ε)weight (S0) + 3
∑

brick B weight (EastB ∪WestB);
For any brick and any two vertices u, v on the boundary of the brick, there exists a u-to-v
Jordan curve inside the brick that has O(1/ε4) crossings with S, all occurring at vertices.

6.4 Proof Sketch
The proof of the Structure Theorem consists in modifying the initial solution so that any pair
of vertices on the boundary of a brick can be connected by a curve that has few crossings
with the modified solution. Figure 5 shows the kind of curve we use. It starts at a given
vertex u on the brick boundary, traverses nested paths to reach the South boundary, then
bypasses South-to-North paths using cycles formed by the duplicated edges of the South
boundary, and finally again traverses nested paths to reach the given vertex v on the brick
boundary. In order to have a small number of crossings, we must ensure that the number of

STACS 2015

562 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

u

v

Figure 5 The dashed path from u to v has few crossings with the modified solution (solid).

Southd1/εe

=⇒

Southd1/εe

Figure 6 Reducing nesting of the solution: if there are more than d1/εe nested paths (left figure),
add a piece of the South boundary (the bold segment in the right figure) and empty the cycle thus
created. The same operation is applied to nested paths connected to the North boundary, with the
caveat that edges of R need not be added to the solution (since the solution is supposed to be an
augmentation of R).

nested paths is small and that only a small number of South cycles are used to bypass the
South-to-North paths. This is illustrated in Figures 6 and 7.

The construction of the solution S works on each brick in turn, modifying the initial
solution S0 inside that brick: adding the East and West cycles (i.e., the East and West
boundaries together with their duplicates), reducing nesting as in Figure 6, and adding South
cycles (i.e., parts of South together with their duplicates) as in Figure 7.

7 Dynamic Programming

In this section, we design a dynamic program (Theorem 12) to solve the two-edge-connected
augmentation problem for (H,R) in the special case where the dual of the mortar graph has
bounded diameter. From the Structure Theorem, in order to get a near-optimal solution,
we may restrict attention to solutions that satisfy the property defined there. A dynamic
program computes the best among all such solutions.

I Theorem 12 (Dynamic-Programming Theorem). Let R,M,H be defined as in the Structure
Theorem (Theorem 11). Assume, in addition, that the dual graph of M has diameter O(1/ε3).
There is an algorithm that computes in polynomial time a two-edge-connected augmentation S
for (H,R) such that weight (S) ≤ (1 + ε)OPT (H,R) + 3

∑
brick B weight (EastB ∪WestB).

P.N. Klein, C. Mathieu, and H. Zhou 563

=⇒

Figure 7 Adding South cycles (the bold cycles in the right figure) into the solution. The number
of South cycles needed is O(1/ε4) due to Property 3 in the definition of bricks.

7.1 Sphere-Cut Decomposition
Our DP is based on a special kind of branch-decomposition of plane graphs, called a sphere-cut
decomposition (see [18]): A noose of a plane graph is a Jordan curve that intersects only
vertices of the graph and not edges. A sphere-cut decomposition of width w is a family of
non-crossing nooses each intersecting at most w vertices; the nooses form a binary tree by
the enclosure relation, each leaf noose encloses exactly one edge, and each edge is enclosed
by a leaf noose. For each noose in the sphere-cut decomposition, we refer to the set of edges
enclosed as a cluster.

I Lemma 13 (trivial adaptation from [27]). Let G be a plane graph whose dual graph has
diameter k. Then G has a sphere-cut decomposition of width 2k, and it can be computed in
linear time.

7.2 Specification of DP Table
In this section, we define the index of the DP table and the value at an index.

By Lemma 13, M has a sphere-cut decomposition SC of width O(1/ε3). The first index
of the DP table is a cluster E of SC.

Let S0 be the optimal two-edge-connected augmentation for (H,R), and let S be the
solution obtained in the Structure Theorem (Theorem 11). By the Bridge-Deletion Lemma
(Lemma 4), we can modify S so that every connected component in R ∪ S is two-edge-
connected, without increasing the weight of S. For every cluster E of SC, let JE be the
noose enclosing E and of minimum number of crossings with R∪S (all occurring at vertices),
breaking ties by choosing the minimally enclosing one.4 It is easy to show that the family of
nooses {JE}E∈SC is non-crossing.

I Lemma 14. For every cluster E of SC, JE intersects O(1/ε7) vertices of R ∪ S.

Proof. Since SC has widthO(1/ε3), there is a noose enclosing E that hasO(1/ε3) intersections
with M . From one intersection to the next, it goes across a single brick, and by the Structure
Theorem (Theorem 11), the part inside this brick can be chosen so as to have O(1/ε4)
intersections with S. This results in a noose enclosing E that has O(1/ε7) intersections with
R ∪ S. J

Let Q∗ ⊆ V [H] denote the (unknown) set of O(1/ε7) intersection vertices of JE with
S ∪R. The second index of the DP table is a subset Q ⊆ V [H] of size O(1/ε7).

4 Since the noose is a geometric object, it is not uniquely defined, but a discrete formulation can be given
using the face-vertex incidence graph.

STACS 2015

564 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

Next, we encode the connectivity structure of the part of R ∪ S inside JE . Let RE (resp.
Γ∗) denote the set of edges of R (resp. S) that are inside JE . Define a forest F ∗0 from RE ∪Γ∗
by contracting every two-edge-connected component into a node. A node of F ∗0 is called
internal if its corresponding two-edge-connected component in RE ∪ Γ∗ does not contain any
node from Q∗, i.e., the component is strictly inside JE . We then define a forest F ∗ from F ∗0
by splicing internal nodes of degree 2 and removing internal nodes that are singletons. By
the construction, F ∗ has at most |Q∗| non-internal nodes, and it does not contain internal
nodes of degree 0, 1, or 2. So F ∗ has at most 2|Q∗| − 2 nodes. The third index of the DP
table is a forest F of at most 2|Q| − 2 nodes. Moreover, there is a map ψ∗ giving the natural
many-to-one map from Q∗ to nodes of F ∗. The fourth index of the DP table is a map ψ

from Q to V [F]. To summarize:

I Definition 15 (DP index). An index of the DP table, also called a DP index, contains the
following:

E: a cluster of the sphere-cut decomposition SC
Q: a subset of V [H] of size O(1/ε7)
F : a forest of size at most 2|Q| − 2
ψ: a map from Q to V [F], such that every node of degree 0, 1, or 2 in the forest F
belongs to the image of ψ.

In addition, the triple (Q,F, ψ) as defined above is called a partial DP index.5

A set of edges Γ is consistent with a DP index (E,Q, F, ψ) if applying the previous
construction to RE ∪ Γ leads to the connectivity structure described by (F,ψ). For every
DP index (E,Q, F, ψ), define its value DP (E,Q, F, ψ) as the minimum weight among a
collection of Γ’s, such that:

Correctness: Every Γ in this collection is consistent with (E,Q, F, ψ);
Optimality: If (Q,F, ψ) = (Q∗, F ∗, ψ∗), then Γ∗ is in this collection.

In order to prove the Dynamic-Programming Theorem (Theorem 12), we only need to find a
polynomial-time algorithm to fill in the DP table and to output the value DP(M, ∅, ∅, ∅∅). 6

7.3 Hole Region between Parent and Children
Let E be a cluster of SC and let E1 and E2 be its child clusters. Let Q∗, Q∗1, Q∗2 ⊆ V [H] be
the sets of intersections of R ∪ S with JE , JE1 , JE2 . The hole region is the area inside JE

but outside JE1 and JE2 in the plane.7 See Figure 8. We remark that the hole region cannot
contain edges from R.

Let Γ̂∗ denote the set of edges of S in the hole region. Let Q̂∗ denote the set of intersections
of S with the boundary of the hole region. We have Q̂∗ ⊆ Q∗∪Q∗1 ∪Q∗2, thus |Q̂∗| = O(1/ε7).
From Γ̂∗ and Q̂∗, we encode the connectivity structure of the part of S in the hole region as
a forest F̂ ∗ of at most 2|Q̂∗| − 2 nodes and a map ψ̂∗ : Q̂∗ → V [F̂ ∗]. This is similar to the
encoding in Section 7.2.

We use a side table T for the computation at hole regions. The table is indexed by a
partial DP index (Q̂, F̂ , ψ̂). The value T (Q̂, F̂ , ψ̂) is defined as the minimum weight of any
Γ̂ that is consistent with (Q̂, F̂ , ψ̂) and contains no cycles.

5 Note that the description of Q,F, ψ is independent of E.
6 The DP outputs the value of a solution, not the solution itself; but it is easy to enrich the DP in the

standard manner so that it also outputs the solution achieving the value.
7 Note that JE , JE1 , and JE2 are non-crossing.

P.N. Klein, C. Mathieu, and H. Zhou 565

Figure 8 JE is the outermost boundary. It encloses 4 areas that are separated by the solid curves.
JE1 (resp. JE2) is the boundary of the left (resp. right) area. The hole region contains the top and
bottom areas. The dashed paths represent R ∪ S inside JE . The points represent vertices from
Q∗ ∪Q∗

1 ∪Q∗
2.

7.4 Implementation of DP Table

First, the algorithm fills in the side table T during the preprocessing. Notice that any
Γ̂ ⊆ E[H] that is consistent with (Q̂, F̂ , ψ̂) and contains no cycles is such that, every node a
in F̂ corresponds to a vertex ua in the graph H, and every edge ab in F̂ corresponds to a
path between ua and ub in Γ̂. Therefore, to compute the value T (Q̂, F̂ , ψ̂), the algorithm
enumerates, for every a ∈ F̂ , the vertex ua among V [H]. For every ab ∈ F̂ , it then computes
the shortest path between ua and ub in H. The union of all these shortest paths defines the
current Γ̂. The value T (Q̂, F̂ , ψ̂) is the minimum weight of all Γ̂’s during the enumeration.
The overall running time of the preprocessing is thus polynomial.

Next, the algorithm fills in the DP table in the order of the index E from bottom up
in SC. Consider a DP index (E,Q, F, ψ). Let E1 and E2 be the child clusters of E. The
algorithm enumerates every combination of (E1, Q1, F1, ψ1), (E2, Q2, F2, ψ2), and (Q̂, F̂ , ψ̂)
that are compatible with (E,Q, F, ψ), and the current weight is the sum of the three entries.
DP (E,Q, F, ψ) is assigned with the minimum weight during the enumeration.

Acknowledgements We would like to thank Howard J. Karloff for helping make the connec-
tion between correlation clustering and two-edge-connected augmentation in planar graphs;
Nabil Mustafa for numerous discussions; and Grigory Yaroslavtsev.

References

1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM, 55(5), 2008.

2 Nir Ailon and Edo Liberty. Correlation clustering revisited: The true cost of error minim-
ization problems. In International Colloquium on Automata, Languages and Programming,
pages 24–36. Springer, 2009.

3 Sharon Alpert, Meirav Galun, Ronen Basri, and Achi Brandt. Image segmentation by
probabilistic bottom-up aggregation and cue integration. In Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2007.

STACS 2015

566 Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

4 Amir Alush and Jacob Goldberger. Ensemble segmentation using efficient integer linear
programming. Pattern Analysis and Machine Intelligence, 34(10):1966–1977, 2012.

5 Amir Alush and Jacob Goldberger. Break and conquer: Efficient correlation clustering for
image segmentation. In Similarity-Based Pattern Recognition, volume 7953, pages 134–147.
Springer, 2013.

6 Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Kothe, and Fred A. Hamprecht.
Probabilistic image segmentation with closedness constraints. In International Conference
on Computer Vision, pages 2611–2618. IEEE, 2011.

7 Yoram Bachrach, Pushmeet Kohli, Vladimir Kolmogorov, and Morteza Zadimoghaddam.
Optimal coalition structure generation in cooperative graph games. In Conference on
Artificial Intelligence, 2013.

8 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1-3):89–113, 2004.

9 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Approxima-
tion schemes for Steiner forest on planar graphs and graphs of bounded treewidth. Journal
of the ACM, 58(5):21, 2011.

10 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6(3/4):281–297, 1999.

11 A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning subgraphs in planar
graphs. In International Colloquium on Automata, Languages and Programming, volume
4596, pages 90–101, 2007.

12 Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. Polynomial-time approxim-
ation schemes for subset-connectivity problems in bounded-genus graphs. Algorithmica,
68(2):287–311, 2014.

13 Glencora Borradaile and Philip N. Klein. The two-edge connectivity survivable network
problem in planar graphs. International Colloquium on Automata, Languages and Pro-
gramming, pages 485–501, 2008.

14 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log n) approximation
scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms, 5(3):31, 2009.

15 Sebastian Böcker and Jan Baumbach. Cluster editing. In Paola Bonizzoni, Vasco Brattka,
and Benedikt Löwe, editors, The Nature of Computation. Logic, Algorithms, Applications,
volume 7921, pages 33–44. Springer, 2013.

16 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005.

17 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2):172–187, 2006.

18 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica,
58(3):790–810, 2010.

19 Kapali P. Eswaran and R. Endre Tarjan. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976.

20 Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm
for augmenting edge-connectivity of a graph from 1 to 2. ACM Transactions on Algorithms,
5(2):21:1–21:17, 2009.

21 Guy Even, Guy Kortsarz, and Zeev Nutov. A 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. Information Processing Letters, 111(6):296–300,
2011.

22 Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data, 1(1), 2007.

P.N. Klein, C. Mathieu, and H. Zhou 567

23 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. In Symposium on Discrete algorithm, pages 1167–1176. ACM, 2006.

24 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network prob-
lem. Combinatorica, 21(1):39–60, 2001.

25 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. Journal
of the ACM, 41(2):214–235, 1994.

26 Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-
order correlation clustering for image segmentation. In Advances in Neural Information
Processing Systems, pages 1530–1538, 2011.

27 Philip N. Klein and Shay Mozes. Optimization algorithms for planar graphs. In preparation,
manuscript at http://planarity.org.

28 Philip N. Klein and R. Ravi. When cycles collapse: A general approximation technique
for constrained two-connectivity problems. In Integer Programming and Combinatorial
Optimization, pages 39–55, 1993.

29 Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity problems. Ap-
proximation Algorithms and Metahueristics, 2007.

30 David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. Pattern Analysis and
Machine Intelligence, 26(5):530–549, 2004.

31 Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Symposium
on Discrete Algorithms, pages 712–728, 2010.

32 Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discrete Applied Mathematics, 126(1):83 – 113, 2003.

33 R Ravi. Approximation algorithms for Steiner augmentations for two-connectivity. Tech-
nical Report CS-92-21, Department of Computer Science, Brown University, 1992.

34 Mauricio Resende and Panos Pardalos. Handbook of optimization in telecommunications.
Springer, 2008.

35 Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In Symposium on Discrete Algorithms, pages 526–527. SIAM, 2004.

36 Julian Yarkony, Alexander Ihler, and Charless C Fowlkes. Fast planar correlation clustering
for image segmentation. In European Conference on Computer Vision, volume 7577, pages
568–581. Springer, 2012.

STACS 2015

Extended Formulation Lower Bounds via
Hypergraph Coloring?∗

Stavros G. Kolliopoulos1 and Yannis Moysoglou2

1 Department of Informatics and Telecommunications, National and
Kapodistrian University of Athens
Panepistimiopolis Ilissia, Athens 157 84, Greece
sgk@di.uoa.gr

2 Department of Informatics and Telecommunications, National and
Kapodistrian University of Athens
Panepistimiopolis Ilissia, Athens 157 84, Greece
gmoys@di.uoa.gr

Abstract
Exploring the power of linear programming for combinatorial optimization problems has been
recently receiving renewed attention after a series of breakthrough impossibility results. From an
algorithmic perspective, the related questions concern whether there are compact formulations
even for problems that are known to admit polynomial-time algorithms.

We propose a framework for proving lower bounds on the size of extended formulations. We
do so by introducing a specific type of extended relaxations that we call product relaxations and
is motivated by the study of the Sherali-Adams (SA) hierarchy. Then we show that for every
approximate extended formulation of a polytope P, there is a product relaxation that has the
same size and is at least as strong. We provide a methodology for proving lower bounds on the size
of approximate product relaxations by lower bounding the chromatic number of an underlying
hypergraph, whose vertices correspond to gap-inducing vectors.

We extend the definition of product relaxations and our methodology to mixed integer sets.
However in this case we are able to show that mixed product relaxations are at least as powerful
as a special family of extended formulations. As an application of our method we show an
exponential lower bound on the size of approximate mixed product relaxations for the metric
capacitated facility location problem (Cfl), a problem which seems to be intractable for linear
programming as far as constant-gap compact formulations are concerned. Our lower bound
implies an unbounded integrality gap for Cfl at Θ(N) levels of the universal SA hierarchy which
is independent of the starting relaxation; we only require that the starting relaxation has size
2o(N), where N is the number of facilities in the instance. This proof yields the first such tradeoff
for an SA procedure that is independent of the initial relaxation.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization

Keywords and phrases linear programming, extended formulations, inapproximability, facility
location

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.568

∗ This research has been co-financed by the European Union (European Social Fund – ESF) and Greek
national funds through the Operational Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) - Research Funding Program: “Thalis. Investing in knowledge
society through the European Social Fund”.

© Stavros G. Kolliopoulos and Yannis Moysoglou;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 568–581

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.568
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. G. Kolliopoulos and Y. Moysoglou 569

1 Introduction

In the past few years there has been an increasing interest in exposing the limitations of
compact LP formulations for combinatorial optimization problems. The goal is to show a
lower bound on the size of extended formulations (EFs) for a particular problem. Extended
formulations add extra variables to the natural problem space; the increase in dimension
may yield a smaller number of facets. The minimum size over all extended formulations is
the extension complexity of the corresponding polytope. A superpolynomial lower bound
on the extension complexity is of intrinsic interest in polyhedral combinatorics and implies
that there is no polynomial-time algorithm relying purely on the solution of a compact linear
program. It does not however rule out efficient LP-based algorithms that combine algorithmic
steps of arbitrary type, such as preprocessing, primal-dual, etc., with linear programming.

In the seminal paper of Yannakakis [21] the problem of lower bounding the size of extended
formulations was considered for the first time: exponential lower bounds were proved for
symmetric extended formulations of the matching and TSP polytopes. Yannakakis [21]
identified also a crucial combinatorial parameter, the nonnegative rank of the slack matrix of
the underlying polytope P, and he showed that it equals the extension complexity of P. A
strong connection of the extension complexity of a polytope to communication complexity
was made in [21], by showing that the nonnegative rank of the slack matrix is at least the
size of its minimum rectangle cover. That connection has been exploited in several results on
the extension complexity of polytopes.

Fiorini et al. [13] lifted the symmetry condition on the result of [21] regarding the
TSP polytope, thus answering a long-standing open problem. The result was obtained by
showing that the correlation polytope has exponential extension complexity which in turn
was shown using communication complexity tools. Recently, Rothvoß [19] removed the
symmetry condition for the matching polytope as well, answering the second long-standing
open question of [21]. This was done by a breakthrough in bounding a refined version of the
rectangle covering number.

A more general question is that of the size of approximate extended formulations. This
problem was first considered in [7] where the methodology of [13] was extended to approximate
formulations and an exponential bound for the linear encoding of the n1/2−ε-approximate
clique problem was given. Subsequently, Braverman and Moitra [10] extended the former
bound to n1−ε–approximate formulations of the clique, following a new, information theoretic,
approach. Braun and Pokutta in [8] further strengthened the lower bounds by introducing
the notion of common information. Very recently, Braun and Pokutta [9] extended the result
of [19] to approximate formulations of the matching polytope by combining ideas of the
latter with the notion of common information.

In [11] it was proved that in terms of approximating maximum constraint satisfaction
problems, LPs of size O(nk) are exactly as powerful as O(k)-level relaxations in the Sherali-
Adams hierarchy. Their proof differs from previous work in showing that polynomials of low
degree can approximate the functional version of the factorization theorem of [21].

The metric capacitated facility location problem (Cfl) is a well-studied problem for
which, while constant-factor approximations are known [6, 2], no efficient LP relaxation with
constant integrality gap is known. An instance I of Cfl is defined as follows. We are given
a set F of facilities and a set C of clients, with each facility i having a capacity Ui and
each client j having a demand dj > 0. We may open facility i by paying its opening cost
fi and we may assign demand from client j to facility i by paying the connection cost cij
per unit of demand. The latter costs satisfy the following variant of the triangle inequality:

STACS 2015

570 Extended Formulation Lower Bounds via Hypergraph Coloring?

cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ F and j, j′ ∈ C. We are asked to open a subset F ′ ⊆ F
of the facilities and assign all the client demand to the open facilities while respecting the
capacities. The goal is to minimize the total opening and connection cost. The question
whether an efficient relaxation exists for Cfl is among the most important open problems
in approximation algorithms [20]. In a recent breakthrough, the first O(1)-factor LP-based
algorithm for Cfl was given in [4]. The proposed relaxation is, however, exponential in size
and, according to the authors of [4], not known to be separable in polynomial time. To our
knowledge, there has not been a compact EF for approximate Cfl achieving even an o(|F |)
gap.

In previous work [17, 18], we proved among other results for Cfl, unbounded integrality
gaps for the Sherali-Adams hierarchy when starting from the natural LP relaxation. We also
disqualified, with respect to obtaining a O(1) gap, valid inequalities from the literature such
as the flow-cover inequalities and their generalizations.

1.1 Our contribution
In this paper we propose a new approach for proving lower bounds on the size of approximate
extended formulations. Our contribution is summarized by the following.

First we introduce a family of extended relaxations of a given polytope which we call
product relaxations. The product relaxations are inspired by the study of the Sherali-Adams
hierarchy. Given a polytope K ⊆ [0, 1]d that corresponds to a linear relaxation of the problem
at hand, the Sherali-Adams relaxation SAt(K) at level t is produced by a lift-and-project
method, where initially every constraint in the description of K is multiplied with all t-subsets
of variables and their complements. The resulting products of variables are then linearized,
i.e., each replaced by a single variable, and finally one projects back to the original variable
space of K. The variable space of the product relaxations is exactly the space of the final
d-level Sherali-Adams relaxation, after linearization and before projection. The variables
have the intuitive meaning of corresponding to products over sets of variables from the
original space – the "intuitive meaning" of a variable is made precise through the notion of
the section f of an extended relaxation Q(x, y) of a polytope P (x). This is a function f that
maps an integer point x ∈ P (x) to a vector of values (x, y) = f(x) such that f(x) ∈ Q(x, y).
(See Section 2 for the necessary definitions).

We prove in Theorem 3 that for any ρ-approximate extended formulation of a 0-1 polytope
there is a product relaxation of the same size that is at least as strong. The proof is short
and accessible. Theorem 3 reduces lower bounding the size of an extended formulation,
which uses some unknown space and encoding, of a polytope P, to lower bounding the size
of product relaxations of P. In the product space we have the concrete advantage of knowing
the section of the target relaxation. We extend the definition of product relaxations and our
methodology to mixed integer sets. However in this case we are able to show that mixed
product relaxations are at least as powerful as a special family of extended formulations (cf.
Theorem 5).

We note that our approach does not rely on the notion of the slack matrix introduced by
Yannakakis [21]. It differs from that of [11] in which the slack functions of the factorization
theorem [21] were shown to be approximable, for max CSPs, by low-degree polynomials and
thus SA gaps are transferred to general linear programs.

Then we use a methodology for proving lower bounds for relaxations for which the section
is known and in particular for product relaxations. Similar arguments have been used in
the context of bounding the number of facets of specific polyhedra, but prior to our work,
they seemed inapplicable for lower bounding the size of arbitrary EFs which lift the polytope

S. G. Kolliopoulos and Y. Moysoglou 571

in arbitrary variable spaces. The method is the following: first define a set of vectors in
the space of the relaxation such that for each one of those vectors there is an admissible
objective function witnessing an integrality gap of ρ. We call that set of vectors the core.
Then show that, for any partition of the core into fewer than κ parts, there must be some
part containing a set of conflicting vectors. A set of infeasible vectors is conflicting if its
convex hull has nonempty intersection with the convex hull of {f(x) | x ∈ P (x) ∩ {0, 1}n},
which is always included in the feasible region of a product relaxation – here f(x) is the
section we associate with product relaxations. Thus, we get that at least κ inequalities are
needed to separate the members of the core from the feasible region and so κ is a lower bound
on the size of any ρ-approximate product relaxation. By considering the hypergraph whose
set of vertices corresponds to the aforementioned set of vectors and whose set of hyperedges
corresponds to the sets of conflicting vectors, the chromatic number of the hypergraph is
a lower bound on the size of every ρ-approximate extended formulation (cf. Theorem 8).
Moreover, there is always a core such that the chromatic number of the resulting, possibly
infinite, hypergraph equals the extension complexity of the polytope at hand. Thus the
characterization of extension complexity in Theorem 8 can be seen as an alternative to
the nonnegative rank of the slack matrix. The conflicting vectors are fractional solutions,
which are hard to separate from the integer solutions. The method comes closer to standard
LP/SDP integrality gap arguments than the existing combinatorial approaches for lower
bounding extension complexity.

When arguing about the polyhedral complexity of a specific polytope, i.e., the minimum
size of its formulation in the original variable space, the above method can always be simplified
to finding a set of gap–inducing vectors with the property that (almost) any pair of them are
conflicting. The underlying hypergraph reduces then to a simple graph that is very dense,
almost a clique, and thus has high chromatic number. We used this idea in a preliminary
version of this work [16] to derive exponential bounds on the polyhedral complexity of
approximate metric capacitated facility location, where only the classic variables are used
(cf. Corollary 14). A similar idea was independently used by Kaibel and Weltge in [15] to
derive lower bounds on the number of facets of a polyhedron which contains a given integer
set X and whose set of integer points is conv(X) ∩ Zd.

We exhibit a concrete application of our methodology by proving in Theorem 12 an
exponential lower bound on the size of any O(N)-approximate mixed product relaxation
for the Cfl polytope, where N is the number of facilities in the instance. This result can
be shown to imply (cf. Theorem 13) that the Ω(N)-level SA relaxation for Cfl, which
is obtained from any starting LP of size 2o(N) defined on the classic set of variables, has
unbounded gap Ω(N). Note, that it is well-known that by lifting only the facility variables,
at N levels the integer polytope is obtained for Cfl [5]. This settles the open question of
[3] whether there are LP relaxations upon which the application of lift-and-project methods
captures the strength of preprocessing steps for Cfl. Our result establishes for the first time
such a tradeoff for a universal SA procedure that is independent of the starting relaxation
K. The proof follows the methodology outlined above and is different from the standard
arguments that apply only to the SA lifting of a specific LP. Our earlier SA construction
in [18] applied the local-global method [12] that constructs an appropriate distribution of
solutions for each explicit constraint of the starting LP.

We leave as an open problem the extension of the equivalence between product and
extended relaxations from 0-1 programs to mixed integer sets. We also believe that it would
be of interest to revisit known extension-complexity lower bounds using our method, so as to
obtain simpler proofs.

STACS 2015

572 Extended Formulation Lower Bounds via Hypergraph Coloring?

2 Preliminaries

X ⊆ Rd, is a mixed integer set if there is p ∈ {1, . . . , d − 1} such that d = n + p and
X ⊆ {0, 1}n × [0, 1]p. A valid relaxation of the mixed integer set X is any polyhedron P such
that conv(X) ⊆ P . Given a valid relaxation P of X, such that conv(X)∩ ({0, 1}n× [0, 1]p) =
P ∩ ({0, 1}n × [0, 1]p), the level k Sherali-Adams (SA) procedure, k ≥ 1, is as follows [1].
Let P be defined by the linear constraints Ax− b ≤ 0. For every constraint π(x) ≤ 0 of P ,
for every set of variables U ⊆ {xi | i = 1, . . . , n} such that |U | ≤ k, and for every W ⊆ U ,
consider the lifted valid constraint: π(x)

∏
xi∈U−W xi

∏
xi∈W (1 − xi) ≤ 0. Linearize the

system obtained this way by replacing (i) x2
i with xi for all i (ii)

∏
xi∈I⊆[n] xi with xI and (iii)

xk
∏
xi∈I⊆[n] xi, where k ∈ {n+ 1, . . . , d} with vIk. SAk(P) is the projection of the resulting

linear system onto the original variables {x1, . . . , xd}.We call SAk(P) the relaxation obtained
from P at level k of the SA hierarchy. It is well-known that SAn(P) = conv(X) (see, e.g.,
[5]). If X is a 0-1 set, i.e., X ⊆ {0, 1}d, the above definitions hold mutatis mutandis and
SAd(P) = conv(X).

Given a polyhedron K(x, y) = {(x, y) ∈ Rd ×Rdy | Ax+By ≤ b} the projection to the x-
space is defined as {x ∈ Rd | ∃y ∈ Rdy : Ax+By ≤ b}, denoted as projx(K(x, y)). An extended
formulation (relaxation) of a polyhedron P (x) ⊆ Rd is a linear system K(x, y) = {(x, y) ∈
Rd × Rdy | Ax + By ≤ b} such that projx(K(x, y)) = P (x) (projx(K(x, y)) ⊇ P (x)). The
size of a polyhedron P (x) is the minimum number of inequalities in its halfspace description.
The extension complexity of P (x) is the minimum size of an extended formulation of P (x).

We define now ρ-approximate formulations as in [7]. Given a combinatorial optimization
problem T , a linear encoding of T is a pair (L,O) where L ⊆ {0, 1}∗ is the set of feasible
solutions to the problem and O ⊂ R∗ is the set of admissible objective functions. An instance
of the linear encoding is a pair (d,w) where d is a positive integer defining the dimension of
the instance and w ⊆ O∩Rd is the set of admissible cost functions for instances of dimension
d. Solving the instance (d,w) means finding x ∈ L∩{0, 1}d such that wTx is either maximum
or minimum, according to the type of problem T. Let P = conv({x ∈ {0, 1}d | x ∈ L}) be the
corresponding 0-1 polytope of dimension d. Given a linear encoding (L,O) of a maximization
problem, the corresponding polytope P, and ρ ≥ 1, a ρ-approximate extended formulation of
P is an extended relaxation Ax+By ≤ b of P with x ∈ Rd, y ∈ Rdy such that

max{wTx | Ax+By ≤ b} ≥max{wTx | x ∈ P} for all w ∈ Rd and
max{wTx | Ax+By ≤ b} ≤ρmax{wTx | x ∈ P} for all w ∈ O ∩ Rd.

For a minimization problem, we require

min{wTx | Ax+By ≤ b} ≤min{wTx | x ∈ P} for all w ∈ Rd and
min{wTx | Ax+By ≤ b} ≥ρ−1 min{wTx | x ∈ P} for all w ∈ O ∩ Rd.

The ρ-approximate extension complexity of 0-1 integer polytope P (x) ⊆ [0, 1]d is the
minimum size of a ρ-approximate extended formulation of P. Given an extended formulation
Q(x, y) of P (x), a section of Q is defined as a vector-valued boolean function g(x) : {0, 1}d →
Rd+dy such that for x ∈ P (x)∩{0, 1}d, g(x) belongs toQ(x, y) and projx(g(x)) = x. Intuitively,
the section extends the encoding of solutions to the auxiliary variables y. Clearly, if a particular
extended formulation Q has been specified a priori, different such functions can be defined
by filling in the last dy coordinates of g(xo) with a value from {y ∈ Rdy | Axo +By ≤ b}.

I Definition 1. Given a 0-1 integer polytope P (x) ⊆ [0, 1]d, a product relaxation D(z) of
P (x) is an extended relaxation D(z) of P (x), where z ∈ R2d−1 and for every nonempty

S. G. Kolliopoulos and Y. Moysoglou 573

subset E ⊆ {x1, x2, . . . , xd} of the original variables, we have a variable zE , (where z{xi}
denotes xi, i = 1, . . . , d), and there is a section f(x) of D s.t. the corresponding coordinate
of f at E is fE(x) =

∏
xi∈E xi. We refer to this function f as the product section.

Let f denote the product section. Define the canonical product relaxation of P as
D̂ = conv{f(x) | x ∈ P (x)∩{0, 1}dx}. The polytope D̂ corresponds to the “tightest” possible
product relaxation.

For a mixed integer set M(x,w) ⊆ {0, 1}dx × Rdw the corresponding mixed integer
polytope P (x,w) is conv(M(x,w)). In case one starts from a mixed integer polytope, the
additional z variables of the product relaxation correspond to sets that contain at most
one fractional variable. Including only one fractional variable in each product, mimics the
variable space of the final-level SA relaxation.

I Definition 2. Let P (x,w) ⊆ [0, 1]dx × Rdw be a mixed integer polytope. A mixed product
relaxation D(z) of P (x,w) is an extended relaxation D(z) of P (x,w), where z ∈ R(dw+1)2dx−1,
with z{wj} = wj , j = 1, . . . , dw, and
(i) for every set ∅ 6= E ⊆ {x1, x2, . . . , xdx

} we define dw + 1 variables: one that we denote zE
and, for each fractional variable wj , j = 1, . . . , dw, one that we denote zEwj . Moreover z{xi}
denotes xi, i = 1, . . . , dx.
(ii) there is a section f(x,w) of D s.t. the corresponding coordinates of f are fE(x,w) =
(
∏
xi∈E xi) and, for each variable wj , j = 1, . . . , dw, fEwj

(x,w) = (
∏
xi∈E xi) · wj . We refer

to this function f as the mixed product section.

The canonical product relaxation of P (x,w) is similarly defined as D̂ = conv{f(x,w) |
(x,w) ∈ P (x,w) ∩

(
{0, 1}dx × Rdw

)
}.

Note that the lifted polytope produced by the d-level (dx-level) Sherali-Adams procedure
applied on some specific linear relaxation of the 0-1 polytope P (x) (mixed integer P (x,w)),
after linearization and before projection to the original variables, is a (mixed) product
relaxation.

3 The expressive power of product relaxations

In this section we show the following. For every 0-1 polytope P (x) and every (approximate)
extended formulation Q(x, y) = {(x, y) ∈ Rdx × Rdy | Ax + By ≤ b} of P (x) there is a
product relaxation T [Q(x, y)] whose size is at most that of Q(x, y) and is at least as strong.

A substitution T is a linear map of the form y = Tz where T is a dy × (2dx − 1) matrix
and z is a 2dx − 1 dimensional vector having a coordinate zE for each nonempty set E of the
form {xi | i ∈ S ⊆ 2{1,...,dx}}. For any substitution T, the translation of Q(x, y), denoted
T [Q(x, y)], the formulation resulting by substituting T(i)z, for yi, i = 1, ..., dy. Here T(i)
denotes the ith row of T. If in addition T [Q(x, y)] is a product relaxation of P (x) we say that
it is a translation of Q to product relaxations (recall that the original variables xi coincide
with the variables z{xi}). Observe that the number of inequalities of T [Q(x, y)] is the same
as in Q(x, y). The translation may heighten exponentially the dimension, but since our
methodology will give lower bounds on the size of the product relaxations those bounds
apply to the size of Q(x, y) as well.

I Theorem 3. Given a 0-1 polytope P (x) ⊆ [0, 1]dx , for every polytope Q(x, y) such that
P (x) ⊆ projx(Q(x, y)) there is a translation T [Q(x, y)] to product relaxations such that
P (x) ⊆ projx(T [Q(x, y)]) ⊆ projx(Q(x, y)).

STACS 2015

574 Extended Formulation Lower Bounds via Hypergraph Coloring?

Proof. We shall give a substitution T for the variables y ∈ Rdy of Q(x, y) so that the theorem
holds. Let g(x) be a section of Q(x, y) (recall that a section associates every feasible 0-1
vector x of P (x) to a specific y such that (x, y) ∈ Q(x, y)).

Observe that the coordinates of the product section plus the constant 1 correspond exactly
to the monomials of the Fourier basis. We denote by (p, 1) ∈ Rn+1 the vector resulting from
p ∈ Rn by appending the scalar 1 as an extra coordinate. By basic functional analysis (see,
e.g., [14]), there is a dy × 2dx matrix A such that

g(x) = A · (f(x), 1) (1)

We define the substitution T by linearizing the above equation; we replace the sections g
and f with the corresponding variable vectors y and z (recall z is the product vector) to
obtain:

y = A · (z, 1).

Obviously projx(T [Q(x, y)]) ⊆ projx(Q(x, y)): from any feasible solution (x0, z0) of
T [Q(x, y)] we can derive a feasible solution (x0, y0) of Q(x, y) by setting y0 equal to Az0.

We will now show that P (x) ⊆ projx(T [Q(x, y)]). It suffices to show that for every
x′ ∈ P (x)∩ {0, 1}dx the vector f(x′) is feasible for T [Q(x, y)] as required by the definition of
product relaxations. Observe that by letting the z vector take the values f(x′), by (1) we get
that the quantities involved in the inequalities of T [Q(x, y)] are the exact same quantities
involved in the corresponding inequalities of Q(x, y) for g(x′). But by the definition of section,
g(x′) is feasible for Q(x, y) and thus f(x′) is feasible for T [Q(x, y)].

J

I Corollary 4. A lower bound b on the size of any product relaxation D which is a ρ-
approximate extended formulation of the 0-1 polytope P (x), for ρ ≥ 1, implies a lower bound
b on the size of any ρ-approximate extended formulation Q(x, y) of P (x).

Let P (x,w) be a mixed integer polytope. The notion of the section of P for some extended
relaxation Q(x,w, y) of P is more challenging. Intuitively, the solutions are characterized by
two parts – a boolean part of the 0− 1 assignments on the integer variables x and a "linear"
part of the real variables w in the following sense: once the boolean part (the "hard" one) is
fixed, the linear part can be obtained as the feasible region of a (usually small) system of
inequalities, possibly empty.

Motivated by the above we define the following type of sections for an extended formulation
Q(x,w, y) of a mixed-integer polytope. A mixed-linear section of EF Q is a section g for
which at variable yi the value gi(x′, w) for a given integer vector x′ is an affine function on
w denoted gx′i (w). If there is such a mixed-linear section for Q(x,w, z), we say that Q is an
extended formulation with a mixed linear section. An example of EFs with a mixed linear
section are formulations arising from the SA procedure where y is the vector of the new
variables corresponding to the linearized products. The following theorem can be proved
similarly to Theorem 3.

I Theorem 5. Given a mixed integer polytope P (x,w) ⊆ [0, 1]dx ×Rdw , for every ρ-approxi-
mate, ρ ≥ 1, extended formulation Q(x,w, y) with a mixed linear section, there is a translation
T [Q(x,w, y)] to mixed product relaxations such that

P (x,w) ⊆ projx,w(T [Q(x,w, y)]) ⊆ projx,w(Q(x,w, y)).

S. G. Kolliopoulos and Y. Moysoglou 575

Proof. Let the dimension of P (x,w) be d = dx + dw. We shall give for the variables y ∈ Rdy

of Q(x,w, y) a substitution T so that the theorem holds.
Consider a variable yi and the corresponding coordinate of the mixed linear section,

gx
′

i (w) =
∑
j b
x′

i wj + cx′ for each x′ ∈ {0, 1}dx and i = 1, . . . , dy.
First, we will prove a helpful claim which states a fact from elementary Fourier analysis

in our setting. For x, s ∈ projx
(
P (x,w) ∩ ({0, 1}dx × Rdw)

)
, define the boolean indicator

operator χs(x) to be 1 when s = x and 0 otherwise. First, we will show that this operator
can be expressed as a linear combination of the product sections constrained to monomials
with only boolean variables. In other words, we determine coefficients asE , E ⊆ {x1, . . . , xdx},
such that χs(x) =

∑
E a

s
EfE(x). The translation of the indicator operator is(x) of an integer

solution s is a linear expression of the form Tis =
∑
asEP [E](x). We shall iteratively generate

the coefficients asE . The only nonzero coefficients will be those corresponding to sets of
variables that are supersets of the set of variables being 1 in s – let that set be Es1 . We give
the construction iteratively starting from |Es1 | to dx, defining in step k the coefficients of such
sets of size k.

In the first iteration simply set aEs
1

= 1. At step k > |Es1 |, for each set E ′ of size k that is
a superset of Es1 , set asE′ = −

∑
E⊂E′ a

s
E . This concludes the definition of the coefficients.

I Claim 3.1. For each integer solution s′ ∈ projx
(
P (x,w) ∩ ({0, 1}dx × Rdw)

)
, χs(s′) =∑

E a
s
EfE(s′).

Proof of the claim. By overloading the notation, we denote by s both the integer solution
and the support of that integer solution, that is the set {xi | si = 1}. If s′ ⊇ s then the
nonzero terms of the sum

∑
E a

s
EfE(s′) are exactly those that correspond to sets E such

that s ⊆ E ⊆ s′. We have that
∑
E a

s
EfE(s′) =

∑
E⊆s′ a

s
E which, by the construction of the

coefficients, is 1 if s = s′ and 0 if s′ ⊃ s, as required. Otherwise, if s− s′ 6= ∅, then all the
fE(s′) with nonzero coefficients are 0, so

∑
E a

s
EfE(s′) = 0.

By Claim 3.1 we have that for an integer vector s ∈ {0, 1}dx the indicator operator χs(x)
is equal to

∑
E⊆{x1,...,xdx}

asEfE(x). For each set of integer variables E and each fractional
variable wj let zEwj denote the corresponding mixed product variable and fEwj (x,w) the
corresponding coordinate of the mixed product section. It is now easy to show the following.

I Claim 3.2. For each mixed integer solution (x′, w′), and for i = 1, . . . , dy,
gx
′

i (w′) =
∑
j

∑
E a

s
Eb
x′

i fEwj
(x′, w′) +

∑
E a

s
Ecx′fE(x′).

To conclude the definition of T , set

yi =
∑
x′

∑
j

∑
E
asEb

i
x′zEwj +

∑
x′

∑
E
asEcx′zE , i = 1, . . . , dy.

which implies

yi =
∑
x′

∑
E
asE(
∑
j

bix′zEwj + cx′zE), i = 1, . . . , dy

By Claim 3.2, using arguments similar to the ones in the proof of Theorem 3, it follows that
that P (x,w) ⊆ projx,w(T [Q(x,w, y)]) ⊆ projx,w(Q(x,w, y)). J

I Corollary 6. A lower bound b on the size of any mixed product relaxation D which is a
ρ-approximate extended formulation of the 0-1 mixed integer polytope P (x,w) implies a lower
bound b on the size of any ρ-approximate extended formulation Q(x,w, y) of P (x,w) with a
mixed linear section.

STACS 2015

576 Extended Formulation Lower Bounds via Hypergraph Coloring?

4 A method for lower bounding the size of LPs with known sections

Here we present a methodology to lower bound the size of relaxations that achieve a desired
integrality gap. For simplicity we do not deal in this section with mixed integer sets.

Our method can be summarized as follows. Let G(z) ⊆ [0, 1]d be a 0-1 polytope. We
design a family I of instances parameterized by the dimension d. For each instance I ∈ I
of dimension d we define a set of points CI ⊆ [0, 1]d \G(z) which we call the core of I with
respect to G. Note that the points of the core must be infeasible for G. To prove a lower
bound r(n) on the size of G it suffices to show that at least that many inequalities are needed
to separate CI from G. Additionally, for a minimization problem with O being the set of
admissible objective functions, if for some z ∈ CI there is an admissible cost function wz
such that wTz z < ρ−1OptI,wz

, 0 < ρ ≤ 1, where OptI,wz
is the cost of the optimal integer

solution with respect to wz, we call z ρ-gap inducing wrt O. If we design the core so that all
its members are ρ-gap inducing, the lower bound will hold for ρ-approximate formulations.

To define constructively the core for a specific family of extended formulations of a
polytope P the sections of the variables z must be known. This requirement is fulfilled by
the product relaxations we will focus on. By Theorem 3 above, proving a lower bound on
the size for an arbitrary extended relaxation Q(x, y) of a polytope P (x) can be reduced to
a proof of the same bound on the size of a corresponding product relaxation D(z). The
following meta-theorem shows that such a proof can always be obtained by proving the
existence of a suitable core for the product relaxation. Recall the definition of the “tightest”
product relaxation of P (x), D̂, in Section 2. We say that a set of vectors s ⊆ [0, 1]d \ D̂ is
conflicting if conv(s) ∩ D̂ 6= ∅. Any single valid inequality of D̂ cannot separate all points of
a conflicting set. Given a set Od ⊆ Rd of admissible objective functions associated with a 0-1
polytope P (x) ⊆ [0, 1]d, we define Õd ⊆ R2d−1, to contain the vectors in Od extended with
zeroes in the coordinates corresponding to the non-singleton product variables.

I Theorem 7. Given a 0-1 polytope P (x) ⊆ [0, 1]d, and an associated set of admissible
objective functions Od ⊆ Rd, the ρ-approximate extension complexity, ρ ≥ 1, of P (x) is at
least r(n), iff there exists a family of instances I(n) and, for every I ∈ I, a core CI wrt D̂,
which consists of ρ-gap inducing vectors wrt Õd, with the following property: for any partition
of CI into less than r(n) parts there must be a part containing a set of conflicting vectors.

Proof. Assume first that the ρ-approximate extension complexity is at least r(n). Define CI
to be the set of all ρ-gap inducing product vectors. If we can partition CI into less than r(n)
parts so that there is no conflicting subset s in any part, then we can define an inequality for
each part of the partition that separates the vectors of at least that part from D̂. But we
know that less than r(n) inequalities cannot separate all the ρ-gap inducing product vectors.
Thus we have that for any decomposition of those vectors into less than r(n) parts there
must be a part containing a set of conflicting vectors.

Conversely, assume we can find a core CI wrt D̂ consisting of ρ-gap inducing vectors such
that for any partition of CI into less than r(n) sets there must be a part containing a set
of conflicting vectors. Then the size of D̂ is at least r(n). If not, there is a decomposition
into less than r(n) parts where each part consists of the core members separated by each
inequality – in case a member is separated by more than one inequality, we arbitrarily include
it into just one of the resulting parts. Observe that CI is not only a core wrt D̂ but also is a
core wrt any ρ-approximate product relaxation of P. By Theorem 3, the lower bound r(n)
applies to the size of any ρ-approximate extended formulation of P. J

Let H(CI) be the, possibly infinite, hypergraph with vertices the members of CI and

S. G. Kolliopoulos and Y. Moysoglou 577

hyperedges the conflicting subsets of CI . Theorem 7 can be restated more conveniently:

I Theorem 8. Given a 0-1 polytope P (x) ⊆ [0, 1]d, and an associated set of admissible
objective functions Od ⊆ Rd, the ρ-approximate extension complexity, ρ ≥ 1, of P (x) is at
least r(n), iff there exists a family of instances I(n) and, for every I ∈ I, a core CI wrt D̂,
which consists of ρ-gap inducing vectors wrt Õd, such that H(CI) has chromatic number r(n).

Theorem 7 suggests that the best possible lower bound on the extension complexity can
always be achieved by proving the existence of an appropriate core in the product space. In
the applications in this paper we implement a version of the method that imposes stronger
requirements on the decomposition, namely the constructed hypergraph will be a clique.

5 Lower bounds for approximate mixed product relaxations for Cfl

For Cfl, the linear encoding NCfl = (L,O) is defined as follows. For a Cfl instance, given
the number n of facilities, the number m of clients, the capacities K ∈ Rn+ and the demands
D ∈ Rm+ , we use the classic variables yi, i = 1, . . . , n, xij , i = 1, . . . , n, j = 1, . . . ,m with
the usual meaning of facility opening and client assignment respectively. The set of feasible
solutions (y, x) is defined in the obvious manner. Thus for dimension d = n+nm, L∩{0, 1}d
is completely determined by the quadruple (n,m,K,D). The set of admissible objective
functions O ∩ Rn+nm is the set of pairs (f , c) where f ∈ Rn+ are the facility opening costs
and c = [cij] ∈ Rnm+ are connection costs that satisfy cij ≤ ci′j + ci′j′ + cij′ .

The capacitated facility location problem with general capacities and demands is a mixed
integer optimization problem where the facilities are opened integrally but the clients are
allowed to be assigned fractionally to the set of opened facilities. In this section, we show an
exponential lower bound on the size of any mixed product relaxation of the Cfl polytope.

In our proof we will consider a parameterized instance I = I(3n,m,U, d) with uniform
capacities U and uniform unit demands d = 1, where 3n is the number of facilities, and m the
number of clients. Furthermore we will have that the number of clients is m = n4 + 1 and the
capacities and demands are such that (n4 + 1)−nU = 2−n2 . Observe that n3 < U < (n3 + 1).
In order to define the core CI of the instance I we first describe a random experiment based
on whose outcome we will later define the members of the core. Given disjoint sets k, l ⊆ F
of size n each, the random experiment defines a distribution Dk,l over mixed integer vectors
in the classic encoding. These vectors correspond in general to pseudo-solutions. The follow-
ing experiment defines the distribution Dk,l. The quantities x̄ij are defined in Lemma 9 below.

Random Experiment
Facilities in k are always opened.
Case 1. With probability 1− 20

n2(1+1/n) all facilities in F − l are opened and those of l are
closed. Distribute evenly the client demand to facilities in k. Note that this outcome of the
experiment does not respect the capacities.
Case 2. Otherwise, i.e., with probability 20

n2(1+1/n) , pick at random a subset q of the facilities
in F − k with at least one facility from l and open them. Assign randomly demand to each

facility i in q∩ l so that i takes
∑

j
x̄ij

10/n2 units and the rest of the demand is equally distributed
to the facilities in k.

I Lemma 9. The expected vector (ȳ, x̄) wrt Dk,l is the following: ȳi = 1 for i ∈ k, ȳi =
1 − 10

n2(1+1/n) for i ∈ F − k − l, ȳi = 20(2n−1)
n2(1+1/n)(2n−1) for i ∈ l. For all j ∈ C, x̄ij = 1−n−2

|k|

for i ∈ k, x̄ij = 0 for i ∈ F − {k ∪ l}, x̄ij = n−2

|l| for i ∈ l.

STACS 2015

578 Extended Formulation Lower Bounds via Hypergraph Coloring?

The distribution Dk,l will be subsequently used to define the members of the core CI . Let
E be a subset of integer variables in the original space, i.e., E ⊆ {y1, . . . , y3n}. We denote
by EDk,l

[E] the expectation of the event where all the variables in E have value 1, i.e., the
expectation of the product

∏
yik
∈E yik . Similarly, we denote EDk,l

[Exij] the expectation of the
product (

∏
yik
∈E yik) · xij . Let χ(case1), χ(case2) be the 0-1 random variables that indicate

whether Case 1 and Case 2 occur, respectively. We denote by EDk,l
[E ∩case1] the expectation

of the product (
∏
yik
∈E yik) · χ(case1) and by EDk,l

[Exij ∩ case1] the expectation of the
product (

∏
yik
∈E yik) · xij · χ(case1). Similarly for Case 2. Intuitively, EDk,l

[Exij ∩ case1] is
the "mass" that Dk,l assigns to xij over all outcomes of case 1 where the variables of E have
value 1.

To simplify notation, we use z(i) instead of zi to refer to a coordinate of vector z indexed
by i. From now on, P denotes the Cfl polytope and D̂ its canonical product relaxation.

I Definition 10. Fix a set k ⊂ F of size n. The core CI of the instance I(3n, n4 + 1, U, 1)
wrt D̂ is the following set of product vectors: ∀l ⊂ F with |l| = n and k∩ l = ∅ and for every
set E of integer variables and for every fractional variable xij we define zk,l(E) = EDk,l

[E]
and zk,l(Exij) = EDk,l

[Exij].

Now we are ready to state the key Lemma 11 from which our main theorem will be
derived. The proof of the lemma is quite technical and is deferred to the full version. A
sketch is presented in Section 6.

I Lemma 11. For any two zk,l, zk,l′ ∈ CI such that l−l′ 6= ∅ there is some z ∈ conv(zk,l, zk,l′)
which is feasible for D̂.

I Theorem 12. Given the family of Cfl instances I(3n, n4 + 1, U, 1), each member of CI
is Ω(n)-gap inducing and χ(H(CI)) = 2Ω(n). Therefore, there is a constant c > 0, s.t. any
cN -approximate EF for Cfl with a mixed linear section has size 2Ω(N), where N is the
number of facilities.

Proof. Since we proved in Lemma 11 that any two members of the core CI form a conflicting
set, H(CI) is a clique and thus its chromatic number is |CI | =

(2n
n

)
= 2Θ(n). For each member

of the core zk,l there is an admissible cost function wk,l inducing Θ(n) gap: facilities in l
have unit opening costs and every other facility has 0 opening cost. The facilities in k ∪ l
and all the clients are co-located, and the rest of the facilities are co-located at distance 2n2

from the former. Observe that each feasible mixed integer solution has a cost of at least 1
since either some facility in l must be opened integrally or at least 2−n2 client demand has
to be assigned to some facility in F − k − l. On the other hand the cost of zk,l wrt wk,l is
Θ(n−1) since the (y, x) projection of zk,l is the expected vector (ȳ, x̄) of Dk,l. J

For every instance I of Cfl it is easy to see that there is an exact mixed product
relaxation of size 2Np where p is polynomial in the size of the instance. The idea is to define
a formulation for each choice of the opened facilities and then take the convex hull of those
polytopes.

I Observation 5.1. There is an exact mixed product relaxation of the Cfl polytope of size
2Np, where p = Θ(mN), N and m being the number of facilities and clients respectively.

I Theorem 13. Let P be any linear relaxation of the Cfl polytope for the family of instances
I(3n, n4 + 1, U, 1) that uses the encoding NCfl and has size 2o(n). There is a constant c > 0,
such that for all t ≤ cn, the integrality gap of SAt(P) is Ω(n).

S. G. Kolliopoulos and Y. Moysoglou 579

Proof. Observe that for every level of SA there is a suitable projection of CI that yields
a legal core with respect to the product variables used in that level. Therefore, the lower
bound on the size implied by Theorem 12 holds at all levels. The number of the inequalities
of the t-level SA relaxation after the lifting and linearization stages, and before projection,
obtained from any starting relaxation P of size r is less than r

(
n
t

)
2t. By choosing t ≤ cn,

with c sufficiently small, we obtain that r
(
n
t

)
2t ≤ r2δn for a small δ > 0. By Theorem 12 we

get that for this value of t, the integrality gap on the given family of instances is Ω(n). This
is asymptotically tight since SA is known to produce an exact formulation after 3n levels J

We obtain as a direct consequence a lower bound on the size of formulations that use
only the classic variables yi, xij .

I Corollary 14. Let P be any linear relaxation of the Cfl polytope that uses the encoding
NCfl and has integrality gap o(N), N being the number of facilities. Then P has size 2Ω(N).

6 Proof sketch for Lemma 11

In the first part of the proof we will show that by exchanging some measure of some
components of the two product vectors zk,l, zk,l′ of the core, we can construct two new
product vectors z∗k,l, z∗k,l′ each of which is feasible for D̂. Consider the two sets of facilities
l − l′ and l′ − l. Clearly |l − l′| = |l′ − l| > 0, since l 6= l′ and |l| = |l′| = n. We construct a
product vector z∗k,l based on zk,l and making some alterations and, symmetrically, a product
vector z∗k,l′ based on zk,l′ . We give below the construction of z∗k,l.

Construction of z∗k,l
For any set E containing only facilities from F − l′ with at least one from l− l′: z∗k,l(E) =

zk,l(E)+EDk,l′ [E∩case1] (Similarly, for any i, j, z∗k,l(Exij) = zk,l(Exij)+EDk,l′ [Exij∩case1]).
In the case set E contains only facilities from F−l with at least one from l′−l we have z∗k,l(E) =
zk,l(E)−EDk,l

[E ∩ case1]. (Similarly, for any i, j, z∗k,l(Exij) = zk,l(Exij)−EDk,l
[Exij ∩ case1]

). In any other case and for any i, j let z∗k,l(E) = zk,l(E) and z∗k,l(Exij) = zk,l(Exij).
Next we show, and this is by far the most complicated part of the proof, that the

constructed z∗k,l and z∗k,l′ are indeed the expected vectors of distributions D∗k,l and D∗k,l′ ,
respectively, over feasible mixed integer product solutions. In the last step of the proof we
show the following, which is an easy consequence of the construction of z∗k,l and z∗k,l′ .
I Claim 6.1. 1/2(z∗k,l + z∗k,l′) ∈ conv(zk,l, zk,l′).

7 Discussion

In the proof of our result for Cfl we provided a core whose underlying hypergraph is actually
a graph and moreover a clique. For other problems, especially for 0-1 polytopes, we believe
that the power of general hypergraphs needs to be exploited, if one wishes to derive a tight
bound on the extension complexity. Observe that our methodology requires only the existence
of a suitable core, and thus, one could possibly employ probabilistic arguments to prove the
existence of suitable hypergraphs of high chromatic number.

In the case of mixed integer polytopes, we believe that the mixed product relaxations
can be shown to be strong enough to simulate any extended formulation, as is the case for
product relaxations and 0-1 polytopes.

Acknowledgements We thank the anonymous reviewers of an earlier version for valuable
comments.

STACS 2015

580 Extended Formulation Lower Bounds via Hypergraph Coloring?

References
1 Warren P. Adams and Hanif D. Sherali. Linearization strategies for a class of zero-one

mixed integer programming problems. Oper. Res., 38(2):217–226, April 1990.
2 Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham

Gupta, and Surabhi Jain. A 3-approximation algorithm for the facility location problem
with uniform capacities. Math. Program., 141(1-2):527–547, 2013.

3 Hyung-Chan An, Aditya Bhaskara, and Ola Svensson. Centrality of trees for capacitated
k-center. CoRR, abs/1304.2983, 2013.

4 Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated
facility location. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 256–265. IEEE Computer
Society, 2014.

5 Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Math. Program., 58(3):295–324, February 1993.

6 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated
facility location. In Leah Epstein and Paolo Ferragina, editors, Algorithms – ESA 2012,
volume 7501 of Lecture Notes in Computer Science, pages 133–144. Springer Berlin Heidel-
berg, 2012.

7 Gábor Braun, Samuel Fiorini, Sebastian Pokutta, and David Steurer. Approximation limits
of linear programs (beyond hierarchies). In FOCS, pages 480–489, 2012.

8 Gábor Braun and Sebastian Pokutta. Common information and unique disjointness. In
FOCS, pages 688–697. IEEE Computer Society, 2013.

9 Gábor Braun and Sebastian Pokutta. The matching polytope does not admit fully-
polynomial size relaxation schemes. CoRR, abs/1403.6710, 2014.

10 Mark Braverman and Ankur Moitra. An information complexity approach to extended
formulations. In Proc. STOC, pages 161–170, 2013.

11 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate con-
straint satisfaction requires large LP relaxations. In Proc. FOCS, pages 350–359, 2013.

12 Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming re-
laxations of maxcut. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’07, pages 53–61, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics.

13 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.
Linear vs. semidefinite extended formulations: exponential separation and strong lower
bounds. In Proceedings of the 44th Symposium on Theory of Computing, STOC ’12, pages
95–106, New York, NY, USA, 2012. ACM.

14 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Al-
gorithms and combinatorics. Springer, 2012.

15 Volker Kaibel and Stefan Weltge. Lower bounds on the sizes of integer programs without
additional variables. In Jon Lee and Jens Vygen, editors, IPCO, volume 8494 of Lecture
Notes in Computer Science, pages 321–332. Springer, 2014.

16 Stavros G. Kolliopoulos and Yannis Moysoglou. Exponential lower bounds on the size of
approximate formulations in the natural encoding for capacitated facility location. CoRR,
abs/1312.1819, 2013.

17 Stavros G. Kolliopoulos and Yannis Moysoglou. Tight bounds on the Lovász-Schrijver rank
for approximate capacitated facility location. Manuscript, 2013.

18 Stavros G. Kolliopoulos and Yannis Moysoglou. Sherali-Adams gaps, flow-cover inequalit-
ies and generalized configurations for capacity-constrained facility location. In Approxim-
ation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, pages 297–312, 2014.

S. G. Kolliopoulos and Y. Moysoglou 581

19 Thomas Rothvoß. The matching polytope has exponential extension complexity. In Proc.
STOC, pages 263–272, 2014.

20 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

21 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
Journal of Computer and System Sciences, 43(3):441 – 466, 1991.

STACS 2015

Lempel-Ziv Factorization May Be Harder Than
Computing All Runs
Dmitry Kosolobov

Ural Federal University
Ekaterinburg, Russia
dkosolobov@mail.ru

Abstract
The complexity of computing the Lempel-Ziv decomposition and the set of all runs (= maximal
repetitions) is studied in the decision tree model of computation over ordered alphabet. It is
known that both these problems can be solved by RAM algorithms in O(n log σ) time, where n is
the length of the input string and σ is the number of distinct letters in it. We prove an Ω(n log σ)
lower bound on the number of comparisons required to construct the Lempel-Ziv decomposition
and thereby conclude that a popular technique of computation of runs using the Lempel-Ziv
decomposition cannot achieve an o(n log σ) time bound. In contrast with this, we exhibit an
O(n) decision tree algorithm finding all runs in a string. Therefore, in the decision tree model
the runs problem is easier than the Lempel-Ziv decomposition. Thus we support the conjecture
that there is a linear RAM algorithm finding all runs.

1998 ACM Subject Classification F.2.2 Pattern Matching

Keywords and phrases Lempel-Ziv factorization, runs, repetitions, decision tree, lower bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.582

1 Introduction

String repetitions called runs and the Lempel-Ziv decomposition are structures that are of a
great importance for data compression and play a significant role in stringology. Recall that
a run of a string is a nonextendable (with the same minimal period) substring whose minimal
period is at most half of its length. The definition of the Lempel-Ziv decomposition is given
below. In the decision tree model, a widely used model to obtain lower bounds on the time
complexity of various algorithms, we consider algorithms finding these structures. We prove
that any algorithm finding the Lempel-Ziv decomposition on a general ordered alphabet
must perform Ω(n log σ)1 comparisons in the worst case, where n denotes the length of input
string and σ denotes the number of distinct letters in it. Since until recently, the only known
efficient way to find all runs of a string was to use the Lempel-Ziv decomposition, one might
expect that there is a nontrivial lower bound in the decision tree model on the number of
comparisons in algorithms finding all runs. These expectations were also supported by the
existence of such a bound in the case of unordered alphabet. In this paper we obtain a
somewhat surprising fact: in the decision tree model with an ordered alphabet, there exists
a linear algorithm finding all runs. This can be interpreted as one cannot have lower bounds
on the decision tree model for algorithms finding runs (a similar result for another problem
is provided in [22] for example) but on the other hand, this result supports the conjecture
that there is a linear RAM algorithm finding all runs.

1 Throughout the paper, log denotes the logarithm with the base 2.

© Dmitry Kosolobov;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 582–593

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.582
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Kosolobov 583

The Lempel-Ziv decomposition [16] is a basic technique for data compression and plays
an important role in stringology. It has several modifications used in various compression
schemes. The decomposition considered in this paper is used in LZ77-based compression
methods. All known efficient algorithms for computation of the Lempel-Ziv decomposition
on a general ordered alphabet work in O(n log σ) time (see [6, 20, 10]), though all these
algorithms are time and space consuming in practice. However for the case of polynomially
bounded integer alphabet, there are efficient linear algorithms [1, 5, 7], space efficient online
algorithms [19, 21, 23], and space efficient algorithms in external memory [12].

Repetitions of strings are fundamental objects in both stringology and combinatorics on
words. The notion of run, introduced by Main in [17], allows to grasp the whole periodic
structure of a given string in a relatively simple form. In the case of unordered alphabet, there
are some limitations on the efficiency of algorithms finding periodicities; in particular, it is
known [18] that any algorithm that decides whether an input string over a general unordered
alphabet has at least one run, requires Ω(n log n) comparisons in the worst case. In [14],
Kolpakov and Kucherov proved that any string of length n contains O(n) runs and proposed
a RAM algorithm finding all runs in linear time provided the Lempel-Ziv decomposition is
given. Thereafter much work has been done on the analysis of runs (e.g. see [8, 9, 15, 2])
but until the recent paper [3], all efficient algorithms finding all runs of a string on a general
ordered alphabet used the Lempel-Ziv decomposition as a basis. Bannai et al. [3] use a
different method based on Lyndon decomposition but unfortunately, their algorithm spends
O(n log σ) time too. Clearly, due to the found lower bound, our linear algorithm finding all
runs doesn’t use the Lempel-Ziv decomposition yet our approach differs from that of [3].

The paper is organized as follows. Section 2 contains some basic definitions used through-
out the paper. In Section 3 we give a lower bound on the number of comparisons required to
construct the Lempel-Ziv decomposition. In Section 4 we present additional definitions and
combinatorial facts that are necessary for Section 5, where we describe our linear decision
tree algorithm finding all runs.

2 Preliminaries

A string of length n over the alphabet Σ is a map {1, 2, . . . , n} 7→ Σ, where n is referred
to as the length of w, denoted by |w|. We write w[i] for the ith letter of w and w[i..j] for
w[i]w[i+1] . . . w[j]. Let w[i..j] be the empty string for any i > j. A string u is a substring
(or a factor) of w if u = w[i..j] for some i and j. The pair (i, j) is not necessarily unique; we
say that i specifies an occurrence of u in w. A string can have many occurrences in another
string. An integer p is a period of w if 0 < p < |w| and w[i] = w[i+p] for i = 1, . . . , |w|−p.
For any integers i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by i, j.

The only computational model that is used in this paper is the decision tree model.
Informally, a decision tree processes input strings of given fixed length and each path starting
at the root of the tree represents the sequence of pairwise comparisons made between various
letters in the string. The computation follows an appropriate path from the root to a leaf;
each leaf represents a particular answer to the studied problem.

More formally, a decision tree processing strings of length n is a rooted directed ternary
tree in which each interior vertex is labeled with an ordered pair (i, j) of integers, 1 ≤ i, j ≤ n,
and edges are labeled with the symbols “<”, “=”, “>” (see Fig. 1). The height of a decision
tree is the number of edges in the longest path from the root to a leaf of the tree. Consider
a path p connecting the root of a fixed decision tree to some vertex v. Let t be a string of
length n. Suppose that p satisfies the following condition: it contains a vertex labeled with a

STACS 2015

584 Lempel-Ziv Factorization May Be Harder Than Computing All Runs

Figure 1 A decision tree of height 2 processing strings of length 3. The strings aaa and bbb reach
the shaded vertex.

pair (i, j) with the outgoing edge labeled with < (resp., >, =) if and only if t[i] < t[j] (resp.,
t[i] > t[j], t[i] = t[j]). Then we say that the vertex v is reachable by the string t or the string
t reaches the vertex v. Clearly, each string reaches exactly one leaf of any given tree.

3 A Lower Bound on Algorithms Computing the Lempel-Ziv
Decomposition

The Lempel-Ziv decomposition of a string t is the decomposition t = t1t2 · · · tk, built by the
following greedy procedure processing t from left to right:

t1 = t[1];
let t1 · · · ti−1 = t[1..j]; if t[j+1] does not occur in t[1..j], put ti = t[j+1]; otherwise, put ti
to be the longest prefix of t[j+1..n] that has an occurrence starting at some position ≤ j.

For example, the string abababaabbbaaba has the Lempel-Ziv decomposition
a.b.ababa.ab.bb.aab.a. The substrings ti are called factors of the Lempel-Ziv decomposition
of t.

Let t and t′ be strings of length n. Suppose t = t1t2 . . . tk and t′ = t′1t
′
2 . . . t

′
k′ are their

Lempel-Ziv decompositions. We say that the Lempel-Ziv decompositions of t and t′ are
equivalent if k = k′ and |ti| = |t′i| for each i ∈ 1, k. We say that a decision tree processing
strings of length n finds the Lempel-Ziv decomposition if for any strings t and t′ of length n
such that t and t′ reach the same leaf of the tree, the Lempel-Ziv decompositions of t and t′
are equivalent.

I Theorem 1. The construction of the Lempel-Ziv decomposition for a string of length n
with at most σ distinct letters requires Ω(n log σ) comparisons of letters in the worst case.

Proof. Let a1 < . . . < aσ be an alphabet. To obtain the lower bound, we construct a set of
input strings of length n such that the construction of the Lempel-Ziv decomposition for
these strings requires performing Θ(n) binary searches on the Θ(σ)-element alphabet.

Without loss of generality, we assume that n and σ are even and 2 < σ < n/2. Denote s1 =
a1a3a5 . . . aσ−1, s2 = aσa2aσa4 . . . aσaσ−2aσaσ, and s = s1s2. We view s as a “dictionary”
containing all letters ai with even i. Note that |s| = 1.5σ. Consider a string t of the following
form:

aσai1aσai2 . . . aσaikaσaσ,

where k = n−1.5σ−2
2 and ij ∈ 2, σ−2 is even for any j ∈ 1, k .

(1)

Informally, the string t represents a sequence of queries to our “dictionary” s; any decision
tree finding the Lempel-Ziv decomposition of the string st must identify each aij of t with

D. Kosolobov 585

some letter of s. Otherwise, we can replace aij with the letter aij−1 or aij+1 thus changing
the Lempel-Ziv decomposition of the whole string; the details are provided below. Obviously,
|s|+ |t| = n and there are (σ/2− 1)k possible strings t of the form (1). Let us take a decision
tree which computes the Lempel-Ziv decomposition for the strings of length n. It suffices to
prove that each leaf of this tree is reachable by at most one string st with t of the form (1).
Indeed, such decision tree has at least (σ/2− 1)k leafs and the height of the tree is at least
log3((σ/2− 1)k) = k log3(σ/2− 1) = Ω(n log σ).

Suppose to the contrary that some leaf of the decision tree is reachable by two distinct
strings r = st and r′ = st′ such that t and t′ are of the form (1); then for some l ∈ 1, n,
r′[l] 6= r[l]. Obviously l = |s|+ 2l′ for some l′ ∈ 1, k and therefore r[l] = ap for some even
p ∈ 2, σ−2. Suppose r′[l] < r[l]. Let l1 < . . . < lm be the set of all integers l′ > |s| such that
for any string t0 of the form (1), if the string r0 = st0 reaches the same leaf as the string r,
then r0[l′] = r0[l]. Consider a string r′′ that differs from r only in the letters r′′[l1], . . . , r′′[lm]
and put r′′[l1] = . . . = r′′[lm] = ap−1. Let us first prove that the string r′′ reaches the same
leaf as r. Consider a vertex of the path connecting the root and the leaf reachable by r. Let
the vertex be labeled with a pair (i, j). We have to prove that the comparison of r′′[i] and
r′′[j] leads to the same result as the comparison of r[i] and r[j]. The following cases are
possible:
1. i, j 6= lq for all q ∈ 1,m; then r[i] = r′′[i] and r[j] = r′′[j];
2. i = lq for some q ∈ 1,m and r[i] < r[j]; then since r′′[lq] = ap−1 < ap = r[lq] = r[i] and

r[j] = r′′[j], we obtain r′′[i] < r′′[j];
3. i = lq for some q ∈ 1,m and r[i] > r[j]; then we have j 6= p/2 because r[p/2] =

r′[p/2] = ap−1 > r′[i] while r′[i] > r′[j], and thus since r[i] = ap > r[j], we see that
ap−1 = r′′[i] > r[j] = r′′[j];

4. i = lq for some q ∈ 1,m and r[i] = r[j]; then, by definition of the set {l1, . . . , lm}, j = lq′

for some q′ ∈ 1,m and r′′[i] = r′′[j] = ap−1;
5. j = lq for some q ∈ 1,m; this case is symmetric to the above cases.

Thus r′′ reaches the same leaf as r. But the strings r and r′′ have the different Lempel-Ziv
decompositions: the Lempel-Ziv decomposition of r′′ has one letter factor ap−1 at position l1
while r does not since r[l1−1..l1+1] = aσapaσ is a substring of s = r[1..|s|]. This contradicts
to the fact that the analyzed tree computes the Lempel-Ziv decomposition. J

4 Runs

In this section we consider some combinatorial facts that will be useful in our main algorithm
described in the following section.

The exponent of a string t is the number |t|/p, where p is the minimal period of t. A
run of a string t is a substring t[i..j] of exponent at least 2 and such that both substrings
t[i−1..j] and t[i..j+1], if defined, have strictly greater minimal periods than t[i..j]. A run
whose exponent is greater than or equal to 3 is called a cubic run. For a fixed d ≥ 1, a d-short
run of a string t is a substring t[i..j] which can be represented as xyx for nonempty strings
x and y such that 0 < |y| ≤ d, |xy| is the minimal period of t[i..j], and both substrings
t[i−1..j] and t[i..j+1], if defined, have strictly greater minimal periods.

I Example 2. The string t = aabaabab has four runs t[1..2] = aa, t[4..5] = aa, t[1..7] =
aabaaba, t[5..8] = abab and one 1-short run t[2..4] = aba. The sum of exponents of all runs
is equal to 2 + 2 + 7

3 + 2 ≈ 8.33.

STACS 2015

586 Lempel-Ziv Factorization May Be Harder Than Computing All Runs

Figure 2 Overlapping cubic runs t1 and t2 such that 2δ ≤ p(t1) < p(t2) ≤ 3δ.

As it was proved in [14], the number of all runs is linear in the length of string. We use a
stronger version of this fact.

I Lemma 3 (see [3, Theorem 9]). The number of all runs in any string of length n is less
than n.

The following lemma is a straightforward corollary of [15, Lemma 1].

I Lemma 4 (see [15]). For a fixed d ≥ 1, any string of length n contains O(n) d-short runs.

We also need a classical property of periodic strings.

I Lemma 5 (see [11]). Suppose a string w has periods p and q such that p+q−gcd(p, q) ≤ |w|;
then gcd(p, q) is a period of w.

I Lemma 6. Let t1 and t2 be substrings with the periods p1 and p2 respectively. Suppose t1
and t2 have a common substring of the length p1 + p2 − gcd(p1, p2) or greater; then t1 and t2
have the period gcd(p1, p2).

Proof. It is immediate from Lemma 5. J

Unfortunately, in a string of length n the sum of exponents of runs with the minimal
period p or greater is not equal to O(np) as the following example from [13] shows: (01)k(10)k.
Indeed, for any p < 2k, the string (01)k(10)k contains at least k − bp/2c runs with the
shortest period p or greater: 1(01)i(10)i1 for i ∈ bp/2c, k−1. However, it turns out that this
property holds for cubic runs.

I Lemma 7. For any p ≥ 2 and any string t of length n, the sum of exponents of all cubic
runs in t with the minimal period p or greater is less than 12n

p .

