Real-time instrument tracking is a crucial requirement for various
computer-assisted interventions. In order to overcome problems such as specular
reflections and motion blur, we propose a novel method that takes advantage of
the interdependency between localization and segmentation of the surgical tool.
In particular, we reformulate the 2D instrument pose estimation as heatmap
regression and thereby enable a concurrent, robust and near real-time
regression of both tasks via deep learning. As demonstrated by our experimental
results, this modeling leads to a significantly improved performance than
directly regressing the tool position and allows our method to outperform the
state of the art on a Retinal Microsurgery benchmark and the MICCAI EndoVis
Challenge 2015.Comment: I. Laina and N. Rieke contributed equally to this work. Accepted to
MICCAI 201