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Abstract. Instrument localization and tracking is an important chal-
lenge for advanced computer assisted techniques in minimally invasive
surgery and image-based solutions to instrument localization can pro-
vide a non-invasive, low cost solution. In this study, we present a novel
algorithm capable of recovering the 3D pose of laparoscopic surgical in-
struments combining constraints from a classification algorithm, mul-
tiple point features, stereo views (when available) and a linear motion
model to robustly track the tool in surgical videos. We demonstrate the
improved robustness and performance of our algorithm with optically
tracked ground truth and additionally qualitatively demonstrate its per-
formance on in vivo images.

1 Introduction

Image-based instrument tracking and localization has important applications in
computer assisted interventions (CAI) and in robotic minimally invasive surgery
(RMIS). Computing the pose of the instruments is critical for enabling enhanced
guidance and navigation where precise knowledge of the sub-surface patient
anatomy can assist the surgeon to avoid critical structures and accurately excise
tissue. With robotic manipulators, virtual fixtures can be applied if the tools
approach delicate regions [1] or alternatively haptic feedback can be used to
improve instrument-tissue manipulation [2]. The major challenge with localiz-
ing the tools is in developing a system that integrates into the operating room
with minimal disruption of the workflow or additional invasion of the patient
anatomy. While instrument tracking can be realised by using hardware sensors,
encoders or external optical systems, such approaches require extensive hard-
ware integration and still have limitations in accuracy and integration into the
operating theatre. A significant advantage of image-based methods [3, 4] is that
they recover the tool’s position and orientation directly in the surgeon’s viewing
reference and do not require any additional hardware [5, 6].



For minimally invasive surgery (MIS), instrument detection based purely
on images has been investigated for a number years [7]. Recent state-of-the-art
methods involve the use of trained classifiers and combine the detection and sub-
sequent tracking of instruments [8, 9]. Such algorithms achieve excellent results
but from a single image only the 2D image position of the instrument is recov-
ered. The full 3D position and orientation of the instrument can be recovered
using specialized fiducial markers machined onto the instruments, however, this
approach is restrictive and it interferes with the hardware making it difficult
for general theatre use with arbitrary instruments [10]. Naturally appearing fea-
tures can potentially also be used to localize the instrument. For example, edge
information with gradient direction filtering based on the trocar position has
been demonstrated [11]. This constraint can cope with significant image noise
but estimating the trocar position can be complex in the presence of insuffla-
tion and physiological motion such as breathing and heart rate. Gradient based
point features can also be combined with color-based features and classification
to track articulated robotic instruments [12] or as part of a brute force matching
of rendered tool templates [13]. Such methods can be implemented in real-time
with GPU processing but they rely heavily on kinematic data from the robotic
system and this therefore limits their application to non-robotic procedures. Ad-
ditionally, the gradient features are focussed around the tip of the articulated
instrument which fails to exploit the large constraint provided by the cylindri-
cal instrument shaft. In [14] we demonstrated the use of this constraint for five
degrees of freedom (5 DOF) instrument localization.

In this paper we propose combining constraints from feature points with a
region based level set segmentation to develop an instrument localization and
tracking framework that is more robust than using either individual technique in
isolation. We handle challenging data containing occlusions and large reflections
by exploiting strong prior knowledge of the instrument appearance and shape
though discriminative classification with a Random Forest (RF) and by applying
constraints to the level set propagation. We formulate this within a cost func-
tion that is simple to optimize and robust to noise in the image. The addition
of multi-view constraints to suit an emerging line of stereo laparoscopes add
further information and temporal motion is incorporated with a Kalman filter.
We show that these modifications provide improvement over previous work by
comparison experiments with ex vivo tissue and ground truth tracking provided
by an optical system. To further illustrate the effectiveness of our algorithm we
include qualitative results from MIS videos.

2 Method

2.1 Region based alignment

Region based tracking methods using level sets are generally framed as the max-
imization of an energy functional

E =

∫
Ωf

rf (I(x), C))dΩ +

∫
Ωb

rb(I(x), C)dΩ (1)



where rf |b represent functions which measure the agreement between the infor-
mation in the pixels x of image I within a contour C (the foreground) and outside
the contour (the background) with learned statistical models. These agreement
functions are summed over the foreground and background regions Ωf |b. Nor-
mally this energy functional is maximized by finding the set of pose parameters
which define the optimal segmentation of the target image into a foreground and
background region.

The significant challenges within region based tracking are selecting a func-
tion r(.) to measure the region agreement and choosing the parameters which
determine the evolution of the contour. By assuming a weak constraint, which
can be relaxed, that we are tracking a rigid object we solve the latter problem
by following [15] optimizing in the space of the 6 degrees of freedom of a rigid
transformation, constraining the contour to belong to the set of image plane
projections of our target object at the current estimate of pose.

Selecting the function r(.) is problematic in MIS as the complex lighting and
occlusions lead to ambiguous regions for which simple classification models fail.
Following [14] we learn the function r(.) with random decision forests trained
on the Hue, Saturation, Opponent 2 and Opponent 3 color spaces, which were
demonstrated by the authors to have good performance on MIS images.