Proof. Consider a string t of length n. For any string u, e(u) denotes the exponent of u
and p(u) denotes the minimal period of u. Denote by R the set of all cubic runs of t. Let
t1 = t[i1..j1] and t2 = t[i2..j2] be distinct cubic runs such that i1 ≤ i2. It follows from
Lemma 6 that t1 and t2 cannot have a common substring of length p(t1) + p(t2) or longer.
Therefore if p(t1) and p(t2) are sufficiently close, then positions i1 and i2 cannot be close.

Let δ be a positive integer. Suppose 2δ ≤ p(t1), p(t2) ≤ 3δ; then either j1 < i2 or
j1 − i2 < p(t1) + p(t2) ≤ 2.5p(t1). The latter easily implies i2 − i1 > δ and therefore
ρ = |{u ∈ R : 2δ ≤ p(u) ≤ 3δ}| < n

δ . Moreover, we have i2 − i1 ≥ |t1| − 2.5p(t1) =
(e(t1)− 2.5)p(t1) ≥ (e(t1)− 2.5)2δ (see Fig. 2). Hence

∑
u∈R,2δ≤p(u)≤3δ

(e(u)− 2.5)2δ ≤ n and

then
∑

u∈R,2δ≤p(u)≤3δ
e(u) ≤ n

2δ + 2.5ρ < 3n
δ .

D. Kosolobov 587

Now it follows that if we have a sequence {δi} such that the union of the segments
[2δi, 3δi] covers the segment [p, n], then the sum of exponents of all cubic runs with the
minimal period p or greater is less than

∑
i

3n
δi
. Denote δi = (3

2)i and k = blog 3
2

p
2c. Evidently

δk = (3
2)k ≤ p

2 and the union of the segments {[2δi, 3δi]}∞i=k covers [p, n]. Finally, we obtain∑
u∈R,p(u)≥p

e(u) <
∑∞
i=k

3n
δi

=
∑∞
i=k 3n(2

3)i = 3n (2/3)k

1/3 ≤ 9n 4
3p = 12n

p . J

5 Linear Decision Tree Algorithm Finding All Runs

We say that a decision tree processing strings of length n finds all runs with a given property
P if for each distinct strings t1 and t2 such that |t1| = |t2| = n and t1 and t2 reach the same
leaf of the tree, the substring t1[i..j] is a run satisfying P iff t2[i..j] is a run satisfying P for
all i, j ∈ 1, n.

We say that two decision trees processing strings of length n are equivalent if for each
reachable leaf a of the first tree, there is a leaf b of the second tree such that for any string
t of length n, t reaches a iff t reaches b. The basic height of a decision tree is the minimal
number k such that each path connecting the root and a leaf of the tree has at most k edges
labeled with the symbols “<” and “>”.

For a given positive integer p, we say that a run r of a string is p-periodic if 2p ≤ |r| and
p is a (not necessarily minimal) period of r. We say that a run is a p-run if it is q-periodic
for some q which is a multiple of p. Note that any run is 1-run.

I Example 8. Let us describe a “naive” decision tree finding all p-runs in strings of length
n. Denote by t the input string. Our tree simply compares t[i] and t[j] for all i, j ∈ 1, n such
that |i − j| is a multiple of p. The tree has the height

∑bn/pc
i=1 (n − ip) = O(n2/p) and the

same basic height.

Note that a decision tree algorithm finding runs doesn’t report runs in the same way as
RAM algorithms do. The algorithm only collects sufficient information to conclude where
the runs are; once its knowledge of the structure of the input string becomes sufficient to
find all runs without further comparisons of symbols, the algorithm stops and doesn’t care
about the processing of obtained information. To simplify the construction of an efficient
decision tree, we use the following lemma that enables us to estimate only the basic height
of our tree.

I Lemma 9. Suppose a decision tree processing strings of length n has basic height k. Then
it is equivalent to a decision tree of height ≤ k + n.

Proof. To construct the required decision tree of height ≤ k + n, we modify the given
decision tree of basic height k. First, we remove all unreachable vertices of this tree. After
this, we contract each non-branching path into a single edge, removing all intermediate
vertices and their outgoing edges. Indeed, the result of a comparison corresponding to such
an intermediate vertex is determined by the previous comparisons. So, it is straightforward
that the result tree is equivalent to the original tree. Now it suffices to prove that there are
at most n−1 edges labeled with the symbol “=” along any path connecting the root and
some leaf.

Observe that if we perform n−1 comparisons on n elements and each comparison yields
an equality, then either all elements are equal or the result of at least one comparison can be
deduced by transitivity from other comparisons. Suppose a path connecting the root and
some leaf has at least n edges labeled with the symbol “=”. By the above observation, the

STACS 2015

588 Lempel-Ziv Factorization May Be Harder Than Computing All Runs

path contains an edge labeled with “=” leaving a vertex labeled with (i, j) such that the
equality of the ith and the jth letters of the input string follows by transitivity from the
comparisons made earlier along this path. Then this vertex has only one reachable child.
But this is impossible because all such vertices of the original tree were removed during the
contraction step. This contradiction finishes the proof. J

I Lemma 10. For any integers n and p, there is a decision tree that finds all p-periodic
runs in strings of length n and has basic height at most 2dn/pe.

Proof. Denote by t the input string. The algorithm is as follows (note that the resulting
decision tree contains only comparisons of letters of t):
1. assign i← 1;
2. if t[i] 6= t[i+p], then assign i ← i + p, h ← min{i, n − p} and for i′ = h−1, h−2, . . .,

compare t[i′] and t[i′+p] until t[i′] 6= t[i′+p];
3. increment i and if i ≤ n− p, jump to line 2.
Obviously, the algorithm performs at most 2dn/pe symbol comparisons yielding inequalities.
Let us prove that the algorithm finds all p-periodic runs.

Let t[j..k] be a p-periodic run. For the sake of simplicity, suppose 1 < j < k < n. To
discover this run, one must compare t[l] and t[l+p] for each l ∈ j−1, k−p+1. Let us show
that the algorithm performs all these comparisons. Suppose, to the contrary, for some
l ∈ j−1, k−p+1, the algorithm doesn’t compare t[l] and t[l+p]. Then for some i0 such that
i0 < l < i0 + p, the algorithm detects that t[i0] 6= t[i0+p] and “jumps” over l by assigning
i = i0 + p at line 2. Obviously i0 < j. Then h = min{i0 + p, n− p} < k and hence for each
i′ = h−1, h−2, . . . , j−1, the algorithm compares t[i′] and t[i′+p]. Since j − 1 ≤ l < i0 + p,
t[l] and t[l+p] are compared, contradicting to our assumption. J

I Theorem 11. There is a constant c such that for any integer n, there exists a decision
tree of height at most cn that finds all runs in strings of length n.

Proof. By Lemma 9, it is sufficient to build a decision tree with linear basic height. So,
below we count only the comparisons yielding inequalities and refer to them as inequality
comparisons. In fact we prove the following more general fact: for a given string t of length
n and a positive integer p, we find all p-runs performing O(n/p) inequality comparisons. To
find all runs of a string, we simply put p = 1.

Let us outline the plot of the proof. Firstly, we briefly describe all steps of our decision
tree algorithm finding all p-runs. Secondly, we discuss each of these steps: its correctness and
the number of inequality comparisons performed; and this is the largest part of the proof.
Finally, we estimate the overall number of inequality comparisons; the main difficulty of the
estimation is in the recursive nature of our algorithm.

The algorithm consists of five steps. Each step finds p-runs of t with a given property. Let
us choose a positive integer constant d ≥ 2 (the exact value is defined below.) The algorithm
is roughly as follows:
1. find in a straightforward manner all p-runs having periods ≤ dp;
2. using the information from step 1, build a new string t′ of length n/p such that periodic

factors of t and t′ are strongly related to each other;
3. find p-runs of t related to periodic factors of t′ with exponents less than 3;
4. find p-runs of t related to periodic factors of t′ with periods less than d;
5. find p-runs of t related to other periodic factors of t′ by calling steps 1–5 recursively for

some substrings of t.

D. Kosolobov 589

Step 1. Initially, we split the string t into n/p contiguous blocks of length p (if n is not a
multiple of p, we pad t on the right to the required length with a special symbol which is
less than all other symbols.) For each i ∈ 1, n/p and j ∈ 1, d, we denote by mi,j the minimal
k ∈ 1, p such that t[(i−1)p+k] 6= t[(i−1)p+k+jp] and we put mi,j = −1 if ip + jp > n or
there is no such k. To compute mi,j , we simply compare t[(i−1)p+k] and t[(i−1)p+k+jp]
for k = 1, 2, . . . , p until t[(i−1)p+k] 6= t[(i−1)p+k+jp].

I Example 12. Let t = bbba · aada · aaaa · aaaa · aada · aaaa · aaab · bbbb · bbbb, p = 4, d = 2.
The following table contains mi,j for j = 1, 2:

i 1 2 3 4 5 6 7 8 9
t[(i−1)p+1..ip] bbba aada aaaa aaaa aada aaaa aaab bbbb bbbb

mi,1,mi,2 1, 1 3, 3 −1, 3 3,−1 3, 3 4, 1 1, 1 −1,−1 −1,−1

To compute a particular value of mi,j , one needs at most one inequality comparison (zero
inequality comparisons if the computed value is −1.) Further, for each i ∈ 1, n/p and
j ∈ 1, d, we compare t[ip−k] and t[ip−k+jp] (if defined) for k = 0, 1, . . . , p−1 until t[ip−k] 6=
t[ip−k+jp]; similar to the above computation of mi,j , this procedure performs at most
one inequality comparison for any given i and j. Hence, the total number of inequality
comparisons is at most 2dn/p. Once these comparisons are made, all pq-periodic runs in the
input string are determined for all q ∈ 1, d.

Step 2. Now we build an auxiliary structure induced by mi,j on the string t. In this step,
no comparisons are performed; we just establish some combinatorial properties required for
further steps. We make use of the function:

sgn(a, b) =

−1, a < b,

0, a = b,

1, a > b .

We create a new string t′ of length n/p. The alphabet of this string can be taken arbitrarily,
we just describe which letters of t′ coincide and which do not. For each i1, i2 ∈ 1, n/p,
t′[i1] = t′[i2] iff for each j ∈ 1, d−1, either mi1,j = mi2,j = −1 or the following conditions
hold simultaneously:

mi1,j 6= −1,mi2,j 6= −1,
mi1,j = mi2,j ,

sgn(t[(i1−1)p+mi1,j], t[(i1−1)p+mi1,j+jp])=sgn(t[(i2−1)p+mi2], t[(i2−1)p+mi2,j+jp]) .

Note that the status of each of these conditions is known from step 1. Also note that the
values mi,d are not used in the definition of t′; we computed them only to find all dp-periodic
p-runs.

I Example 12 (continued). Denote si = sgn(t[(i−1)p+mi,1], t[(i−1)p+mi,1+p]). Let
{e, f, g, h, i, j} be a new alphabet for the string t′. The following table contains mi,1, si, and
t′:

i 1 2 3 4 5 6 7 8 9
t[(i−1)p+1..ip] bbba aada aaaa aaaa aada aaaa aaab bbbb bbbb

mi,1 1 3 −1 3 3 4 1 −1 −1
si 1 1 − −1 1 −1 −1 − −

t′[i] j e f g e h i f f

STACS 2015

590 Lempel-Ziv Factorization May Be Harder Than Computing All Runs

Figure 3 A p-run corresponding to d-short run t′[k1..k2] = efge, where k1 = 2, k2 = 5, p = 4,
d = 2, q = 3, k = 3, l = 2pq = 24, i = (k1−2)p+1 = 1, j = (k2+d)p = 28.

If t contains two identical sequences of d blocks each, i.e., t[(i1−1)p+1..(i1−1+d)p] =
t[(i2−1)p+1..(i2−1+d)p] for some i1, i2, then mi1,j = mi2,j for each j ∈ 1, d−1 and hence
t′[i1] = t′[i2]. This is why t′[2] = t′[5] in Example 12. On the other hand, equal letters in t′
may correspond to different sequences of blocks in t, like the letters t′[3] = t′[8] in Example 12.
The latter property makes the subsequent argument more involved but allows us to keep the
number of inequality comparisons linear. Let us point out the relations between periodic
factors of t and t′.

Let for some q > d, t[k+1..k+l] be a pq-periodic p-run, i.e., t[k+1..k+l] is a p-run that
is not found in step 1. Denote k′ = dk/pe. Since t[k+1..k+l] is pq-periodic, t′ has some
periodicity in the corresponding substring, namely, u = t′[k′+1..k′+bl/pc−d] has the period
q (see example below). Let t′[k1..k2] be the largest substring of t′ containing u and having
the period q. Since 2q ≤ bl/pc = |u|+ d, t′[k1..k2] is either a d-short run with the minimal
period q or a run whose minimal period divides q.

I Example 12 (continued). Consider Fig. 3. Let k = 3, l = 24. The string t[k+1..k+l] =
a · aada · aaaa · aaaa · aada · aaaa · aaa is a p-run with the minimal period pq = 12 (here q =
3 > 2 = d). Denote k′ = dk/pe = 1, k1 = 2, and k2 = 5. The string t′[k′+1..k′+bl/pc−d] =
t′[k1..k2] = t′[2..5] = efge is a d-short run of t′ with the minimal period q = 3.

Conversely, given a run or d-short run t′[k1..k2] with the minimal period q, we say that
a p-run t[k+1..k+l] corresponds to t′[k1..k2] (or t[k+1..k+l] is a p-run corresponding to
t′[k1..k2]) if t[k+1..k+l] is, for some integer r, rpq-periodic and t′[k′+1..k′+bl/pc−d], where
k′ = dk/pe, is a substring of t′[k1..k2] (see Fig. 3 and Example 12).

The above observation shows that each p-run of t that is not found in step 1 corresponds
to some run or d-short run of t′. Let us describe the substring that must contain all p-runs
of t corresponding to a given run or d-short run t′[k1..k2]. Denote i = (k1 − 2)p + 1 and
j = (k2 + d)p. Now it is easy to see that if t[k+1..k+l] is a p-run corresponding to t′[k1..k2],
then t[k+1..k+l] is a substring of t[i..j].

I Example 12 (continued). For k = 3 and l = 24, the string t[k+1..k+l] = a·aada·aaaa·aaaa·
aada · aaaa · aaa is a p-run corresponding to t′[k1..k2] = efge, where k1 = 2, k2 = 5. Indeed,
the string t′[k′+1..k′+bl/pc−d] = t′[2..5], for k′ = dk/pe = 1, is a substring of t′[k1..k2].
Denote i = (k1 − 2)p+ 1 = 1, j = (k2 + d)p = 28. Observe that t[k+1..k+l] = t[4..27] is a
substring of t[i..j] = t[1..28].

It is possible that there is another p-run of t corresponding to the string t′[k1..k2]. Consider
the following example.

I Example 13. Let t = fabcdedabcdedaaifjfaaifjff , p = 2, d = 2. Denote si =
sgn(t[(i−1)p+mi,1], t[(i−1)p+mi,1+p]). Let {w, x, y, z} be a new alphabet for the string

D. Kosolobov 591

t′. The following table contains mi,1, si, and t′:

i 1 2 3 4 5 6 7 8 9 10 11 12 13
t[(i−1)p+1..ip] fa bc de da bc de da ai fj fa ai fj ff

mi,1 1 1 2 1 1 2 1 1 2 1 1 2 −1
si 1 −1 1 1 −1 1 1 −1 1 1 −1 1 −

t′[i] x y z x y z x y z x y z w

Note that p-runs t[2..13] = abcded · abcded and t[14..25] = aaifjf · aaifjf correspond to the
same p-run of t′, namely, t′[1..12] = xyz · xyz · xyz · xyz.

Thus to find for all q > d all pq-periodic p-runs of t, we must process all runs and d-short
runs of t′.

Step 3. Consider a noncubic run t′[k1..k2]. Let q be its minimal period. Denote i =
(k1 − 2)p+ 1 and j = (k2 + d)p. The above analysis shows that any p-run of t corresponding
to t′[k1..k2] is a p′-periodic run of t[i..j] for some p′ = pq, 2pq, . . . , lpq, where l = b(j − i +
1)/(2pq)c. Since (k2−k1 +1)/q < 3, we have l = b(k2−k1 +2)/(2q)+d/(2q)c = O(d). Hence
to find all p-runs of t[i..j], it suffices to find for each p′ = pq, 2pq, . . . , lpq all p′-periodic runs
of t[i..j] using Lemma 10. Thus the processing performs O(l(j − i+ 1)/pq) = O(d2) = O(1)
inequality comparisons. Analogously we process d-short runs of t′. Therefore, by Lemmas 3
and 4, only O(|t′|) = O(n/p) inequality comparisons are required to process all d-short runs
and noncubic runs of t′.

Now it suffices to find all p-runs of t corresponding to cubic runs of t′.

Step 4. Let t′[k1..k2] be a cubic run with the minimal period q. In this step we consider
the case q < d. It turns out that such small-periodic substrings of t′ correspond to substrings
in t that are either periodic and discovered at step 1, or aperiodic. Therefore this step does
not include any comparisons. The precise explanation follows.

Suppose that mk,q = −1 for all k ∈ k1, k1+q−1. Then mk,q = −1 for all k = k1, . . . , k2
by periodicity of t′[k1..k2]. Therefore by the definition of mk,q, we have t[k] = t[k+pq] for
all k ∈ (k1−1)p+1, k2p. Hence the substring t[(k1−1)p+1..k2p+pq] has the period pq. Now
it follows from Lemma 6 that any p-run of t corresponding to t′[k1..k2] is pq-periodic and
therefore was found in step 1 because pq < dp.

Suppose that mk,q 6= −1 for some k ∈ k1, k1+q−1. Denote s = (k − 1)p + mk,q,
l = b(k2p − s)/pqc + 1. Let r ∈ 1, l. Since t′[k] = t′[k+rq], we have mk,q = mk+rq,q and
sgn(t[s], t[s+pq]) = sgn(t[s+rpq], t[s+(r+1)pq]) (see Fig. 4). Therefore, one of the following
sequences of inequalities holds:

t[s] < t[s+pq] < t[s+2pq] < . . . < t[s+lpq],
t[s] > t[s+pq] > t[s+2pq] > . . . > t[s+lpq] . (2)

Let p′ be a multiple of pq such that p′ > dp. Now it suffices to show that due to the
found “aperiodic chain”, there are no p′-periodic p-runs of t corresponding to t′[k1..k2].

Suppose, to the contrary, t[r..s] is a p′-periodic p-run corresponding to t′[k1..k2] (see
Fig. 4). Denote r′ = d(r − 1)/pe and l′ = b(s− r + 1)/pc. By the definition of corresponding
p-runs, u = t′[r′+1..r′+l′−d] is a substring of t′[k1..k2]. Since s− r+ 1 ≥ 2p′ and p′ > dp, we
have |u| = l′ − d ≥ 2p′/p− d > p′/p. Therefore, r ≤ r′p+mr′+1,q < r′p+mr′+1,q + p′ ≤ s
and the inequalities (2) imply t[r′p+mr′+1,q] 6= t[r′p+mr′+1,q + p′], a contradiction.

STACS 2015

592 Lempel-Ziv Factorization May Be Harder Than Computing All Runs

Figure 4 A cubic run of t′ with the shortest period q = 3 < d = 5, where p = 4, k1 = 2, k2 = 11,
k = 4, mk,q = 3, l = 3, p′ = 2pq = 24.

Step 5. Let t′[k1..k2] be a cubic run with the minimal period q such that q ≥ d. Denote
i = (k1 − 2)p+ 1 and j = (k2 + d)p. To find all p-runs corresponding to the run t′[k1..k2], we
make a recursive call executing steps 1–5 again with new parameters n = j − i+ 1, p = pq,
and t = t[i..j].

After the analysis of all cubic runs of t′, all p-runs of t are found and the algorithm stops.
Now it suffices to estimate the number of inequality comparisons performed during any run
of the described algorithm.

Time analysis. As shown above, steps 1–4 require O(n/p) inequality comparisons. Let
t′[i1..j1], . . . , t′[ik..jk] be the set of all cubic runs of t′ with the minimal period d or greater.
For l ∈ 1, k, denote by ql the minimal period of t′[il..jl] and denote nl = jl − il + 1. Let
T (n, p) be the number of inequality comparisons required by the algorithm to find all p-runs
in a string of length n. Then T (n, p) can be computed by the following formula:

T (n, p) = O (n/p) + T ((n1 + d+ 1)p, pq1) + . . .+ T ((nk + d+ 1)p, pqk) .

For l ∈ 1, k, the number nl/ql is, by definition, the exponent of t′[il..jl]. It follows from
Lemma 7 that the sum of exponents of all cubic runs of t′ with the shortest period d or larger
is less than 12n

dp . Note that for any l ∈ 1, k, nl ≥ 3ql ≥ 3d and therefore nl + d + 1 < 2nl.
Thus assuming d = 48, we obtain (n1+d+1)p

pq1
+ . . .+ (nk+d+1)p

pqk
< 2n1

q1
+ . . .+ 2nk

qk
≤ 24n

dp = n
2p .

Finally, we have T (n, p) = O(n
20p + n

21p + n
22p + . . .) = O(n/p). The reference to Lemma 9

ends the proof. J

6 Conclusion

Lemma 9 which expresses a non-constructive property is the bottleneck for the conversion of
our decision tree algorithm into a RAM algorithm. So, it remains an open problem whether
there exists a linear RAM algorithm finding all runs in a string over a general ordered
alphabet. Moreover, it is unknown if there is a linear RAM algorithm that decides whether a
given string has runs (this problem was posed in [4, Chapter 4]). However, it is still possible
that there are nontrivial lower bounds in some more sophisticated models that are strongly
related to RAM model.

Acknowledgement The author would like to thank Arseny M. Shur for many valuable
comments and the help in the preparation of this paper. Also the author wishes to acknowledge
anonymous referees for detailed and helpful comments.

D. Kosolobov 593

References
1 M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix

arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.
2 G. Badkobeh, M. Crochemore, and C. Toopsuwan. Computing the maximal-exponent

repeats of an overlap-free string in linear time. In String Processing and Information
Retrieval, pages 61–72. Springer, 2012.

3 H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The “runs”
theorem. arXiv preprint arXiv:1406.0263v4, 2014.

4 D. Breslauer. Efficient string algorithmics. PhD thesis, Columbia University, 1992.
5 G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel–ziv factorization using less time & space.

Mathematics in Computer Science, 1(4):605–623, 2008.
6 M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63–86,

1986.
7 M. Crochemore, L. Ilie, and W. F. Smyth. A simple algorithm for computing the lempel-ziv

factorization. In Data Compression Conference (DCC’08), pages 482–488. IEEE, 2008.
8 M. Crochemore, L. Ilie, and L. Tinta. The “runs” conjecture. Theoretical Computer Science,

412(27):2931–2941, 2011.
9 M. Crochemore, M. Kubica, J. Radoszewski, W. Rytter, and T. Waleń. On the maximal

sum of exponents of runs in a string. Journal of Discrete Algorithms, 14:29–36, 2012.
10 E. R. Fiala and D. H. Greene. Data compression with finite windows. Communications of

the ACM, 32(4):490–505, 1989.
11 N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proceedings of the

American Mathematical Society, 16(1):109–114, 1965.
12 J. Karkkainen, D. Kempa, and S. J. Puglisi. Lempel-ziv parsing in external memory. In

Data Compression Conference (DCC’14), pages 153–162. IEEE, 2014.
13 R. Kolpakov. On primary and secondary repetitions in words. Theoretical Computer

Science, 418:71–81, 2012.
14 R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In

40th Annual Symposium on Foundations of Computer Science, pages 596–604. IEEE, 1999.
15 R. Kolpakov, M. Podolskiy, M. Posypkin, and N. Khrapov. Searching of gapped repeats

and subrepetitions in a word. In Combinatorial Pattern Matching, pages 212–221. Springer,
2014.

16 A. Lempel and J. Ziv. On the complexity of finite sequences. Information Theory, IEEE
Transactions on, 22(1):75–81, 1976.

17 M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied Mathematics,
25(1):145–153, 1989.

18 M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In Combin-
atorial Algorithms on Words, pages 271–278. Springer, 1985.

19 D. Okanohara and K. Sadakane. An online algorithm for finding the longest previous
factors. In Algorithms-ESA 2008, pages 696–707. Springer, 2008.

20 M. Rodeh, V. R. Pratt, and S. Even. Linear algorithm for data compression via string
matching. Journal of the ACM (JACM), 28(1):16–24, 1981.

21 T. Starikovskaya. Computing lempel-ziv factorization online. In Mathematical Foundations
of Computer Science 2012, pages 789–799. Springer, 2012.

22 J. D. Ullman, A. V. Aho, and D. S. Hirschberg. Bounds on the complexity of the longest
common subsequence problem. Journal of the ACM (JACM), 23(1):1–12, 1976.

23 J. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster compact on-line lempel-ziv
factorization. arXiv preprint arXiv:1305.6095v1, 2013.

STACS 2015

Visibly Counter Languages
and Constant Depth Circuits
Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig

WSI – University of Tübingen
Sand 13, 72076 Tübingen, Germany
{krebs,lange,ludwigm}@informatik.uni-tuebingen.de

Abstract
We examine visibly counter languages, which are languages recognized by visibly counter au-
tomata (a.k.a. input driven counter automata). We are able to effectively characterize the
visibly counter languages in AC0 and show that they are contained in FO[+].

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases visibly counter automata, constant depth circuits, AC0, FO[+]

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.594

1 Introduction

One important topic of complexity theory is the characterization of regular languages
contained in constant depth complexity classes [7, 3, 5, 4]. In [4] Barrington et al. showed
that the regular sets in AC0 are exactly the languages definable by first order logic using
regular predicates.

We extend this approach to certain non-regular languages. The visibly pushdown languages
(VPL) are a sub-class of the context-free languages containing the regular sets which exhibits
many of the decidability and closure properties of the regular languages. Their essential
feature is that the use of the pushdown store is purely input-driven: The input alphabet is
partitioned into call, return and internal letters. On a call letter, the pushdown automaton
(PDA) must push a symbol onto its stack, on a return letter it must pop a symbol, and on an
internal letter it cannot access the stack at all. This is a severe restriction, however it allows
visibly pushdown automata (VPA) to accept non-regular languages, the simplest example
being anbn. At the same time, VPA are less powerful than general PDA: They even cannot
check if a string has an equal number of a’s and b’s. In fact, due to the visible nature of the
stack, membership testing for VPA might be easier than for general PDA. It is known to be
in NC1 [8] and hence it is NC1-complete. On the other hand the membership problem for
the context-free languages is complete for SAC1 [20].

Visibly counter automata (VCA) [2] were introduced by Bárány, Löding, and Serre as
a restricted model of visibly pushdown automata as they were of use to decide a certain
sub-class membership problem of VPL. They still contain all regular sets.

In this paper, we show that all visible one-counter languages in AC0 are definable by
first order logic using addition as an numerical predicate. Our techniques allow us to decide
whether a visible one-counter language is in fact a member of AC0.

Examples of visible counter languages are:
The set {anbn | n ≥ 0}∗, the Kleene-closure of {anbn | n ≥ 0}, is in AC0.
The one-sided Dyck language of a single pair of parentheses. This language is not in AC0.

© Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 594–607

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.594
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Krebs, K.-J. Lange, and M. Ludwig 595

The set {{a, aba}nbn | n ≥ 0} is as hard as the set Equality of all strings in {0, 1}∗ in
which the numbers of ones coincides with those of zeros and is thus not in AC0.

Another interest stems from descriptive complexity [13]. Here we use the model of
predicate logic for language recognition where variables are associated with word positions.
An interesting question is whether one can extend the conjecture of Straubing to a family of
non-regular languages. It states that for any set of quantifiers Q the intersection with regular
languages relates to the use of regular predicates: Q[arb] ∩ REG = Q[Reg]. This question
was examined in detail in [15]. Here we show FO[arb] ∩ VCL ⊆ FO[+], which shows that
only the addition predicate is needed.

The rough idea of our proof is to exhibit two decidable properties of a visible counter
automaton A which together characterize the property of the accepted language L(A):

The first property concerns the ”height behavior“ of words. E.g. the Dyck set contains all
possible height progressions and is not in AC0. However the language L = {anbn | n ≥ 0}
has a very simple height behavior. The language L∗ is more complicated in this respect
but is still in AC0. We introduce the notion of simple height behavior of a language to
capture this. If L(A) has simple height behavior, then a matching predicate is definable
in FO[+]. If not, then L(A) is not in AC0.
The second property is a modification of quasi-aperiodicity (see [4, 19]) of regular languages
fit for our needs. If L(A) does not have the property we can reduce a language outside
AC0 to it. Otherwise we get a certain FO[Reg] formula.

If L(A) has the two properties then by using the matching predicate and the FO[Reg]
formula, we can build an FO[+] formula for L(A).

Due to the space constraints we omit some of the proofs. We thank the anonymous
referees for their helpful comments.

2 Preliminaries

By Z we denote the integers, by N the non-negative integers and by Q the rational numbers.
An alphabet is a finite set Σ and ε is the empty word. A language is a subset of Σ∗. For a
word w, |w| is the length of the word and |w|M for M ⊆ Σ is the number of letters in w

which belong to M . If not locally defined otherwise, wi is the letter in position i in w. For a
language L ⊆ Σ∗, the set F (L) ⊆ Σ∗ is the set of all factors of words in L. For every language
L ⊆ Σ∗ we define a congruence relation, the syntactic congruence of L: For x, y ∈ Σ∗ it is
x ∼L y iff for all u, v ∈ Σ∗ we have uxv ∈ L⇔ uyv ∈ L. The syntactic monoid is syn(L), the
set of equivalence classes under ∼L with the induced multiplication. The syntactic morphism
of L is ηL : Σ∗ → syn(L).

We use circuits as a model of computation. Important complexity classes include:
AC0 - polynomial-size circuits of constant depth with Boolean gates of arbitrary fan-in.
ACC0

k - AC0 circuits plus modulo-k-gates. ACC0 is the union of ACC0
k for all k.

TC0 - polynomial-size circuits of constant depth with threshold gates of arbitrary fan-in.
NC1 - polynomial-size circuits of logarithmic depth with bounded fan-in.

Circuits have a certain input length. However it is desirable to be able to treat arbitrary
long inputs. This is achieved with families of circuits which contain one circuit for each input
length. If for some n ∈ N the circuit with input length n is computable in some complexity
bound, we speak of uniformity. One prominent example is so called DLOGTIME-uniformity.
Consult e.g. [21] for further references on circuit complexity.

We also use the model of first-order predicate logic over finite words. Variables range
over word positions and so the numerical predicates are sets of word positions. E.g. < is a

STACS 2015

596 Visibly Counter Languages and Constant Depth Circuits

predicate of arity two with obvious semantic. We allow for existential and all quantification:
∃, ∀. We write FO[<] for the set of languages we get of first-order formulas with < predicate.
The + predicate has arity three: (i, j, k) ∈ + iff i+ j = k.

The class (of non-uniform) AC0 coincides with first order logic with arbitrary numerical
predicates, which we denote by FO[arb] [12, 10]. For the interplay of circuits and logic
see [19]. A prominent theorem is the equivalence of star-free languages, FO[<] languages
and languages with aperiodic syntactic monoid [18, 16]. A monoid M is aperiodic if for all
m ∈M it holds that mi = mi+1 for some i or equivalently if no subset of M is a non-trivial
group. For us a related notion is also important: The intersection of AC0 and the regular
languages is captured exactly by the set of languages which have a quasi-aperiodic syntactic
morphism ηL. It is quasi-aperiodic if for all t > 0, ηL(Σt) does not contain a non-trivial
group. Languages with quasi-aperiodic syntactic morphisms are exactly the ones in FO[Reg],
that is first order logic using the regular predicates, which are the order predicate and the
modulo predicates [4].

We will use the following languages:
Equality = {w ∈ {0, 1}∗ : |w|0 = |w|1} which is TC0-hard.
Modk = {w ∈ {0, 1}∗ : |w|0 ≡ 0 (mod k)} which is ACC0

k-hard.

Neither Equality nor Parity = Mod2 is in AC0 [9, 11].
Mehlhorn [17] and independently also Alur and Madhusudan [1] introduced input-driven

or visibly pushdown automata. Here, the input symbol determines the stack operation, i.e. if
a symbol is pushed or popped. This leads to a partition of Σ into call, return and internal
letters: Σ = Σcall ∪ Σret ∪ Σint. Then Σ̂ = (Σcall,Σret,Σint) is a visibly alphabet. In the rest
of the paper we always assume that there is a visibly alphabet for Σ.

We define a function ∆ : Σ∗ → Z which gives us the height of a word by ∆(w) =
|w|Σcall − |w|Σret . Each word w over a visibly alphabet can be assigned its height profile w∆,
which is a map {0, . . . , |w|} → Z with w∆(i) = ∆(w1 · · ·wi). A word w is well-matched if w∆

maps into N and ∆(w) = 0. Two positions i, j of a word are matched if wi ∈ Σcall, wj ∈ Σret,
and wi+1 . . . wj−1 is well-matched. In a well-matched word, every position i has a matching
position j, unless wi is an internal letter. Thus, positions with letters in Σint are always
unmatched. We say what a word w has a non-negative height profile if ∆(w1 · · ·wi) ≥ 0 for
all i ∈ {0, . . . , |w|}.

Bárány, Löding, and Serre [2] introduced the notion of visibly counter automata (VCA).
Since every VPA can be determinized and this is also true for visibly counter automata, we
restrict ourselves to deterministic automata:

I Definition 1 (m−VCA). An m−VCA A over Σ̂ = (Σcall,Σret,Σint) is a tuple: A =
(Q, q0, F, Σ̂, δ0, . . . , δm), where m ≥ 0 is the threshold, Q is the set of states, q0 the initial
state, F the set of final states and δi : Q× Σ→ Q is the transition functions.

A configuration is an element of Q × N. Note that m−VCAs, similar to VPAs, can
only recognize words where the height profile is non-negative. All other words are rejected.
An m−VCA A performs the following transition when a letter σ ∈ Σ is read: (q, k) σ→
(δmin(m,k)(q, σ), k + ∆(σ)). Then w ∈ L(A) iff (q0, 0) w→ (f, h) for f ∈ F and h ≥ 0. Note
that we slightly modified the semantics compared to [2], as they required h = 0 for a word
to be accepted. Our version is more general since we can accept languages which contain
words w with ∆(w) > 0. Bárány et al. needed that their 0−VCA only accepts languages of
well-matched words. With our definition we would need an 2−VCA so simulate this.

We say that a word w loops through q if (q, h) w→ (q, h+ ∆(w)) and ∆(w1 · · ·wi) +h > m

for all positions i.

A. Krebs, K.-J. Lange, and M. Ludwig 597

I Definition 2 (VCL). The class of the visibly counter languages (VCL) contains the
languages recognized by an m−VCA for some m.

3 Properties of Visibly Counter Languages

We will present two properties which a VCL language L must fulfill to be in AC0. The first
property concerns the behavior of the height profiles of the words in L. Intuitively, we need
to be able to compute most of the height profile in AC0. The second property assumes that
the height profile is known and is about computing the states which the automaton will pass
on its run on the input. This is closely related to the property a regular language must have
to be in AC0.

In the following we will decompose the automaton so that we can handle the two properties
independently. After that we treat the two properties and show that L is not in AC0, if one
of the properties is violated. On the other hand we are able to build an FO[+] formula in
case L has these two properties.

3.1 Decomposition of the Automaton
We will split the computation of the automaton in two steps. The first part is the computation
of the height profile. The second one can be seen as the regular part of the language. Formally,
we will extend the alphabet to include the stack-height information up to a threshold. We
will consider a new language of words over the extended alphabet. This language will be
regular since the information for the decision which δi to use is already coded into the input.

Similar to a regular transducer we define a transduction that appends the height profile
to a given word. In the following we fix a visibly alphabet Σ̂ of Σ.

I Definition 3 (Height transduction). We let τm : Σ∗ → Σ∗m where Σm = Σ × {0, . . . ,m}.
With τm we assign to each position in the word its height up to the threshold m.

τm(w) = τm(w1w2 · · ·wn) =
(w1,∆m(ε))(w2,∆m(w1)) · · · (wi,∆m(w1 · · ·wi−1)) · · · (wn,∆m(w1 · · ·wn−1))

where ∆m(w) = min(∆(w),m). The transduction τm is only defined on words with a non-
negative height profile. We call a word in Σ∗m valid if it is in F (τm(Σ∗)). We also say that i
is the label of the letter (a, i) ∈ Σm.

I Example 4. If a is a push letter, and b a pop letter, then τ2(aaba) = (a, 0)(a, 1)(b, 2)(a, 1).

I Definition 5. For an m−VCA A = (Q, q0, F, Σ̂, δ0, . . . , δm) we define RA = L(M) where
M is a finite automaton M = (Q, q0, F,Σm, δ), with δ(q, (a, i)) = δi(q, a).

The following statement is obvious:

I Lemma 6. If A is an m−VCA, then w ∈ L(A) if and only if τm(w) ∈ RA.

3.2 Height Computation
In this section we investigate in which cases the transduction τm is expressible as an FO[+]
formula.

For this we need to be able to count the number of call letters minus the number of
return letters in the prefix, which is in general TC0-hard. Yet, if all the states that are
important to the height computation i.e. can occur in loops that have a “fixed slope”, then
the computation will be in AC0. We fix some m−VCA A.

STACS 2015

598 Visibly Counter Languages and Constant Depth Circuits

(q, h1)

(q, h2)
+γ

−γ

w

w′

∆(w′)
α|w′|

Figure 1 Visualization of a state q having fixed slope where α is the actual slope and γ is the
corridor. If w′ is a prefix of w then ∆(w′) has to stay in the corridor.

I Definition 7 (fixed slope). We say that a state q has a fixed slope if there are numbers
α ∈ Q and γ ∈ N so that if for all words w ∈ Σ∗ with (q, h1) w→ (q, h2) and h1 + ∆(w′) ≥ m
for all prefixes w′ of w it holds that:

h2 = α|w|+ h1
α|w′| − γ ≤ ∆(w′) ≤ α|w′|+ γ for all prefixes w′ of w

We call α the slope and γ the corridor of q.

Figure 1 shows the concept of this definition.
As we will see, we can think of states with a fixed slope as of those which do not pose a

problem when computing the stack height in FO[+]. However there can be states without a
fixed slope, which do not make the language too hard for FO[+], since it is possible that
the recognition of a word does not depend on its height profile any more if A has visited
such a state. This happens if from this point the height of the word can never reach height
levels below m any more. The next definition captures this idea by some kind of reachability
property. Figure 2 visualizes the idea.

I Definition 8 (active). A state q is active if there is a word w ∈ L(A) with positions
i and j, i < j, such that after reading w1 · · ·wi, A is in q, ∆(w1 · · ·wi) > m + |Q| and
∆(w1 · · ·wi)−∆(w1 · · ·wj) > |Q|.

Before we prove that for a VCL language L every active state needs to have a fixed slope
for L to be in AC0, we give an example of a typical case of a hard language.

I Example 9. Consider the language L = {(a|aba)nbn | n ∈ N}. This language is clearly in
VCL but there is no m−VCA for L where every active state has a fixed slope. In fact L
is not in AC0 because of this. We can reduce the TC0-hard language Equality ⊆ {0, 1}∗
to L. Let φ and ψ be morphisms with φ(0) = aaa, φ(1) = aba and ψ(0) = ψ(1) = bb. The
reduction is f(w) = φ(w)ψ(w) which is in AC0. As one can see, the number of push letters
a and pop letters b is in balance iff there are as many 0’s as 1’s: |f(w)|a = 3|w|0 + 2|w|1 =
|f(w)|b = |w|1 + 2|w|. This is equivalent to |w|0 = |w|1.

In the following lemma and its proof, we generalize the idea of the previous example.

I Lemma 10. If a language L ∈ VCL is recognized by an m−VCA which has an active state
without a fixed slope, then L is not in AC0.

A. Krebs, K.-J. Lange, and M. Ludwig 599

∆(w)

w

m

m+ |Q|

i j

q

|Q|q′

q′

Figure 2 The state q is an active state since there is a word w ∈ L such that q occurs at position
i with a height above m+ |Q| and there is a word position j with a height difference of |Q| compared
to i. By this we know that there is a down loop - in this case through state q′. This is used in
lemma 10.

Proof. Let A be an m−VCA with L = L(A) having a state q which is active but does not
have a fixed slope. This implies that there are words besides the empty word forming a loop
through q. In fact, there must be two words u and v which loop through q with |u| = |v| and
∆(u) > ∆(v). Also there must exist a word w ∈ L with certain properties: intuitively w has
a “high” position, and thus there must be loops going up to and down from that position
and one loop goes through q. In the following we assume q to be responsible for an up loop.
The case where q is responsible for the down loop can be treated similarly. To be precise, w
has the following properties:

Using position i from the definition of active, in the run q appears in position i and w
has a height above m+ |Q| in i.
Because of the existence of position j with smaller height (a difference of at least |Q|+ 1),
there must be a down loop. Let q′ be a state looped when going down.
We can partition w into w = αβγ with α = w1 · · ·wi and q′ is reached after αβ the first
time, i.e. never in between α and αβ.
There is a word x ∈ Σ∗ looping through q′. We assume that −∆(x) > ∆(αβ), which is
equivalent to ∆(αβx) < 0.

It is important to note that between α and αβ the height never falls below m.
In the following we want to reduce the language Equality ⊆ {0, 1}∗, which is in TC0

but not in AC0, to L by using the following pumping approach:

αu−k∆(x)βxk∆(u)γ ∈ L

for all k ≥ 0. This is true, since ∆(u−k∆(x)) = −∆(xk∆(u))
We define the following words: u′ = u−2∆(x), v′ = v−2∆(x), and x′ = x∆(u)+∆(v).
The key property is ∆(u′u′) > ∆(u′v′) = −∆(x′x′) > ∆(v′v′) and |u′| = |v′|. We define

the morphisms φ, ψ : {0, 1}∗ → Σ∗ with φ(0) = u′, φ(1) = v′ and ψ(0) = ψ(1) = x′ and the
map f : w 7→ αφ(w)βψ(w)γ. Since for all morphisms we used it holds that for two words of
same length, the images have the same length, f is computable in AC0.

For w ∈ {0, 1}∗, let w̄ be the word, where 0 and 1 are switched, e.g. w = 0100, then
w̄ = 1011. We now have w ∈ Equality ⇔ f(w) ∈ L ∧ f(w̄) ∈ L. This is true since if w
has more 0’s than 1’s (or vice versa) then either ∆(f(w)) or ∆(f(w̄)) is negative (which is

STACS 2015

600 Visibly Counter Languages and Constant Depth Circuits

∆(w)

w ∈ Σ∗

m

q

q

q

q

q

q

∆(w)

w ∈ Σ∗
m

q

q

q

Figure 3 The left example shows an active state which might have a fixed slope (at least the
pictured situation is no counter example). Through q we get an up loop and after the word has
reached a height level below m, q can be reached again. In the right example however we see that q
is active and does not have a fixed slope.

ensured by the condition −∆(x) ≥ ∆(αβ) we had on x) and such words cannot be accepted
by some Vca. So f is in fact a reduction and hence L 6∈ AC0. J

In the proof of the previous lemma, we saw that we get a property of the accepted
language. If we have two automata for some language and one of them has an active state
without a fixed slope and the other one does not then we get a contradiction using a pumping
argument.

I Corollary 11. If for some m−VCA A every active state has a fixed slope then in all VCA
for L(A) the active states have fixed slopes.

This corollary justifies to formulate a property of languages:

I Definition 12 (simple height behavior). If in some VCA all active states have a fixed slope,
we say that the recognized language has simple height behavior.

Figure 3 shows situations being relevant for this property.
We now assume L(A) has simple height behavior. In this case we can compute a sufficient

approximation of the matching predicate in FO[+] and in turn use this predicate to define a
stack height predicate.

We would like to define the matching predicate in FO[+] that is true for all words w with
two positions i, j that are matching positions, i.e. Σcall(wi) and Σret(wj) and wi+1 . . . wj−1
is well-matched. Even if a language L is in FO[+], the matching predicate is not necessarily
in FO[+]. Hence we only approximate the matching predicate from below, i.e. we only have
false negatives and recognize all matching pairs of positions that are needed later.

First, we need to define some helper predicates that allow us to verify that the height
profile of some factor wi+1 . . . wj has a slope α and stays within a corridor ±γ around this
slope and the height profile is above some minimal value hl.

I Definition 13. For every α ∈ Q and γ ∈ N we define a 5-ary predicate Bα,γ(x, y, s, t, l)
such that: wx=i,y=j,s=hs,t=ht,l=hl

|= Bα,γ(x, y, s, t, l) iff
∆(wi+1 . . . wj) = ht − hs,
for all i < k ≤ j we have ∆(wi+1 . . . wk) > hl − hs,
for all i < k ≤ j we have α|wi+1 . . . wk| − γ ≤ ∆(wi+1 . . . wk) ≤ α|wi+1 . . . wk|+ γ, and
∆(wi+1 . . . wj) = α|wi+1 . . . wj |.

A. Krebs, K.-J. Lange, and M. Ludwig 601

I Lemma 14. For any α ∈ Q and γ ∈ N, the predicate Bα,γ(x, y, s, t, l) can be defined in
FO[+].

I Lemma 15. Given an m−VCA A, such that L = L(A) has simple height behavior, we
can define a binary predicate M in FO[+] such that for every w ∈ Σ∗ and positions i, j of w:

wx=i,y=j |= M(x, y) implies that the position i matches the position j in w.

If w ∈ L and there is a k > i with ∆(w1 . . . wk) ≤ m and the position i matches the
position j then wx=i,y=j |= M(x, y).

To prove this, we will first define such a predicate for positions i, j that both have stack
height larger than m+ |Q| and then define it inductively for smaller stack heights.

Fix a word w and i, j. The question is, how to verify that i and j are matching positions.
To do so, we need to verify that wi is a push letter, wj is a pop letter and the word
z = wi+1 . . . wj−1 is well-matched.

For intuition we first consider a simple case. Assume that z ∈ (Σ∗callΣ∗ret)k, then we
could guess the 2k − 1 positions x1, . . . , x2k−1 where we switch between push and pop
letters. We would verify that we push more on the stack than pop for every prefix of z, i.e.
x1 − (x2 − x1) ≥ 0, x1 − (x2 − x1) + (x3 − x2)− (x4 − x3) ≥ 0, . . . Finally we need to test if
the sum of the length of the intervals with push letters is equal to the sum of the length of
the intervals with pop letters.

Unfortunately we cannot assume that there is a constant k such that all words z are
of this form. But we have a similar form for each factor z where we need to test if it is a
well-matched word if the whole word w belongs to L. Assume here that w is well-matched.
Since w ∈ L there is an accepting run for w, hence every state occurring in an interval of
height at least m+ |Q| is an active state, and every active state has a fixed slope. Let q be
an active state that appears more than once in the run of w inside of z. Let k, l be the first
and last position inside z where the state q occurs. Then the height difference ∆(zk . . . zl) is
αq · (l − k), where αq is the slope of the state q. Since there are only finitely many states,
we can split z into a fixed number of intervals such that in each interval the stack height
is “nearly linear” increasing or decreasing or being constant. If we cannot find such a fixed
number of intervals then w cannot be in L. The following lemma will formalize this idea.

I Lemma 16. Given a language L ⊆ Σ∗ in VCL with simple height behavior, we can define
a binary predicate M>m+|Q| in FO[+] such that for every w ∈ Σ∗ and positions i, j of w:

wx=i,y=j |= M>m+|Q|(x, y) implies the position i matches the position j in w.

If w ∈ L and ∆(w1 . . . wi) > m+ |Q| and there is a k > i with ∆(w1 . . . wk) ≤ m and the
position i matches the position j then wx=i,y=j |= M>m+|Q|(x, y).

Proof. We will first give the intuition on how to define the predicate M>m+|Q|. Then we will
show if M>m+|Q| is true that the positions i, j are actually matching positions, and finally
that for w ∈ L and i, j matching positions with stack height at least m, the predicate is true.

Let L be accepted by some m−VCA A. Following the idea above our formula will need to
guess at most n = |Q|+ 1 points z0, . . . , zn and the “slope” between these points represented
by a state q1, . . . , qn. Finally we guess the stack-height h0, . . . , hn at the points z0, . . . , zn
relative to ∆(w1 . . . wi−1).

STACS 2015

602 Visibly Counter Languages and Constant Depth Circuits

x z1z2 z3z4z5z6 z7z8z9 z10
z11z12

z13 z14z15
y

slope of q3 sl. of q7 slope of q10 slope of q14

Figure 4 Example for positions of z1, . . . , z15 fitting to the input word.

M>m+|Q|(x, y) = x < y ∧ Σcall(x)∧ Σret(y) ∧∨
(q1,...,qn)∈Qn ∃z0 . . . ∃zn∃h1 . . . ∃hn

z0 = x ∧ zn = y − 1 ∧ h0 = hn
n−1∧
i=0

zi ≤ zi+1 ∧Aqi+1(zi, zi+1, hi, hi+1, h0)

The formulas A are defined below.
The idea is that the formula Aqi+1 needs to verify that the guess was correct in the sense

that the slope in interval zi + 1 . . . zi+1 is equal to the slope of qi+1 having a stack height
difference of hi+1 − hi. Note that we do not have to guess the state of the accepting run, but
only some state with the same slope. In the case of an interval length 0 or 1 the formula
Aqi+1 will ignore the state qi+1 and directly check if the height difference is zero respectively
corresponds to the single letter. See figure 4 as a sketch.

Finally we define the formula Aqi+1(zi, zi+1, hi, hi+1, h0):
If zi = zi+1 ∧ hi = hi+1 ∧ hi > h0 then the formula is true.
If zi + 1 = zi+1 the formula is true if hi = hi+1 − 1 ∧ hi > h0 (resp. hi = hi+1 ∧ hi > h0
or hi = hi+1 + 1 ∧ hi+1 > h0) and Σcall(zi+1) (resp. Σint(zi+1) or Σret(zi+1)).
In the case that zi + 1 < zi+1 we use the predicate Bα,γ(zi, zi+1, hi, hi+1, h0) where α is
the slope and γ the corridor of q.
Otherwise the predicate is false.

Finally, we need to verify that with our definition of M>m+|Q| we satisfy the conditions
of the lemma. The first condition is certainly true as guessing and verifying the stack height
always is correct if all A predicates are true. For the second condition we need to show that
is satisfies to guess n “turning points”. We only consider the case w ∈ L, hence there is an
accepting run of w and the sequence of states within the positions of x and y since w ∈ L
and the height profile will be below m at some point in the suffix all states of the accepting
run are active states and hence have fixed slope. If the distance of x and y is less than n
we could simple guess all states in this sequence. But their distance might be larger, hence
we compress this sequence. For a state with a fixed slope the whole interval between the
first and last occurrence should have a fixed slope and hence can be recognized by a single
A predicate. So in the compressed sequence states with a fixed slope will occur only once.
Hence it satisfies to guess n “turning points”. J

At this point we have defined the predicate M>m+|Q|. We can now define predicates Mk

for height k under the assumption we have defined Mk+1 already. This way we inductively
get M0.

A. Krebs, K.-J. Lange, and M. Ludwig 603

I Example 17. Consider L = {a(anbn)∗b | n ∈ N}. If w ∈ L then the first and the last
letter of w match but the number of intervals can be arbitrary large. There is a 2−VCA for
L but no 1−VCA. This reflects in the matching predicates.

Proof of Lemma 15. By the previous lemma we have a predicate M>m+|Q|. Fix a word w.
Any two positions i, j are matching positions if and only if wi ∈ Σcall, wj ∈ Σret, and every
push letter ws with i < s < j is matched to a pop letter wt with i < s < t < j. Note that if
i, j are at stack height h then s, t will be always at stack height > h, hence we can test if i, j
are matched testing matching in between only for words of larger stack height.

Mk(x, y) = Mk+1(x, y)
∨ x < y ∧ Σcall(x) ∧ Σret(y)
∧ ∀z(x < z < y ∧ ¬Σint(z))⇒ (∃z′x < z′ < y ∧ (Mk+1(z, z′) ∨Mk+1(z′, z))

Note that the first line in the definition of Mk, ensures that the power to recognize a matching
increases from Mk+1 to Mk. This way M0 will be true for all matchings which can occur in
a word in L. Hence M(x, y) = M0(x, y). J

A position is of stack height 0 if all call-positions in the prefix have matching return-
positions in the prefix. Similar a position is of stack height i if there are i call-positions in
the prefix with push letters and all positions are matched by positions in the same interval
generated by those i positions.

I Lemma 18. For every constant 0 ≤ j < m, we can define a monadic predicate Hk(x) in
FO[+] such that:

wx=i |= Hj(x) then ∆(w1 . . . wi−1) = k for arbitrary w ∈ Σ∗.
wx=i |= Hj(x) iff ∆(w1 . . . wi−1) = k for all w ∈ L.

Proof. A position i has stack height k iff all but k call letters in the prefix w1 . . . wi−1 match.
It is obvious that this can be defined in FO[+] using our matching predicates.

The matching predicates might have false negatives resulting in false negatives of Hk.
But in the case of w ∈ L and the case that the height at position i is k < m the matching
predicate is exact on the prefix w1 . . . wi−1 and hence the height is correctly presented by
Hk. J

We let H≥m = ¬
∨m−1
k=0 Hk be the negation of these predicates. Hence for w /∈ L the

predicate might have false-positives, i.e., the predicate might suggest a stack-height greater
or equal to m while in fact it is less than m.

3.3 The Regular Part
In this section we will show a second property which in addition to the property of the
previous section - simple height behavior - is sufficient to characterize the visibly counter
languages in AC0. This second property concerns RA. If RA is in FO[Reg] and if L has
simple height behavior, then we can build an FO[+] formula for L. Unfortunately there are
cases where RA is not in FO[Reg], but still L is in FO[+]. The problem here is that there
can be words which are witness for ηRA not being quasi-aperiodic, but which are not images
of τm; then we cannot deduct that L is not in AC0.

First we introduce a normal-form on visibly counter automata which concerns loops.
In the following definition we call a state q dead if there is no w = w1w2 ∈ L, so that
(q0, 0) w1→ (q, h) w2→ (q′, h′) with h ≥ m.

STACS 2015

604 Visibly Counter Languages and Constant Depth Circuits

I Definition 19. Anm−VCA A is called loop-normal if for all x, y ∈ Σ∗ with ∆(xy1 · · · yk) ≥
m for 0 ≤ k ≤ |y| and (q0, 0) x→ (q, h1) y→ (q, h2), q ∈ Q then either q is a dead state or there
is z ∈ Σ∗ with xyz ∈ L(A) and one of the following is true, depending on ∆(y):

If ∆(y) > 0, then there is a partition of z into z = z1z3 and a word z2 ∈ Σ∗ so that for
all i ≥ 0 we have that xyyiz1z

i
2z3 ∈ L(A).

If ∆(y) < 0, then there is a partition of x into x = x1x3 and a word x2 ∈ Σ∗ so that for
all i ≥ 0 we have that x1x

i
2x3yy

iz ∈ L(A).
If ∆(y) = 0, then xyiz ∈ L for all i ≥ 0.

We also require that δi = δm for m− |Q| < i < m.

The idea of this definition is, that if a prefix reaches a state in A that can be completed
to a word in L then no matter how many loops through this state are appended, the word
can still be completed to a word in L.

I Lemma 20. For everym−VCA A recognizing a language L there is a loop-normal m′−VCA
A′ recognizing L.

In this proof A is equipped with a modulo |Q|! counter coded into the states. This way the
looping word y (let us say ∆(y) > 0 here) has a height which is a multiple of |Q|!. Using
this, one can find the corresponding down looping word z′2. Then ∆(y) is a multiple of ∆(z′2)
and so one can construct z2 from z′2 with ∆(y) = −∆(z2).

The intersection of the regular languages and AC0 is characterized by the quasi-aperiodicity
of the syntactic morphism. A regular language R is in AC0 iff ηR(Σt) has only trivial groups
for all t. If R 6∈ AC0 then there exist words of equal length spanning a group. In this case we
can use those words to build an AC0 reduction from an ACC0

k-hard language to R. The same
we want to do with RA. Unfortunately there can be words of equal length spanning a group
in the syntactic monoid of RA but still L = L(A) is in AC0. The reason is that actually
we are only interested in RA ∩ τm(Σ∗), i.e. in a restricted set of inputs. This intersection
however is not regular any more.

In the following we use τm(Σ∗) which is the set of restricted inputs we are interested in.
It contains prefixes of labeled well-matched words. The set F (τm(Σ∗)) is the set of factors of
words in τm(Σ∗). Keep in mind that τm is not defined for inputs with negative height-profile,
e.g. τm(ba) is undefined if a is a push and b a pop letter.

I Lemma 21. If A is a loop-normal m−VCA then if there is a number t > 0 and a set
G ⊆ Σt

m with G∗ ⊆ F (τm(Σ∗)) so that the set ηRA(G) contains a non-trivial group, then
L 6∈ AC0.

This is proved by reducing Modk for some k to L which is possible if the property is met.
If so, the words generating a group can be appended after each other so that they still are a
valid input.

I Lemma 22. If for all t > 0 and for all G with G ⊆ Σt
m and G∗ ⊆ F (τm(Σ∗)) the set

ηRA(G) does not contain a non-trivial group, then there is an FO[Reg] formula φ with

L(φ) ∩ τm(Σ∗) = RA ∩ τm(Σ∗).

The proof is based on the proof in [19] which constructs an FO[Reg] formula for quasi-
aperiodic languages. We have a weaker property than quasi-aperiodicity, so we have to treat
groups which might occur. We can show that if our weaker property is met, occurring groups
can be eliminated without chancing the language under the restricted inputs.

A. Krebs, K.-J. Lange, and M. Ludwig 605

4 Results

If we combine our statements from the previous section, we get the following results.

I Theorem 23. For a loop-normal m−VCA A, L = L(A) is in AC0 if and only if
L(A) has simple height behavior and
for all t > 0 and for all G ⊆ Σtm with G∗ ⊆ F (τm(Σ∗)) the set ηRA(G) does not contain
a non-trivial group.

Proof. We already proved the direction from left to right with lemmas 10 and 21.
If we have A where all active states have a fixed slope and the formula φ from lemma 22, we

can build an FO[+] formula for L: Begin with the FO[Reg] formula φ. This formula operates
on the alphabet Σm and uses letter predicates Q(a,k)x. We replace them by (Qa(x) ∧Hk(x))
if k < m and by (Qa(x) ∧H≥m(x)) if k = m. The resulting formula is φ′ and operates over
Σ.

If a word w is in L then w |= φ′. The only thing we have to take care of are false positives
in the H≥m predicate which we mentioned earlier in the paper. A false positive here can
only occur if there is a non-active state q without fixed slope. This state loops up and never
comes down to m again (otherwise it would be active). So if we have a word which visits q
but reaches a height smaller than m after q, it cannot be in L. But then there is a word
w′ = w1xw2, where w1 brings A in the state q, x loops through q, ∆(x) > m and w = w1w2.
On w′, H≥m will not have a false positive, since after q the word is always above m. Also w′
cannot be in L and if w′ 6∈ L then also w 6∈ L. Hence if w 6∈ L then w 6|= φ′. J

In the proof of the previous theorem we constructed an FO[+] formula for every VCL in
AC0. We can state our main result in different ways:

I Corollary 24. The following statements are true:
VCL ∩ FO[arb] ⊆ FO[+].
VCL ∩AC0 ⊆ FO[+].
VCL ∩AC0 ⊆ DLOGTIME− uniformAC0.

It is easy to verify that all the properties of the previous lemma are decidable. Hence we
have an effective characterization.

I Corollary 25. Given some visibly counter automaton A, it is decidable whether L(A) lies
in AC0, resp. in FO[+].

Proof. Given A, we have to check for all states of A if they are active and if they have a
fixed slope. If there is an active state without fixed slope then L(A) 6∈ AC0.

For deciding if a state q ∈ Q has fixed slope, make a list of all words looping through q
up to length |Q|. Then clalculate the slope of all words. They are all equal iff q has a fixed
slope.

For deciding if a state q is active, check if there is a word x with ∆(x) > m+ |Q| which
brings A in state q. This is as hard as the membership problem for VCL. If such an x exists
then check for all words y ∈ Σ∗ up to length ∆(x)|Q| if xy ∈ L(A) and if there is a prefix y′
of y with ∆(x)−∆(y′) > |Q|. If such a y exists then q is active.

Finally we have to decide our modified quasi-aperiodicy property. First of all, t can be
bounded by a constant relative to the syntactic monoid of RA, where A is a loop-deterministic
automaton for L. Then there are only finitely many sets G to consider. The requirement of
G∗ ⊆ F (τm(Σ∗)) is equivalent to GG ⊆ F (τm(Σ∗)) which then is also decidable. J

STACS 2015

606 Visibly Counter Languages and Constant Depth Circuits

5 Discussion

Algebraic methods usable for languages up to now mainly pertain to finite monoids, i.e. to
regular languages. We see our results as a step towards the further application of algebraic
methods in the non-regular case. A natural continuation of this line of research would be an
algebraic theory for visible pushdown languages and their subclasses. A promising approach
to go here might be the use of forest algebras [6].

The characterization of the regular languages in AC0 as the class FO[Reg] used the notion
of quasi-aperiodic regular sets which is of an algebraic nature. Our result is oriented in this
direction, but is not as algebraic. It still leaves open to characterize exactly the set of all
visible counter languages contained in AC0 in terms of logic.

In [14] the notion of dense completeness has been introduced. A family of formal languages
F is said to be densely complete in a complexity class C if both F ⊂ C and for each C ∈ C
there exists a F ∈ F so that C ≤ F and F ≤ C, i.e.: F and C have the same complexity.
While the context-free languages turn out to be densely complete in the class SAC1, the
regular languages are not densely complete in the class NC1. As a consequence of our
result we are able to show unconditionally that the visible one-counter languages, which are
contained in NC1, are not densely complete in NC1. Up to now, dense families of formal
languages are known for the non-deterministic classes, NSPACE(log n), SAC1, and NP, only.

In our work we explored the intersection of a formal language class and a circuit-based
complexity class. Aside from the pair AC0 and VCL, there are some other combinations
worth being investigated using our methods.

References
1 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,

STOC, pages 202–211. ACM, 2004.
2 Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown

languages. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual
Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-
25, 2006, Proceedings, volume 3884 of Lecture Notes in Computer Science, pages 420–431.
Springer, 2006.

3 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

4 David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis Thérien. Reg-
ular languages in NC1. J. Comput. Syst. Sci., 44(3):478–499, 1992.

5 David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of NC1.
J. ACM, 35(4):941–952, 1988.

6 Mikolaj Bojańczyk and Igor Walukiewicz. Forest algebras, 2007.
7 Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-in circuits and

associative functions. J. Comput. Syst. Sci., 30(2):222–234, 1985.
8 Patrick W. Dymond. Input-driven languages are in log n depth. Inf. Process. Lett.,

26(5):247–250, 1988.
9 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-

time hierarchy. In FOCS, pages 260–270, 1981.
10 Yuri Gurevich and Harry R. Lewis. A logic for constant-depth circuits. Information and

Control, 61(1):65–74, 1984.
11 Johan Håstad. Almost optimal lower bounds for small depth circuits. In STOC, pages

6–20. ACM, 1986.

A. Krebs, K.-J. Lange, and M. Ludwig 607

12 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–
778, 1987.

13 Neil Immerman. Descriptive Complexity. Springer, New York, 1999.
14 Andreas Krebs and Klaus-Jörn Lange. Dense completeness. In Hsu-Chun Yen and Oscar H.

Ibarra, editors, Developments in Language Theory - 16th International Conference, DLT
2012, Taipei, Taiwan, August 14-17, 2012. Proceedings, volume 7410 of Lecture Notes in
Computer Science, pages 178–189. Springer, 2012.

15 Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uniformity for
boolean circuits. SIAM J. Comput., 39(7):3186–3206, 2010.

16 Robert McNaughton and Seymour Papert. Counter-free automata. With an appendix by
William Henneman. Research Monograph No.65. Cambridge, Massachusetts, and London,
England: The M. I. T. Press. XIX, 163 p., 1971.

17 Kurt Mehlhorn. Pebbling mountain ranges and its application to dcfl-recognition. In
Jaco de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming,
volume 85 of Lecture Notes in Computer Science, pages 422–435. Springer Berlin Heidelberg,
1980.

18 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190–194, 1965.

19 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
Boston, 1994.

20 H. Venkateswaran. Properties that characterize LOGCFL. J. Comput. Syst. Sci., 43(2):380–
404, 1991.

21 Heribert Vollmer. Introduction to circuit complexity - a uniform approach. Texts in theo-
retical computer science. Springer, 1999.

STACS 2015

Optimal Decremental Connectivity in Planar
Graphs∗

Jakub Łącki1 and Piotr Sankowski2

1 University of Warsaw
Warsaw, Poland
j.lacki@mimuw.edu.pl

2 University of Warsaw
Warsaw, Poland
sank@mimuw.edu.pl

Abstract
We show an algorithm for dynamic maintenance of connectivity information in an undirected
planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the
form ‘Are vertices u and v connected with a path?’ in constant time. The queries can be
intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)
time. This results improves over previously known O(n log n) time algorithm.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases decremental connectivity, planar graphs, dynamic connectivity, algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.608

1 Introduction

The dynamic graph connectivity problem consists in maintaining connectivity information
about an undirected graph, which is undergoing modifications. Typically, the modifications
are additions or removals of edges or vertices. In this paper we focus on the problems in
which each modification adds or removes a single edge. These problems have three variants:
in the incremental version, edges can only be added to the graph, in the decremental one
the edges may only be removed, whereas in the fully dynamic version both edge insertions
and deletions are allowed. Graph updates are intermixed with a set of connectivity queries
of the form ‘Are vertices u and w in the same connected component?’

We consider the decremental connectivity problem for planar graphs, and show an al-
gorithm that may answer connectivity queries in constant time and process any sequence
of edge deletions in O(n) time. The previously known best running time of O(n log n) was
obtained by using the fully dynamic algorithm. We assume word-RAM model with standard
operations.

∗ Jakub Łącki is a recipient of the Google Europe Fellowship in Graph Algorithms, and this research
is supported in part by this Google Fellowship. Piotr Sankowski is partially supported by ERC grant
PAAl no. 259515, NCN grant "Efficient planar graph algorithms" and the Foundation for Polish Science.

© Jakub Łącki and Piotr Sankowski;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 608–621

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.608
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Łącki and P. Sankowski 609

1.1 Prior work

It is easy to see that incremental graph connectivity can be solved using an algorithm for
the union-find problem. It follows from the result of Tarjan [16] that a sequence of t edge
insertions and t queries can be handled in O(tα(t)) time, where α(t) is the extremely slowly
growing inverse Ackermann function.

There has been a long line of research considering the fully dynamic connectivity in
general graphs [6, 3, 8, 10, 19, 11, 21]. The best currently known algorithms have polylog-
artithmic update and query time. Thorup [19] has shown a randomized Monte Carlo al-
gorithm with O(log n(log log n)3) amortized update and O(log n/ log log log n) query time.1
An algorithm by Wulff-Nilsen [21] handles updates in slightly worse O(log2 n/ log log n)
amortized time, but it is deterministic and answers queries in O(log n/ log log n) time. The
best algorithm with worst-case update guarantee is a randomized algorithm by Kapron,
King and Mountjoy [11], which processes updates in O(log5 n) time and answers queries in
O(log n/ log log n) time. However, if we require a deterministic algorithm with worst-case
running time guarantee, nothing better than a O(

√
n) time algorithm is known [6, 3, 2].

For the decremental variant, Thorup [18] has shown a randomized algorithm, which can
process any sequence of edge deletions in O(m log(n2/m) + n(log n)3(log log n)2) time and
answers queries in constant time. Here, m is the initial number of edges in the graph. If
m = Θ(n2), the update time is O(m), whereas form = Ω(n(log n log log n)2) it is O(m log n).

The picture is much simpler in case of planar graphs. Eppstein et. al [5] gave a fully
dynamic algorithm which handles updates and queries in O(log n) amortized time, but
requires that the graph embedding remains fixed. For the general case (i.e., when the
embedding may change) Eppstein et. al [4] gave an algorithm with O(log2 n) worst-case
update time and O(log n) query time.

In planar graphs, the best known solution for the incremental connectivity problem is
the union-find algorithm. However, for the special case when the final resulting planar graph
is given upfront, and the edge insertions and queries are given later in a dynamic fashion
Gustedt [7] has shown an O(n) time algorithm. On the other hand, for the decremental
problem nothing better than a direct application of the fully dynamic algorithm is known.
This is different from both general graphs and trees, where the decremental connectivity
problems have better solutions than what could be achieved by a simple application of
their fully dynamic counterparts. In case of general graphs, the best total update time
was O(m log n) [18] (except for very sparse graphs, including planar graphs), compared
to O(m log n(log log n)3) time for the fully dynamic variant. For trees, only O(n) time is
necessary to perform all updates in the decremental scenario [1], while in the fully dynamic
case one can use dynamic trees and obtain O(log n) worst case update time.

There has also been some progress in obtaining lower bounds for dynamic connectivity
problems. Tarjan and La Poutré [17, 15] have shown that incremental connectivity requires
Ω(α(n)) time per operation on a pointer machine. Henzinger and Fredman [9] considered the
fully dynamic problem and RAM model and obtained a lower bound of Ω(log n/ log log n),
which also works for plane graphs. This was improved by Demaine and Pǎtraşcu [14] to a
lower bound of Ω(log n) in cell-probe model. The lower bound holds also for plane graphs.

1 Throughout the paper we use n and m to denote, respectively, the number of vertices and the number
of edges in the graph.

STACS 2015

610 Optimal Decremental Connectivity in Planar Graphs

1.2 Our results
We show an algorithm for the decremental connectivity problem in planar graphs, which
processes any sequence of edge deletions in O(n) time and answers queries in constant time.
This improves over the previous bound of O(n log n), which can be obtained by applying
the fully dynamic algorithm by Eppstein [5], and matches the running time of decremental
connectivity on trees [1].

In fact, we present a O(n) time reduction from the decremental connectivity problem to a
collection of incremental problems in graphs of total size O(n). These incremental problems
have a specific structure: the set of allowed union operations forms a planar graph and is
given in advance. As shown by Gustedt [7], such a problem can be solved in linear time. Our
result shows that in terms of total update time, the decremental connectivity problem in
planar graphs is definitely not harder than the incremental one. It should be noted that the
union-find algorithm can process any sequence of k query or update operations in O(kα(n))
time, while in our algorithm we are only able to bound the time to process any sequence of
edge deletions.

Moreover, since fully dynamic connectivity has a lower bound of Ω(log n) (even in plane
graphs) shown by Demaine and Pǎtraşcu [14], our results imply that in planar graphs decre-
mental connectivity is strictly easier than the fully dynamic one. We suspect that the same
holds for general graphs, and we conjecture that it is possible to break the Ω(log n) bound
for a single operation of a decremental connectivity algorithm, or the Ω(m log n) bound for
processing a sequence of m edge deletions.

Our algorithm, unlike the majority of algorithms for maintaining connectivity, does not
maintain the spanning tree of the current graph. As a result, it does not have to search for a
replacement edge when an edge from the spanning tree is deleted. Our approach is based on
a novel and very simple approach for detecting bridges, which alone gives O(n log n) total
update time. We use the fact that a deletion of edge uw in the graph causes some connected
component to split if both sides of uw belong to the same face. This condition can in turn be
verified by solving an incremental connectivity problem in the dual graph. When we detect
a deletion that splits a connected component, we start two parallel DFS searches from u

and w to identify the smaller of the two new components. Once the first search finishes, the
other one is stopped. A simple argument shows that this algorithm runs in O(n log n) time.

We then show that the DFS searches can be speeded up using an r-division, that is a
decomposition of a planar graph into subgraphs of size at most r = log2 n. This gives an
algorithm running in O(n log log n) time. For further illustration of this idea we show how to
apply it twice in order to obtain an O(n log log log n) time algorithm. Then, we observe that
the O(n log log log n) time algorithm reduces the problem of maintaining connectivity in the
input graph to maintaining connectivity in a number of graphs of size at most O(log2 log n).
The number of such graphs is so small that we can simply precompute the answers for
all of them and use these precomputed answers to obtain the main result of the paper.
The preprocessing of all graphs of bounded size is again an idea that, to the best of our
knowledge, has never been previously used for designing dynamic graph algorithms.

1.3 Organization of the paper
In Section 2 we introduce notation and recall some of the concepts that we later use. The fol-
lowing sections describe our algorithm. We start with the description of the simple O(n log n)
time algorithm in Section 3, and then in every section we show an improvement in the run-
ning time.

J. Łącki and P. Sankowski 611

In Section 4 we show how to use r-division to get an O(n log log n) algorithm. Sec-
tion 5, shows how to improve the reduction, so that it can be used more than once, which
results in an O(n log log log n) time algorithm. Finally, in Section 6 we show how to solve
the decremental connectivity in optimal time for graphs of size O(log2 log n), after initial
preprocessing. This, combined with the reduction applied twice, gives the main result of the
paper.

2 Preliminaries

Let G = (V,E) be an undirected, unweighted planar graph, and n = |V |. By V (G), E(G)
and F (G) we denote the sets of vertices, edges and faces of G. The Euler’s formula states that
|V (G)| − |E(G)|+ |F (G)| = |CC(G)|+ 1, where CC(G) is the set of connected components
of G. The dual graph G∗ is constructed from G by embedding a single vertex in every face
of G and connecting the vertices in adjacent faces of G. Note that if two faces f1, f2 share
more than one edge, G∗ has multiple edges between f1 and f2.

In the paper we deal with algorithms that maintain the connectivity information about
a graph G subject to edge deletions. By the total running time we denote the total time of
handling deletions of all edges from the graph.

The identifier of a connected component (henceforth denoted cc-identifier) is a value as-
signed to a vertex v ∈ V , which uniquely identifies the connected component of G, i.e., two
vertices have the same cc-identifier if and only if they belong to the same connected com-
ponent. The cc-identifiers change as the edges are deleted, and they may not be preserved
after edge deletion. An algorithm maintains cc-identifiers explicitly if after every deletion
it returns the list of changes to the cc-identifiers. We assume that cc-identifiers are inte-
gers that require log n + O(1) bits.2 Note that an algorithm which maintains cc-identifiers
explicitly can be simply turned into an algorithm with constant query time. In order to
answer a query regarding two vertices, it suffices to compare the cc-identifiers of the two
vertices. By definition, the vertices are in the same connected component if and only if their
cc-identifiers are equal.

