1,805 research outputs found

    Ways of Applying Artificial Intelligence in Software Engineering

    Full text link
    As Artificial Intelligence (AI) techniques have become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of AI application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classification of distinct AI applications and provides insights concerning the risks associated with them. We argue that this will be important for companies in deciding how to apply AI in their software applications and to create strategies for its use

    Modern software cybernetics: new trends

    Get PDF
    Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Modern software cybernetics: New trends

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    An investigation of requirements traceability practices in software companies in Malaysia

    Get PDF
    Requirement traceability (RT) is one of the critical activity of good requirements management and an important part of development projects. At the same time, it improves the quality of software products. Nevertheless, industrial practitioners are challenged by this lack of guidance or results which serve as a rule or guide in establishing effective traceability in their projects. The outcome of this is that practitioners are ill-informed as to the best or most efficient means of accomplishing their tasks, such as found in software companies. Notwithstanding the lack of guidance, there are a number of commonly accepted practices which can guide industrial practitioners with respect to trace the requirements in their projects. This study aims to determine the practices of RT through conducting a systematic literature review. Also, this study conducted a survey for investigating the use of RT practices in the software companies at northern region of Malaysia. Finally, a series of interviews with practitioners were carried out to know the reasons that influence on the use of these practices in software development. The findings showed that majority software companies do not use traceability practices for tracing requirements due to financial issues and the lack of knowledge of these practices. This study presented empirical evidence about the use of RT practices among software companies. Thus, the findings of this study can assist practitioners to select RT practices, and also enables researchers to find gaps and pointers for future study in this study domain
    • …
    corecore