14 research outputs found

    Time-to-digital converters and histogram builders in SPAD arrays for pulsed-LiDAR

    Get PDF
    Light Detection and Ranging (LiDAR) is a 3D imaging technique widely used in many applications such as augmented reality, automotive, machine vision, spacecraft navigation and landing. Pulsed-LiDAR is one of the most diffused LiDAR techniques which relies on the measurement of the round-trip travel time of an optical pulse back-scattered from a distant target. Besides the light source and the detector, Time-to-Digital Converters (TDCs) are fundamental components in pulsed-LiDAR systems, since they allow to measure the back-scattered photon arrival times and their performance directly impact on LiDAR system requirements (i.e., range, precision, and measurements rate). In this work, we present a review of recent TDC architectures suitable to be integrated in SPAD-based CMOS arrays and a review of data processing solutions to derive the TOF information. Furthermore, main TDC parameters and processing techniques are described and analyzed considering pulsed-LiDAR requirements

    5-Bit Dual-Slope Analog-to-Digital Converter-Based Time-to-Digital Converter Chip Design in CMOS Technology

    Get PDF
    Time-to-Digital Converters (TDC) have gained increasing importance in modern implementations of mixed-signal, data-acquisition and processing interfaces and are used to perform high precision time intervals in systems that incorporate Time-of-Flight (ToF) or Time-of-Arrival (ToA) measurements. The linearity of TDCs is very crucial since most Digital Signal Processing (DSP) systems require very linear inputs to achieve high accuracy. In this work, a TDC has been designed in the 0.5 μm n-well CMOS process that can be used for on-chip integration and in applications requiring high linearity. This TDC used a Dual-Slope-ADC-based architecture for the time-to-digital conversion and consists of the following three main sub-circuits: a time-to-voltage conversion part, an integrating part and digital circuitry. The design is operated with ±2.5V supply voltage and the digital circuitry, consisting of two digital counters and an adder, are operated with a clock frequency of 13MHz. The design of the TDC is discussed and simulated and experimental test results and linearity performance of the fabricated TDC are also presented

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    The Efficient Design of Time-to-Digital Converters

    Get PDF

    Strategies towards high performance (high-resolution/linearity) time-to-digital converters on field-programmable gate arrays

    Get PDF
    Time-correlated single-photon counting (TCSPC) technology has become popular in scientific research and industrial applications, such as high-energy physics, bio-sensing, non-invasion health monitoring, and 3D imaging. Because of the increasing demand for high-precision time measurements, time-to-digital converters (TDCs) have attracted attention since the 1970s. As a fully digital solution, TDCs are portable and have great potential for multichannel applications compared to bulky and expensive time-to-amplitude converters (TACs). A TDC can be implemented in ASIC and FPGA devices. Due to the low cost, flexibility, and short development cycle, FPGA-TDCs have become promising. Starting with a literature review, three original FPGA-TDCs with outstanding performance are introduced. The first design is the first efficient wave union (WU) based TDC implemented in Xilinx UltraScale (20 nm) FPGAs with a bubble-free sub-TDL structure. Combining with other existing methods, the resolution is further enhanced to 1.23 ps. The second TDC has been designed for LiDAR applications, especially in driver-less vehicles. Using the proposed new calibration method, the resolution is adjustable (50, 80, and 100 ps), and the linearity is exceptionally high (INL pk-pk and INL pk-pk are lower than 0.05 LSB). Meanwhile, a software tool has been open-sourced with a graphic user interface (GUI) to predict TDCs’ performance. In the third TDC, an onboard automatic calibration (AC) function has been realized by exploiting Xilinx ZYNQ SoC architectures. The test results show the robustness of the proposed method. Without the manual calibration, the AC function enables FPGA-TDCs to be applied in commercial products where mass production is required.Time-correlated single-photon counting (TCSPC) technology has become popular in scientific research and industrial applications, such as high-energy physics, bio-sensing, non-invasion health monitoring, and 3D imaging. Because of the increasing demand for high-precision time measurements, time-to-digital converters (TDCs) have attracted attention since the 1970s. As a fully digital solution, TDCs are portable and have great potential for multichannel applications compared to bulky and expensive time-to-amplitude converters (TACs). A TDC can be implemented in ASIC and FPGA devices. Due to the low cost, flexibility, and short development cycle, FPGA-TDCs have become promising. Starting with a literature review, three original FPGA-TDCs with outstanding performance are introduced. The first design is the first efficient wave union (WU) based TDC implemented in Xilinx UltraScale (20 nm) FPGAs with a bubble-free sub-TDL structure. Combining with other existing methods, the resolution is further enhanced to 1.23 ps. The second TDC has been designed for LiDAR applications, especially in driver-less vehicles. Using the proposed new calibration method, the resolution is adjustable (50, 80, and 100 ps), and the linearity is exceptionally high (INL pk-pk and INL pk-pk are lower than 0.05 LSB). Meanwhile, a software tool has been open-sourced with a graphic user interface (GUI) to predict TDCs’ performance. In the third TDC, an onboard automatic calibration (AC) function has been realized by exploiting Xilinx ZYNQ SoC architectures. The test results show the robustness of the proposed method. Without the manual calibration, the AC function enables FPGA-TDCs to be applied in commercial products where mass production is required