Let us now recall the notion of an r-division. A region R is an edge-induced subgraph
of G. A boundary vertex of a region R is a vertex v ∈ V (R) that is adjacent to an edge
e 6∈ E(R). We denote the set of boundary vertices of a region R by ∂(R). An r-division
P of G is a partition of G into O(n/r) edge-disjoint regions (which might share vertices),
such that each region contains at most r vertices and O(

√
r) boundary vertices. The set of

boundary vertices of a division P, denoted ∂(P) is the union of the sets ∂(R) over all regions
R of P. Note that |∂(P)| = O(n/

√
r).

I Lemma 1 ([13, 20]). Let G = (V,E) be an n-vertex biconnected triangulated planar graph
and 1 ≤ r ≤ n. An r-division of G can be constructed in O(n) time.

Let G be a planar graph. In the preprocessing phase of our algorithms, we build an
r-division of G. This r-division will be updated in a natural way, as edges are deleted from
G. Namely, when an edge is deleted from the graph, we update its r-division by deleting
the corresponding edge. However, if we strictly follow the definition, what we obtain may
no longer be an r-division.

For that reason, we loosen the definition of an r-division, so that it includes the divisions
obtained by deleting edges. Consider an r-division P built for a graph G. Moreover, let G′

2 Throughout this paper, log n denotes binary logarithm.

STACS 2015

612 Optimal Decremental Connectivity in Planar Graphs

Figure 1 The graphs from the proof of Lemma 3. Edges of G are drawn with solid black lines,
whereas the gray lines depict edges that have been deleted from G. The small squares are vertices
of DG, and the dotted lines are edges of DG.

be a graph obtained from G by deleting edges, and let P ′ be the r-division P updated in
the following way. Let R be a region of P. Then, we define the graph R′ in P obtained by
removing edges from R to be a region of P ′, although it may no longer be an edge-induced
subgraph of G′, e.g., it may contain isolated vertices. Similarly, we define the set of boundary
vertices of P ′ to be the set of boundary vertices of P. Again, according to this definition,
a boundary vertex v of P ′ may be incident to edges of a single region (because the edges
incident to v that belonged to other regions have been deleted). In the following, we say
that P ′ is an r-division of G′.

Since Lemma 1 requires the graph to be biconnected and triangulated, in order to obtain
an r-division for a graph which does not have these properties, we first add edges to G to
make it biconnected and triangulated, then compute the r-division of G, and then delete
the added edges both from G and its division.

Without loss of generality, we can assume that each vertex v ∈ V has degree at most 3.
This can be assured by triangulating the dual graph in the very beginning. In particular,
this assures that each vertex belongs to a constant number of regions in an r-division.

3 O(n log n) Time Algorithm

Let G be a planar graph subject to edge deletions. We call an edge deletion critical if and
only if it increases the number of components of G, i.e., the deleted edge is a bridge in G. We
first show a dynamic algorithm that for every edge deletion decides, whether it is critical.
It is based on a simple relation between the graph G and its dual.

I Lemma 2. Let G be a planar graph subject to edge deletions. There exists an algorithm
that for each edge deletion decides whether it is critical. It runs in O(n) total time.

Proof. The intuition behind the proof is as follows. We maintain the number of faces in
G. In order to do that, when an edge e is deleted, we simply merge faces on both sides of
e (if they are different from each other). This can be implemented using union-find data
structure on the vertices of the dual graph.

More formally, we build and maintain a graph DG. Initially, this is a graph consisting
of vertices of G∗ (faces of G). When an edge is deleted from G, we add its dual edge to
DG (see Fig. 1). Clearly, the connected components of DG are exactly the faces of G. Since
edges are only added to DG, we can easily maintain the number of connected components
in DG with a union-find data structure.

J. Łącki and P. Sankowski 613

This allows us to detect critical deletions in G. After every edge deletion, we know the
number of edges and vertices of G. Moreover, we know that the number of faces of G is
equal to the number of connected components of DG, which we also maintain. As a result,
by Euler’s formula, we get the number of connected components of G, so in particular we
may check if the deletion caused the number of connected components to increase. The
algorithm executes O(n) find and union operations on the union-find data structure.

In addition to that, the sequence of union operations has a certain structure. Let G1
be the initial version of the graph G (before any edge deletion). Observe that each union
operation takes as arguments the endpoints of an edge of G∗1. The variant of the union-
find problem, in which the set of allowed union operations forms a planar graph given
during initialization, was considered by Gustedt [7]. He showed that for this special case of
the union-find problem there exists an algorithm that may execute any sequence of O(n)
operations in O(n) time (for an n-vertex planar graph). Thus, we infer that our algorithm
runs in O(n) time. J

We can now use Lemma 2 to show a simple decremental connectivity algorithm that
runs in O(n log n) total time.

I Lemma 3. Let G be a planar graph subject to edge deletions. There exists a decremental
connectivity algorithm that for every vertex of G maintains its cc-identifier explicitly. It
runs in O(n log n) total time.

Proof. We use Lemma 2 to detect critical deletions. When an edge uw is deleted, and the
deletion is not critical, nothing has to be done. Otherwise, after a critical deletion, some
connected component C breaks into two components Cu and Cw (u ∈ Cu, w ∈ Cw) and we
start two parallel depth-first searches from u and w. We stop both searches once the first of
them finishes. W.l.o.g. assume that it is the search started from u. Thus, we know that the
size of Cu is at most half of the size of C.3 We can now iterate through all vertices of Cu and
change their cc-identifiers to a new unique number. All these steps require O(|Cu|) time.
The running time of the algorithm is proportional to the total number of changes of the
cc-identifiers. Since every vertex changes its identifier only when the size of its connected
component halves, we infer that the total running time is O(n log n). J

4 O(n log log n) Time Algorithm

In order to speed up the O(n log n) algorithm, we need to speed up the linear depth-first
searches that are run after a critical edge deletion. We build an r-division P of G for r =
log2 n and use a separate decremental connectivity algorithm to maintain the connectivity
information inside each region. On top of that, we maintain a skeleton graph that represents
connectivity information between the set of boundary vertices (and possibly some other
vertices that we consider important). Loosely speaking, since the number of boundary
vertices is O(n/ log n) we can pay a cost of O(log n) for maintaining the cc-identifier for
each of them.

I Definition 4. Consider an r-division P of a planar graph G = (V,E) and a set Vs (called
a skeleton set), such that ∂(P) ⊆ Vs ⊆ V . The skeleton graph for P and Vs is a graph over
the skeleton set Vs and some additional auxiliary vertices. Consider a region R of P. Group

3 Since the graph has constant degree, we may assure that both searches are synchronized in terms of
the number of visited vertices.

STACS 2015

614 Optimal Decremental Connectivity in Planar Graphs

(a)
(b)

(c) (d) (e)

Figure 2 Panels 2a and 2b show a sample graph G and its r-division into three regions (boundary
vertices are marked with small circles). In panel 2c there is graph G′ obtained from G by a sequence
of edge deletions. Panel 2d shows its r-division obtained from the r-division of G (again, boundary
vertices are marked with small circles). Finally, panel 2e contains the skeleton graph of G′. Auxiliary
vertices are marked with squares.

vertices of Vs ∩ V (R) into sets V1, . . . , Vk, such that two vertices belong to the same set if
and only if there is a path in R that connects them. For each set Vi add a new auxiliary
vertex wi and add an edge wix for every x ∈ Vi.

For illustration, see Fig. 2.

I Lemma 5. The skeleton graph has O(|Vs|) vertices and edges.

Proof. For each region R, we add at most one vertex and edge per each vertex of Vs∩V (R).
Since each vertex belongs to a constant number of regions, we get the desired bound. J

I Lemma 6. If u,w ∈ Vs, then u and w are connected in the skeleton graph if and only if
they are connected in G.

Proof. Consider a region R of the r-division. From the construction it follows that two
vertices of Vs ∩ V (R) are connected in G with a path inside R iff they are connected in the
part of the skeleton graph built for this region.
(=⇒) Follows directly from the above observation.
(⇐=) Consider a path P in G between u and w. Break this path into subpaths at each
element of Vs. Since ∂(P) ⊆ Vs ⊆ V , each resulting subpath is fully contained in one region
of the r-division. Clearly, from the property given at the beginning of the proof, for each
subpath there exists a corresponding path in the skeleton graph. J

In our algorithm we will update the skeleton graph of G, as edges are deleted. Similarly
to the O(n log n) algorithm, we need a way of detecting whether an edge deletion in G

increases the number of connected components in the skeleton graph.

J. Łącki and P. Sankowski 615

I Lemma 7. Let G be a dynamic planar graph, subject to edge deletions. Assume that we
maintain its skeleton graph Gs computed for an r-division P and a skeleton set Vs. An edge
deletion in G causes an increase in the number of connected components in Gs if and only if
the deletion is critical in G and there exists a region of P, in which the deletion disconnects
some two vertices of Vs.

Before we proceed with the proof, let us note that all its conditions are necessary. In
particular, a critical deletion in G may not disconnect some two vertices of a skeleton set
in a region (e.g. edge uw in Fig. 2c, whose deletion does not affect the skeleton graph at
all). It may also happen that the deletion is not critical in G, but inside some region it
disconnects some two vertices of Vs (e.g. edge xy in Fig. 2c).

Proof. By Lemma 6, two vertices of Vs are connected in G iff they are connected in Gs.
(=⇒) If two vertices of Vs become disconnected in Gs, they also become disconnected in
G, so the edge deletion is critical. The deletion has to disconnect some two vertices in a
region, because otherwise the graph Gs would not change at all.
(⇐=) Assume that the deletion disconnected vertices u,w ∈ Vs in a region R. Thus, the
deleted edge was on some path from u to w. Since the edge deletion is critical in G, the
deleted edge was a bridge in G. After the deletion there is no path from u to w in G and
consequently also in Gs. J

Before we proceed with the algorithm, we show how to extend an algorithm maintaining
cc-identifiers with two useful operations.

I Lemma 8. Let G = (V,E) be a planar graph and let X ⊆ V . Assume there exists a
decremental connectivity algorithm that maintains cc-identifiers of a set X ⊆ V explicitly
and processes updates in Ω(n) total time. Then, we can extend the algorithm, so that:

after every edge deletion, if the deletion disconnects some two vertices of X, it reports a
pair of vertices that become disconnected,
given a cc-identifier, it returns a vertex v ∈ X with the same cc-identifier (or reports
that such a vertex does not exist).

The extended algorithm has the same asymptotic running time.

Proof. Since each cc-identifier can be encoded in log n+O(1) bits, there are O(n) possible
cc-identifiers. Thus, for each possible cc-identifier c, we maintain a list Lc of vertices of X,
whose cc-identifier is c. Note that maintaining these lists takes time that is linear in the
number of changes of cc-identifiers. Moreover, we need O(n) time to initialize the lists Lc.

Observe that the lists allow us to find a vertex of X of given cc-identifier in constant
time, so the second claim follows. To show the first claim, consider a case when after an
edge deletion some (but not all) elements from a list Lc are removed. All this elements
have to be added to a single list Lc′ and Lc′ must have been empty before the new elements
were added. This means that the number of distinct cc-identifiers have increased, and some
elements of X became disconnected. We can now take any u ∈ Lc and w ∈ Lc′ and report
that u and w became disconnected. J

We are ready to show the main building block of our O(n log log n) algorithm.

I Lemma 9. Let G be a planar graph. Assume there exists a decremental connectivity
algorithm that runs in f(n) time and maintains cc-identifiers explicitly. Then, there exists a
decremental connectivity algorithm that runs in O(n+n ·f(log2 n)/ log2 n) time and answers
queries in O(1) time.

STACS 2015

616 Optimal Decremental Connectivity in Planar Graphs

Proof. We build an r-division P of G for r = log2 n. By Lemma 1, this takes O(n) time.
For each region R of the division, we run the assumed decremental algorithm to handle edge
deletions. We use AR to denote the algorithm run for region R. AR maintains cc-identifiers
of V (R) explicitly. We call these cc-identifiers local cc-identifiers. We also extend each AR

according to Lemma 8, taking X = ∂(P) ∩ V (R). Moreover, we use Lemma 2 to detect
critical deletions in G.

We build the skeleton graph Gs for G, r-division P and a skeleton set Vs = ∂(P). We
maintain Gs, as edges are deleted, that is the deletions in G are reflected in Gs. This can
be done using the algorithms AR. By Lemma 8, AR can report that some two vertices of
Vs become disconnected inside R. This means that Gs needs to be updated. Observe that
the part of Gs inside a region R can be implicitly represented as a partition of Vs ∩ V (R),
where two vertices belong to the same element of the partition, if they are connected in R.
Thus, if a deletion causes t local cc-identifiers to change, we may update Gs in O(t) time.
As a result, the time for updating Gs is linear in the number of local cc-identifiers that are
changed.

For every vertex of Gs, we maintain its cc-identifier (called a global cc-identifier). Once
Gs is updated after an edge deletion, we use Lemma 7 to check whether the number of
connected components of Gs increased. According to the Lemma, it suffices to check whether
the deletion is critical in G (this is reported by the algorithm of Lemma 2), and whether some
two elements of the skeleton set became disconnected within some region (using Lemma 8).

When we detect that the number of connected components of the skeleton graph Gs has
increased, similarly to the O(n log n) algorithm, we run two parallel DFS searches to identify
the smaller of the two new connected components, and update the global cc-identifiers.

In order to answer a query regarding two vertices u and w, we perform two checks. First,
if the vertices belong to the same region, we check whether there exists a path connecting
them that does not contain any boundary vertices. This can be done by querying algorithm
AR for the appropriate region.

Then, we check whether there is a path from u to w that that contains some boundary
vertex. For each of the two vertices, we find two arbitrary boundary vertices bu and bw that
u and w are connected to (using Lemma 8). Then, we check whether bu and bw have the
same global cc-identifier.

Let us now analyze the running time. The algorithm of Lemma 2 requires O(n) time.
The algorithms AR take O(n · f(r)/r) = O(n · f(log2 n)/ log2 n) time. Lastly, we bound the
running time of the DFS searches performed to update the global cc-identifiers. We use an
argument similar to the one in the proof of Lemma 3. The skeleton graph has O(n/ log n)
vertices, and each global cc-identifier can change at most O(log(n/ log n)) = O(log n) times.
Hence, the DFS searches require O((n/ log n) log n) = O(n) time. The lemma follows. J

By applying Lemma 3 to Lemma 9, we obtain the following.

I Lemma 10. There exists a decremental connectivity algorithm for planar graphs that runs
in O(n log log n) total time.

Proof. The total update time of the algorithm of Lemma 3 is f(n) = O(n log n). Thus, the
running time is O(n+n·f(log2 n)/ log2 n) = O(n+n log2 n log log n/ log2 n) = O(n log log n).

J

J. Łącki and P. Sankowski 617

5 O(n log log log n) Time Algorithm

In order to obtain a faster algorithm, we would like to use Lemma 9 multiple times, starting
from the O(n log n) algorithm, and each time applying the Lemma to the algorithm obtained
in the previous step. This, however, cannot be done directly. While the Lemma requires an
algorithm that maintains all cc-identifiers explicitly, it does not produce an algorithm with
this property. We deal with this problem in this section.

Observe that in the proof of Lemma 9 we only needed the assumed decremental algorithm
to maintain the cc-identifiers of the vertices of the skeleton set. This fact can be exploited
in the following way. We show that if we have an algorithm that maintains cc-identifiers of
some vertices, we may construct another (possibly faster) algorithm with the same property.

I Lemma 11. Assume there exists a decremental connectivity algorithm for planar graphs
that, given a graph G = (V,E) and a set Ve ⊆ V (called an explicit set):

maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in f(n) +O(|Ve| log n) time,
may return the cc-identifier of any vertex in g(n) time,

where f(n) and g(n) are nondecreasing functions.
Then, there exists a decremental connectivity algorithm for planar graphs, which, given

a graph G = (V,E) and a set Ve ⊆ V :
maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in O(n+ |Ve| log n+ n · f(log2 n)/ log2 n) time,
may return the cc-identifier of any vertex in g(log2 n) +O(1) time.

Proof. We build an r-division P of G for r = log2 n. By Lemma 1, this takes O(n) time.
We also build a skeleton graph Gs, by taking a skeleton set Vs := Ve ∪ ∂(P). Hence,
|Vs| = |Ve|+ n/ log n.

For each region R of P, we run a copy AR of the assumed decremental connectivity
algorithm, extended according to Lemma 8. Observe that in the proof of Lemma 9, we only
need AR to explicitly maintain cc-identifiers of Vs ∩ V (R). Thus, the set of explicit vertices
for algorithm AR is Vs ∩ V (R). Hence, AR maintains local cc-identifiers of these vertices.

We maintain the graph Gs and its global cc-identifiers in the same way as in the proof
of Lemma 9. The only difference is that now the skeleton set Vs is bigger. Let us bound the
running time. First, algorithm AR uses f(log2 n) + O(|Vs ∩ V (R)| log n) time. Summing it
over all regions, we obtain∑

R∈P
f(log2 n) +O(|Vs ∩ V (R)| log n)

= O(n · f(log2 n)/ log2 n+ |Vs| log n)
= (n · f(log2 n)/ log2 n+ |Ve| log n+ n/ log n · log n)
= (n · f(log2 n)/ log2 n+ |Ve| log n+ n).

Note that we use the fact that each vertex is contained in a constant number of regions.
The the running time of depth-first searches used to update the global cc-identifiers is

O(|Vs| log n) = O(n/ log n · log n+ |Ve| log n) = O(n+ |Ve| log n).

Thus, the total update time is O(n+ |Ve| log n+ n · f(log2 n)/ log2 n).
Since the cc-identifiers of vertices of Gs are maintained explicitly, in particular we ex-

plicitly maintain the cc-identifiers of vertices of Ve. It remains to describe the process of

STACS 2015

618 Optimal Decremental Connectivity in Planar Graphs

computing the global cc-identifier of an arbitrary vertex v ∈ V . Assume that v belongs to a
region R (in case v is a boundary vertex, we may use an arbitrary region containing it). We
first query AR to obtain the local cc-identifier of v. We use Lemma 8 to check whether there
exists a vertex bv in Vs ∩ V (R) that has the same local cc-identifier as v. If this is the case,
since bv belongs to the skeleton set, we return its global cc-identifier (maintained explicitly).
Otherwise, we return a new cc-identifier by encoding as an integer a pair consisting of the
identifier of the region containing v (this requires logO(n/ log2 n) = log n+O(1)−2 log log n
bits) and the local cc-identifier of v (which requires log log2 n+O(1) = 2 log log n+O(1) bits).
Overall, the resulting cc-identifier requires log n+O(1) bits. Thus, obtaining a cc-identifier
of an arbitrary vertex requires g(log2 n) +O(1) time. J

The main advantage of Lemma 11 over Lemma 9 is that we may apply Lemma 11
recursively to obtain better algorithms. We can view applying Lemma 11 as reducing con-
nectivity in a graph of size n to connectivity in a collection of graphs of size log2 n. If we
apply Lemma 11 to itself, we obtain the following.

I Lemma 12. Assume there exists a decremental connectivity algorithm for planar graphs
that, given a graph G = (V,E) and a set Ve ⊆ V (called an explicit set):

maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in f(n) +O(|Ve| log n) time,
may return the cc-identifier of any vertex in g(n) time,

where f(n) and g(n) are nondecreasing functions.
Then, there exists a decremental connectivity algorithm for planar graphs, which, given

a graph G = (V,E) and a set Ve ⊆ V :
maintains cc-identifiers of the vertices of Ve explicitly,
processes updates in O(n+ |Ve| log n+ n · f(log2 log2 n)/ log2 log2 n) time,
may return the cc-identifier of any vertex in g(log2 log2 n) +O(1) time.

Proof. We apply Lemma 11 to the assumed algorithm and obtain an algorithm with total
update time f1(n) +O(|Ve| log n), where f1(n) = O(n+n · f(log2 n)/ log2 n) and query time
g1(n) = g(log2 n) + O(1). Then, we apply the Lemma again to the new algorithm and get
a new algorithm, whose total update time is

O(n+ |Ve| log n+ n · f1(log2 n)/ log2 n) =
= O(n+ |Ve| log n+ n(log2 n+ log2 n · f(log2 log2 n)/ log2 log2 n)/ log2 n)
= O(n+ |Ve| log n+ n · f(log2 log2 n)/ log2 log2 n).

It answers queries in g(log2 log2 n) +O(1) time. J

We may now apply Lemma 12 to the simple O(n log n) algorithm (see Lemma 3) to
obtain the following.

I Lemma 13. There exists a decremental connectivity algorithm, which processes any se-
quence of updates in O(n log log log n) time.

Proof. The simple algorithm processes updates in f(n) = O(n log n) time. Thus, we have
f(log2 log2 n) = O((log2 log2 n) log(log2 log2 n)) = O((log2 log2 n) log log log n), so the total
update time is O(n log log log n). Since g(n) = O(1), the query time is constant. J

J. Łącki and P. Sankowski 619

6 O(n) Time Algorithm

In this section we finally show an algorithm that runs in O(n) time. Observe that in
Lemma 12, we run the assumed decremental algorithm on graphs of size log2 log2 n. However,
the number of all such graphs is so small, that we may precompute all necessary connectivity
information for all of them.

I Lemma 14. Let w be the word size and log n ≤ w. After preprocessing in o(n) time,
we may repeatedly initialize and run algorithms for decremental maintenance of connected
components in graphs of size t = O(log2 log n). These algorithms may be given a set of
vertices Ve, and maintain the cc-identifiers of vertices of Ve explicitly. An algorithm for a
graph of size t runs in O(t+ |Ve| log t) time and may return the cc-identifier of every vertex
in O(1) time.

Proof. We will call the set Ve the explicit set. The state of the algorithm is uniquely
described by the current set of edges in the graph and the explicit set. There are 2t(t−1)/2

labeled undirected graphs on t vertices (including non-planar graphs) and O(2t) possible
explicit sets. Thus, there are O(2t2) possible states, which, for t = O(log2 log n) gives
2O(log4 log n) = 2o(log n) = o(n). In particular, each state can be encoded as a binary string
of length O(log4 log n) which fits in a single machine word.

For each state, we precompute cc-identifiers. Moreover, for each pair of state and an edge
to be deleted, we compute the changes to the cc-identifiers of vertices in the explicit set.
Observe that if the edge deletion is critical, we simply need to compute the set of vertices in
the smaller out of the two connected components that are created and store the intersection
of this set and Ve. These vertices should be assigned new, unique cc-identifiers.

We encode the graph by a binary word of length O(log4 log n), where each bit represents
an edge between some pair of vertices. Thus, when an edge is deleted, we may compute the
new state of the algorithm in constant time by switching off a single bit. For any planar
graph and any sequence of deletions, the number of changes of cc-identifiers of vertices of
Ve is O(|Ve| log n) (using the analysis similar to the one from the proof of Lemma 3). The
query time is constant, since the cc-identifiers are maintained explicitly. For each of the
2O(log4 log n) states, we require O(log4 log n) preprocessing time. Thus, the preprocessing
time is o(n). J

We may now apply Lemma 12 to the algorithm of Lemma 14 to obtain the main result
of this paper.

I Theorem 15. There exists a decremental connectivity algorithm for planar graphs that
supports updates in O(n) total time and answers queries in constant time.

7 Conclusion and Open Problems

We have shown a reduction from the decremental connectivity problem in planar graphs to
incremental connectivity. As a result, we obtain an algorithm for decremental connectiv-
ity that processes all updates in optimal O(n) time and answers queries in constant time.
This shows that the total time complexity of the deceremental problem is not Ω(n log n),
which seemed to be a natural bound. In other words we have shown that a lower bound of
Ω(n log n), that would be an analogous to the lower bound in [14], cannot hold for decre-
mental algorithms in planar graphs. We actually conjecture that even for general graphs
with O(n) edges there exists an o(n log n) time decremental algorithm.

STACS 2015

620 Optimal Decremental Connectivity in Planar Graphs

An interesting question would be to study the worst-case time complexity of decremental
connectivity in planar graphs, which has not been fully understood yet. And, contrary to
the incremental problem, no nontrivial lower bounds are known.

References
1 Stephen Alstrup, Jens P. Secher, and Maz Spork. Optimal on-line decremental connectivity

in trees. Inf. Process. Lett., 64(4):161–164, 1997.
2 David Eppstein, Zvi Galil, and Giuseppe F Italiano. Improved sparsification. Information

and Computer Science, University of California, Irvine, 1993.
3 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification -

a technique for speeding up dynamic graph algorithms. J. ACM, 44:669–696, 1997.
4 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based

sparsification: I. Planarity testing and minimum spanning trees. J. Comput. Syst. Sci.,
52(1):3–27, 1996.

5 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992.

6 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985.

7 Jens Gustedt. Efficient union-find for planar graphs and other sparse graph classes. Theo-
retical Computer Science, 203(1):123 – 141, 1998.

8 Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. J. ACM, 46(4):502–516, July 1999.

9 Monika Rauch Henzinger and Michael L. Fredman. Lower bounds for fully dynamic con-
nectivity problems in graphs. Algorithmica, 22(3):351–362, 1998.

10 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001.

11 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’13, pages 1131–1142. SIAM, 2013.

12 Sanjeev Khanna, editor. Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013.
SIAM, 2013.

13 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator de-
compositions for planar graphs in linear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 505–514. ACM, 2013.

14 Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006.

15 Johannes A. La Poutré. Lower bounds for the union-find and the sp;it-find problem on
pointer machines. J. Comput. Syst. Sci., 52(1):87–99, 1996.

16 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, 1975.

17 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. J. Comput. Syst. Sci., 18(2):110–127, 1979.

18 Mikkel Thorup. Decremental dynamic connectivity. J. Algorithms, 33(2):229–243, 1999.
19 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In F. Frances Yao and

Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 343–350. ACM, 2000.

J. Łącki and P. Sankowski 621

20 Freek van Walderveen, Norbert Zeh, and Lars Arge. Multiway simple cycle separators and
I/O-efficient algorithms for planar graphs. In Khanna [12], pages 901–918.

21 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Khanna
[12], pages 1757–1769.

STACS 2015

Testing Small Set Expansion in General Graphs∗

Angsheng Li1 and Pan Peng1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences
angsheng@iso.ac.cn

2 Department of Computer Science, Technische Universität Dortmund
pan.peng@tu-dortmund.de

Abstract
We consider the problem of testing small set expansion for general graphs. A graph G is a (k, φ)-
expander if every subset of volume at most k has conductance at least φ. Small set expansion has
recently received significant attention due to its close connection to the unique games conjecture,
the local graph partitioning algorithms and locally testable codes.

We give testers with two-sided error and one-sided error in the adjacency list model that
allows degree and neighbor queries to the oracle of the input graph. The testers take as input
an n-vertex graph G, a volume bound k, an expansion bound φ and a distance parameter ε > 0.
For the two-sided error tester, with probability at least 2/3, it accepts the graph if it is a (k, φ)-
expander and rejects the graph if it is ε-far from any (k∗, φ∗)-expander, where k∗ = Θ(kε)
and φ∗ = Θ(φ4

min{log(4m/k),logn}·(ln k)). The query complexity and running time of the tester are
Õ(
√
mφ−4ε−2), where m is the number of edges of the graph. For the one-sided error tester, it

accepts every (k, φ)-expander, and with probability at least 2/3, rejects every graph that is ε-far
from (k∗, φ∗)-expander, where k∗ = O(k1−ξ) and φ∗ = O(ξφ2) for any 0 < ξ < 1. The query
complexity and running time of this tester are Õ(

√
n
ε3 + k

εφ4).
We also give a two-sided error tester in the rotation map model that allows (neighbor, index)

queries and degree queries. This tester has asymptotically almost the same query complexity
and running time as the two-sided error tester in the adjacency list model, but has a better
performance: it can distinguish any (k, φ)-expander from graphs that are ε-far from (k∗, φ∗)-
expanders, where k∗ = Θ(kε) and φ∗ = Θ(φ2

min{log(4m/k),logn}·(ln k)).
In our analysis, we introduce a new graph product called non-uniform replacement product

that transforms a general graph into a bounded degree graph, and approximately preserves the
expansion profile as well as the corresponding spectral property.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases graph property testing, small set expansion, random walks, spectral
graph theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.622

1 Introduction

Graph property testing is an effective algorithmic paradigm to deal with real-world networks,
the scale of which has become so large that it is even impractical to read the whole input. In

∗ Both authors are partially supported by the Grand Project “Network Algorithms and Digital Information”
of the Institute of software, Chinese Academy of Sciences and by a National Basic Research Program
(973) entitled computational Theory on Big Data of Cyberspace, grant No. 2014CB340302. The second
author acknowledges the support of ERC grant No. 307696.

© Angsheng Li and Pan Peng;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 622–635

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.622
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Li and P. Peng 623

the setting of testing a graph property P , we are given as input a graph G and we want to
design an algorithm (called tester) to distinguish the case that G has property P from the
case that G is “far from” the property P with high success probability (say 2/3). Here, the
notion of being “far from” is parameterized by a distance parameter ε. In most situations, a
graph G is said to be ε-far from property P if one has to modify at least an ε fraction of the
representation (or edges) of G to obtain a graph G′ with property P . We assume the input
graph G can be accessed through an oracle OG and the goal is to design property testers
that make as few queries as possible to OG.

Since the seminal work of Goldreich and Ron [17], many testers have been developed for
different graph properties, such as k-colorability, bipartiteness, acyclicity, triangle-freeness
and many others. Most of these testers apply only to the adjacency matrix model or the
adjacency list model, depending on the types of queries the testers are allowed to ask the
oracle. The former model is most suitable for dense graphs and general characterizations on
the testability of a property in this model has been given (e.g., [2]). The latter model is most
suitable for sparse graphs, and several property testers using the techniques of local search
or random walks are known, while it is not well understood what properties are testable in
constant time in this model. Even less is known about testers, testability results or even
models for general graphs (see recent surveys [36, 14]).

In this paper, we focus on property testers for general graphs. We will consider the
adjacency list model that allows degree queries and neighbor queries to the oracle of the
graph [31]. For the degree query, when specified a vertex v, the oracle returns the degree of
v; for the neighbor query, when specified a vertex v and an index i; the oracle returns the
ith neighbor of v. The adjacency list model also applies to the bounded degree graphs with
an additional restriction that a fixed upper-bound was assumed on the degrees [17]. We will
also consider a new model which we call rotation map model that allows degree queries and
(neighbor, index) queries to the oracle [24]. For the (neighbor, index) query, when specified a
vertex v and an index i, the oracle returns a pair (u, j) such that u is the ith neighbor of v
and j is the index of u as a neighbor of v. Note that the rotation map model is at least as
strong as the adjacency list model.

We study the problem of testing small set expansion for general graphs. Given a graph
G = (V,E) with n vertices and m edges, and a set S ⊆ V , let the volume of S be the sum of
degree of vertices in S, that is, vol(S) :=

∑
v∈S degG(v), where degG(v) denotes the degree

of vertex v. Define the conductance of S as φ(S) := e(S,V \S)
vol(S) , where e(S, V \S) is the number

of edges leaving S; and define the k-expansion profile of G as φ(k) := minS:vol(S)≤k φ(S). A
graph G is called a (k, φ)-expander if φ(k) ≥ φ, that is, all the subsets in G with volume at
most k have conductance at least φ. We will refer to small set expander as (k, φ)-expander
and refer to small set expansion as φ(k).

Besides of the relation to the mixing time of random walks [26], small set expansion has
been of much interest recently for its close connection to the unique games conjecture [32, 7],
the design of local graph partitioning algorithms in massive graphs [39, 5, 6, 30, 22], and
locally testable codes that are testable with linear number of queries [8]. Approximation
algorithms and spectral characterizations for the small set expansion problem have been
studied [7, 25, 23, 22, 30, 29]. It is natural to ask if one can efficiently (in sublinear time)
test if a graph is a small set expander.

1.1 Our results
We give testers for small set expansion in the adjacency list model as well as the rotation
map model for general graphs. We use the common definition of distance between graphs.

STACS 2015

624 Testing Small Set Expansion in General Graphs

More precisely, a graph G with m edges is said to be ε-far from a (k, φ)-expander if one
has to modify at least εm edges of G so that it becomes a (k, φ)-expander. We will assume
throughout the paper that m = Ω(n) (and a brief discussion is given in Section 2), while the
algorithm is not given as input the number of edges m.

1.1.1 Testers in adjacency list model
Our first result is a property tester for small set expansion with two-sided error in the
adjacency list model.

I Theorem 1. Given degree and neighbor query access to an n-vertex graph, a volume bound
k, a distance parameter ε and a conductance bound φ, there exists an algorithm that with
probability at least 2/3, accepts any graph that is a (k, φ)-expander, and rejects any graph that
is ε-far from any (k∗, φ∗)-expander, where k∗ = Θ(kε) and φ∗ = Θ(φ4

min{log(4m/k),logn}·(ln k)),
where m is the number of edges of G. The query complexity and running time of the algorithm
are Õ(

√
mφ−4ε−2).

Note that the running time of the tester matches the best known algorithms for testing
the conductance of G which corresponds to the case k = m (see further discussions below).

As a byproduct of our analysis for the above two-sided error tester, we obtain a one-sided
error tester (that accepts every (k, φ)-expander) by invoking a local algorithm for finding
small sparse cuts. We show the following result.

I Theorem 2. Given degree and neighbor query access to an n-vertex graph, a volume
bound k, a conductance bound φ, and a distance parameter ε, there exists an algorithm that
always accepts any graph that is a (k, φ)-expander, and with probability at least 2/3 rejects
any graph that is ε-far from any (k∗, φ∗)-expander, where k∗ = O(k1−ξ) and φ∗ = O(ξφ2)
for any 0 < ξ < 1. Furthermore, whenever it rejects a graph, it provides a certificate that
the graph is not a (k, φ)-expander in the form of a set of volume at most k and expansion at
most φ. The query complexity and running time of the algorithm are Õ(

√
n
ε3 + k

εφ4).

Note that ξ is not necessarily a constant, and the running time of the above algorithm is
sublinear in m for k = O(m

logΩ(1) n
) and constant φ.

1.1.2 Tester in rotation map model
We also give a two-sided error tester in the rotation map model. Note that the gap of the
conductance value in completeness and soundness here is smaller than the corresponding gap
in the tester in adjacency list model.

I Theorem 3. Given degree and (neighbor, index) query access to an n-vertex graph,
a volume bound k, a distance parameter ε and a conductance bound φ, there exists an
algorithm that with probability at least 2/3, accepts any graph that is a (k, φ)-expander,
and rejects any graph that is ε-far from any (k∗, φ∗)-expander, where k∗ = Θ(kε) and
φ∗ = Θ(φ2

min{log(4m/k),logn}·(ln k)), where m is the number of edges of G. The query complexity
and running time of the algorithm are Õ(

√
mφ−2ε−2).

1.1.3 Graph transformation
The analysis of the above two-sided error tester involves analyzing random walks on a
bounded degree graph by the spectral property of small set expander and a new graph

A. Li and P. Peng 625

product which we call non-uniform replacement product that transforms every graph (with
possible multiple edges and self-loops) into a bounded degree graph, and in the process, the
expansion profile of the resulting graph does not differ by much from that of the original
graph. This transformation may be of independent interest, and we present the formal result
below. Let LG be the normalized Laplacian matrix of a graph G and let λi(G) denote the
ith smallest eigenvalues of LG.

I Theorem 4. Let φ < 1 and k ≤ m. For any graph G = (V,E) with n vertices and m
edges, there exists a 16-regular graph G′ with Θ(m) vertices such that
1. If S ⊆ V (G) is a subset in G with φG(S) ≤ φ, then there exists a set S′ ⊆ V (G′), such

that |S′| = Θ(volG(S)) and φG′(S′) ≤ φ/16;
2. If for any set S ⊂ V (G) with volG(S) ≤ k, φG(S) ≥ φ, then

(a) for any S′ ⊆ V (G′) with |S′| ≤ Θ(k), φG′(S′) = Ω(φ2).
(b) for any α > 0, it holds that λ (1+α)2m

k

(G′) = Ω(α6φ2(log 2m
k)−1), and λ(2m

k)1+α(G′) =
Ω(αφ2 logn 2m

k). Furthermore, if k = m, then λ2(G′) = Ω(φ2).

Note that by recent spectral characterization of small set expansion of G and the
preconditions of the Item 2 of Theorem 4, we have λ (1+α)2m

k

(G) = Ω(α6φ2(log 2m
k)−1),

λ(2m
k)1+α(G) = Ω(αφ2 logn(2m/k)), and if k = m, λ2(G) = Ω(φ2) (see Section 2.2). Also

we stress that Item 2b above is not a direct consequence of Item 2a and inequalities in
Section 2.2, and its proof involves a more refined spectral analysis. The main point from G

to G′ is that the property of small set expansion is well preserved and the maximum degree
is also greatly reduced, which is comparable to work on constructions from high degree
expanders to constant degree expanders (see eg.,[33, 4]).

1.2 Other related work
There is an interesting line of research on testing the special case of the (k, φ)-expander for
k = m, which is often abbreviated as φ-expander. The corresponding quantity φ(m) is often
called the expansion (or conductance) of G [19]. Goldreich and Ron [16] have proposed an
expansion tester for bounded degree graphs in the adjacency list model. The tester (with
different setting parameters) has later been analyzed by Czumaj and Sohler [11], Nachmias
and Shapira [28], and Kale and Seshadhri [20], and it is proven that the tester can distinguish
d-regular φ-expanders from graphs that are ε-far from any d-regular Ω(ηφ2)-expanders for
any η > 0. The query complexity and running time of the tester are O(n

0.5+η

φ2 (ε−1 log n)O(1)),
which is almost optimal by a lower bound of Ω(

√
n) given by Goldreich and Ron [17]. Li,

Pan and Peng [24] give an expansion tester in the rotation map model with query complexity
and running time Õ(m

1/2+η

φ2 (ε−1 log n)O(1)) for general graphs that matches the best known
tester for bounded degree graphs. We remark that when k = m, our two-sided tester in the
rotation map model can be also guaranteed to test the conductance φ(m) of G with the same
running time and approximation performance. In [24], a product called non-uniform zig-zag
product was proposed to transfer an arbitrary graph into a bounded degree graph. However,
the analysis there is more involved and does not seem to generalize to the k-expansion profile
for any k ≤ m as considered here. Our analysis here is both simple and applicable to the
broader case.

The techniques of random walks have also been used to test bipartiteness under different
models [15, 21, 10]. In particular, Kaufman et al. extend the bipartiteness tester in bounded
degree graphs to general graphs [21] and they also used the idea of replacing high degree
vertices by expander graphs. Furthermore, we will also use their techniques for emulating

STACS 2015

626 Testing Small Set Expansion in General Graphs

random walks (by performing queries to the oracle of the original graph) and sampling
vertices almost uniformly in the transformed graph. However, the transformed graph in [21]
may still have large maximum degree (that may be twice the average degree of the original
graph), which is not applicable to our case. Ben-Eliezer et al. studied the strength of different
query types in the context of property testing in general graphs [9]. The analysis for the
expansion of the replacement product (and the zig-zag product) of two regular graphs are
introduced in [35, 33, 37, 34].

1.3 Organization of the paper
The rest of the paper is organized as follows. In Section 2 we give some basic definitions
and introduce the tools for our analysis. Then we introduce the non-uniform replacement
product and show its property in Section 3. In Section 4, we give all our testers and prove
the performance of these testers. Finally, we give a short conclusion in Section 5. All missing
proofs can be found in the full version of the paper1.

2 Preliminaries

Let G = (V,E) be an undirected and simple graph with |V | = n and |E| = m. Let degG(v)
denote the degree of a vertex v. As mentioned in the introduction, we consider the adjacency
list model and the rotation map model. In the adjacency list model, the graph is represented
by its adjacency list, which is also accessible through an oracle access OG, and the algorithm
is allowed to perform degree and neighbor queries to OG. In the rotation map model, the
graph is represented by its rotation map that for each vertex u and an index i ≤ degG(u),
in the (u, i)th location of the representation the pair (v, j) is stored such that v is the ith
neighbor of u and u is the jth neighbor of v. We are given an oracle access OG to the rotation
map of G and allowed to perform degree queries and (neighbor, index) queries to OG. We
remark that the rotation map model is at least as strong as the adjacency list model. For a
graph with maximum degree bounded by d, we assume that d is a constant independent of n.

For a vertex subset S ⊆ V , let eG(S, V \S) be the number of edges leaving S. Let
volG(S) :=

∑
v∈S degG(v) and φG(S) := eG(S, S̄)/volG(S) be the volume and the conductance

of S in G, respectively. Note that volG(G) := volG(V) = 2|E|. In the following, when it
is clear from context, we will omit the subscript G. Define the k-expansion profile of G
as φ(k) := minS:vol(S)≤k φ(S). In particular, φ(m) is often referred to the conductance (or
expansion) of G and we let φ(G) := φ(m). A graph is called a φ-expander if φ(G) ≥ φ.

I Definition 5. A graph G is a (k, φ)-expander if φ(k) ≥ φ. Equivalently, G is a (k, φ)-
expander if for every S ⊆ V with volume vol(S) ≤ k has conductance φ(S) ≥ φ.

We have the following definition of graphs that are ε-far from (k, φ)-expanders.

I Definition 6. A graph G is ε-far from any (k, φ)-expander if one has to modify at least
εm edges of G to obtain a (k, φ)-expander.

As mentioned before, we will assume that m = Ω(n), as otherwise, there exists n− o(n)
isolated vertices in G, and the graph cannot be a (k, φ)-expander even for constant k and
any φ > 0. Furthermore, since we will only sample a constant number of vertices (as we do

1 Full version available at http://arxiv.org/abs/1209.5052

http://arxiv.org/abs/1209.5052

A. Li and P. Peng 627

in all our testers), then with high probability, the sampled vertices are all isolated, and in
this case, we can safely reject the graph.

We will use bold letters to denote row vectors. For any vector p ∈ RV , let p(S) :=∑
v∈S p(v) and let ‖p‖1 =

∑
v∈V |p(v)|, ‖p‖2 =

√∑
v∈V p(v)2 denote the l1, l2-norm of p,

respectively. Let supp(p) be the support of p. Let 1S be the characteristic vector of S, that
is, 1S(v) = 1 if v ∈ S and 1S(v) = 0 otherwise. Let 1v := 1{v}.

2.1 Lazy random walks
We now introduce some tools that will be used in the design and analysis of our algorithms.
The following also applies to graphs with possible multiple edges and/or self-loops. First,
we define the lazy random walks on G. In a lazy random walk, if we are currently at vertex
v, then in the next step, we choose a random neighbor u with probability 1/2 degG(v) and
move to u. With the remaining probability 1/2, we stay at v.

For a given graph G, let A denote its adjacency matrix and let D denote the diagonal
matrix such that Du,u = deg(u) for any u. Let I denote the identity matrix. Then
W := (I +D−1A)/2 is the probability transition matrix of the lazy random walk of G. Note
that if p0 is a probability distribution on V , then p0W

t denotes distribution of the endpoint
of a length t lazy random walk with initial distribution p0. In particular, we let ptv = 1vW t

be the probability distribution of the endpoint of a walk of length t starting from vertex v.
Furthermore, we let ‖ptv‖2

2 denote the collision probability of such a walk.
For any lazy random walk matrix W = I+D−1A

2 , it is well known that all its eigenvalues
are real (see eg. [30]). Furthermore, if we let η1(W) ≥ · · · ≥ ηn(W) denote the eigenvalues
of W , then 0 ≤ ηi(W) ≤ 1 for any i ≤ n.

2.2 Spectral characterization of expansion profile
For a graph G, let L := I −D−1/2AD−1/2 be the normalized Laplacian matrix of G. Let

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 be eigenvalues of L. It is straightforward to verify that
ηi = 1 − λi

2 for any 1 ≤ i ≤ n, where ηi is the ith largest eigenvalue of the lazy random
walk matrix W of G. We have the following lemmas relating the expansion profile and the
eigenvalues of L.

I Lemma 7 (Cheeger inequality, [3, 1, 38]). For every graph G, we have λ2
2 ≤ φ(G) ≤

√
2λ2.

I Lemma 8 ([23, 25]). For every graph G, h ∈ N and any α > 0, we have φ((1+α)2m
h) ≤

O(1
α3

√
λh log h).

I Lemma 9 ([40, 30, 29]). For every graph G, h ∈ N and any α > 0, we have φ(2m
h1−α) ≤

O(
√

(λh/α) logh n).

We remark that in some of references (eg. [23]), the k-expansion profile is defined to be
the minimum conductance over all possible subsets of size at most k, rather than the volume
measurement as defined here. However, their proofs imply that Lemma 8 and 9 also hold for
our case.

2.3 A local algorithm for finding small sparse sets
We will need the following local algorithm for finding small sparse set to give a one-sided
error tester in general graphs as well as to analyze the soundness of our testers. Here, the
local algorithm takes as input a vertex v and only explores a small set of the vertices and

STACS 2015

628 Testing Small Set Expansion in General Graphs

edges that are “close” to v, if the volume k of the target set is small. It only needs to perform
degree queries and neighbor queries to the oracle of the input graph.

LocalSS(G, v, T, δ)
1. Let q0 = 1v. For each time 0 ≤ t ≤ T :

a. Define p̃t such that p̃t(u) = qt(u) if qt(u) ≥ δ deg(v) and p̃t(u) = 0 if
qt(u) < δ deg(v). Compute qt+1 := p̃tW .

b. Let st = |supp(p̃t)|. Order the vertices in supp(p̃t) so that p̃t(v1)
deg(v1) ≥

p̃t(v2)
deg(v2) ≥ · · · ≥

p̃t(vst)
deg(vst) .

c. For each 1 ≤ i ≤ st, let Si,t be the first i vertices in this ordering.
2. Output the subgraph X with the smallest conductance among all the sets
{Si,t}0≤t≤T,1≤i≤st .

The performance of the above algorithm is guaranteed in the following lemma, which follows
by combining Proposition 8 in [30] and Theorem 2 [22]. (More specifically, the first part of
the lemma is Proposition 8 in [30] and the “Furthermore” part of the lemma follows from
the proof of Theorem 2 [22]. See also the paragraph “Independent Work” in [22])

I Lemma 10. Let G = (V,E) and t ≥ 1. If S ⊆ V satisfies that φ(S) ≤ ψ, then there exists
a subset Ŝ ⊆ S such that vol(Ŝ) ≥ vol(S)/2, and for any v ∈ Ŝ, we have ptv(S) ≥ c1(1− 3ψ

2)t
for some constant c1 > 0. Furthermore, if vol(S) ≤ k, then the algorithm LocalSS, with
parameters G, v, T = O(ζ log k

ψ), δ = O(k
−1−ζ

T) for any ζ > 0, will find a set X such that
vol(X) ≤ O(k1+ζ) and φ(X) ≤ O(

√
ψ/ζ). The algorithm can be implemented in time

Õ(k1+2ζψ−2).

3 Non-uniform replacement product

In this section, we give the definition of non-uniform replacement product and also show its
property, which will be used in our testers for general graphs. Let G = (V,E) be a graph with
possible multiple edges or self-loops and with minimum degree δ ≥ d. Let H = {Hu}u∈V be
a family of |V | graphs. The graph family H is called a proper d-regular graph family of G
if for each u ∈ V , Hu is a d-regular graph (with possible parallel edges or self-loops) with
vertex set [degG(u)] := {1, ..., degG(u)}. For any graph G and its proper d-regular graph
family H, the non-uniform replacement product of G and H, denoted by GrH, is defined as
follows.

1. For each vertex u in V (G), the graph GrH contains a copy of a Hu.
2. For any edge (u, v) ∈ E(G), for each i ∈ [degG(u)], we specify a unique but arbitrary

index j ∈ [degG(v)], and place d parallel edges between the ith vertex in Hu and the jth
vertex in Hv.

Now that GrH is a 2d-regular graph with 2|E| vertices. We will use (u, i) to index the
vertices in GrH. We have the following lemma that formally characterize the intuition
that if all the graphs in H are expanders, that is, for any H ∈ H, φ(H) is larger than some
universal constant, then the expansion profile of G′ will not differ by too much from the
expansion profile of G.

I Lemma 11. Let G = (V,E) be a graph with minimum degree δ(G) ≥ d. Let H be a proper
d-regular graph family of G, and let G′ = GrH. We have that

A. Li and P. Peng 629

If S ⊆ V (G) is a subset with φ(S) ≤ φ then the set S′ := {(u, i) ∈ V (G′)|u ∈ S, 1 ≤ i ≤
degG(u)} ∈ V (G′) satisfies that |S′| = vol(S) and φG′(S′) ≤ φ/2.
If for any set S ⊆ V (G) with vol(S) ≤ k, φ(S) ≥ φ and for any u, the conductance of Hu

satisfies φ(Hu) ≥ δ, then for any set S′ ⊆ V (G′) with |S′| ≤ Θ(k), φG′(S′) = Ω(δφ2).

When the rotation map of the graph G is explicitly given, we define the non-uniform
replacement product with rotation map of G and H, denoted as G(r)rH, as follows.
1. For each vertex u in V (G), the graph G(r)rH contains a copy of a Hu.
2. For any edge (u, v) ∈ E(G) such that v is the ith neighbor of u and u is the jth neighbor

of v, we place d parallel edges between the ith vertex in Hu and the jth vertex in Hv.

Note that the above replacement product with rotation map is a special case of the
(general) replacement product defined before. Thus, it not only satisfies the combinatorial
property of expansion profile given in Lemma 11, bust also satisfies the following nice spectral
properties.

I Lemma 12. Let G = (V,E) be a graph with minimum degree δ(G) ≥ d. Let H be a proper
d-regular graph family of G, and let G′ = G(r)rH be the replacement product with rotation
map of G and H. We have that

G′ satisfies the two properties in Lemma 11.
If for any set S ⊆ V (G) with vol(S) ≤ k, φ(S) ≥ φ and for any u, η2(WHu) ≤ 1 − δ
for some δ > 0, then for any α > 0, η (1+α)2m

k

(WG′) ≤ 1 − Ω(δ2α6φ2(log 2m
k)−1),

η(2m/k)1+α(WG′) ≤ 1 − Ω(αδ2φ2 logn(2m/k)). Furthermore, when k = m, we have
η2(WG′) ≤ 1− Ω(δ2η2).

Theorem 4 can be proved directly once we have Lemma 12.

Proof of Theorem 4. For any graph G = (V,E), we first turn it into a graph G≥8 with
minimum degree 8 by adding an appropriate number of self-loops to vertices with degree
smaller than 8. Note that this only changes the conductance of a set by a factor of 8. Now we
let H be a proper 8-regular graph family for G≥8 such that for any u ∈ V , Hu is a Margulis
expander with degG≥8

(u) vertices [27, 13]. Therefore, each Hu is an expander such that
φ(Hu) and 1−η2(WHu) are larger than some universal constants. Then we let G′ = G

(r)
≥8rH,

d = 8 and specify δ to be a constant in Lemma 12. By definition, G′ is a 16-regular graph.
Finally, the theorem follows by Lemma 12 and the fact that ηi = 1− λi

2 . J

4 Testers for small set expansion

In this section, we give all our testing algorithms for small set expansion. We first show a
property of graphs that are far from small set expander in Section 4.1, which will be useful for
all our testers. Then in Section 4.2, we give a two-sided error tester in bounded degree model,
which illustrates basic ideas underlying our algorithms. Finally, we give testers in adjacency
list model and in the rotation map for general graphs in Section 4.3, 4.4, respectively.

4.1 A property of graphs that are far from small set expander
The following lemma shows that if a general graph G is far from (k, φ)-expander, then there
exist disjoint subsets such that each of them is of small size and small conductance, and the
total volume of these sets are large. This lemma will be useful for the analysis of all the
testers.

STACS 2015

630 Testing Small Set Expansion in General Graphs

I Lemma 13. Let c2 be some constant and let φ∗ ≤ 1
20c2 . If a graph G is ε-far from (k∗, φ∗)-

expander, then there exist disjoint subsets S1, · · · , Sq ⊆ V such that vol(S1 ∪ · · · ∪ Sq) ≥ εm
15 ,

and for each i ≤ q, vol(Si) ≤ 2k∗, φ(Si) < 11c2φ
∗.

4.2 A tester for bounded degree graphs
Now we give a two-sided error tester for bounded degree graphs. This tester is very intuitive
and simple: we sample a small number of vertices, and for each sampled vertex v, we perform
independently a number of random walks from v and calculate the number of collisions Zv
between the endpoints of these random walks. We accept the graph if and only if Zv is
small for every sampled vertex v. We remark that this idea originates from the tester for
expansion for bounded degree graphs [16, 11, 20, 28]. The main difference between our small
set expansion tester and the previous expansion testers is the choice of parameters.

Given a d-bounded degree graph G, we define the following d-regularized random walk on
G: at each vertex v, with probability degG(v)/2d, we jump to a randomly chosen neighbor
of v, and with the remaining probability 1 − degG(v)

2d , we stay at v. This random walk is
equivalent to the lazy random walk on the virtually constructed d-regular graph Greg that is
obtained by adding an appropriate number of self-loops on each vertex in G. Note that to
perform such a random walk, we only need to perform neighbor queries to the oracle of G.
Our tester for bounded degree graphs is as follows.

SSETester2-Bound(G, s, r, `, σ)
1. Repeat s times:

a. Select a vertex v uniformly at random from V .
b. Perform r independent d-regularized random walks of length ` starting

from v.
c. Let Zv be the number of pairwise collisions among the endpoints of these
r random walks.

d. If Zv > σ then abort and output reject.
2. Output accept.

We can show that by choosing appropriate parameters, the above algorithm is a property
tester for small set expansion for bounded degree graphs. We have the following theorem.

I Theorem 14. Given neighbor query access to a d-bound-degree graph G, a volume bound
k, a distance parameter ε and a conductance bound φ, then the algorithm SSETester2-Bound
with parameters s = Θ(1/ε), r = Θ(

√
n/ε), ` = Θ((ln k)·log(2nd/k)

φ2) and σ =
(
r
2
) 60
kε , accepts

any (k, φ)-expander graph G with degree bounded by d and rejects any graph that is ε-far from
(k∗, φ∗)-expander with degree bounded by d, where k∗ = Θ(kε/d), φ∗ = Θ(φ2

(ln k)·log(2nd/k)),
with probability at least 2/3. The query complexity and running time are Õ(

√
nφ−2ε−2).

4.3 Testers in the adjacency list model for general graphs
In this section, we give testers for small set expansion for general graphs in the adjacency
list model.

4.3.1 A two-sided error tester
To give a two-sided error tester for general graphs, we first note that the tester for bounded
degree graphs given in Section 4.2 does not apply to general graph, which may have an

A. Li and P. Peng 631

arbitrary large degree. For example, in a star graph the collision probability of a lazy random
walk will be very large on the “central” vertex, however, the conductance of star graph is
large and it is thus a small set expander. This implies that we cannot directly apply our
tester for bounded degree graphs to general graphs.

In the following, we show that we can use the non-uniform replacement product (without
rotation map) defined in Section 3 to first turn our input graph G into a bounded degree
graph G′, and then we perform independent random walks on the newly transformed graphs
G′ to determine whether to accept or reject the input graph G. We should keep in mind
that we are only given degree and neighbor query access to G rather than G′.

We first define G′. To do so, we first specify a proper d-regular graph family H for G.
We will let d = 8, and first turn G into a graph G≥8 with minimum degree 8 by adding
an appropriate number of self-loops on vertices with degree smaller than 8. Note that this
modification only changes the conductance of a set by a factor of 8. Now we let H be
the graph family that for any u ∈ G, Hu is a Margulis expander with degG≥8

(u) vertices.
We stress that such expanders are explicitly constructible [27, 13]. Furthermore, given any
vertex i ∈ Hu, we can determine the neighborhood of i in constant time. Now we define
G′ = G≥8rH.

By definition of G′, we can specify a vertex (u, i) to connect to a vertex in ∪v:(v,u)∈EHv

in an arbitrary manner. This important property allows us to construct G′ when we go along
and emulate random walks in G′ very efficiently by performing degree and neighbor queries
to G. We stress here that if the non-uniform replacement product with rotation map of G is
used (see Section 4.4), then the neighbor of (u, i) in the final graph is fixed, and we do not
know how to efficiently emulate the corresponding (lazy) random walks by only using degree
and neighbor queries to G.

Now we briefly introduce a process for emulating random walks on G′. The argument is
very similar to the analogous case given in Section 4.2 in [21]. We give a brief description here.
To emulate random walks on G′, if we are currently at a vertex (u, i), then with probability
1/2, we stay at (u, i); with probability 1/4, we jump to a randomly chosen neighbor (u, j)
in Hu, which can be done in constant time since Hu is explicitly constructible; with the
remaining probability 1/4, we need to jump to the outside of Hu. Now if we have already
specified its neighbor outside of Hu, say (v, j), then we directly jump to (v, j). Otherwise, we
have to specify the outside neighbor of (u, i) first. The specification can be done by recording
a set A(u) of neighbors that has already been specified to some vertex in Hu and then either
sampling new neighbors or attaching unspecified vertices arbitrarily according to A(u). The
amortized number of required degree and neighbor queries to G is O(log2 n). We refer to [21]
for more details.

There is one more issue that we should take care of: how to sample vertices (almost)
uniformly at random from G′. This issue is almost equivalent to sampling edges almost
uniformly from G, and has also been analyzed in [21]. In particular, Kaufman et al. have
proved the following lemma.

I Lemma 15 ([21]). Let µ > 0. There exists a procedure Sample-Edges-Almost-Uniformly-
-in-G that performs O(

√
n/µ logm) degree and neighbor queries and for all but (µ/4)m of

edges e in G, the probability that the procedure outputs e is at least 1/(64m). In particular,
the output edge e is in the form of (v, i) for 1 ≤ i ≤ deg(v).

By setting µ = ε/c3 in the above lemma, for a sufficiently large constant c3, we will
directly invoke Sample-Edges-Almost-Uniformly-in-G to sample a vertex (v, i) in G′.

Finally, to specify the number of random walks r, to be O(
√
m), we should have an estimate

STACS 2015

632 Testing Small Set Expansion in General Graphs

of m or the average degree davg of G. This can be achieved by Feige’s algorithm [12, 18],
which gives a constant factor estimate of davg by performing O(

√
n) queries to G.

Now we give a description of our two-sided error tester.

SSETester2-List(G, s, r, `, σ)
1. Repeat s times:

a. Sample an edge (v, i) by calling the procedure Sample-Edges-Almost-
-Uniformly-in-G with µ = ε/c3, where c3 is a sufficiently large constant.

b. Perform r independent lazy random walks in G≥8rH of length ` starting
from v by the above emulation process.

c. Let Zv be the number of pairwise collisions among the endpoints of these
r random walks.

d. If Zv > σ then abort and output reject.
2. Output accept.

By setting s = Θ(1/ε), r = Θ(
√
m/ε), ` = Θ(min{log(4m/k),logn}·(ln k)

φ4) and σ =
(
r
2
) 60
kε in

the algorithm SSETester2-List, we can prove Theorem 1 using similar analysis to the proof
of Theorem 14.

4.3.2 A one-sided error tester
Now we present our property testing algorithm SSETester1-List with one-sided error for
small set expansion. This tester invokes a local algorithm LocalSS introduced in Section 2.3
and applies to the adjacency list model.

SSETester1-List(G, s, T, δ)
1. Repeat s times:

a. Sample an edge (v, i) by calling the procedure Sample-Edges-Almost-
-Uniformly-in-G with µ = ε/c3, where c3 is a sufficiently large constant.

b. If LocalSS(G, v, T, δ) finds a setX with volume at most k and conductance
at most φ, then abort and output reject.

2. Output accept.

For any 0 < ξ < 1, we set parameters s = Θ(1/ε), T = O(log k
φ2), and δ = O(k

−1+ξ/2

T) in
the above algorithm, which will then be used to prove Theorem 2.

4.4 A tester in the rotation map model for general graphs
In this section, we give a tester in the rotation map model, in which we assume that the
rotation map of G is explicitly given, that is, when specified a vertex v and an index i,
the oracle returns a pair (u, j) such that u is the ith neighbor of v and j is the index of
u as a neighbor of v. We use the non-uniform replacement product with rotation map to
transform G into a 16-regular graph G′. To perform this transformation, we also need first
to turn G into a graph G≥8 with minimum degree 8, and specify H to be a proper 8-regular
Margulis expanders, and then let G′ = G

(r)
≥8rH. Now the tester first samples a number

of vertices almost uniformly in G′ and then performs independent random walks on G′ to
decide whether to accept G or not, as we did before.

Our tester in rotation map model is almost the same as the two-sided tester in adjacency
model in Section 4.3.1, and with information of the rotation map of G, we are actually able to
give a better tester by using the spectral property of G′ given in Lemma 12 (see Theorem 3).

A. Li and P. Peng 633

However, as we mentioned before, since now we cannot specify the neighbor of a vertex (u, i)
in an arbitrary manner, we do not know how to emulate random walks efficiently by only
performing degree and neighbor queries to G. That is why we introduced (neighbor,index)
query and the rotation map model.

Here we emulate random walks on G′ by performing degree and (neighbor, index) queries
to G: if we are currently at a vertex (u, i), then with probability 1/2, we stay at (u, i); with
probability 1/4, we jump to a randomly chosen neighbor (u, j) in Hu; with the remaining
probability 1/4, we jump to vertex (v, j) such that v is the ith neighbor of u and u is the
jth neighbor of v in G. Note that only in the last case, we need to perform (neighbor, index)
queries to the oracle of G.

SSETester2-Map(G, s, r, `, σ)
1. Repeat s times:

a. Sample an edge (v, i) by calling the procedure Sample-Edges-Almost-
-Uniformly-in-G with µ = ε/c3, where c3 is a sufficiently large constant.

b. Perform r independent lazy random walks in G(r)
≥8rH of length ` starting

from v by using rotation map of G.
c. Let Zv be the number of pairwise collisions among the endpoints of these
r random walks.

d. If Zv > σ then abort and output reject.
2. Output accept.

Theorem 3 can now be proven by using the above algorithm SSETester2-Map with
parameters s = Θ(1/ε), r = Θ(

√
m/ε), ` = Θ(min{logn,log(4m/k)}·(ln k)

φ2) and σ =
(
r
2
) 60
kε .

5 Conclusions

We give property testers for small set expansion in general graphs, including a two-sided
error tester and a one-sided error tester in adjacency list model, and a two-sided error tester
in rotation map model in which the algorithm can perform (neighbor, index) queries as well
as degree queries. Our analysis for two-sided error testers uses a non-uniform replacement
product to transform an arbitrary graph into a bounded degree graph that well preserves
expansion profile.

It is unclear if the rotation map model is strictly stronger than the adjacency list model.
In particular, we do not know if the newly introduced (neighbor, index) query is necessary
for us to obtain a tester with at most quadratic loss in the conductance parameter. It will
be interesting to give a two-sided error tester in the adjacency list model that distinguishes
(k, φ)-expanders from graphs that are ε-far from any (Θ(kε), Θ̃(φ2))-expander, as we obtained
in the rotation map model. It is also left open if the query complexity and/or running time
of the two-sided testers could be improved to Õ(

√
n(φ−1ε−1)O(1)), without dependency on

the number of edges m.

Acknowledgements We would like to thank anonymous referees of RANDOM 2014 for
their very detailed and helpful comments to an earlier version of this paper.

STACS 2015

634 Testing Small Set Expansion in General Graphs

References
1 N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
2 N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the

testable graph properties: it’s all about regularity. SIAM Journal on Computing, 39(1):143–
167, 2009.

3 N. Alon and V. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators.
Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.

4 N. Alon, O. Schwartz, and A. Shapira. An elementary construction of constant-degree
expanders. Comb. Probab. Comput., 17(3):319–327, May 2008.

5 R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In
Symposium on Foundations of Computer Science, 2006.

6 R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In Symposium
on Theory of Computing, STOC ’09, 2009.

7 S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and
related problems. In Foundations of Computer Science (FOCS), pages 563–572, 2010.

8 B. Barak, P. Gopalan, J. Hastad, R. Meka, P. Raghavendra, and D. Steurer. Making the
long code shorter. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 370–379. IEEE, 2012.

9 I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength of query
types in property testing: the case of testing k-colorability. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 1213–1222, 2008.

10 A. Czumaj, M. Monemizadeh, K. Onak, and C. Sohler. Planar graphs: Random walks
and bipartiteness testing. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 423–432. IEEE, 2011.

11 A. Czumaj and C. Sohler. Testing expansion in bounded-degree graphs. Combinatorics,
Probability and Computing, 19(5-6):693–709, 2010.

12 U. Feige. On sums of independent random variables with unbounded variance and estim-
ating the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

13 O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal
of Computer and System Sciences, 22(3):407–420, 1981.

14 O. Goldreich. Property testing: current research and surveys, volume 6390. Springer-Verlag
New York Inc, 2010.

15 O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

16 O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(20), 2000.

17 O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

18 O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Structures
& Algorithms, 32(4):473–493, 2008.

19 S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006.

20 S. Kale and C. Seshadhri. An expansion tester for bounded degree graphs. SIAM J.
Comput., 40(3):709–720, 2011.

21 T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in general
graphs. SIAM Journal on computing, 33(6):1441–1483, 2004.

22 T. C. Kwok and L. C. Lau. Finding small sparse cuts by random walk. In APPROX-
RANDOM, pages 615–626, 2012.

23 J.R. Lee, S. Oveis Gharan, and L. Trevisan. Multi-way spectral partitioning and higher-
order cheeger inequalities. ACM symposium on Theory of computing, 2012.

A. Li and P. Peng 635

24 A. Li, Y. Pan, and P. Peng. Testing conductance in general graphs. In Electronic Colloquium
on Computational Complexity (ECCC), volume 18, page 101, 2011.

25 A. Louis, P. Raghavendra, P. Tetali, and S. Vempala. Many sparse cuts via higher eigen-
values. ACM symposium on Theory of computing, 2012.

26 L. Lovász and R. Kannan. Faster mixing via average conductance. In ACM symposium on
Theory of computing, pages 282–287, 1999.

27 G. A. Margulis. Explicit constructions of expanders. Problemy Peredachi Informatsii, 9:71–
80 (in Russian), 1973.

28 A. Nachmias and A. Shapira. Testing the expansion of a graph. Information and Compu-
tation, 208(4):309–314, 2010.

29 R. O’Donnell and D. Witmer. Improved small-set expansion from higher eigenvalues. Arxiv
preprint arXiv:1204.4688, 2012.

30 S. Oveis Gharan and L. Trevisan. Approximating the expansion profile and almost optimal
local graph clustering. In Foundations of Computer Science, 2012.

31 M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures & Algorithms,
20(2):165–183, 2002.

32 P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In
ACM symposium on Theory of computing, pages 755–764, 2010.

33 O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55:17:1–17:23,
2008.

34 O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks on regular digraphs and
the rl vs. l problem. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 457–466. ACM, 2006.

35 O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of Mathematics, 155:157–187, 2002.

36 D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, 5(2):73–205, 2010.

37 E. Rozenman and S. Vadhan. Derandomized squaring of graphs. In Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques, pages 436–447.
Springer, 2005.

38 A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation, 82(1):93–133, 1989.

39 D.A. Spielman and S.H. Teng. A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning. arXiv:0809.3232, 2008.

40 D. Steurer. On the complexity of unique games and graph expansion. PhD diss., Princeton
University, 2010.

STACS 2015

Paid Exchanges are Worth the Price
Alejandro López-Ortiz1, Marc P. Renault∗†2, and Adi Rosén3

1 University of Waterloo, Canada
alopez-o@uwaterloo.ca

2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France
marc.renault@lip6.fr

3 CNRS and Université Paris Diderot, France
adiro@liafa.univ-paris-diderot.fr

Abstract
We consider the list update problem as defined in the seminal work on competitive analysis by
Sleator and Tarjan [12]. In this problem, a sequence of requests, consisting of items to access in
a linked list, is given. After an item is accessed it can be moved to any position forward in the
list at no cost (free exchange), and, at any time, any two adjacent items can be swapped at a
cost of 1 (paid exchange). The cost to access an item is its current position in the list. The goal
is to dynamically rearrange the list so as to minimize the total cost (accrued from accesses and
exchanges) over the request sequence.

We show a lower bound of 12/11 on the worst-case ratio between the performance of an
(offline) optimal algorithm that can only perform free exchanges and that of an (offline) optimal
algorithm that can perform both paid and free exchanges. This answers an outstanding question
that has been open since 1996 [10].

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity (se-
quencing and scheduling)

Keywords and phrases list update problem, online computation, online algorithms, competitive
analysis, lower bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.636

1 Introduction

The list update problem consists of a linked list of ` items and a finite request sequence. Each
request is to access an item of the list. Each item access begins at the head of the list and
follows the list item by item until the requested item is reached. The cost to access the i-th
item in the list is thus i. Then, the requested item can be moved forward in the list at no
cost and such a move is called a free exchange. At any time, two adjacent items may be
swapped at a cost of 1 and such swaps are called paid exchanges. The goal is to dynamically
rearrange the list over the request sequence so as to minimize the total cost of accesses and
paid exchanges over the request sequence.

The list update problem (also called the list access problem) was one of the two problems
studied in the seminal work on competitive analysis of Sleator and Tarjan [12] (the other
being the paging problem). It is a fundamental problem in the area of algorithms that has

∗ Research supported in part by ANR project NeTOC.
† Work performed while the author was at LIAFA, Université Paris Diderot – Paris 7, Sorbonne Paris-Cité,

France.

© Alejandro López-Ortiz, Marc P. Renault, and Adi Rosén;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 636–648

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.636
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. López-Ortiz, M. P. Renault, and A. Rosén 637

been intensely studied, particularly, due to its importance for compression algorithms [5].
For a recent survey on the list update problem, see [8].

In [12], Sleator and Tarjan present a 2-competitive online deterministic algorithm called
move to front (mtf) that Irani showed later to be an optimal online deterministic
algorithm [7]. As its name implies, mtf moves every requested item to the front, using a
free exchange. Also, in [7], Irani presented the first online randomized algorithm for the list
update problem; it has a competitive ratio of 15/8. Reingold and Westbrook presented the
first barely random online algorithm called bit that has a competitive ratio of 7/4 [11]. The
best known randomized online algorithm, comb, of Albers et al. [2] has a competitive ratio
of 1.6 and only uses free exchanges. The comb algorithm randomly uses the barely random
online algorithm bit with a probability of 4/5 and the non-parameterized, deterministic
online algorithm timestamp [1] with a probability of 1/5. The currently best randomized
online lower bound is 1.50115 [4]. It should noted that all the best known online algorithms
use only free exchanges [8].

The offline problem is known to NP-hard [3]. It is not known if this holds if only free
exchanges are permitted. In [10], an algorithm that computes the optimal schedule that
uses only paid exchanges is shown to have a running time of O(2`(`− 1)!n), where ` is the
length of the list and n is the number of requests.1 Based on the work of [10], an alternative
algorithm that computes the optimal schedule, with a running time of O(2``!f(`) + n+ `n),
where f(`) ≤ `!3`!, is presented in [6].

Free vs. Paid Exchanges

In [12], Sleator and Tarjan claim that an algorithm that uses paid exchanges and free exchanges
can be converted to an algorithm that uses only free exchanges without increasing the cost.
This claim turns out not to be true as Reingold and Westbrook gave the counterexample of
the request sequence 〈3, 2, 2, 3〉 for a list of length 3 with a starting configuration of 1, 2, 3
[10]. An optimal algorithm serves this sequence at a cost of 8 by moving item 1 to the back
of list with paid exchanges at a cost of 2, and then serving the sequence at a cost of 6. From
an enumeration of all possible schedules that use only free moves, it can be seen that an
algorithm using only free exchanges serves this sequence for a cost of at least 9, implying
that, in the worst case, there is at least an additive constant in the difference between the
performance of an optimal algorithm that uses only free exchanges and an unrestricted
optimal algorithm. Further, Reingold and Westbrook show that the opposite is true: they
show that an algorithm can replace the free exchanges by paid exchanges without increasing
the cost [10]. They also show that the permitted paid exchanges can be further restricted,
without increasing the cost, to allow only "subset transfers" (see Definition 2 below).

The competitive ratio of 1.6 for the comb algorithm [1] (as described above) implies
an upper bound of 1.6 on the worst case ratio between the cost of an optimal algorithm
restricted to free exchanges and the cost of an unrestricted optimal algorithm, over all finite
request sequences.

Our Contribution

We compare the cost of an optimal algorithm that can only perform free exchanges, denoted
by opt_free, and an optimal algorithm that can use both paid and free exchanges, denoted

1 As we indicate later, one can assume without loss of generality that the optimal schedule uses only paid
exchanges.

STACS 2015

638 Paid Exchanges are Worth the Price

by opt. We show that there is a multiplicative gap of at least 12/11 on the worst-case ratio,
over all possible finite request sequences, between the performance of opt_free and opt.
Until now, it was not known if there is such a gap in an asymptotic sense. We answer this
question in the affirmative, thus solving a question that has been open for almost 20 years
since Reingold and Westbrook [10] gave the counterexample to the claim of Sleator and
Tarjan.

As all online algorithms with currently best known competitive ratios use only free
exchanges [8], our result suggests that, in order to achieve better upper bounds, it may be
useful to consider online algorithms that make use of paid exchanges.

2 Preliminaries

The list update problem consists of a linked list of ` items and a finite request sequence
of accesses. Each request is to access an item of the list. Each item access begins at the
head of the list and there is a cost of 1 to the algorithm for each item accessed until the
requested item is found. That is, the cost to access the i-th item in the list is i. Then, the
requested item can be moved forward to any position in the list at no cost and such a move
is called a free exchange. At any time, two adjacent items may be swapped at a cost of 1
and these swaps are called paid exchanges. The goal is to dynamically rearrange the list over
the request sequence so as to minimize the total cost of accesses and paid exchanges over the
request sequence.

Note that, in the offline version of the list update problem (as defined above), the input
is still a request sequence that must be served in order. The difference between the offline
and online versions is that the offline algorithm has knowledge of the entire request sequence
whereas, in the online version, a request is not revealed until all prior requests in the sequence
have been served.

For an algorithm alg and a request sequence σ, we denote the cost to alg to serve σ by
alg(σ).

We will use opt to denote an unrestricted optimal (offline) algorithm, and we will use
opt_free to denote an optimal (offline) algorithm restricted to using only free exchanges.
For the request sequences, we will denote multiple requests in a row to the same item by
using exponents, e.g. xk means that x is requested k times in a row.

In [9, 10], Reingold and Westbrook consider the offline version of the list update problem
and show several properties of an offline optimum that uses both paid and free exchanges
such as the following lemma.