2.2 Incorporating stereo constraints

A significant challenge of 3D pose estimation using a monocular camera is the
difficulty in estimating the depth of the target object purely from perspective
cues [14]. Incorporating stereo constraints is important for creating a system that
is capable of reliably estimating 3D information. Practically, stereo acquisition is
also more common now with 3D laparoscope systems recently becoming available
from a variety of commercial manufacturers [16]. We incorporate stereo as a
special case multi-view constraint [15] by constructing the cost function over
both images of the stereo pair before solving for the pose in the reference camera
coordinate system.

2.3 Refinement with point based tracking

One of the challenges of region based tracking is that it struggles to refine the
pose to highly accurate solutions when there are ambiguous contours or noise
around the edge of the target object. However, it is good at providing a reason-
ably close solution to the global maximum.

Point based tracking methods however can provide highly accurate pose esti-
mation but suffer heavily from data association errors, particularly when working
with relatively featureless surfaces such as those found on medical instruments.
The robustness of region based tracking can be combined with the high preci-
sion of point based tracking by jointly optimizing for both features. We avoid
the difficulties of data association errors by searching for matches in a small
region around expected locations of feature points (as suggested by the current
estimated pose of the target object).



This results in our overall discretized energy functional being represented as

E =
∑
i∈Il|r

∑
x∈Ωi

(
rf (x)H(g(x)) + rb(x)(1−H(g(x)))

)
+ λ

∑
y∈Γ
|y′ − P (y)|2 (2)

where y′ is a matched feature in the image (we perform feature matching
exclusively in the left image for simplicity) and P (y) is the projection of its
corresponding 3D point. λ is a weighting parameter used to modify the con-
tribution of the point alignments. H(.) is the smoothed Heaviside function of
the level set embedding function g(x), which is represented as a signed distance
function as is typical in the level set formulation of image segmentations [17]. Il|r
are set of the left and right images (although this could represent any number
of calibrated images) and x ∈ Ωi refer to the pixels in a single image over which
segmentation is performed. Γ is the set of features on the target object which
we are attempting to match in the image. In our current implementation we
choose SIFT features [18] but any feature with good invariance to lighting and
pose changes could be chosen. To build a library of detectable points for a given
instrument, we collect target SIFT features from a sample image of the object in
which the instrument pose has been manually aligned, backprojecting them to
their intersection with the target object to find their object space coordinates.

The cost function is optimized using gradient descent as this only requires
first derivatives yielding faster iterations than other optimization techniques. We
additionally use the quaternion representation of angular pose which, although
requiring normalization at each step, avoids the singularity problems of the Euler
angle representation.

2.4 Initialization and tracking

To initialize our pose estimate we follow the method of [14]. Frame by frame
tracking is provided with a linear Kalman filter for both position and orientation.
Our state vector for the kth estimate is defined as

xk = (x, y, z, ẋ, ẏ, ż, θ, ψ, φ) (3)

where the terms have their usual meanings. We transform the quaternion rota-
tion representation to Euler angles to allow linearization of the Kalman filter.
We update pose using the standard Kalman Filter equations

xk = Fxk−1 +N(0,Q) (4)

zk = Mxk +N(0,R) (5)

where zk is the measurement vector, F is the position-velocity state transition
matrix and M is the identity observation model. Both are corrupted by normally
distributed noise of zero mean and variance Q,R. For more details on the linear
Kalman filter, the reader is directed to [19].



3 Results

To evaluate the performance of the proposed method we conducted experiments
within a controlled laboratory environment where we were able to obtain ground
truth data. For comparison to prior work we compared our results to a recent
state-of-the-art method [14]. Qualitative evaluation is also reported for in vivo
surgical videos.

The implementation of the method used in these results is written in C++
and a single iteration of the gradient descent takes approximately 1 second on a
3.0 GHz dual core CPU. As each pixel of the level set optimization is evaluated
independently, the method is highly parallelizable and real time performance has
been demonstrated for similar techniques on a GPU [15].

3.1 Laboratory experiments

Fig. 1: This image shows the optical tracking system we constructed to capture
video with synchronized ground truth data. Inset shows an example frame from
our captured video.

A mock-up surgical site was constructed with a lamb’s liver and an Endopath
monopolar dissector (Ethicon Endo-Surgery Inc.) as the working instrument.
The scene was visualized with a 3DHD laparoscope (Viking Systems). We at-
tached optical tracking markers to the proximal end of the laparoscope and to
the proximal end of the instrument and tracked their locations using an Op-
totrak Certus system (Northern Digital). Hand eye calibration was performed
using OpenCV1 and Tsai’s handeye method [20] implemented within the NifTK
toolbox2 to determine the transformations between the optical tracker and the

1 http://docs.opencv.org/
2 http://cmic.cs.ucl.ac.uk/home/software/



camera coordinate systems (See Figure 1). The location of the instrument tip
relative to the tracking markers was found using an invariant point method, also
implemented in NifTK. Laparoscope tracking error was experimentally deter-
mined to be 1.7mm RMS and instrument tracking error estimated to be 0.7mm
RMS, assuming independence this gives a tracking error of 1.8 mm RMS for the
instrument tip relative to the laparoscope lens.