    CMOS system for high throughput fluorescence lifetime sensing using time correlated single photon counting

    Get PDF
    Fluorescence lifetime sensing using time correlated single photon counting (TCSPC) is a key analytical tool for molecular and cell biology research, medical diagnosis and pharmacological development. However, commercially available TCSPC equipment is bulky, expensive and power hungry, typically requiring iterative software post-processing to calculate the fluorescence lifetime. Furthermore, the technique is restrictively slow due to a low photon throughput limit which is necessary to avoid distortions caused by TCSPC pile-up. An investigation into CMOS compatible multimodule architectures to miniaturise the standard TCSPC set up, allow an increase in photon throughput by overcoming the TCSPC pile-up limit, and provide fluorescence lifetime calculations in real-time is presented. The investigation verifies the operation of the architectures and leads to the selection of optimal parameters for the number of detectors and timing channels required to overcome the TCSPC pile-up limit by at least an order of magnitude. The parameters are used to implement a low power miniaturised sensor in a 130 nm CMOS process, combining single photon detection, multiple channel timing and embedded pre-processing of the fluorescence lifetime, all within a silicon area of < 2 mm2. Single photon detection is achieved using an array of single photon avalanche diodes (SPADs) arranged in a digital silicon photomultiplier (SiPM) architecture with a 10 % fill-factor and a compressed 250 ps output pulse, which provides a photon throughput of > 700 MHz. An array of time-interleaved time-to-digital converters (TI-TDCs) with 50 ps resolution and no processing dead-time records up to eight photon events during each excitation period, significantly reducing the effect of TCSPC pile-up. The TCSPC data is then processed using an embedded centre-of-mass method (CMM) pre-calculation to produce single exponential fluorescence lifetime estimations in real-time. The combination of high photon throughput and real-time calculation enables advances in applications such as fluorescence lifetime imaging microscopy (FLIM) and time domain fluorescence lifetime activated cell sorting. To demonstrate this, the device is validated in practical bulk sample fluorescence lifetime, FLIM and simulated flow based experiments. Photon throughputs in excess of the excitation frequency are demonstrated for a range of organic and inorganic fluorophores for minimal error in lifetime calculation by CMM (< 5 %)

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    SPATIAL TRANSFORMATION PATTERN DUE TO COMMERCIAL ACTIVITY IN KAMPONG HOUSE

    Get PDF
    ABSTRACT Kampung houses are houses in kampung area of the city. Kampung House oftenly transformed into others use as urban dynamics. One of the transfomation is related to the commercial activities addition by the house owner. It make house with full private space become into mixused house with more public spaces or completely changed into full public commercial building. This study investigate the spatial transformation pattern of the kampung houses due to their commercial activities addition. Site observations, interviews and questionnaires were performed to study the spatial transformation. This study found that in kampung houses, the spatial transformation pattern was depend on type of commercial activities and owner perceptions, and there are several steps of the spatial transformation related the commercial activity addition. Keywords: spatial transformation pattern; commercial activity; owner perception, kampung house; adaptabilit
    corecore