I Lemma 1. [9][Cor. 3.2] If an item x is requested 3 or more times consecutively, then an
optimal offline algorithm must move it to the front before the second access.

In [9, 10], Reingold and Westbrook also define the notion of a subset transfer and show
that there exists an optimal algorithm that only performs such moves.

I Definition 2 (Subset Transfer). Let x be a requested item. A subset transfer is a move,
performed just before x is accessed, of a subset of the items ahead of x in the list to the
position immediately after x such that the relative order of the items in the subset is
maintained.

I Theorem 3. [10][Thm. 2] There is an optimal offline algorithm that does only subset
transfers.

A. López-Ortiz, M. P. Renault, and A. Rosén 639

Using Lemma 1 and Theorem 3, we get the following theorem that states that, for any
sequence consisting of at least 3 consecutive requests to every item, mtf is opt_free.

I Theorem 4. Let σ =
〈
xk1

1 , . . . , x
kj

j

〉
, where, for all i, ki ≥ 3 and, for i < j, xi 6= xi+1.

For any initial list configuration, there exists an opt_free that moves each xi, 1 ≤ i ≤ j,
to the front of the list immediately after the first access to xi of xki

i in σ.

Proof. By Lemma 1, an (unrestricted) optimal algorithm must move each xi, 1 ≤ i ≤ j, of σ
to the front before the second request to that item. Furthermore, by Theorem 3, there exists
such optimal algorithm that only performs subset transfers; denote this optimal algorithm by
opt. Observe that if opt does not move xi to the front immediately before the first request
to xi, but does move xi to the front immediately before the second request to xi, then it
cannot be optimal, since smaller cost could be achieved by moving xi to the front immediately
before the first request to xi. We conclude that opt is an optimal, subset-transfer-only,
algorithm, that moves each xi, 1 ≤ i ≤ j, of σ to the front immediately before the first
request to xi. Observe now that since opt is a subset-transfer-only algorithm, then opt
does not perform any other rearrangements in the list while processing σ.

The action by opt of moving xi to the front by subset transfer immediately before the
first request to xi, and then accessing xi ki times, can be accomplished for the same cost
by an algorithm restricted to free exchanges. This is done by first accessing xi (on the first
request to xi), then moving xi to the front by a free exchange, and then accessing xi for the
remaining ki − 1 times. It follows that there exists an algorithm restricted to free moves,
that on σ moves every xi, 1 ≤ i ≤ j, to the front immediately after the first request to xi,
and its cost is equal to the cost of the optimal unrestricted algorithm for σ. This algorithm
must therefore be opt_free for σ. J

Informally, the next theorem shows that, on a series of sequential requests, it is not to
the advantage of alg_free to delay moving the requested item forward. That is, for an
arbitrary algorithm that only performs free exchanges, denoted by alg_free, and, for a
sequence of consecutive requests to an item x, such that β is the position closest to the head
of the list to which x is moved by the end of these consecutive requests, if alg_free would
move x to β immediately after the first request, it would not increase its cost. This holds
for both offline and online algorithms, but online algorithms generally are not able take
advantage of this fact given that they do not in general know the subsequent requests.

I Theorem 5. Let σ = 〈σ1, ν, σ2〉, where ν is at least two consecutive requests to the same
item x. Let β be the position of x immediately after ν for an arbitrary algorithm alg_free.
There exists an algorithm alg_free′ that moves x to β immediately after the first request
of ν such that alg_free′(σ) ≤ alg_free(σ), and alg_free′ serves σ1 and σ2 exactly as
alg_free.

Proof. The algorithm alg_free′ is defined to serve σ1 in the same manner as alg_free,
to then move x to position β immediately after the first request of ν, and to serve σ2 in the
same manner as alg_free. Note that the list configurations of alg_free′ and alg_free
match prior to and after serving ν. Therefore, the cost to both algorithms is the same for σ1
and σ2.

Since alg_free uses only free moves, i.e. moves of items towards the head of the list,
it follows that the cost of alg_free′ for all requests in ν is no more than the cost of
alg_free for those requests. Therefore, alg_free′(σ) ≤ alg_free(σ). J

STACS 2015

640 Paid Exchanges are Worth the Price

3 Lower Bound for OPT_FREE

In this section, we give a lower bound for the free move optimal offline algorithm as compared
to the unrestricted optimal offline algorithm. That is, we are comparing the power of paid
exchanges and free exchanges versus only free exchanges. We show that, for the case of a list
of length at least 3, the ratio between the performance of opt_free and that of opt is at
least 12/11 > 1.09 in the worst case. More formally, we show that there exists an infinite
family of finite request sequences σr, r > 0, such that the cost of an offline algorithm that can
use paid exchanges, paid, increases with r, and such that opt_free(σr)

opt(σr) ≥ opt_free(σr)
paid(σr) ≥ 12/11.

This implies that, for any ε > 0 and any additive constant η that does not depend on the
request sequence, there does not exist a free exchange algorithm, alg_free, such that
alg_free(σ) ≤

(12
11 − ε

)
opt(σ) + η for all σ.

To prove the claim, we use a list of length 3 and we begin by defining a request sequence
R(L). For a given initial list configuration L, we define the request sequence R(L) and a
deterministic offline algorithm paid that uses paid exchanges. By relabelling the list of paid
after having served R(L) to match L, we can define an arbitrarily long request sequence σr
consisting of repeated requests to R(L) based on a relabelling of the list state of paid after
each R(L). Our result applies to a list of length at least 3: If the list has a length greater
than 3, we can ignore all but 3 items. Hence, without loss of generality, we only consider
lists of length 3.

Line of Proof

As indicated above, our proof uses arbitrarily long request sequences, σr, r ≥ 1 that are built
by a repeated concatenation of r short request sequence R(L), defined using a relabelling of
the list state of paid after each R(L). We first prove two claims related to a single short
request sequence R(L). Namely, that paid serves R(L) starting with list configuration L at
cost of 11; and that any opt_free that serves R(L) starting with list configuration L has
cost at least 12. This however only repeats the claim of Reingold and Westbrook as to the
existence of a request sequence with an additive difference between the optimal performance
with free exchanges only and the optimal performance with both free and paid exchanges. We
then concatenate these short request sequences to create a long request sequence. Observe
that a multiplicative gap does not follow from such a concatenation. Indeed, an optimal
algorithm that uses only free exchanges could potentially pay more than 12 for a given request
sequence R(L), reach a different list configuration, and then be able to serve the next R(L)
with cost less than 12, thus paying in total no more than 23 for the two sequences (or have
such a phenomenon over a sequence of more than two sequences R(L)). To overcome this
difficulty we prove that, for the long sequences that we consider, σr, any opt_free must
reach the same configuration as paid does at the end of each R(L). We can then conclude
that for σr the cost of paid is 11r and the cost of any opt_free is at least 12r.

Offline Paid Exchange Algorithm

For a list of length 3 with a starting list configuration L = y, x1, x2, we define the request
sequence R(L) =

〈
x2, x

3
1, x

3
2
〉
.

Let paid be an unrestricted offline algorithm for R(L) defined as follows. Before the first
request of R(L), using two paid exchanges, x1 and x2 are moved to the front of the list.
Then, immediately before the second request to any xi, 1 ≤ i ≤ 2, paid moves xi to the
front.

A. López-Ortiz, M. P. Renault, and A. Rosén 641

Immediately from the definition of paid, we have the following facts.

I Fact 6. Given a starting list configuration of L = y, x1, x2, after serving R(L), the list
configuration of paid is x2, x1, y.

I Fact 7. Given a starting list configuration of L = y, x1, x2, the cost of paid to serve R(L)
is 11.

Proof. The cost to bring x1, x2 to the front by paid exchanges is 2 and the list configuration
is now x1, x2, y. The cost of the first access to x2 is 2, the cost to the next three requests
of x1 is 3. The second access to x2 costs 2 and then x2 is brought to the front and the
remaining two accesses cost 2. Overall, the cost to paid is 11. J

Arbitrarily Long Request Sequences

For an initial list configuration of L = y, x1, x2, from Fact 6, the configuration of the list
of paid after serving R(L) is x2, x1, y. Therefore, after serving R(L), with a relabelling of
the list of paid to that of L, R(L) can subsequently be requested again, and this can be
repeated to create arbitrarily long request sequences. That is, if L′ = x2, x1, y (as is the list
configuration paid after serving R(L) for L = y, x1, x2), then R(L′) =

〈
y, x3

1, y
3〉.

Let σr = 〈R1(L1), R2(L2), . . . , Rr(Lr)〉 such that Rj(Lj) is based on Lj , where Lj is the
configuration of the list of paid after serving R1, . . . , Rj−1 for 1 < j ≤ r and L1 = L is the
initial configuration of the list. We will use the term round to signify a subsequence R(L) in
σr.

Optimal (Offline) Free Exchange Algorithm

Let mtf be the algorithm that moves every requested item to the front. Immediately from
the definition of mtf, we have the following fact.

I Fact 8. Given a starting list configuration of L = y, x1, x2, after serving R(L), the list
configuration of mtf is x2, x1, y.

Note that, when starting from the same initial list configuration and serving R(L), the
list configuration of mtf is exactly that of paid after serving R(L).

For an initial configuration L = y, x1, x2 and R(L) =
〈
x2, x

3
1, x

3
2
〉
, the following lemma

shows that mtf is an optimal free move algorithm for R(L).

I Lemma 9. For an initial list configuration L = y, x1, x2, mtf(R(L)) = 12 and
opt_free(R(L)) = 12.

Proof. Irrespective of the specific free exchange algorithm, the access cost for the first request
is 3 and there are 3 possible list configurations after the access. They are y, x1, x2; y, x2, x1;
and x2, y, x1 (this last configuration corresponds to that of mtf). By Theorem 4, applied to
the suffix of R(L), after serving the first request of R(L),

〈
x3

1, x
3
2
〉
,every opt_free moves

x1 and x2 to the front of the list on the next request to each item. Table 1 summarizes the
costs of the 3 possible ways to serve R(L), as a function of the list configuration after the
first request. The actions of mtf on R(L) correspond to the x2, y, x1 column which is a
minimum. J

We note that our proof will go through also if instead of using mtf we would use the
algorithm that results in the list configuration as defined in the first configuration in the
table.

STACS 2015

642 Paid Exchanges are Worth the Price

Table 1 For an initial list configuration of L = y, x1, x2, this table summarizes the potential
optimal free exchange algorithms for R(L) =

〈
x2, x

3
1, x

3
2
〉
. From Theorem 4, we know that after

the first request every opt_free moves all the items to the front of the list for the remaining
requests. Therefore, the only variable is the configuration of the list immediately after the first
request. Columns 3− 5 represent the three possible list configurations. Column 1 is the index in
R(L) of the request listed in column 2. From the table, the first and third list configurations are
optimal, and mtf corresponds to the third list configuration.

List Configuration
Request y, x1, x2 y, x2, x1 x2, y, x1

1 x2 3 3 3
2 x1 2 3 3
3 x2

1 2 2 2
6 x2 3 3 2
7 x2

2 2 2 2

Total: 12 13 12

The Last Round of σr

In the following lemma, we show that any opt_free moves any item x to the front of the
list immediately after the first access of three consecutive requests to x in Rr(Lr) of σr, i.e.
in the last round of σr.

I Lemma 10. For σr = 〈R1(L1), . . . , Rr(Lr)〉, every opt_free moves any item x to the
front of the list immediately after the first access of three consecutive requests to x in Rr(Lr),
where L1 = y, x1, x2 and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. Let Lr = y, x1, x2 and let A be an arbitrary opt_free algorithm. By way of
contradiction, assume that A does not move some xi ∈ Rr(Lr) to the front immediately after
the first request to x3

i ∈ Rr(Lr).
Let σ′ = 〈R1(L1), . . . , Rr−1(Lr−1), x2〉 and σ′′ =

〈
x3

1, x
3
2
〉
(note that σr = 〈σ′, σ′′〉).

Define Â to be a free move algorithm that serves σ′ exactly as A and moves all xj ∈ σ′′ to
the front immediately after the first request to each item in σ′′.

Since A and Â serve σ′ in the same manner, Â(σ′) = A(σ′) and the list configurations
of A and Â are the same immediately after σ′. From Theorem 4, Â is opt_free over the
remainder of the sequence. But, given the list configuration of both A and Â after serving
σ′, starting with that list configuration, Â(σ′′) = opt_free(σ′′) < A(σ′′). Therefore,
Â(σr) = A(σ′) + opt_free(σ′′) < A(σr) which contradicts the fact that A is an optimal
free exchange algorithm. J

The Rest of σr

In the next lemma, we show that the property proved in Lemma 10 for the last round of σr
can be proved for all of σr. Namely, we show that for σr there exists an opt_free that
moves any item x to the front after the first access of any three consecutive requests to the
same item. We note that Theorem 4 holds only for the specific type of sequence defined in
the statement of that theorem, and that the property proved in the next lemma does not
hold in general for an arbitrary sequence. For example, it can be verified that the sequence
〈5, 5, 5, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1〉 (starting with list configuration 1, 2, 3, 4, 5) can be served

A. López-Ortiz, M. P. Renault, and A. Rosén 643

by opt_free at cost of 44, while if alg_free moves item 5 to the front immediately after
the first request to item 5, then the cost of alg_free is at least 45.

I Lemma 11. For σr = 〈R1(L1), . . . , Rr(Lr)〉, there exists an opt_free that moves any
item x to the front of the list immediately after the first access of three consecutive requests
to x, where L1 = y, x1, x2 and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. In this proof, for σr, we consider an arbitrary opt_free algorithm A and show that,
if the property does not hold for A, then there exists another opt_free algorithm A′ that
does move every item x to the front of the list immediately after the first access of three
consecutive requests to x, and such that A′(σr) ≤ A(σr). This will be done by defining a
sequence of algorithms Aq, starting with A0 = A, and by reverse induction on i and j over
all the x3

i ∈ Rj(Lj) ∈ σr. That is, we consider the rounds from Rr(Lr) to R1(L1) and the
consecutive three requests in each round from the last consecutive three requests to the
first. For each x3, if Aq does not move x to the front immediately after the first request, we
define Aq+1, based on Aq, such that the desired property holds for x3 and all subsequent
consecutive three requests, and we show that the cost does not increase.

In the proof, we use the following notations. Let x3 be three consecutive requests in
Rj(Lj) for which Aq does not have the desired property. We will denote all the requests in
σr before x3 by σ1. The requests after x3 will be denoted by σ2. Note that σ2 could be an
empty sequence. For the analysis, we will often (Case 2 and Case 3 below) further partition
σ2 into disjoint subsequences 〈σ3, . . . , σp〉 such that σr =

〈
σ1, x

3, σ3, . . . , σp
〉
. At a risk of a

slight abuse of notation, we will denote the cost of a subsequence of an arbitrary σr to an
algorithm, alg, that serves all of σr, as alg(ri, . . . , rj) = alg(r1, . . . , rj)−alg(r1, . . . , ri−1),
where the prefix and the suffix are understood implicitly. That is, alg(ri, . . . , rj) is the
cost accrued by alg over the requests ri, . . . , rj of σr given that alg has served the prefix
r1, . . . , ri−1 and will serve the remaining requests. Therefore, we have that alg(σr) =
alg(σ1) + alg(x3) + alg(σ3) + · · · + alg(σp). Further note that by Theorem 5, we can
assume without loss of generality that Aq does not move x further ahead in the list on the
second or third requests of x3.

Definition of Âq
We first define an algorithm Âq that we use extensively in the proof. For σ =

〈
σ1, x

3
i , σ2

〉
and

algorithm Aq as defined previously, let Âq be an algorithm that serves σ1 in the same manner
as Aq and then moves xi from position α > 1 to the front of the list at the first request of
xi. Immediately after serving xi, the configuration of the list of Aq is some B, xi, C and
the configuration of the list of Âq is xi, B,C, where B is the set of items ahead of xi in the
configuration of Aq at this point and C is the set of items behind xi in the configuration of
Aq. As long as the list configurations of Aq and Âq differ, for each xj ∈ σ2, if Aq moves xj
to the front, Âq moves xj to front. Otherwise, Âq does not move xj forward at all. Once the
list configurations of Aq and Âq match, Âq will serve the remaining requests exactly as Aq.
Note that it is possible that the list configuration of Âq may never match that of Aq (see
Case 1 below).

From the definition of Âq, and the fact that the list has length of 3, we have the following
useful properties.

Âq(σ1) = Aq(σ1) , (1)
|B| ≥ 1 , (2)

|C| = 2− |B| , (3)
β = |B|+ 1 , (4)

STACS 2015

644 Paid Exchanges are Worth the Price

where β is the position to which xi is moved by Aq. Further, given that Aq moves xi from
α to β, 1 < β ≤ α, and Âq moves xi from α to the front of the list, we have the following
properties.

Aq(x3
i) = α+ 2β , (5)

Âq(x3
i) = α+ 2 (6)

= Aq(x3
i)− 2β + 2 , (7)

where (7) follows by replacing α in (6) by the value of α in (5).

We now turn to the inductive proof. For a list of length 3, there are two alternating
list configurations for paid (i.e. values for Lj) before each Rj(Lj): y, x1, x2 and x2, x1, y.
Therefore, x1 is requested in every Rj(Lj), and x2 and y are requested in alternating Rj(Lj)’s.

For xi ∈ Rj(Lj), which is the last point in σr for which Aq does not move xi to the front
immediately after the first request of three consecutive requests, we can distinguish between
three cases: (1) xi is never requested again in σr; (2) xi is requested again in Rj+1(Lj+1),
i.e. in the next round; (3) xi is requested again in Rj+2(Lj+2), i.e. in the round after the
next round. Note that this partitioning is exhaustive.

At each inductive step such that Aq does not have the desired property, we define an
algorithm Aq+1 based on Aq, for q ≥ 0, and show that Aq+1(σr) ≤ Aq(σr). This is done by
case analysis over the three cases defined above.

Case 1: xi ∈ Rj(Lj) is never requested again in σr.

Recall that σr =
〈
σ1, x

3
i , σ2

〉
. When j = r, this case follows immediately from Lemma 10 by

defining Aq+1 to be the algorithm defined in the proof of Lemma 10.
When j < r, we define Aq+1 to be Âq as defined above. For a list of length 3, this

only occurs when j = r − 1 and i = 2, where Lr−1 = y, x1, x2 and, hence, Rr−1(Lr−1) =〈
x2, x

3
1, x

3
2
〉
. For Lr−1 = y, x1, x2, Rr(Lr) =

〈
y, x3

1, y
3〉 and x2 is not requested.

Denote σ1 =
〈
R1(L1), . . . , Rr−2(Lr−2), x2, x

3
1
〉
,

σ2 =
〈
y, x3

1, y
3〉.

Cost for σ2 =
〈
y, x3

1, y
3〉. By the induction hypothesis we know that Aq moves x1 and y to

the front of the list on the first request to x1 and on the second request to y. It follows that
the configurations of the lists of Âq and Aq will match before the the third request to y is
processed.

If y is in B, then the total cost to access y for Âq over σ2 is at most 2 more than that of
Aq over σ2. This follows from the fact that there are two requests to y before Aq must move
y to the front, according to the induction hypothesis and, if y is in B, then Âq has x1 in
front of y, whereas Aq does not.

If y is in C, the total cost to access y for Âq over σ2 is at most 1 more than that of Aq
over σ2. This can occur if, on the first access to y in σ2, Aq were to move y between x1 and
x2 in its list. Then, on the second access, y is one item closer to the front in the list of Aq as
compared to the list of Âq.

By the induction hypothesis, Aq must move x1 to the front on the first request to x1 in
σ2. Therefore, if x1 is in B, the first access costs 1 more to Âq as compared to Aq and, if x1
is in C, the cost for the first access is the same for both Âq and Aq.

A. López-Ortiz, M. P. Renault, and A. Rosén 645

This gives that for σ2,

Âq(σ2) ≤ Aq(σ2) + 2|B|+ |C| − 1
= Aq(σ2) + |B|+ 1 , (8)

where the last line follows by applying (3).
Using (1), we get

Âq(σr) = Aq(σ1) + Âq(x3
i , σ2)

≤ Aq(σr)− 2β + |B|+ 3 , using (7) and (8),
= Aq(σr)− |B|+ 1 , using (4),
≤ Aq(σr) , by (2).

Case 2: xi ∈ Rj(Lj) and xi ∈ Rj+1(Lj+1), i.e. xi is requested in the next round.

Recall that σr =
〈
σ1, x

3
i , σ2

〉
. For Lj = y, x1, x2, Rj(Lj) =

〈
x2, x

3
1, x

3
2
〉
and Rj+1(Lj+1) =〈

y, x3
1, y

3〉. For this case, we define Aq+1 to be Âq as defined above.
Define σ1 = 〈R1(L1), . . . , Rj−1(Lj−1), x2〉,

σ3 =
〈
x3

2, y, x
3
1
〉
,

σ4 =
〈
y3, Rj+2(Lj+2), . . . , Rr(Lr)

〉
.

Note that σ2 = 〈σ3, σ4〉 =
〈
x3

2, Rj+1(Lj+1), . . . , Rr(Lr)
〉
.

Cost for σ3 =
〈
x3

2, y, x
3
1
〉
. After serving x3

1, the configuration of the list of Âq is x1, B,C

and the list of Aq is B, x1, C. By the induction hypothesis, Aq will move x2 to the front on
the first request to x2 in σ3. This request and the request to y will each cost 1 more to Âq
than to Aq if they are in B. If they are in C, there is no additional cost to Âq as compared
to Aq. Finally, on the first request to x1 in σ3, x1 is no further from the front in Âq than
it is in Aq. Then, by the induction hypothesis, Aq moves x1 to the front for the remaining
requests to x1 in σ3 as does Âq. Therefore,

Âq(σ3) ≤ Aq(σ3) + |B| . (9)

List Configuration after σ3. By the induction hypothesis, Aq will move x2 and x1 to the
front of the list immediately after the first access to each one in σ3. Consider the state of
the lists of Aq and Âq immediately after serving σ3, depending on whether or not Aq moves
y to the front. If Aq does not move y to the front of the list, the configuration of its list will
be x1, x2, y, and, by the definition of Âq, its list configuration will also be x1, x2, y. If Aq
does move y to the front of the list, the configuration of its list will be x1, y, x2, and, by the
definition of Âq, its list configuration will also be x1, y, x2.

Cost for σ4 =
〈
y3, Rj+2, . . . , Rr

〉
. After serving σ3, the configurations of the lists of Âq

and of Aq are the same. Therefore,

Âq(σ4) = Aq(σ4) . (10)

Summing (1), (7), (9), and (10), we get that the cost for Âq over σr is

Âq(σr) ≤ Aq(σr)− 2β + 2 + |B|
= Aq(σr)− |B| , using (4),
< Aq(σr) , by (2).

STACS 2015

646 Paid Exchanges are Worth the Price

Case 3: xi ∈ Rj(Lj) and xi ∈ Rj+2(Lj+2), i.e. xi is requested in the round after
next.

Recall that σr =
〈
σ1, x

3
i , σ2

〉
. We define Aq+1 to be Âq. For Lj = y, x1, x2, Rj(Lj) =〈

x2, x
3
1, x

3
2
〉
, Rj+1(Lj+1) =

〈
y, x3

1, y
3〉, and Rj+2(Lj+2) =

〈
x2, x

3
1, x

3
2
〉
.

Define σ1 =
〈
R1(L1), . . . , Rj−1(Lj−1), x2, x

3
1
〉
,

σ3 =
〈
y, x3

1, y
3〉, and

σ4 = 〈Rj+2(Lj+2), . . . , Rr(Lr)〉.
Note that σ2 = 〈σ3, σ4〉.

Cost for σ3 =
〈
y, x3

1, y
3〉. After serving σ1, x

3
2, the configuration of the list of Âq is x2, B,C

and the configuration of the list of Aq is B, x2, C. By the induction hypothesis, Aq will move
y to the front of the list on the second request to y in σ3 and x1 to the front of the list on
the first request to x1 in σ3. This is exactly the same scenario as σ2 for Case 1. Similarly to
(8) for Case 1 we have,

Âq(σ3) ≤ Aq(σ3) + |B|+ 1 . (11)

List Configuration after σ3. Since both y and x1 are moved to the front of the list in σ3
by both Aq and Âq, the configuration of the lists of both Aq and Âq is y, x1, x2 after σ3.

Cost for σ4 = 〈Rj+2(Lj+2), . . . , Rr(Lr)〉. After serving σ3, the configurations of the lists
of Âq and of Aq are the same. Therefore,

Âq(σ4) = Aq(σ4) . (12)

Summing (1), (7), (11), and (12), we get that the cost for Âq over σr is

Âq(σr) ≤ Aq(σr)− 2β + |B|+ 3
= Aq(σr)− |B|+ 1 , using (4),
≤ Aq(σr) , by (2).

To conclude, for each of the three cases possible at each inductive step, we have shown
that there exists an algorithm with the desired property. Overall, we have shown that
A′(σr) = Aq(σr) ≤ · · · ≤ A0(σr) = A(σr) which concludes the proof. J

For σr as defined above, Lemma 11 shows that there exists an opt_free that moves x
to the front when x is requested at least three times in a row. Let opt_free∗ be such an
opt_free. It follows that the list configuration of opt_free∗ after each Rj(Lj) ∈ σr is the
same as that of paid. For an initial list configuration of L = y, x1, x2, Lemma 9 shows that
the algorithm mtf is an optimal free move algorithm for R(L). Since the list configuration of
mtf after serving R1(L1), . . . , Rj(Lj), 1 ≤ j ≤ r, is the same as opt_free∗, combined with
the previous fact, this implies that mtf is an optimal free exchange algorithm for σr. Hence,
mtf serves all Rj+1(Lj+1) at a cost no more than that of opt_free∗. This is formally
stated in the following lemma.

I Lemma 12. For σr = 〈R1(L1), . . . , Rr(Lr)〉, mtf(σr) = opt_free(σr), where L1 =
y, x1, x2 and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

A. López-Ortiz, M. P. Renault, and A. Rosén 647

Proof. By Lemma 11, there exists an opt_free that will have the same configuration
as paid and mtf immediately before Rj(Lj), 1 ≤ j ≤ r. Let opt_free∗ be such an
opt_free. Since the list configuration of mtf and opt_free∗ match prior to serving
every Rj(Lj), Lemma 9 implies that mtf(σr) = opt_free(σr). J

Using the fact that, for any r > 0, mtf is an optimal free exchange algorithm for σr,
we can, in the following lemma and theorem, give a lower bound on the worst-case ratio
between opt_free(σ) and opt(σ) by analysing the ratio between mtf(σr) and paid(σr) for
σr = 〈R1(L1), . . . , Rr(Lr)〉, where L1 = y, x1, x2 and Lj , 1 < j ≤ r, is the list configuration
of paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

I Lemma 13. For r > 0, opt_free(σr)
opt(σr) ≥ opt_free(σr)

paid(σr) = 12
11 > 1.09.

Proof. Let σ = 〈R1(L1), . . . , Rr(Lr)〉, where L1 = y, x1, x2 and Lj , 1 < j ≤ r, is the list
configuration of paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

From Lemma 12 and Lemma 9, mtf is an optimal free move algorithm for σr with
a cost of 12r and, from Fact 7, the cost of paid for σr is 11r. Therefore, opt_free(σr)

opt(σr) ≥
opt_free(σr)

paid(σr) = 12
11 . J

I Theorem 14. Let alg_free be a free move algorithm such that alg_free(σ) ≤ α ·
opt(σ) + η. For any η not dependent on σ, α ≥ 12/11.

Proof. Towards a contradiction, assume α = 12
11−ε for some ε > 0. Hence, alg_free(σr) ≤(12

11 − ε
)

opt(σr) + η. Solving for ε and σr such that alg_free(σr) > η,

ε ≤ 12
11 −

alg_free(σr)− η
opt(σr)

≤ 12
11 −

alg_free(σr)− η
paid(σr)

≤ η

paid(σr)
(13)

by the fact that paid(σr) ≥ opt(σr) and Lemma 13. Since η does not depend on r, and
alg_free(σr) and paid(σr) both increase with r, we have a contradiction by choosing a
sufficiently large r such that alg_free(σr) > η and (13) no longer holds. J

4 Conclusions

We showed that the difference in the performance between an offline optimal algorithm
restricted to free exchanges and an unrestricted offline optimal algorithm is at least a
multiplicative factor of 12/11, answering a question that has been open since 1996 [10].

Based on computer simulations, we believe that it should be possible to generalize the
construction presented here and, based on this generalization, improve the lower bound to
3−
√

3.
Further, it would be interesting to consider upper bounds, in particular, an (offline)

algorithm restricted to free exchanges that improves upon the 1.6 upper bound that follows
from the randomized online algorithm comb [2].

We note that the currently best known online algorithms use only free exchanges (cf.
[8]). Our results bring up the possibility that improving the currently best randomized
competitive ratio for the list update problem might necessitate introducing paid exchanges
into the algorithm. The same might apply also to offline approximation algorithms.

Acknowledgements The authors would like to thank Amos Fiat, Rob van Stee, and Uri
Zwick for useful discussions. We also wish to thank the anonymous reviewer who pointed
out a minor change allowing an improvement of the lower bound from 13/12 to 12/11.

STACS 2015

648 Paid Exchanges are Worth the Price

References
1 Susanne Albers. Improved randomized on-line algorithms for the list update problem. In

Kenneth L. Clarkson, editor, SODA, pages 412–419. ACM/SIAM, 1995.
2 Susanne Albers, Bernhard von Stengel, and Ralph Werchner. A combined bit and

timestamp algorithm for the list update problem. Inf. Process. Lett., 56(3):135–139, 1995.
3 Christoph Ambühl. Offline list update is np-hard. In Mike Paterson, editor, ESA, volume

1879 of Lecture Notes in Computer Science, pages 42–51. Springer, 2000.
4 Christoph Ambühl. On the List Update Problem. PhD thesis, ETH Zürich, 2002.
5 Jon Louis Bentley, Daniel Dominic Sleator, Robert Endre Tarjan, and Victor K. Wei. A

locally adaptive data compression scheme. Commun. ACM, 29(4):320–330, 1986.
6 Torben Hagerup. Online and offline access to short lists. In Ludek Kucera and Antonín

Kucera, editors, Mathematical Foundations of Computer Science 2007, 32nd International
Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings,
volume 4708 of Lecture Notes in Computer Science, pages 691–702. Springer, 2007.

7 Sandy Irani. Two results on the list update problem. Inf. Process. Lett., 38(6):301–306,
1991.

8 Shahin Kamali and Alejandro López-Ortiz. A survey of algorithms and models for list
update. In Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola,
editors, Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J.
Ian Munro on the Occasion of His 66th Birthday, volume 8066 of Lecture Notes in Computer
Science, pages 251–266. Springer, 2013.

9 Nick Reingold and Jeffery Westbrook. Off-line algorithms for the list up-
date problem. Technical Report YALEU/DCS/TR-805, Yale University, 1990.
http://cpsc.yale.edu/sites/default/files/files/tr805.pdf.

10 Nick Reingold and Jeffery Westbrook. Off-line algorithms for the list update problem. Inf.
Process. Lett., 60(2):75–80, 1996.

11 Nick Reingold, Jeffery Westbrook, and Daniel Dominic Sleator. Randomized competitive
algorithms for the list update problem. Algorithmica, 11(1):15–32, 1994.

12 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985.

Undecidability in Binary Tag Systems and the Post
Correspondence Problem for Five Pairs of Words
Turlough Neary

Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland
tneary@ini.phys.ethz.ch

Abstract
Since Cocke and Minsky proved 2-tag systems universal, they have been extensively used to prove
the universality of numerous computational models. Unfortunately, all known algorithms give
universal 2-tag systems that have a large number of symbols. In this work, tag systems with only
2 symbols (the minimum possible) are proved universal via an intricate construction showing that
they simulate cyclic tag systems. We immediately find applications of our result. We reduce the
halting problem for binary tag systems to the Post correspondence problem for 5 pairs of words.
This improves on 7 pairs, the previous bound for undecidability in this problem. Following our
result, only the cases for 3 and 4 pairs of words remains open, as the problem is known to be
decidable for 2 pairs. In a further application, we apply the reductions of Vesa Halava and others
to show that the matrix mortality problem is undecidable for sets with six 3× 3 matrices and for
sets with two 18× 18 matrices. The previous bounds for the undecidability in this problem was
seven 3× 3 matrices and two 21× 21 matrices.

1998 ACM Subject Classification F.1.2 [Theory of Computation]: Computation by Abstract
Devices—Modes of Computation

Keywords and phrases tag system, Post correspondence problem, undecidability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.649

1 Introduction

Introduced by Post [17], tag systems have been used to prove Turing universality in numerous
computational models, including some of the simplest known universal systems [6, 10, 11,
14, 19, 20, 21]. Many universality results rely either on direct simulation of tag systems
or on a chain of simulations the leads back to tag systems. Such relationships between
models means that improvements in one model often has applications to many others. The
results in [23] are a case in point, where an exponential improvement in the time efficiency
of tag systems had the domino effect of showing that many of the simplest known models
of computation [6, 10, 11, 14, 19, 20, 21] are in fact polynomial time simulators of Turing
machines. Despite being central to the search for simple universal systems for 50 years, tag
systems have not been the subject of simplification since the sixties.

In 1961, Minsky [13] solved Post’s longstanding open problem by showing that tag sys-
tems, with deletion number 6, are universal. Soon after, Cocke and Minsky [5] proved that
tag systems with deletion number 2 (2-tag systems) are universal. Later, Hao Wang [22]
showed that 2-tag systems with even shorter instructions were universal. The systems of
both Wang, and Cocke and Minsky use large alphabets and so have a large number of rules.
Here we show that tag systems with only 2 symbols, and thus only 2 rules, are universal.
Surprisingly, one of our two rules is trivial. We find immediate applications of our result.
Using Cook’s [6] reduction of tag systems to cyclic tag systems, it is a straightforward matter

© Turlough Neary;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 649–661

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

650 Undecidability in Binary Tag Systems and the Post Correspondence Problem

to give a binary cyclic tag system program that is universal and contains only two 1 sym-
bols. We also use our binary tag system construction to improve the bound for the number
of pairs of words for which the Post correspondence problem [18] is undecidable, and the
bounds for the simplest sets of matrices for which the mortality problem [16] is undecidable.

The search for the minimum number of word pairs for which the Post correspondence
problem is undecidable began in the 1980s [4]. The best result until now was found by
Matiyasevich and Sénizergues, whose impressive 3-rule semi-Thue system [12], along with
a reduction due to Claus [4], showed that the problem is undecidable for 7 pairs of words.
Improving on this undecidability bound of 7 pairs of words seemed like a challenging problem.
In fact, Blondel and Tsitsiklis [2] stated in their survey “The decidability of the intermediate
cases (3 6 n 6 6) is unknown but is likely to be difficult to settle”. We give the first
improvement on the bound of Matiyasevich and Sénizergues in 17 years: We reduce the
halting problem for our binary tag system to the Post correspondence problem for 5 pairs of
words. This leaves open only the cases for 3 and 4 pairs of words, as the problem is known
to be decidable for 2 pairs [7].

A number of authors [1, 3, 8, 9, 16], have used undecidability bounds for the Post corres-
pondence problem to find simple matrix sets for which the mortality problem is undecidable.
The matrix mortality problem is, given a set of d × d integer matrices, decide if the zero
matrix can be expressed as a product of matrices from the set. Halava et al. [9] proved the
mortality problem undecidable for sets with seven 3×3 matrices, and using a reduction due
Cassaigne and Karhumäki [3] they also showed the problem undecidable for sets with two
21× 21 matrices. Applying the reductions used in [3, 8] to our new bound, we find that the
matrix mortality problem is undecidable for sets with six 3 × 3 matrices and for sets with
two 18× 18 matrices.

In the sequel while simulating cyclic tag systems our binary tag system produces garbage
that grows exponentially during the simulation, and this results in an exponential time
simulation overhead.

2 Preliminaries

We write c1 ` c2 if a configuration c2 is obtained from c1 via a single computation step. We
let c1 `t c2 denote a sequence of t computation steps. The length of a word w is denoted |w|,
and ε denotes the empty word. We let 〈v〉 denote the encoding of v, where v is a symbol or
a word. We use the binary modulo operation a = m mod n, where a = m− ny, 0 6 a < n,
and a,m, n, and y are integers.

2.1 Tag Systems
I Definition 1. A tag system consists of a finite alphabet of symbols Σ, a finite set of rules
R : Σ→ Σ∗ and a deletion number β ∈ N, β > 1.

The tag systems we consider are deterministic. The computation of a tag system acts
on a word w = w0w1 . . . w|w|−1 (here wi ∈ Σ) which we call the dataword. The entire
configuration is given by w. In a computation step, the symbols w0w1 . . . wβ−1 are deleted
and we apply the rule for w0, i.e. a rule of the form w0 → w0,1w0,2 . . . w0,e, by appending
the word w0,1w0,2 . . . w0,e (here w0,j ∈ Σ). A dataword (configuration) w′ is obtained from
w via a single computation step as follows:

w0w1 . . . wβ . . . w|w|−1 ` wβ . . . w|w|−1w0,1w0,2 . . . w0,e

T. Neary 651

where w0 → w0,1w0,2 . . . w0,e ∈ R. A tag system halts if |w| < β. We use the term
round to describe the b |w|β c or d |w|β e computation steps that traverse a word w exactly
once. We say a symbol w0 is read if and only if at the start of a computation step it is
the leftmost symbol (i.e. the rule w0 → w0,0w0,1 . . . w0,e is applied), and we say a word
w = w0w1 . . . w|w|−1 is entered with shift z < β if wz is the leftmost symbol that is read
in w. We let w[z] denote the word obtained by removing the leftmost z symbols of w (i.e. w[z] =
wz . . . w|w|−1) and let w[z] denote the sequence of symbols read during a single round on w

[z].
So w[z] = wzwz+βwz+2βwz+3β , . . . , wz+lβ where z+ lβ < |w|. If z < β then w[z] is read when w
is entered with shift z and we call w[z] track z of w. A word w has a shift change of 0 6 s < β

if |w| = yβ − s where y ∈ N and y > 0. The proof of Lemma 2 is left to the reader.

I Lemma 2 (shift change). Given a tag system T with deletion number β and the word
rv ∈ Σ∗, where the word r has a shift change of s and |v| > β, after one round of T on r

entered with shift z the word v is entered with shift (z + s) mod β.

2.2 Cyclic Tag Systems
Cyclic tag systems were introduced and proved universal by Cook [6].

I Definition 3. A cyclic tag system C = α0, . . . , αp−1 is a list of words αi ∈ {0, 1}∗ called
appendants.

A configuration of a cyclic tag system consists of (i) a marker that points to a single ap-
pendant αm in C, and (ii) a word w = w1 . . . w|w| ∈ {0, 1}∗. We call w the dataword.
Intuitively the list C is a program with the marker pointing to instruction αm. In the initial
configuration the marker points to appendant α0 and w is the binary input word.

I Definition 4. A computation step is deterministic and acts on a configuration in one of
two ways:

If w1 = 0 then w1 is deleted and the marker moves to appendant α(m+1 mod p).
If w1 = 1 then w1 is deleted, the word αm is appended onto the right end of w, and the
marker moves to appendant α(m+1 mod p).

A cyclic tag system completes its computation if (i) the dataword is the empty word or (ii)
it enters a repeating sequence of configurations. As an example we give first 5 steps of the
cyclic tag system C = 001, 01, 11 on the input word 101. In each configuration C is given on
the left with the marked appendant highlighted in bold font.

001001001, 01, 11 101 ` 001,010101, 11 01001 ` 001, 01,111111 1001
` 001001001, 01, 11 00111 ` 001,010101, 11 0111 ` 001, 01,111111 111 ` · · ·

3 The Halting Problem for Binary Tag Systems

I Definition 5 (Halting problem for binary tag systems). Given a 2-symbol tag system T with
deletion number β and a dataword w, does T produce a sequence of computation steps of
the form w `∗ w′ where |w′| < β?

I Theorem 6. The halting problem for binary tag systems is undecidable.

The proof of Theorem 6 proceeds in two stages. First we construct a non-halting binary tag
system TC that simulates an arbitrary cyclic tag system C (Sections 3.1 and 3.2). Following
this in Lemma 9 we show how to modify our construction so that when simulating the cyclic
tag system in [15] our system halts if an only if it is simulating a halting Turing machine.

STACS 2015

652 Undecidability in Binary Tag Systems and the Post Correspondence Problem

Table 1 Table defining u. In the middle column is the sequence of symbols (track) read in u when
the object in the left column is entered with shift (β − 4m) mod β, where β = 4p is the deletion
number, αm is a cyclic tag system appendant, and 〈σi〉′ is a binary word where 〈σi〉′ = bbcbb if
σi = 0, and 〈σi〉′ = bbbcb if σi = 1. Also 〈σ1〉

[1]

′ is the word 〈σ1〉′ with its leftmost symbol removed.

Object Track read in u Values for m and αm

u u
[(β−4m) mod β] = cs 0 6 m < p

〈ε〉 = bubbb u
[β−1] = cbbb(bcbbb)p−1cs−5p+1 m = 0

u
[β−4m−1] = cs 0 < m < p

〈0〉 = bbubb u
[β−2] = cbbb(bcbbb)p−1cs−5p+1 m = 0

u
[β−4m−2] = cs 0 < m < p

〈1〉 = bbbub u
[β−3] = cbbb(bcbbb)p−1cs−5p+1 α0 = ε, m = 0

u
[β−3] = 〈σ1〉′

[1]
〈σ2〉′ . . . 〈σv〉′cs−5v+1 α0 = σ1σ2 . . . σv for v > 0, m = 0

u
[β−4m−3] = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−5v αm = σ1σ2 . . . σv for 0 < m < p

3.1 Binary Tag System TC and Its Encoding
Here we give a binary tag system TC that simulates the computation of an arbitrary C =
α0, . . . , αp−1. The deletion number of TC is β = 4p, its alphabet is {b, c}, and its rules are of
the form b→ b and c→ u, where u ∈ {b, c}∗. The binary word u encodes the entire program
of C and is defined by Table 1, where |u| = βs, s > 5(max(p, r)) and r is the length of the
longest appendant in C. See Section 3.3.1 for an example of how Table 1 is used to give u.

The cyclic tag system symbols 0 and 1 are encoded as the binary words 〈0〉 = bbubb and
〈1〉 = bbbub respectively. We refer to 〈0〉 and 〈1〉 as objects.

I Definition 7 (Input to TC). An arbitrary input dataword w1w2 . . . wn ∈ {0, 1}∗ to a cyclic
tag system is encoded as the TC input dataword 〈w1〉〈w2〉 . . . 〈wn〉.

During the simulation we make use of an extra garbage object: the binary word 〈ε〉 =
bubbb. The cyclic tag system configuration (α0, α1 . . . αm−1αmαmαmαm+1 . . . αp−1 w1w2 . . . wl)
is encoded as

〈w1〉
[(β−4m) mod β]

{〈ε〉p, u}∗〈w2〉{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗ (1)

where 〈w1〉
[(β−4m) mod β]

denotes the word given by an object 〈w1〉 ∈ {〈0〉, 〈1〉} with its left-

most [β − 4m) mod β] symbols deleted. This implies that 〈w1〉 is entered with the shift
[(β − 4m) mod β] and this shift value records that the currently marked cyclic tag system
appendant is αm. If a u subword in the dataword of TC does not form part of one of the
three objects 〈0〉, 〈1〉 and 〈ε〉 we will refer to this u subword as a garbage object. So words
of the form {〈ε〉, u}∗ in Equation (1) consist only of garbage objects.

3.2 The Simulation Algorithm
The sequence of symbols that is read in an object is determined by the shift value with which
it is entered (see Section 2.1). So in the simulation the shift value is used for algorithm

T. Neary 653

(i) 〈1〉
[β−4m]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4(m+1)) mod β]

〈a3〉 . . . 〈al〉〈σ1〉〈σ2〉 . . . 〈σv〉us−5v

(ii) 〈0〉
[β−4m]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4(m+1)) mod β]

〈a3〉 . . . 〈al〉us

(iii) 〈ε〉
[β−4m]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4(m+1)) mod β]

〈a3〉 . . . 〈al〉us

(iv) u
[(β−4m) mod β]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4m) mod β]

〈a3〉 . . . 〈al〉us

Figure 1 Objects 〈1〉, 〈0〉, 〈ε〉 and u being read when entered with shift [β − 4m]. Above `s
denotes the s computation steps that read each object, ai ∈ {u, 〈0〉, 〈1〉, 〈ε〉}, β = 4p is the deletion
number, and p is the length of C’s program. In (i), (ii) and (iii) 0 < m < p and in (iv) 0 6 m < p.
On the left is the dataword before the object is read and on the right is the dataword after the
object has been read. After 〈1〉, 〈0〉 or 〈ε〉 is read the adjacent object 〈a2〉 is entered with shift
[β − 4(m + 1)], and in (iv) after u is read 〈a2〉 is entered with shift [(β − 4m) mod β]. Reading
the objects 〈0〉, 〈ε〉 or u appends us, and reading the object 〈1〉 appends the encoding of cyclic tag
system appendant αm = σ1σ2 . . . σv.

control flow. Figures 1 and 2 give a high level view of reading each of the four objects that
appear in Equation (1) and this view includes the shift change that occurs from reading
each object. Objects 〈1〉, 〈0〉 and 〈ε〉 have length |〈1〉| = |〈0〉| = |〈ε〉| = βs+ 4 and so have a
shift change of β − 4 (see end of Section 2.1). So when these objects are entered with shift
[(β − 4m) mod β] the adjacent object 〈a2〉 is entered with shift [(β − 4(m + 1)) mod β] (as
shown in Figures 1 and 2). When reading 〈1〉 or 〈0〉 this shift change of β − 4 simulates the
appendant marker moving from appendant αm to α((m+1) mod p). Recall that β = 4p and so
reading p of the 〈0〉 and 〈1〉 objects has a shift change of 0 (since 0 = p(β− 4) mod β). This
shift change of 0 means that the encoding of the marked appendant returns to its original
value after reading p objects, correctly simulating that the appendant marker beginning at
αm has moved through the entire length p circular program of C′ and returned to it original
position of marking αm. The garbage objects 〈ε〉 and u in Equation (1) appear only in
garbage words of the form {〈ε〉p, u}∗ which have a shift change of 0 (since |〈ε〉p| = (1 + ps)β
and |u| = βs) and so have no effect on the shift value when entering subsequent objects
(see Lemma 2). In Figures 1 and 2 we see that reading an 〈1〉 simulates reading a 1 by
appending the encoding of the marked appendant αm = σ1σ2 . . . σv and reading an 〈0〉
simulates reading a 0 by appending a garbage word from {〈ε〉p, u}∗ to simulate that nothing
is appended. In Figures 1 and 2 when the garbage objects 〈ε〉 and u are read they append
garbage words from {〈ε〉p, u}∗ that have no effect on the simulation.

To help the reader, in Section 3.3 we define u for a specific example and use this value to
give an example of our algorithm simulating a cyclic tag system computation step. Here we
explain how Table 1 defines u so that when each object is read it appends the appendants
shown in Figures 1 and 2. Recall that a track w[z] is the sequence of symbols read in a word w
when it is entered with shift z (see Section 2.1). Table 1 defines u by giving (in the middle
column) each possible track in u (for detailed example see Section 3.3.1). Each u track is
read when the object in the left column of Table 1 is entered with shift [(β − 4m) mod β].
To see this note that the number of b symbols that proceed the u word in each object
causes a shift change which in turn causes the u track given in middle column of Table 1
to be read. For example the word bbb at the left end of 〈1〉 = bbbub has a shift change
value of β − 3 (see Section 2.1) and thus when 〈1〉 is entered with shift [(β − 4m) mod β]
we enter u with shift [β − 4m − 3]. So when m > 0 and we read an 〈1〉, we see from
row 8 of Table 1 that track u

[β−4m−3] = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−5v is read. Applying the rules

STACS 2015

654 Undecidability in Binary Tag Systems and the Post Correspondence Problem

(i) 〈1〉
[0]
〈a2〉〈a3〉 . . . 〈al〉 `s+1 〈a2〉

[β−4]
〈a3〉 . . . 〈al〉〈σ1〉〈σ2〉 . . . 〈σv〉us−5v+1

(ii) 〈0〉
[0]
〈a2〉〈a3〉 . . . 〈al〉 `s+1 〈a2〉

[β−4]
〈a3〉 . . . 〈al〉〈ε〉pus−5p+1

(iii) 〈ε〉
[0]
〈a2〉〈a3〉 . . . 〈al〉 `s+1 〈a2〉

[β−4]
〈a3〉 . . . 〈al〉〈ε〉pus−5p+1

Figure 2 Objects 〈1〉, 〈0〉 and 〈ε〉 being read when entered with shift 0. Above `s+1 denotes the
s+1 computation steps that read each object when entered with shift 0. Here ai ∈ {u, 〈0〉, 〈1〉, 〈ε〉},
β = 4p is the deletion number, and p is the length of C’s program. On the left is the dataword
before the object is read and on the right is the dataword after the object has been read. After
〈1〉, 〈0〉 or 〈ε〉 is read the adjacent object a2 is entered with shift [β − 4]. Reading the objects 〈0〉
or 〈ε〉 appends 〈ε〉pus−5p+1, and reading the object 〈1〉 appends the encoding of cyclic tag system
appendant α0 = σ1σ2 . . . σv.

b → b and c → u when reading this track appends the appendant 〈σ1〉〈σ2〉 . . . 〈σv〉cs−5v

as shown in Figure 1 (i). For m > 0 the entire sequence of symbol read in 〈1〉, 〈0〉, and
〈ε〉 are respectively given by the u tracks in rows 3, 5 and 8 of Table 1. One can see that
applying the rules b → b and c → u to these tracks appends the correct appendant for
each object read in Figure 1. For m = 0 we have a special case where to get the entire
sequence of symbols read in each object we prepend an extra b to the u tracks given in rows
2, 4, 6 and 7 of Table 1 and now applying the rules b → b and c → u to this sequence
appends the appendants shown in Figure 2. For example, to give the sequence read in 〈1〉
when m = 0, we prepend b to track u

[β−3] = 〈σ1〉′
[1]
〈σ2〉′ . . . 〈σv〉′cs−5v+1 (row 7 of Table 1)

to give the sequence b〈σ1〉′
[1]
〈σ2〉′ . . . 〈σv〉′cs−5v+1 = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−5v+1 which appends

the word 〈σ1〉〈σ2〉 . . . 〈σv〉cs−5v+1 as shown in Figure 2 (i). Finally, in row 1 of Table 1 are
the u tracks that give the sequence of symbols read in u garbage objects for all values of m.

3.2.1 Tag system TC Simulating an Arbitrary Computation Step of C
Equation (2) gives an arbitrary computation step of cyclic tag system C, where w′ = σ1 . . . σv
if w1 = 1 and αm = σ1σ2 . . . σv, and w′ = ε if w1 = 0.

α0, . . .αmαmαmαm+1 . . . αp−1 w1w2 . . . wl ` α0, . . . αmαm+1αm+1αm+1 . . . αp−1 w2 . . . wlw
′ (2)

Lemma 8 essentially states that TC simulates the arbitrary computation step given in Equa-
tion (2). In Lemma 8, Equations (3) and (4) respectively encode the left and right config-
urations in Equation (2) (see Equation (1)).

I Lemma 8 (TC simulates an arbitrary computation step of C). Given a dataword of the form

〈w1〉
[(β−4m) mod β]

{〈ε〉p, u}∗〈w2〉{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗ (3)

where wi ∈ {0, 1}, TC reads the word 〈w1〉
[(β−4m) mod β]

{〈ε〉p, u}∗ to give a dataword of the form

〈w2〉
[(β−4(m+1)) mod β]

{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗〈w′〉{〈ε〉p, u}∗ (4)

where 〈w′〉 = 〈σ1〉〈σ2〉 . . . 〈σv〉 if w1 = 1 and αm = σ1σ2 . . . σv, and 〈w′〉 = ε if w1 = 0.

T. Neary 655

Proof. We use Figures 1 and 2 to verify that given Configuration (3), TC produces Config-
uration (4). Following this we discuss the correctness of Figures 1 and 2.

From (i) and (ii) of Figures 1 and 2 there are 4 possible cases for reading 〈w1〉, where each
case is determined by the value of 〈w1〉 ∈ {〈1〉, 〈0〉} and the shift ([0] or [β− 4m] for m > 0)
with which it is entered. The technique for verifying that TC produces Configuration (4)
from Configuration (3) is similar for all 4 cases and so we will only go through one case.
We choose the case where 〈w1〉 = 〈1〉 and is entered with shift [β − 4m] for m > 0. From
Figure 1 (i) when we read 〈w1〉 = 〈1〉 with shift [β − 4m] in Configuration (3) we get

{〈ε〉p, u}∗
[(β−4(m+1) mod β]

〈w2〉{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗〈σ1〉〈σ2〉 . . . 〈σv〉us−5v (5)

In Configuration (5) the word {〈ε〉p, u}∗ is entered with shift [(β − 4(m + 1) mod β]. Each
〈ε〉 has a shift change of β−4 and each u has a shift change of 0, and so as we read the word
{〈ε〉p, u}∗ the 〈ε〉 and u objects are entered with shifts of the form [(β − 4m′) mod β] where
0 6 m′ < p. So the cases for reading the objects in the word {〈ε〉p, u}∗ are given by (iii) in
Figures 1 and 2 and (iv) in Figure 1. Thus when we read the word {〈ε〉p, u}∗ at the left end
of Configuration (5) we append a word of the form {〈ε〉p, u}∗ as shown in Configuration (6).
Recall that words of the form {〈ε〉p, u}∗ have a shift change of [0] and so when we enter
{〈ε〉p, u}∗ with shift [β − 4(m + 1) mod β] as shown in Configuration (5) we also enter the
adjacent object 〈w2〉 with shift [β − 4(m+ 1) mod β] as shown in Configuration (6).

〈w2〉
[(β−4(m+1) mod β]

{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗〈σ1〉 . . . 〈σv〉us−5v{〈ε〉p, u}∗ (6)

Configuration (6) is of the form of Configuration (4) for the case where 〈w1〉 = 〈1〉 and
is entered with shift [(β − 4m) mod β] for m > 0. So for this case we have shown using
Figures 1 and 2 that given Configuration (3) TC produces Configuration (4). The correctness
of Figures 1 and 2 can be verified by showing that on each line of these figures, reading the
leftmost object in the configuration on the left produces the configuration on the right. This
is achieved by showing that when we enter the adjacent object 〈a2〉 with the correct shift
and also that the correct word gets appended at the end of the dataword. The shift value
with which 〈a2〉 is entered follows immediately from Lemma 2 and the length of the object
being read. We direct the reader to paragraph 2 of Section 3.2 where we explain how Table 1
defines u so that when each object is read it appends the appendants shown in Figures 1
and 2. J

Our first main Theorem (Theorem 6) follows from Lemma 9. For tag system T ′C in
Lemma 9 we restrict the type of input allowed as this lets us simulate T ′C in Theorem 11
when proving the Post correspondence problem undecidable for 5 pairs of words.

I Lemma 9. Let T ′C be an arbitrary binary tag system with deletion number β, alphabet
{b, c} and rules of the form b→ b and c→ u0u1 . . . ulb (ui ∈ {b, c}). The halting problem is
undecidable for tag systems of the form of T ′C when given uβ−1uβ . . . ulb as input.

Proof. In [15] the cyclic tag system C simulates the computation of an arbitrary Turing
machine and appends an appendant (which we will call αh) encoding the Turing machine
halt state if and only if the simulated Turing machine halts. So given the cyclic tag system
C, its input w1w2 . . . wn, and an appendant αh, we construct a binary tag system T ′C that
takes uβ−1uβ . . . ulb as input and simulates C on input w halting if an only if C appends αh.
It then follows that halting problem is undecidable for tag systems of the form of T ′C when
given uβ−1uβ . . . ulb as input.

STACS 2015

656 Undecidability in Binary Tag Systems and the Post Correspondence Problem

Table 2 Table defining u for tag system in Lemma 9. In the middle column is the sequence of
symbols (or track) read in u when the object in the left column is entered with shift [(β − 10m +
1) mod β], where β = 10p is the deletion number, αm is a cyclic tag system appendant, 〈ε〉′ = b4cb6,
and 〈σi〉′ = b6cb4 if σi = 0, and 〈σi〉′ = b8cb2 if σi = 1. Also 〈ε〉

[1]

′ and 〈σ1〉
[1]

′ are the words 〈ε〉′ and

〈σ1〉′ with their leftmost symbol removed.

Object Track read in u Values for m and αm
input track u

[β−1] = bβ−2〈w′1〉 . . . 〈w′n〉us−11(n+p)−β+2(〈ε〉′)p

u u
[(β−10m+1) mod β] = cs 0 6 m < p

〈ε〉 = b4ub6 u
[β−3] = 〈ε〉

[1]

′(〈ε〉′)p−1cs−11p+1 m = 0

u
[β−10m−3] = (〈ε〉′)pcs−11p 0 < m < p

〈0〉 = b6ub4 u
[β−5] = 〈ε〉

[1]

′(〈ε〉′)p−1cs−11p+1 m = 0

u
[β−10m−5] = (〈ε〉′)pcs−11p 0 < m < p

〈1〉 = b8ub2 u
[β−7] = 〈σ1〉′

[1]
〈σ2〉′ . . . 〈σv〉′cs−11v+1 α0 = σ1 . . . σv, m = 0

u
[β−10m−7] = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−11v αm = σ1 . . . σv, 0 < m < p, m 6= h

u
[β−10h−7] = bus−1

halting tracks u
[2i] = bs i = {0, 1, 2, 3, . . . β−2

2 }

We obtain T ′C by modifying tag system TC from Section 3.1. In T ′C , u is defined by Table 2
and we have 〈0〉 = b6ub4, 〈ε〉 = b4ub6, 〈1〉 = b8ub2. The deletion number is now β = 10p, and
|u| = βs with s = 11(max(p+n+β−2, r)). On input uβ−1uβ . . . ulb tag system T ′C reads track
u

[β−1] and from row 1 of Table 2 this appends bβ−2〈w1〉〈w2〉 . . . 〈wn〉us−11(n+p)−β+2(〈ε〉)p.
So T ′C begins its computation by appending the encoding of the input to C. Reading
uβ−1uβ . . . ulb, which has a shift change of β − 1, causes us to enter the encoded data-
word with a shift of β − 1 and this means that we can enter u garbage objects with shift
β − 1 and read the track that appends the encoded input. To avoid this we append the
word bβ−2 to the left of 〈w1〉 and since bβ−2 has a shift change of 2 the encoded input is
entered with shift [1] (instead of [β − 1]). After reading this bβ−2 T ′C begins the simulation
of C on input w, making use of the same algorithm as TC . Since we enter the encoding
of the input word w with shift [1] and objects 〈0〉 = b6ub4 and 〈1〉 = b8ub2 now have a
shift change of β − 10, T ′C enters objects with shifts of the form [(β − 10m + 1)) mod β].
This means that when reading garbage object u and objects 〈ε〉, 〈0〉, and 〈1〉, we enter u
with shifts of [(β − 10m+ 1)) mod β], [(β − 10m− 3)) mod β], [(β − 10m− 5)) mod β] and
[(β − 10m − 7)) mod β] respectively. This gives the shift values for the tracks in Table 2.
By comparing the tracks in Tables 1 and 2 we can see that the when objects in T ′C are read
they append similar sequences of objects to those in TC . So the computation of T ′C proceeds
in the same manner as the computation of TC . However, if C appends αh then we enter 〈1〉
with shift [β − 6h] and track u

[β−6h−4] = bcs−1 is read appending the word bus−1. When
bus−1 is read during the next traversal of the dataword the single b in this word causes a
shift change of β − 1 which means that all u subwords in the dataword of T ′C will now be
entered with an even valued shift. From row 10 of Table 1 all even valued tracks in u append
only b symbols and so after one further traversal the dataword consists entirely of b symbols.
After this the rule b→ b, which appends one b and deletes β symbols, is repeated until the
number of symbols is < β and the computation halts. J

T. Neary 657

Table 3 Table defining u for the cyclic tag system C = 10, 0. In the middle column is the sequence
of symbols (track) read in u when the object in the left column is entered with shift (8− 4m) mod 8,
where αm is a cyclic tag system appendant, 〈1〉′ = bbbcb, 〈0〉′ = bbcbb and 〈0〉

[1]

′ = bcbb.

Object Track read in u Values for m and αm

u u
[(8−4m) mod 8] = c10 0 6 m < 2

〈ε〉 = bubbb u
[7] = cbbb(bcbbb)c m = 0

u
[3] = c10 m = 1

〈0〉 = bbubb u
[6] = cbbb(bcbbb)c m = 0

u
[2] = c10 m = 1

〈1〉 = bbbub u
[5] = 〈0〉

[1]

′c6 α0 = 0

u
[1] = 〈0〉′〈1〉′ α1 = 01

3.3 Example Simulation for TC

3.3.1 Using Table 1 to define u

To help explain how Table 1 is used to define u, we take the example of defining u for the
cyclic tag system program C = 0, 01. The value for u is given in Equation (7), where to
improve readability, we have split u into two equal length subwords u′ and u′′ with a space
between every fourth symbol.

u = u′u′′ (7)
u′ = cbcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb

u′′ = cbcc cccc cbcc ccbb cbcc ccbb cccc ccbb cbcc cccc

From Section 3.1 when C = 0, 01 we have p = 2, s > 10, β = 8, |u| = 80, α0 = 0 and
α1 = 01. By substituting these values into Table 1 we get Table 3 which defines u for our
tag system that simulates C = 0, 01. Table 3 defines the word u as a series of tracks. Recall
from Section 2.1 that a track w

[z] = wzwz+βwz+2β , . . . , wz+lβ in a word w is the sequence of
symbol read in that word when it is entered with shift z. Here β = 8 and so for m = 0, row
1 of Table 3 defines track u

[0] = u0u8u16 . . . u72 = c10, which is shown in bold below.

u′ = cccbcc cbcc cccbcc ccbb cccccc cbbb cccbcc cbbb cccbcc ccbb
u′′ = cccbcc cccc cccbcc ccbb cccbcc ccbb cccccc ccbb cccbcc cccc

Taking row 2 of Table 3 gives u[7] = u7u15u23 . . . u79 = cbbb(bcbbb)c which again is given in
bold immediately below.

u′ = cbcc cbcccc cbcc ccbbbb cccc cbbbbb cbcc cbbbbb cbcc ccbbbb
u′′ = cbcc cccccc cbcc ccbbbb cbcc ccbbbb cccc ccbbbb cbcc cccccc

Rows 3 to 7 of Table 3 give the tracks that complete the definition of u for our tag system
that simulates the cyclic tag system C = 10, 0.

STACS 2015

658 Undecidability in Binary Tag Systems and the Post Correspondence Problem

3.3.2 Simulating a Computation Step with TC.
In this section we give the low level details of our simulation algorithm for TC by simulating
the first computation step (000, 01 11 ` 0,010101 10) of cyclic tag system C = 0, 01 on
the input dataword 11. The input dataword 11 to C is encoded via Definition 7 as the tag
system dataword 〈1〉〈1〉 and using 〈1〉 = bbbub and Equation (7) this can be rewritten as

〈1〉︷ ︸︸ ︷
bbb cbcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸

u′

u′′b 〈1〉 (8)

Because the dataword is quite long we only give the left end of the dataword as b and c

symbols and use higher level objects on the right. In configuration (8) the leftmost symbol
is b and so we apply the rule b→ b by appending b and deleting the leftmost 8 symbols from
the dataword to give

` bcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸
u
[5]
′

u′′b 〈1〉 b (9)

Above u is entered with shift 5 and so we begin reading track u
[5] from Table 3. We apply

the rules b→ b and c→ u of TC to give the next four computation steps

` cbb cccc cbbb cbcc cbbb cbcc ccbb u′′b 〈1〉 bb
` bbb cbcc cbbb cbcc ccbb u′′b 〈1〉 bbu
` bbb cbcc ccbb u′′b 〈1〉 bbub
` cbb u′′b 〈1〉 bbubb︸ ︷︷ ︸

〈0〉

During the first 5 computation steps the word 〈0〉 = bbubb was appended to the dataword.
Below we give a rewritten form of the configuration immediately above where bbubb is re-
placed with 〈0〉 and u′′ is replaced with its value from Equation (7). We also give the next
5 computation steps

cbb cbcc cccc cbcc ccbb cbcc ccbb cccc ccbb cbcc cccc︸ ︷︷ ︸
u′′

b 〈1〉〈0〉

`5 ccc b 〈1〉〈0〉 u5

Below we have rewritten the configuration given immediately above and given the last
configuration in this simulated computation step.

ccc b

〈1〉︷ ︸︸ ︷
bbb cbcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸

u′

u′′b 〈0〉u5 (10)

`

〈1〉
[4]︷ ︸︸ ︷

bcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸
u
[1]
′

u′′b 〈0〉u6 (11)

T. Neary 659

In Equation (11) above we have finished reading the leftmost 〈1〉 in the dataword and
completed our simulation of the computation step (000, 01 11 ` 0,010101 10). The word 〈0〉u6

was appended simulating appendant α0 = 0 from the program C = 0, 01 was appended.
From Section 3.1 the u subwords in u6 are considered garbage objects and these u subwords
have no effect on the computation (see first paragraph of Section 3.2). Also, in Equation (11)
we see that the next 〈1〉 is entered with shift 4 which encodes that second appendant α1 = 01
in the program C = 0, 01 is now marked. To see this recall that entering an object with a
shift of (β − 4m) mod β encodes that appendant αm is marked and since β = 8 we get a
shift of 4 when m = 1 meaning α1 is marked. The dataword in Equation (11) is of the form
given in Equation (1) and is ready to begin simulation of the next computations step.

4 The Post Correspondence Problem for 5 Pairs of Words

In Theorem 11 we reduce the halting problem for the binary tag system given in Lemma 9
to the Post correspondence problem for 5 pairs of words.

I Definition 10 (Post correspondence problem). Given a set of pairs of words {(ri, vi)|ri, vi ∈
Σ∗, i ∈ {0, 1, 2 . . . , n}} where Σ is a finite alphabet, determine whether or not there exists a
non-empty sequence i1, i2, . . . il,∈ {0, 1, 2 . . . , n} such that ri1ri2 . . . ril = vi1vi2 . . . vil .

I Theorem 11. The Post correspondence problem is undecidable for 5 pairs of words.

Proof. We reduce the halting problem for the binary tag systems T ′C in Lemma 9 to the
Post correspondence problem instance given by the 5 pairs of words

P = {(1, 1〈u0〉〈u1〉 . . . 〈ul〉10), (10β1, 110), (10β1, 0), (1, 0), (10β1111, 1111)}

where ε is the empty word and ui ∈ {b, c}. The symbols b and c in T ′C are encoded as 〈b〉 =
10β1 and 〈c〉 = 1 respectively, where β is the deletion number of T ′C . Let r = ri1ri2 . . . ril
and v = vi1vi2 . . . vil , where each (ri, vi) ∈ P and r is a prefix of v. We will call the pair
(r, v) a configuration of P. An arbitrary dataword x0x1 . . . xqb ∈ {b, c}∗b is encoded by a P
configuration of the form

(r, v) = (r, r〈x0〉〈x1〉 . . . 〈xq〉10β) (12)

In each configuration (r, v), the unmatched part of v (i.e. 〈x0〉〈x1〉 . . . 〈xq〉10β) encodes the
current dataword of T ′C .

Starting from the pair (1, 1〈u0〉〈u1〉 . . . 〈ul〉10), if u0 = c we add the pair (1, 0) and this
matches 〈c〉 = 1 simulating the deletion of u0. If, on the other hand, u0 = b we add the
pair (10β1, 0) and this matches 〈b〉 = 10β1 simulating the deletion of u0. So after matching
〈u0〉 we have (1〈u0〉, 1〈u0〉〈u1〉 . . . 〈ul〉100). We match β − 1 encoded T ′C symbols in this
way to give (r, v) = (1〈u0〉 . . . 〈uβ−2〉, 1〈u1〉〈u2〉 . . . 〈ul〉10β). The configuration is now of the
form given in Equation (12) and the unmatched sequence 〈uβ−1〉 . . . 〈ul〉10β in v encodes
the input dataword to T ′C in Lemma 9.

A step of T ′C on an arbitrary dataword x0x1 . . . xqb is of one the two forms:

cx1 . . . xqb ` xβ−1 . . . xqbu1 . . . ulb (13)
bx1 . . . xqb ` xβ−1 . . . xqbb (14)

These computation steps are simulated as follows: In Equation (12), if x0 = c then 〈x0〉 = 1
and we add the pair (1, 1〈u0〉〈u1〉 . . . 〈ul〉10) to simulate the T ′C rule c → u0 . . . ulb, and

STACS 2015

660 Undecidability in Binary Tag Systems and the Post Correspondence Problem

this gives (r1, r1〈x1〉 . . . 〈xq〉10β1〈u0〉〈u1〉 . . . 〈ul〉10). In Equation (12), if x0 = b then
〈x0〉 = 10β1 and we add the pair (10β1, 110) to simulate the T ′C rule b → b, giving
(r10β1, r10β1〈x1〉 . . . 〈xq〉10β110). In both cases we simulate the deletion of a further β− 1
tag system symbols as we did in the previous paragraph to complete the simulated computa-
tion step. So if x0 = c this gives (r1〈x1〉 . . . 〈xβ−1〉, r1〈x1〉 . . . 〈xq〉10β1〈u0〉〈u1〉 . . . 〈ul〉10β),
with the unmatched part in this pair encoding the new dataword on the right of Equa-
tion (13). Or, if x0 = b we get (r10β1〈x1〉 . . . 〈xβ−1〉, r10β1〈x1〉 . . . 〈xq〉10β110β), with the
unmatched part in this pair encoding the new dataword on the right of Equation (14). The
simulated computation step for both cases is now complete.

Now we show that P simulates T ′C halting with a matching pair of words. Recall that
|u| = sβ where we can choose s to be any natural number greater than some constant (see
Section 3.1). We choose s to be of the form s = x(β − 1) + 1 and so the input dataword
uβ−1 . . . ulb to T ′C has length xβ(β−1)+1 and the rules either increase its length by xβ(β−1)
(rule c → u0 . . . ulb) or decrease it by β − 1 (rule b → b), which means all datawords of T ′C
have length y(β − 1) + 1, where y ∈ N. From Lemma 9, T ′C halts when the length of its
dataword (which has the form b∗) is less than the deletion number β. So, when T ′C halts we
have y(β − 1) + 1 < β which means the dataword is a single b. From Equation (12), this
is encoded as the configuration (r, v) = (r, r10β). By appending the pair (10β1111, 1111) to
(r, v), we get the matching pair (r10β1111, r10β1111) when T ′C halts.

To complete our proof we show that choices that do not follow the simulation as described
above leads to a mismatch. We must have (1, 1〈u0〉〈u1〉 . . . 〈ul〉10) as the leftmost pair as
putting any other pair from P on the left will not give a match. Now recall that the pair
(1, 1〈u0〉〈u1〉 . . . 〈ul〉10) encodes the initial configuration (or input) for T ′C . So now we show
that given the encoding of an arbitrary configuration any choice that does not follow the
simulation leads to a mismatch. From Equation (12) an arbitrary configuration has the
form (r, r〈x0〉〈x1〉 . . . 〈xq〉10β). If x0 = b then 〈x0〉 = 10β1 and we cannot choose either of
the pairs (1, 1〈u0〉〈u1〉 . . . 〈ul〉10) or (1, 0) as they will allow no further matches, the pair
(10β1111, 1111) cannot be chosen as four consecutive 1s do not appear in the encoding (this
is because in u we cannot have 2 encoded c symbols (〈c〉 = 1) next to each other). The pair
(10β1, 0) appends a 0 onto the right sequence to give 10β+1 which cannot be matched as it
is only possible to match 0 sequences of the from 10β1. Similar arguments are used for the
case of x0 = c and so we do not repeat them. After we have matched 〈x0〉 our simulation
algorithm requires that we simulate the deletion of a further β − 1 symbols. If we deviate
from the simulation either we find almost immediately that no more matches are possible
or we end up with a sequence of zeros that does not have the form 10β1 and so cannot be
matched. After simulating the deletion of β − 1 symbols we have completed the simulation
of an arbitrary computation step and arrived at an encoded configuration of the form given
by Equation (12). So it is not possible to find a match in P if we do not follow the simulation
described above. Therefore, P has a matching sequence if and only if T ′C halts. J

By applying the reductions in [8] and [3] to P in Theorem 11 we get Corollary 12.

I Corollary 12. The matrix mortality problem is undecidable for sets with six 3×3 matrices
and for sets with two 18× 18 matrices.

Acknowledgements: This work is supported by Swiss National Science Foundation grant
number 200021-141029. I would like to thank Matthew Cook, Damien Woods, Vesa Halava,
and Mika Hirvensalo for their comments and discussions.

T. Neary 661

References
1 Vincent D. Blondel and John N. Tsitsiklis. When is a pair of matrices mortal? Information

Processing Letters, 63(5):283–286, 1997.
2 Vincent D. Blondel and John N. Tsitsiklis. A survey of computational complexity results

in systems and control. Automatica, 36(9):1249–1274, 2000.
3 Julien Cassaigne and Juhani Karhumäki. Examples of undecidable problems for 2-generator

matrix semigroup. TCS, 204(1-2):29–34, 1998.
4 Volker Claus. Some remarks on PCP(k) and related problems. Bull. EATCS, 12:54–61,

1980.
5 John Cocke and Marvin Minsky. Universality of tag systems with P = 2. Journal of the

ACM, 11(1):15–20, 1964.
6 Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–

40, 2004.
7 Andrzej Ehrenfeucht, Juhani Karhumäki, and Grzegorz Rozenberg. The (generalized) Post

correspondence problem with lists consisting of two words is decidable. TCS, 21(2):119–144,
1982.

8 Vesa Halava and Tero Harju. Mortality in matrix semigroups. American Mathematical
Monthly, 108(7):649–653, 2001.

9 Vesa Halava, Tero Harju, and Mika Hirvensalo. Undecidability bounds for integer matrices
using Claus instances. IJFCS, 18(5):931–948, 2007.

10 Tero Harju and Maurice Margenstern. Splicing systems for universal Turing machines. In
DNA 10, volume 3384 of LNCS, pages 149–158. Springer, 2005.