0 100 200 300 400 500
−20

−15

−10

−5

0

5
Plot of X Position

Frame

X
 C

oo
rd

in
at

e 
(m

m
)

 

 

Our algorithm
Comparison Method
Ground Truth

(a) 3D trajectory - x coor-
dinate

0 100 200 300 400 500
8

10

12

14

16

18

20

22

24

26

28
Plot of Y Position

Frame

Y
 C

oo
rd

in
at

e 
(m

m
)

 

 

Our algorithm
Comparison Method
Ground Truth

(b) 3D trajectory - y coor-
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(e) 3D trajectory - y coor-
dinate
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Fig. 2: These plots show the ground truth translation from the center of the
camera coordinate system to the tip of the tracked instrument obtained with the
Optical tracking system compared with the results obtained from our algorithm
and the algorithm of [14].

We learn instrument color models from a single image of the target object
manually segmented from a homogeneous background and the background model
is learned from a single image of the target environment captured before the
instrument is introduced to the scene.

We recorded a single video of the instrument moving in front of the liver
synchronising the video and tracking data using NifTK. The transformation
from the camera coordinate system to the tip of the instrument is computed for
each frame by our algorithm and by the optically tracked markers. Due to the
calibration inaccuracy we are forced to manually remove the offset by choosing a
frame where the tracking alignment appears most accurate and setting the fixed
offset as the difference between the estimates at this point.



We show quantitative results from the tracking in Figure 2. Selected frames
from the tracking procedure compared with the equivalent estimate from our
comparison method are shown in Figure 3.

Mean Error (mm) Std. Dev. Error (mm)

X axis - Our Method 1.51 1.48

X axis - Comparison 1.73 1.21

Y axis - Our Method 1.25 1.04

Y axis - Comparison 1.89 1.17

Z axis - Our Method 3.05 2.68

Z axis - Comparison 9.86 4.89

Table 1: The numerical results showing the mean and std. dev. of error in each
axis.

3.2 Qualitative results

We also demonstrate the qualitative results of our method by performing track-
ing on several sequences from surgical environments where 3D tracking data is
not available. This dataset was not captured with a stereo camera which pre-
vents us from incorporating these constraints in our pose estimation. Selected
frames from this validation are shown in Figure 4.

3.3 Failure modes

The most significant point of failure in our algorithm is dealing with a poor
initialization, which is typically due to difficulties in correctly labelling the image
pixels using the random forest. When this occurs, the model is placed too far
from the ideal location for convergence to occur.

A secondary failure mode occurs due to our treatment of the instrument color
model with a bag-of-pixels approach. This means that when the (often different
colored) tip of the instrument is occluded behind tissue (e.g. due to cutting) the
model can still fit to the image with a high degree of confidence as it doesn’t care
if the pixels it matches to the tip region of the contour actually match the true
surface color at that point, only that they match the appearance model of the
whole instrument surface. Potentially the appearance of the instrument model
can be broken up into multiple classes [21] but as of yet this is not an area we
have investigated.

4 Conclusion and Discussion

In this work, we have presented a novel framework for tracking rigid 3D objects
using stereo 2D images. We combine a region based segmentation technique with
point based pose estimation simultaneously addressing the weaknesses of both
methods. Quantitative validation is performed on optically tracked endoscopic



(a) (b)
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Fig. 3: The images show estimates of the instrument pose overlaid on the video.
The left hand column of images show our technique which incorporates stereo,
points and a Kalman filter compared with the right hand column showing the
method of [14] which does not use these features.

images in a mock surgical environment. Figure 2 shows the estimated (x, y, z)
position of the instrument tip compared with the method of [14]. Both methods
provide good accuracy in x and y, although ours appears slightly more accurate
and there is a significant accuracy improvement in the z direction, which is to
be expected given the stereo constraints our method includes. The decrease in
error over the duration of the sequence can be explained by the method grad-
ually recovering from inaccuracies in the pose initialization. Table 1 shows the
numerical performance improvements of our method. Visual comparison can be
seen in sample frames in Figure 3 where both methods converge to an accurate
solution but our method more accurately converges around the instrument tip
and does not have the same errors in estimating the shaft rotation. The full video



(a) (b) (c)

Fig. 4: The frames show select examples from an in vivo dataset with the instru-
ment model overlaid at the current pose estimate.

can be found online at https://youtu.be/5VyRmvGBT8k. Qualitative validation
on in vivo data demonstrates that our method is feasible in real surgical envi-
ronments. Sample frames showing the alignment accuracy are shown in Figure 4
which demonstrates the method’s robustness to lighting and fast motion as well
as the significant articulation in some frames.

Our method presents several areas where improvement is necessary. The most
significant of which is the modelling of instrument articulation. Methods of dis-
joint optimization appear the most simple, where each articulated component
is optimized separated however [21] and [22] have both presented methods of
3D pose tracking which handle the articulation as part of a single optimization.
Additionally, further constraints need to be added to model the trocar insertion
point which would help to improve the accuracy of our system.
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