1,411 research outputs found

    2D-3D Pose Tracking of Rigid Instruments in Minimally Invasive Surgery

    Get PDF
    Instrument localization and tracking is an important challenge for advanced computer assisted techniques in minimally invasive surgery and image-based solutions to instrument localization can provide a non-invasive, low cost solution. In this study, we present a novel algorithm capable of recovering the 3D pose of laparoscopic surgical instruments combining constraints from a classification algorithm, multiple point features, stereo views (when available) and a linear motion model to robustly track the tool in surgical videos. We demonstrate the improved robustness and performance of our algorithm with optically tracked ground truth and additionally qualitatively demonstrate its performance on in vivo images. © 2014 Springer International Publishing Switzerland

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery

    Get PDF
    Intraoperative segmentation and tracking of minimally invasive instruments is a prerequisite for computer- and robotic-assisted surgery. Since additional hardware like tracking systems or the robot encoders are cumbersome and lack accuracy, surgical vision is evolving as promising techniques to segment and track the instruments using only the endoscopic images. However, what is missing so far are common image data sets for consistent evaluation and benchmarking of algorithms against each other. The paper presents a comparative validation study of different vision-based methods for instrument segmentation and tracking in the context of robotic as well as conventional laparoscopic surgery. The contribution of the paper is twofold: we introduce a comprehensive validation data set that was provided to the study participants and present the results of the comparative validation study. Based on the results of the validation study, we arrive at the conclusion that modern deep learning approaches outperform other methods in instrument segmentation tasks, but the results are still not perfect. Furthermore, we show that merging results from different methods actually significantly increases accuracy in comparison to the best stand-alone method. On the other hand, the results of the instrument tracking task show that this is still an open challenge, especially during challenging scenarios in conventional laparoscopic surgery

    Automated pick-up of suturing needles for robotic surgical assistance

    Get PDF
    Robot-assisted laparoscopic prostatectomy (RALP) is a treatment for prostate cancer that involves complete or nerve sparing removal prostate tissue that contains cancer. After removal the bladder neck is successively sutured directly with the urethra. The procedure is called urethrovesical anastomosis and is one of the most dexterity demanding tasks during RALP. Two suturing instruments and a pair of needles are used in combination to perform a running stitch during urethrovesical anastomosis. While robotic instruments provide enhanced dexterity to perform the anastomosis, it is still highly challenging and difficult to learn. In this paper, we presents a vision-guided needle grasping method for automatically grasping the needle that has been inserted into the patient prior to anastomosis. We aim to automatically grasp the suturing needle in a position that avoids hand-offs and immediately enables the start of suturing. The full grasping process can be broken down into: a needle detection algorithm; an approach phase where the surgical tool moves closer to the needle based on visual feedback; and a grasping phase through path planning based on observed surgical practice. Our experimental results show examples of successful autonomous grasping that has the potential to simplify and decrease the operational time in RALP by assisting a small component of urethrovesical anastomosis

    Concurrent Segmentation and Localization for Tracking of Surgical Instruments

    Full text link
    Real-time instrument tracking is a crucial requirement for various computer-assisted interventions. In order to overcome problems such as specular reflections and motion blur, we propose a novel method that takes advantage of the interdependency between localization and segmentation of the surgical tool. In particular, we reformulate the 2D instrument pose estimation as heatmap regression and thereby enable a concurrent, robust and near real-time regression of both tasks via deep learning. As demonstrated by our experimental results, this modeling leads to a significantly improved performance than directly regressing the tool position and allows our method to outperform the state of the art on a Retinal Microsurgery benchmark and the MICCAI EndoVis Challenge 2015.Comment: I. Laina and N. Rieke contributed equally to this work. Accepted to MICCAI 201

    Vision-based and marker-less surgical tool detection and tracking: a review of the literature

    Get PDF
    In recent years, tremendous progress has been made in surgical practice for example with Minimally Invasive Surgery (MIS). To overcome challenges coming from deported eye-to-hand manipulation, robotic and computer-assisted systems have been developed. Having real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy is a key ingredient for such systems. In this paper, we present a review of the literature dealing with vision-based and marker-less surgical tool detection. This paper includes three primary contributions: (1) identification and analysis of data-sets used for developing and testing detection algorithms, (2) in-depth comparison of surgical tool detection methods from the feature extraction process to the model learning strategy and highlight existing shortcomings, and (3) analysis of validation techniques employed to obtain detection performance results and establish comparison between surgical tool detectors. The papers included in the review were selected through PubMed and Google Scholar searches using the keywords: “surgical tool detection”, “surgical tool tracking”, “surgical instrument detection” and “surgical instrument tracking” limiting results to the year range 2000 2015. Our study shows that despite significant progress over the years, the lack of established surgical tool data-sets, and reference format for performance assessment and method ranking is preventing faster improvement

    i3PosNet: Instrument Pose Estimation from X-Ray in temporal bone surgery

    Full text link
    Purpose: Accurate estimation of the position and orientation (pose) of surgical instruments is crucial for delicate minimally invasive temporal bone surgery. Current techniques lack in accuracy and/or line-of-sight constraints (conventional tracking systems) or expose the patient to prohibitive ionizing radiation (intra-operative CT). A possible solution is to capture the instrument with a c-arm at irregular intervals and recover the pose from the image. Methods: i3PosNet infers the position and orientation of instruments from images using a pose estimation network. Said framework considers localized patches and outputs pseudo-landmarks. The pose is reconstructed from pseudo-landmarks by geometric considerations. Results: We show i3PosNet reaches errors less than 0.05mm. It outperforms conventional image registration-based approaches reducing average and maximum errors by at least two thirds. i3PosNet trained on synthetic images generalizes to real x-rays without any further adaptation. Conclusion: The translation of Deep Learning based methods to surgical applications is difficult, because large representative datasets for training and testing are not available. This work empirically shows sub-millimeter pose estimation trained solely based on synthetic training data.Comment: Accepted at International journal of computer assisted radiology and surgery pending publicatio

    ToolNet: Holistically-Nested Real-Time Segmentation of Robotic Surgical Tools

    Get PDF
    Real-time tool segmentation from endoscopic videos is an essential part of many computer-assisted robotic surgical systems and of critical importance in robotic surgical data science. We propose two novel deep learning architectures for automatic segmentation of non-rigid surgical instruments. Both methods take advantage of automated deep-learning-based multi-scale feature extraction while trying to maintain an accurate segmentation quality at all resolutions. The two proposed methods encode the multi-scale constraint inside the network architecture. The first proposed architecture enforces it by cascaded aggregation of predictions and the second proposed network does it by means of a holistically-nested architecture where the loss at each scale is taken into account for the optimization process. As the proposed methods are for real-time semantic labeling, both present a reduced number of parameters. We propose the use of parametric rectified linear units for semantic labeling in these small architectures to increase the regularization ability of the design and maintain the segmentation accuracy without overfitting the training sets. We compare the proposed architectures against state-of-the-art fully convolutional networks. We validate our methods using existing benchmark datasets, including ex vivo cases with phantom tissue and different robotic surgical instruments present in the scene. Our results show a statistically significant improved Dice Similarity Coefficient over previous instrument segmentation methods. We analyze our design choices and discuss the key drivers for improving accuracy.Comment: Paper accepted at IROS 201
    corecore