11 Kristian Lindgren and Mats G. Nordahl. Universal computation in simple one-dimensional
cellular automata. Complex Systems, 4(3):299–318, 1990.

12 Yuri Matiyasevich and Géraud Sénizergues. Decision problems for semi-Thue systems with
a few rules. TCS, 330(1):145–169. (An earlier version appeared in “11th Annual IEEE
Symposium on Logic in Computer Science, LICS 1996".), 2005.

13 Marvin Minsky. Recursive unsolvability of Post’s problem of “tag" and other topics in
theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

14 Marvin Minsky. Size and structure of universal Turing machines using tag systems. In
Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, volume 5, pages
229–238, Provelence, 1962. AMS.

15 Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In
ICALP 2006, Part I, volume 4051 of LNCS, pages 132–143. Springer, 2006.

16 Michael S. Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics,
49(1):105–107, 1970.

17 Emil L. Post. Formal reductions of the general combinatorial decision problem. American
Journal of Mathematics, 65(2):197–215, 1943.

18 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of The American
Mathematical Society, 52:264–268, 1946.

19 Raphael M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae, 12(3):177–209, 1971.

20 Yurii Rogozhin. Small universal Turing machines. TCS, 168(2):215–240, 1996.
21 Paul Rothemund. A DNA and restriction enzyme implementation of Turing machines. In

DNA Based Computers, volume 27 of DIMACS, pages 75–119. AMS, 1996.
22 Hao Wang. Tag systems and lag systems. Mathematical Annals, 152:65–74, 1963.
23 Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small

universal Turing machines. In 47th Annual IEEE Symposium on Foundations of Computer
Science, pages 439–448, 2006.

STACS 2015

Separation and the Successor Relation∗

Thomas Place and Marc Zeitoun

LaBRI, Bordeaux University, France, firstname.lastname@labri.fr.

Abstract
We investigate two problems for a class C of regular word languages. The C-membership problem
asks for an algorithm to decide whether an input language belongs to C. The C-separation
problem asks for an algorithm that, given as input two regular languages, decides whether there
exists a third language in C containing the first language, while being disjoint from the second.
These problems are considered as means to obtain a deep understanding of the class C.

It is usual for such classes to be defined by logical formalisms. Logics are often built on top
of each other, by adding new predicates. A natural construction is to enrich a logic with the
successor relation. In this paper, we obtain new and simple proofs of two transfer results: we
show that for suitable logically defined classes, the membership, resp. the separation problem for
a class enriched with the successor relation reduces to the same problem for the original class.

Our reductions work both for languages of finite words and infinite words. The proofs are
mostly self-contained, and only require a basic background on regular languages. This paper
therefore gives simple proofs of results that were considered as difficult, such as the decidability
of the membership problem for the levels 1, 3/2, 2 and 5/2 of the dot-depth hierarchy.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases separation problem, regular word languages, logics, decidable character-
izations, semidirect product

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.662

1 Introduction

A central problem in the theory of formal languages is to characterize and understand the
expressive power of high level specification formalisms. Monadic second order logic (MSO)
is such a formalism, which is both expressive and robust. For several classes of structures,
such as words or trees, it has the same expressive power as finite automata and defines the
class of regular languages. In this paper, we investigate fragments of MSO over words. In
this context, understanding the expressive power of a fragment is associated to two decision
problems: the membership problem and the separation problem.

For a fixed logical fragment F , the F-membership problem asks for a decision procedure
that tests whether some input regular language can be expressed by a formula from F . To
obtain such an algorithm, one has to consider and understand all properties that can be
expressed within F , which requires a deep understanding of the fragment F . On the other
hand, the F-separation problem is more general. It asks for a decision procedure that tests
whether given two input regular languages, there exists a third one in F containing the first
language while being disjoint from the second one.

Since regular languages are closed under complement, membership reduces to separation:
a language is in F if and only if it can be separated from its complement. Usually, the

∗ Supported by ANR 2010 BLAN 0202 01 FREC

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 662–675

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.662
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Place and M. Zeitoun 663

separation problem is more difficult than the membership problem but also more rewarding
with respect to the knowledge gained on the investigated fragment F .

These two problems have been considered and solved for many natural fragments of
monadic second order logic. Among these, the most prominent one is first-order logic, FO(<),
equipped with a predicate < for the linear ordering. The solution to the membership problem,
known as the McNaughton-Papert-Schützenberger Theorem [20, 10], has been revisited until
recently [5]. The theorem states that a regular language is definable in FO(<) if and only if
its syntactic semigroup is aperiodic. The syntactic semigroup is a finite algebraic object that
can be computed from any regular language. Since aperiodicity can be defined as an equation
that needs to be satisfied by all of its elements, this yields decidability of FO(<)-definability.
This result now serves as a template, which is commonly followed in this line of research.

The separation problem has also been successfully solved for first-order logic [7]. Actually,
the problem was first addressed in a purely algebraic framework, and was later identified as
equivalent to our separation problem [2]. As for membership, this problem is still revisited
today and a new self-contained and combinatorial proof was obtained in [18].

Motivation. We are interested in natural fragments of FO(<) obtained by restricting either
the number of variables or the number of quantifier alternations allowed in formulas. Such
restrictions in general give rise to several variants of the same fragment. Indeed, in most
cases, the drop in expressive power forbids the use of natural relations that could be defined
from the linear order in FO(<). The main example considered in this paper is +1, the
successor relation, together with predicates min and max for the first and last positions
in a word. This means that one can define two distinct variants of the same fragment
depending on whether we decide to explicitly add these predicates in the signature or not.
An example is the fragment Σn, which consists of first-order formulas whose prenex normal
form has at most (n− 1) quantifier alternations and starts with an existential block. Since
defining +1 requires an additional quantifier alternation, Σn(<,+1,min,max) has indeed
stronger expressiveness than Σn(<). The motivation of this paper is to obtain decidability
results for such enriched fragments.

State of the Art. Even when the weak fragment is known to have decidable membership,
proving that the enriched one has the same property can be nontrivial. Examples include the
membership proofs of BΣ1(<,+1,min,max) (Boolean combinations of Σ1(<,+1,min,max)
formulas) and Σ2(<,+1), which require difficult and intricate combinatorial arguments [8, 6, 9]
or a wealth of algebraic machinery [12, 13]. Another issue is that most proofs directly deal
with the enriched fragment. Given the jungle of such logical fragments, it is desirable to
avoid such an approach, treating each variant of the same fragment independently. Instead,
a satisfying approach is to first obtain a solution of the membership and separation problems
for the less expressive variant and then to lift it to other variants via a generic transfer result.

This approach has first been investigated by Straubing for the membership problem [22]
in an algebraic framework, and later adapted to be able to treat classes not closed under
complement [13]. Transferring the logical problem to this algebraic framework requires
preliminary steps, still specific to the investigated class, to prove that:

1. A language is definable in the fragment if and only if its syntactic semigroup belongs to a
specific algebraic variety V (e.g., the variety of aperiodic monoids for FO(<)), and

2. Membership to V is decidable.

Next, though this is not immediate, for most fragments of FO(<), it has been proved that

STACS 2015

664 Separation and the Successor Relation

3. When the weaker variant corresponds to a variety V, the variant with successor corresponds
to the variety V ∗ D, built generically from V.

Hence, Straubing’s approach was to prove that

4. the operator V 7→ V ∗ D preserves decidability.

Unfortunately, this is not true in general [3]. Actually, while decidability is preserved for all
known logical fragments, there is no generic result that captures them all. In particular, for
the less expressive fragments, one has to use completely ad hoc proofs. In the separation
setting, things behave well: it has been shown that decidability of separation is preserved by
the operation V 7→ V ∗ D [21]. While interesting when already starting from algebra, this
approach has several downsides:

Dealing with algebra hides the logical intuitions, while our primary goal is to understand
the expressiveness of logics.
Going from logic to algebra requires to be acquainted with new notions and vocabulary,
as well as involved theoretical tools. Proofs are also often nontrivial and require a deep
understanding of complex objects, which may be scattered in the bibliography.
Despite step 4, which is generic to some extent, arguments specific to the investigated
class are pushed to steps 1–3, and they are often nontrivial.

Contributions. We give a new proof that decidability of separation can be transferred from
a weak to an enriched fragment. We present the result in two different forms.

The first one is non-algebraic: we work directly with the logical fragments, without using
varieties. The transfer result is generic and its proof mostly is: the only specific argument
is an Ehrenfeucht-Fraïssé game that can be adapted to all natural fragments with minimal
difficulty (we prove it in the long version of this paper for all considered fragments, see [19]).
The benefits of this new proof are that:

1. It is self-contained and much simpler than previous ones. It only relies on two basic
well-known notions: recognizability by semigroups and Ehrenfeucht-Fraïssé games.

2. It works with classes that are not closed under complement, contrary to [21]. This allows
us to capture the Σ and Π levels in the quantifier alternation hierarchy of first-order logic.

3. Under an additional hypothesis on the logical fragment, which is met for most fragments
we investigate and easy to check, the decidability result of the separation problem also
extends to the membership problem.

4. The proof adapts smoothly to infinite words using the notion of ω-semigroups, as shown
in the long version of this paper [19].

The second form of our result is algebraic and generic. We prove that V 7→ V∗D preserves
the decidability of separation for varieties, hence giving an elementary proof of a result of [21].
Even in this algebraic form, we completely bypass involved constructions or notions, such as
pointlike sets for categories developed in [21], thus making the proof accessible.

As corollaries, since BΣ1(<) and Σ2(<) both enjoy decidable separation [4, 16, 17], we
obtain that this is also the case for the fragments BΣ1(<,+1,min,max) and Σ2(<,+1),
known as levels 1 and 3/2 of the dot-depth hierarchy. These new results strengthen the
previous ones [8, 6] that showed decidability of membership and were considered as difficult.
We actually obtain that separation for Σn(<,+1,min,max) reduces to separation for Σn(<).
Since we also transfer decidability of the membership problem, and since the fragments BΣ2(<)
of Boolean combinations of Σ2(<) formulas and Σ3(<) have decidable membership [17] we

T. Place and M. Zeitoun 665

deduce that the same holds for BΣ2(<,+1) and Σ3(<,+1), known as levels 2 and 5/2 of the
dot-depth hierarchy.

Organization of the Paper. In Section 2, we set up the notation and we present the
separation problem and the logics we deal with. Section 3 is devoted to our main tool:
languages of well-formed words. In Section 4, we use it to prove our transfer result for all
fragments from the logical perspective, and in Section 5, we show that decidability of the
separation problem for the variety V entails the same for V ∗ D.

2 Preliminaries

In this section, we provide preliminary definitions on regular languages defined by logical
fragments and on separation. We also present our main contribution.

Words, Languages. We fix a finite alphabet A. Let A+ be the set of all nonempty finite
words and let A∗ be the set of all finite words over A. If u, v are words, we denote by
u · v or by uv the word obtained by concatenating u and v. For convenience, we only
consider, without loss of generality, languages that do not contain the empty word. That is,
a language is a subset of A+. We work with regular languages, that is, languages definable
by finite automata.

Separation. Given three languages K,L,L′, we say that K separates L from L′ if

L ⊆ K and K ∩ L′ = ∅.

If C is a class of languages, we say that L is C-separable from L′ if there exists K ∈ C that
separates L from L′. Note that if C is closed under complement, L is C-separable from L′

if and only if L′ is C-separable from L. However, this is not true for a class C not closed
under complement, such as the classes Σn(<) of the quantifier alternation hierarchy, which
we shall consider.

Given a class C, the C-separation problem asks for an algorithm which, given as input two
regular languages L,L′, decides whether L is C-separable from L′. The C-membership problem,
which asks whether an input regular language belongs to C, reduces to the C-separation
problem, as a regular language belongs to C iff it is C-separable from its complement.

Logics. We investigate several fragments of first-order logic on finite words. We view a finite
word as a logical structure made of a sequence of positions labeled over A. We work with
first-order logic FO(<) using a unary predicate Pa for each a ∈ A, which selects positions
labeled with an a, as well as binary predicates ‘=’ for equality and ‘<’ for the linear order.
Such a formula defines the regular language of all words that satisfy it. We will freely use
the name of a logical fragment of FO(<) to denote the class of languages definable in this
fragment. Observe that FO(<) is powerful enough to express the following logical relations:

First position, min(x): ∀y ¬(y < x).
Last position, max(x): ∀y ¬(x < y).
Successor, y = x+ 1: x < y ∧ ¬(∃z x < z ∧ z < y).

However, for most fragments of FO(<) this is not the case. For example, in the two-
variables restriction FO2(<) of FO(<), it is not possible to express successor, as it requires
quantifying over a third variable. For these fragments F , adding the predicates min, max

STACS 2015

666 Separation and the Successor Relation

Table 1 Logical fragments to which the technique applies.

Weak variant FO(=) FO2(<) Σn(<) BΣn(<)
Strong variant FO(=, +1) FO2(<, +1) Σn(<, +1, min, max) BΣn(<, +1, min, max)

and +1 yields a strictly more powerful logic F+. Our goal is to prove a transfer result
for such fragments: given a fragment, if the separation problem is decidable for the weak
variant F , then it is decidable as well for the strong variant F+ obtained by enriching F with
the above relations. The technique is generic, meaning that it is not bound to a particular
logic. In particular, our transfer result applies to the following well-known logical fragments:

FO(=), the restriction of FO(<) in which the linear order cannot be used, and only
equality between two positions can be tested. The enriched fragment FO(=,+1) (min and
max can be eliminated from the formulas) defines locally threshold testable languages [24].
All levels in the quantifier alternation hierarchy of first-order logic. A first-order formula
is Σn(<) (resp. Πn(<)) if its prenex normal form contains at most (n − 1) quantifier
alternations and starts with an ∃ (resp. a ∀) quantifier block. Finally, a BΣn(<) formula
is a boolean combination of Σn(<) and Πn(<) formulas.
Since for all fragments above Σ2(<), a formula involving min and max can be expressed
without these predicates in the same logic, we shall denote the enriched fragments by
Σ1(<,+1,min,max), BΣ1(<,+1,min,max), and then by Σ2(<,+1), BΣ2(<,+1), . . .
FO2(<), the restriction of FO(<) using only two reusable variables. The corresponding
enriched fragment is FO2(<,+1), since min and max can again be eliminated from the
formulas.

Table 1 summarizes all fragments the technique applies to. We prove the following
theorem.

I Theorem 1. Let F and F+ be respectively the weak and strong variants of one of the
logical fragments in Table 1. Then F+-separability can be effectively reduced to F-separability.

As explained in the introduction, we prove this theorem in two flavors: the first one,
Theorem 4, is purely logical. It is self-contained and elementary, but is not entirely generic.
The other one, Theorem 15, is purely algebraic and generic: the transfer works from an
algebraic class (for which only fairly general restrictions are assumed) to an enriched one.
Yet, it relies on already established results to be instantiated on the fragments of Table 1.

All these logical fragments have a rich history and have been extensively studied in
the literature. In particular, the separation problem is known to be decidable for the
following fragments: FO(=), FO2(<), Σ1(<), BΣ1(<), Σ2(<) [4, 16, 17]. This means
that, from our results, we obtain decidability of separation for FO(=,+1), FO2(<,+1),
Σ1(<,+1,min,max), BΣ1(<,+1,min,max) and Σ2(<,+1). Note that for FO(=,+1),
FO2(<,+1) and BΣ1(<,+1,min,max), the results could already be obtained as corollaries
of algebraic theorems of Steinberg [21] and Almeida [2]. As explained in the introduction,
an issue with this approach is that the proof of Steinberg’s result relies on deep algebraic
arguments and is not tailored to separation (the connection with separation is made by
Almeida [2]). For Σ1(<,+1,min,max) and Σ2(<,+1), the result is new, as Steinberg’s result
does not apply to classes of languages that are not closed under complement.

T. Place and M. Zeitoun 667

3 Tools: Semigroups and Well-Formed Words

In this section, we define the main tools used in the paper. First, we recall the well-known
semigroup based definition of regular languages: a language is regular if and only if it can
be recognized by a finite semigroup. Our second tool, well-formed words, is specific to our
problem and plays a key role in our transfer result.

3.1 Semigroups and Monoids
We work with the algebraic representation of regular languages in terms of semigroups. A
semigroup is a set S equipped with an associative product, written s · t or st. A monoid is a
semigroup S having a neutral element 1S , i.e., such that s · 1S = 1S · s = s for all s ∈ S. If S
is a semigroup, then S1 denotes the monoid S ∪ {1S} where 1S /∈ S is a new element, acting
as neutral element. Note that we add such a new identity even if S is already a monoid.

An element e ∈ S is idempotent if e · e = e. We denote by E(S) the set of idempotents
of S. Given a finite semigroup S, it is folklore and easy to see that there is an integer ω(S)
(denoted by ω when S is understood) such that for all s of S, sω is idempotent: sω = sωsω.

Note that A+ and A∗ equipped with concatenation are respectively a semigroup and a
monoid called the free semigroup over A and the free monoid over A. Let L ⊆ A+ be a
language and S be a semigroup (resp. a monoid). We say that L is recognized by S if there
exist a morphism α : A+ → S (resp. α : A∗ → S) and a set F ⊆ S such that L = α−1(F).

Semigroups and Separation. The separation problem takes as input two regular languages
L,L′. It is convenient to work with a single object recognizing both of them, rather than
having to deal with two. Let S, S′ be semigroups recognizing L,L′ together with the
associated morphisms α, α′, respectively. Clearly, L and L′ are both recognized by S × S′
with the morphism α × α′ : A+ → S × S′ mapping w to (α(w), α′(w)). From now on, we
work with such a single semigroup recognizing both languages. Replacing S × S′ with its
image under α× α′, one can also assume that this morphism is surjective. To sum up, we
assume from now on, w.l.o.g., that L and L′ are recognized by a single surjective morphism.

3.2 Well-Formed Words
In this section, we define our main tool for this paper. Assume that F is the weak variant of
one of the logical fragments of Table 1 and let F+ be the corresponding enriched variant.
To any semigroup morphism α : A+ → S into a finite semigroup S, we associate a new
alphabet Aα called the alphabet of well-formed words. The main intuition behind this notion
is that the F+-separation problem for any two regular languages recognized by α can be
reduced to the F -separation problem for two regular languages over Aα.
The alphabet Aα, called alphabet of well-formed words of α, is defined from α : A+ → S by:

Aα = (E(S)× S × E(S)) ∪ (S × E(S)) ∪ (E(S)× S) ∪ S.

We will not be interested in all words of A+
α , but only in those that are well-formed. A word

w ∈ A+
α is said to be well-formed if one of the following two properties holds:

w is a single letter s ∈ S,
w has length > 2 and is of the form

(s0, f0)·(e1, s1, f1) · · · (en, sn, fn)·(en+1, sn+1) ∈ (S×E(S))·(E(S)×S×E(S))∗·(E(S)×S)

with fi = ei+1 for all 0 6 i 6 n.

STACS 2015

668 Separation and the Successor Relation

I Fact 2. The set of well-formed words of A+
α is a regular language.

We now define a morphism β : A+
α → S as follows. If s ∈ S, we set β(s) = s, if

(e, s) ∈ E(S) × S, we set β((e, s)) = es, if (s, e) ∈ S × E(S), we set β((s, e)) = se and if
(e, s, f) ∈ E(S)× S × E(S), we set β((e, s, f)) = esf .

Associated Language of Well-formed Words. To any language L ⊆ A+ that is recognized
by α, one associates a language of well-formed words L ⊆ A+

α :

L =
{
w ∈ A+

α | w is well-formed and β(w) ∈ α(L)
}
.

By definition, the language L ⊆ A+
α is the intersection of the language of well-formed words

with β−1(α(L)). Therefore, it is immediate by Fact 2 that it is regular, more precisely:

I Fact 3. Let L ⊆ A+ be recognized by α. Then, the associated language of well-formed
words L ⊆ A+

α is a regular language that one can effectively compute from a recognizer of L.

4 Logical Approach

In this section, we prove Theorem 1 from a logical perspective. We begin with presenting
our separation theorem, which will entail the membership theorem as a simple consequence.

I Theorem 4. Let F and F+ be respectively the weak and strong variants of one of the
logical fragments in Table 1.

Let L,L′ be two languages recognized by a morphism α : A+ → S into a finite semigroup S.
Let L,L′ ⊆ A+

α be the languages of well-formed words associated with L,L′, respectively.
Then L is F+-separable from L′ iff L is F-separable from L′.

Theorem 4 reduces F+-separation to F -separation. The latter was already known to be
decidable for several weak variants in Table 1, namely for FO(=) [15], FO2(<) [16], Σ1(<) [4],
BΣ1(<) [4, 16] and Σ2(<) [17]. Hence, we get the following corollary.

I Corollary 5. Let L,L′ be regular languages. Then the following problems are decidable:
whether L is FO(=,+1)-separable from L′.
whether L is FO2(<,+1)-separable from L′.
whether L is Σ1(<,+1,min,max)-separable from L′.
whether L is BΣ1(<,+1,min,max)-separable from L′.
whether L is Σ2(<,+1)-separable from L′.

Notice that since the membership problem reduces to the separation problem, this also
gives a new proof that all these fragments have a decidable membership problem. This
is of particular interest for FO2(<,+1), BΣ1(<,+1,min,max) and Σ2(<,+1) for which
the previous proofs, which can be found in, or derived from [22, 1, 14], [8], and [6, 13, 12]
respectively, are known to be quite involved. It turns out that for Σ2(<,+1), we can do even
better and entirely avoid separation. Indeed, when F is expressive enough, Theorem 4 can
be used to prove a similar theorem for the membership problem.

I Theorem 6. Let F and F+ be respectively the weak and strong variants of one of the
logical fragments in Table 1. Moreover, assume that for any alphabet of well-formed words,
the set of well-formed words over this alphabet is definable in F .

Let L be a language recognized by a morphism α : A+ → S into a finite semigroup S. Let
L ⊆ A+

α be the language of well-formed words associated with L. Then L is definable in F+

iff L is definable in F .

T. Place and M. Zeitoun 669

Proof. Set K = A+ \ L and let K be the associated language of well-formed words. Observe
that by definition, K ∪ L is the set of all well-formed words.

If L is definable in F , then L is F-separable from K, hence by Theorem 4, L is F+-
separable from K, and so L is definable in F+. Conversely, if L is definable in F+, then L is
F+-separable from K and by Theorem 4, L is F -separable from K. Since K ∪ L is the set of
all well-formed words, L is the intersection of the separator with the set of all well-formed
words, which by hypothesis is also definable in F . Therefore, L is definable in F . J

Observe that being well-formed can be expressed in Π2(<): essentially, a word is well-
formed if for all pairs of positions, either there is a third one in-between, or the labels of the
two positions are “compatible”. Hence, among the fragments of Table 1, Theorem 6 applies
to all fragments including and above Π2(<) in the quantifier alternation hierarchy. While
such a transfer result was previously known [22, 13], the presentation and the proof are new.
In particular, since membership is known to be decidable for Π2(<) [12], BΣ2(<) [17] and
Σ3(<) [17], we obtain new and simpler proofs of the following results.

I Corollary 7. Given a regular language L, one can decide whether

L is definable by a Σ2(<,+1) (resp. by a Π2(<,+1)) formula.
L is definable by a BΣ2(<,+1) formula.
L is definable by a Σ3(<,+1) (resp. by a Π3(<,+1)) formula.

It remains to prove Theorem 4. We devote the rest of the section to this proof. An
important remark is that the proof of the right to left direction is constructive: we start with
an F formula that separates L from L′ and use it to construct an F+ formula that separates
L from L′. Note that the argument is generic for all fragments we consider.

On the other hand, the other direction, namely Proposition 9 below, requires a specific
argument tailored to each fragment, which is a straightforward but tedious Ehrenfeucht-
Fraïssé argument. Due to lack of space, we provide proofs of this proposition for each
fragment in the long version [19] of this paper.

4.1 From F+-separation to F-separation
We prove that if L is F+-separable from L′, then L is F-separable from L′. We actually
prove the contrapositive: if L is not F -separable from L′, then L is not F+-separable from L′.
We rely on a construction which, to any well-formed word u ∈ A+

α and any integer i > 0,
associates a canonical word duei ∈ A+.

Canonical Word Associated to a Well-formed Word. To any s ∈ S, we associate an
arbitrarily chosen nonempty word dse ∈ A+ such that α(dse) = s (which is possible since
α has been chosen surjective). Let i > 0. From a well-formed word u ∈ A+

α , we build a
word duei ∈ A+ as follows. If u = s ∈ S, then duei = dse for all i. Otherwise, we have by
definition

u = (s0, e1)(e1, s1, e2) · · · (en−1sn−1en)(en, sn).

For a natural i > 0, we set

duei = ds0e de1ei ds1e de2ei · · · den−1ei dsn−1e denei dsne .

Recall that β is the morphism β : A+
α → S mapping u to s0e1s1 · · · sn−1ensn. Since ej ∈ E(S)

for all j, it is immediate that α(duei) = β(u), hence we get the following fact:

STACS 2015

670 Separation and the Successor Relation

I Fact 8. For every i > 0 and every well-formed word u ∈ A+
α , we have u ∈ L (resp. u ∈ L′)

if and only if duei ∈ L (resp u ∈ L′).

We now proceed with the proof. We use the classical preorders associated to fragments
of first-order logic. The (quantifier) rank of a first-order formula ϕ is the largest number of
quantifiers along a branch in the parse tree of ϕ. Given u, v ∈ A+, we write u 4+1

k v if any
F+ formula of rank k that is satisfied by u is satisfied by v as well. Similarly, for u,v ∈ A+

α ,
we write u 4k v if any F formula of rank k that is satisfied by u is satisfied by v as well.
One can verify that 4k and 4+1

k are preorders, as well as the following standard fact:

L ⊂ A+ is definable by an F+ formula of rank k iff L = {u′ | ∃u ∈ L st. u 4+1
k u′}

L ⊂ A+
α is definable by an F formula of rank k iff L = {u′ | ∃u ∈ L st. u 4k u

′}.
(1)

Note that when F and F+ are closed under complement, then 4k and 4+1
k are actually

equivalence relations. We can now state the main proposition of this direction.

I Proposition 9. For any k ∈ N, there exist ` ∈ N and i ∈ N such that for any well-formed
words u,u′ ∈ A+

α satisfying u 4` u′, we have duei 4
+1
k du′ei.

For all fragments of Table 1, Proposition 9 is proved using classical Ehrenfeucht-Fraïssé
arguments. While each proof is specific, the underlying ideas are similar. We present these
proofs in the long version of this paper [19]. We finish the subsection by explaining how
Proposition 9 can be used to terminate the proof of the first direction of Theorem 4.

We argue by contrapositive: assume that L is not F-separable from L′. By definition
this means that no language definable in F separates L from L′. In particular, for any `, the
language

{u′ | ∃u ∈ L st. u 4` u
′},

which is definable in F by (1), cannot be a separator. Note that this language contains L.
Hence, for all ` ∈ N, there exist u ∈ L and u′ ∈ L′ such that u 4` u′. We deduce from
Proposition 9 and Fact 8 that for all k ∈ N, there exist u ∈ L and u′ ∈ L′ such that u 4+1

k u′.
It follows, again by (1), that L is not F+-separable from L′, which terminates the proof.

4.2 From F-separation to F+-separation
We now prove that if L is F-separable from L′, then L is F+-separable from L′. We do so
by building an F+-definable separator. This proof is this time entirely generic. We rely on a
construction that is dual to the one used previously: to any word w ∈ A+, we associate a
canonical well-formed word bwc ∈ A+

α .

Canonical Well-formed Word Associated to a Word. To any word w of A+, we associate
a canonical well-formed word bwc ∈ A+

α such that α(w) = β(bwc). This construction is
adapted from [14] and is originally inspired by [22].

Fix an arbitrary order on the set E(S). For a position x of w, let ux ∈ A+ be the
infix of w obtained by keeping only positions x − (|S| − 1) to x. If position x − (|S| − 1)
does not exist, ux is just the prefix of w ending at x. A position x is said distinguished if
there exists an idempotent e ∈ E(S) such that α(ux) · e = α(ux). Additionally, we always
define the rightmost position as distinguished, even if it does not satisfy the property. Set
x1 < · · · < xn+1 as the distinguished positions in w, so that xn+1 is the rightmost position.
Let e1, . . . , en ∈ E(S) be such that for all 1 6 i 6 n− 1, ei is the smallest idempotent such
that α(uxi

) · ei = α(uxi
).

T. Place and M. Zeitoun 671

If n = 0, i.e., if the only distinguished position is the rightmost one, set bwc = α(w) ∈ Aα.
Otherwise, we define bwc ∈ A+

α as the word:

bwc = (α(w0), e1) · (e1, α(w1), e2) · · · (en−1, α(wn−1), en) · (en, α(wn)) (2)

where w0 is the prefix of w ending at position x1, for all 1 6 i 6 n− 1, wi is the infix of w
obtained by keeping positions xi + 1 to xi+1, and wn is the suffix of w starting at position
xn + 1. Note that by construction, bwc is well-formed.

The next statement follows from the definition of β, and from the fact that by definition
of the words wi and of the chosen idempotents, we have α(w0 · · ·wi)ei+1 = α(w0 · · ·wi).

I Fact 10. For all w ∈ A+, we have α(w) = β(bwc). Therefore, w ∈ L iff bwc ∈ L and
w ∈ L′ iff bwc ∈ L′.

To any distinguished position xi in w, we now associate the position bxc = i in bwc. Our
main motivation for using this construction is its local canonicity, which is stated in the
following lemma.

I Lemma 11. Let w ∈ A+. Then we have the following properties:

(a) whether a position x is distinguished in w, and if so the label of position bxc in bwc only
depends on the infix of w of length 2|S| ending at position x. That is, if the infixes of
length 2|S| ending at x and y are equal, then x is distinguished iff so is y, and in that
case, the labels of bxc and byc in bwc are equal.

(b) the label of the last position of bwc only depends on the suffix of length 2|S| of w.

Proof. It is immediate that whether x is distinguished and if so the associated idempotent
only depends on the infix ux of length at most |S| ending at x. Therefore, to prove (a), it
suffices to show that all infixes wi used in (2) are of size at most |S|, or in other words, that
among |S|+ 1 consecutive positions, at least one is distinguished. So let us consider an infix
a1 · · · a|S|+1 of w of length |S|+ 1. It is immediate from the pigeonhole principle that there
exist i < j such that α(a1 · · · ai) = α(a1 · · · aj) = α(a1 · · · ai) · (α(ai+1 · · · aj))ω. Hence, the
position corresponding to ai is distinguished. The proof of the second assertion is similar. J

L is F+-separable from L′. We can now construct our separator. The construction
follows from the next proposition.

I Proposition 12. Let K ⊆ A+
α that can be defined using an F formula ϕ. Then there exists

an F+ formula Ψ over alphabet A such that for every word w ∈ A+:

w |= Ψ if and only if bwc |= ϕ.

Proof. Proposition 12 follows from the following simple consequence of Lemma 11.

I Claim 13. For any a ∈ Aα there exists a formula γa(x) of F+ with a free variable x, such
that for any w ∈ A+ and any position x of w, we have w |= γa(x) iff x is distinguished and
bxc has label a in bwc.

This claim holds since by Lemma 11, formula γa(x) only needs to explore the neighborhood
of size 2|S| of x, which is trivially possible for all fragments F+ we consider. To conclude
the proof of Proposition 12, it suffices to define Ψ as the formula constructed from ϕ by
restricting all quantifiers to positions that are distinguished and to replace all tests Pa(x)
by γa(x). J

STACS 2015

672 Separation and the Successor Relation

We can now finish the proof of Theorem 4. Assume that L is F-separable from L′ and
let ϕ be an F formula defining a separator. We denote by Ψ the F+ formula obtained from
ϕ as defined in Proposition 12. We prove that Ψ defines a language separating L from L′.

We first prove that L ⊆ {w | w |= Ψ}. Assume that w ∈ L. Then by Fact 10, we have
bwc ∈ L. Hence, bwc |= ϕ and so w |= Ψ by definition of Ψ. The proof that L′ ⊆ {w | w 6|= Ψ}
is identical: if w ∈ L′, we have bwc ∈ L′ by Fact 10. Hence, bwc 6|= ϕ and w 6|= Ψ by definition
of Ψ. J

5 Algebraic Approach

We now present an algebraic version of Theorem 4: the operator V 7→ V ∗ D preserves
decidability of separation.

We would like to emphasize again that the ideas behind this theorem are essentially the
same as for Theorem 4. In particular, proofs presented in the long version of this paper [19]
only rely on elementary notions, thus bypassing complex constructions usually used to prove
this kind of result, even if the statement itself requires some additional algebraic vocabulary.

The section is organized in three parts.

We first briefly recall how classes of languages corresponding to our logical fragments are
given an algebraic definition: for each fragment, an associated class of finite semigroups
(or monoids) V, a variety, has already been characterized, such that the class of languages
definable in the fragment is exactly the class of languages that are recognized by a
semigroup (or monoid) of V.
In the second part, we define what “adding the successor relation” means in this context.
Given a variety V, this generally corresponds to considering a new variety built on top
of V via an operation called the semidirect product. This new variety is denoted V ∗ D.
Finally, in the last part, we state our main theorem: for any variety V, separability for
the variety V ∗ D reduces to separability for the variety V.

5.1 Varieties
A variety of semigroups (resp. monoids) is a class of finite semigroups (resp. monoids) closed
under three natural operations: finite direct product, subsemigroup (or submonoid), and
homomorphic image. A variety V defines a class of languages, also noted V, namely the class
of all of languages recognized by semigroups (resp. monoids) in V. There is an issue however:
all classes of languages defined in this way have to be closed under complement, since the
set of languages recognized by any semigroup is closed under complement. This prevents
us from capturing logical fragments that are not closed under complement, such as Σ2(<).
This problem has been solved in [11] with the notions of ordered semigroups and monoids.
Intuitively, such a semigroup is parametrized by a partial order and the set of languages it
recognizes is then restricted with respect to this partial order. These classical constructions
will be recalled in the long version of this paper [19], as well as varieties corresponding to all
fragments we deal with.

All logical fragments presented in Section 2 correspond to varieties that have been
fully identified. For each fragment, its non-enriched variant corresponds to a variety V of
(ordered) monoids and its enriched version to the variety of (ordered) semigroups V ∗ D built
from V. For example,the fragment FO2(<) corresponds to the variety of monoids DA and
the fragment FO2(<,+1) to the variety of semigroups DA ∗ D [23] (see the long version [19]
for a bibliography with all correspondences).

T. Place and M. Zeitoun 673

5.2 Semidirect Product
The Variety D. The variety D consists of all finite ordered semigroups S such that for
all s ∈ S and all e ∈ E(S), we have se = e. From a language perspective, a language L is
recognized by a semigroup in D iff there exists k ∈ N such that membership of a word w
to L only depends on the suffix of length k of w.

Semidirect Product. Let M be an ordered monoid and let T be an ordered semigroup. A
semidirect product of M and T is an operation that is parametrized by an action of T on M
and outputs a new ordered semigroup, whose base set is M × T . Therefore, one can obtain
different semidirect products out of the same M and T , depending on the chosen action (we
recall the construction in the long version [19]). One can next lift this product at the level of
varieties.

We are interested in the semidirect products of the form V ∗ D, the variety of ordered
semigroups generated by all semidirect products of an ordered monoid of V by an ordered
semigroup of D. The reason why we introduce such semidirect products is the following
theorem, which gathers several nontrivial results from the literature. The reader is referred
to the long version of this paper [19] for details.

I Theorem 14. Let V be a variety corresponding to a fragment F from the ones presented
in Table 1. Then, the variety corresponding to the fragment F+ is V ∗ D.

5.3 Main Theorem
We have now the machinery needed to state our main theorem. For any variety of ordered
monoids V, we reduce (V ∗ D)-separability to V-separability.

I Theorem 15. Let V be a non-trivial variety of ordered monoids. Let L and L′ be two
languages both recognized by the same morphism α : A+ → S into a finite semigroup S. Set
L,L′ ⊆ A+

α as the languages of well-formed words associated to L,L′, respectively. Then, L
is (V ∗ D)-separable from L′ if and only if L is V-separable from L′.

The proof of Theorem 15 is presented in the full version of this paper [19]. As it was the
case for Theorem 4, the proof is both elementary and constructive: if there exists a separator
for L and L′ in V, we use it to construct a separator for L and L′ in V ∗ D.

In view of Theorem 14, Theorem 15 applies to all fragments we introduced. This means
that Theorem 4 can be given an alternate indirect proof within this algebraic framework by
combining Theorem 15 and Theorem 14. Hence, this also yields another proof of Corollary 5.

6 Conclusion

We proved that separation is decidable over finite words for the following logical fragments:
FO(=,+1), Σ1(<,+1,min,max), BΣ1(<,+1,min,max), Σ2(<,+1) and FO2(<,+1). To
achieve this, we presented a simple reduction to the same problem for the weaker fragments
FO(=), Σ1(<), BΣ1(<), Σ2(<) and FO2(<).

The reduction itself is entirely generic to all fragments and its proof is elementary, and
also mostly generic. In particular, the technique can be used to prove that the reduction
works for other natural fragments of first-order logic. An interesting example to which
these results apply is the quantifier alternation hierarchy within FO2(<) (known as the
Trotter-Weil hierarchy, and which is decidable [25]). However, the separation problem for

STACS 2015

674 Separation and the Successor Relation

classes in this hierarchy has yet to be investigated. We also obtained direct proofs that
membership is decidable for BΣ2(<,+1) and Σ3(<,+1).

Finally, we presented an algebraic formulation of this reduction, which recovers a previously
known result by Steinberg [21], while having a much simpler proof. One can expect extending
these results to other fragments, such as enrichment with modulo predicates. Another
advantage of this technique is that it can be extended in a straightforward way to the same
logical fragments over words of infinite length. This yields identical transfer results. We
leave the presentation of these results for further work.

References
1 Jorge Almeida. A syntactical proof of locality of DA. International Journal on Algebra

and Computation, 6:165–177, 1996.
2 Jorge Almeida. Some algorithmic problems for pseudovarieties. Publicationes Mathematicae

Debrecen, 54:531–552, 1999. Proc. of Automata and Formal Languages, VIII.
3 Karl Auinger. On the decidability of membership in the global of a monoid pseudovariety.

International Journal on Algebra and Computation, 20(2):181–188, 2010.
4 Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular

languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium
on Automata, Languages, and Programming, ICALP’13, volume 7966 of Lecture Notes in
Computer Science, pages 150–161. Springer, 2013.

5 Volker Diekert and Paul Gastin. First-order definable languages. In Logic and Automata:
History and Perspectives, volume 2, pages 261–306. Amsterdam University Press, 2008.

6 Christian Glaßer and Heinz Schmitz. Languages of dot-depth 3/2. Theory of Computing
Systems, 42(2):256–286, 2008.

7 Karsten Henckell. Pointlike sets: the finest aperiodic cover of a finite semigroup. Journal
of Pure and Applied Algebra, 55(1-2):85–126, 1988.

8 Robert Knast. A semigroup characterization of dot-depth one languages. Rairo Informa-
tique Théorique et Applications, 17(4):321–330, 1983.

9 Manfred Kufleitner and Alexander Lauser. Around dot-depth 1. International Journal of
Foundations of Computer Science, 23(6):1323–1340, 2012.

10 Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.
11 Jean-Éric Pin. A variety theorem without complementation. Russian Mathematics,

(Izvestija vuzov.Matematika), 39:80–90, 1995.
12 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of

Computing Systems, 30(4):383–422, 1997.
13 Jean-Éric Pin and Pascal Weil. The wreath product principle for ordered semigroups.

Communications in Algebra, 30:5677–5713, 2002.
14 Thomas Place and Luc Segoufin. Decidable characterization of FO2(<,+1) and locality of

DA. Unpublished, to appear, 2014.
15 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by

locally testable and locally threshold testable languages. In Proceedings of the 34th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS’13, volume 24 of LIPIcs, pages 363–375. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2013.

16 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proceedings of the 28th MFCS’13, volume
8087 of Lecture Notes in Computer Science, pages 729–740. Springer, 2013.

17 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In Proceedings of the 41th International Colloquium on Automata,

T. Place and M. Zeitoun 675

Languages, and Programming, ICALP’14, volume 8573 of Lecture Notes in Computer Sci-
ence, pages 342–353, 2014. http://arxiv.org/pdf/1404.6832v1.

18 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. In
Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer
Science Logic (CSL’14) and the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’14), 2014.

19 Thomas Place and Marc Zeitoun. A transfer theorem for the separation problem. CoRR,
abs/1501.00569, 2015. http://arxiv.org/abs/1501.00569.

20 Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

21 Benjamin Steinberg. A delay theorem for pointlikes. Semigroup Forum, 63(3):281–304,
2001.

22 Howard Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and
Applied Algebra, 36:53–94, 1985.

23 Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one
quantifier alternation. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, STOC’98, pages 234–240. ACM, 1998.

24 Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and
System Sciences, 25(3):360–376, 1982.

25 Manfred Kufleitner Pascal Weil. On logical hierarchies within FO2-definable languages.
Logical Methods in Computer Science, 8(3), 2012.

STACS 2015

http://arxiv.org/pdf/1404.6832v1
http://arxiv.org/abs/1501.00569

Computing 2-Walks in Polynomial Time
Andreas Schmid1 and Jens M. Schmidt2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 TU Ilmenau, Ilmenau, Germany

Abstract
A 2-walk of a graph is a walk visiting every vertex at least once and at most twice. By generalizing
decompositions of Tutte and Thomassen, Gao, Richter and Yu proved that every 3-connected
planar graph contains a closed 2-walk such that all vertices visited twice are contained in 3-
separators. This seminal result generalizes Tutte’s theorem that every 4-connected planar graph
is Hamiltonian as well as Barnette’s theorem that every 3-connected planar graph has a spanning
tree with maximum degree at most 3. The algorithmic challenge of finding such a closed 2-walk
is to overcome big overlapping subgraphs in the decomposition, which are also inherent in Tutte’s
and Thomassen’s decompositions.

We solve this problem by extending the decomposition of Gao, Richter and Yu in such a way
that all pieces, in which the graph is decomposed into, are edge-disjoint. This implies the first
polynomial-time algorithm that computes the closed 2-walk mentioned above.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases algorithms and data structures, 2-walks, 3-connected planar graphs,
Tutte paths, 3-trees

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.676

1 Introduction

Among the most fundamental problems in graph theory is the question whether a graph
is Hamiltonian, i.e., contains a cycle of length n := |V |. Whitney [17] proved that every
4-connected maximal planar graph is Hamiltonian. Tutte extended this result by showing
that actually every 4-connected planar graph is Hamiltonian [16]. Thomassen [15] simplified
Tutte’s result and proved the generalization that every 4-connected planar graph contains a
path of length n− 1 between any given two vertices. There are numerous examples proving
that 3-connected planar graphs are not necessarily Hamiltonian; in fact, even deciding
whether a 3-connected 3-regular planar graph is Hamiltonian is NP-hard [10]. However, one
may ask how “close” 3-connected planar graphs are to Hamiltonicity. To this end, let a
k-walk be a walk that visits every vertex at least once and at most k times (edges may be
visited multiple times). A walk is closed if it has the same start- and endvertex. Thus, a
closed 1-walk is a Hamiltonian cycle.

Jackson and Wormald conjectured in [13] that every 3-connected planar graph contains a
closed 2-walk. In a seminal result [7], Gao and Richter proved this conjecture in 1994 in the
affirmative. One year later, Gao, Richter and Yu [8] published a refined decomposition that
gives the existence of a very special closed 2-walk, namely one in which every vertex visited
twice is contained in a 3-separator. This decomposition is involved and its presentation
in [8] very densely written; in addition, it contains a flaw, which was fixed in the erratum [9].
However, as an immediate consequence, this special closed 2-walk forms a Hamiltonian cycle
if the graph is 4-connected and, hence, generalizes Tutte’s theorem to 3-connected planar
graphs. It also generalizes Thomassen’s result for 4-connected planar graphs. One of the

© Andreas Schmid and Jens M. Schmidt;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 676–688

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.676
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Schmid and J.M. Schmidt 677

remarkable aspects of the result from Gao, Richter and Yu is that it generalizes yet another
research direction. Barnette [2] proved that every 3-connected planar graph contains a
3-tree, i.e., a spanning tree with maximum degree at most 3. A 3-tree can be computed in
linear-time due to a Ph.D.-thesis by Strothmann [14]. Recently, Biedl showed that 3-trees
(and in fact, more special variants of them) can also be computed by canonical orderings [3].
Interestingly, a 3-tree can be directly obtained from a closed 2-walk in linear time, as shown
in [13, Lemma 2.2(ii)].

So far, 2-walks form the most general existence result in the above line of research. We are
interested in the computational complexity of finding the above special closed 2-walk [8, 9].
Although the existence proof is over 20 years old, it is not even known whether such a 2-walk
can be computed in polynomial time (neither for [7] nor for [8, 9]).

Much more is known for its preceding variants: Inspired by Tutte’s classic result, Gouyou-
Beauchamps [11] showed that a Hamiltonian cycle in a 4-connected planar graph can be
computed in polynomial time. The crux of this approach lies in the fact that the subgraphs
arising from Tutte’s decomposition may overlap in an unbounded number of vertices and
edges. This made it very difficult to bound the running time spent in the recursion tree
reflecting the decomposition.

Asano, Kikuchi and Saito showed that a Hamiltonian cycle can be computed in linear-time
when the 4-connected planar input graph is additionally maximal planar [1]. Thomassen
claimed that one could also derive a polynomial-time algorithm from his more general
existence proof in [15]. In [4] it was shown that this statement was too optimistic, as
the subgraphs arising from his decomposition may again overlap in big parts. Chiba and
Nishizeki [5] showed that this problem can be avoided for 4-connected planar input graphs
and gave a linear-time algorithm to compute a Hamiltonian cycle for these graphs. However,
the general problem of overlapping subgraphs in 3-connected graphs has not been resolved.
Even the decomposition in [8, 9] bears the same obstruction that made previous algorithmic
results difficult, namely big overlapping subgraphs.

As main result, we propose how to overcome this problem by extending the decomposition
of Gao, Richter and Yu such that all arising subgraphs will be edge-disjoint. This leads
to the first polynomial-time algorithm that computes the special closed 2-walk of [8, 9],
generalizing the previous results. The result is stated for the class of circuit graphs, which
contain all 3-connected graphs. We aim for a detailed and self-contained description of this
decomposition.

I Theorem 1. Let G be a circuit graph with external face boundary C and let x, y be vertices
of C. A closed 2-walk of G can be computed in polynomial time such that x and y are visited
exactly once and every vertex visited twice is contained in either a 2-separator or an internal
3-separator of G.

2 Preliminaries

We assume familiarity with standard graph theoretic notations as in [6]. A k-separator of
a graph G = (V,E) is a set of k vertices whose deletion leaves a disconnected graph. Let
n := |V | andm := |E|. A graph G is k-connected if n > k and G contains no (k−1)-separator.
A set of paths intersecting pairwise at most at their endvertices are called independent. For
a path P and two vertices x, y ∈ P , let the subpath from x to y in P be xPy.

A central concept for the decomposition is the notion of H-bridges: For a subgraph H of
G, an H-bridge of G is a component K of G− V (H) together with all edges joining vertices
of K with vertices of H and the endvertices of these edges. Although standard notation

STACS 2015

678 Computing 2-Walks in Polynomial Time

allows an H-bridge to be a single edge, we excluded this case from the definition, as such
bridges will not play any role for 2-walks. A vertex in an H-bridge L is an attachment of L
if it is also in H, and it is an internal vertex of L otherwise.

A plane graph is a planar embedding of a graph. For two vertices x, y of a cycle C in
a plane graph, let xCy be the clockwise path from x to y in C. For a cycle C in a plane
graph G, let the subgraph of G inside C be the subgraph induced by E(C) and all edges
intersecting the open disc-homeomorph of the plane interior of C. A subgraph inside a cycle
of a 3-connected plane graph G is not necessarily 3-connected; however, its only 2-separators
must have both vertices on the external face. Since we will often use induction on such
subgraphs when describing the decomposition, we will deal with circuit graphs instead of
3-connected plane graphs. A circuit graph (G,C) is a 2-connected plane graph G with
external face boundary C such that the following property is satisfied:

I Definition 2 (3-Paths Property). For every vertex v in G\C, G contains three independent
paths from v to distinct vertices in C.

Clearly, circuit graphs generalize 3-connected plane graphs. In the following, we will give
several lemmas about circuit graphs that will be used throughout the paper.

I Lemma 3. Let {u, v} be a 2-separator of a circuit graph (G,C). Every component of
G \ {u, v} contains a vertex of C.

Proof. Assume to the contrary that G \ C has a component K with V (K) ∩ V (C) = ∅.
Since K does not contain a vertex of C, each path from a vertex w ∈ V (K) to C contains u
or v. Thus, there are no three independent paths from w to C, contradicting the 3-Paths
Property. J

I Lemma 4. Let {u, v} be a 2-separator of a circuit graph (G,C). Then u and v are
contained in C and G \ {u, v} has exactly two components.

Proof. First assume that u or v, say u, is not contained in C. As {u, v} is a 2-separator of
G, G \ {u, v} has at least two components. Since u /∈ V (C), one component of G \ {u, v}
must contain all remaining vertices of C. This contradicts Lemma 3. For the second claim,
observe that G \ {u, v} has at most two components that contain vertices of C, as C \ {u, v}
is the union of at most two paths. Thus, a third component would contradict Lemma 3. J

Next, we state several lemmas how a circuit graph can be decomposed into smaller circuit
graphs.

I Lemma 5 ([7]). Let {u, v} be a 2-separator of a circuit graph (G,C). For each {u, v}-bridge
H of G (recall that H 6= uv), H ∪ uv is a circuit graph.

I Lemma 6 ([7]). Let C ′ be any cycle in a circuit graph (G,C) and let H be the subgraph
inside C ′. Then (H,C ′) is a circuit graph.

A block is a maximal connected subgraph that does not contain a 1-separator. Every
block is either 2-connected or has at most two vertices. It is well-known that the blocks of
a graph partition its edge-set. A graph G is called a chain of blocks if it consists of blocks
B1, B2,, Bk such that V (Bi) ∩ V (Bi+1), 1 ≤ i < k, are pairwise distinct 1-separators of G
and G contains no other 1-separator. Thus, a chain of blocks is a graph, whose block-cut
tree [12] is a path. A key idea in the decomposition is that deleting a vertex of the external
face boundary of a circuit graph results in a plane chain of blocks. Every such block will
again be a circuit graph due to Lemma 6.

A. Schmid and J.M. Schmidt 679

I Lemma 7 ([7]). Let (G,C) be a circuit graph and let v ∈ V (C). Then G \ v is a plane
chain of blocks B1, B2, ..., Bk and, if k > 1, one of the neighbours of v in C is in B1 \ B2
and the other is in Bk \Bk−1.

3 From Tutte Paths to 2-Walks

We recapitulate the fundamental steps of Gao, Richter and Yu [8, 9] for proving the existence
of a closed 2-walk. A crucial role is played by the notion of a Tutte path. A Tutte path (Tutte
cycle) of a circuit graph (G,C) is a path (cycle) T for which every T -bridge has exactly 2
attachments if it contains an edge of C and otherwise exactly 3 attachments. A Tutte path
from x to y through u has startvertex x, endvertex y and contains u; we will sometimes
say that u is the intermediate vertex of T . Tutte paths can be used to construct a closed
2-walk if the attachments of its T -bridges are sufficiently disjoint. In [8, 9], the existence of a
Tutte path T with T -bridges B1, B2, . . . , Bk was proven for which a set S = {s1, s2, . . . , sk}
of vertices exists such that si is an attachment of Bi for each i. The set S is called system
of distinct representatives (SDR) of the T -bridges. The next results give the existence of
such Tutte paths and cycles; Theorem 8 is slightly weaker than the one in [8, 9] (in which
y ∈ V (G)), but sufficient for our needs.

I Theorem 8 ([8, 9]). Let (G,C) be a circuit graph, let x, u, y ∈ V (C) with x 6= y and let
a ∈ {x, u}. Then there is a Tutte path P of G from x to y through u and an SDR S of the
P -bridges such that a /∈ S.

According to Lemma 7, G \ x is a plane chain of blocks. By computing a Tutte path for
every such block and extending the union of these Tutte paths to x (using the two incident
edges in C), we immediately obtain a Tutte cycle of G. Note that the time for computing
this Tutte cycle is dominated by the computation of the Tutte paths (see Lines 2–4 of
Algorithm 1).

I Corollary 9 ([8, 9]). Let (G,C) be a circuit graph and let x, y ∈ V (C). Then there is a
Tutte cycle T of G and an SDR S of the T -bridges in G with x, y ∈ V (T) and x, y /∈ S.

Proving the existence of an SDR as in Corollary 9 is the crucial new insight of Gao,
Richter and Yu’s paper [8, 9]. It implies the existence of a closed 2-walk. The idea is to use
the vertices of the SDR S as branch vertices, at which the walk deviates from T into 2-walks
of the T -bridges, which exist by induction. The constructed closed 2-walk will therefore have
special properties for the vertices visited twice. Let an internal 3-separator S of a circuit
graph (G,C) be a 3-separator such that G− S contains a component disjoint from C.

I Theorem 10 ([8, 9]). Let (G,C) be a circuit graph and let x, y ∈ V (C). Then there is a
closed 2-walk W in G visiting x and y exactly once such that every vertex visited twice is
contained in either a 2-separator or an internal 3-separator of G.

We are interested in the computational complexity of finding the 2-walk of Theorem 10
when an efficient subroutine for computing Tutte paths is known.

Algorithm 1 gives a high-level description of the steps taken for the proof of Theorem 10.
For all steps except the computation of Tutte paths in Line 3 and the computation of suitable
circuit subgraphs for the recursion on L in Line 6, the corresponding existence proofs give
immediately linear-time algorithms. It can be readily shown that the computation of Line 6
exceeds the time spent for computing a Tutte path by at most a factor m; hence, we can
reduce to computing Tutte paths.

STACS 2015

680 Computing 2-Walks in Polynomial Time

Algorithm 1
1: procedure 2-walk((G,C), x, y ∈ V (C))
2: for every block B of the plane chain of blocks G \ x do
3: Compute a Tutte path PB of B . crucial
4: Join the union of all computed Tutte paths to x and obtain a Tutte cycle T of G
5: for every T -bridge L do
6: Recurse on L to compute a 2-walk WL . polynomially dependent on Line 3
7: Output the union of T and all WL

However, it is not even clear whether a Tutte path itself can be computed in polynomial
time, as its existence proof uses a decomposition into circuit subgraphs that may overlap
in large parts. We will show that a Tutte path can be computed in polynomial time; this
implies our main Theorem 1.

4 Finding Tutte Paths

We will prove Theorem 8 by extending the decomposition of Gao, Richter and Yu. The
extended decomposition will only branch into edge-disjoint circuit graphs and thus turn out
to be algorithmically accessible. In the following sections, we will first review some steps
given in [8, 9] needed to set up the decomposition, then explain how we can avoid overlapping
subgraphs, and finally give the details of the extended decomposition.

4.1 Setting up the Decomposition
We review the initial steps taken for the original decomposition in [8, 9]. Let (G,C) be a
circuit graph, let x, u, y ∈ V (C) with x 6= y and let a ∈ {x, u}. We want to find a Tutte path
from x to y through u. The vertex a acts as a place-holder that allows us to prevent x or u
to be in the SDR S; this will be useful for the induction.

We first eliminate some symmetric cases. If u = x, we can choose any other vertex
v ∈ V (C) \ x and assign u = v. The same holds if u = y and a 6= u. If a = u = y, we
interchange the roles of x and y and proceed as above. Thus we can assume that u /∈ {x, y}.
We will need y to be in uCx in a later step. Therefore if y ∈ xCu, we flip the current
embedding of G such that in the new embedding y ∈ uCx.

The proof of Theorem 8 proceeds by induction on the number of edges in G. If |E(G)| = 3,
G is a triangle. In that case, the Tutte path we are looking for is xuy, the corresponding
SDR S is empty and there are clearly no overlapping subgraphs. For the induction step, let
u1 the neighbour of u that is not in xCu. In the special case that u1 = y, we define K := u1.
Otherwise, we define K as the minimal connected union of blocks of G \ xCu that contains
u1 and y, where minimality is with respect to the number of blocks (see Figure 1). As argued
before, the blocks of G \ xCu form a tree; by minimality, K will be a plane chain of blocks.
Let B1, . . . , Bl be the blocks of K such that u1 ∈ B1 and y ∈ Bl and let Ci be the external
face boundary of Bi. We number the 1-separators in K from v1 to vl−1, i.e., the blocks Bi
and Bi+1 intersect exactly in vi. In addition, we set v0 := u1 and define vl as the vertex in
Bl nearest to x in u1Cx.

For each (K ∪ xCu)-bridge L, L intersects K in at most one vertex, as otherwise a block
of K would not be maximal. We call this vertex, if it exists, α(L). Note that the edge uu1 is
not a (K ∪xCu)-bridge by definition. It is however possible that there is a (K ∪xCu)-bridge

A. Schmid and J.M. Schmidt 681

x u

u1vl

K

Pˊ

y

b
Lˊ

B D

B
+ D

+

F

J

α(J)

Figure 1 A circuit graph (G,C), in which the plane chain of blocks K is depicted in dark grey
(red) and F is the subgraph induced by xCu and the vertices of light grey (yellow) subgraphs. Here,
F and K overlap in the grey (orange) subgraphs B+ and D+. The part P ′ from u1 to y of the
desired Tutte path of G can be computed by induction on the blocks of K.

that contains vlCx. If so, we denote this special bridge by L′ (otherwise, vlCx is just an
edge). The bridge L′ is special among the (K ∪ xCu)-bridges, as it is the only one that
may have exactly two attachments; all other bridges have at least three attachments by the
3-Path Property.

4.2 Avoiding Overlapping Subgraphs
In the proof of Theorem 8 in [8, 9], the authors define a second connected subgraph F

that overlaps with K and then recurse on both subgraphs separately by constructing Tutte
paths of every block of these subgraphs (see Figure 1). The recursively constructed Tutte
paths of F (giving a path from x to u) and in K (giving a path from u1 to y) are then
concatenated with uu1 to get the desired Tutte path of G. The overlapping parts of F and
K may therefore receive multiple recursive calls, which prevents to bound the running time
of this decomposition.

However, the description of F in [8, 9] suggests that an overlapping subgraph in this
decomposition consists always of the inner vertex set of some bridge of the Tutte path
computed for K. In the following, we will compute a Tutte path from u1 to y, but instead of
doing this in K, we will do this in a slightly modified subgraph η(K). This augmentation
will allow us to identify and exclude possible overlapping subgraphs in advance. We first
state some results about bridges of Tutte paths T . For the next observation, recall that
T -bridges are not single edges.

I Observation 11. Let (G,C) be a circuit graph and let T be a Tutte path of G. Then the
attachments of any T -Bridge with two attachments form a 2-separator in G.

According to Lemma 3, both vertices of a 2-separator in a circuit graph lie on the external
face boundary. The following lemma strengthens this statement for the 2-separators that are
attachments of T -bridges.

I Lemma 12. Let (G,C) be a circuit graph with a Tutte path T from x ∈ V (C) to y ∈ V (C).
Then every T -Bridge with two attachments has either both attachments on xCy or both on
yCx.

STACS 2015

682 Computing 2-Walks in Polynomial Time

Proof. Assume otherwise. Let J be a T -bridge with two attachments {c, d}, c ∈ xCy \{x, y}
and d ∈ yCx \ {x, y}. By Observation 11, {c, d} is a 2-separator in G. Thus, G \ {c, d}
contains exactly two components X and Y with x ∈ X and y ∈ Y that cover C \ {c, d},
according to Lemma 4. Due to Lemma 3, X and Y must contain at least one vertex of C
each. It follows that the inner vertex set of J is either X or Y . In both cases, J contains an
edge of T , which contradicts that J is a T -bridge. J

We explain the idea for our decomposition; the precise decomposition will be given in
the next section. Let T be a Tutte path from u1 to y of K and consider any T -bridge J .
In the decomposition of [8, 9], by planarity, J can only intersect an overlapping part if it
intersects the upper external face boundary of K. Then J has exactly two attachments c
and d, according to the definition of a Tutte path and the fact that J contains a boundary
edge of some block of K. By Observation 11 and Lemma 4, c and d must be as well on the
boundary of K. In fact, c and d are on the upper boundary of K by Lemma 12. In summary,
the only parts of K that would have possibly overlapped in the original decomposition are
the T -bridges with exactly two attachments on the upper boundary of K (see also Figure 1).

Thus, if we find all 2-separators in viCivi−1 for a block Bi of K before we actually
compute a Tutte path of this block, we have identified all subgraphs of this block which
would have possibly overlapped in the original decomposition. Let {c, d} be a 2-separator of
a block Bi such that c and d is in viCivi−1. Let further B+

cd be the {c, d}-bridge in Bi that
contains the path cCid (see Figure 1). We call a 2-separator {c, d} in viCivi−1 maximal in
viCivi−1 if there is no other 2-separator {c′, d′} in viCivi−1 with c and d in c′Cid′. A block
Bi may contain several maximal 2-separators; however, they must be consecutive on viCivi−1.
For the computation of a Tutte path of Bi, we will first find all maximal 2-separators in Ci.
The next smaller 2-separators inside them will only be computed if necessary.

Let {c, d} be a 2-separator of Bi with c and d in viCivi−1 and let v be an inner vertex of
B+
cd. Then cl and cr are defined as the vertices in xCu closest to x and u, respectively, that

are reachable from v by a path not containing any vertex of {c, d} ∪ V (C) as inner vertex
(possibly cl = cr). Figure 2 shows two examples where cl 6= cr. For a 2-separator {c, d}
of Bi with c and d in viCivi−1, let F ′cd be the {c, d, cl, cr}-bridge that contains B+

cd and let
Fcd := F ′cd \ {c, d}. The subgraph Fcd contains the overlapping parts of K of the original
decomposition as discussed above.

In order to modify K to η(K), we iterate through all maximal 2-separators {c, d} of every
block of K and “cut off” some B+

cd in a predefined way. This will allow us to compute Tutte
paths for every block of η(K) and iteratively detour these Tutte paths to the subgraphs B+

cd

if necessary. For some B+
cd, we will add a special edge to η(K) whose containment in the

previously computed Tutte path will decide whether such a detour is needed. The exact
definition of η(K) is dependent on the existence of a 1-separator in Fcd. For the relevant
case cl 6= cr, we will prove that a vertex b is a 1-separator of Fcd if and only if {b, c, d} is a
3-separator of G. If such a 1-separator b exists, we will show that b can actually be chosen in
such a way that the subgraph of Fcd “above” b is a block; such a vertex will additionally be
unique.

I Lemma 13. Let cl 6= cr. A vertex b ∈ Fcd is a 1-separator of Fcd if and only if {b, c, d} is
a 3-separator of G. No 1-separator of Fcd is contained in clCcr.

Lemma 13 implies that there is a block of Fcd that contains clCcr. We call this block
A. Note that there may be many 1-separators in Fcd. However, there is exactly one such
1-separator that is contained in A.

A. Schmid and J.M. Schmidt 683

η(Bi)

b

c d

A

cl cr

vi-1vi

(a) Case 2: cl 6= cr and Fcd contains
a 1-separator b. We replace B+

cd with
B+
cd \A.

c de

i

B
+

cd
B

+
cd

cd

η(Bi)

cl cr

vi-1vi

(b) Case 3: cl 6= cr and Fcd does not
contain a 1-separator. We delete all
inner vertices of B+

cd and add the edge
cd if it does not already exist.

Figure 2 The two cases of modifying K to η(K). In both cases, the remaining part of B+
cd is the

dark grey (red) subgraph, i.e., the grey (orange) part of B+
cd is deleted.

I Lemma 14. Let cl 6= cr and let Fcd contain a 1-separator. Then Fcd contains a unique
1-separator b such that b ∈ A.

We are now ready to define η(K).

I Definition 15. Let η(K) be the graph obtained from K by performing the following for
every maximal 2-separator {c, d} 6= {vi, vi−1} of every block Bi of K.

Case 1: cl = cr
Do nothing.

Case 2: cl 6= cr and Fcd contains a 1-separator (see Figure 2(a))
Replace B+

cd with B+
cd \A.

Case 3: cl 6= cr and Fcd contains no 1-separator (see Figure 2(b))
Delete all inner vertices of B+

cd and add the edge cd if cd does not already exist.

For a block Bi of K, let η(Bi) be the corresponding block of η(K). Let η(Ci) be the
external boundary of η(Bi). Note that η(K) is no longer a plane chain of blocks of G \ xCu,
as the modified blocks η(Bi) are not maximal any more in G. However, every η(Bi) that is
not just an edge is still a circuit graph, as shown next.

I Lemma 16. Every η(Bi) that is not an edge is a circuit graph.

In the following, whenever dealing with a maximal 2-separator {c, d} of K, the variables
Fcd, F

′
cd, cl, cr, Bi, A will always refer to the previously defined objects and b will refer to the

unique 1-separator of Fcd defined in Lemma 14.

4.3 Extending the Decomposition
We extend the decomposition described so far. First, we find a preliminary Tutte path P of
η(K), which will eventually be modified to a Tutte path of G in Section 4.3.2. As a speciality
in advance, there are two kinds of (K ∪xCu)-bridges, for which the extension of P into these
bridges is not hard to show; these are the isolated (K ∪ xCu)-bridges, which have all their
attachments on xCu and the special bridge L′. Here, we will assume that G contains neither
isolated bridges nor L′.

For a (K ∪ xCu)-bridge L, let C(L) be the shortest path in vlCu that contains all
attachments of L in vlCu. When considering such L, the endpoints of C(L) closest to vl and
u in vlCu are called cl and cr, respectively (cl = cr is possible).

STACS 2015

684 Computing 2-Walks in Polynomial Time

4.3.1 Finding a Tutte Path of η(K)
We continue the decomposition of a circuit graph (G,C) of Section 4.1 by computing a Tutte
path Pη(K) of η(K) from u1 to y and an SDR of the Pη(K)-bridges. For each block η(Bi) of
η(K), we compute Pη(Bi) and an SDR Sη(Bi) of the Pη(Bi)-bridges as follows.

If η(Bi) is just an edge vi−1vi, set Pη(Bi) := vi−1vi and Sη(Bi) := ∅. Otherwise, if
i < l, compute by induction a Tutte path Pη(Bi) of η(Bi) from vi−1 to vi and a SDR Sη(Bi)
of all Pη(Bi)-bridges such that vi /∈ Sη(Bi) (as intermediate vertex, an arbitrary vertex in
V (Ci) \ {vi−1, vi} can be chosen). If i = l, compute a Tutte path Pη(Bl) of η(Bl) from vl−1
to y through vl and an SDR Sη(Bl) of all Pη(Bl)-bridges. We apply the induction on η(Bl)
such that vl /∈ Sη(Bl). Then Pη(K) = ∪li=1Pη(Bi) is the desired Tutte path of η(K) from u1
to y.

Every Pη(Bi)-bridge with three attachments in η(Bi) is also a Pη(Bi)-bridge with three
attachments in G. Every internal vertex of such a Pη(Bi)-bridge has the same neighbourhood
in η(Bi) as in G. Therefore, each such bridge preserves its number of attachments in G. The
same argument holds for the Pη(Bi)-bridges in η(Bi) that have exactly two attachments and
contain an edge of C. In fact, these two observations do not only hold for Pη(Bi), but for
any Tutte path PH of some circuit graph H ⊂ G. We will therefore only discuss PH -bridges
in the remainder of the paper that have exactly two attachments in H and do not contain
any edge of C. We will show that these bridges have exactly three attachments in G.

In order to find the desired Tutte path P of (G,C), we initially set P := xCu1∪Pη(K) and
then modify P step by step such that the final path P is a Tutte path, does not contain any
edge cd that was added in Case 3, and admits an SDR S of all P -bridges. We will decompose
G into smaller circuit graphs on which we apply induction. These graphs will pairwise
intersect in at most one vertex, i.e., they are edge-disjoint. By carefully choosing a when
applying the induction, we will avoid that the vertex in the intersection is a representative in
both graphs. The modification of P starts by handling the (K ∪ xCu)-bridges that have an
attachment on K, but are not contained in any Fcd. We next show useful details of these
bridges.

I Lemma 17. Let L be any (K ∪ xCu)-bridge for which α(L) exists and which is not
contained in some Fcd. Then α(L) ∈ η(K) and α(L) ∈ Pη(Bi).

4.3.2 Finding a Tutte Path of G
Algorithm 2: FindTuttePath((G,C), x, u, y, P, S)

Input: (G,C), x, u, y, P, S, where P is the preliminary Tutte path from x to y of Sec-
tion 4.3.1 and S the corresponding SDR
Output: A Tutte path of (G,C) stored in P and an SDR S of the P -bridges in G stored
in S

1. For every (K ∪ xCu)-bridge L in G with α(L) ∈ η(K):
According to Lemma 17, α(L) ∈ Pη(Bi) for some Bi.
Let J = (L ∪ C(L)) \ α(L).
J is 2-connected: L has an inner vertex by definition of bridge and thus at least two
attachments on C by the 3-Paths Property. Hence, |V (J)| ≥ 3. Starting with C(L)
and adding the two paths to C(L) from every remaining vertex in J due to the 3-Paths
Property gives an open ear decomposition [18]. Thus, J is 2-connected.
It follows that the boundary of J is a cycle and J is a circuit graph.

a. Compute a Tutte path PJ from cl to cr and an SDR SJ of all PJ -bridges by induction
such that depending on a, either cl or cr is not in SJ . If a = x, apply the induction

A. Schmid and J.M. Schmidt 685

c d

cl cr

Pη(Bi)

cd

B+
cd

vi-1vi

d′

(a) A maximal 2-separator {c, d} of Bi such that
cl 6= cr and Fcd contains no 1-separator. In this
case, cd is not contained in Pη(Bi).

c d
bR

cl cr

Fcd

f

d′

(b) The subgraph Fcd (not containing dashed
edges). We compute a Tutte path PFcd

of Fcd
from cl to cr through b ∈ R (the fat line depicts
the path R).

Figure 3 Step 4(a) of FindTuttePath.

such that cl /∈ SJ . Otherwise, if a = u, apply the induction such that cr /∈ SJ .
b. Set P := P \ clCcr ∪ PJ and S := S ∪ SJ .

By the 3-Paths Property, every PJ -bridge in J that has exactly two attachments
and does not contain an edge of C must contain a vertex that in G is a neighbour
of α(L). Each such PJ -bridge will therefore become a P -bridge with exactly three
attachments in G.

2. For every maximal 2-separator {c, d} of K satisfying Case 1 of Definition 15:
Let J be any Pη(Bi)-bridge in η(Bi) that contains an edge of cη(Ci)d. We show that
every such J becomes a P -bridge in G with exactly three attachments. By the 3-Path
Property, there is a path from every inner vertex of J to some vertex in C that does
neither contain c nor d. In this case the only possible such vertex is cl = cr. Thus, J
is a P -bridge in G with exactly three attachments, one of which is cl.

3. For every maximal 2-separator {c, d} of K satisfying Case 2 of Definition 15:
a. Compute a Tutte path PA of the block A of Fcd from cl to cr through b and an SDR
SA of all PA-bridges. Apply the induction such that a /∈ SA, analogously to Step 1(a).

b. Set P := P \ clCcr ∪ PA and S := S ∪ SA.
Let H be the {b, c, d}-bridge in G that does not contain clCcr, according to
Lemma 13.
Consider any PA-bridge J with exactly two attachments in A that does not contain
an edge of C. By the 3-Paths Property, J must contain an inner vertex that has
a neighbour in G \ A. Since b is a 1-separator of Fcd in A and b ∈ PA, the set of
all such neighbours is either {c}, {d} or {c, d}. We will show that the last case
is not possible; hence, every such PA-bridge will become a P -bridge with exactly
three attachments in G. As PA is a Tutte path and J has only two attachments, J
contains an edge of the external boundary of A. By planarity and the existence of
(the connected) {b, c, d}-bridge H in G, J cannot be adjacent to both, c and d.
In the case that Pη(Bi) contains an edge of H, there may exist Pη(Bi)-bridges
J ⊆ H \ b with two attachments having both attachments in cη(Ci)d. We show
that every such J becomes a P -bridge in G with exactly three attachments. By the
3-Path Property, there is a path from every inner vertex of J to some vertex in C
that does neither contain c nor d. As J ⊂ H, this path contains b. Thus, J is a
P -bridge in G with exactly three attachments, one of which is b.

4. For every maximal 2-separator {c, d} of K satisfying Case 3 of Definition 15:
a. If cd /∈ Pη(Bi) (see Figure 3):

STACS 2015

686 Computing 2-Walks in Polynomial Time

Let f be the face in Bi that contains cd and an inner vertex of B+
cd.

Let R be the path obtained from the boundary of B+
cd in f by deleting c and d.

i. Choose an arbitrary vertex b in R.
ii. Compute a Tutte path PFcd

of Fcd from cl to cr through b by induction on Fcd
and an SDR SFcd

of all PFcd
-bridges. Apply the induction such that a /∈ SFcd

,
analogously to Step 1(a).

iii. Set P := P \ clCcr ∪ PFcd
and S := S ∪ SFcd

.
Consider any PFcd

-bridge J with exactly two attachments in Fcd that does not
contain an edge of C. By the 3-Paths Property, the inner vertex set of J is
neighboured to either {c}, {d} or {c, d}. We show that the last case is not
possible, which proves that every such PFcd

-bridge becomes a P -bridge in G with
exactly three attachments. By the choice of R, the only vertex that may be
adjacent to c and d is b (in that case, R = {b}). However, b is not a neighbour of
an inner vertex of J , as b ∈ PFcd

. This proves the claim.
b. If cd ∈ Pη(Bi):

Recall that cd was possibly added during the construction of η(K) and may therefore
not be in G. We aim to replace cd in Pη(Bi) with a Tutte path of B+

cd from c to d.
According to Lemma 5, B+

cd ∪ cd is a circuit graph.
Let d′ be the neighbour of d on the boundary of B+

cd ∪ cd that is different from c.
Let K ′ := (B+

cd ∪ cd) \ d. According to Lemma 7, K ′ is a plane chain of blocks
B′1, B

′
2, . . . , B

′
l′ such that d′ ∈ B′1 and c ∈ B′l′ . Note that K ′ is a subgraph of G, as

it does not contain cd.
By planarity, everyK∪xCu-bridge L in G that is contained in Fcd has its attachment
α(L) (if exists) on the upper boundary of K ′, while every neighbour of d is on the
lower boundary of K ′.
We will replace cd ∈ Pη(Bi) with the union of the edge dd′ and a Tutte path of
η(K ′) from d′ to c; the Tutte path is constructed in the very same way as we did
for K, i.e., by first computing η(K ′), then Tutte paths of the blocks of η(K ′) and
then branching into the different steps of FindTuttePath. This will iterate on the
maximal 2-separators of K ′, which are the sets of next smaller 2-separators of K.
Note that η(K) and η(K ′) are edge-disjoint.
Technically, η() is defined on a given circuit graph. We face this problem by
constructing the following artificial circuit graph G′, which allows for a proper
definition of η(K ′).

Let G′ be the union of K ′ ∪ clCcr, all K ∪ xCu-bridges that are contained in
Fcd, and the new edges ccl and crd′. Clearly, G′ is a circuit graph (G′, C ′). Let
x′ := cl, u′ := cr, u′1 := d′ and y′ := c.
Then K ′ is consistent to our previous definition, i.e., the minimal connected
union of blocks of G′ \ x′C ′u′ that contains y′ and u′1, and η(K ′) is well-defined
in dependence of G′ and {x′, u′, y′}.

i. Compute η(K ′) from K ′.
ii. For each block η(B′i) of η(K ′), compute a Tutte path Pη(B′

i
) and an SDR Sη(B′

i
) of

the Pη(B′
i
)-bridges in η(B′i) by induction, as described in Section 4.3.1.

iii. Set P ′ := clPcr ∪ Pη(B′
1) ∪ · · · ∪ Pη(B′

l′) ∪ crd′.
iv. Set S′ := Sη(B′

1) ∪ · · · ∪ Sη(B′
l′).

v. Apply FindTuttePath((G′, C ′)), x′, u′, y′, P ′, S′).
vi. Set P := P \ clCcr \ cd ∪ xPcl ∪ clP ′cr ∪ crPd ∪ dd′ ∪ d′P ′c ∪ cPy.
vii. Set S := S ∪ S′.

A. Schmid and J.M. Schmidt 687

By construction, (G′, C ′) does neither contain an L′-bridge nor an isolated bridge;
moreover, P ′ is exactly the preliminary Tutte path of (G′, C ′) computed in
Section 4.3.1. Thus, FindTuttePath((G′, C ′)), x′, u′, y′, P ′) outputs a Tutte path
of (G′, C ′) and stores it in P ′. The above construction of P then forwards the
changes that were made for P ′ to P .
Since P ′ is a Tutte path of (G′, C ′) and by the 3-Paths Property, the only P ′-
bridges with two attachments that do not contain an edge of C must have an
inner vertex that is a neighbour of d. As d ∈ P , such P ′-bridges will become
P -bridges with exactly three attachments in G.

4.4 Polynomial Time Bound for Computing Tutte Paths
It remains to show that Algorithm 2 runs in polynomial time. Clearly, all recursive calls are
made on pairwise edge-disjoint circuit subgraphs; it is also easy to see that every single step
of Algorithm 2 can be computed in polynomial time O(mk). It thus suffices to show that
the number of recursion calls is polynomial in m and that we did not add too many new
edges for the recursive calls.

Let T (m) be the running time of Algorithm 2 on G having m edges. If there are j
recursive calls made for the circuit graph G, let Gi be the circuit graph of the ith such
call and let mi := |E(Gi)| for all 1 ≤ i ≤ j. If we would not add any new edge during
Algorithm 2, T (m) = O(mk) +

∑j
i=1 T (mi). Let w be the neighbor of vl in vlCx. As all

Gi are edge-disjoint and do not contain the edges uu1 and vlw, we have
∑j
i=1 mi ≤ m− 2.

Solving the recurrence gives then T (m) ∈ O(mk+1).
However, we may have added an edge cd during the construction of η(K) whenever we

were in Case 3 of Definition 15. In each such case, the only recursive call made for G in which
cd takes part is the one, say G1, that computes the Tutte path of η(Bi) (see Section 4.3.1).
In G1 and for each such cd, the edge dd′ (see Figure 3(a)) is not contained, which restores
validity of the above argument.

The most crucial open question that we want to investigate in the future is how the given
polynomial running time for computing a special closed 2-walk can be improved to a low
order polynomial.

References
1 T. Asano, S. Kikuchi, and N. Saito. A linear algorithm for finding Hamiltonian cycles in

4-connected maximal planar graphs. Discrete Applied Mathematics, 7(1):1–15, 1984.
2 D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736,

1966.
3 T. Biedl. Trees and co-trees with bounded degrees in planar 3-connected graphs. In 14th

Scandinavian Symposium and Workshops on Algorithm Theory (SWAT’14), pages 62–73,
2014.

4 N. Chiba and T. Nishizeki. A theorem on paths in planar graphs. Journal of graph theory,
10(4):449–450, 1986.

5 N. Chiba and T. Nishizeki. The Hamiltonian cycle problem is linear-time solvable for
4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989.

6 R. Diestel. Graph Theory. Springer, fourth edition, 2010.
7 Z. Gao and R. B. Richter. 2-Walks in circuit graphs. Journal of Combinatorial Theory,

Series B, 62(2):259–267, 1994.
8 Z. Gao, R. B. Richter, and X. Yu. 2-Walks in 3-connected planar graphs. Australasian

Journal of Combinatorics, 11:117–122, 1995.

STACS 2015

688 Computing 2-Walks in Polynomial Time

9 Z. Gao, R. B. Richter, and X. Yu. Erratum to: 2-Walks in 3-connected planar graphs.
Australasian Journal of Combinatorics, 36:315–316, 2006.

10 M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is
NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

11 D. Gouyou-Beauchamps. The Hamiltonian circuit problem is polynomial for 4-connected
planar graphs. SIAM Journal on Computing, 11(3):529–539, 1982.

12 F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen, 13:103–
107, 1966.

13 B. Jackson and N. C. Wormald. k-Walks of graphs. Australasian Journal of Combinatorics,
2:135–146, 1990.

14 W.-B. Strothmann. Bounded degree spanning trees. PhD thesis, FB Mathematik/Informatik
und Heinz Nixdorf Institut, Universität-Gesamthochschule Paderborn, 1997.

15 C. Thomassen. A theorem on paths in planar graphs. Journal of Graph Theory, 7(2):169–
176, 1983.

16 W. T. Tutte. A theorem on planar graphs. Transactions of the American Mathematical
Society, 82:99–116, 1956.

17 H. Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390, 1931.
18 H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical

Society, 34(1):339–362, 1932.

Towards an Isomorphism Dichotomy for
Hereditary Graph Classes
Pascal Schweitzer

RWTH Aachen University
Ahornstraße 55, 52074 Aachen, Germany
schweitzer@informatik.rwth-aachen.de

Abstract
In this paper we resolve the complexity of the isomorphism problem on all but finitely many

of the graph classes characterized by two forbidden induced subgraphs. To this end we develop
new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop
a methodology to show isomorphism completeness of the isomorphism problem on graph classes
by providing a general framework unifying various reduction techniques. Second, we generalize
the concept of the modular decomposition to colored graphs, allowing for non-standard decompo-
sitions. We show that, given a suitable decomposition functor, the graph isomorphism problem
reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of
bounded color valence and hypergraph isomorphism on hypergraphs of bounded color class size
as follows. We say a colored graph has generalized color valence at most k if, after removing
all vertices in color classes of size at most k, for each color class C every vertex has at most k
neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded
generalized color valence can be solved in polynomial time.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases graph isomorphism, modular decomposition, bounded color valence, re-
ductions, forbidden induced subgraphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.689

1 Introduction

Given two graphs G1 and G2, the graph isomorphism problem asks whether there exists a
bijection from the vertices of G1 to the vertices of G2 that preserves adjacency and non-
adjacency. In this paper we continue the systematic investigation of the complexity of graph
isomorphism on hereditary graph classes with a focus on classes characterized by finitely
many forbidden induced subgraphs as initiated in [21] (see also [22]).

Given a set of finite graphs H1, . . . ,Ht we define (H1, . . . ,Ht)-free to be the class of all
graphs that do not contain any Hi as an induced subgraph. In the light of the unknown
complexity status of the graph isomorphism problem, the goal in this context is typically
to classify the complexity for the various graph classes into being polynomial time solvable
or isomorphism complete (i.e., polynomially equivalent to graph isomorphism). Recently,
in [26] it is shown that, assuming that graph isomorphism is not polynomial time solvable
in general, there exist graph classes closed under taking (not necessarily induced) subgraphs
which are of intermediate complexity. Trivially, this implies the same conditional existence
of hereditary graph classes (i.e., graph classes characterized by forbidden induced subgraphs)
of intermediate complexity. However, the construction in [26] intrinsically requires the use of
infinitely many forbidden subgraphs. In contrast to this, in [26] it is also shown that there are

© Pascal Schweitzer;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 689–702

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.689
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

690 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

no intermediate graph classes characterized by finitely many forbidden subgraphs. However,
this statement does not carry over to forbidden induced subgraphs and the question of the
existence of intermediate graph classes characterized by finitely many forbidden induced
subgraphs remains open. A more precise statement of the dichotomy result in [26] is that
a graph class characterized by finitely many forbidden subgraphs has a polynomial time
solvable graph isomorphism problem if one of the forbidden graphs is a union of subdivided
stars, and is graph isomorphism complete otherwise. These graphs, the forests of subdivided
stars, also play a central role in the complexity of hereditary graph classes.

With respect to classes defined by forbidden induced subgraphs, there is a dichotomy
for the isomorphism problem on H1-free graphs into polynomially solvable and isomorphism
complete cases. In [21] the complexity of the isomorphism problem on (H1, H2)-free graphs is
determined for various pairs (H1, H2) and the results also follow the “polynomially solvable
versus isomorphism complete” dichotomy. The crucial cases that were not resolved are those
where either H1 or H2 is a complete graph. More specifically, except for finitely many cases,
the unresolved cases were shown to be polynomially equivalent to a class where one of the
graphs is a complete graph. In the light of all of these results we conjecture the following:

I Conjecture 1. If C = (H1, . . . ,Ht)-free is a graph class defined by the finite set of forbidden
induced subgraphs H1, . . . ,Ht then graph isomorphism of graphs in C is polynomial time
solvable or isomorphism complete.

In this paper we continue the investigation of the complexity of the isomorphism problem
on the graph classes focusing on the case of two forbidden subgraphs, where one of the graphs
is complete. As mentioned above these are the crucial cases that were not resolved. For the
resolution of those classes, techniques beyond those that were developed in [21] are required.
These techniques are presented in this paper leading to the following theorem:

I Theorem 2. On all but finitely many classes of the form (H1, H2)-free the graph isomor-
phism problem is polynomial time solvable or isomorphism complete.

Contribution. In order to prove the theorem, three new techniques for the structural and
algorithmic analysis of graphs are developed in this paper.

Firstly, we develop a methodology to show isomorphism completeness of the isomorphism
problem on graph classes by providing a unifying framework for various reductions typically
used for that purpose. The advantage of this framework is that it allows a streamlined
abstract way to argue why some class is isomorphism complete, which boils down to an
algorithmically checkable argument.

Secondly, we generalize the modular decomposition to colored graphs and define the con-
cept of a colored modular decomposition with respect to a decomposition functor. This not
only allows us to show that the graph isomorphism problem reduces to colored isomorphism
of prime graphs but it also allows us to decompose graphs that are prime with respect to
the classic modular decomposition. To show this reduction we also describe how to remodel
an algorithm that has access to an oracle producing a complete invariant for a graph class
into an algorithm that only has access to an isomorphism test of the graph class.

Thirdly, we extend the techniques of bounded color valence and hypergraph isomorphism
on hypergraphs of bounded color class size as follows. We say a colored graph has generalized
color valence at most k if, after removing all vertices in color classes of size at most k, for
each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C.
We show that isomorphism of graphs of bounded generalized color valence can be solved
in polynomial time. This generalization allows us to perform isomorphism tests for graphs

P. Schweitzer 691

whose automorphism group cannot be forced into having bounded size composition factors
even when using finitely many individualization steps. Since for such graphs alternating
groups of unbounded size can appear among the composition factors, it seems that the
standard group theoretic techniques cannot be directly applied. This shows that indeed new
techniques were required to solve the particular cases.

We apply the three mentioned techniques to resolve the complexity of isomorphism on
all but finitely many of the graph classes characterized by two forbidden induced subgraphs.
For the resolved classes we either provide a reduction from the general problem or a poly-
nomial time algorithm. The applications of the techniques include for example showing
that bipartite graphs that are free from a fixed forbidden double star refine into graphs of
bounded generalized color valence. This can be used to show that isomorphism of graphs of
bounded clique number with a fixed forbidden double star can be solved in polynomial time.
We in turn apply this in conjunction with the colored modular decomposition technique to
solve isomorphism for graphs of bounded clique number which do not contain P5 (a path of
length 4) as an induced subgraph. We apply the general reductions to show that classes of
graphs without cliques of size 4 and certain unions of paths are extensive enough to have an
isomorphism problem that is isomorphism complete. Furthermore, we apply the modular
decomposition techniques in conjunction with the bounded generalized color valence to ana-
lyze the structure of various graph classes of bounded clique number with certain forbidden
forests of subdivided stars.

Related work. We refer the reader to [3, 18, 28] for an introduction to the diverse
complexity-theoretic results related to the isomorphism problem. There are numerous results
known on the complexity of graph isomorphism of hereditary graph classes. A collection
showing the problem for many classes to be equivalent to the general problem is given by
Booth and Colbourn [5]. In that paper, the complexity of classes characterized by one
forbidden subgraph H is shown to depend on whether the graph H is an induced subgraph
of P4 (the path on 4 vertices). The systematic study of classes characterized by two forbidden
subgraphs was initiated in [21].

With regard to algorithms, a recent very general result, implying many results devised
earlier on more special graph classes, is a theorem of Grohe and Marx [13] that shows that
isomorphism of graph classes defined by a forbidden topological minor can be solved in
polynomial time.

There are several applications of modules or some form of modular decomposition in the
context of graph isomorphism. For example, Goldberg’s plain exponential algorithm [11] uses
the concept of sections, which can be seen as colored modules. Furthermore, Junttila and
Kaski [17] define non-uniform components within the individualization-refinement approach
that also constitute colored modules. As described below, Rao [27] also exploits the classic
modular decomposition to devise an isomorphism algorithm for gem and co-gem free graphs
(i.e., (P4 ∪̇ K1, P4 ∪̇K1)-free graphs). His technique can be seen as a special case of the
techniques using colored modular decompositions described in this paper. Other hereditary
graph classes, for which isomorphism algorithms make use of modular decomposition, are
for example subclasses of circular-arc graphs (see [7]).

In the early stages of the discovery of the group theoretic technique for the isomorphism
problem, Luks [24] applied the technique to show that isomorphism of graphs of bounded
maximum degree can be solved in polynomial time. Babai [2] applied the notion of bounded
color valence in his algorithm for the general isomorphism problem. Miller (see [25]) applied
this technique in a series of papers to perform isomorphism tests of k-separable and k-
contactable graphs as well as isomorphism of hypergraphs of bounded color class size (see

STACS 2015

692 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

also [1], [4] and [30]). In our generalization in this paper, only the subgraph induced by the
color classes that are not of bounded size is required to exhibit bounded color valence.

There have been several studies aiming at dichotomy results for computational problems
on graph classes characterized by forbidden induced subgraphs. For example, this has been
done for the computation of the chromatic number [20], dominating sets [23], coloring [9],
and list coloring [12] for two forbidden subgraphs.

Moreover there are numerous results analyzing whether the clique width of a graph class
characterized by forbidden subgraphs is bounded (see [8] for an extensive list of references).

Structure of the paper. We mainly apply the three techniques developed in this paper to
classes characterized by two forbidden induced subgraphs. However, the intention behind
their presentation is to allow them to be applicable in a broader sense to practical and
theoretical algorithms for isomorphism of general graphs or maybe for the classes of bounded
clique width. The paper first presents the techniques and then hints at how to apply them
to various classes of two forbidden subgraphs. The full version [29] provides details and
proofs that have mostly been omitted.

In the first part of the paper we provide preliminaries such as introducing notation
and recalling basic tools (Section 2). We then devise a methodology to prove isomorphism
completeness results (Section 3) and briefly describe how to simulate a complete invariant
given only an isomorphism algorithm (Section 4). After this we turn to techniques for
isomorphism testing using modular decompositions (Section 5) and devise a polynomial
time algorithm for graphs of bounded generalized color valence (Section 6).

The reduction techniques can be applied to show the isomorphism completeness of various
graph classes characterized by forbidden induced subgraphs. The algorithmic techniques can
be applied to graph classes with forbidden double stars and graph classes of graphs without
induced paths of length 4. The techniques can also be applied to analyze specific triangle-free
graphs and specific graphs of bounded clique number. (For details see [29].) We conclude
by showing that together with the theorems in [21] this resolves the complexity of all but
finitely many graph classes defined by two forbidden induced subgraphs (Section 7).

2 Preliminaries

In this paper all graphs are finite, simple, undirected graphs. For a graph G, by V (G)
and E(G) we denote the vertex set and the edge set, respectively. By NG(S) = N(S) we
denote the neighborhood of a set S, i.e., the vertices in V (G) \ S adjacent to some vertex
in S. By id we always denote the identity map. The bipartite complement of a bipartite
graph G with bipartition classes A and B is obtained by replacing E(G) with {{a, b} | a ∈
A, b ∈ B} \ E(G).

We write H ≤ G if the graph G contains a graph H as an induced subgraph. A graph G
is H-free if H � G. It is (H1, . . . ,Hk)-free, if it is Hi-free for all i. A graph class C is H-free
(respectively (H1, . . . ,Hk)-free) if this is true for all G ∈ C. A graph class C is hereditary
if it is closed under taking induced subgraphs. The class (H1, . . . ,Hk)-free is the class of
all (H1, . . . ,Hk)-free graphs. Note that each class (H1, . . . ,Hk)-free is hereditary. We say
a graph G contains a graph H (as an induced subgraph) if an induced subgraph of G is
isomorphic to H.

By It, Kt, Pt, and Ct we denote the independent set, the clique, the path, and the cycle
on t vertices, respectively. The clique number of a graph G is the largest integer t such
that G contains Kt. By H ∪̇H ′ we denote the disjoint union of H and H ′; we use tH for the
disjoint union of t copies of the graph H. By G we denote the (edge) complement of G. The
graph K2 ∪̇ I2, i.e., the graph obtained from K4 by deleting an edge, is called the diamond.

P. Schweitzer 693

A star is a graph isomorphic to the complete bipartite graph K1,t for some positive
integer t. The subdivision of an edge is the replacement of the edge with a path of length
two. A subdivided star is a possibly repeated subdivision of a star. If a subdivided star has a
vertex of degree at least 3 then this vertex is unique and called the center. For non-negative
integers a0, . . . , at with at > 0, we define the graph H(at, . . . , a1, a0) to be the disjoint union
of an independent set of size a0 with the following subdivided star H. The star H is the
subdivided star that for i ∈ {1, . . . , t} has exactly ai leaves at distance i from the center
and no other leaves. (If

∑t
i=1(ai) < 3 the center of H is defined so that the graph H is a

path whose two leaves have suitable distances from that center.) In [21] it is shown that
isomorphism of (H1, . . . ,Ht)-free graphs is isomorphism complete unless one of the forbidden
graphs is a forest of subdivided stars.

In this paper a colored graph is a vertex colored graph whose coloring does not need to
be proper (i.e., adjacent vertices can have the same color). Isomorphisms between colored
graphs are required to respect the colors. The naive vertex refinement algorithm, or 1-
dimensional Weisfeiler-Lehman algorithm, is a standard technique of repeatedly recoloring
the vertices, refining the partition induced by the colors, by using the multiplicity of colors
appearing among the neighbors of a vertex (see for example [28]). It has the property that
after the refinement, the number of neighbors a vertex v has in a color class C only depends
on the colors of v and C. Such a coloring is called stable. A graph has color valence at
most k if for every vertex v and every color class C there are at most k neighbors of v in C
or there are at most k non-neighbors of v in C.

3 Reductions

In this section we develop a systematic approach to proving isomorphism invariant reduc-
tions. This provides general means to construct isomorphism complete graph classes. Stan-
dard reductions like subdividing, taking complements, and adding isolated vertices fall into
this framework. Likewise, most reductions performed in [21] and also various reductions
in [5] fall into this framework.

I Definition 3. Let J be a finite set and L : J × J → {A,N} be a labeling assigning
every ordered pair of vertices the label A for adjacent or N for non-adjacent. Moreover
let LN : J × J → N ∪ {∞} be a labeling assigning every ordered pair of vertices a non-
negative integer or infinity.

A graph G belongs to the class encoded by the labeled graph (J, L, LN) if there exists a
map φ : V (G)→ J such that the following hold:
1. If v ∈ V (G) and j ∈ J such that L(φ(v), j) = A and LN (φ(v), j) 6=∞ then there are at

most LN (φ(v), j) vertices v′ ∈ V (G)\{v} that are non-adjacent to v such that φ(v′) = j.
2. If v ∈ V (G) and j ∈ J such that L(φ(v), j) = N and LN (φ(v), j) 6=∞ then there are at

most LN (φ(v), j) vertices v′ ∈ V (G) \ {v} that are adjacent to v such that φ(v′) = j.

In this definition, the triple (J, L, LN) should be thought of as a generalized graph. The
graph class encoded by (J, L, LN) then contains graphs that can be obtained by replacing
the elements of J with sets of vertices. In some contexts, this is referred to as blowing-up
the elements of J . Adjacency of the new vertices is essentially governed by the adjacency of
the original graph. However, the values of LN control the number of exceptions to this rule
that are allowed per vertex.

The definition captures various constructions used in graph theory. A first class of ex-
amples is formed by the complete multipartite graphs, which turn out to be graphs modeled

STACS 2015

694 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

with the function L satisfying L(x, y) = N if and only if x = y and the function LN being the
constant function evaluating to 0. A second, more general class of examples modeled by the
definition is the graphs of bounded color valence, which are graphs that frequently appear
in the context of graph isomorphism. Such graphs are obtained whenever LN is a bounded
function. The coloring corresponds to the map φ. A third example is the class of graphs
that map homomorphically onto a finite graph H. This class is obtained by letting (J, L)
model the graph H (i.e., V (H) = J and L(x, y) = A if and only if {x, y} is an edge of H)
and setting LN (x, y) = 0 if L(x, y) = N and LN (x, y) =∞ otherwise.

Of interest to us is the complexity of the isomorphism problem of graph classes encoded
by a triple (J, L, LN). It turns out that when LN is a bounded function then isomorphism
can be solved in polynomial time.

I Theorem 4. Let (J, L, LN) be a triple that encodes a graph class. If all values of LN are
finite then isomorphism of graphs encoded by (J, L, LN) can be solved in polynomial time.

The theorem implicitly shows that isomorphism of graphs that have bounded color va-
lence for some coloring that uses a bounded number of color classes can be solved in poly-
nomial time, even if the color classes are not given.

I Corollary 5. For every positive integer c, graph isomorphism of graphs whose vertices can
be partitioned into c color classes such that the graph has color valence at most c can be
solved in polynomial time.

While encodings can be used to show polynomial time solvability of certain graph classes,
they can also be used to show hardness results as follows.

I Definition 6. An encoding (J, L, LN) is a simple path encoding in case L is symmetric
(i.e., if L(j, j′) = L(j′, j) holds) and there is a sequence of vertices (p1, . . . , pt) of length at
least 2 in J such that LN (p1, p2) = ∞, LN (pt, pt−1) ≥ 2 and for all k ∈ {1, . . . , t − 1} we
have LN (pk, pk+1) ≥ 1 and LN (pk+1, pk) ≥ 1.

Intuitively, a simple path encoding allows enough freedom to encode bipartite graphs with
one bipartition class having vertices of degree two. We can formally prove this statement in
the form of a reduction.

I Theorem 7. A class of graphs encoded by a simple path encoding is isomorphism complete.

The theorem can be applied to show that various classes are isomorphism complete.

I Theorem 8. The classes (2K2∪̇K1,K4)-free, (P6, P4∪̇P2,K4)-free, (H(1, 0, 3, 0),K4)-free,
bipartite (2P3 ∪̇K1)-free, (H(1, 0, 2, 0),K5)-free are isomorphism complete.

The theorem in turn implies that various classes (H1, H2)-free that are superclasses of
one of these classes are isomorphism complete (such as (K3, 2P3 ∪̇K1)-free).

4 Isomorphism, Invariants and Canonical Labeling

A complete graph invariant for a graph class C is a map Inv : C → D into some class D such
that for graphs G1 and G2 in C we have Inv(G1) = Inv(G2) if and only if G1 and G2 are
isomorphic. A canonical labeling is a map that assigns to every graph G a graph C(G) with
vertex set V (C(G)) = {1, . . . , |G|} and an isomorphism φ : G → C(G) such that the map
assigning C(G) to G is a complete invariant. There are relatively general techniques with
which one can turn a complete invariant into a canonical labeling algorithm [14, 15, 19].

P. Schweitzer 695

In this paper, we are mainly interested in isomorphism algorithms, as opposed to canon-
ical labeling algorithms or complete invariants. We will therefore require a tool to simulate
an invariant within one execution of our algorithm, given only an algorithm that performs
isomorphism checks. Our simulated invariant will not be consistent across different calls of
the same algorithm.

I Theorem 9. Let A be a polynomial time algorithm with access to a complete invariant O
for a graph class C given as oracle. Suppose the outputs of A are independent of the choice
of the invariant O. If isomorphism of graphs in C can be solved in polynomial time then
there is a polynomial-time algorithm B whose outputs coincide with those of A, which does
not require access to an oracle.

We use the theorem to replace an invariant with a isomorphism algorithm in the next
section when dealing with modular decompositions (more precisely to prove Theorem 15).

5 Colored modular decomposition

In this section we are concerned with modular decompositions and their application to the
isomorphism problem. We will work with colored graphs since this is convenient in the graph
isomorphism context. However, we will also generalize the concept of a module to that of
a colored module, since this is required by our later applications. Since we do not require
previous knowledge about the uncolored modular decomposition, we will not define it. We
refer the reader to the survey by Habib and Paul [16] for more information on the uncolored
decomposition and its algorithmic applications. For the colors, we will assume that there is
a linear order on the colors. In algorithmic applications such a linear order can always be
obtained by comparing the bit-strings corresponding to the colors lexicographically.

I Definition 10. Let G be a colored graph. A colored module is a subset M of V (G) such
that for all v ∈ V (G) \M , if x, x′ ∈ M are of the same color then either v is adjacent to
both vertices x and x′ or to neither x nor x′.

A moduleM is non-trivial if it contains at least two vertices that cannot be distinguished
by vertices outside of the module. That is, M is non-trivial if there are x, y ∈M such that
for all v ∈ V (G) \M the vertex v is adjacent to x if and only if it is adjacent to y. Note
that every module that contains two vertices of the same color is non-trivial.

I Definition 11. A map assigning to every graph G a subset of the vertices M(G) is said
to be isomorphism invariant if for every isomorphism φ : G → G′ we have φ(M(G)) =
M(G′). A map that assigns to every graph G a partition of a subset of the vertices M(G) =
{M1, . . . ,Mk} is said to be isomorphism invariant if for every isomorphism φ : G → G′ we
have M(G′) = {φ(M1), . . . , φ(Mk)}.

I Definition 12. A decomposition functor is a map assigning to every graph G a partition
of a subset of the vertices into modules that is isomorphism invariant.

A graph G is prime with respect to a decomposition functor Mod if Mod(G) does not
contain non-trivial modules. While there is a standard decomposition functor for the uncol-
ored case, for the colored case it is in general not clear whether we can find a useful functor
to decompose the graphs, and we have to find such a functor for a given graph class first,
in order to decompose the graphs. See [29] for an example illustrating that this allows us to
decompose graphs that are prime with respect to classic modular decomposition.

STACS 2015

696 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

In the remainder of this section, we argue for certain decomposition functors that graph
isomorphism for a hereditary graph class can be solved in polynomial time if the isomorphism
problem for colored prime graphs in the class can be solved in polynomial time. To facilitate
the proof we can assume that we are given a complete invariant for the prime graphs in the
hereditary graph class and then apply Theorem 9.

Our next goal is to define the concept of the quotient graph. In the uncolored case, the
quotient graph is obtained by replacing each module with a single vertex whose adjacency
to the rest of the graph is the same as that of every vertex of the module. However, for the
colored case, the adjacency to the rest of the graph depends on the color of the vertex in
the module. This means that for every adjacency type we need to retain a vertex that has
the same adjacency type with respect to vertices outside the module. (For a vertex v, the
adjacency type with respect to vertices outside the module is the set of vertices outside the
module adjacent to v.)

A replacement operator is an isomorphism invariant map that assigns every non-trivial
module M in a decomposition of a graph G an induced subgraph of M in which the ver-
tices are possibly recolored. We require that for every adjacency type of vertices in M at
least one vertex of M is maintained. Let Inv(M) be a complete graph invariant. Given a
family of modules {M1, . . . ,Mk} that partitions the graph, the quotient graph is obtained
by simultaneously replacing all modules using the replacement operator (i.e., removing from
the module Mi all vertices not in the induced subgraph assigned to Mi by the replacement
operator) and then recoloring every vertex v as the triple (χ(v), L, Inv(Mv)), where χ(v)
is the color of v after the replacement, L is a list of the colors of vertices with the same
adjacency type as v, and Inv(Mv) is the invariant of the module containing v. We say that
the decomposition functor is simple with respect to a replacement operator if for every com-
plete invariant every quotient graph is prime. Intuitively, this means that the decomposition
functor provides us with maximal modules.

I Definition 13. Given a decomposition functor, we say a replacement operator is reversible
if the following holds: two graphs G1 and G2 are isomorphic if and only if their colored
quotient graphs with respect to the decomposition functor and the replacement operator
are isomorphic.

Note that reversibility does not depend on the complete invariant that is used for the recol-
oring of the quotient graph.

We remark that for uncolored graphs the definitions of module, primality and the quo-
tient graph coincide with the usual definition from the literature (see [16]). In that context,
the decomposition functor is typically chosen to partition the graph into components, com-
ponents of the complement graph, or maximal modules. The replacement operator simply
replaces the entire module by one vertex. However, for the applications we have in mind, we
require the more general concept of colored modules. Certain conditions immediately imply
that a replacement operator is reversible.

I Lemma 14. A replacement operator is reversible if 1.) there is only one trivial module,
2.) all replacements contain only one vertex, or 3.) non-trivial modules induce connected
graphs, but the non-trivial modules are pairwise non-adjacent.

A reversible simple decomposition functor can be used to test isomorphism by consid-
ering only isomorphisms between quotient graphs and modules. Iterating this yields an
isomorphism test for decomposable graphs if one has access to a complete invariant for
prime graphs. Using Theorem 9 we can replace the requirement for a complete invariant by
an isomorphism algorithm.

P. Schweitzer 697

I Theorem 15. Let C be a hereditary graph class and Mod a simple polynomial-time com-
putable decomposition functor with polynomial-time computable, reversible replacement op-
erator R for colored graphs in C. If the isomorphism problem for colored prime graphs in C
can be solved in polynomial time then the isomorphism problem of all graphs in C can be
solved in polynomial time.

The theorem in particular applies to the standard uncolored modular decomposition.
This decomposition is associated with a simple decomposition functor with polynomial-time
computable, reversible replacement. In his diploma thesis, Fuhlbrück [10] also describes a
reduction for the standard uncolored decomposition functor. Already when trying to solve
the isomorphism problem for uncolored graphs in a graph class C with the described method,
the fact that the quotient graph needs to be colored implies that we require an isomorphism
algorithm for colored prime graphs. In [27], Rao describes a special case of the theorem
for the uncolored modular decomposition, essentially considering hereditary graph classes
in which every prime graph is of bounded size. Moreover, in the isomorphism context, the
bi-join decomposition, also described in [27], can also be treated by using colored modules.

In our applications of Theorem 15 we also use another unrelated technique of dealing
with small color classes that we describe next.

6 Bounded generalized color valence

In this section we show that isomorphism of graphs of bounded generalized color valence can
be solved in polynomial time. However, the proofs of the lemmas and theorems within the
section require familiarity with the computational group theoretic methods that have been
developed within the context of the isomorphism problem. For example, when computing
automorphism groups, cosets, and sets of isomorphisms between two combinatorial objects,
we use a succinct representation by generators and a representative. We also use the set
stabilizer theorem [24] for groups with composition factors of bounded size (see also [1, 4,
25]), which implies that for a permutation group with composition factors of bounded size
acting faithfully on a set, we can compute the stabilizer of any given subset in polynomial
time. For a good overview over the various computational group theoretic techniques, we
refer the reader to [30].

Before we solve the isomorphism problem of graphs of bounded generalized color valence,
let us consider some examples. Hypergraphs on sets of bounded color class size can directly
be encoded as graphs by adding a vertex for every hyperedge that is adjacent to the elements
of the hyperedge. Thus, a polynomial time algorithm for bounded generalized color valence
also gives rise to a polynomial time algorithm for hypergraphs of bounded color class size.
However, there are examples that are not captured by this. Consider a graph of maximum
degree at most c consisting of a large number of components such that there is only a
small number of isomorphism types among these components. Now add an arbitrary finite
number of new vertices colored with new colors such that the added vertices form color
classes of size at most c. The new vertices are connected via edges in an arbitrary way to
the original vertices. The resulting graph has bounded generalized color valence. However,
its automorphism group may contain composition factors of arbitrarily large size. The
isomorphism algorithm for graphs of bounded degree exploits the fact that at least for
components it is possible, by individualizing one vertex, to obtain a group with bounded
composition factor. In the example graphs just described, it is not clear how the standard
group theoretic arguments can be applied.

STACS 2015

698 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

Nevertheless, our goal is to prove that graph isomorphism of graphs with bounded gen-
eralized color valence can be solved in polynomial time. Note that the classes of bounded
generalized color valence are closed under refinement operations such as individualization
and naive vertex refinement.

To solve the isomorphism problem, we need to deal with the small color classes. If there
are only a bounded number of them, we can apply individualization to all vertices in small
color classes. However, the number of small color classes can grow linearly in the number of
vertices. To remedy this problem, we exploit the existence of certain colored modules and
use group theoretic techniques.

We first define a decomposition functor that works well with graphs of bounded gener-
alized color valence that have been refined with naive vertex refinement. Given a subset S
of vertices, we say a vertex v′ /∈ S contained in the color class C ′ is of degree dependence at
most d with respect to S if there is a vertex v in S such that v′ ∈ N(v) ∧ |(N(v) ∩C ′)| ≤ d
or v′ /∈ N(v)∧ |C ′ \ (N(v))| ≤ d. Intuitively, this definition says that there is a vertex v ∈ S
such that individualization of this vertex followed by refinement with respect to adjacency
towards v produces a set of size at most d within which v′ can be found.

I Definition 16. A non-empty subset S is a d-degree dependence module, if no vertex
outside S has degree dependence at most d with respect to S.

I Lemma 17. Let G be a stable graph of color valence at most c. If G does not contain
color classes of size at most 2c then the minimal c-degree dependence modules partition G.
Moreover, the map assigning every such graph the family of minimal c-degree dependence
modules is a polynomial-time computable decomposition functor.

In Lemma 17, using naive vertex refinement is essential. Indeed, consider a wheel, i.e., a
cycle with an added center adjacent to every other vertex. In this graph, there is only one
non-trivial 3-degree dependence module, namely the set that contains only the center of the
wheel. Thus the set of 3-degree dependence modules does not partition the graph.

By defining a faithful group action of the automorphism group of a graph on the c-degree
dependence modules it is possible to gradually compute the automorphism group, yielding
also an isomorphism test for such graphs.

I Theorem 18. Graph isomorphism for colored graphs of generalized color valence at most c
can be solved in polynomial time.

We can combine Theorem 18 and Theorem 15 to show that several graph classes have a
polynomial-time solvable isomorphism problem. These classes include various subcases for
which the complexity of the isomorphism problem was also previously unresolved.

I Theorem 19. The isomorphism problem for the classes (H(1, b, 0),Ks)-free, (P5,Kt)-free,
(H(1, 0, b, 1),K3)-free and (K1,s ∪̇K1,s,Kt)-free can be solved in polynomial time.

7 Comprehensiveness of the case distinction

We now argue that the theorems developed throughout this paper together with the theo-
rems from [21] resolve, except for finitely many cases, the complexity of graph isomorphism
for (H1, H2)-free graphs. In fact, said theorems also either provide a polynomial time algo-
rithm or a reduction from the general isomorphism problem to the respective classes.

Proof of Theorem 2. Let (H1, H2)-free be the graph class for which we want to determine
the complexity. By the results in [21], we may assume that one of the graphs, H2 say, is a

P. Schweitzer 699

complete graph. Since graph isomorphism for K2-free graphs is polynomial-time solvable,
we further assume that H2 has at least 3 vertices. By [21, Lemma 2] we may consequently
assume that H1 is a forest of subdivided stars, since the problem is graph isomorphism
complete otherwise. If H1 contains 3 non-trivial components, then H1 contains 3K2 and
the problem is isomorphism complete [21, Lemma 5]. In the following, we can thus assume
that H1 has at most 2 non-trivial components. If H1 has no vertex of degree 3 then if H1 is
sufficiently large, it is either of the form Pi ∪̇ It with i ≤ 3 or it contains the graph 2K2 ∪̇ I2.
In the former case, graph isomorphism is polynomial-time solvable by Theorem 19. In the
latter case, the isomorphism problem is graph isomorphism complete [21, Lemma 5].

(The case H2 = K3). Suppose H2 is the graph K3. Since H2 is fixed, we can assume
that H1 is sufficiently large and we can thus assume by the observation above that H1
contains a vertex of degree 3. If H1 does not contain a P4 then H1 is a union of at most
two stars plus isolated vertices. If there is at most one star, the problem is polynomial-time
solvable by Theorem 19 (or by [21, Theorem 4]). Assuming there are two stars, if there is
more than one isolated vertex then H1 contains 2K2 ∪̇ 2K1 and the problem is isomorphism
complete by [21, Lemma 5]. If neither of the stars is only a single edge then if there exists
an isolated vertex in H1 the problem is isomorphism complete by Theorem 8 and if there is
no isolated vertex in H1 it is polynomial-time solvable by Theorem 19. Finally, if one of the
stars is only an edge then by Theorem 19 the problem is polynomial-time solvable.

If H1 contains a P4 and there are two non-adjacent vertices not in the same connected
component as the P4 then H1 contains P4 ∪̇ 2K1 and the problem is graph isomorphism
complete [21, Lemma 5]. The assumption that this is not the case implies that the vertex of
degree 3 is in the same component as the P4. Since isomorphism of (2K2 ∪̇2K1)-free triangle-
free graphs is isomorphism complete [21, Lemma 5], by assuming that H1 is sufficiently large,
we may further assume there is at most one additional vertex not in the connected component
of the P4. If there is only one vertex of degree 1 non-adjacent to the vertex h of degree at
least 3, and additionally this vertex has distance 2 from h, then H1 is an induced subgraph
of H(1, 0, b, 1) for some positive integer b. This implies that the problem is polynomial-time
solvable by Theorem 19. If H1 contains two leaves of distance at least 3 from the center,
then if H1 is sufficiently large it also contains 2K2 ∪̇ 2K1. If H1 contains a leaf of distance
at least 4 then H1 contains P4 ∪̇ 2K2. In both cases the problem is graph isomorphism
complete by [21, Lemma 5].

(The case H2 = Kn with n > 3). Suppose now H2 is the graph Kn for some n ≥ 4.
Suppose first, H1 contains two non-trivial components. If it contains an isolated vertex, then
it contains 2K2 ∪̇K1 and the problem is isomorphism complete by Theorem 8. If one of the
components contains P4 and the graph is not connected, then the graph contains P4 ∪̇K1 and
the problem is isomorphism complete by [21, Theorem 3]. Otherwise, the two components
form a double star and the problem is polynomial-time solvable by Theorem 19.

Thus we may assume now that there is only one non-trivial component. If there is no P4
in H1, the problem is solvable by [21, Theorem 4]. Otherwise, by [21, Theorem 3], we
can assume that H1 is connected. If H1 is isomorphic to P5, the problem is solvable by
Theorem 19. If H1 is isomorphic to P6 the problem is isomorphism complete by Theorem 8.
We can thus assume that H1 contains a vertex of degree at least 3, which we call the
center. If there is only one leaf not adjacent to the center and this leaf has distance 2 from
the center, then the problem is polynomial-time solvable by Theorem 19. If there are two
leaves not adjacent to the center then H1 contains P4 ∪̇K1 and the problem is isomorphism
complete by [21, Theorem 3]. If there is a leaf of distance at least 3 from the center and
the center has degree 4 then the problem is graph isomorphism complete by Theorem 8.

STACS 2015

700 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

We can thus assume that the center has degree 3. Under these conditions, if H2 = K4
and H1 is sufficiently large, then H1 contains P6 and the problem is isomorphism complete
by Theorem 8. In the remaining cases H2 = Kn with n ≥ 5 and H1 has a leaf of distance at
least 2 from the center. In this case the problem is isomorphism complete by Theorem 8. J

8 Conclusion

There is an intricate relationship between the boundedness of the clique width on a graph
class and polynomial-time solvability of the isomorphism problem. While there are classes of
unbounded clique width for which the isomorphism problem is solvable in polynomial time
(for example the graphs of bounded degree or the graphs characterized by a forbidden star
and a forbidden clique (see [21])), there are no classes known to be isomorphism complete
and known to have bounded clique width. It is conceivable, but not known to be true, that
isomorphism on graphs of bounded clique width is solvable in polynomial time. In fact,
it seems that typically an isomorphism reduction to a graph class C yields a proof for the
unboundedness of the clique width. It is easy to see that every class of graphs encoded by
a simple path encoding has unbounded clique width. The reason is that if G′ is the graph
produced from a graph G by the reduction detailed in the proof of Theorem 7 then G can
be obtained from G′ by a finite application of edge complementations between two sets,
followed by an unbounded number of local complementations and vertex removals. This
shows that the clique width of G is bounded by a function of the clique width of G′. Thus,
if G has large clique width then G′ has large clique width.

I Corollary 20. The graphs encoded by a simple path encoding have unbounded clique width.

This implies that many classes (H1, H2)-free have unbounded clique width. In particular the
class (P4∪K1,K4)-free has unbounded clique width, which was previously an unknown case
(see [8]). Conversely, when a graph class is shown to be polynomial-time solvable, often this
is due to some structural insight that actually amounts to showing that the clique width of
the class is bounded. On another note it appears that the solution of the generalized color
valence problem presented in this paper, more precisely a generalization of the technique, is
a first step towards showing polynomial-time solvability of graphs of bounded clique width.
More concretely, the generalization applies to graphs with fixed rank decomposition.

As mentioned in the introduction, for various other computational problems, classifi-
cation results have been considered for classes characterized by two forbidden graphs. For
these problems, there had been extensive prior work and algorithmic techniques were already
available. For the isomorphism problem, such techniques were lacking and the intention of
this paper is to develop them. The fact that for new classes the complexity of isomorphism
can be determined using these techniques, while other methods seem to fail, shows that
these techniques provide something conceptually different.

Concerning a list of open cases that still remain for the classes characterized by two for-
bidden subgraphs, one has to analyze precisely to which classes the techniques can be applied.
For example, Brandstädt and Kratsch [6] show that cycles of length 5 in (P5, P4 ∪K1)-free
graphs are disjoint. By coloring vertices inside a 5-cycle depending on whether they have
a neighbor outside the cycle, we obtain a decomposition functor. Furthermore, there is a
description of the relevant prime graphs in [6] which allows us to apply the modular decom-
position technique. This is just an example and a comprehensive description of the various
cases that can actually be handled with the techniques remains as future work.

Acknowledgments I thank Matasha Mazis for inspiring comments and suggestions.

P. Schweitzer 701

References
1 Vikraman Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda. Colored hyper-

graph isomorphism is fixed parameter tractable. In FSTTCS, pages 327–337, 2010.
2 László Babai. Moderately exponential bound for graph isomorphism. In FCT, pages 34–50,

1981.
3 László Babai. Handbook of Combinatorics (vol. 2), chapter Automorphism groups, isomor-

phism, reconstruction, pages 1447–1540. MIT Press, 1995.
4 László Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC, pages 171–183,

1983.
5 Kellogg S. Booth and C. J. Colbourn. Problems polynomially equivalent to graph isomor-

phism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo, 1979.
6 Andreas Brandstädt and Dieter Kratsch. On the structure of (P5, gem)-free graphs. Dis-

crete Applied Mathematics, 145(2):155–166, 2005.
7 Andrew Curtis, Min Lin, Ross McConnell, Yahav Nussbaum, Francisco Soulignac, Jeremy

Spinrad, and Jayme Szwarcfiter. Isomorphism of graph classes related to the circular-ones
property. Discrete Mathematics and Theoretical Computer Science, 15(1):157–182, 2013.

8 Konrad Dabrowski and Daniël Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. CoRR, abs/1405.7092, 2014.

9 Konrad K. Dabrowski, Petr A. Golovach, and Daniel Paulusma. Colouring of graphs with
ramsey-type forbidden subgraphs. Theoretical Computer Science, 522(0):34–43, 2014.

10 Frank Fuhlbrück. Fixed-parameter tractability of the graph isomorphism and canonization
problems. Diploma thesis, Humboldt-Universität zu Berlin, 2013.

11 Mark K. Goldberg. A nonfactorial algorithm for testing isomorphism of two graphs. Discrete
Applied Mathematics, 6(3):229–236, 1983.

12 Petr A. Golovach and Daniël Paulusma. List coloring in the absence of two subgraphs.
Discrete Applied Mathematics, 166:123–130, 2014.

13 Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. In STOC, pages 173–192, 2012.

14 Yuri Gurevich. From invariants to canonization. Bulletin of the EATCS, 63, 1997.
15 Yuri Gurevich. From invariants to canonization. In Current Trends in Theoretical Computer

Science, pages 327–331. World Scientific, 2001.
16 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decom-

position. Computer Science Review, 4(1):41–59, 2010.
17 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for

canonical labeling. In TAPAS, pages 151–162, 2011.
18 Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem: its

structural complexity. Birkhäuser Verlag, Basel, Switzerland, 1993.
19 Johannes Köbler and Oleg Verbitsky. From invariants to canonization in parallel. In CSR,

pages 216–227, 2008.
20 Daniel Král, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of coloring

graphs without forbidden induced subgraphs. In WG, pages 254–262, 2001.
21 Stefan Kratsch and Pascal Schweitzer. Graph isomorphism for graph classes characterized

by two forbidden induced subgraphs. In WG, pages 34–45, 2012.
22 Stefan Kratsch and Pascal Schweitzer. Graph isomorphism for graph classes characterized

by two forbidden induced subgraphs. CoRR, abs/1208.0142, 2012.
23 Vadim V. Lozin. A decidability result for the dominating set problem. Theoretical Computer

Science, 411(44–46):4023–4027, 2010.
24 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences, 25(1):42–65, 1982.

STACS 2015

702 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

25 Gary L. Miller. Isomorphism testing and canonical forms for k-contractable graphs (a
generalization of bounded valence and bounded genus). In FCT, pages 310–327, 1983.

26 Yota Otachi and Pascal Schweitzer. Isomorphism on subgraph-closed graph classes: A
complexity dichotomy and intermediate graph classes. In ISAAC, pages 111–118, 2013.

27 Michaël Rao. Decomposition of (gem,co-gem)-free graphs. Unpublished, available at
http://www.labri.fr/perso/rao/publi/decompgemcogem.ps, 2007.

28 Pascal Schweitzer. Problems of unknown complexity: Graph isomorphism and Ramsey
theoretic numbers. PhD thesis, Universität des Saarlandes, Germany, 2009.

29 Pascal Schweitzer. Towards an isomorphism dichotomy for hereditary graph classes. CoRR,
abs/1411.1977, 2014.

30 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cam-
bridge University Press, 2003.

Existential Second-order Logic over Graphs:
A Complete Complexity-theoretic Classification
Till Tantau

Institute of Theoretical Computer Science
Universität zu Lübeck, Germany
tantau@tcs.uni-luebeck.de

Abstract
Descriptive complexity theory aims at inferring a problem’s computational complexity from the
syntactic complexity of its description. A cornerstone of this theory is Fagin’s Theorem, by which
a property is expressible in existential second-order logic (eso logic) if, and only if, it is in NP. A
natural question, from the theory’s point of view, is which syntactic fragments of eso logic also
still characterize NP. Research on this question has culminated in a dichotomy result by Gottlob,
Kolaitis, and Schwentick: for each possible quantifier prefix of an eso formula, the resulting
prefix class over graphs either contains an NP-complete problem or is contained in P. However,
the exact complexity of the prefix classes inside P remained elusive. In the present paper, we
clear up the picture by showing that for each prefix class of eso logic, its reduction closure
under first-order reductions is either FO, L, NL, or NP. For undirected self-loop-free graphs
two containment results are especially challenging to prove: containment in L for the prefix
∃R1 · · · ∃Rn∀x∃y and containment in FO for the prefix ∃M∀x∃y for monadic M . The complex
argument by Gottlob et al. concerning polynomial time needs to be carefully reexamined and
either combined with the logspace version of Courcelle’s Theorem or directly improved to first-
order computations. A different challenge is posed by formulas with the prefix ∃M∀x∀y, which
we show to express special constraint satisfaction problems that lie in L.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases existential second-order logic, descriptive complexity, logarithmic space

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.703

1 Introduction

Fagin’s Theorem [9] establishes a tight connection between complexity theory and finite
model theory: A language lies in NP if, and only if, it is the set of all finite models (coded
appropriately as words) of some formula in existential second-order logic (eso logic). This
machine-independent characterization of a major complexity class sparked the research area
of descriptive complexity theory, which strives to characterize the computational complex-
ity of languages by the syntactic structure of the formulas that can be used to describe
them. Nowadays, syntactic logical characterizations have been found for all major com-
plexity classes, see [13] for an overview, although some syntactic extras (like numerical
predicates) are often needed for technical reasons.

When looking at subclasses of NP like P, NL, L, or NC1, one might hope that syn-
tactic restrictions of eso logic can be used to characterize them; and the most natural
way of restricting eso formulas is to limit the number and types of quantifiers used. All
eso formulas can be rewritten in prenex normal form as ∃R1 · · · ∃Rr∀x1∃x2 · · · ∀xn−1∃xn ψ,

© Till Tantau;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 703–715

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.703
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

704 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

where the Ri are second-order variables, the xi are first-order variables, and ψ is quan-
tifier-free. Formulas like φ3-colorable = ∃R∃G∃B∀x∀y

(
(R(x) ∨ G(x) ∨ B(x)) ∧

(
E(x, y) →

¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧ G(y)) ∧ ¬(B(x) ∧ B(y))
))
, which describes the NP-complete

problem 3-colorable, show that we do not need the full power of eso logic to capture
NP-complete problems: the prefix ∃R∃G∃B∀x∀y suffices. However, do formulas of the form,
say, ∃R∀x∃y ψ also capture all of NP; or do they characterize exactly, say, P? This ques-
tion lies at the heart of a detailed study by Gottlob, Kolaitis, and Schwentick [11] entitled
Existential Second-Order Logic Over Graphs: Charting the Tractability Frontier, where the
following dichotomy is shown: For each possible syntactic restriction of the quantifier block
of eso formulas, the resulting prefix class either contains an NP-complete problem or is
contained in P. For instance, it is shown there that all graph problems expressible by for-
mulas of the form ∃R∀x∀y ψ lie in P, while some problems expressible by formulas of the
form ∃R∀x∀y∀z ψ are NP-complete. The dichotomy does not, however, settle the question
of whether all of P – or at least some interesting subclass thereof like logarithmic space (L)
or nondeterministic logarithmic space (NL) – is described by one of the logical fragments.

1.1 Contributions of This Paper
One cannot really hope to show that the prefix class of, say, the quantifier prefix ∃R∀x∀y is
exactly P, since P 6= NP would follow: This syntactically severely restricted prefix class can
be shown [6, Proposition 10.6] to be contained in NTIME(nk) for some constant k and is thus
provably different from NP by the time hierarchy theorem. The best one can try to prove are
statements like “this prefix class is contained in P and contains a problem complete for P”
or, phrased more succinctly, “the reduction closure of this prefix class is P.” Our main result,
Theorem 1.1, consists of such statements: For each possible eso prefix class, its reduction
closure under first-order reductions is either FO, L, NL, or NP. In particular, no prefix class
yields P as its reduction closure (unless, of course, P = NP or NL = P).

It makes a difference which vocabulary we are allowed to use in our formulas and which
logical structures we are interested in: Results depend on whether we consider arbitrary
graphs, undirected graphs, undirected graphs without self-loops, or just strings. (In this
paper, all considered graphs are finite.) The case of strings has been addressed and settled
in [6]. In the present paper we consider the same three cases as in [11]: In our vocabulary,
we always have just a single binary relational symbol (E), so all models of formulas are
graphs. We then differentiate between directed graphs, undirected graphs, and undirected
graphs without self-loops (which we call basic graphs for brevity). Note that allowing self-
loops, whose presence at a vertex x can be tested with the formula E(x, x), is equivalent to
considering basic graphs together with an additional monadic input predicate.

To describe the syntactic fragments of eso logic easily and succinctly, we use the nota-
tion of [11]: The uppercase letter E denotes the presence of an existential second-order
quantifier, an optional index as in E2 denotes the arity of the quantifier, and the lowercase
letters a and e denote universal and existential first-order quantifiers, respectively. The
prefix type of the formula φ3-colorable mentioned earlier is EEEaa (or even E1E1E1aa since
the predicates are monadic) and we say that φ3-colorable has prefix type EEEaa (and also
E1E1E1aa). We will use regular expressions over the alphabet {a, e, E,E1, E2, E3, . . . } to
denote patterns of prefix types such as E∗aa for “any number of existential second-order
quantifiers followed by exactly two universal first-order quantifiers.” To define the three kinds
of prefix classes that we are interested in, for a formula φ let modelsdirected(φ) = {G | G
is a directed graph and G |= φ}, modelsundirected(φ) = {G | G is an undirected graph
and G |= φ}, and modelsbasic(φ) = {G | G is a basic graph and G |= φ}. For instance,

T. Tantau 705

modelsbasic(φ3-colorable) = 3-colorable (ignoring coding issues). Next, for a prefix type
pattern P , let FDdirected(P) = {modelsdirected(φ) | φ has a prefix type in P} and define
FDundirected(P) and FDbasic(P) similarly for undirected and basic graphs. “FD” stands for
“Fagin-definable” and Fagin’s Theorem can be stated succinctly as FDstrings(E∗(ae)∗) = NP.

As stated earlier, in the context of syntactic fragments of eso logic it makes sense to
consider reduction closures of prefix classes rather than the prefix classes themselves. It
will not matter much which particular kind of reductions we use, as long as they are weak
enough. All our reductions will be first-order reductions [13], which are first-order queries
with access to the bit predicate or, equivalently, functions computable by a logarithmic-
time-uniform constant-depth circuit family.1 Let us write A ≤fo B if A can be reduced to B
using first-order reductions. Let us write FDdirected(P) = {A | A ≤fo B ∈ FDdirected(P)} for
the reduction closure of FDdirected(P) and define FDundirected(P) and FDbasic(P) similarly.

I Theorem 1.1 (Main Result). The following table completely classifies all prefix classes of
eso logic over basic graphs (upper part) and undirected and directed graphs (lower part):2

If P is at least one of . . . and at most one of . . . , then

– (ae)∗, E∗e∗a, E1ae FDbasic(P) = FO
E1E1ae , E2ae E∗ae FDbasic(P) = L
E1aa Eaa FDbasic(P) = L
E1eaa E1e

∗aa FDbasic(P) = NL
E1aaa, E1E1aa, E2eaa, E1eae,
E1aee, E1aea, E1aae E∗(ae)∗ FDbasic(P) = NP

– (ae)∗, E∗e∗a FDundirected(P) = FDdirected(P) = FO
E1aa E1e

∗aa, Eaa FDundirected(P) = FDdirected(P) = NL
E1aaa, E1E1aa, E2eaa, E1ae E∗(ae)∗ FDundirected(P) = FDdirected(P) = NP

Note that we always have FDundirected(P) = FDdirected(P), which is not trivial, especially
for the prefix E1aa: On undirected graphs, using only two universally quantified variables,
it seems difficult to express “non-symmetric” properties, suggesting FDundirected(E1aa) ⊆ L.
However, using a gadget construction, we will show that FDundirected(E1aa) contains an
NL-complete problem.

As an application of the theorem, let us use it to prove even-cycle ∈ L, which is
the problem of detecting the presence of a cycle3 of even length in basic graphs B. The
complexity of this problem has been researched for a long time, see [12] for a discussion and
variants. The idea is to consider the following eso formulas:

φm = ∃C1 · · · ∃Cm∀x∃y
(
E(x, y) ∧

∨m
i=1
(
Ci(x) ∧ C(i mod m)+1(y) ∧

∧
j 6=i ¬Cj(x)

))
. (1)

They “describe” the following situation: The basic graph can be colored with m different
colors so that each vertex x is connected to a “next” vertex y with the “next” color (with
color C1 following Cm). For m > 2, it is not hard to see that B |= φm if, and only if,
every connected component of B contains a cycle whose length is a multiple of m. Since
φm has quantifier prefix E∗ae and the graphs are basic, the second row concerning basic

1 As a technicality, since we use first-order reductions with access to the bit predicate, by FO we refer to
“first-order logic with access to the bit predicate,” which is the same as logarithmic-time-uniform AC0.

2 The “interesting” prefixes, where the complexity classes differ between the two parts, are highlighted.
3 A cycle in an undirected graph must, of course, have length at least 3 and consist of distinct vertices.

STACS 2015

706 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

graphs in Theorem 1.1 tells us that B |= φm can be decided in logarithmic space. The
following algorithm now shows even-cycle ∈ L: In a basic input graph B, replace all edges
by length-2 paths, then test whether C |= φ4 holds for some connected component C of B.

1.2 Technical Contributions
The proofs of the statements FDbasic(E∗ae) ⊆ L and FDbasic(E1ae) ⊆ FO require a sophis-
ticated technical machinery. In both cases, our proofs follow the ideas of a 35-page proof of
FDbasic(E∗ae) ⊆ P in [11]. The central observation concerning the first statement is that the
algorithmically most challenging part in the proof of [11] is the application of Courcelle’s
Theorem [5] to graphs of bounded tree width. It has been shown in [8] that there is a
logspace version of Courcelle’s Theorem, which will allow us to lower the complexity from P
to L when the input graphs have bounded tree width. For graphs of unbounded tree width,
we will explain how the other polynomial time procedures from the proof of [11] can be
reimplemented in logarithmic space.

To prove FDbasic(E1ae) ⊆ FO, we need to lower the complexity of the involved algorithms
further. The idea is to again follow the ideas from [11] for E∗ae. When there is just a single
monadic predicate, certain algorithmic aspects of the proof can be simplified so severely that
they can actually be expressed in first-order logic. Note, however, that already a second
monadic predicate or a single binary predicate makes the complexity jump up to L, that is,
FDbasic(E1E1ae) = FDbasic(E2ae) = L.

Concerning the remaining claims from Theorem 1.1 that are not already proved in [11],
two cases are noteworthy: Proving that FDbasic(E1eaa) contains an NL-complete problem
turns out to require a nontrivial gadget construction. Proving FDbasic(E1aa) ⊆ L requires a
reformulation of the problems in FDbasic(E1aa) as special constraint satisfaction problems
and showing that these lie in L.

1.3 Related Work
The study of the expressive power of syntactic fragments of logics dates back decades; the
decidability of prefix classes of first-order logic, for instance, has been solved completely in
a long sequence of papers, see [2] for an overview. Interestingly, the first-order Ackermann
prefix class ae plays a key role in that context and both E1ae and E∗ae turn out to be the
most complicated cases in the context of the present paper, too. The expressive power of
monadic second-order logic (mso logic) has also received a lot of attention, for instance in
[3, 5, 7], but emphasis has been on restricted structures rather than on syntactic fragments.

Concerning syntactic fragments of eso logic, the two papers most closely related to the
present paper are [6] by Eiter, Gottlob, and Gurevich and [11] by Gottlob, Kolaitis, and
Schwentick. In the first paper, a similar kind of classification is presented as in the present
paper, only over strings rather than graphs. It is shown there that for all prefix patterns P
the class FDstrings(P) is either equal to NP; is not equal to NP but contains an NP-complete
problem; is equal to REG; or is a subclass of FO. Interestingly, two classes of special
interest are FDstrings(E∗1ae) and FDstrings(E∗1aa), both of which are the minimal classes
equal to the regular languages (by the results of Büchi [3]). In comparison, by the results
of the present paper FDbasic(E∗1ae) = FDbasic(E1E1ae) = L, while FDbasic(E1ae) = FO, and
FDbasic(E∗1aa) = FDbasic(E1E1aa) = NP, while FDbasic(E1aa) = L.

The present paper builds on the paper [11] by Gottlob, Kolaitis, and Schwentick, which
contains many of the upper and lower bounds from Theorem 1.1 for the class NP as well as
most of the combinatorial and graph-theoretic arguments needed to prove FDbasic(E∗ae) ⊆ L

T. Tantau 707

and FDbasic(E1ae) ⊆ FO. The paper misses, however, the finer classification provided in our
Theorem 1.1 and Remark 5.1 of [11] expresses the unclear status of the exact complexity
of FDbasic(E∗ae) at the time of writing, which hinges on a problem called satu(P): “Note
also that for each P , satu(P) is probably not a PTIME-complete set. [. . .] This is due to
the check for bounded treewidth, which is in LOGCFL (cf. Wanke [1994]) but not known
to be in NL.” The complexity of the check for bounded tree width was settled only later,
namely in a paper by Elberfeld, Jakoby, and the author [8], and shown to lie in L. This
does not mean, however, that the proof of [11] immediately yields FDbasic(E∗ae) ⊆ L since
the application of Courcelle’s Theorem is but one of several subprocedures in the proof and
since a generalization of tree width rather than normal tree width is used.

1.4 Organization of This Paper
To prove Theorem 1.1, we need to prove the lower bounds implicit in the first column of
the theorem’s table and the upper bounds implicit in the second column. The lower bounds
are proved in Section 2 by presenting reductions from complete problems for L, NL, or NP.
The upper bounds are proved in Section 3, where we prove, in order, FDbasic(Eaa) ⊆ L,
FDbasic(E∗ae) ⊆ L, and FDbasic(E1ae) ⊆ FO using arguments drawn from different areas.

Only the proof ideas are given in this conference paper, please see the technical report
version for full proofs [16].

2 Lower Bounds: Hardness for L and NL

For each of the prefix patterns listed in the first column of the table in Theorem 1.1 we
now show that their prefix classes contain problems that are hard for L, NL, or NP. The
problems from which we reduce are listed in Table 1. As can be seen, we only need to prove
new results for a minority of the classes since the NP cases have already been settled in [11].

Table 1 The lower bounds in Theorem 1.1 are proved by showing that the problems in this
table, which are complete for the classes in the claims, are either expressible in the fragment or are
at least reducible to a problem expressible in the fragment. The problem unreach asks whether
there is no path from s to t in a directed graph. The problems A2 and A3 are explained below.

Claim Hard problem Proved where

Lower bounds for basic graphs
FDbasic(E1E1ae) ⊇ L A3 Lemma 2.1
FDbasic(E2ae) ⊇ L A2 Lemma 2.2
FDbasic(E1aa) ⊇ L 2-colorable [11, Remark 3.1]
FDbasic(E1eaa) ⊇ NL unreach Lemma 2.3
FDbasic(E1aaa) ⊇ NP positive-one-in-three-3sat [11, Theorem 2.2]
FDbasic(E1E1aa) ⊇ NP 3-colorable [11, Theorem 2.3]
FDbasic(E2eaa) ⊇ NP 3-colorable [11, Theorem 2.4]
FDbasic(E1eae) ⊇ NP 3sat [11, Theorem 2.5]
FDbasic(E1aee) ⊇ NP not-all-equal-3sat [11, Theorem 2.6]
FDbasic(E1aea) ⊇ NP positive-one-in-three-3sat [11, Theorem 2.7]
FDbasic(E1aae) ⊇ NP positive-one-in-three-3sat [11, Theorem 2.8]

Remaining lower bounds for undirected and, thereby, also for directed graphs
FDundirected(E1aa) ⊇ NL unreach Lemma 2.3
FDundirected(E1ae) ⊇ NP 3sat [11, Theorem 2.1]

STACS 2015

708 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

S

G :

B :

the first-order reduction

s

s s̄

s′ s̄′

a

a ā

a′ ā′

b

b b̄

b′ b̄′

c

c c̄

c′ c̄′

t

t t̄

t′ t̄′

Figure 1 Example of the reduction from Lemma 2.3. The directed graph G on top is reduced
to the basic graph at the bottom. The edges from the “squares” result from the first rule given in
the full proof in the full paper, the curved edges result from the second rule, and the two diagonal
edges result from the last rule.

B : s s̄

s′ s̄′

⊗

⊗

a ā

a′ ā′

⊗

⊗

b b̄

b′ b̄′

⊗

⊗

c c̄

c′ c̄′

⊗

⊗

t t̄

t′ t̄′

⊗

⊗

Figure 2 Visualization of the requirements concerning which vertices may lie in M imposed by
the formula ψ: For edges with label ⊗ exactly one end must lie in M and for directed edges, if the
tail of the edge lies in M , the head must also lie in M .

The two special languages A2 and A3 in the table are defined as follows: For m ≥ 2
let Am = {G | G is an undirected graph in which each connected component contains a
cycle whose length is a multiple of m}. These languages are all hard for L: In [4, page 388,
remarks for problem ufa] it is shown that the reachability problem for graphs consisting of
just two undirected trees is complete for L. Since L is trivially closed under complement,
testing whether there is no path from a vertex u to a vertex v in a graph consisting of two
trees is also complete for L, which in turn is the same as asking whether u and v lie in
different trees. To reduce this question to Am, attach cycles of length 2m to both u and v.
Then all (namely both) components of the resulting graph contain a cycle whose length is
a multiple of m if, and only if, u and v lie in different components. (Using a cycle length of
2m rather than m ensures that also for m = 2 we attach a proper cycle.)

I Lemma 2.1. A3 ∈ FDbasic(E1E1ae).

Proof idea. Use φ3 from equation (1), but get rid of one of the second-order quantifiers. J

I Lemma 2.2. A2 ∈ FDbasic(E2ae).

Proof idea. Use ∃F∀x∃y
(
E(x, y) ∧ F (x, y) ∧ ¬F (y, x) ∧ (F (x, x)↔ ¬F (y, y))

)
. J

I Lemma 2.3. unreach reduces to a problem in FDbasic(E1eaa) and also to a problem in
FDundirected(E1aa).

Proof idea. Undirected graphs are essentially the same as basic graphs with an extra mon-
adic relation S1 that is part of the input. Similarly, a single existential first-order quan-
tifier such as the one in E1eaa allows us to pick a vertex and then single out the set of
vertices connected to it. Thus, essentially, it suffices to show that unreach reduces to
modelsbasic(∃M∀x∀y ψ) where ψ is a formula over the vocabulary (E2, S1).

The reduction works as shown in Figure 1: Each vertex of the original directed graph
gets replaced by four vertices that are connected in a square. Two of them are in the set S,

T. Tantau 709

Table 2 The upper bounds from Theorem 1.1 and where they are proved. Missing upper bounds
for basic and undirected graphs follow from the bounds for directed graphs on the right.

Claims for basic graphs Proved where
FDbasic(E1ae) ⊆ FO Section 3.3
FDbasic(E∗ae) ⊆ L Section 3.2
FDbasic(Eaa) ⊆ L Section 3.1

Claims for directed graphs Proved where
FDdirected((ae)∗) ⊆ FO trivial
FDdirected(E∗e∗a) ⊆ FO [11, Theorem 3.1]
FDdirected(E1e

∗aa) ⊆ NL [11, Theorem 3.2]
FDdirected(Eaa) ⊆ NL [11, Theorem 3.4]
FDdirected(E∗(ae)∗) ⊆ NP Fagin’s Theorem

the others are not. Directed edges in the original graph get replaced by undirected edges
between one of the four vertices of the tail vertex and one of the four vertices of the head
vertex. Additionally, there are edges inside the square of the source and of the target.

The formula ψ expresses that edges inside S and edges outside S correspond to an
exclusive or with respect to membership in M , edges between vertices in S and outside S
correspond to an implication: If the vertex outside S is in M , so must the vertex inside S.
Figure 2 visualizes this situation. One then shows the following: There is some M that
makes φ true if, and only if, there can be no path from s to t in G since we must have
s ∈M , t /∈M , and together with s the setM must contain all vertices reachable from s. J

3 Upper Bounds: Containment in FO and L

The second column of the table in Theorem 1.1 lists upper bounds that we address in the
present section. Table 2 shows the order in which we tackle them.

3.1 Eaa Over Basic Graphs: Reformulation as Constraint Satisfaction
Our first upper bound, FDbasic(Eaa) ⊆ L, is proved in two steps: First, we reformulate the
problems in FDbasic(Eaa) as special constraint satisfaction problems (csps) in Lemma 3.1.
Second, we show that these csps lie in L in Lemma 3.2.

It will not be necessary to formally introduce the whole theory of constraint satisfaction
problems since we will only encounter one very specialized form. Furthermore, our csps
do not quite fit into the standard framework and major results on csps like Schaefer’s
Theorem [15] or the refined version thereof [1] do not settle the complexity of these special
csps. Nevertheless, we will need some basic terminology: In a binary csp, we are given a
universe U and a set of constraints, each of which picks a number of elements from U and
specifies one or more possibilities concerning which of these elements may lie in a solution
X ⊆ U . A constraint language specifies the types of constraints that we are allowed to
use. For instance the constraint language for 3sat specifies that constraints (which are
clauses) must rule out one of the eight possibilities concerning which of the elements (which
are the variables) are in X (are set to true). We need to deviate from this framework in
one important way: we require that there is a constraint for every pair of distinct elements
of U , not just for some of them. Unfortunately, this deviation inhibits our applying the
classification of the complexity of csps from [1]; more precisely, the smallest standard csp
classes that are able to express the special csps we are interested in are known to contain
NL-complete languages – while we wish to prove containment in L.

For sets C,D ⊆ {0, 1, 2} we define a {C,D}-constraint satisfaction problem P on a
universe U to be a mapping that maps each size-2 subset {x, y} ⊆ U to either C or D.
A solution for P is a subset X ⊆ U such that for all size-2 subsets {x, y} ⊆ U we have

STACS 2015

710 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

P :

⊕

	
⊕ B :

d

a

e

b

f

c

d

a

e

b

f

c

w

d

a

e

b

f

c

w

Figure 3 Example of a pattern graph P = (C,A⊕, A) with two “colors” black and white
(so C = {black,white}, A⊕ = {(black, black), (white, black)}, and A	 = {(black,white)}) and an
uncolored (“gray”) example graph B. We have B ∈ saturation(P) as shown by two examples of
legal colorings of B together with witness functions w (in gray).

|{x, y}∩X| ∈ P ({x, y}). In other words, P fixes for every pair of two vertices x or y one of two
possible constraints concerning how many elements of {x, y} may lie in X. Let csp{C,D} =
{P | P is a {C,D}-csp that has a solution}. As an example, csp

{
{1}, {0, 1, 2}

}
is essentially

the same as the problem 2-colorable = bipartite since a {1}-constraint enforces that
exactly one of two vertices must lie in X (and, hence, corresponds to an edge), while a
{0, 1, 2}-constraint has no effect (and, hence, corresponds to no edge being present). In
Lemma 3.2 we show that all csp{C,D} lie in L, which is fortunate since we reduce to them:

I Lemma 3.1. For every Eaa-formula φ there are sets C,D ⊆ {0, 1, 2} such that the set
modelsbasic(φ) reduces to csp{C,D}.

Proof idea. By [11, Lemma 3.3] we may assume that φ has the form ∃M∀x∀y ψ with a
monadic quantifier M . Rewrite ψ as x 6= y →

(
(E(x, y) → γ) ∧ (¬E(x, y) → δ)

)
where γ

and δ only contain M(x) and M(y) as atomic formulas. Since the graphs are basic and x

and y are interchangeable, γ and δ can only make claims concerning |{x, y} ∩M |. Use C to
encode the claim made by γ and D to encode δ. J

I Lemma 3.2. Let C,D ⊆ {0, 1, 2}. Then csp{C,D} ∈ L.

Proof idea. Argue for each choice of C and D how we can check in logarithmic space
whether a {C,D}-csp P has a solution X ⊆ U . Most cases are quite trivial; the only
interesting ones are csp

{
{1}, {0, 1, 2}

}
, which we already saw to be essentially the same as

2-colorable = bipartite ∈ L, and csp
{
{0, 1}, {1, 2}}, which is essentially the same as

split-graph and hence lies even in FO by a characterization of [10]. J

3.2 E∗ae Over Basic Graphs: From P to L
Our objective is to show FDbasic(E∗ae) ⊆ L in this section. More precisely, we only need to
show FDbasic(E∗1ae) ⊆ L since [11, Theorem 4.1] states FDbasic(E∗ae) = FDbasic(E∗1ae).

A proof of the weaker claim FDbasic(E∗1ae) ⊆ P is spread over the 35 pages of Sections
4, 5, and 6 of the paper [11] and consists of two kinds of arguments: graph-theoretic ones
and algorithmic ones. Since the graph-theoretic arguments are independent of complexity-
theoretic considerations, our main job is to show how the algorithms described by Gottlob
et al. can be implemented in logarithmic space rather than polynomial time.

Similarly to the switch from model checking problems to graphs problems in the previous
section, we also wish to reformulate the model checking problems modelsbasic(φ) for E∗1ae-
formulas φ in a graph-theoretic manner. Gottlob et al. introduce the notion of pattern graphs
for this: A pattern graph P = (C,A⊕, A) consists of a set of colors C, a set A⊕ ⊆ C × C
of ⊕-arcs, and a set A	 ⊆ C × C of 	-arcs (A⊕ and A	 need not be disjoint). Given
a basic graph B = (V,E), a coloring of G with respect to P is a function c : V → C. A
mapping w : V → V is called a witness function for a coloring c if for all x ∈ V we have

T. Tantau 711

(1) x 6= w(x), (2) if {x,w(x)} ∈ E, then
(
c(x), c(w(x))

)
∈ A⊕, and (3) if {x,w(x)} /∈ E,

then
(
c(x), c(w(x))

)
∈ A	.4 If there exists a coloring together with a witness function

for B with respect to P , we say that B can be saturated by P and the saturation problem
saturation(P) is the set of all basic graphs that can be saturated by P , see Figure 3 for
an example.

The intuition behind these definitions is that a witness function tells us for each x in ∀x
which y in ∃y we must pick to make a formula φ of the form ∃M1 · · · ∃Mn ∀x∃y ψ true. The
pattern graph encodes the restrictions imposed by ψ and the monadic predicates Mi:

I Fact 3.3 ([11, Theorem 4.6]). For every formula φ = ∃M1 · · · ∃Mn ∀x∃y ψ, where the Mi

are monadic and ψ is quantifier-free, there is a pattern graph P with 2n vertices such that
modelsbasic(φ) = saturation(P).

Thus, it remains to show saturation(P) ∈ L for all pattern graphs P . Towards this
aim, for a fixed pattern graph P we devise logspace algorithms that work for larger and
larger classes of basic graphs B, ending with the class of all basic graphs.

Graphs of Bounded Tree Width and Special Graphs We start by considering only graphs
of bounded tree width, an important class of graphs introduced by Robertson and Seymour
in [14]: A tree decomposition of a graph B is a tree T together with a mapping that assigns
subsets of B’s vertices (called bags) to the nodes of T . The bags must have two properties:
First, for every edge {x, y} of B there must be some bag that contains both x and y. Second,
the nodes of T whose bags contain a given vertex x must be connected in T . The width of
a decomposition is the size of its largest bag (minus 1 for technical reasons). The tree width
of B is the minimal width of any tree decomposition for it. A class of graphs has bounded
tree width if there is a constant c such that all graphs in the class have tree width at most c.
From an algorithmic point of view, many problems that can be solved efficiently on trees
can also be solved efficiently on graphs of bounded tree width. Courcelle’s Theorem turns
this into a precise statement:

I Fact 3.4 (Courcelle’s Theorem, [5]). For every mso-formula φ and t ≥ 1 we have

modelsbasic(φ) ∩ {G | G has tree width at most t} ∈ LINTIME.

Gottlob et al. apply this theorem to show that when the input graphs B have bounded
tree width, we can decide whether B ∈ saturation(P) holds in polynomial time: the
property B ∈ saturation(P) is easily described in mso logic. We can lower the complexity
from “polynomial time” to “logarithmic space” by using the following logarithmic space
version of Courcelle’s Theorem:
I Fact 3.5 (Logspace Version of Fact 3.4, [8]). For every mso-formula φ and t ≥ 1 we have

modelsbasic(φ) ∩ {G | G has tree width at most t} ∈ L.

In their graph-theoretic arguments, Gottlob et al. encounter not only graphs of bounded
tree width, but also graphs that they call (k, t)-special and which are defined as follows: For
a basic graph B = (V,E) let us call two vertices u and v equivalent if for all x ∈ V \ {u, v}
we have {u, x} ∈ E if, and only if, {v, x} ∈ E. Observe that this defines an easy-to-check

4 Using {u, v} to indicate an undirected edge between u and v in a basic graph and, in not-so-slight
abuse of notation, even writing {u, v} ∈ E, helps in distinguishing these edges from the directed edges
in the pattern graph. Formally, we mean of course (u, v) ∈ E and (v, u) ∈ E; and E ⊆ V × V holds.

STACS 2015

712 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

equivalence relation on the vertices of B and that each equivalence class is either a clique
or an independent set of B. A graph is (k, t)-special if we can remove (up to) k equivalence
classes A1, . . . , Ak from the graph such that the remaining graph has tree width at most t.

The intuition behind (k, t)-special graphs is that equivalent vertices are “more or less
indistinguishable” and, thus, for a large enough equivalence class removing some vertices
does not change whether the graph can be saturated or not. Formally, let B be (k, t)-special
and let A1, . . . , Ak be to-be-removed equivalence classes. We obtain an s-shrink of B by
repeatedly removing vertices from those Ai that have more than s vertices until all of them
have at most s vertices. The proof of Lemma 6.4 in [11] implies the following two facts:
I Fact 3.6. For every k, t, and pattern graph P there is an s such for every s-shrink B′ of
a (k, t)-special graph B we have B ∈ saturation(P) if, and only if, B′ ∈ saturation(P).
I Fact 3.7. An s-shrink of a (k, t)-special graph has tree width at most t+ sk.

In Lemmas 6.3 and 6.4 of [11], Gottlob et al. present polynomial-time algorithms for
testing whether a graph is (k, t)-special and for computing an s-shrink when the test is
positive. The following lemma shows that we can reimplement these algorithms in a space-
efficient manner (which the original algorithms are not):

I Lemma 3.8. For every s, k, and t, there is a logspace computable function that maps
every (k, t)-special graph B to an s-shrink of B (and all other graphs to “not (k, t)-special”).

Proof idea. Find a tuple (v1, . . . , vk) of vertices such that removing all vertices equivalent
to some vi leaves behind a graph of tree width at most t. Then for each vi leave only the
lexicographically first s vertices equivalent to vi in the graph. J

The following lemma sums up the bottom line of the above discussion:

I Lemma 3.9. For every pattern graph P and all k and t we have

saturation(P) ∩ {B | B is (k, t)-special} ∈ L.

Proof idea. To decide saturation(P) on (k, t)-special graphs B, compute a shrink B′,
which has bounded tree width, and apply the logspace version of Courcelle’s Theorem. J

Graphs With Self-Saturating Mixed Cycles We extend the class of graphs that our log-
space machines can handle to graphs that are not necessarily (k, t)-special, but at least
contain a mixed self-saturating cycle. A self-saturating cycle of a basic graph B = (V,E)
with respect to a pattern graph P = (C,A⊕, A) is a sequence (v1, v2, . . . , vn+1) of vertices
in V for n ≥ 2 where the vi for i ∈ {1, . . . , n} are all different, vn+1 = v1, and we can assign
colors c : {v1, . . . , vn} → C such that for all i ∈ {1, . . . , n} we have: if {vi, vi+1} ∈ E, then
(c(vi), c(vi+1)) ∈ A⊕; and if {vi, vi+1} /∈ E, then (c(vi), c(vi+1)) ∈ A	. In other words, B
restricted to {v1, . . . , vn} can be saturated with the “natural” witness function that “moves
along” the cycle. The following is an easy observation concerning self-saturating cycles:

I Lemma 3.10. For every B ∈ saturation(P) there is a self-saturating cycle in B for P .

Proof idea. Just “follow the witness function” until it runs into a cycle. J

A self-saturating cycle is mixed if for some i, j ∈ {1, . . . , n} we have {vi, vi+1} ∈ E

and {vj , vj+1} /∈ E, otherwise the cycle is called pure. In Figure 3, (b, c, f, b) is a pure
self-saturating cycle and (a, c, f, d, a) is a mixed self-saturating cycle as proved by the two
example colorings. Two facts concerning mixed self-saturating cycles will be important:

T. Tantau 713

I Fact 3.11 ([11, Lemma 6.5]). For every pattern graph P there is a constant d such that
every basic graph that has a mixed self-saturating cycle with respect to P also has such a
cycle of length at most d.
I Fact 3.12 ([11, Section 6.3]). For each pattern graph P there exist k and t such that
B ∈ saturation(P) holds for all graphs B that contain a mixed self-saturating cycle but
are not (k, t)-special.

I Lemma 3.13. For every pattern graph P , we have

saturation(P) ∩ {B | B contains a mixed self-saturating cycle} ∈ L.

Proof idea. Fact 3.11 gives a logspace procedure for detecting mixed self-saturating cycles.
Combine it with Fact 3.12 and Lemma 3.9. J

Arbitrary Basic Graphs The last step is to extend our algorithm to graphs that do not
contain mixed self-saturating cycles (and are not (k, t)-special, but this will no longer be
important). Clearly, by considering the union of the languages from Lemma 3.13 above and
Lemma 3.14 below, we see that saturation(P) ∈ L holds for all pattern graphs P .

I Lemma 3.14. For every pattern graph P , we have

saturation(P) ∩ {B | B contains no mixed self-saturating cycle} ∈ L.

Proof idea. Theorem 5.17 of [11] provides a polynomial-time algorithm for deciding B ∈
saturation(P) when there are no mixed self-saturating cycles in B. The algorithmically
relevant operations in the proof are (1) computing complement graphs (exchanging edges
and non-edges), (2) computing connected components, and (3) applying Courcelle’s Theorem
to these components. Clearly, all three operations can also be implemented in logarithmic
space using Reingold’s Theorem and the logspace version of Courcelle’s Theorem. J

3.3 E1ae Over Basic Graphs: From L to FO
Our final task for this paper is showing FDbasic(E1ae) ⊆ FO.5 By Fact 3.3, it suffices to
show saturation(P) ∈ FO for all pattern graphs with two colors (denoted “white” and
“black” in the following) and this will be our objective in this section.6

In the previous section we proved saturation(P) ∈ L for all pattern graphs by devel-
oping logspace algorithms that worked for larger and larger classes of graphs. However, this
approach is bound to fail for the class FO since properties like “the graph is a tree” (let alone
“the graph is (k, t)-special”) are not expressible in first-order logic. Instead, in this section
we show saturation(P) ∈ FO directly for each possible pattern graph with two colors.

The simplest case arises when P = (C,A⊕, A) is acyclic (meaning that the directed
graph (C,A⊕ ∪A) is acyclic): Lemma 3.10 shows that we then have saturation(P) = ∅
since self-saturating cycles cannot exist for such P . Thus, we only need to consider pattern
graphs P with cycles (self-loops are also cycles, here). Since P only has two colors, there are
only few ways in which such cycles may arise. The more cycles there are, the easier it will
be to color the graph, so we first handle the case that there are cycles both in A⊕ and A	,
then that there is a cycle in A⊕ or in A	, and finally that there is only a cycle in A⊕ ∪A	.

5 In contrast, Lemmas 2.1 and 2.2 show that if we have two monadic quantifiers or one binary quantifier,
the prefix class contains an L-complete problem.

6 In contrast, using three colors we can describe L-complete problems: saturation(P) = A3 where P
contains a ⊕-labeled 3-cycle and A3 is the L-complete language from Table 1.

STACS 2015

714 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

I Lemma 3.15. Let P = ({black,white}, A⊕, A) contain cycles both in A⊕ and A	. Then
saturation(P) contains all graphs with at least two vertices (and is hence in FO).

Proof idea. The interesting case is a ⊕-cycle involving both colors. In each connected
component, choose a vertex and color the vertices black or white depending on whether
they have odd or even distance from the chosen vertex. The witness of a vertex is a vertex
nearer to the chosen vertex (except for the chosen vertex, whose witness is any neighbor). J

I Lemma 3.16. Let P = ({black,white}, A⊕, A) contain a cycle in A⊕ or in A	. Then
saturation(P) ∈ FO.

Proof idea. The most interesting case is exactly the pattern graph shown in Figure 3. We
distinguish the cases that the input graph B consists of a matching plus some isolated
vertices or has a connected component of size at least three. If the matching is a single edge,
B /∈ saturation(P); otherwise, B ∈ saturation(P) since one can devise similar methods
as in the previous lemma for coloring the graph and constructing a witness function. J

We are left with the case that the set A⊕ ∪A	 contains a cycle, but neither A⊕ nor A	
does. This is only possible when P is either ⊕

	 or 	
⊕ . For this special kind of

cycle, there is an analogue of Fact 3.12 that does not refer to (k, t)-special graphs:
I Fact 3.17 ([11, Lemma 6.7]). For every pattern graph P , we have B ∈ saturation(P)
for all B that contain a self-saturating cycle for P on which ⊕- and 	-arcs alternate.

I Lemma 3.18. Let P = ({black,white}, A⊕, A) contain a cycle in A⊕ ∪A	, but none in
A⊕ nor in A	. Then saturation(P) ∈ FO.

Proof idea. Use Fact 3.11 to detect a mixed self-saturating cycle using d existential first-
order quantifiers. The existence of such a cycle in B is a necessary condition for B ∈
saturation(P) by Lemma 3.10 and also a sufficient condition by Fact 3.17. J

4 Conclusion

In the present paper we have completely classified the first-order reduction closures of prefix
classes of eso logic over directed, undirected, and basic graphs: each one of them is equal to
one of the standard classes FO, L, NL, or NP. It turned out that the prefix classes for directed
and undirected graphs are always the same, but often differ from the prefix classes for basic
graphs. Especially interesting prefixes that mark the border between one complexity class
and the next are E1ae, E∗ae, and Eaa.

A natural question that arises is: Can we find a prefix class whose reduction closure
is P? By the results of the present paper, this cannot be an eso prefix class, unless unlikely
collapses occur. However, what about prefix classes of general second-order logic? We may
similarly ask whether any class other than L, NL, and the classes of the polynomial hierarchy
can be characterized by a prefix class of second-order logic.

Together with the results from [6], we now have a fairly complete picture of the complexity
of all eso prefix classes over directed graphs, undirected graphs, basic graphs, and strings.
Concerning arbitrary logical structures, Gottlob et al. [11] already point out that their P-
NP-dichotomy for directed graphs generalizes to the collection of all finite structures over
any relational vocabulary that contains a relation symbol of arity at least two; and it is not
hard to see that our Theorem 1.1 also generalizes in this way (a closer look at the FO and
NL upper bounds in [11] shows that they hold for arbitrary structures). The complexity of
prefix classes over other special structures is, however, still open, including those of trees,
infinite words, and bipartite graphs.

T. Tantau 715

References
1 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.

The complexity of satisfiability problems: Refining Schaefer’s theorem. Journal of Com-
puter and System Sciences, 75(4):245–254, 2009.

2 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer-
Verlag, Berlin, 1997.

3 Julius R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für mathe-
matische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

4 Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic
space. Journal of Algorithms, 8(5):385–394, 1987.

5 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990.

6 Thomas Eiter, Georg Gottlob, and Yuri Gurevich. Existential second order logic over
strings. Journal of the ACM, 47(1):77–131, 2000.

7 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-
order logic coincide. In Proceedings of the 27th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2012), pages 265–274. IEEE Computer Society, 2012.

8 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of Bodlaender and Courcelle. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2010), pages 143–152, 2010.

9 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Com-
plexity of Computation, 7:43–74, 1974.

10 Stéphane Földes and Peter L. Hammer. Split graphs. In Proceedings of the Eighth South-
eastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numer-
antium XIX, pages 311–315. Louisiana State Univeristy, Baton Rouge, Louisiana, 1977.

11 Georg Gottlob, Phokion G. Kolaitis, and Thomas Schwentick. Existential second-order
logic over graphs: Charting the tractability frontier. Journal of the ACM, 51(2):312–362,
2004.

12 Edith Hemaspaandra, Holger Spakowski, and Mayur Thakur. Complexity of cycle length
modularity problems in graphs. In Proceedings of the 6th Latin American Symposium on
Theoretical Informatics (LATIN 2004), volume 2976 of Lecture Notes in Computer Science,
pages 509–518. Springer, 2004.

13 Neil Immerman. Descriptive Complexity Theory. Springer-Verlag, New York, 1998.
14 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms, 7(3):309–322, 1986.
15 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th

Symposium on Theory of Computing (STOC 1978), pages 216–226. ACM Press, 1978.
16 Till Tantau. Existential second-order logic over graphs: A complete complexity-theoretic

classification. Technical Report arxiv:1412.6396 [cs.LO], ArXiv e-prints, 2014.

STACS 2015

The Returning Secretary∗

Shai Vardi

Blavatnik School of Computer Science, Tel Aviv University.
Tel Aviv, Israel
shaivar1@post.tau.ac.il

Abstract
In the online random-arrival model, an algorithm receives a sequence of n requests that arrive

in a random order. The algorithm is expected to make an irrevocable decision with regard to
each request based only on the observed history. We consider the following natural extension of
this model: each request arrives k times, and the arrival order is a random permutation of the
kn arrivals; the algorithm is expected to make a decision regarding each request only upon its
last arrival. We focus primarily on the case when k = 2, which can also be interpreted as each
request arriving at, and departing from the system, at a random time.

We examine the secretary problem: the problem of selecting the best secretary when the
secretaries are presented online according to a random permutation. We show that when each
secretary arrives twice, we can achieve a competitive ratio of 0.767974 . . . (compared to 1/e in the
classical secretary problem), and that it is optimal. We also show that without any knowledge
about the number of secretaries or their arrival times, we can still hire the best secretary with
probability at least 2/3, in contrast to the impossibility of achieving a constant success probability
in the classical setting.

We extend our results to the matroid secretary problem, introduced by Babaioff et al. [3],
and show a simple algorithm that achieves a 2-approximation to the maximal weighted basis in
the new model (for k = 2). We show that this approximation factor can be improved in special
cases of the matroid secretary problem; in particular, we give a 16/9-competitive algorithm for
the returning edge-weighted bipartite matching problem.

1998 ACM Subject Classification F.1.2 Online computation

Keywords and phrases online algorithms, secretary problem, matroid secretary

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.716

1 Introduction

The secretary problem [23, 10] is the following: n random items are presented to an observer
in random order, with each of the n! permutations being equally likely. There is complete
preference order over the items, which the observer is able to query, for the items he1 has
seen so far. As each item is presented, the observer must either accept it, at which point the
process ends, or reject it, and then it is lost forever. The goal of the observer is to maximize
the probability that he chooses the “best” item (i.e., the one ranked first in the preference
order). This problem models many scenarios; one such scenario is the one for which the
problem is named: n secretaries arrive one at a time, and an interviewer must make an
irrevocable decision whether to accept or reject each secretary upon arrival. Another is the

∗ Supported in part by the Google Europe Fellowship in Game Theory.
1 We use male pronouns throughout this paper for simplicity. No assumption on the genders of actual

agents is intended.

© Shai Vardi;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 716–729

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.716
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Vardi 717

house-selling problem, in which buyers arrive and bid for the house, and the seller would like
to accept the highest offer. An alternative way of modeling this problem is the following.
Each secretary is allocated, independently and uniformly at random, a real number r ∈ [0, 1],
which represents his arrival time. As before, the interviewer sees the secretaries in the order
of arrival and must make an irrevocable decision before seeing the next secretary. It is easy
to see that the two models are essentially equivalent (assuming n is known, see e.g., [7])
- the arrival times define a permutation over the secretaries, with each permutation being
equally likely. The optimal solution for the classical secretary problem is well known - wait
until approximately n/e secretaries have passed2 (alternatively until time t = 1/e), and
thereafter, accept a secretary if and only if he is the best out of all secretaries observed so
far (e.g., [15, 7]). This gives a probability of success of at least 1/e.

Consider the following generalization of the secretary problem: Assume that each sec-
retary arrives k times, and the interviewer has to make a decision upon each secretary’s
last arrival. We model this as follows: Allocate each secretary k numbers, independently
and uniformly at random from [0, 1), which represent his k arrival times. (Equivalently, we
may consider only the order of arrivals; in this case each of the (kn)! permutations over the
arrival events is equally likely.) A decision whether to accept or reject a secretary must be
made between his first and last arrival. We call this problem the (k− 1)-returning secretary
problem. The secretary problem is a classical example of the random-arrival online model
(e.g., [4, 24]), and our model immediately applies to this more general framework, capturing
several natural variations thereof, for example:
1. Requests may not require (or expect) an immediate answer and will therefore visit the

system several times to query it.
2. When requests arrive, the system gives them either a rejection or an acceptance, or an

invitation to return at some later time. It turns out that in many cases, very few requests
actually need to return; in the secretary problem, for example, a straightforward analysis
shows that the optimal algorithm will only ask O(log n) secretaries to return.3

3. Requests may enter the system and leave at some later time. The time the request stays
in the system can vary from “until just before the next item arrives”, in which case no
information is gained, to “until the end”, in which case the problem reduces to an offline
one. Clearly we would like something in between. When k = 2, the second random
variable allocated to the query can be interpreted as the time that the query leaves the
system, giving a natural formulation of this property in the spirit of the random-arrival
online model.

1.1 Our Results
When each secretary returns once (i.e., k = 2), we show that the optimal solution has
a similar flavor to that of the classical secretary problem - wait until some fraction of the
secretaries have passed (ignoring how many times each secretary has arrived), and thereafter
hire the best secretary (out of those we have seen so far), upon his second arrival. To tightly
bound the probability of success (for large n), we examine the case when each of the 2n
arrival times is selected uniformly at random from [0, 1). We use this model to show that
the success probability tends to 0.767974 . . . as n grows. In the classical secretary problem,

2 The exact number for each n can be computed by dynamic programming, see e.g., [15].
3 The algorithm will only ask the ith secretary that arrives to return if he is the best out of all the

secretaries it has seen thus far. The probability of this is 1/i. Summing over all secretaries gives the
bound.

STACS 2015

718 The Returning Secretary

it is essential to know the number of secretaries arriving in order to achieve a constant
success probability. We consider the case when n is not known in advance (and there is
no extra knowledge, such as arrival time distribution), and show that by choosing the best
secretary we have seen once he returns, with no waiting period, we can still obtain a success
probability of at least 2/3. We also consider cases when k > 2: we show that for k = 3,
we can achieve a success probability of at least 0.9, even without knowledge of n, and show
that setting k = Θ(log n) guarantees success with arbitrarily high probability (1 − 1

nα for
any α).

We extend our results to the matroid secretary problem, introduced by Babaioff et al.,
[3], which is an adaptation of the classical secretary problem to the domain of weighted
matroids. A weighted matroid is a pair M = (E, I) of elements E and independent sets
I, and a weight function w : E → R, which obeys the properties of heredity and exchange
(see Section 2 for a formal definition). In the matroid secretary problem, the elements of
a weighted matroid are presented in random order to the online algorithm. The algorithm
maintains a set S of selected elements; when an element e arrives, the algorithm must
decide whether to add it to S, under the restriction that S∪{e} is an independent set of the
matroid. The algorithm’s goal is to maximize the sum of the weights of the items in S. It
is currently unknown whether there exists an algorithm that can find a set whose expected
weight is a constant fraction of the optimal offline solution. The best result to date is an
O(log log ρ)-competitive algorithm,4 where ρ is the rank of the matroid, due to Lachish [22].
We show that in the returning online model, there is an algorithm which is 2-competitive
in expectation (independent of the rank). We also show that for bipartite edge-weighted
matching, and hence for transversal matroids5 in general, this result can be improved, and
show a 16/9-competitive algorithm.

1.2 Related Work
The origin of the secretary problem is still being debated: the problem first appeared in
print in 1960 [13]; its solution is often credited to Lindley [23] or Dynkin [10]. Hundreds of
papers have been published on the secretary problem and variations thereof; for a review, see
[12]; for a historical discussion, see [11]. Kleinberg [19] introduced a version of the secretary
problem in which we are allowed to choose k elements, with the goal of maximizing their
sum. He gave a 1 − O(

√
1/k)-competitive algorithm, and showed that this setting applies

to strategy-proof online auction mechanisms.
The matroid secretary problem was introduced by Babaioff et al. [3]. They gave an

O(log ρ)-competitive algorithm for general matroids, where ρ is the rank of the matroid, and
several constant-competitive algorithms for special cases of the matroid secretary problem.
Lachish [22] gave an O(log log ρ) algorithm for the matroid secretary problem. There have
been several improvements on special cases since then. Babaioff et al., [2] gave algorithms
for the discounted and weighted secretary problems; Korula and Pál [20] showed that graphic
matroids6 admit 2e-competitive algorithms; Kesselheim et al. [18] gave a 1/e-competitive
algorithm for the secretary problem on transversal matroids and showed that this is optimal.

4 An online algorithm whose output is within a factor c of the optimal offline output is said to be
c-competitive; see Section 2 for a formal definition.

5 Transversal matroids (see Section 4 for a definition) are a special case of bipartite edge-weighted
matching.

6 In a graphic matroid G = (V, E), the elements are the edges of the graph G and a set is independent
if it does not contain a cycle.

S. Vardi 719

Soto [28] gave a 2e2/(e− 1)-competitive algorithm when the adversary can choose the set of
weights of the elements, but the weights are assigned at random to the elements, (and the
elements are presented in a random order). Gharan and Vondrák [14] showed that once the
weights are random, the ordering can be made adversarial, and that this setting still admits
O(1)-competitive algorithms. There have been other interesting results in this field; for a
recent survey, see [9].

1.3 Comparison with Related Models

There are several other ther papers which consider online models with arrival and departure
times. Due to the surge in interest in algorithmic game theory over the past 15 years, and
the economic implications of the topic, it is unsurprising that many of these papers are
economically motivated. Hajiaghayi et al. [17], consider the case of an auction in which
an auctioneer has k goods to sell and the buyers arrive and depart dynamically. They
notice and make use of the connection to the secretary problem to design strategy-proof
mechanisms: they design an e-competititive (w.r.t. efficiency) strategy-proof mechanism
for the case k = 1, which corresponds to the secretary problem, and extend the results to
obtain O(1)-cometitive mechanisms for k > 1. Hajiaghayi et al. [16], design strategy-proof
mechanisms for online scheduling in which agents bid for access to a re-usable resource
such as processor time or wireless network access, and each agent is assumed to arrive and
depart dynamically. Blum et al. [5], consider online auctions, in which a single commodity
is bought by multiple buyers and sellers whose bids arrive and expire at different times.
They present an O(log (pmax − pmin))-competitive algorithm for maximizing profit and an
O(log(pmax/pmin))-competitive algorithm for maximizing volume where the bids are in the
range [pmin, pmax], and a strategy-proof algorithm for maximizing social welfare. They also
show that their algorithms achieve almost optimal competitive ratios. Bredin and Parkes [6]
consider online double auctions, which are matching problems with incentives, where agents
arrive and depart dynamically. They show how to design strategy-proof mechanisms for this
setting.

In Section 2 we introduce our model. In Section 3 we provide an optimal algorithm
for the returning secretary problem. In the full version of the paper we give an over 2-
competitive algorithm for the returning matroid secretary problem; we show that we show
we can improve this competitive ratio to 16/9 for transversal matroids (and more generally,
returning edge-weighted bipartite matching); and we analyze the cases of the k-returning
secretary problem for k = 3 and k = Θ(log n).

2 Model and Preliminaries

Consider the following scenario. There are n items which arrive in an online fashion, and
each item arrives k times. Each arrival of an item is called a round; there are kn rounds. The
order of arrivals is selected uniformly at random from the (kn)! possible permutations. An
algorithm observes the items as they arrive, and must make an irrevocable decision about
each item upon the item’s last appearance. We call such an algorithm a (k − 1)-returning
online algorithm and the problem it solves a (k − 1)-returning online problem. Because the
problem is most natural when k = 2, for the rest of the paper, we assume that k = 2 (and
instead of “1-returning”, we simply say “returning”.) In the full version of the paper, we
consider scenarios when k > 2.

We use the following definition of matroids:

STACS 2015

720 The Returning Secretary

I Definition 2.1. A matroid M = (E, I) is an ordered pair, where E is a finite set of
elements (called the ground set), and I is a family of subsets of E, (called the independent
sets), which satisfies the following properties:
1. ∅ ∈ I,
2. If X ∈ I and Y ⊆ X then Y ∈ I,
3. If X,Y ∈ I and |Y | < |X| then there is an element e ∈ X such that Y ∪ {e} ∈ I.
Property (2) is called the hereditary property. Property (3) is called the exchange property.
An independent set that becomes dependent upon adding any element of E is called a basis
for the matroid. In a weighted matroid, each element e ∈ E is associated with a weight
w(e). The returning matroid secretary problem is the following: Each element of a weighted
matroidM = (E, I) arrives twice, in an order selected uniformly at random out of the (2n)!
possible permutations of arrivals. The algorithm maintains a set of selected elements, S,
and may add any element to S at any time between (and including) the first and second
appearances of the element, as long as S∪{e} ∈ I. The goal of the algorithm is to maximize
the sum of the weights of the elements in S. The success of the algorithm is defined by its
competitive ratio.

I Definition 2.2 (competitive ratio, c-competitive algorithm). If the weight of a maximal-
weight basis of a matroid is at most c times the expected weight of the set selected by
an algorithm (where the expectation is over the arrival order), the algorithm is said to be
c-competitive, and its competitive ratio is said to be c.

A special case of the returning matroid secretary problem is the returning secretary problem,
in which there are n secretaries, each of whom arrives twice. The goal of the algorithm is
to identify the best secretary. The algorithm is successful if and only if it chooses the best
secretary, and we quantify how “good” the algorithm is by its success probability.

Without loss of generality, we assume throughout this paper that the weights of all the
elements are distinct (this applies to secretaries as well - given any two secretaries, one must
be strictly better than the other).7 Although we do not discuss computational efficiency in
this work, all the algorithms in this paper are polynomial in the succinct representation of
the matroid.

We denote the set {1, 2, . . . n} by [n].

3 The Returning Secretary

Assume that there are n secretaries that arrive in an online fashion. Each secretary arrives
twice, and the order is selected uniformly at random from the (2n)! possible orders. At all
times, we keep note of who the best secretary is out of all the secretaries seen so far. We call
this secretary the candidate. That is, in each round, if the secretary that arrived is better
than all other secretaries that arrived before this round, he becomes the candidate. Note
that it is possible that in a given round, the candidate will have already arrived twice. At
any point between immediately after first arrival and immediately after the second arrival,
we can accept or reject a secretary; an acceptance is final, a rejection is only final if made
upon the second arrival. Once we accept a secretary, the process ends. We win if we accept
(or choose) the best secretary. We would like to maximize the probability of winning.

7 Babaioff et al., [3] show that we do not lose generality by this assumption in the matroid secretary
problem. The result immediately applies to our model.

S. Vardi 721

3.1 Optimal Family of Rules
What is the best strategy for maximizing the probability of winning? We first show that the
optimal rule must be taken from the family of stopping rules as described in the following
lemma.

I Lemma 3.1. The optimal strategy for choosing the best secretary in the returning secretary
problem has the following structure: wait until d distinct secretaries have arrived; thereafter,
accept the best secretary out of the secretaries seen so far, when he returns.

Proof. Without loss of generality, we can restrict our attention to strategies that make
decisions regarding a secretary s only upon s’s arrivals, as every strategy that makes decisions
between the two arrival times has an equivalent strategy that defers the decision making
to the second arrival. Let dr be the random variable denoting the number of distinct
secretaries that have arrived up to (and including) round r (r ∈ [2n]). Denote by H(r) =
{x1, x2, . . . , xr−1} the history at round r, where xi = (yi, zi): yi is the relative rank (among
the secretaries that have arrived until now) of the secretary that arrived at time i, and
zi represents whether this is the first or second time that this secretary has arrived (i.e.
yi ∈ [dr], zi ∈ {1, 2}). Any (deterministic) strategy S must have the following structure:
for every realization of xr = (yr, zr), and H(r), S must accept or reject. That is S :
(Hr, yr, zr)→ {accept, reject}. Denote the optimal strategy by S∗. Clearly,
1. If the tth secretary is not the best, we will not choose him: ∀yr 6= 1, S∗(Hr, yr, zr) =

reject.
2. If this is the first time we have seen a secretary, we cannot gain anything by choosing

him now. It is better to wait for the second arrival, as we lose nothing by waiting:
S∗(Hr, yr, 1) = reject.

Therefore, we only need to consider choosing the best secretary we have seen so far when
he returns; i.e., we only accept at time t such that yr = 1, zr = 2. For all other values of yi
and zi, S∗ must reject; henceforth, we only focus on the case that yr = 1, zr = 2, and omit
this from the notation. Denote the event that S∗ accepts on history Hr by Acc(Hr). As S∗
is a probability-maximizing strategy,

S∗(Hr) = accept ⇐⇒ Pr[win |Acc(Hr)] ≥ Pr[win |¬Acc(Hr)]. (1)

Given that dr = d, Pr[win |Acc(Hr)] = d/n, as this is exactly the probability that the
best secretary is part of a group of d secretaries selected uniformly at random. Although we
cannot give such an elegant formula for Pr[win |¬Acc(Hr)], we know that it is the probability
of winning given that we have seen d secretaries, rejected them all, and have (n−d) secretaries
remaining to observe; hence, the probability is dependent only on d (as n is fixed). Denote
this probability function by g(d). We do not attempt to describe g, other than to say that
g must be non-increasing in d. (This is easy to see: g(d) ≥ g(d + 1) as a possible strategy
is to always reject the dth secretary.)

As the left side of (1) is an increasing function of d, and the right side is a decreasing
function of d (and as S∗ is a probability-maximizing function), S∗ will accept only if the
number of distinct secretaries that have arrived is at least d∗, the minimal d such that
d/n ≥ g(d). We can conclude that the optimal strategy is to observe the first d∗ secretaries
without hiring any and to choose the first suitable secretary thereafter. It is easy to see
(similarly to [8]), that randomization cannot lead to a better stopping rule. J

From Lemma 3.1, we can conclude that there is some function f : n → [0, n] for which the
optimal algorithm for the returning secretary problem is Algorithm 1.

STACS 2015

722 The Returning Secretary

Algorithm 1: Returning secretary algorithm with function f : n→ [0, n]
Input : n, the number of secretaries
Output: A secretary s

the Candidate = ∅;
for round r = 1 to 2n do

Let ir be the secretary that arrives on round r;
Denote by dr the distinct number of secretaries that have arrived up to round r;
if ir is the Candidate then

if dr > f(n) then
Return ir;

if ir is better than the Candidate then
the Candidate = ir;

We do not, at this time, attempt to find the function f for which Algorithm 1 is optimized;
we will optimize the parameter of a similar algorithm for a slightly different setting in
Subsection 3.3. For now, we focus on the special case where f(n) ≡ 0, which we call the
no waiting case. Aside from being interesting in their own right, these results will come in
useful later on, for tightly bounding the success probability.

3.2 The No Waiting Case

In the classical secretary problem, even if we don’t know n in advance, we can still find
the best secretary with a reasonable probability, assuming we have some other information
regarding the secretaries. For example, the secretaries can have an known arrival time
density over [0, 1] [7]8; n can be selected from some known distribution [26]; there are other,
similar scenarios (see e.g., [29, 1, 25]). However, with no advance knowledge at all, it is
impossible to attain a success probability better than 1/n (with a deterministic algorithm):
if we don’t accept the first item, we run the risk of there being no other items, while if we
do accept it, we have accepted the best secretary with probability 1/n. It is easy to see that
while randomization may help a little, is cannot lead to a constant success probability. In
the returning-online scenario, though, we have the following result.

I Theorem 3.2. In the returning secretary problem, even if we have no previous information
on the secretaries, including the number of secretaries that will arrive, we can hire the best
secretary with probability at least 2/3.

Denote by win the event that we hire the best secretary. Theorem 3.2 is immediate from
the following lemma.

I Lemma 3.3. When applying Algorithm 1 to the returning secretary problem with f(n) ≡ 0,

Pr[win] = 2n+ 1
3n .

8 Note that this is different from the alternative formulation described in the introduction as in this case
n is unknown.

S. Vardi 723

Proof. Let us call the best secretary Don. If we reach round i and see Don, we say we win
on round i, and denote this event wini. (Notice that we can say that we win at this point
even though this is the first time we see Don, as we will certainly hire him). The probability
of winning on round 1 is exactly the probability that Don arrives first:

Pr[win1] = 2
2n.

We win on round 2 if any secretary other than Don arrived on round 1, and Don arrived on
round 2.

Pr[win2] =
(

2n− 2
2n

)(
2

2n− 1

)
.

The probability of winning on round i > 2 is the following (the best secretary we had seen
until that point did not return between rounds 2 and i− 1, and Don arrived on round i):

Pr[wini] =
(

2n− 2
2n

)(
2n− 4
2n− 1

)(
2n− 5
2n− 2

)(
2n− 6
2n− 3

)
. . .

(
2n− i− 1
2n− i+ 2

)(
2

2n− i+ 1

)
.

Therefore

Pr[win] = 1
n

+ 1
n(2n− 1)(2n− 3)

2n−2∑
i=2

(2n− i)(2n− i− 1)

= 1
n

+ 2(n− 1)(2n− 1)(2n− 3)
3n(2n− 1)(2n− 3) (2)

= 3
3n + 2(n− 1)

3n
= 2n+ 1

3n ,

where (2) is reached by substituting j = 2n− i and simplifying the sum. J

3.3 Optimizing the Success Probability
We would now like to optimize f in Algorithm 1 in order to maximize the algorithm’s success
probability. For ease of analysis, we turn to the alternative model for the secretary problem:
instead of generating a random permutation over the secretaries, each secretary i is allocated,
uniformly and independently at random, two real numbers r1

i , r
2
i ∈ [0, 1), representing his

two arrival times. Assume that f∗ is the optimal function for Algorithm 1. Fix n and let µ
denote the time of the arrival of the (f∗(n))th distinct secretary. It is easy to see that the
two models are asymptotically identical: for large n, Pr[ij is one of the first f∗(n) arrivals] u
Pr[ij ∈ [0, µ)]. The analysis in this model is much cleaner, and so, for simplicity, (and at the
expense of accuracy for small n), we use it to obtain our bounds. The optimal algorithm for
the returning secretary problem in this model is Algorithm 2.

We introduce some new notation.
Denote by win(µ) the event that we hire the best secretary when using Algorithm 2 with
parameter µ.
Let αi(µ) be the event that r1

i , r
2
i ∈ [0, µ).

Let βi(µ) be the event that r1
i ∈ [0, µ) and r2

i ∈ [µ, 1) or vice versa.
Let γi(µ) be the event that r1

i , r
2
i ∈ [µ, 1).

STACS 2015

724 The Returning Secretary

Algorithm 2: Returning secretary algorithm with parameter µ ∈ [0, 1)
Output: A secretary s

the Candidate = ∅;
Observe the first secretary;
while there are secretaries that have not arrived do

Let i be the observed secretary;
Let ti be the time that i is observed;
if i is the Candidate then

if time ≥ µ then
Return i;

if i is better than the Candidate then
the Candidate = i;

Observe the next secretary;

We omit (µ) from the notation when it is clear from context. Label the best secretary by
1, the second best by 2 and so on. Denote by win(NWi) the event that we find the best
secretary in the no waiting scenario with i secretaries (recall that this is 2i+1

3i). We make
the following observations, which rely on the arrival times being independent.

I Observation 3.4. ∀i ∈ [n],Pr[αi(µ)] = µ2,Pr[βi(µ)] = 2µ(1− µ),Pr[γi(µ)] = (1− µ)2.

I Observation 3.5. Pr[win |γ1, γ2, . . . , γi, αi+1] = Pr[win(NWi)].

Proof. If γ1, γ2, . . . , γi hold then all of the appearances of the best i secretaries are in the
interval [µ, 1). Both appearances of the (i + 1)th best secretary are in [0, µ); therefore we
will definitely choose one of the i best secretaries, and the probability of choosing the best
is as in the no waiting scenario. J

I Observation 3.6.

Pr[win |γ1, γ2, . . . , γi, βi+1] = Pr[win(NWi+1)|secretary i+ 1 is the first to arrive].

Proof. If γ1, γ2, . . . , γi and βi+1 hold then all appearances of the best i secretaries are in
the interval [µ, 1), and the (i + 1)th secretary arrived once by time µ. This reduces to the
problem of choosing the best secretary in the no waiting scenario, given that the (i + 1)th
secretary arrives first. J

I Claim 3.7. Pr[win(NWi+1)|secretary i+ 1 is the first to arrive] = 2i
2i+1 Pr[win(NWi)].

Proof. Given that i + 1 is the first to arrive, if i + 1 arrives second, we lost. If not, i + 1
cannot be chosen anymore, and we are exactly in the no waiting scenario with i secretaries.
The probability that i+ 1 arrives second given that he also arrives first is 1

2i+1 . J

Combining Observation 3.6 and Claim 3.7 gives the following corollary.

I Corollary 3.8. Pr[win |γ1, γ2, . . . , γi, βi+1] = 2i
2i+1 Pr[win(NWi)].

We are now able to obtain a recursive representation of Pr[win |γ1, γ2, . . . , γi].

I Claim 3.9. Pr[win |γ1, γ2, . . . , γi] = µ2+4µi−2µ2i
3i + (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1].

S. Vardi 725

Proof.

Pr[win |γ1, γ2, . . . , γi] = Pr[win |γ1, γ2, . . . , γi, αi+1] Pr[αi+1]
+ Pr[win |γ1, γ2, . . . , γi, βi+1] Pr[βi+1]
+ Pr[win |γ1, γ2, . . . , γi, γi+1] Pr[γi+1]

=µ2 Pr[win(NWi)] + 4µi(1− µ)
2i+ 1 Pr[win(NWi)] (3)

+ (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1]

=µ2 + 4µi− 2µ2i

2i+ 1 Pr[win(NWi)]

+ (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1],

=µ2 + 4µi− 2µ2i

3i + (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1], (4)

where (3) is due to Observations 3.4, and 3.5 and Corollary 3.8, and (4) is due to Lemma 3.3.
J

I Claim 3.10. For any constant k, and any µ ∈ [0, 1),

Pr[win] ≥ 2µ(1− µ) +
k∑
i=1

(
(1− µ)2i(µ2 + 4µi− 2µ2i)

3i

)
+ 2

3(1− µ)2k+1. (5)

Proof.

Pr[win] = Pr[win |α1] · Pr[α1] + Pr[win |β1] · Pr[β1] + Pr[win |γ1] · Pr[γ1]
=0 · (µ2) + 1 · 2µ(1− µ) + Pr[win |γ1] · (1− µ)2, (6)

where (6) is due to Observation 3.4.
Recursively applying Claim 3.9, and noticing that Pr[win |γ1, γ2, . . . , γi] ≥ 2

3 , for all i,
completes the claim. J

I Lemma 3.11. For any x ∈ [0, 1), Pr[win] ≥ 2x− 4
3x

2 − 1
3 (1− x)2 log(1− x2).

Proof. Substituting x = 1− µ in (5), and ignoring the lowest order term, we get

Pr[win] ≥ 2x(1− x) + 1
3

k∑
i=1

x2i
(

(1− x)2 + 4(1− x)i− 2(1− x)2i

i

)

= 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 1

3

k∑
i=1

x2i(4− 4x)− 2(1− x)2)

= 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 1

3

k∑
i=1

x2i(2− 2x2)

= 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 1

3

(
k∑
i=1

2x2i −
k∑
i=1

2x2(i+1)

)

≥ 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 2

3x
2 (7)

−→
k→∞

2x− 4
3x

2 − 1
3(1− x)2 log(1− x2), (8)

STACS 2015

726 The Returning Secretary

Algorithm 3: Returning matroid secretary algorithm
Input : a cardinality n = |E| of the matroidM = (E, I)
Output: an independent set S ∈ I

Let n elements arrive, without choosing any element;
Let E′ denote the elements which only arrived once thus far;
Relabel the elements of E′ by 1, 2, . . . , |E′|, such that w1 ≥ w2 ≥ · · · ≥ w|E′|;
S ← ∅;
for i = 1 to |E′| do

if S ∪ i ∈ I then
S ← S ∪ i;

Return S;

where in (7), we once again ignore the lowest order term, and (8) is because
∞∑
i=1

yi

i
is the

Taylor series for − log(1− y), for |y| < 1. J

Differentiating (8), we find that the winning probability is maximized at

x =
√
e5 − eW (2e5)

e5/2 ≈ 0.727374 . . .

, where W (z) is the Lambert W function (also known as the the product log function). This
implies µ ≈ 0.272626 . . ., and for this value, Pr[win] ≈ 0.767974 This gives our main
result of the section.

I Theorem 3.12. The success probability of Algorithm 2 with µ = 0.272626 . . . converges
to the success probability of the optimal algorithm for the returning secretary problem, as
n tends to infinity; the probability of hiring the best secretary using Algorithm 2 is at least
0.767974.

4 Extension to Matroid Secretary Problems

We extend our results to the matroid secretary problem. Due to space restrictions, we only
provide an outline of the results, and defer the proofs to the full version of the paper.

4.1 The Returning Matroid Secretary
We show that in the returning online model, when k = 2, a simple algorithm obtains a
2-approximation to the maximum-weight basis of the matroid. It is a well known property
of matroids (e.g., [27]), that the Greedy algorithm always finds a maximum-weight basis.
Algorithm 3, in essence, lets n elements arrive, and then runs the Greedy algorithm on the
elements which have only arrived once.

I Theorem 4.1. There is a simple algorithm for the returning matroid secretary problem
that is 2-competitive in expectation.

We use the following algorithm. Due to space considerations, the analysis of the algorithm
and proof of Theorem 4.1 is deferred to the full version of the paper.

S. Vardi 727

Algorithm 4: Returning bipartite edge-weighted matching algorithm
Input : vertex set R and a cardinality n = |L|
Output: a matching M

Let Lr be the vertices that arrived until round r.;
Let L′ ⊂ Ln denote the vertices that only arrived once until round n;
M = optimal matching on G[L′ ∪R];
for each subsequent round t > n, when vertex `t ∈ L arrives do

Mt = optimal matching on G[Lt ∪R];
Let et be the edge assigned to `t in Mt;
if M ∪ et is a matching then

M = M ∪ et;

Return M ;

We also show that in some cases, this algorithm can be improved to give better bounds;
specifically in the case of bipartite edge-weighted matching (a generalization of transversal
matroids).

4.2 Returning Bipartite Edge-Weighted Matching
The returning bipartite edge-weighted matching problem is a generalization of the returning
transversal matroid problem.9 Let G = (L ∪ R,E) be a bipartite graph with a weight
function w : E → R+. We are initially given R and n = |L|. In each step, a vertex v ∈ L
arrives together with its edges (and the edges’ weights). Each vertex arrives twice, and the
order of arrival is selected uniformly at random from the (2n)! possible arrival orders. When
a vertex ` ∈ L arrives for the second time, it is either matched to one of the free vertices in
R that are adjacent to `, or left unmatched. The goal of the algorithm is to maximize the
weight of the matching. Note that if |R| = 1, and we succeed only if we find the maximum
matching, this is exactly the returning secretary problem.

We present a variation on the returning matroid secretary algorithm, where instead of the
Greedy algorithm, we use a maximum-matching algorithm (using any maximum matching
algorithm, e.g., the Hungarian method [21]). We then use local improvements, similarly to
[18]. Once again, we present the algorithm here, but due to space considerations, leave its
analysis and the proof of Theorem 4.2 to the full version.

I Theorem 4.2. Algorithm 4 is 16/9-competitive in expectation.

Acknowledgements I would like to thank Yishay Mansour and the anonymous reviewers
for their insightful comments.

References
1 A.R. Abdel-Hamid, J.A. Bather, and G.B. Trustrum. The secretary problem with an

unknown number of candidates. J. Appl. Prob., 19:619–630, 1982.

9 A transversal matroid is a bipartite graph G = (L ∪ R, E) where the elements are the vertices of L
and the independent sets are sets of endpoints of matchings in the graph. Transversal matroids are a
special case of bipartite edge-weighted matching, in which all the edges incident on the same vertex
` ∈ L have the same weight.

STACS 2015

728 The Returning Secretary

2 Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica, and Kunal Talwar.
Secretary problems: Weights and discounts. In SODA, pages 1245–1254, 2009.

3 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,
and online mechanisms. In SODA, pages 434–443, 2007.

4 Bahman Bahmani, Aranyak Mehta, and Rajeev Motwani. Online graph edge-coloring in
the random-order arrival model. Theory of Computing, 8(1):567–595, 2012.

5 Avrim Blum, Tuomas Sandholm, and Martin Zinkevich. Online algorithms for market
clearing. J. ACM, 53(5):845–879, 2006.

6 Jonathan Bredin and David C. Parkes. Models for truthful online double auctions. CoRR,
abs/1207.1360, 2012.

7 F. Thomas Bruss. A unified approach to a class of best choice problems with an unknown
number of options. The Annals of Probability, 12(3):882–889, 08 1984.

8 F. Thomas Bruss. Sum the odds to one and stop. Annals of Probability, 28:1384–1391,
2000.

9 Michael Dinitz. Recent advances on the matroid secretary problem. SIGACT News,
44(2):126–142, 2013.

10 E. B. Dynkin. The optimal choice of the instant for stopping a Markov process. Soviet
Math. Dokl., 4:627–629, 1963.

11 Thomas S. Ferguson. Who solved the secretary problem? Statistical Science, 4:282–296,
1989.

12 P.R. Freeman. The secretary problem and its extensions: A review. International Statistical
Review, 51(2):189–206, 1983.

13 M. Gardner. Mathematical games. Scientific American, 202:152,178–179, 1960.
14 Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem.

Algorithmica, 67(4):472–497, 2013.
15 John P. Gilbert and Frederick Mosteller. Recognizing the maximum of a sequence. J.

Amer. Statist. Assoc., 61(313):35–73, 1966.
16 Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, Mohammad Mahdian, and David C.

Parkes. Online auctions with re-usable goods. In EC, pages 165–174, 2005.
17 Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and David C. Parkes. Adaptive

limited-supply online auctions. In EC, pages 71–80, 2004.
18 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal

online algorithm for weighted bipartite matching and extensions to combinatorial auctions.
In ESA, pages 589–600, 2013.

19 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online
auctions. In SODA, pages 630–631, 2005.

20 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-
graphs. In ICALP (2), pages 508–520, 2009.

21 H.W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

22 Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 326–335,
2014.

23 D.V. Lindley. Dynamic programming and decision theory. Appl. Statist., 10:39–52, 1961.
24 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an

approach based on strongly factor-revealing LPs. In STOC, pages 597–606, 2011.
25 Zdzisław Porosiński. The full-information best choice problem with a random number of

observations. Stochastic Processes and their Applications, 24(2):293–307, 1987.
26 E.L. Presman and I.M. Sonin. The best choice problem for a random number of objects.

Theory Prob. Applic., 17:657–668, 1982.

S. Vardi 729

27 R. Rado. A note on independence functions. Proc. London Math. Soc., 7:300–320, 1957.
28 José A. Soto. Matroid secretary problem in the random-assignment model. SIAM J.

Comput., 42(1):178–211, 2013.
29 T.J. Stewart. The secretary problem with an unknown number of options. Operations

Research, 29:130–145, 1981.

STACS 2015

Homomorphism Reconfiguration via Homotopy

Marcin Wrochna

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
m.wrochna@mimuw.edu.pl

Abstract
We consider the following problem for a fixed graph H: given a graph G and two H-colorings of
G, i.e. homomorphisms from G to H, can one be transformed into the other by changing one
color at a time, maintaining an H-coloring throughout. This is the same as finding a path in the
Hom(G,H) complex. For H = Kk this is the problem of finding paths between k-colorings, which
was recently shown to be in P for k ≤ 3 and PSPACE-complete otherwise (Bonsma and Cereceda
2009, Cereceda et al. 2011). We generalize the positive side of this dichotomy by providing an
algorithm that solves the problem in polynomial time for any H with no C4 subgraph. This gives
a large class of constraints for which finding solutions to the Constraint Satisfaction Problem is
NP-complete, but paths in the solution space can be found in polynomial time.

The algorithm uses a characterization of possible reconfiguration sequences (that is, paths
in Hom(G,H)), whose main part is a purely topological condition described in terms of the
fundamental groupoid of H seen as a topological space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases reconfiguration, recoloring, homomorphisms, homotopy, hom complex

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.730

1 Introduction

Reconfiguration

Reconfiguration is a framework in which we study how discrete structures, constrained in
various ways, can be carefully transformed with small steps. This is often best described by
finding paths in a solution graph, whose vertices are all solutions to a combinatorial problem
and whose edges define the steps between solutions one is allowed to make.

For example, in k-Recoloring [3, 4, 8, 17], one is given two proper k-colorings of a
graph G and the question is whether one can be transformed into the other by changing one
color at a time, maintaining a proper coloring throughout. In other words, the solution graph
has proper k-colorings as vertices (solutions) and edges (reconfigurations steps) between any
two colorings that differ only at one vertex of G. Another well studied example is Token
Jumping [12, 18], where the solutions are independent sets of some given size (seen as tokens
on the graph’s vertices) and a reconfiguration step removes one vertex from the set to add
another (jumps one token to a different vertex). Yet another example is the reconfiguration
of generalized SAT problems [11, 21, 24], where solutions are satisfying assignments of a
given formula, and a reconfiguration step flips one variable of the assignment.

© Marcin Wrochna;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 730–742

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.730
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Wrochna 731

Figure 1 A sequence of 3-colorings of C5 and the same sequence seen as mappings from C5 to
K3 (a graph with three vertices: red, green, blue), that is, a path in Hom1(C5,K3). One vertex of
C5 is thickened for clarity.

Homomorphisms
A homomorphism from a graph G to a graph H is a mapping σ : V (G)→ V (H) such that
edges are mapped to edges, that is, uv ∈ E(G) implies σ(u)σ(v) ∈ E(H). We also use the
name H-coloring, especially when H is fixed in the context. Vertices of H are then called
colors. Note that a Kk-coloring (so H = Kk is the graph with all edges except loops) is the
same as a (proper) k-coloring.

The solution graph Hom1(G,H) is defined to be the graph with H-colorings of G as
vertices and edges between any two H-colorings that differ in the color of only one vertex
(Figure 1). For a fixed graph H, H-Recoloring is the problem where given a graph G and
two H-colorings of G we are asked whether they are connected by a path in Hom1(G,H).
Shortest H-Recoloring asks whether there is such a path of at most some given length.

We use graph homomorphisms as a tool to explore how different constraints influence
the complexity of reconfiguration. As our aim is to give more general statements about
reconfiguration, they should be seen as a special case of Constraint Satisfaction Problems
(CSPs), which can express a range of problems including k-Coloring, generalized SAT or
Independent Set (in weighted variants). However, graph homomorphisms already display
many features of general CSPs and arise naturally in various situations. See [22] for an
excellent survey and [16] for an in-depth book on the subject.

This approach allowed us to argue in [26] that the only notion of sparseness that can
apply to (unparameterized) reconfiguration problems in general is treedepth. The reduction
showed there explains why reconfiguration variants of easy combinatorial problems can be
hard. In this paper we explore why reconfiguration variants of hard problems can be easy.

Motivations
The primary motivation for studying reconfiguration problems is to investigate the solution
space of combinatorial problems, especially from the perspective of local search heuristics and
random solution sampling. In particular, the success of Survey Propagation as a method for
solving random Constraint Satisfaction Problems (CSPs) is connected to several conjectures
about the structure of clusters of satisfying assignments (connected components in the
solution graph) and frozen variables (variables/vertices that cannot change their value/color
by any sequence of steps), see [1].

STACS 2015

732 Homomorphism Reconfiguration via Homotopy

While finding paths in the solution graph is, for the above purposes, mostly a toy
problem, it arises more directly in some settings. For example, the construction of Hearn
and Demaine [12] allowed to show that many popular puzzles are PSPACE-complete [13, 20],
and more interestingly, so is the problem of proof equivalence in a certain proof system [14],
which answered an earlier question about normal forms of proofs.

Related work
H-Recoloring has been shown PSPACE-complete for H = Kk where k ≥ 4 by Bonsma
and Cereceda [3], and in P for k ≤ 3 by Cereceda et al. [8]. The latter result has been
extended to show that Shortest K3-Recoloring is also in P by Johnson et al. [17].

For CSPs in the Boolean domain, a dichotomy was shown by Gopalan et al. [11] – for a
fixed set of Boolean constraints Γ (i.e., Boolean relations, clause types), the problem of finding
paths in the solution graph of a SAT(Γ) instance is either in P or PSPACE-complete. In
particular it is always in P when the corresponding satisfiability problem is in P (e.g. 2-SAT
or Horn-SAT), but it is also in P for some Γ for which satisfiability is NP-complete. This was
slightly corrected and extended to several similar problems by Schwerdtfeger [24], while a
trichotomy was shown for the problem of finding shortest paths by Mouawad et al. [21]. Both
[11] and [24] asked whether their results could be extended to larger domains. Our work can
be seen as a step in this direction, but limited to only one symmetric relation of arity 2.

The corresponding extension of Schaefer’s dichotomy [23] for satisfiability (deciding the
existence of a solution) to CSPs with arbitrary finite domains is a long-standing open problem
stated by Feder and Vardi [10]. They showed that the conjecture is equivalent when limited
to one relation of arity 2 (digraph homomorphisms). Hell and Nešetřil proved the dichotomy
in the case the relation is additionally assumed to be symmetric (graph homomorphism) [15]:
the problem of deciding the existence of an H-coloring of a given graph is in P for H bipartite
or containing a loop, and NP-complete otherwise.

Results
It is natural to ask whether the unexpected tractability of K3-Recoloring (in light of
3-Colorability being NP-complete) is caused by the following property: whenever a vertex
changes its color in a 3-coloring (e.g. from red to green), all of its neighbors must have one
common color (blue).

We answer this in the positive considering the following definition: a graph H has the
monochromatic neighborhood property if for every two colors a, b ∈ V (H), the set of common
neighbors NH(a) ∩ NH(b) contains at most one color. For graphs without loops this is
equivalent to not containing C4 (the cycle on 4 vertices) as a subgraph (not necessarily
induced). This includes K3 and all graphs of girth ≥ 5, for example. For graphs with loops
allowed, this is equivalent to not containing C4, K3 with one loop added, nor K2 with both
loops added.

We show an algorithm that solves Shortest H-Recoloring in polynomial time for all
H with the monochromatic neighborhood property. To achieve this, we characterize possible
paths in Hom1(G,H) by describing sequences of colors one vertex of G takes throughout
an H-recoloring. We observe that the H-colorings of G correspond to continuous maps
from G to H (seen as topological spaces) and that recoloring corresponds to a continuous
transformation of these maps – a homotopy. This gives a topological condition on how a
path in Hom1(G,H) can look like. It turns out that to give a complete characterization
we only need to add a simple parity condition and a condition freezing some easily found

M. Wrochna 733

vertices. Thus a combinatorial problem is reduced to describing possible homotopies, which
we do with standard algebraic calculations. This gives an unexpected connection that might
be interesting on its own.

In combinatorial algebraic topology

Reconfiguration of homomorphisms has already been studied independently in the field of
combinatorial algebraic topology, though from a different angle. The notion of ×-homotopy
of homomorphisms as defined by Dochtermann [9] is identical to reachability in the solution
graph Hom1(G,H). The solution graph Hom1(G,H) arises as the subgraph of the exponential
graph HG induced by looped vertices and as the 1-skeleton of the Hom-complex Hom(G,H),
see [2]. The Hom-complex, studied for its interesting categorical and topological properties,
is a construction similar (and homotopy equivalent) to the clique complex of Hom1(G,H).
These definitions were introduced to provide lower bounds on the chromatic number of
graphs, a notoriously hard problem. A typical theorem derived from such methods is that
for loopless graphs G,H , if Hom1(G,H) is connected for all G of degree at most d, then the
chromatic number of H is at least d/2 (and is conjectured to be at least d) [5]. Studies have
thus been mostly concerned with highly regular graphs for which the solution graph can be
proved to be in some sense tightly connected.

We do not know of any prior work on the computational complexity of deciding ×-
homotopy. More surprisingly, we do not know of any prior example where ×-homotopy (of
homomorphisms) would be related to homotopy (of continuous mappings between graphs),
more than through analogy.

A longer version of this paper, with full proofs, is available at http://arxiv.org/abs/
1408.2812.

2 Preliminaries

An (undirected) graph G is a pair (V (G), E(G)) where V (G) is a finite set of vertices,
while E(G) is the set of edges – unordered vertex pairs {u, v}, u, v ∈ V (G), written uv

for short. A loop is an edge uu for some vertex u. The neighborhood NG(v) is defined as
{w ∈ V (G) | vw ∈ E(G)}. Hence a ∈ NH(a) iff H has a loop at a.

G and H in this paper are always connected undirected graphs with at least one edge. G
is always assumed to have no loops. H can have loops, but is always assumed to have the
monochromatic neighborhood property.

An H-recoloring sequence or reconfiguration sequence is a path in Hom1(G,H), that is, a
sequence of H-colorings of G in which consecutive colorings differ at one vertex. Consider
a step of an H-recoloring sequence – a vertex v ∈ V (G) changes color from a ∈ V (H) to
b ∈ V (H). Since G is connected, loopless and has an edge, v has a neighbor, say w 6= v. As
only v changes its color in the step, w has the same color, say h ∈ V (H), before and after the
step. The H-coloring before the step implies that ha ∈ E(H), while the one after the step
implies that hb ∈ E(H). Thus h ∈ NH(a) ∩NH(b). From the monochromatic neighborhood
property we infer that NH(a)∩NH(b) = {h}. We will often call h ‘the color that all neighbors
of v have during the step’ (that is, in the H-colorings before and after the step), without
arguing its existence and uniqueness anymore.

STACS 2015

http://arxiv.org/abs/1408.2812
http://arxiv.org/abs/1408.2812

734 Homomorphism Reconfiguration via Homotopy

Figure 2 Examples of two walks (in a graph H on 10 vertices) which reduce to the same, bottom
left one. The bottom right one is a different reduced walk; when its endpoints are fixed, it cannot
be distorted as a curve to give any of the others.

3 Fundamental groupoid

An oriented edge of a graph H is an ordered pair e = (u, v) such that {u, v} is an edge of
H; we denote its initial vertex u as ι(e) and its target vertex v as τ(e). We write e−1 for
(τ(e), ι(e)). A walk from u to v in a graph H is a sequence of oriented edges e1e2 . . . el of
H such that ι(e1) = u, τ(el) = v and τ(ei) = ι(ei+1) for i = 0, . . . , l − 1. We write ε for an
empty walk (the endpoints of ε will be irrelevant for us). The length of a walk is the number
of edges in it. A walk W1 from u to v can be concatenated to a walk W2 from v to w to form
a walk W1W2 from u to w.

We call a walk reduced if it contains no two consecutive edges eiei+1 such that ei+1 = e−1
i .

One can reduce a walk by removing any such two consecutive edges from the sequence. It
can easily be seen that by iteratively reducing a walk W , one always gets the same reduced
walk, which we therefore denote as W , see Figure 2. For any two reduced walks W1,W2
such that W2 starts where W1 ends, we write W1 ·W2 for W1 W2 and similarly one can
observe that · is associative. For any walk W = e1e2 . . . el we write W−1 for the reversed
walk e−1

l . . . e−1
2 e−1

1 . Clearly W ·W−1 = ε = W
−1 ·W and ε ·W = W · ε = W . Therefore,

the set of reduced walks of a graph forms together with the operations · and ()−1 a groupoid
– a group, except for the binary operation being a partial function. This particular groupoid
is called the fundamental groupoid π(H) of H, see Figure 3.

A groupoid is in many ways similar to a group. Identities such as (e · f)−1 = f−1 · e−1

known from group theory are easily reproved in groupoids. Using the fundamental groupoid
as opposed to the better known fundamental group allows us to describe calculations much
more uniformly, without the tedious change of base points, for example. Readers familiar
with category theory may benefit from the view given by equivalent definitions: a groupoid
is a category in which every morphism is invertible, and a group is a groupoid with one
object. A brief survey on groupoids and their application in topology [6] and a more complete
exposition [7] have been written by R. Brown.

Note that if H has a loop at u, then (u, u) = (u, u)−1 is an oriented edge and a reduced
walk of length 1. On the other hand, (u, u) · (u, u) = ε. (Hence π(H) is strictly speaking not
a free groupoid, see [19]).

M. Wrochna 735

· =

· =

Figure 3 Examples of · multiplication in the fundamental groupoid of H = C5.

Topological interpretation
Let us comment on how this algebraic structure captures the topology of curves in the graph.
When referring to topology, we give only informal interpretations, as the statements are not
needed in any of the proofs.

A graph H without loops can be naturally associated with a topological space, constructed
from copies of the [0, 1] interval for each edge, with endpoints merged into vertices accordingly.
A curve in this space is a continuous map f : [0, 1]→ H (where H is meant as the topological
space), not necessarily injective. Two curves f0, f1 are homotopic if one can be continuously
transformed into the other, which means there is a set of functions {φt : t ∈ [0, 1]} such
that φ0 = f0, φ1 = f1 and the mapping φ : (t, x) 7→ φt(x) is continuous as a function from
[0, 1]× [0, 1] to H.

The fundamental groupoid fully describes curves up to homotopy. For any two vertices
u, v of H, two curves f0, f1 are homotopic via a homotopy φt that fixes the endpoints
(φt(0) = u, φt(1) = v for all t) if and only if the corresponding reduced walks in π(H) are
equal. Considering only reduced walks that start and end in the same vertex v, we obtain
a group, which is known as the fundamental group π1(H, v) of the topological space H.
When no vertex is fixed, a closed curve is homotopic to another, via a homotopy such that
φt(1) = φt(0) for all t, if and only if the corresponding elements C1, C2 of π(H) are conjugate,
i.e. C2 = P−1 · C1 · P for some P ∈ π(H).

4 Vertex walks and realizability

Consider an H-recoloring sequence S = σ0, . . . , σl of G and any vertex v ∈ V (G). We define
S(v) as the following walk in H:

If l = 0, that is, S is empty, then S(v) = ε.
If l = 1, that is, S contains a single reconfiguration step, then

S(v) = ε when σ0(v) = σ1(v), and
S(v) = (σ0(v), h)(h, σ1(v)) otherwise,

where h is the color that all neighbors of v have in σ0 and σ1.
If l > 1, then S(v) = S1(v)S2(v) . . . Sl(v), where Si(v) is the walk corresponding to the
reconfiguration step from σi to σi+1.

For two H-colorings α, β of G and a vertex q ∈ V (G), we call an element Q ∈ π(H)
realizable if there is an H-recoloring sequence S = σ0, . . . , σl such that σ0 = α, σl = β

and S(q) = Q. We focus on the following question: which Q ∈ π(H) are realizable? It is

STACS 2015

736 Homomorphism Reconfiguration via Homotopy

q

α qβ S(q)

Figure 4 A realizable walk for α, β : K2 → H and q. Note the shortest walk from α(q) to β(q)
(of length 3) is not realizable because of parity.

immediate from the definition that Q must be a reduced walk from α(q) to β(q) and have
even length (notice that the parity of the length of walks is preserved by reducing), see
Figure 4. This parity condition will be one of three conditions characterizing realizable walks.

If W = (v1, v2)(v2, v3) . . . (vn−1, vn) is a walk in G and α is an H-coloring of G, then
α(W) = (α(v1), α(v2)) . . . (α(vn−1), α(vn)) is a walk in H.

5 Topological validity

With a homomorphism from G to H one can associate a continuous map from G to H
(seen as topological spaces as described above). The following lemma is the key to the
monochromatic neighborhood property of H.

I Lemma 1. Let S be an H-recoloring sequence of G from α to β. Consider any walk W
from vertex u to v in G. Then S(v) = α(W)

−1
· S(u) · β(W).

The proof follows directly from the monochromatic neighborhood property and induction.
The statement can be understood as an algebraic expression of the fact that when an
H-coloring is reconfigured into another, the corresponding continuous mappings can be
continuously transformed into one another, and the walk S(v) of each vertex v is (up to
reduction) the curve traced by the point v (see Figure 5). Let us focus on corollaries.

First, we see that in a given instance of H-Recoloring, the reduced vertex walk S(q) of
one vertex q in a solution S determines all other vertex walks up to reductions (in other words,
up to homotopy). This is why we can focus on the realizability of one element Q ∈ π(H)
instead of a whole recoloring sequence. If we decide that Q is realizable, we will later use
this lemma to completely recover a recoloring sequence S such that S(q) = Q.

Second, note that the statement doesn’t depend on how we choose walks in G. This
means that for every pair of walks in G with equal endpoints, there is a topological condition
on how solutions look like.

I Definition 2. Let α, β be two H-colorings of G and let q be a vertex of G. Let Q ∈ π(H).
We say Q is topologically valid for α, β, q if for every vertex w and every two walks W1,W2

from q to w in G we have α(W1)
−1
·Q · β(W1) = α(W2)

−1
·Q · β(W2).

I Corollary 3. Let α, β be two H-colorings of G and let q be a vertex of G. If Q ∈ π(H) is
realizable for α, β, q then Q is topologically valid for α, β, q.

Using the groupoid structure, this condition can easily be rephrased in terms of single
closed walks, instead of pairs of walks with equal starts and equal ends.

I Lemma 4. Let α, β be two H-colorings of G and let q be a vertex of G. Then Q ∈ π(H)
is topologically valid for α, β, q if and only if for every closed walk C from q to q we have
β(C) = Q−1 · α(C) ·Q.

M. Wrochna 737

u

v

α

u

v

β S(u)

S(v)
α(u)

S(u)

S(v)

α(W) β(W)

Figure 5 If α can be transformed to β by reconfiguration, then it can also be transformed by a
homotopy. Restricting this homotopy to a walkW from u to v inG gives a map φ : [0, 1]×[0, |W |]→ H

such that φ(0, ·) = α(W) and φ(1, ·) = β(W), φ(·, 0) = S(u) and φ(·, |W |) = S(v). Since φ is a
continuous mapping of a rectangle to H, it’s boundary, and so the image of it’s boundary, can be
contracted to a point. This is the meaning of the equality α(W)

−1
· S(u) · β(W) · S(v)

−1
= ε.

The name is motivated by the following fact: Q is topologically valid for α, β, q if and
only if there is a homotopy continuously transforming α to β such that q traces the curve Q
throughout this transformation (φ0 = α, φ1 = β and the image of t 7→ φt(q) is Q).

We note that the existence of a topologically valid walk for α, β implies in particular that
cycles have the same homotopy class in α as in β, which algebraically is expressed in the fact
that they have the same conjugacy class: β(C) = Q−1 · α(C) ·Q for some Q ∈ π(H). This
generalizes one of the conditions of a characterization of 3-colorings connected by recoloring
sequences given in [8] (Theorem 7 (C2)).

Another implication is that, intuitively, for each cycle C in G such that α(C) 6= ε, two
solutions can differ only in the number of times vertex walks wind around α(C). This is
analyzed in more detail in the full version of the paper, but we will see this reflected when
describing the set of realizable walks (e.g. Figure 8).

6 Tight closed walks and frozen vertices

We have seen that any realizable walk must have even length and must be topologically valid.
There is one more obstruction to reconfiguration: closed walks whose sequences of colors are
in a sense tightly stretched around H. In an H-coloring α of G, a vertex v of G is called
frozen if for every H-recoloring sequence from α the resulting H-coloring β has β(v) = α(v).
A closed walk C = e1e2 . . . el is cyclically reduced if it is reduced and also el 6= e−1

1 . In other
words, repeating C gives an infinite reduced walk. A closed walk C is α-tight if α(C) is
cyclically reduced. We show that vertices on tight closed walks are frozen.

I Lemma 5. Let α be an H-coloring of G and let C be an α-tight walk in G. Then all
vertices of C are frozen in α.

STACS 2015

738 Homomorphism Reconfiguration via Homotopy

Figure 6 In the left example a C5-coloring of C10 is shown. there is a tight closed walk visiting
all 10 vertices of the cycle in order. Hence no reconfiguration step is possible. Similarly in the
middle example, there is a tight closed walk going around one 5-cycle, along the bridge, around the
other 5-cycle and back along the bridge. In the right example no closed walk is tight, but the 4
middle vertices are frozen.

Tight closed walks can be found by starting from some vertex and exploring walks W such
that α(W) is reduced. If they are arbitrarily long, then they contain the same oriented edge
twice, giving an α-tight closed walk. We can answer whether an oriented edge is reachable
from itself by a non-trivial reduced walk in time O(|E(G)|). The (potentially infinite) prefix
tree of reduced walks starting from one vertex gives a generalization of the layer construction
of [8] used to characterize frozen vertices when H = K3. For other H, frozen vertices can
arise in other situations (Figure 6), but it turns out we won’t need to identify them.

Finding a frozen vertex v allows us to limit potentially realizable walks Q to a single one.
Since S(v) = ε, Lemma 1 implies Q = S(q) = α(W)

−1
· S(v) · β(W) = α(W)

−1
· β(W).

I Corollary 6. Let Q ∈ π(H) be realizable for α, β – H-colorings of G and q ∈ V (G). Let C
be an α-tight closed walk in H. Then for every vertex v on C and every walk W from v to q
we have Q = α(W)

−1
· β(W).

7 Characterization of realizable walks

In the following theorem we show that there are no more conditions for a walk to be
realizable than the three we described: even length, topological validity and frozenness of
tight closed walks. This is very unexpected – the fact that edges are actually discrete and
cannot be stretched arbitrarily, for example, turns out to imply no further obstructions to
reconfiguration (it only restricts the input H-colorings).

I Theorem 7. Let α, β be two H-colorings of G. Consider any vertex q of G and let
Q ∈ π(H) be a reduced walk in H from α(q) to β(q). Then Q is realizable for α, β, q if and
only if

Q is topologically valid for α, β, q,
Q has even length,
if there is an α-tight walk, then for any walk W from it to q, Q = α(W)

−1
· β(W).

Furthermore, there is an algorithm working in time O(|V (G)|2 + |V (G)| · |Q|+ |E(H)|) that
given G,H,α, β and a walk Q, checks whether Q satisfies the above conditions and if so,
outputs a recoloring sequence such that S(q) = Q and S(v) is reduced for all v ∈ V (G).

See Figure 7 for an example on how the conditions apply. While proving that realizability
implies the conditions is easy, the proof of the converse spans 2 pages. The idea is that
Lemma 1 gives vertex walk in a consistent way thanks to the first condition, they correspond
to recoloring steps thanks to the second condition, and those can be ordered to give a
recoloring sequence thanks to the third condition. In particular, the proof gives an effective
way to obtain from a realizable Q ∈ π(H) a recoloring sequence in which every vertex walk
is reduced.

M. Wrochna 739

v3
v2

v1

q

α

v3

v2v1

q

β S(q)?

Figure 7 Even though no vertex is frozen, α cannot be reconfigured to β. The red and green
walks are not realizable for α, β, q because of parity. The dark blue walk has good parity, but is not
topologically valid (imagine pulling q along it).

I Corollary 8. Let α, β be two H-colorings of G. Let S = σ0, . . . , σl be a shortest H-recoloring
sequence between σ0 = α and σl = β. Then S(v) is reduced for each vertex v.

Proof. Suppose S(q) is not reduced for some q. Let Q = S(q). By the above theorem we
know from one side that Q is realizable. From the other side we obtain a solution S′ such
that S′(v) = S′(v) for all v and S′(q) = Q. By Lemma 1, this implies S′(v) = S(v), for all
v. But S(v) is always no longer than S(v), and S(q) is strictly shorter than S(q). Since
the number of recoloring steps is equal to half the sum of lengths of all S(v), S was not
shortest. J

8 An algorithm

The following lemma follows from well-known calculations in the fundamental groupoid,
which we recall in the appendix of the full version of the paper.

I Lemma 9. Let α, β be H-colorings of G and q a vertex of G. Consider the set Π ⊆ π(H)
of topologically valid walks for α, β, q. One of the following holds:
0. Π = ∅.
1. Π = {Q} for some Q ∈ π(H).
2. Π = {Rn · P | n ∈ Z} for some R,P ∈ π(H).
3. Π contains all reduced walks from α(q) to β(q).
Furthermore, there is an algorithm working in time O(|E(G)| · |V (G)|+ |E(H)|) that given
G,H,α, β, q outputs which case holds and outputs Q or R,P in cases 1, 2.

Intuitively, the algorithm finds an appropriate set of at most E(G) closed walks in G

and reduce the problem to a system of equations given by Lemma 4 for those closed walks.
Consider a closed walk C and what this walk maps to, up to homotopy. If this is non-trivial,
that is, α(C) 6= ε, then one can show that two topologically valid walks may differ only in the
number of times they wind around α(C) (or the shortest root R such that Rn = α(C)), see
Figure 8. We solve the system of equations to get one solution P , if it exists. If two closed
walks wind around different roots, this implies P is the only solution. If all non-trivial roots
are equal R, then case (2.) of the lemma holds. If all roots are trivial, then case (3.) holds.
Thus the problem reduces to calculating and comparing roots of the chosen closed walks.

The remaining constraints for realizability don’t change the picture much, as stated in
the next theorem.

I Theorem 10. Let α, β be H-colorings of G and q a vertex of G. Consider the set Π′ ⊆ π(H)
of realizable walks for α, β, q. One of the following holds:
0. Π′ = ∅.

STACS 2015

740 Homomorphism Reconfiguration via Homotopy

q

α β R P R−1 · P

Figure 8 There is essentially only one closed walk C from q to q in this example, which winds
around the root R (α(C) = R2). The topologically valid paths are exactly {Rn · P | n ∈ Z} (think
about deforming α by pulling q: one can pull it once or more around the top cycle by rotating all of
α, but this is impossible for the bottom cycle if we are to reach β).

1. Π′ = {Q} for some Q ∈ π(H).
2. Π′ = {Rn · P | n ∈ Z} for some R,P ∈ π(H).
3. Π′ contains all reduced walks of even length from α(q) to β(q).
Furthermore, there is an algorithm working in time O(|E(G)|2 + |E(H)|) that given α, β, q
outputs in polynomial time which case holds and outputs Q or R,P in cases 1, 2.

The algorithm of Theorem 10 simply runs the algorithm of Lemma 9 to handle the
topological condition. To handle the parity condition it discards Q if it has odd length;
replaces P with R · P if both R and P are odd; replaces R with R2 if odd; returns an empty
set if P is odd and R is even. To handle the tight closed walk condition, it searches for
such walks as described before Corollary 6 and restricts the set to the single walk implied by
this corollary, if it applies. To solve H-Recoloring, that is, to decide whether the set of
realizable walks is non-empty, we have to additionally check whether the set of even reduced
walks from α(q) to β(q) in H is empty. It is empty if and only if H is bipartite and α(q), β(q)
are on different sides of a bipartition, which is easily checked in time O(|E(H)|).

I Corollary 11. Let H be a graph (possibly with loops) with the monochromatic neighborhood
property. Then H-Recoloring is in P.

Shortest recoloring sequences can also be found in polynomial time using Theorem 10,
but this requires some more care, mostly in the case we need to find a reduced walk of even
length that will correspond to a shortest solution.

I Theorem 12. Let H be a graph (possibly with loops) with the monochromatic neighborhood
property. Then Shortest H-Recoloring is in P.

9 Conclusions and future work

Our result generalizes the algorithm for K3-Recoloring of [8] and recovers many of its
features in a more general and perhaps more intuitive setting. When limited to H = K3,
we may observe that there is essentially only one possible root R for closed walks in H (a
3-cycle), and all the reduced walks in H with the same endpoints differ only by powers of
R. This can be used to show that either no walk is topologically valid (that is, α, β are not
homotopic), or all are. In the latter case, it suffices to find tight cycles and either there is

M. Wrochna 741

one, immediately implying the vertex walks in the only 3-recoloring sequence; or there is
none, in which case any vertex walk for one vertex can be realized in a solution, as long as it
has even length. In other words, either no walk is realizable, or Q = ε is realizable for some
(frozen) vertex, or for any vertex q, the walk from α(q) to β(q) of length 0 or 2 is realizable.
In particular, we don’t need to find frozen vertices or do any of the calculations in Lemma 9,
it suffices to run |V (G)|+ 1 times the simpler algorithm of Theorem 7.

We note that none of the proofs used any structural properties of H. If we consider
H-recoloring for any graph H, but only allow recoloring a vertex if all of its neighbors have
one common color (in other words, a reconfiguration step is allowed only when the homotopy
class of the mapping doesn’t change), the same results will follow.

An obvious question is how far can our results be extended to more general CSPs – to the
asymmetric case, to multiple constraints, to hypergraphs (relations of arbitrary arity)? Is
there any connection with the tractable cases of generalized SAT problems? Another question
is whether the problems of graph homomorphism reconfiguration exhibit a dichotomy. For
which graphs H is H-Recoloring in P or PSPACE-complete? Some basic reductions
are given in the author’s master thesis [25]. Finally, it could be interesting to explore the
implications of the monochromatic neighborhood property for the whole Hom complex.

Acknowledgments. The author would like to thank Amer E. Mouawad and Naomi Nishimura
for helpful discussions and their hospitality. Many thanks to Jarosław Błasiok for sharing
his knowledge of algebraic topology, in a remarkably concise way.

References

1 Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. On the solution-
space geometry of random constraint satisfaction problems. Random Structures and Al-
gorithms, 38(3):251–268, 2011.

2 Eric Babson and Dmitry N. Kozlov. Complexes of graph homomorphisms. Israel Journal
of Mathematics, 152(1):285–312, 2006.

3 Paul Bonsma and Luis Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theor. Comput. Sci., 410(50):5215–5226,
2009.

4 Paul Bonsma and Amer E. Mouawad. The complexity of bounded length graph recoloring.
arXiv, 1404.0337, 2014.

5 Graham R Brightwell and Peter Winkler. Graph homomorphisms and long range action.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 63:29–48,
2004.

6 Ronald Brown. From groups to groupoids: a brief survey. Bull. London Math. Soc,
19(2):113–134, 1987.

7 Ronald Brown. Topology and groupoids. 2006.
8 Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between 3-

colorings. Journal of Graph Theory, 67(1):69–82, 2011.
9 Anton Dochtermann. Hom complexes and homotopy theory in the category of graphs.

European J. Combin., 30(2):490–509, 2009.
10 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP

and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

STACS 2015

742 Homomorphism Reconfiguration via Homotopy

11 Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadimitriou.
The connectivity of boolean satisfiability: Computational and structural dichotomies.
SIAM Journal on Computing, 38(6):2330–2355, 2009.

12 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science, 343(1-2):72–96, 2005.

13 Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters,
2009.

14 Willem Heijltjes and Robin Houston. No proof nets for MLL with units: Proof equivalence
in MLL is PSPACE-complete. In Proceedings of the CSL-LICS 2014 Joint Meeting, pages
50:1–50:10. ACM, 2014.

15 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48(1):92–110, 1990.

16 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28. Oxford Univer-
sity Press, Oxford, 2004.

17 Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël Paulusma.
Colouring reconfiguration is fixed-parameter tractable. arXiv, 1403.6347, 2014.

18 Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent set
reconfigurability problems. Theoretical Computer Science, 439:9–15, 2012.

19 Jin Ho Kwak and Roman Nedela. Graphs and their coverings. http://www.savbb.sk/
~nedela/graphcov.pdf, 2007.

20 Rahul Mehta. 2048 is (PSPACE) hard, but sometimes easy. arXiv, 1408.6315, 2014.
21 Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman. Shortest

reconfiguration paths in the solution space of boolean formulas. arXiv, 1404.3801, 2014.
22 Jaroslav Nešetril. Homomorphisms of structures (concepts and highlights). Physics and

Theoretical Computer Science: From Numbers and Languages to (Quantum) Cryptography
Security, 7:295, 2007.

23 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC
’78, pages 216–226, New York, NY, USA, 1978. ACM.

24 Konrad W. Schwerdtfeger. A computational trichotomy for connectivity of boolean satis-
fiability. arXiv, 1312.4524, 2013.

25 MarcinWrochna. Homomorphism reconfiguration in general graphs, chapter 4. 2014. Master
thesis, http://mimuw.edu.pl/~mw290715/thesis.pdf.

26 Marcin Wrochna. Reconfiguration in bounded bandwidth and treedepth. arXiv, 1405.0847,
2014.

http://www.savbb.sk/~nedela/graphcov.pdf
http://www.savbb.sk/~nedela/graphcov.pdf
http://mimuw.edu.pl/~mw290715/thesis.pdf

Computing Downward Closures for Stacked
Counter Automata
Georg Zetzsche

AG Concurrency Theory
Fachbereich Informatik
TU Kaiserslautern
zetzsche@cs.uni-kl.de

Abstract
The downward closure of a language L of words is the set of all (not necessarily contiguous)
subwords of members of L. It is well known that the downward closure of any language is
regular. Although the downward closure seems to be a promising abstraction, there are only few
language classes for which an automaton for the downward closure is known to be computable.

It is shown here that for stacked counter automata, the downward closure is computable.
Stacked counter automata are finite automata with a storage mechanism obtained by adding blind
counters and building stacks. Hence, they generalize pushdown and blind counter automata.

The class of languages accepted by these automata are precisely those in the hierarchy ob-
tained from the context-free languages by alternating two closure operators: imposing semilinear
constraints and taking the algebraic extension. The main tool for computing downward closures
is the new concept of Parikh annotations. As a second application of Parikh annotations, it is
shown that the hierarchy above is strict at every level.

1998 ACM Subject Classification F.4.3 Formal languages

Keywords and phrases abstraction, downward closure, obstruction set, computability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.743

1 Introduction

In the analysis of systems whose behavior is given by formal languages, it is a fruitful idea
to consider abstractions: simpler objects that preserve relevant properties of the language
and are amenable to algorithmic examination. A well-known such type of abstraction is the
Parikh image, which counts the number of occurrences of each letter. For a variety of lan-
guage classes, the Parikh image of every language is known to be effectively semilinear, which
facilitates a range of analysis techniques for formal languages (see [12] for applications).

A promising alternative to Parikh images is the downward closure L↓, which consists of
all (not necessarily contiguous) subwords of members of L. Whereas for many interesting
classes of languages the Parikh image is not semilinear in general, the downward closure
is regular for any language [10], suggesting wide applicability. Moreover, the downward
closure encodes properties not visible in the Parikh image: Suppose L describes the behavior
of a system that is observed through a lossy channel, meaning that on the way to the
observer, arbitrary actions can get lost. Then, L↓ is the set of words received by the
observer [9]. Hence, given the downward closure as a finite automaton, we can decide
whether two systems are equivalent under such observations, and even whether the behavior
of one system includes the other. Hence, even if Parikh images are effectively semilinear for a
class of languages, computing the downward closure is still an important task. See [2, 3, 13]
for further applications.

© Georg Zetzsche;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 743–756

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.743
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

744 Computing Downward Closures for Stacked Counter Automata

However, while there always exists a finite automaton for the downward closure, it seems
difficult to compute them and there are few language classes for which computability has been
established. The downward closure is known to be computable for context-free languages
and algebraic extensions [5, 16], 0L-systems and context-free FIFO rewriting systems [1],
and Petri net languages [9]. It is not computable for reachability sets of lossy channel
systems [14] and for Church-Rosser languages [7]. For considerations of complexity, both
descriptional and computational, see [3, 8, 11, 15] and the references therein.

It is shown here that downward closures are computable for stacked counter automata.
These are automata with a finite state control and a storage mechanism obtained by two
constructions (of storage mechanisms): One can build stacks and add blind counters. The
former is to construct a new mechanism that stores a stack whose entries are configurations
of an old mechanism. One can then manipulate the topmost entry, pop it if empty, or start
a new one on top. Adding a blind counter to an old mechanism yields a new mechanism in
which the old one and a blind counter (i.e., a counter that can attain negative values and
has to be zero in the end of a run) can be used simultaneously.

Stacked counter automata are interesting because among a large class of automata with
storage, they are expressively complete for those storage mechanisms that guarantee semi-
linear Parikh images. This is due to the fact that they accept precisely those languages
in the hierarchy obtained from the context-free languages by alternating two closure oper-
ators: imposing semilinear constraints (with respect to the Parikh image) and taking the
algebraic extension. These two closure operators correspond to the constructions of storage
mechanisms in stacked counter automata (see Section 3).

The main tool to show the computability of downward closures is the concept of Parikh
annotations. As another application of this concept, it is shown that the aforementioned
hierarchy is strict at every level.

The paper is structured as follows. After Section 2 defines basic concepts and notation,
Section 3 introduces the hierarchy of language classes. Section 4 presents Parikh annotations,
the main ingredient for the computation of downward closures. The main result is then
presented in Section 5, where it is shown that downward closures are computable for stacked
counter automata. As a second application of Parikh annotations, it is then shown in
Section 6 that the hierarchy defined in Section 3 is strict at every level. Because of space
restrictions, most proofs can only be found in the long version of this work [18].

2 Preliminaries

A monoid is a set M together with a binary associative operation such that M contains a
neutral element. Unless the monoid at hand warrants a different notation, we will denote the
neutral element by 1 and the product of x, y ∈ M by xy. The trivial monoid that contains
only the neutral element is denoted by 1.

If X is an alphabet, X∗ denoted the set of words over X. The empty word is denoted
by ε ∈ X∗. For a symbol x ∈ X and a word w ∈ X∗, let |w|x be the number of occurrences
of x in w and |w| =

∑
x∈X |w|x. For an alphabet X and languages L,K ⊆ X∗, the shuffle

product L K is the set of all words u0v1u1 · · · vnun where u0, . . . , un, v1, . . . , vn ∈ X∗,
u0 · · ·un ∈ L, and v1 · · · vn ∈ K. For a subset Y ⊆ X, we define the projection morphism
πY : X∗ → Y ∗ by πY (y) = y for y ∈ Y and πY (x) = ε for x ∈ X \ Y . By P(S), we denote
the power set of the set S. A substitution is a map σ : X → P(Y ∗) and given L ⊆ X∗, we
write σ(L) for the set of all words v1 · · · vn, where vi ∈ σ(xi), 1 ≤ i ≤ n, for x1 · · ·xn ∈ L
and x1, . . . , xn ∈ X. If σ(x) ⊆ Y for each x ∈ X, we call σ a letter substitution.

G. Zetzsche 745

For words u, v ∈ X∗, we write u � v if u = u1 · · ·un and v = v0u1v1 · · ·unvn for
some u1, . . . , un, v0, . . . , vn ∈ X∗. It is well-known that � is a well-quasi-order on X∗ and
that therefore the downward closure L↓ = {u ∈ X∗ | ∃v ∈ L : u � v} is regular for any
L ⊆ X∗ [10].

If X is an alphabet, X⊕ denotes the set of maps α : X → N. The elements of X⊕ are
called multisets. Let α + β ∈ X⊕ be defined by (α + β)(x) = α(x) + β(x). With this
operation, X⊕ is a monoid. We consider each x ∈ X to be an element of X⊕. For a subset
S ⊆ X⊕, we write S⊕ for the smallest submonoid of X⊕ containting S. For α ∈ X⊕ and
k ∈ N, we define (k · α)(x) = k · α(x), meaning k · α ∈ X⊕. A subset of the form µ + F⊕

for µ ∈ X⊕ and a finite F ⊆ X⊕ is called linear. A finite union of linear sets is called
semilinear. The Parikh map is the map Ψ: X∗ → X⊕ defined by Ψ(w)(x) = |w|x for all
w ∈ X∗ and x ∈ X. Given a morphism ϕ : X⊕ → Y ⊕ and a word w ∈ X∗, we use ϕ(w) as
a shorthand for ϕ(Ψ(w)). We lift Ψ to sets in the usual way: Ψ(L) = {Ψ(w) | w ∈ L}. If
Ψ(L) is semilinear, we will also call L itself semilinear.

Let M be a monoid. An automaton over M is a tuple A = (Q,M,E, q0, F), in which
(i) Q is a finite set of states,
(ii) E is a finite subset of Q×M ×Q called the set of edges,
(iii) q0 ∈ Q is the initial state, and
(iv) F ⊆ Q is the set of final states.
We write (q,m) →A (q′,m′) if there is an edge (q, r, q′) ∈ E such that m′ = mr. The set
generated by A is then S(A) = {m ∈M | (q0, 1)→∗A (f,m) for some f ∈ F}.

A class of languages is a collection of languages that contains at least one non-empty
language. The class of regular languages is denoted by REG. A finite state transducer is an
automaton over Y ∗ × X∗ for alphabets X,Y . Relations of the form S(A) for finite state
transducers A are called rational transductions. For L ⊆ X∗ and T ⊆ Y ∗ × X∗, we write
TL = {u ∈ Y ∗ | ∃v ∈ L : (u, v) ∈ T}. If TF is finite for every finite language F , T is said
to be locally finite. A class C of languages is called a full trio (full semi-trio) if it is closed
under (locally finite) rational transductions, i.e. if TL ∈ C for every L ∈ C and every (locally
finite) rational transduction T . A full semi-AFL is a union closed full trio.

Stacked counter automata In order to define stacked counter automata, we use the con-
cept of valence automata, which combine a finite state control with a storage mechanism
defined by a monoid M . A valence automaton over M is an automaton A over X∗ ×M
for an alphabet X. The language accepted by A is then L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}.
The class of languages accepted by valence automata over M is denoted VA(M). By choos-
ing suitable monoids M , one can obtain various kinds of automata with storage as valence
automata. For example, blind counters, partially blind counters, pushdown storages, and
combinations thereof can all be realized by appropriate monoids [19].

If one storage mechanism is realized by a monoid M , then the mechanism that builds
stacks is realized by the monoid B ∗M . Here, B denotes the bicyclic monoid, presented
by 〈a, ā | aā = 1〉, and ∗ denotes the free product of monoids. For readers not familiar
with these concepts, it will suffice to know that a configuration of the storage mechanism
described by B ∗M consists of a sequence c0ac1 · · · acn, where c0, . . . , cn are configurations
of the mechanism realized by M . We interpret this as a stack with the entries c0, . . . , cn.
One can open a new stack entry on top (by multiplying a ∈ B), remove the topmost entry
if empty (by multiplying ā ∈ B) and operate on the topmost entry using the old mechanism
(by multiplying elements from M). For example, the monoid B describes a partially blind
counter (i.e. a counter that cannot go below zero and is only tested for zero in the end) and

STACS 2015

746 Computing Downward Closures for Stacked Counter Automata

B ∗B describes a pushdown with two stack symbols. Given a storage mechanism realized by
a monoid M , we can add a blind counter by using the monoid M × Z, where Z denotes the
group of integers. We define SC to be the smallest class of monoids with 1 ∈ SC such that
whenever M ∈ SC, we also have M ×Z ∈ SC and B∗M ∈ SC. A stacked counter automaton
is a valence automaton overM for someM ∈ SC. For more details, see [19]. In Section 3, we
will turn to a different description of the languages accepted by stacked counter automata.

3 A hierarchy of language classes

This section introduces a hierarchy of language classes that divides the class of languages
accepted by stacked counter automata into levels. This will allow us to apply recursion with
respect to these levels. The hierarchy is defined by alternating two operators on language
classes, algebraic extensions and semilinear intersections.

Algebraic extensions Let C be a class of languages. A C-grammar is a quadruple G =
(N,T, P, S) where N and T are disjoint alphabets and S ∈ N . The symbols in N and T

are called the nonterminals and the terminals, respectively. P is a finite set of pairs (A,M)
with A ∈ N and M ⊆ (N ∪ T)∗, M ∈ C. A pair (A,M) ∈ P is called a production of G and
also denoted by A→M . The set M is the right-hand side of the production A→M .

We write x⇒G y if x = uAv and y = uwv for some u, v, w ∈ (N ∪ T)∗ and (A,M) ∈ P
with w ∈ M . A word w with S ⇒∗G w is called a sentential form of G and we write SF(G)
for the set of sentential forms of G. The language generated by G is L(G) = SF(G) ∩ T ∗.
Languages generated by C-grammars are called algebraic over C. The class of all languages
that are algebraic over C is called the algebraic extension of C and denoted Alg(C). We say
a language class C is algebraically closed if Alg(C) = C. If C is the class of finite languages,
C-grammars are also called context-free grammars.

We will use the operator Alg(·) to describe the effect of building stacks on the accepted
languages of valence automata. In [19], it was shown that VA(M0 ∗M1) ⊆ Alg(VA(M0) ∪
VA(M1)). Here, we complement this by showing that if one of the factors is B ∗ B, the
inclusion becomes an equality. Observe that since VA(B ∗ B) is the class of languages ac-
cepted by pushdown automata and Alg(REG) = Alg(VA(1)) is clearly the class of languages
generated by context-free grammars, the first statement of the following theorem generalizes
the equivalence between pushdown automata and context-free grammars.

I Theorem 1. For every monoid M , Alg(VA(M)) = VA(B ∗ B ∗M).

Semilinear intersections The second operator on language classes lets us describe the
languages in VA(M × Zn) in terms of those in VA(M). Consider a language class C. By
SLI(C), we denote the class of languages of the form h(L ∩Ψ−1(S)), where L ⊆ X∗ is in C,
the set S ⊆ X⊕ is semilinear, and h : X∗ → Y ∗ is a morphism. We call a language class C
Presburger closed if SLI(C) = C. Proving the following requires only standard techniques.

I Proposition 2. Let M be a monoid. Then SLI(VA(M)) =
⋃

n≥0 VA(M × Zn).

The hierarchy is now obtained by alternating the operators Alg(·) and SLI(·). Let F0 be
the class of finite languages and let

Gi = Alg(Fi), Fi+1 = SLI(Gi) for each i ≥ 0, F =
⋃
i≥0

Fi.

G. Zetzsche 747

Then we clearly have the inclusions F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · . Furthermore, G0 is the
class of context-free languages, F1 is the smallest Presburger closed class containing CF, G1
the algebraic extension of F1, etc. In particular, F is the smallest Presburger closed and
algebraically closed language class containing the context-free languages.

The following proposition is due to the fact that both Alg(·) and SLI(·) preserve (effective)
semilinearity. The former has been shown by van Leeuwen [16].

I Proposition 3. The class F is effectively semilinear.

The work [4] characterized all those storage mechanisms among a large class (namely
among those defined by graph products of the bicyclic monoid and the integers) that guar-
antee semilinear Parikh images. Each of the corresponding language classes was obtained
by alternating the operators Alg(·) and SLI(·), meaning that all these classes are contained
in F. Hence, the following means that stacked counter automata are expressively complete
for these storage mechanisms. It follows directly from Theorem 1 and Proposition 2.

I Theorem 4. Stacked counter automata accept precisely the languages in F.

One might wonder why F0 is not chosen to be the regular languages. While this would
be a natural choice, our recursive algorithm for computing downward closures relies on the
following fact . Note that the regular languages are not Presburger closed.

I Proposition 5. For each i ≥ 0, the class Fi is an effective Presburger closed full semi-trio.
Moreover, for each i ≥ 0, Gi is an effective full semi-AFL.

4 Parikh annotations

This section introduces Parikh annotations, the key tool in our procedure for computing
downward closures. Suppose L is a semilinear language. Then for each w ∈ L, Ψ(w) can
be decomposed into a constant vector and a linear combination of period vectors from the
semilinear representation of Ψ(L). We call such a decomposition a Parikh decomposition.
The main purpose of Parikh annotations is to provide transformations of languages that
make reference to Parikh decompositions without leaving the respective language class. For
example, suppose we want to transform a context-free language L into the language L′ of all
those words w ∈ L whose Parikh decomposition does not contain a specified period vector.
This may not be possible with rational transductions: If L∨ = {anbm | m = n or m = 2n},
then the Parikh image is (a+ b)⊕∪ (a+2b)⊕, but a finite state transducer cannot determine
whether the input word has a Parikh image in (a+ b)⊕ or in (a+ 2b)⊕. Therefore, a Parikh
annotation for L is a language K in the same class with additional symbols that allow a
finite state transducer (that is applied to K) to access the Parikh decomposition.

I Definition 6. Let L ⊆ X∗ be a language and C be a language class. A Parikh annotation
(PA) for L in C is a tuple (K,C, P, (Pc)c∈C , ϕ), where
1. C,P are alphabets such that X,C, P are pairwise disjoint,
2. K ⊆ C(X ∪ P)∗ is in C,
3. ϕ is a morphism ϕ : (C ∪ P)⊕ → X⊕,
4. Pc is a subset Pc ⊆ P for each c ∈ C,
such that
(i) πX(K) = L (the projection property),
(ii) ϕ(πC∪P (w)) = Ψ(πX(w)) for each w ∈ K (the counting property), and
(iii) Ψ(πC∪P (K)) =

⋃
c∈C c+ P⊕c (the commutative projection property).

STACS 2015

748 Computing Downward Closures for Stacked Counter Automata

A Parikh annotation describes for each w in L one or more Parikh decompositions of Ψ(w).
The symbols in C represent constant vectors and symbols in P represent period vectors.
The symbols in Pc ⊆ P correspond to those that can be added to the constant vector
corresponding to c ∈ C. Furthermore, for each x ∈ C ∪P , ϕ(x) is the vector represented by
x. The projection property states that removing the symbols in C∪P from words in K yields
L. The commutative projection property requires that after c ∈ C only symbols representing
periods in Pc are allowed and that all their combinations occur. Finally, the counting
property says that the additional symbols in C ∪P indeed describe a Parikh decomposition
of Ψ(πX(w)). Of course, only semilinear languages can have a Parikh annotations.

I Example 7. Let X = {a, b, c, d} and consider the regular set L = (ab)∗(ca∗ ∪ db∗). For
K = e(pab)∗c(qa)∗ ∪ f(rab)∗d(sb)∗, P = {p, q, r, s}, C = {e, f}, Pe = {p, q}, Pf = {r, s},
and ϕ : (C ∪ P)⊕ → X⊕ with e 7→ c, f 7→ d, p 7→ a + b, q 7→ a, r 7→ a + b, and s 7→ b, the
tuple (K,C, P, (Pg)g∈C , ϕ) is a Parikh annotation for L in REG.

In a Parikh annotation, for each cw ∈ K and µ ∈ P⊕c , we can find a word cw′ in
K such that Ψ(πC∪P (cw′)) = Ψ(πC∪P (cw)) + µ. In particular, this implies the equality
Ψ(πX(cw′)) = Ψ(πX(cw))+ϕ(µ). In our applications, we will need a further guarantee that
provides such words, but with additional information on their structure. Such a guarantee
is granted by Parikh annotations with insertion marker. Suppose � /∈ X and u ∈ (X ∪{�})∗
with u = u0 � u1 · · · � un for u0, . . . , un ∈ X∗. Then we write u �� v if v = u0v1u1 · · · vnun

for some v1, . . . , vn ∈ X∗.

I Definition 8. Let L ⊆ X∗ be a language and C be a language class. A Parikh annotation
with insertion marker (PAIM) for L in C is a tuple (K,C, P, (Pc)c∈C , ϕ, �) such that:
(i) � /∈ X and K ⊆ C(X ∪ P ∪ {�})∗ is in C,
(ii) (πC∪X∪P (K), C, P, (Pc)c∈C , ϕ) is a Parikh annotation for L in C,
(iii) there is a k ∈ N such that every w ∈ K satisfies |w|� ≤ k (boundedness), and
(iv) for each cw ∈ K and µ ∈ P⊕c , there is a w′ ∈ L with πX∪�(cw) �� w′ and with

Ψ(w′) = Ψ(πX(cw)) + ϕ(µ). This property is called the insertion property.
If |C| = 1, then the PAIM is called linear and we also write (K, c, Pc, ϕ, �) for the PAIM,
where C = {c}.

In other words, in a PAIM, each v ∈ L has an annotation cw ∈ K in which a bounded
number of positions is marked such that for each µ ∈ P⊕c , we can find a v′ ∈ L with
Ψ(v′) = Ψ(v) + ϕ(µ) such that v′ is obtained from v by inserting words in corresponding
positions in v. In particular, this guarantees v � v′.

I Example 9. Let L and (K,C, P, (Pc)c∈C , ϕ) be as in Example 7. Furthermore, let K ′ =
e � (pab)∗c � (qa)∗ ∪ f � (rab)∗d � (sb)∗. Then (K ′, C, P, (Pc)c∈C , ϕ, �) is a PAIM for L
in REG. Indeed, every word in K ′ has at most two occurrences of �. Moreover, if ew =
e � (pab)mc � (qa)n ∈ K ′ and µ ∈ P⊕e , µ = k · p + ` · q, then w′ = (ab)k+mca`+n ∈ L

satisfies πX∪�(ew) = �(ab)mc � an �� (ab)k(ab)mca`an = w′ and clearly Ψ(πX(w′)) =
Ψ(πX(ew)) + ϕ(µ) (and similarly for words fw ∈ K ′).

The main result of this section is that there is an algorithm that, given a language L ∈ Fi

or L ∈ Gi, constructs a PAIM for L in Fi or Gi, respectively.

I Theorem 10. Given i ∈ N and L in Fi (Gi), one can construct a PAIM for L in Fi (Gi).

G. Zetzsche 749

Outline of the proof The rest of this section is devoted to the proof of Theorem 10. The
construction of PAIM proceeds recursively with respect to the level of our hierarchy. This
means, we show that if PAIM can be constructed for Fi, then we can compute them for
Gi (Lemma 17) and if they can be constructed for Gi, then they can be computed for Fi+1
(Lemma 18). While the latter can be done with a direct construction, the former requires a
series of involved steps:

The general idea is to use recursion with respect to the number of nonterminals: Given
a Fi-grammar for L ∈ Gi, we present L in terms of languages whose grammars use fewer
nonterminals. This presentation is done via substitutions and by using grammars with
one nonterminal. The idea of presenting a language in Alg(C) using one-nonterminal
grammars and substitutions follows van Leeuwen’s proof of Parikh’s theorem [16].
We construct PAIM for languages generated by one-nonterminal grammars where we are
given PAIM for the right-hand-sides (Lemma 16).
We construct PAIM for languages σ(L), where σ is a substitution, a PAIM is given for L
and for each σ(x) (Lemma 15). This construction is again divided into the case where σ
is a letter substitution (i.e., one in which each symbol is mapped to a set of letters) and
the general case. Since the case of letter substitutions constitutes the conceptually most
involved step, part of its proof is contained in this extended abstract (Proposition 13).

Maybe surprisingly, the most conceptually involved step in the construction of PAIM lies
within obtaining a Parikh annotation for σ(L) in Alg(C), where σ is a letter substitution and
a PAIM for L ⊆ X∗ in Alg(C) is given. This is due to the fact that one has to substitute the
symbols in X consistently with the symbols in C ∪ P ; more precisely, one has to maintain
the agreement between ϕ(πC∪P (·)) and Ψ(πX(·)).

In order to exploit the fact that this agreement exists in the first place, we use the
following simple yet very useful lemma. It states that for a morphism ψ into a group, the
only way a grammar G can guarantee L(G) ⊆ ψ−1(h) is by encoding into each nonterminal A
the value ψ(u) for the words u that A derives. The G-compatible extension of ψ reconstructs
this value for each nonterminal. Let G = (N,T, P, S) be a C-grammar and M be a monoid.
A morphism ψ : (N ∪ T)∗ → M is called G-compatible if u ⇒∗G v implies ψ(u) = ψ(v) for
u, v ∈ (N ∪ T)∗. Moreover, we call G reduced if for each A ∈ N , we have A⇒∗G w for some
w ∈ T ∗ and S ⇒∗G uAv for some u, v ∈ (N ∪ T)∗.

I Lemma 11. Let H be a group, ψ : T ∗ → H be a morphism, and G = (N,T, P, S) be a
reduced C-grammar with L(G) ⊆ ψ−1(h) for some h ∈ H. Then ψ has a unique G-compatible
extension ψ̂ : (N ∪ T)∗ → H. If H = Zn and C = Fi, ψ̂ can be computed.

We will essentially apply Lemma 11 by regarding X⊕ as a subset of Zn and defining ψ : (C∪
P ∪ X)∗ → Zn as the morphism with ψ(w) = Ψ(πX(w)) − ϕ(πC∪P (w)). In the case
that G generates the corresponding Parikh annotation, the counting property implies that
L(G) ⊆ ψ−1(0). The lemma then states that each nonterminal in G encodes the imbalance
between Ψ(πX(·)) and ϕ(πC∪P (·)) on the words it generates.

We continue with the problem of replacing C ∪ P and X consistently. For constructing
the PAIM for σ(L), it is easy to see that it suffices to consider the case where σ(a) = {a, b}
for some a ∈ X and σ(x) = {x} for x ∈ X \ {a}. In order to simplify the setting and exploit
the symmetry of the roles played by C ∪ P and X, we consider a slightly more general
situation. There is an alphabet X = X0] X1, morphisms γi : X∗i → N, i = 0, 1, and a
language L ⊆ X∗, L ∈ Alg(Fi) with γ0(πX0(w)) = γ1(πX1(w)) for every w ∈ L. Roughly
speaking, X1 will later play the role of C ∪ P and X0 will play the role of X. Then, γ0(w)

STACS 2015

750 Computing Downward Closures for Stacked Counter Automata

will be the number of a’s in w and γ1(w) will be the number of a’s represented by symbols
from C ∪ P in w. Therefore, we wish to construct a language L′ in Alg(Fi) such that each
word in L′ is obtained from a word in L as follows. We substitute each occurrence of x ∈ Xi

by one of γi(x)+1 many symbols y in an alphabet Yi, each of which will be assigned a value
0 ≤ ηi(y) ≤ γi(x). Here, we want to guarantee that in every resulting word w ∈ (Y0 ∪ Y1)∗,
we have η0(πY0(w)) = η1(πY1(w)), meaning that the symbols in X0 and in X1 are replaced
consistently. Formally, we have

Yi = {(x, j) | x ∈ Xi, 0 ≤ j ≤ γi(x)}, i = 0, 1, Y = Y0 ∪ Y1, (1)

and the morphisms

hi : Y ∗i −→ X∗i , h : Y ∗ −→ X∗, ηi : Y ∗i −→ N, (2)
(x, j) 7−→ x, (x, j) 7−→ x, (x, j) 7−→ j,

and we want to construct a subset of L̂ = {w ∈ h−1(L) | η0(πY0(w)) = η1(πY1(w))} in
Alg(Fi). Observe that we cannot hope to find L̂ itself in Alg(Fi) in general. Take, for
example, the context-free language E = {anbn | n ≥ 0} and X0 = {a}, X1 = {b}, γ0(a) =
1, γ1(b) = 1. Then the language Ê would not be context-free. However, the language
E′ = {wg(w)R | w ∈ {(a, 0), (a, 1)}∗}, where g is the morphism with (a, j) 7→ (b, j) for
j = 0, 1, is context-free. Although it is only a proper subset of Ê, it is large enough to
satisfy πYi

(E′) = πYi
(Ê) = πYi

(h−1(E)) for i = 0, 1. We will see that in order to construct
Parikh annotations, it suffices to use such under-approximations of L̂.

Derivation trees and matchings In this work, by an X-labeled tree, we mean a finite
ordered unranked tree in which each node carries a label from X ∪ {ε} for an alphabet
X. For each node, there is a linear order on the set of its children. For each node x, we
write c(x) ∈ X∗ for the word obtained by reading the labels of x’s children in this order.
Furthermore, yield(x) ∈ X∗ denotes the word obtained by reading leaf labels below the node
x according to the linear order induced on the leaves. Moreover, if r is the root of t, we also
write yield(t) for yield(r). The height of a tree is the maximal length of a path from the root
to a leaf, i.e. a tree consisting of a single node has height 0. A subtree of a tree t is the tree
consisting of all nodes below some node x of t. If x is a child of t’s root, the subtree is a
direct subtree.

Let G = (N,T, P, S) be a C-grammar. A partial derivation tree (for G) is an (N ∪ T)-
labeled tree t in which
(i) each inner node x has a label A ∈ N and there is some A→ L in P with c(x) ∈ L, and
(ii) no ε-labeled node has a sibling.
If, in addition, the root is labeled S and every leaf is labeled by T ∪ {ε}, it is called a

derivation tree for G.
Let t be a tree whose leaves are X ∪ {ε}-labeled. Let Li denote the set of Xi-labeled

leaves of t. An arrow collection for t is a finite set A together with maps νi : A → Li for
i = 0, 1. Hence, A can be thought of as a set of arrows pointing from X0-labeled leaves to
X1-labeled leaves. We say an arrow a ∈ A is incident to a leaf ` if ν0(a) = ` or ν1(a) = `.
If ` is a leaf, then dA(`) denotes the number of arrows incident to `. More generally, for a
subtree s of t, dA(s) denotes the number of arrows incident to some leaf in s and some leaf
outside of s. A is called a k-matching if
(i) each leaf labeled x ∈ Xi has precisely γi(x) incident arrows, and
(ii) dA(s) ≤ k for every subtree s of t.

G. Zetzsche 751

The following lemma applies Lemma 11. The latter implies that for nodes x of a deriva-
tion tree, the balance γ0(πX0(yield(x)))− γ1(πX1(yield(x))) is bounded. This can be used to
construct k-matchings in a bottom-up manner.

I Lemma 12. Let X = X0] X1 and γi : X∗i → N for i = 0, 1 be a morphism. Let G be
a reduced Fi-grammar with L(G) ⊆ X∗ and γ0(πX0(w)) = γ1(πX1(w)) for every w ∈ L(G).
Then one can compute a bound k such that each derivation tree of G admits a k-matching.

We are now ready to construct the approximations necessary for obtaining PAIM.

I Proposition 13 (Consistent substitution). Let X = X0]X1 and γi : X⊕i → N for i = 0, 1
be a morphism. Let L ∈ Alg(Fi), L ⊆ X∗, be a language with γ0(πX0(w)) = γ1(πX1(w)) for
every w ∈ L. Furthermore, let Yi, hi, ηi for i = 0, 1 and Y, h be defined as in Eq. (1) and
Eq. (2). Moreover, let L be given by a reduced grammar. Then one can construct a language
L′ ∈ Alg(Fi), L′ ⊆ Y ∗, with
(i) L′ ⊆ h−1(L),
(ii) πYi(L′) = πYi(h−1(L)) for i = 0, 1,
(iii) η0(πY0(w)) = η1(πY1(w)) for every w ∈ L′.

Proof. Let G0 = (N,X,P0, S) be a reduced Fi-grammar with L(G0) = L. Let G1 =
(N,Y, P1, S) be the grammar with P1 = {A→ ĥ−1(K) | A→ K ∈ P0}, where ĥ : (N∪Y)∗ →
(N ∪X)∗ is the extension of h that fixes N . With L1 = L(G1), we have L1 = h−1(L).

According to Lemma 12, we can find a k ∈ N such that every derivation tree of G0 admits
a k-matching. With this, let F = {z ∈ Z | |z| ≤ k}, N2 = N × F , and η be the morphism
η : (N2 ∪ Y)∗ → Z with (A, z) 7→ z for (A, z) ∈ N2, and y 7→ η0(πY0(y)) − η1(πY1(y)) for
y ∈ Y . Moreover, let g : (N2 ∪ Y)∗ → (N ∪ Y)∗ be the morphism with g((A, z)) = A

for (A, z) ∈ N2 and g(y) = y for y ∈ Y . This allows us to define the set of productions
P2 = {(A, z)→ g−1(L)∩η−1(z) | A→ K ∈ P1}. Note that since Fi is an effective Presburger
closed full semi-trio, we have effectively g−1(K)∩ η−1(z) ∈ Fi for K ∈ Fi. Finally, let G2 be
the grammar G2 = (N2, Y, P2, (S, 0)). We claim that L′ = L(G2) has the desired properties.
Since L′ ⊆ L1 = h−1(L), Item 1 is satisfied. Furthermore, the construction guarantees that
for a production (A, z) → w in G2, we have η(w) = z. In particular, every w ∈ Y ∗ with
(S, 0)⇒∗G2

w exhibits η0(πY0(w))− η1(πY1(w)) = η(w) = 0. Thus, we have shown Item 3.
Note that the inclusion “⊆” of Item 2 follows from Item 1. In order to prove “⊇”, we

shall use k-matchings in G0 to construct derivations in G2. See Fig. 1 for an example of
the following construction of derivation trees. Let w ∈ h−1(L) = L(G1) and consider a
derivation tree t for w in G1. Let t̄ be the (N ∪X)-tree obtained from t by replacing each
leaf label y ∈ Y by h(y). Then t̄ is a derivation tree of G0 and admits a k-matching Ā.
Since t̄ and t are isomorphic up to labels, we can obtain a corresponding arrow collection A
in t (see Fig. 1a).

Let Li denote the set of Yi-labeled leaves of t for i = 0, 1. Now fix i ∈ {0, 1}. We choose
a subset A′ ⊆ A as follows. Since Ā is a k-matching, each leaf ` ∈ Li of t has precisely
γi(h(λ(`))) ≥ ηi(λ(`)) incident arrows in A. For each such ` ∈ Li, we include some arbitrary
choice of ηi(λ(`)) arrows in A′ (see Fig. 1b). The tree t′ is obtained from t by changing
the label of each leaf ` ∈ L1−i from (x, j) to (x, j′), where j′ is the number of arrows in A′
incident to ` (see Fig. 1c). Note that since we only change labels of leaves in L1−i, we have
πYi

(yield(t′)) = πYi
(yield(t)) = πYi

(w).
For every subtree s of t′, we define β(s) = η0(πY0(yield(s))) − η1(πY1(yield(s))). By

construction of A′, each leaf ` ∈ Lj has precisely ηj(λ(`)) incident arrows in A′ for j = 0, 1.

STACS 2015

752 Computing Downward Closures for Stacked Counter Automata

S

(a, 0) S

(a, 0) S

(a, 1) S

ε

(b, 0)

(b, 1)

(b, 0)

(a) t; arrows in A

S

(a, 0) S

(a, 0) S

(a, 1) S

ε

(b, 0)

(b, 1)

(b, 0)

(b) t; i = 1; dashed
arrow is the one in
A′

S

(a, 0) S

(a, 1) S

(a, 0) S

ε

(b, 0)

(b, 1)

(b, 0)

(c) t′

(S, 0)

(a, 0) (S, 0)

(a, 1) (S, 0)

(a, 0) (S, 0)

ε

(b, 0)

(b, 1)

(b, 0)

(d) t′′

Figure 1 Derivation trees in the proof of Proposition 13 for the context-free grammar G with
productions S → aSb, S → ε and X0 = {a}, X1 = {b}, γ0(a) = γ1(b) = 1.

Therefore,

β(s) =
∑

`∈L0∩s

dA′(`)−
∑

`∈L1∩s

dA′(`). (3)

The absolute value of the right hand side of this equation is at most dA′(s) and hence

|η0(πY0(yield(s)))− η1(πY1(yield(s)))| = |β(s)| ≤ dA′(s) ≤ dA(s) ≤ k (4)

since Ā is a k-matching. In the case s = t′, Eq. (3) also tells us that

η0(πY0(yield(t′)))− η1(πY1(yield(t′))) =
∑
`∈L0

dA′(`)−
∑
`∈L1

dA′(`) = 0. (5)

Let t′′ be the tree obtained from t′ as follows: For each N -labeled node x of t′, we replace
the label B of x with (B, β(s)), where s is the subtree below x (see Fig. 1d). By Eq. (4),
this is a symbol in N2. The root node of t′′ has label (S, 0) by Eq. (5). Furthermore, it
follows by an induction on the height of subtrees that if (B, z) is the label of a node x,
then z = η(c(x)). Hence, the tree t′′ is a derivation tree of G2. This means πYi

(w) =
πYi

(yield(t′)) = πYi
(yield(t′′)) ∈ L(G2) = L′, completing the proof of Item 2. J

Proposition 13 now allows us to construct PAIM for languages σ(L), where σ is a letter
substitution. The essential idea is to use a PAIM (K,C, P, (Pc)c∈C , ϕ, �) for L and then
apply Proposition 13 to K with X0 = Z ∪ {�} and X1 = C ∪ P . One can clearly assume
that a single letter a from Z is replaced by {a, b} ⊆ Z ′. We can therefore choose γ0(w) to
be the number of a’s in w and γ1(w) to be the number of a’s represented by symbols from
C ∪ P in w. Then the counting property of K entails γ0(w) = γ1(w) for w ∈ K and thus
applicability of Proposition 13. Item 2 then yields the projection property for i = 0 and the
commutative projection property for i = 1 and Item 3 yields the counting property for the
new PAIM.

I Lemma 14 (Letter substitution). Let σ : Z → P(Z ′) be a letter substitution. Given i ∈ N
and a PAIM for L ∈ Gi in Gi, one can construct a PAIM in Gi for σ(L).

G. Zetzsche 753

The basic idea for the case of general substitutions is to replace each x by a PAIM for
σ(x). Here, Lemma 14 allows us to assume that the PAIM for each σ(x) is linear. However,
we have to make sure that the number of occurrences of � remains bounded.

I Lemma 15 (Substitutions). Let L ⊆ X∗ in Gi and σ be a Gi-substitution. Given a PAIM
in Gi for L and for each σ(x), x ∈ X, one can construct a PAIM for σ(L) in Gi.

The next step is to construct PAIM for languages L(G), where G has just one nonterminal
S and PAIM are given for the right-hand-sides. Here, it suffices to obtain a PAIM for SF(G)
in the case that S occurs in every word on the right hand side: Then L(G) can be obtained
from SF(G) using a substitution. Applying S → R then means that for some w ∈ R, Ψ(w)−S
is added to the Parikh image of the sentential form. Therefore, computing a PAIM for SF(G)
is akin to computing a semilinear representation for S⊕, where S is semilinear.

I Lemma 16 (One nonterminal). Let G be a Gi-grammar with one nonterminal. Further-
more, suppose PAIM in Gi are given for the right-hand-sides in G. Then we can construct
a PAIM for L(G) in Gi.

Using Lemmas 15 and 16, we can now construct PAIM recursively with respect to the
number of nonterminals in G.

I Lemma 17 (PAIM for algebraic extensions). Given i ∈ N and an Fi-grammar G, along
with a PAIM in Fi for each right hand side, one can construct a PAIM for L(G) in Gi.

The last step is to compute PAIM for languages in SLI(Gi). Then, Theorem 10 follows.

I Lemma 18 (PAIM for semilinear intersections). Given i ∈ N, a language L ⊆ X∗ in Gi, a
semilinear set S ⊆ X⊕, and a morphism h : X∗ → Y ∗, along with a PAIM in Gi for L, one
can construct a PAIM for h(L ∩Ψ−1(S)) in SLI(Gi).

5 Computing downward closures

The procedure for computing downward closures works recursively with respect to the hier-
archy F0 ⊆ G0 ⊆ · · · . For languages in Gi = Alg(Fi), we use an idea by van Leeuwen [17],
who proved that downward closures are computable for Alg(C) if and only if this is the case
for C. This means we can compute downward closures for Gi if we can compute them for Fi.
For the latter, we use Lemma 19, which is based on the following idea. Using a PAIM for
L in Gi, one constructs a language L′ ⊇ L ∩Ψ−1(S) in which every word admits insertions
that yield a word in L ∩Ψ−1(S), meaning that L′↓ = (L ∩Ψ−1(S))↓. Here, L′ is obtained
from the PAIM using a rational transduction, which implies L′ ∈ Gi.

I Lemma 19. Given i ∈ N, a language L ⊆ X∗ in Gi, and a semilinear set S ⊆ X⊕, one
can compute a language L′ ∈ Gi with L′↓ = (L ∩Ψ−1(S))↓.

Proof. We call α ∈ X⊕ a submultiset of β ∈ X⊕ if α(x) ≤ β(x) for each x ∈ X. In analogy
with words, we write T↓ for the set of all submultisets of elements of T for T ⊆ X⊕. We
use Theorem 10 to construct a PAIM (K,C, P, (Pc)c∈C , ϕ, �) for L in Gi. For each c ∈ C,
consider the set Sc = {µ ∈ P⊕c | ϕ(c+ µ) ∈ S}. Since ≤ is a well-quasi-ordering on X⊕ [6],
membership in Sc↓ can be characterized by a finite set of forbidden submultisets, which is
Presburger definable and thus computable. Therefore, the language Ψ−1(Sc↓) is effectively
regular. Hence, the language

L′ = {πX(cv) | c ∈ C, cv ∈ K, πPc
(v) ∈ Ψ−1(Sc↓)}.

STACS 2015

754 Computing Downward Closures for Stacked Counter Automata

effectively belongs to Gi, since Gi is an effective full semi-AFL. We claim that L∩Ψ−1(S) ⊆
L′ ⊆ (L ∩Ψ−1(S))↓. The latter clearly implies L′↓ = (L ∩Ψ−1(S))↓.

The counting property of the PAIM entails the inclusion L ∩ Ψ−1(S) ⊆ L′. In order to
show L′ ⊆ (L ∩ Ψ−1(S))↓, suppose w ∈ L′. Then there is a cv ∈ K with w = πX(cv) and
πPc

(v) ∈ Ψ−1(Sc↓). This means there is a ν ∈ P⊕c with Ψ(πPc
(v)) + ν ∈ Sc. The insertion

property of (K,C, P, (Pc)c∈C , ϕ, �) allows us to find a word v′ ∈ L such that

Ψ(v′) = Ψ(πX(cv)) + ϕ(ν), πX∪{�}(cv) �� v′. (6)

By definition of Sc, the first part of Eq. (6) implies that Ψ(v′) ∈ S. The second part of
Eq. (6) means in particular that w = πX(cv) � v′. Thus, we have w � v′ ∈ L∩Ψ−1(S). J

I Theorem 20. Given a language L in F, one can compute a finite automaton for L↓.

Proof. We perform the computation recursively with respect to the level of the hierarchy.

If L ∈ F0, then L is finite and we can clearly compute L↓.
If L ∈ Fi with i ≥ 1, then L = h(L′ ∩ Ψ−1(S)) for some L′ ⊆ X∗ in Gi−1, a semilinear
set S ⊆ X⊕, and a morphism h. Since h(M)↓ = h(M↓)↓ for any M ⊆ X∗, it suffices
to describe how to compute (L′ ∩Ψ−1(S))↓. Using Lemma 19, we construct a language
L′′ ∈ Gi−1 with L′′↓ = (L′ ∩Ψ−1(S))↓ and then recursively compute L′′↓.
If L ∈ Gi, then L is given by an Fi-grammar G. Using recursion, we compute the
downward closure of each right-hand-side of G. We obtain a new REG-grammar G′ by
replacing each right-hand-side in G with its downward closure. Then L(G′)↓ = L↓. Since
we can construct a context-free grammar for L(G′), we can compute L(G′)↓ using the
available algorithms by van Leeuwen [16] or Courcelle [5].

J

6 Strictness of the hierarchy

In this section, we present another application of Parikh annotations. Using PAIM, one can
show that the inclusions F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · in the hierarchy are, in fact, all strict. It
is of course easy to see that F0 (G0 (F1, since F0 contains only finite sets and F1 contains,
for example, {anbncn | n ≥ 0}. In order to prove strictness at higher levels, we present two
transformations: The first turns a language from Fi\Gi−1 into one in Gi\Fi (Proposition 21)
and the second turns one from Gi \ Fi into one in Fi+1 \ Gi (Proposition 25).

The essential idea of the next proposition is as follows. For the sake of simplicity, assume
(L#)∗ = L′∩Ψ−1(S) for L′ ∈ C, L′ ⊆ (X∪{#})∗. Consider a PAIM (K ′, C, P, (Pc)c∈C , ϕ, �)
for L′ in C. Similar to Lemma 19, we obtain from K ′ a language L̂ ⊆ (X ∪ {#, �})∗ in C
such that every member of L̂ admits an insertion at � that yields a word from (L#)∗ =
L′∩Ψ−1(S). Using a rational transduction, we can then pick all words that appear between
two # in some member of L̂ and contain no �. Since there is a bound on the number of � in
K ′ (and hence in L̂), every word from L has to occur in this way. On the other hand, since
inserting at � yields a word in (L#)∗, every such word without � must be in L.

I Proposition 21. Let C be a full trio such that every language in C has a PAIM in C.
Moreover, let X be an alphabet with # /∈ X. If (L#)∗ ∈ SLI(C) for L ⊆ X∗, then L ∈ C.

Using induction on the structure of a rational expression, it is not hard to show that
we can construct PAIM for regular languages. This means Propositions 2 and 21 imply the
following, which might be of independent interest.

G. Zetzsche 755

I Corollary 22. Let L ⊆ X∗, # /∈ X, and (L#)∗ ∈ VA(Zn). Then L is regular.

In order to prove Proposition 25, we need a new concept. A bursting grammar is one
in which essentially (meaning: aside from a subsequent replacement by terminal words of
bounded length) the whole word is generated in a single application of a production.

I Definition 23. Let C be a language class and k ∈ N. A C-grammar G is called k-bursting
if for every derivation tree t for G and every node x of t we have: |yield(x)| > k implies
yield(x) = yield(t). A grammar is said to be bursting if it is k-bursting for some k ∈ N.

I Lemma 24. If C is a union closed full semi-trio and G a bursting C-grammar, then
L(G) ∈ C.

The essential idea for Proposition 25 is the following. We construct a C-grammar G′
for L by removing from a C-grammar G for M = (L {anbncn | n ≥ 0}) ∩ a∗(bX)∗c∗ all
terminals a, b, c. Using Lemma 11, one can then show that G′ is bursting.

I Proposition 25. Let C be a union closed full semi-trio and let a, b, c /∈ X and L ⊆ X∗. If
L {anbncn | n ≥ 0} ∈ Alg(C), then L ∈ C.

I Theorem 26. For i ∈ N, define the alphabets X0 = ∅, Yi = Xi ∪ {#i}, Xi+1 = Yi ∪
{ai+1, bi+1, ci+1}. Moreover, define Ui ⊆ X∗i and Vi ⊆ Y ∗i as U0 = {ε}, Vi = (Ui#i)∗, and
Ui+1 = Vi {an

i+1b
n
i+1c

n
i+1 | n ≥ 0} for i ≥ 0. Then Vi ∈ Gi \ Fi and Ui+1 ∈ Fi+1 \ Gi.

References
1 Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. Effective lossy queue languages.

In Proc. of ICALP 2001, volume 2076 of LNCS, pages 639–651. Springer, 2001.
2 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for

concurrent programs with dynamic creation of threads. In Proc. of TACAS 2009, volume
5505 of LNCS, pages 107–123. Springer, 2009.

3 Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the
sub- and superword closure of cfls: Descriptional and computational complexity, 2015. To
appear in: Proceedings of LATA 2015.

4 P. Buckheister and Georg Zetzsche. Semilinearity and context-freeness of languages ac-
cepted by valence automata. In Proc. of MFCS 2013, volume 8087 of LNCS, pages 231–242.
Springer, 2013.

5 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178–186, 1991.

6 Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. American Journal of Mathematics, 35(4):413–422, 1913.

7 Hermann Gruber, Markus Holzer, and Martin Kutrib. The size of Higman-Haines sets.
Theoretical Computer Science, 387(2):167–176, 2007.

8 Hermann Gruber, Markus Holzer, and Martin Kutrib. More on the size of higman-haines
sets: effective constructions. Fundamenta Informaticae, 91(1):105–121, 2009.

9 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net
languages. In Proc. of ICALP 2010, volume 6199 of LNCS, pages 466–477. Springer, 2010.

10 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society. Third Series, 2:326–336, 1952.

11 Prateek Karandikar and Philippe Schnoebelen. On the state complexity of closures and
interiors of regular languages with subwords. In Proc. of DCFS 2014, volume 8614 of LNCS,
pages 234–245. Springer, 2014.

STACS 2015

756 Computing Downward Closures for Stacked Counter Automata

12 Eryk Kopczynski and Anthony Widjaja To. Parikh images of grammars: Complexity and
applications. In Proc. of LICS 2010, pages 80–89. IEEE, 2010.

13 Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-theoretic
abstraction refinement. In Proc. of FASE 2012, volume 7212 of LNCS, pages 362–376.
Springer, 2012.

14 Richard Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297(1-3):337–354, 2003.

15 Alexander Okhotin. On the state complexity of scattered substrings and superstrings.
Fundamenta Informaticae, 99(3):325–338, 2010.

16 Jan van Leeuwen. A generalisation of Parikh’s theorem in formal language theory. In Proc.
of ICALP 1974, volume 14 of LNCS, pages 17–26. Springer, 1974.

17 Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978.

18 Georg Zetzsche. Computing downward closures for stacked counter automata.
19 Georg Zetzsche. Silent transitions in automata with storage. In Proc. of ICALP 2013,

volume 7966 of LNCS, pages 434–445. Springer, 2013.

	p000-00-frontmatter
	Foreword
	Conference Organization
	External Reviewers

	p001-01-Arora
	p002-02-Bodirsky
	The Constraint Satisfaction Problem
	The Universal-Algebraic Approach
	The Finite Domain Tractability Conjecture
	Infinite Domains
	A general tractability conjecture
	Ramsey Theory

	p010-03-Sanders
	Introduction
	Examples from our Work
	Sorting
	Data Structures
	Graph Algorithms
	Linear Algebra

	Selected Open Problems

	p019-04-Brandt
	p020-05-Goldberg
	p021-06-Allender
	Introduction
	Our results
	Related work
	Our techniques

	Definitions
	Succinct Problems
	Constant-Depth Reductions

	Main Results
	Conditional collapses and separations of complexity classes
	Impossibility of uniform AC0 reductions
	Gap MCSP

	Generalizations
	Discussion

	p034-07-Amiri
	Introduction
	Preliminaries
	Graph Searching Games
	Decompositions and Widths
	Known Relations between Cop Numbers and Widths

	The Complexity of DAG-width and the DAG-width Game
	Comparing Width Measures with Respect to Generality
	Kelly-width is Bounded in DAG-width

	p048-08-Austrin
	Introduction
	Methodology and Contributions
	Related Work

	Preliminaries
	The Algorithm
	Preprocessing and Parameters of the Input
	The Hash Functions
	The Search Subroutine
	Completing the Proof of Theorem 1

	Analysis of the Hash Function
	Size of the Image Under Bounded Collisions
	Bounded Collisions Happen with High Probability
	Combining the Two Parts

	The Search Subroutine
	Subroutine for Bottom-Level Nodes
	Subroutine for Mid-Level Nodes
	The Root-Level Node

	p062-09-Avanzini
	Introduction
	Related Work

	The Need for Sharing and Memoisation
	Preliminaries
	Memoization and Sharing, Formally
	GRSR is Sound for Polynomial Time
	Conclusion

	p076-10-Beyersdorff
	Introduction
	Preliminaries
	A lower bound in IR-calc for the formulas of Kleine Büning et al.
	Lower bounds for Q-Res and QU-Res via strategy extraction
	Extending the lower bound to LD-Q-Res and LQU+- Res
	Strategy extraction as a general lower bound technique
	Conclusion

	p090-11-Bhattacharya
	Introduction
	Our Results

	Notations and Preliminaries
	An O(n)-Approximation for Concave Externalities
	An O(logm)-Approximation for Linear Externalities
	Constant Approximation for Step Function Externalities

	p103-12-Boros
	Introduction
	Basic concepts
	Markov decision proccesses
	Strategies
	Effective payoffs
	Stochastic games with perfect information: The BWR model

	Main results
	Applications of the total payoff
	Total payoff MDPs/games with a terminating condition
	The shortest path interdiction problem (SPIP)
	Scheduling with and/or precedence constraints

	Characterization of pure stationary optima in total MDPs
	Potential transformation
	Characterization of pure and stationary optima

	LP formulation
	General MDPs
	Two-player zero-sum games with perfect information (BWR-games)
	Discounted BWR-games
	Existence of a saddle point in positional strategies

	p116-13-Boyar
	Introduction
	Asymmetric String Guessing
	Advice Complexity of ASG
	Advice Complexity of minASG
	Advice Complexity of maxASG

	The Complexity Class AOC
	Applications
	Conclusion and Open Problems

	p130-14-Brattka
	Introduction
	The Weihrauch Lattice
	Las Vegas Computability
	Weak Weak König's Lemma
	Dependence on the Probability
	Algorithmic Randomness
	Nash Equilibria
	Conclusions

	p143-15-Brault-Baron
	Introduction
	Preliminaries and notation
	Weighted counting for constraint satisfaction with default values
	Graphs and hypergraphs associated to CNF-formulas
	Relation to #SAT
	-acyclicity of hypergraphs
	Width measures of graphs and CNF-Formulas

	The algorithm
	The special case of nested constraints
	The general case

	Relation to the STV-framework
	Conclusion

	p157-16-Bringmann
	Introduction
	Our Contributions
	Related Work

	Easy and Known Results
	Tractability for Edge Deletion and Parameter k + t
	Steiner Multicuts for Graphs of Bounded Treewidth
	Hardness for Cutsize k and Number of Terminal Sets t
	Steiner Multicuts in Trees
	Discussion

	p171-17-Brunsch
	Introduction
	Related Work
	Our Contribution
	Outline and Notation

	Algorithm
	The Shadow Vertex Method
	Running Time of the Repeated Shadow Vertex Algorithm

	Analysis of the Shadow Vertex Algorithm
	Conclusions

	p184-18-Bus
	Introduction
	Analysis of Quality for Local Search
	An Algorithm for (3, 2) Local Search

	p197-19-Cardinal
	Introduction
	Notation
	Biarc Diagrams
	Simultaneous Flip Distance to 4-connectivity
	Flip Distance to Hamiltonicity

	p211-20-Castro
	Introduction
	Preliminaries
	A Probabilistic -Calculus
	Expressing the -Calculus
	Expressing pctl

	Game Semantics
	Parity Obligation Games
	Model Checking Game

	Hardness of Model Checking
	Two-player Stochastic Reachability Games
	Encoding Games as Model Checking

	-pctl
	Related Work
	Final Remarks

	p224-21-Chattopadhyay
	Introduction
	Overview & Comparison with Previous Work
	Preliminaries
	Lower Bound for Tribesm,n in Message Passing Model
	Direct Sum
	Lower Bounding Disj2

	Putting Everything Together

	p238-22-Chimani
	Introduction
	Network Design with Bounded Pairwise Distance
	Thin Pairs
	Path-based LP
	Randomized LP Rounding

	Thick Pairs and Overall Algorithm

	Directed Shallow-Light Steiner Trees
	Algorithm
	Analysis

	Conclusions: Light-Weight Directed Spanners

	p249-23-Colcombet
	Introduction
	Combinatorial expressions and normal form
	Combinatorial expressions
	Normal form and definability

	Window-definability and indefinability
	Selection functions
	Application in metafinite logics
	Conclusion

	p262-24-Delacourt
	Introduction
	Definitions
	Cellular automata on two dimensions
	Probability measures
	Compatibility

	Main theorem
	Construction
	Overview
	Colonisation of the space
	Growing squares
	Comparison

	Working in the clean surface
	Claiming its territory
	Choosing its destiny
	Shape of organisms
	Computing
	Copying

	Proof of the main theorem

	p275-25-Dinur
	Introduction
	Derandomized graph products
	Derandomized ``majority is stablest'' result
	Application to graph coloring

	Preliminaries
	Low degree polynomials
	Fourier analysis of functions on subspace of low degree polynomials

	Derandomized Product K3
	Proof of Theorem 1.2

	Derandomized Majority is Stablest
	Proof of Lemma 4.8

	p288-26-Elmasry
	Introduction
	New Results

	Preliminaries
	Depth-First Search
	A Simple DFS Algorithm
	Depth-First Search in Linear Time
	An Upper-Bound Time-Space Tradeoff for DFS

	Reverse DFS with Applications
	Computing Connected Components and Breadth-First Search
	Priority Queues with a Deletion Budget and Their Applications
	Computing Minimum Spanning Forests
	The Single-Source Shortest-Paths Problem

	p302-27-Fernau
	Introduction
	Basic Definitions
	Summary of Our Results
	Algorithmic Results
	The Hardness of Factorising a Word into Distinct Factors

	p316-28-Fukunaga
	Introduction
	Generalized Terminal Backup Problem
	Minimum Cost Multiflow Problem
	Structure of This Paper

	Preliminaries
	Structure of Extreme Point Solutions
	Half-Integrality
	Path decompositions of extreme point solutions

	LP-rounding 4/3-Approximation Algorithm for Terminal Backup Problem
	Conclusion

	p329-29-Galby
	Introduction
	Preliminaries
	Algebraic Numbers and Baker's Theorem
	Matrix Powers and Linear Recurrence Sequences
	Approximation Algorithms for Transcendental Functions

	The Two-Dimensional Matrix Powering Positivity Problem
	The Three-Dimensional Matrix Powering Positivity Problem
	Concluding Remarks

	p341-30-Gaertner
	Introduction
	Preliminaries
	Recognizing USOs
	Long Cycles in USO
	Recognizing Acyclic USOs

	p354-31-Giannopoulou
	Introduction
	Tolerance and Multitolerance Graphs
	The New Geometric Representations
	Dominating Set is APX-hard on Multitolerance Graphs
	Bounded Dominating Set on Tolerance Graphs
	Notation and Terminology
	The Algorithm

	Restricted Bounded Dominating Set on Tolerance Graphs
	Dominating Set on Tolerance Graphs
	Independent Dominating Set on Multitolerance Graphs

	p367-32-Grandjean
	Introduction
	Definitions
	Cellular Automata
	Language Recognition
	Tools
	Space-Time Diagram
	Layers

	Markers
	Exact and Fuzzy Marking
	Universal Markers
	Construction of M

	Central Compression
	General Description
	Properties

	The Power of Space
	Consequences

	p379-33-Grigoriev
	Introduction
	Preliminaries
	Min-plus algebra

	Tropical and Min-plus Dual Nullstellensatz
	Primary Tropical and Min-Plus Nullstellensatz
	Linear Duality
	Tropical vs. Min-plus

	p392-34-Hazla
	Introduction
	A Simple Proof of a Chernoff Bound
	Growth Boundedness
	Growth boundedness without repetition
	Connection of IK10 and JOR02

	Random Walks on Expanders
	Polynomial Concentration
	An application in HS12
	Other applications

	Counting Subgraphs in Random Graphs

	p406-35-Hed
	Introduction
	Definitions and Notation
	Pseudoflow Framework
	Raise Potentials

	Cycle Canceling Framework
	Chain Elimination

	Special Case Improvements and Generalizations
	The Single Source Shortest Path Problem
	Imperfect Assignment Problem
	Weighted Bipartite Matching
	Minimum Cost Flow with Unit Vertex Capacities

	p420-36-Hoelzl
	Introduction
	Angluin's Condition
	Learnability of Weakly Represented Families
	Uniformly Represented Families
	Sufficient Criteria
	Partial Learning

	p434-37-Holm
	Introduction
	Dynamic Decision Support Systems
	Previous work

	Maintaining a dynamic embedding
	Corners and the extended Euler tour
	Marking scheme
	Linkable query
	Updates

	One-flip linkable query
	Finding one face
	Finding the other face
	Finding an articulation-flip
	Finding a separation-flip

	Finding the separation pair and corners

	p447-38-Hoyrup
	Introduction
	Background
	Notations and basic definitions.
	Effective topological spaces.
	Type-2-computability and Markov-computability

	Main results
	K-computability
	Equivalence between Markov-computability and K-computability

	Structure of Markov-semidecidable sets
	When Markov beats Kolmogorov
	Relativization
	Functions to non-effective topological spaces

	Future work

	p460-39-Huang
	Introduction
	Our Results and Techniques
	Related Work

	Preliminaries
	The Complexity of DMR
	The AND Problem
	The DISJ Problem
	Proof of the Main Theorem
	Tightness of the Lower Bound

	Concluding Remarks

	p474-40-Im
	Introduction
	Our Results and Contributions
	Other Related Work

	Lower Bound for SEPT
	Intuitive Overview of the Design and Analysis of the Algorithm LS
	Algorithm LS
	Analysis
	Proof of the Simplifying Assumption (Lemma 2)

	LP-based Algorithm with Machine Augmentation
	Concentration Inequalities

	p487-41-Jansson
	Introduction
	Definitions and notation
	Previous work

	Preliminaries
	New algorithm for k input trees
	New algorithm for two input trees
	Outline of the algorithm
	Auxiliary data structure for orthogonal range counting on a grid
	Time complexity

	p500-42-Kanj
	Introduction
	Preliminaries
	Structural results
	The algorithm
	Overview of the algorithm
	The nondeterministic actions of the algorithm
	The sequence of actions on a component of DF
	Putting all together: the whole algorithm

	Concluding remarks

	p513-43-Kavitha
	Introduction
	Background and Related Results
	Techniques

	Preliminaries
	Pairwise Spanners
	Sourcewise spanners
	ST-spanners: A trade-off result

	p527-44-Kayal
	Introduction
	Motivation and our result

	The measure - evaluation dimension
	An explicit polynomial with high evaluation dimension
	Proof outline
	Evaluation dimension of a term of a multi-k-ic depth-3 circuit
	Evaluation dimension of P(3)
	Evaluation dimension of P(2)
	Some more notations and bounds
	Splitting Q(j) further
	Computing evaluation dimension of

	Evaluation dimension of a term

	Proof of Theorem 2
	Discussion

	p540-45-Klavik
	Introduction
	Automorphism Groups of Interval Graphs
	Automorphism Groups of Circle Graphs
	Automorphism Groups Acting on Intersection Representations
	Algorithms for Computing Automorphism Groups
	Open Problems

	p554-46-Klein
	Introduction
	Correlation Clustering
	Two-edge-connected Augmentation

	Techniques and Notations
	Theorem 2 Implies Theorem 1
	Reduction to Instance with a Connected Skeleton
	Techniques for Proving the Augmentation Theorem
	New Use of Brick Decomposition
	Outline of Algorithm Augment-Connected

	Structure Theorem
	Mortar Graph and Brick Decomposition
	Doubling Brick Boundaries
	Theorem Statement
	Proof Sketch

	Dynamic Programming
	Sphere-Cut Decomposition
	Specification of DP Table
	Hole Region between Parent and Children
	Implementation of DP Table

	p568-47-Kolliopoulos
	Introduction
	Our contribution

	Preliminaries
	The expressive power of product relaxations
	A method for lower bounding the size of LPs with known sections
	Lower bounds for approximate mixed product relaxations for Cfl
	Proof sketch for Lemma 11
	Discussion

	p582-48-Kosolobov
	Introduction
	Preliminaries
	A Lower Bound on Algorithms Computing the Lempel-Ziv Decomposition
	Runs
	Linear Decision Tree Algorithm Finding All Runs
	Conclusion

	p594-49-Krebs
	Introduction
	Preliminaries
	Properties of Visibly Counter Languages
	Decomposition of the Automaton
	Height Computation
	The Regular Part

	Results
	Discussion

	p608-50-Lacki
	Introduction
	Prior work
	Our results
	Organization of the paper

	Preliminaries
	O(n logn) Time Algorithm
	O(n loglogn) Time Algorithm
	O(n logloglogn) Time Algorithm
	O(n) Time Algorithm
	Conclusion and Open Problems

	p622-51-Li
	Introduction
	Our results
	Testers in adjacency list model
	Tester in rotation map model
	Graph transformation

	Other related work
	Organization of the paper

	Preliminaries
	Lazy random walks
	Spectral characterization of expansion profile
	A local algorithm for finding small sparse sets

	Non-uniform replacement product
	Testers for small set expansion
	A property of graphs that are far from small set expander
	A tester for bounded degree graphs
	Testers in the adjacency list model for general graphs
	A two-sided error tester
	A one-sided error tester

	A tester in the rotation map model for general graphs

	Conclusions

	p636-52-Lopez-Ortiz
	Introduction
	Preliminaries
	Lower Bound for OPT_FREE
	Conclusions

	p649-53-Neary
	Introduction
	Preliminaries
	Tag Systems
	Cyclic Tag Systems

	The Halting Problem for Binary Tag Systems
	Binary Tag System T and Its Encoding
	The Simulation Algorithm
	Tag system T Simulating an Arbitrary Computation Step of C

	Example Simulation for T
	Using Table 1 to define u
	Simulating a Computation Step with T.

	The Post Correspondence Problem for 5 Pairs of Words

	p662-54-Place
	Introduction
	Preliminaries
	Tools: Semigroups and Well-Formed Words
	Semigroups and Monoids
	Well-Formed Words

	Logical Approach
	From F+-separation to F-separation
	From F-separation to F+-separation

	Algebraic Approach
	Varieties
	Semidirect Product
	Main Theorem

	Conclusion

	p676-55-Schmid
	Introduction
	Preliminaries
	From Tutte Paths to 2-Walks
	Finding Tutte Paths
	Setting up the Decomposition
	Avoiding Overlapping Subgraphs
	Extending the Decomposition
	Finding a Tutte Path of eta(K)
	Finding a Tutte Path of G

	Polynomial Time Bound for Computing Tutte Paths

	p689-56-Schweitzer
	Introduction
	Preliminaries
	Reductions
	Isomorphism, Invariants and Canonical Labeling
	Colored modular decomposition
	Bounded generalized color valence
	Comprehensiveness of the case distinction
	Conclusion

	p703-57-Tantau
	Introduction
	Contributions of This Paper
	Technical Contributions
	Related Work
	Organization of This Paper

	Lower Bounds: Hardness for L and NL
	Upper Bounds: Containment in FO and L
	Eaa Over Basic Graphs: Reformulation as Constraint Satisfaction
	E*ae Over Basic Graphs: From P to L
	E1ae Over Basic Graphs: From L to FO

	Conclusion

	p716-58-Vardi
	Introduction
	Our Results
	Related Work
	Comparison with Related Models

	Model and Preliminaries
	The Returning Secretary
	Optimal Family of Rules
	The No Waiting Case
	Optimizing the Success Probability

	Extension to Matroid Secretary Problems
	The Returning Matroid Secretary
	Returning Bipartite Edge-Weighted Matching

	p716-59-Wrochna
	Introduction
	Preliminaries
	Fundamental groupoid
	Vertex walks and realizability
	Topological validity
	Tight closed walks and frozen vertices
	Characterization of realizable walks
	An algorithm
	Conclusions and future work

	p743-60-Zetzsche
	Introduction
	Preliminaries
	A hierarchy of language classes
	Parikh annotations
	Computing downward closures
	Strictness of the hierarchy

